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Preface: General Chair

I am honoured to write the first few words of these Proceedings, as General Chair of COLING/ACL 2006
in Sydney, Australia. As we know, this is just the third time in their history that the two traditionally major
events in Computational Linguistics, COLING and ACL — organised respectively by ICCL (International
Committee on Computational Linguistics) and ACL (the Association for Computational Linguistics) —
are joined in one combined conference, after Stanford in 1984 and Montreal in 1998. | was lucky to
attend both those wonderful events and would have never imagined to be “in charge” of the next one, the
first of the new millennium!

When | accepted, | knew | didn’t have real work to do in this position, apart from mediate — if necessary
— among the several “real workers”, the various Chairs. | must say now that my work was even easier
than foreseen, because of the wonderful teamwork of all the COLING/ACL group.

In this joint Conference we have tried to maintain the spirit of both COLING and ACL, but the
combination will inevitably have its own personality, in a mixture that is more than the simple sum
of the two. Part of its character will be due to the location, for the first time — for both conferences
— in Australia. For this reason we decided to have a member of AFNLP (the Asian Federation of
Natural Language Processing) on the Advisory Board and to give particular attention and visibility to
the Asia-Pacific context, communities and languages. We sincerely thank both the AFNLP-Nagao Fund
for providing financial support for those presenting Asian NLP research, and ALTA (the Australasian
Language Technology Association) for their local support.

It is my task here — but | should say my pleasure — to express gratitude to all those without whom this
conference would not exist, and | think | can do that on behalf of all participants.

My biggest thanks go to all the Chairs, for their invaluable effort and dedication which made this
Conference possible.

First of all the two Program Chairs: Claire Cardie and Pierre Isabelle, who did a tremendous job,
managing so many submissions and taking care of both regular papers and posters, and the two Local
Arrangements Chairs: Robert Dale andde Paris, who have succeeded in keeping so many details
under control, in such a smooth way as if everything were natural and effortless for them.

And all the others, for their precious, competent and hard work: the Workshops Chair: Suzanne
Stevenson; the Student Workshop Chair: Rebecca Hwa; the Tutorials Chair: Claire Gardent; the
Interactive Presentations Chair: James Curran; the Publications Chair: Olivia Kwong; the two
Sponsorship Chairs: Steven Krauwer (International) and Dominique Estival (Australia); the Mentoring
Chair: Richard Power, who kindly accepted to do this for the second time; the Publicity Chair:
Tim Baldwin; the Exhibits Chair: Menno van Zaanen; the Student Volunteers coordinator: Priscilla
Rasmussen, giving often advice to all of us as ACL business manager; the webmasters: Andrew Lampert
and Brett Powley; and finally Judy Potter and her team from Well Done Events for managing registrations
and assisting in the local organisation.

I warmly thank the Advisory Board — composed of four ICCL, four ACL, and one AFNLP members —

to whom we resorted for suggestions on important and sometimes delicate issues: Sandra Carberry, Eva
Hajicova, Aravind Joshi, Martin Kay, Kathleen McCoy, Martha Palmer, Priscilla Rasmussen, Benjamin
T'sou, Jun’ichi Tsujii.

| express my gratitude to all the sponsors for their great support to the conference.

| thank all the organizers of the so numerous surrounding workshops, tutorials, and other co-located

events — conferences, workshops, summer school — adding value to the main conference, creating
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altogether probably the biggest ever happening in Computational Linguistics.

My thanks to the area chairs, the reviewers, the invited speakers, the authors of the various presentations,
in particular the students who enter with enthusiasm in such an exciting field, all the participants who
will often make a long trip to be present at COLING/ACL 2006, and all those who contributed in many
ways to a success of the conference.

And | finally thank both ICCL and ACL for having decided to join forces again in such a great enterprise.
COLING/ACL 2006 will be, I'm sure, an exciting, stimulating and inspiring event for all of you.

Enjoy COLING/ACL 2006! ...and consider that some of the youngest here do not know it yet, but they
will be chairing the next joint events in a few years.

Nicoletta Calzolari
COLING/ACL 2006 General Chair
June 2006
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Preface: Program Committee Co-Chairs

This conference represents just the third time in their 40+ year history that the two premier conferences
in natural language processing, computational linguistics, and language technology have merged for a
joint COLING/ACL event; and it's the first time that the joint conference will be held in the southern
hemisphere. It is fitting then, that we received a record number of 630 submissions from 40+ countries:
39% from 13 countries in Asia, 29% from 17 countries in Europe, 25% from Canada and the United
States, 4% from Australia and New Zealand, 2% from 4 countries in the Middle East, and less than 1%
from South America (Brazil) and Africa (South Africa and Tunisia). Of the 630 submissions, 23% were
accepted for paper presentations and an additional 20% for poster presentations.

Our rough estimate of the amount of work that went just into preparing the submissions, final versions
and on-site presentations for this year's main program exceeds 32 persoh/fe@zsnclude workshops

and EMNLP, this figure is probably doubled. Thanks to everyone who submitted their research to the
conference!

Much of the work in putting together the main program of papers and posters was done, of course, by
our tireless area chairs and reviewers (of which we had 19 and 384, respectively). A tribute to their joint
efforts is the fact that we obtained a 100% response rate for reviews — over 100% actually, since a few
crazy souls offered unsolicited or extra reviews.

COLING/ACL 2006 spans five days with the traditional COLING “excursion day” on day three. The
remaining four days of the conference include plenary sessions, four parallel paper sessions, the student
research workshop, and two evening poster sessions. The ACL Lifetime Achievement Award will also
be bestowed on its fifth recipient in a plenary session, followed by an invited talk by the esteemed award
winner. A Best Paper Award will be announced in a plenary session at the end of the conference. We
would like to especially thank our two invited speakers, Daniel Marcu and Sally McConnell-Ginet.

In honor of the joint conference’s location, we have planned a special Asian language event for Thursday
morning that consists of paper presentations of the top four Asian language papers followed by a plenary
panel focusing on issues in Asian language processing, and ending with the presentation of the Best
Asian Language Paper Award. We offer special thanks to our three distinguished panelists — Pushpak
Bhattacharyya, Benjamin T'sou, and Jun’ichi Tsujii — and to Aravind Joshi, who expertly organized the
panel.

Finally, we thank the ACL and ICCL conference oversight committee, for advice of all sorts along the
way; and Rich Gerber, the START conference system developer, who answered our countless questions
at all hours of the day and night.

After all of this work, by so many people, we are very much looking forward to sitting back and enjoying
the conference with you in Sydney in July!

Claire Cardie
Pierre Isabelle
June 2006

lWe assume an average of 8 days of work to prepare each one of about 630 submissions to the COLING-ACL 2006 main
program; and an average of 5 days of work to produce final versions for each one of the 267 accepted contributions.
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Conference Program

Monday, 17 July 2006
09:00-09:30 Opening Session
Session 1A: Machine Translation |

09:30-10:00 Combination of Arabic Preprocessing Schemes for Statistical Machine Translation
Fatiha Sadat and Nizar Habash

10:00-10:30 Going Beyond AER: An Extensive Analysis of Word Alignments and Their Impact
on MT
Necip Fazil Ayan and Bonnie J. Dorr

Session 1B: Topic Segmentation

09:30-10:00 Unsupervised Topic Modelling for Multi-Party Spoken Discourse
Matthew Purver, Konrad P. Kording, Thomas L. Griffiths and Joshua B. Tenenbaum

10:00-10:30 Minimum Cut Model for Spoken Lecture Segmentation
Igor Malioutov and Regina Barzilay

Session 1C: Coreference

09:30-10:00 Bootstrapping Path-Based Pronoun Resolution
Shane Bergsma and Dekang Lin

10:00-10:30 Kernel-Based Pronoun Resolution with Structured Syntactic Knowledge
Xiaofeng Yang, Jian Su and Chew Lim Tan

Session 1D: Grammars |

09:30-10:00 A Finite-State Model of Human Sentence Processing
Jihyun Park and Chris Brew

10:00-10:30 Acceptability Prediction by Means of Grammaticality Quantification
Philippe Blache, Barbara Hemforth and Stéphane Rauzy

10:30-11:00 Break
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Monday, 17 July 2006 (continued)

11:00-11:30

11:30-12:00

12:00-12:30

11:00-11:30

11:30-12:00

12:00-12:30

11:00-11:30

11:30-12:00

12:00-12:30

11:00-11:30

11:30-12:00

12:00-12:30

12:30-14:00

Session 2A: Machine Translation Il

Discriminative Word Alignment with Conditional Random Fields
Phil Blunsom and Trevor Cohn

Named Entity Transliteration with Comparable Corpora
Richard Sproat, Tao Tao and ChengXiang Zhai

Extracting Parallel Sub-Sentential Fragments from Non-Parallel Corpora
Dragos Stefan Munteanu and Daniel Marcu

Session 2B: Word Sense Disambiguation |

Estimating Class Priors in Domain Adaptation for Word Sense Disambiguation
Yee Seng Chan and Hwee Tou Ng

Ensemble Methods for Unsupervised WSD
Samuel Brody, Roberto Navigli and Mirella Lapata

Meaningful Clustering of Senses Helps Boost Word Sense Disambiguation Performance
Roberto Navigli

Session 2C: Information Extraction |

Espresso: Leveraging Generic Patterns for Automatically Harvesting Semantic Relations
Patrick Pantel and Marco Pennacchiotti

Modeling Commonality among Related Classes in Relation Extraction
GuoDong Zhou, Jian Su and Min Zhang

Relation Extraction Using Label Propagation Based Semi-Supervised Learning
Jinxiu Chen, Donghong Ji, Chew Lim Tan and Zhengyu Niu

Session 2D: Grammars |l

Polarized Unification Grammars
Sylvain Kahane

Partially Specified Signatures: A Vehicle for Grammar Modularity
Yael Cohen-Sygal and Shuly Wintner

Morphology-Syntax Interface for Turkish LFG
Ozlem Cetinglu and Kemal Oflazer

Lunch
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Monday, 17 July 2006 (continued)

14:00-14:30

14:30-15:00

15:00-15:30

14:00-14:30

14:30-15:00

15:00-15:30

14:00-14:30

14:30-15:00

15:00-15:30

14:00-14:30

14:30-15:00

15:00-15:30

15:30-16:00

Session 3A: Parsing |

PCFGs with Syntactic and Prosodic Indicators of Speech Repairs

John Hale, Izhak Shafran, Lisa Yung, Bonnie Dorr, Mary Harper, Anna Krasnyanskaya,
Matthew Lease, Yang Liu, Brian Roark, Matthew Snover and Robin Stewart
Dependency Parsing of Japanese Spoken Monologue Based on Clause Boundaries
Tomohiro Ohno, Shigeki Matsubara, Hideki Kashioka, Takehiko Maruyama and Ya-
suyoshi Inagaki

Trace Prediction and Recovery with Unlexicalized PCFGs and Slash Features
Helmut Schmid

Session 3B: Dialogue |

Learning More Effective Dialogue Strategies Using Limited Dialogue Move Features
Matthew Frampton and Oliver Lemon

Dependencies between Student State and Speech Recognition Problems in Spoken Tutoring
Dialogues
Mihai Rotaru and Diane J. Litman

Learning the Structure of Task-Driven Human-Human Dialogs
Srinivas Bangalore, Giuseppe Di Fabbrizio and Amanda Stent

Session 3C: Machine Learning Methods |
Semi-Supervised Conditional Random Fields for Improved Sequence Segmentation and
Labeling

Feng Jiao, Shaojun Wang, Chi-Hoon Lee, Russell Greiner and Dale Schuurmans

Training Conditional Random Fields with Multivariate Evaluation Measures
Jun Suzuki, Erik McDermott and Hideki Isozaki

Approximation Lasso Methods for Language Modeling
Jianfeng Gao, Hisami Suzuki and Bin Yu

Session 3D: Applications |

Automated Japanese Essay Scoring System based on Articles Written by Experts
Tsunenori Ishioka and Masayuki Kameda

A Feedback-Augmented Method for Detecting Errors in the Writing of Learners of English
Ryo Nagata, Atsuo Kawai, Koichiro Morihiro and Naoki Isu

Correcting ESL Errors Using Phrasal SMT Techniques
Chris Brockett, William B. Dolan and Michael Gamon

Break
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Monday, 17 July 2006 (continued)
Session 4A: Parsing I

16:00-16:30 Graph Transformations in Data-Driven Dependency Parsing
Jens Nilsson, Joakim Nivre and Johan Hall

Session 4B: Dialogue Il

16:00-16:30 Learning to Generate Naturalistic Utterances Using Reviews in Spoken Dialogue Systems
Ryuichiro Higashinaka, Rashmi Prasad and Marilyn A. Walker

Session 4C: Linguistic Kinships

16:00-16:30 Measuring Language Divergence by Intra-Lexical Comparison
T. Mark Ellison and Simon Kirby

Session 4D: Applications Il

16:00-16:30 Enhancing Electronic Dictionaries with an Index Based on Associations
Olivier Ferret and Michael Zock

16:30-17:30 ACL Lifetime Achievement Award

17:30-19:30 Poster Sessions
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Tuesday, 18 July 2006
09:00-10:00 Invited Talk by Daniel Marcutrgmaxz Search in Natural Language Processing
Session 5A: Parsing Il

10:00-10:30 Guiding a Constraint Dependency Parser with Supertags
Kilian Foth, Tomas By and Wolfgang Menzel

Session 5B: Lexical Issues |

10:00-10:30 Efficient Unsupervised Discovery of Word Categories Using Symmetric Patterns and High
Frequency Words
Dmitry Davidov and Ari Rappoport

Session 5C: Summarization |

10:00-10:30 Bayesian Query-Focused Summarization
Hal Daumé Ill and Daniel Marcu

Session 5D: Semantics |

10:00-10:30 Expressing Implicit Semantic Relations without Supervision
Peter D. Turney

10:30-11:00 Break

XXiX



Tuesday, 18 July 2006 (continued)

11:00-11:30

11:30-12:00

12:00-12:30

11:00-11:30

11:30-12:00

12:00-12:30

11:00-11:30

11:30-12:00

12:00-12:30

11:00-11:30

11:30-12:00

12:00-12:30

12:30-14:00

Session 6A: Parsing IV

Hybrid Parsing: Using Probabilistic Models as Predictors for a Symbolic Parser
Kilian A. Foth and Wolfgang Menzel

Error Mining in Parsing Results
Benoit Sagot and Eric de La Clergerie

Reranking and Self-Training for Parser Adaptation
David McClosky, Eugene Charniak and Mark Johnson

Session 6B: Lexical Issues Il

Automatic Classification of Verbs in Biomedical Texts
Anna Korhonen, Yuval Krymolowski and Nigel Collier

Selection of Effective Contextual Information for Automatic Synonym Acquisition
Masato Hagiwara, Yasuhiro Ogawa and Katsuhiko Toyama

Scaling Distributional Similarity to Large Corpora
James Gorman and James R. Curran

Session 6C: Summarization Il

Extractive Summarization using Inter- and Intra- Event Relevance
Wenijie Li, Mingli Wu, Qin Lu, Wei Xu and Chunfa Yuan

Models for Sentence Compression: A Comparison across Domains, Training Require-
ments and Evaluation Measures
James Clarke and Mirella Lapata

A Bottom-Up Approach to Sentence Ordering for Multi-Document Summarization
Danushka Bollegala, Naoaki Okazaki and Mitsuru Ishizuka

Session 6D: Semantics Il

Learning Event Durations from Event Descriptions
Feng Pan, Rutu Mulkar and Jerry R. Hobbs

Automatic Learning of Textual Entailments with Cross-Pair Similarities
Fabio Massimo Zanzotto and Alessandro Moschitti

An Improved Redundancy Elimination Algorithm for Underspecified Representations
Alexander Koller and Stefan Thater

Lunch
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Tuesday, 18 July 2006 (continued)

14:00-14:30

14:30-15:00

15:00-15:30

14:00-14:30

14:30-15:00

15:00-15:30

14:00-14:30

14:30-15:00

15:00-15:30

14:00-14:30

14:30-15:00

15:00-15:30

15:30-16:00

Session 7A: Parsing V

Integrating Syntactic Priming into an Incremental Probabilistic Parser, with an Applica-
tion to Psycholinguistic Modeling

Amit Dubey, Frank Keller and Patrick Sturt

A Fast, Accurate Deterministic Parser for Chinese
Mengqgiu Wang, Kenji Sagae and Teruko Mitamura

Learning Accurate, Compact, and Interpretable Tree Annotation
Slav Petrov, Leon Barrett, Romain Thibaux and Dan Klein

Session 7B: Word Sense Disambiguation I

Semi-Supervised Learning of Partial Cognates Using Bilingual Bootstrapping
Oana Frunza and Diana Inkpen

Direct Word Sense Matching for Lexical Substitution
Ido Dagan, Oren Glickman, Alfio Gliozzo, Efrat Marmorshtein and Carlo Strapparava

An Equivalent Pseudoword Solution to Chinese Word Sense Disambiguation
Zhimao Lu, Haifeng Wang, Jianmin Yao, Ting Liu and Sheng Li

Session 7C: Information Extraction Il
Improving the Scalability of Semi-Markov Conditional Random Fields for Named Entity
Recognition

Daisuke Okanohara, Yusuke Miyao, Yoshimasa Tsuruoka and Jun’ichi Tsujii

Factorizing Complex Models: A Case Study in Mention Detection
Radu Florian, Hongyan Jing, Nanda Kambhatla and Imed Zitouni

Segment-Based Hidden Markov Models for Information Extraction
Zhenmei Gu and Nick Cercone

Session 7D: Resources |

A DOM Tree Alignment Model for Mining Parallel Data from the Web
Lei Shi, Cheng Niu, Ming Zhou and Jianfeng Gao

QuestionBank: Creating a Corpus of Parse-Annotated Questions
John Judge, Aoife Cabhill and Josef van Genabith

Creating a CCGbank and a Wide-Coverage CCG Lexicon for German
Julia Hockenmaier

Break
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Tuesday, 18 July 2006 (continued)

16:00-16:30

16:30-17:00

17:00-17:30

16:00-16:30

16:30-17:00

17:00-17:30

16:00-16:30

16:30-17:00

17:00-17:30

16:00-16:30

16:30-17:00

17:00-17:30

17:30-19:30

Session 8A: Machine Translation Il

Improved Discriminative Bilingual Word Alignment
Robert C. Moore, Wen-tau Yih and Andreas Bode

Maximum Entropy Based Phrase Reordering Model for Statistical Machine Translation
Deyi Xiong, Qun Liu and Shouxun Lin

Distortion Models for Statistical Machine Translation
Yaser Al-Onaizan and Kishore Papineni

Session 8B: Text Classification |

A Study on Automatically Extracted Keywords in Text Categorization
Anette Hulth and Beéata B. Megyesi

A Comparison and Semi-Quantitative Analysis of Words and Character-Bigrams as Fea-
tures in Chinese Text Categorization

Jingyang Li, Maosong Sun and Xian Zhang

Exploiting Comparable Corpora and Bilingual Dictionaries for Cross-Language Text Cat-
egorization

Alfio Gliozzo and Carlo Strapparava

Session 8C: Machine Learning Methods I

A Progressive Feature Selection Algorithm for Ultra Large Feature Spaces
Qi Zhang, Fuliang Weng and Zhe Feng

Annealing Structural Bias in Multilingual Weighted Grammar Induction
Noah A. Smith and Jason Eisner

Maximum Entropy Based Restoration of Arabic Diacritics
Imed Zitouni, Jeffrey S. Sorensen and Ruhi Sarikaya

Session 8D: Information Retrieval |

An Iterative Implicit Feedback Approach to Personalized Search
Yuanhua Lv, Le Sun, Junlin Zhang, Jian-Yun Nie, Wan Chen and Wei Zhang

The Effect of Translation Quality in MT-Based Cross-Language Information Retrieval
Jiang Zhu and Haifeng Wang

A Comparison of Document, Sentence, and Term Event Spaces
Catherine Blake

Poster Sessions
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Thursday, 20 July 2006

09:00-09:30

09:00-09:30

09:00-09:30

09:00-09:30

09:30-10:30

10:30-11:00

Session 9A: Best Asian Language Paper Nominee

Tree-to-String Alignment Template for Statistical Machine Translation
Yang Liu, Qun Liu and Shouxun Lin

Session 9B: Best Asian Language Paper Nominee

Incorporating Speech Recognition Confidence into Discriminative Named Entity Recogni-
tion of Speech Data

Katsuhito Sudoh, Hajime Tsukada and Hideki Isozaki

Session 9C: Best Asian Language Paper Nominee

Exploiting Syntactic Patterns as Clues in Zero-Anaphora Resolution
Ryu lida, Kentaro Inui and Yuji Matsumoto

Session 9D: Best Asian Language Paper Nominee

Self-Organizing n-gram Model for Automatic Word Spacing
Seong-Bae Park, Yoon-Shik Tae and Se-Young Park

Asian Language Special Evelitallenges in NLP: Some New Perspectives from the East

Break
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Thursday, 20 July 2006 (continued)

11:00-11:30

11:30-12:00

12:00-12:30

11:00-11:30

11:30-12:00

12:00-12:30

11:00-11:30

11:30-12:00

12:00-12:30

12:30-13:30

13:30-14:30

Session 10A: Asian Language Processing

Concept Unification of Terms in Different Languages for IR
Qing Li, Sung-Hyon Myaeng, Yun Jin and Bo-yeong Kang

Word Alignment in English-Hindi Parallel Corpus Using Recency-Vector Approach: Some
Studies

Niladri Chatterjee and Saumya Agrawal

Extracting Loanwords from Mongolian Corpora and Producing a Japanese-Mongolian
Bilingual Dictionary

Badam-Osor Khaltar, Atsushi Fujii and Tetsuya Ishikawa

Session 10B: Morphology and Word Segmentation

An Unsupervised Morpheme-Based HMM for Hebrew Morphological Disambiguation
Meni Adler and Michael Elhadad

Contextual Dependencies in Unsupervised Word Segmentation
Sharon Goldwater, Thomas L. Griffiths and Mark Johnson

MAGEAD: A Morphological Analyzer and Generator for the Arabic Dialects
Nizar Habash and Owen Rambow

Session 10C: Tagging and Chunking

Noun Phrase Chunking in Hebrew: Influence of Lexical and Morphological Features
Yoav Goldberg, Meni Adler and Michael Elhadad

Multi-Tagging for Lexicalized-Grammar Parsing
James R. Curran, Stephen Clark and David Vadas

Guessing Parts-of-Speech of Unknown Words Using Global Information
Tetsuji Nakagawa and Yuji Matsumoto

Lunch

ACL Business Meeting
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Thursday, 20 July 2006 (continued)

14:30-15:00

15:00-15:30

14:30-15:00

15:00-15:30

14:30-15:00

15:00-15:30

15:30-16:00

Session 11A: Machine Translation IV

A Clustered Global Phrase Reordering Model for Statistical Machine Translation
Masaaki Nagata, Kuniko Saito, Kazuhide Yamamoto and Kazuteru Ohashi

A Discriminative Global Training Algorithm for Statistical MT
Christoph Tillmann and Tong Zhang

Session 11B: Speech

Phoneme-to-Text Transcription System with an Infinite Vocabulary
Shinsuke Mori, Daisuke Takuma and Gakuto Kurata
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Abstract

Statistical machine translation is quite ro-
bust when it comes to the choice of in-
put representation. It only requires con-
sistency between training and testing. As
a result, there is a wide range of possi-
ble preprocessing choices for data used
in statistical machine translation. This
is even more so for morphologically rich
languages such as Arabic. In this paper,
we study the effect of different word-level
preprocessing schemes for Arabic on the
quality of phrase-based statistical machine
translation. We also present and evalu-
ate different methods for combining pre-
processing schemes resulting in improved
translation quality.

1 Introduction

Statistical machine translation (SMT) is quite ro-
bust when it comes to the choice of input represen-
tation. It only requires consistency between train-
ing and testing. As a result, there is a wide range
of possible preprocessing choices for data used in
SMT. This is even more so for morphologically
rich languages such as Arabic. We use the term
“preprocessing” to describe various input modifi-
cations applied to raw training and testing texts for
SMT. Preprocessing includes different kinds of to-
kenization, stemming, part-of-speech (POS) tag-
ging and lemmatization. The ultimate goal of pre-
processing is to improve the quality of the SMT
output by addressing issues such as sparsity in
training data. We refer to a specific kind of prepro-
cessing as a “scheme” and differentiate it from the
“technique” used to obtain it. In a previous pub-
lication, we presented results describing six pre-
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processing schemes for Arabic (Habash and Sa-
dat, 2006). These schemes were evaluated against
three different techniques that vary in linguistic
complexity; and across a learning curve of train-
ing sizes. Additionally, we reported on the effect
of scheme/technique combination on genre varia-
tion between training and testing.

In this paper, we shift our attention to exploring
and contrasting additional preprocessing schemes
for Arabic and describing and evaluating differ-
ent methods for combining them. We use a sin-
gle technique throughout the experiments reported
here. We show an improved MT performance
when combining different schemes.

Similarly to Habash and Sadat (2006), the set of
schemes we explore are all word-level. As such,
we do not utilize any syntactic information. We
define the word to be limited to written Modern
Standard Arabic (MSA) strings separated by white
space, punctuation and numbers.

Section 2 presents previous relevant research.
Section 3 presents some relevant background on
Avrabic linguistics to motivate the schemes dis-
cussed in Section 4. Section 5 presents the tools
and data sets used, along with the results of basic
scheme experiments. Section 6 presents combina-
tion techniques and their results.

2 Previous Work

The anecdotal intuition in the field is that reduc-
tion of word sparsity often improves translation
quality. This reduction can be achieved by increas-
ing training data or via morphologically driven
preprocessing (Goldwater and McClosky, 2005).
Recent publications on the effect of morphol-
ogy on SMT quality focused on morphologically
rich languages such as German (Niel3en and Ney,
2004); Spanish, Catalan, and Serbian (Popovic
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and Ney, 2004); and Czech (Goldwater and Mc-
Closky, 2005). They all studied the effects of vari-
ous kinds of tokenization, lemmatization and POS
tagging and show a positive effect on SMT quality.

Specifically considering Arabic, Lee (2004) in-
vestigated the use of automatic alignment of POS
tagged English and affix-stem segmented Ara-
bic to determine appropriate tokenizations. Her
results show that morphological preprocessing
helps, but only for the smaller corpora. As size
increases, the benefits diminish. Our results are
comparable to hers in terms of BLEU score and
consistent in terms of conclusions. Other research
on preprocessing Arabic suggests that minimal
preprocessing, such as splitting off the conjunc-
tion +s w+ ’and’, produces best results with very
large training data (Och, 2005).

System combination for MT has also been in-
vestigated by different researchers. Approaches to
combination generally either select one of the hy-
potheses produced by the different systems com-
bined (Nomoto, 2004; Paul et al., 2005; Lee,
2005) or combine lattices/n-best lists from the dif-
ferent systems with different degrees of synthesis
or mixing (Frederking and Nirenburg, 1994; Ban-
galore et al., 2001; Jayaraman and Lavie, 2005;
Matusov et al., 2006). These different approaches
use various translation and language models in ad-
dition to other models such as word matching, sen-
tence and document alignment, system translation
confidence, phrase translation lexicons, etc.

We extend on previous work by experimenting
with a wider range of preprocessing schemes for
Arabic and exploring their combination to produce
better results.

3 ArabicLinguistic Issues

Arabic is a morphologically complex language
with a large set of morphological features®. These
features are realized using both concatenative
morphology (affixes and stems) and templatic
morphology (root and patterns). There is a va-
riety of morphological and phonological adjust-
ments that appear in word orthography and inter-
act with orthographic variations. Next we discuss
a subset of these issues that are necessary back-
ground for the later sections. We do not address

!Arabic words have fourteen morphological features:
POS, person, number, gender, voice, aspect, determiner pro-
clitic, conjunctive proclitic, particle proclitic, pronominal en-
clitic, nominal case, nunation, idafa (possessed), and mood.

derivational morphology (such as using roots as
tokens) in this paper.

e Orthographic Ambiguity: The form of cer-
tain letters in Arabic script allows suboptimal or-
thographic variants of the same word to coexist in
the same text. For example, variants of Hamzated
Alif, > or | < are often written without their
Hamza (s): ] A. These variant spellings increase the
ambiguity of words. The Arabic script employs di-
acritics for representing short vowels and doubled
consonants. These diacritics are almost always ab-
sent in running text, which increases word ambi-
guity. We assume all of the text we are using is
undiacritized.

o Clitics: Arabic has a set of attachable clitics to
be distinguished from inflectional features such as
gender, number, person, voice, aspect, etc. These
clitics are written attached to the word and thus
increase the ambiguity of alternative readings. We
can classify three degrees of cliticization that are
applicable to a word base in a strict order:

[ CONJ+ [ PART+ [ Al + BASE +PRON|]]

At the deepest level, the BASE can have a def-
inite article (+J! Al+ ‘the’) or a member of the
class of pronominal enclitics, +PRON, (e.g. >t
+hm ‘their/them’). Pronominal enclitics can at-
tach to nouns (as possessives) or verbs and prepo-
sitions (as objects). The definite article doesn’t
apply to verbs or prepositions. +PRON and Al+
cannot co-exist on nouns. Next comes the class
of particle proclitics (PART+): +J I+ ‘to/for’,
+o b+ ‘by/with’, +sJ k+ ‘as/such’ and +_, st
‘will/future’. b+ and k+ are only nominal; s+ is
only verbal and |+ applies to both nouns and verbs.
At the shallowest level of attachment we find the
conjunctions (CONJ+) +5 w+ ‘and’ and +o f+
‘so’. They can attach to everything.

e Adjustment Rules: Morphological features
that are realized concatenatively (as opposed to
templatically) are not always simply concatenated
to a word base. Additional morphological, phono-
logical and orthographic rules are applied to the
word. An example of a morphological rule is the
feminine morpheme, : +p (ta marbuta), which can
only be word final. In medial position, it is turned
into < t. For example, a+4.:5C. mktbp+hm ap-
pears as o5 mktbthm “their library’. An ex-
ample of an orthographic rule is the deletion of
the Alif (1) of the definite article +J! Al+ in nouns
when preceded by the preposition +J |+ ‘to/for’
but not with any other prepositional proclitic.



e Templatic Inflections: Some of the inflec-
tional features in Arabic words are realized tem-
platically by applying a different pattern to the
Arabic root. As a result, extracting the lexeme (or
lemma) of an Arabic word is not always an easy
task and often requires the use of a morphological
analyzer. One common example in Arabic nouns
is Broken Plurals. For example, one of the plu-
ral forms of the Arabic word <3S~ kAtb ‘writer’
is 428 ktbp “writers’. An alternative non-broken
plural (concatenatively derived) is & 558~ kAtbwn
‘writers’.

These phenomena highlight two issues related
to the task at hand (preprocessing): First, ambigu-
ity in Arabic words is an important issue to ad-
dress. To determine whether a clitic or feature
should be split off or abstracted off requires that
we determine that said feature is indeed present
in the word we are considering in context — not
just that it is possible given an analyzer. Sec-
ondly, once a specific analysis is determined, the
process of splitting off or abstracting off a feature
must be clear on what the form of the resulting
word should be. In principle, we would like to
have whatever adjustments now made irrelevant
(because of the missing feature) to be removed.
This ensures reduced sparsity and reduced unnec-
essary ambiguity. For example, the word M
ktbthm has two possible readings (among others)
as ‘their writers’ or ‘I wrote them’. Splitting off
the pronominal enclitic .+ +hm without normal-
izing the < ttos pin the nominal reading leads the
coexistence of two forms of the noun 4.5~ ktbp
and =S~ ktbt. This increased sparsity is only
worsened by the fact that the second form is also
the verbal form (thus increased ambiguity).

4 Arabic Preprocessing Schemes

Given Arabic morphological complexity, the num-
ber of possible preprocessing schemes is very
large since any subset of morphological and or-
thographic features can be separated, deleted or
normalized in various ways. To implement any
preprocessing scheme, a preprocessing technique
must be able to disambiguate amongst the possible
analyses of a word, identify the features addressed
by the scheme in the chosen analysis and process
them as specified by the scheme. In this section
we describe eleven different schemes.

4.1 Preprocessing Technique

We use the Buckwalter Arabic Morphological An-
alyzer (BAMA) (Buckwalter, 2002) to obtain pos-
sible word analyses. To select among these anal-
yses, we use the Morphological Analysis and Dis-
ambiguation for Arabic (MADA) tool,? an off-the-
shelf resource for Arabic disambiguation (Habash
and Rambow, 2005). Being a disambiguation sys-
tem of morphology, not word sense, MADA some-
times produces ties for analyses with the same in-
flectional features but different lexemes (resolving
such ties require word-sense disambiguation). We
resolve these ties in a consistent arbitrary manner:
first in a sorted list of analyses.

Producing a preprocessing scheme involves re-
moving features from the word analysis and re-
generating the word without the split-off features.
The regeneration ensures that the generated form
is appropriately normalized by addressing vari-
ous morphotactics described in Section 3. The
generation is completed using the off-the-shelf
Arabic morphological generation system Aragen
(Habash, 2004).

This preprocessing technique we use here is the
best performer amongst other explored techniques
presented in Habash and Sadat (2006).

4.2 Preprocessing Schemes

Table 1 exemplifies the effect of different schemes
on the same sentence.

e ST: Simple Tokenization is the baseline pre-
processing scheme. It is limited to splitting off
punctuations and numbers from words. For exam-
ple the last non-white-space string in the example
sentence in Table 1, “trkyA.” is split into two to-
kens: “trkyA” and “.”. An example of splitting
numbers from words is the case of the conjunc-
tion +5 w+ ‘and’ which can prefix numerals such
as when a list of numbers is described: 155 wlb
‘and 15°. This scheme requires no disambigua-
tion. Any diacritics that appear in the input are
removed in this scheme. This scheme is used as
input to produce the other schemes.

e ON: Orthographic Normalization addresses
the issue of sub-optimal spelling in Arabic. We
use the Buckwalter answer undiacritized as the or-
thographically normalized form. An example of
ON is the spelling of the last letter in the first and

2The version of MADA used in this paper was trained on
the Penn Arabic Treebank (PATB) part 1 (Maamouri et al.,
2004).



Table 1: Various Preprocessing Schemes

Input wsynhY Alr}lys jwith bzyArp AlY trkyA.
Gloss and will fi nish thepresident  tour his with visit to Turkey
English | The president will fi nish histour with avisit to Turkey.

Scheme Baseline

ST wsynhY Alrlys jwith bzyArp AlY trkyA

ON wsynhy Alr}ys with bzyArp <lY trkyA

D1 w+ synhy Alr}ys with bzyArp <lY trkyA

D2 w+ s+ ynhy Alr}ys with b+ zyArp % trkyA

D3 w+ s+ ynhy Al+r}ys jwlp +P3rs b+ zyArp <lY trkyA

WA w+ synhy Alrlys jwith bzyArp <Y trkyA

B w+ synhy Alrlys jwip +Psars b+ zyArp <lY trkyA
MR w+ st y+ nhy Al+r}ys jwl +p +h b+ zyAr +p <lY trkyA

L1 >nhYy r}yss jwlpnx zyArpy <IYp trkyApn
L2 >nhYyep rtyssn jwlpn v zyArpn N <IYin trkyAnnp
EN w+ s+ >nhYvyep +Ssus  Al+ r}ysNN jwlpyn +Psps bt zyArpnny <IYin  trkyAnne

fifth words in the example in Table 1 (wsynhY and
ALY, respectively). Since orthographic normaliza-
tion is tied to the use of MADA and BAMA, all of
the schemes we use here are normalized.

e D1, D2, and D3: Decliticization (degree 1, 2
and 3) are schemes that split off clitics in the order
described in Section 3. D1 splits off the class of
conjunction clitics (w+ and f+). D2 is the same
as D1 plus splitting off the class of particles (I+,
k+, b+ and s+). Finally D3 splits off what D2
does in addition to the definite article Al+ and all
pronominal enclitics. A pronominal clitic is repre-
sented as its feature representation to preserve its
uniqueness. (See the third word in the example in
Table 1.) This allows distinguishing between the
possessive pronoun and object pronoun which of-
ten look similar.

e WA: Decliticizing the conjunction w+. This
is the simplest tokenization used beyond ON. It
is similar to D1, but without including f+. This
is included to compare to evidence in its support
as best preprocessing scheme for very large data
(Och, 2005).

e TB: Arabic Treebank Tokenization. This is
the same tokenization scheme used in the Arabic
Treebank (Maamouri et al., 2004). This is similar
to D3 but without the splitting off of the definite
article Al+ or the future particle s+.

e MR: Morphemes. This scheme breaks up
words into stem and affixival morphemes. It is
identical to the initial tokenization used by Lee
(2004).

e L1 and L2: Lexeme and POS. These reduce
a word to its lexeme and a POS. L1 and L2 dif-
fer in the set of POS tags they use. L1 uses the
simple POS tags advocated by Habash and Ram-

bow (2005) (15 tags); while L2 uses the reduced
tag set used by Diab et al. (2004) (24 tags). The
latter is modeled after the English Penn POS tag
set. For example, Arabic nouns are differentiated
for being singular (NN) or Plural/Dual (NNS), but
adjectives are not even though, in Arabic, they in-
flect exactly the same way nouns do.

e EN: English-like. This scheme is intended to
minimize differences between Arabic and English.
It decliticizes similarly to D3, but uses Lexeme
and POS tags instead of the regenerated word. The
POS tag set used is the reduced Arabic Treebank
tag set (24 tags) (Maamouri et al., 2004; Diab et
al., 2004). Additionally, the subject inflection is
indicated explicitly as a separate token. We do not
use any additional information to remove specific
features using alignments or syntax (unlike, e.g.
removing all but one Al+ in noun phrases (Lee,
2004)).

4.3 Comparing Various Schemes

Table 2 compares the different schemes in terms
of the number of tokens, number of out-of-
vocabulary (OQV) tokens, and perplexity. These
statistics are computed over the MT04 set, which
we use in this paper to report SMT results (Sec-
tion 5). Perplexity is measured against a language
model constructed from the Arabic side of the par-
allel corpus used in the MT experiments (Sec-
tion 5).

Obviously the more verbose a scheme is, the
bigger the number of tokens in the text. The ST,
ON, L1, and L2 share the same number of tokens
because they all modify the word without splitting
off any of its morphemes or features. The increase
in the number of tokens is in inverse correlation



Table 2: Scheme Statistics
Scheme || Tokens | OOVs [ Perplexity |

ST 36000 1345 1164
ON 36000 1212 944
D1 38817 1016 582
D2 40934 | 835 422
D3 52085 | 575 137
WA 38635 1044 596
B 42880 | 662 338
MR 62410 | 409 69
L1 36000 | 392 401
L2 36000 | 432 460
EN 55525 | 432 103

with the number of OOVs and perplexity. The
only exceptions are L1 and L2, whose low OOV
rate is the result of the reductionist nature of the
scheme, which does not preserve morphological
information.

5 Basic Scheme Experiments

We now describe the system and the data sets we
used to conduct our experiments.

5.1 Portage

We use an off-the-shelf phrase-based SMT system,
Portage (Sadat et al., 2005). For training, Portage
uses IBM word alignment models (models 1 and
2) trained in both directions to extract phrase ta-
bles in a manner resembling (Koehn, 2004a). Tri-
gram language models are implemented using the
SRILM toolkit (Stolcke, 2002). Decoding weights
are optimized using Och’s algorithm (Och, 2003)
to set weights for the four components of the log-
linear model: language model, phrase translation
model, distortion model, and word-length feature.
The weights are optimized over the BLEU met-
ric (Papineni et al., 2001). The Portage decoder,
Canoe, is a dynamic-programming beam search
algorithm resembling the algorithm described in
(Koehn, 2004a).

5.2 Experimental data

All of the training data we use is available from
the Linguistic Data Consortium (LDC). We use
an Arabic-English parallel corpus of about 5 mil-
lion words for translation model training data.®
We created the English language model from
the English side of the parallel corpus together

3The parallel text includes Arabic News (LDC2004T17),
eTIRR (LDC2004E72), English trandation of Arabic Tree-
bank (LDC2005E46), and Ummah (LDC2004T18).

with 116 million words the English Gigaword
Corpus (LDC2005T12) and 128 million words
from the English side of the UN Parallel corpus
(LDC2004E13).4

English preprocessing simply included lower-
casing, separating punctuation from words and
splitting off “’s”. The same preprocessing was
used on the English data for all experiments.
Only Arabic preprocessing was varied. Decoding
weight optimization was done using a set of 200
sentences from the 2003 NIST MT evaluation test
set (MT03). We report results on the 2004 NIST
MT evaluation test set (MT04) The experiment de-
sign and choices of schemes and techniques were
done independently of the test set. The data sets,
MTO03 and MT04, include one Arabic source and
four English reference translations. We use the
evaluation metric BLEU-4 (Papineni et al., 2001)
although we are aware of its caveats (Callison-
Burch et al., 2006).

5.3 Experimental Results

We conducted experiments with all schemes dis-
cussed in Section 4 with different training corpus
sizes: 1%, 10%, 50% and 100%. The results of the
experiments are summarized in Table 3. These re-
sults are not English case sensitive. All reported
scores must have over 1.1% BLEU-4 difference
to be significant at the 95% confidence level for
1% training. For all other training sizes, the dif-
ference must be over 1.7% BLEU-4. Error in-
tervals were computed using bootstrap resampling
(Koehn, 2004b).

Across different schemes, EN performs the best
under scarce-resource condition; and D2 performs
as best under large resource conditions. The re-
sults from the learning curve are consistent with
previous published work on using morphologi-
cal preprocessing for SMT: deeper morph analysis
helps for small data sets, but the effect is dimin-
ished with more data. One interesting observation
is that for our best performing system (D2), the
BLEU score at 50% training (35.91) was higher
than the baseline ST at 100% training data (34.59).
This relationship is not consistent across the rest of
the experiments. ON improves over the baseline

“The SRILM toolkit has alimit on the size of the training
corpus. We selected portions of additional corpora using a
heuristic that picks documents containing the word “Arab”
only. The Language model created using this heuristic had a
bigger improvement in BLEU score (more than 1% BLEU-4)
than arandomly selected portion of equal size.



Table 3: Scheme Experiment Results (BLEU-4)

Training Data
Scheme | 1% 10% | 50% | 100%
ST 942 | 2292 | 31.09 | 34.59
ON 10.71 | 243 | 3252 | 35.91
D1 13.11 | 26.88 | 33.38 | 36.06
D2 1419 | 27.72 | 3591 | 37.10
D3 16.51 | 28.69 | 34.04 | 34.33
WA 13.12 | 26.29 | 34.24 | 35.97
B 1413 | 28.71 | 35.83 | 36.76
MR 1161 | 2749 | 3299 | 3443
L1 1463 | 2472 | 31.04 | 32.23
L2 14.87 | 26.72 | 31.28 | 33.00
EN 1745 | 2841 | 3328 | 3451

but only statistically significantly at the 1% level.
The results for WA are generally similar to D1.
This makes sense since w+ is by far the most com-
mon of the two conjunctions D1 splits off. The TB
scheme behaves similarly to D2, the best scheme
we have. It outperformed D2 in few instances, but
the difference were not statistically significant. L1
and L2 behaved similar to EN across the different
training size. However, both were always worse
than EN. Neither variant was consistently better
than the other.

6 System Combination

The complementary variation in the behavior of
different schemes under different resource size
conditions motivated us to investigate system
combination. The intuition is that even under large
resource conditions, some words will occur very
infrequently that the only way to model them is to
use a technique that behaves well under poor re-
source conditions.

We conducted an oracle study into system com-
bination. An oracle combination output was cre-
ated by selecting for each input sentence the out-
put with the highest sentence-level BLEU score.
We recognize that since the brevity penalty in
BLEU is applied globally, this score may not be
the highest possible combination score. The ora-
cle combination has a 24% improvement in BLEU
score (from 37.1 in best system to 46.0) when
combining all eleven schemes described in this pa-
per. This shows that combining of output from all
schemes has a large potential of improvement over
all of the different systems and that the different
schemes are complementary in some way.

In the rest of this section we describe two suc-
cessful methods for system combination of differ-
ent schemes: rescoring-only combination (ROC)

and decoding-plus-rescoring combination (DRC).
All of the experiments use the same training data,
test data (MT0Q4) and preprocessing schemes de-
scribed in the previous section.

6.1 Rescoring-only Combination

This “shallow” approach rescores all the one-best
outputs generated from separate scheme-specific
systems and returns the top choice. Each scheme-
specific system uses its own scheme-specific pre-
processing, phrase-tables, and decoding weights.
For rescoring, we use the following features:

e The four basic features used by the decoder:
trigram language model, phrase translation
model, distortion model, and word-length
feature.

e IBM model 1 and IBM model 2 probabilities
in both directions.
We call the union of these two sets of features
standard.

e The perplexity of the preprocessed source
sentence (PPL) against a source language
model as described in Section 4.3.

e The number of out-of-vocabulary words in
the preprocessed source sentence (OOV).

e Length of the preprocessed source sentence
(SL).

e An encoding of the specific scheme used
(SC). We use a one-hot coding approach with
11 separate binary features, each correspond-
ing to a specific scheme.

Optimization of the weights on the rescoring
features is carried out using the same max-BLEU
algorithm and the same development corpus de-
scribed in Section 5.

Results of different sets of features with the
ROC approach are presented in Table 4. Using
standard features with all eleven schemes, we ob-
tain a BLEU score of 34.87 — a significant drop
from the best scheme system (D2, 37.10). Using
different subsets of features or limiting the num-
ber of systems to the best four systems (D2, TB,
D1 and WA), we get some improvements. The
best results are obtained using all schemes with
standard features plus perplexity and scheme cod-
ing. The improvements are small; however they
are statistically significant (see Section 6.3).



Table 4: ROC Approach Results

Table 5: DRC Approach Results

Combination All Schemes | 4 Best Schemes Combination Decoding Rescoring
standard 34.87 37.12 Scheme | 1-best | Standard+PPL
+PPL+SC 3758 37.45 D2 37.16
+PPL+SC+OO0OV 37.40 All schemes B 3824 | 38.67
+PPL+SC+OOV+SL | 37.39 D1 37.89
+PPL+SC+SL 37.15 WA 36.91
ON 36.42
ST 3427
EN 30.78
6.2 Decoding-plus-Rescoring Combination MR 34.65
) D3 3473
This “deep” approach allows the decoder to con- L2 32.25
sult several different phrase tables, each generated '[-)12 g‘;g
using a different preprocessing scheme; just as 4 best schemes [ TB 3753 | 37.73
with ROC, there is a subsequent rescoring stage. D1 36.05
A problem with DRC is that the decoder we use WA 3753

can only cope with one format for the source sen-
tence at a time. Thus, we are forced to designate a
particular scheme as privileged when the system is
carrying out decoding. The privileged preprocess-
ing scheme will be the one applied to the source
sentence. Obviously, words and phrases in the
preprocessed source sentence will more frequently
match the phrases in the privileged phrase table
than in the non-privileged ones. Nevertheless, the
decoder may still benefit from having access to all
the tables. For each choice of a privileged scheme,
optimization of log-linear weights is carried out
(with the version of the development set prepro-
cessed in the same privileged scheme).

The middle column of Table 5 shows the results
for 1-best output from the decoder under differ-
ent choices of the privileged scheme. The best-
performing system in this column has as its priv-
ileged preprocessing scheme TB. The decoder for
this system uses TB to preprocess the source sen-
tence, but has access to a log-linear combination of
information from all 11 preprocessing schemes.

The final column of Table 5 shows the results
of rescoring the concatenation of the 1-best out-
puts from each of the combined systems. The
rescoring features used are the same as those used
for the ROC experiments. For rescoring, a priv-
ileged preprocessing scheme is chosen and ap-
plied to the development corpus. We chose TB for
this (since it yielded the best result when chosen
to be privileged at the decoding stage). Applied
to 11 schemes, this yields the best result so far:
38.67 BLEU. Combining the 4 best pre-processing
schemes (D2, TB, D1, WA) yielded a lower BLEU
score (37.73). These results show that combining
phrase tables from different schemes have a posi-
tive effect on MT performance.

Table 6: Statistical Significance using Bootstrap
Resampling
[DRCTROC[D2 [TB [ DI [WA [ON |
[100 [0 0 0 0 0 0
977 |22 |01 |0 0 0
92179 |0 0 0
988 07 |03 |02

538 | 241 [ 221
503 [ 40.7

6.3 Significance Test

We use bootstrap resampling to compute MT
statistical significance as described in (Koehn,
2004a). The results are presented in Table 6. Com-
paring the 11 individual systems and the two com-
binations DRC and ROC shows that DRC is sig-
nificantly better than the other systems — DRC got
a max BLEU score in 100% of samples. When ex-
cluding DRC from the comparison set, ROC got
max BLEU score in 97.7% of samples, while D2
and TB got max BLEU score in 2.2% and 0.1%
of samples, respectively. The difference between
ROC and D2 and ATB is statistically significant.

7 Conclusions and Future Work

We motivated, described and evaluated several
preprocessing schemes for Arabic. The choice
of a preprocessing scheme is related to the size
of available training data. We also presented two
techniques for scheme combination. Although the
results we got are not as high as the oracle scores,
they are statistically significant.

In the future, we plan to study additional
scheme variants that our current results support
as potentially helpful. We plan to include more



syntactic knowledge. We also plan to continue in-
vestigating combination techniques at the sentence
and sub-sentence levels. We are especially inter-
ested in the relationship between alignment and
decoding and the effect of preprocessing scheme
on both.
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Abstract

This paper presents an extensive evalua-
tion of five different alignments and in-
vestigates their impact on the correspond-
ing MT system output. We introduce
new measures for intrinsic evaluations and
examine the distribution of phrases and
untranslated words during decoding to
identify which characteristics of different
alignments affect translation. We show
that precision-oriented alignments yield
better MT output (translating more words
and using longer phrases) than recall-
oriented alignments.

1 Introduction

Word alignments are a by-product of statistical
machine translation (MT) and play a crucial role
in MT performance. In recent years, researchers
have proposed several algorithms to generate word
alignments. However, evaluating word alignments
is difficult because even humans have difficulty
performing this task.

The state-of-the art evaluation metric—
alignment error rate (AER)—attempts to balance
the precision and recall scores at the level of
alignment links (Och and Ney, 2000). Other met-
rics assess the impact of alignments externally,
e.g., different alignments are tested by comparing
the corresponding MT outputs using automated
evaluation metrics (e.g., BLEU (Papineni et al.,
2002) or METEOR (Banerjee and Lavie, 2005)).
However, these studies showed that AER and
BLEU do not correlate well (Callison-Burch et al.,
2004; Goutte et al., 2004; Ittycheriah and Roukos,
2005). Despite significant AER improvements
achieved by several researchers, the improvements
in BLEU scores are insignificant or, at best, small.
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This paper demonstrates the difficulty in assess-
ing whether alignment quality makes a difference
in MT performance. We describe the impact of
certain alignment characteristics on MT perfor-
mance but also identify several alignment-related
factors that impact MT performance regardless of
the quality of the initial alignments. In so doing,
we begin to answer long-standing questions about
the value of alignment in the context of MT.

We first evaluate 5 different word alignments
intrinsically, using: (1) community-standard
metrics—precision, recall and AER; and (2) a
new measure called consistent phrase error rate
(CPER). Next, we observe the impact of differ-
ent alignments on MT performance. We present
BLEU scores on a phrase-based MT system,
Pharaoh (Koehn, 2004), using five different align-
ments to extract phrases. We investigate the im-
pact of different settings for phrase extraction, lex-
ical weighting, maximum phrase length and train-
ing data. Finally, we present a quantitative analy-
sis of which phrases are chosen during the actual
decoding process and show how the distribution of
the phrases differ from one alignment into another.

Our experiments show that precision-oriented
alignments yield better phrases for MT than recall-
oriented alignments. Specifically, they cover a
higher percentage of our test sets and result in
fewer untranslated words and selection of longer
phrases during decoding.

The next section describes work related to our
alignment evaluation approach. Following this
we outline different intrinsic evaluation measures
of alignment and we propose a new measure to
evaluate word alignments within phrase-based MT
framework. We then present several experiments
to measure the impact of different word align-
ments on a phrase-based MT system, and inves-
tigate how different alignments change the phrase
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selection in the same MT system.

2 Related Work

Starting with the IBM models (Brown et al.,
1993), researchers have developed various statis-
tical word alignment systems based on different
models, such as hidden Markov models (HMM)
(Vogel et al., 1996), log-linear models (Och and
Ney, 2003), and similarity-based heuristic meth-
ods (Melamed, 2000). These methods are un-
supervised, i.e., the only input is large paral-
lel corpora. In recent years, researchers have
shown that even using a limited amount of manu-
ally aligned data improves word alignment signif-
icantly (Callison-Burch et al., 2004). Supervised
learning techniques, such as perceptron learn-
ing, maximum entropy modeling or maximum
weighted bipartite matching, have been shown to
provide further improvements on word alignments
(Ayan et al., 2005; Moore, 2005; Ittycheriah and
Roukos, 2005; Taskar et al., 2005).

The standard technique for evaluating word
alignments is to represent alignments as a set of
links (i.e., pairs of words) and to compare the gen-
erated alignment against manual alignment of the
same data at the level of links. Manual align-
ments are represented by two sets: Probable (P)
alignments and Sure (S) alignments, where S C
P. Given A, P and S, the most commonly used
metrics—precision (Pr), recall (Rc) and alignment
error rate (AER)—are defined as follows:

|AN P |ANS]
Pr= =
4] 5]
|ANS|+|ANP|
AER=1-
Al +15]

Another approach to evaluating alignments is to
measure their impact on an external application,
e.g., statistical MT. In recent years, phrase-based
systems (Koehn, 2004; Chiang, 2005) have been
shown to outperform word-based MT systems;
therefore, in this paper, we use a publicly-available
phrase-based MT system, Pharaoh (Koehn, 2004),
to investigate the impact of different alignments.

Although it is possible to estimate phrases di-
rectly from a training corpus (Marcu and Wong,
2002), most phrase-based MT systems (Koehn,
2004; Chiang, 2005) start with a word alignment
and extract phrases that are consistent with the
given alignment. Once the consistent phrases are
extracted, they are assigned multiple scores (such
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Test

Lang | #of # Words Source

Pair Sent’s | (en/fl)

en-ch | 491 14K/12K NIST MTEval’2002

en-ar | 450 13K/11K NIST MTEval’2003
Training

en-ch | 107K | 4.1M/3.3M | FBIS

en-ar | 44K 1.4M/1.1M | News + Treebank

Table 1: Test and Training Data Used for Experiments

as translation probabilities and lexical weights),
and the decoder’s job is to choose the correct
phrases based on those scores using a log-linear
model.

3 Intrinsic Evaluation of Alignments

Our goal is to compare different alignments and
to investigate how their characteristics affect the
MT systems. We evaluate alignments in terms of
precision, recall, alignment error rate (AER), and
a new measure called consistent phrase error rate
(CPER).

We focus on 5 different alignments obtained by
combining two uni-directional alignments. Each
uni-directional alignment is the result of running
GIZA++ (Och, 2000b) in one of two directions
(source-to-target and vice versa) with default con-
figurations. The combined alignments that are
used in this paper are as follows:

1. Union of both directions (Sy),
Intersection of both directions (Sy),

A heuristic based combination technique
called grow-diag-final (Sg), which is the
default alignment combination heuristic
employed in Pharaoh (Koehn, 2004),
Two supervised alignment combination
techniques (Sa and Sg) using 2 and 4 in-
put alignments as described in (Ayan et
al., 2005).

This paper examines the impact of alignments
according to their orientation toward precision or
recall. Among the five alignments above, Sy and
Sq are recall-oriented while the other three are
precision-oriented. Sp is an improved version of
S which attempts to increase recall without a sig-
nificant sacrifice in precision.

Manually aligned data from two language pairs
are used in our intrinsic evaluations using the five
combinations above. A summary of the training
and test data is presented in Table 1.

Our gold standard for each language pair is
a manually aligned corpus. English-Chinese an-

4-5.



notations distinguish between sure and probable
alignment links, but English-Arabic annotations
do not. The details of how the annotations are
done can be found in (Ayan et al., 2005) and (Itty-
cheriah and Roukos, 2005).

3.1 Precision, Recall and AER

Table 2 presents the precision, recall, and AER for
5 different alignments on 2 language pairs. For
each of these metrics, a different system achieves
the best score — respectively, these are Sy, Sy, and
Sp. Sy and S¢ yield low precision, high recall
alignments. In contrast, Sy yields very high pre-
cision but very low recall. Sp and Sg attempt to
balance these two measures but their precision is
still higher than their recall. Both systems have
nearly the same precision but Sp yields signifi-
cantly higher recall than Sx.

Chinese Arabic
Align. | CPER-3 | CPER-7 | CPER-3 | CPER-7
Su 63.2 73.3 55.6 67.1
Sa 59.5 69.4 52.0 62.6
St 50.8 69.8 50.7 67.6
Sa 40.8 51.6 42.0 54.1
Ss 36.8 45.1 36.1 46.6

Table 3: Consistent Phrase Error Rates with Maximum
Phrase Lengths of 3 and 7

CPER penalizes incorrect or missing alignment
links more severely than AER. While comput-
ing AER, an incorrect alignment link reduces the
number of correct alignment links by 1, affecting
precision and recall slightly. Similarly, if there is
a missing link, only the recall is reduced slightly.
However, when computing CPER, an incorrect or
missing alignment link might result in more than
one phrase pair being eliminated from or added to
the set of phrases. Thus, the impact is more severe

Align. en-ch en-ar on both precision and recall.

Sys. Pr Re | AER | Pr Rc | AER

Su 583 | 845 | 31.6 | 56.0 | 84.1 | 32.8 | -

Sa 619 | 82.6 | 29.7 | 60.2 | 83.0 | 30.2

St 94.8 | 53.6 | 31.2 | 96.1 | 57.1 | 28.4 O

Sa 87.0 | 746 | 19.5 | 88.6 | 71.1 | 21.1

Sz | 878 | 805 | 159 | 90.1 | 76.1 | 17.5 g o
Table 2: Comparison of 5 Different Alignments using AER O
(on English-Chinese and English-Arabic)

(a) Manual (b) Automated_1 (c) Automated_2

3.2 Consistent Phrase Error Rate

In this section, we present a new method, called
consistent phrase error rate (CPER), for evalu-
ating word alignments in the context of phrase-
based MT. The idea is to compare phrases con-
sistent with a given alignment against phrases that
would be consistent with human alignments.

CPER is similar to AER but operates at the
phrase level instead of at the word level. To com-
pute CPER, we define a link in terms of the posi-
tion of its start and end words in the phrases. For
instance, the phrase link (i1, 42, j1,J2) indicates
that the English phrase e;,,...,e;, and the FL
phrase fj,..., fj, are consistent with the given
alignment. Once we generate the set of phrases
P, and Pg that are consistent with a given align-
ment A and a manual alignment G, respectively,
we compute precision (Pr), recall (Rc), and CPER
as follows:!

Pr— |PAﬂP(;’ _ |PAﬂP(;’
| Pal el
2 x Pr x Re
CPER=1— ————
Pr+ Rc

'Note that CPER is equal to 1 - F-score.
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Figure 1: Sample phrases that are generated from a human
alignment and an automated alignment: Gray cells show the
alignment links, and rectangles show the possible phrases.

In Figure 1, the first box represents a manual
alignment and the other two represent automated
alignments A. In the case of a missing align-
ment link (Figure 1b), P4 includes 9 valid phrases.
For this alignment, AFR = 1 — (2 x 2/2 x
2/3)/(2/2+42/3) =0.2and CPER=1— (2 X
5/9%x5/6)/(5/945/6) = 0.33. In the case of an
incorrect alignment link (Figure 1c), P4 includes
only 2 valid phrases, which results in a higher
CPER (1 —-(2x2/2x2/6)/(2/242/6) = 0.49)
but a lower AER (1 — (2 x 3/4 x 3/3)/(3/4 +
3/3) = 0.14).

Table 3 presents the CPER values on two dif-
ferent language pairs, using 2 different maximum
phrase lengths. For both maximum phrase lengths,
Sa and Sp yield the lowest CPER. For all 5
alignments—in both languages—CPER increases
as the length of the phrase increases. For all
alignments except Sy, this amount of increase is
nearly the same on both languages. Since Sy con-
tains very few alignment points, the number of
generated phrases dramatically increases, yielding



poor precision and CPER as the maximum phrase
length increases.

4 Evaluating Alignments within MT

We now move from intrinsic measurement to ex-
trinsic measurement using an off-the-shelf phrase-
based MT system Pharaoh (Koehn, 2004). Our
goal is to identify the characteristics of alignments
that change MT behavior and the types of changes
induced by these characteristics.

All MT system components were kept the same
in our experiments except for the component that
generates a phrase table from a given alignment.
We used the corpora presented in Table 1 to train
the MT system. The phrases were scored using
translation probabilities and lexical weights in two
directions and a phrase penalty score. We also use
a language model, a distortion model and a word
penalty feature for MT.

We measure the impact of different alignments
on Pharaoh using three different settings:

1. Different maximum phrase length,
2. Different sizes of training data, and
3. Different lexical weighting.

For maximum phrase length, we used 3 (based
on what was suggested by (Koehn et al., 2003) and
7 (the default maximum phrase length in Pharaoh).

For lexical weighting, we used the original
weighting scheme employed in Pharaoh and a
modified version. We realized that the publicly-
available implementation of Pharaoh computes
the lexical weights only for non-NULL alignment
links. As a consequence, loose phrases contain-
ing NULL-aligned words along their edges receive
the same lexical weighting as tight phrases with-
out NULL-aligned words along the edges. We
therefore adopted a modified weighting scheme
following (Koehn et al., 2003), which incorporates
NULL alignments.

MT output was evaluated using the standard
evaluation metric BLEU (Papineni et al., 2002).2
The parameters of the MT System were opti-
mized for BLEU metric on NIST MTEval’2002
test sets using minimum error rate training (Och,
2003), and the systems were tested on NIST
MTEval’2003 test sets for both languages.

2We used the NIST script (version 11a) for BLEU with
its default settings: case-insensitive matching of n-grams up
to n = 4, and the shortest reference sentence for the brevity
penalty. The words that were not translated during decoding
were deleted from the MT output before running the BLEU
script.
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The SRI Language Modeling Toolkit was used
to train a trigram model with modified Kneser-Ney
smoothing on 155M words of English newswire
text, mostly from the Xinhua portion of the Gi-
gaword corpus. During decoding, the number of
English phrases per FL phrase was limited to 100
and phrase distortion was limited to 4.

4.1 BLEU Score Comparison

Table 4 presents the BLEU scores for Pharaoh runs
on Chinese with five different alignments using
different settings for maximum phrase length (3
vs. 7), size of training data (107K vs. 241K), and
lexical weighting (original vs. modified).?

The modified lexical weighting yields huge im-
provements when the alignment leaves several
words unaligned: the BLEU score for Sy goes
from 24.26 to 25.31 and the BLEU score for Sp
goes from 23.91 to 25.38. In contrast, when the
alignments contain a high number of alignment
links (e.g., Sy and Sg), modifying lexical weight-
ing does not bring significant improvements be-
cause the number of phrases containing unaligned
words is relatively low. Increasing the phrase
length increases the BLEU scores for all systems
by nearly 0.7 points and increasing the size of the
training data increases the BLEU scores by 1.5-2
points for all systems. For all settings, Sy yields
the lowest BLEU scores while Sg clearly outper-
forms the others.

Table 5 presents BLEU scores for Pharaoh runs
on 5 different alignments on English-Arabic, using
different settings for lexical weighting and max-
imum phrase lengths.* Using the original lexi-
cal weighting, Sp and Sp perform better than the
others while Sy and Sy yield the worst results.
Modifying the lexical weighting leads to slight re-
ductions in BLEU scores for Sy and S¢, but im-
proves the scores for the other 3 alignments signif-
icantly. Finally, increasing the maximum phrase
length to 7 leads to additional improvements in
BLEU scores, where S and Sy benefit nearly 2
BLEU points. As in English-Chinese, the worst
BLEU scores are obtained by Sy while the best
scores are produced by Sg.

As we see from the tables, the relation between
intrinsic alignment measures (AER and CPER)

3We could not run S on the larger corpus because of the
lack of required inputs.

“Due to lack of additional training data, we could not do
experiments using different sizes of training data on English-
Arabic.



Original Modified Modified Modified

Alignment | Max Phr Len =3 | Max Phr Len=3 | Max Phr Len=7 | Max Phr Len=3
|Corpus| = 107K | |Corpus| = 107K | |Corpus| = 107K | |Corpus| = 241K

Su 22.56 22.66 23.30 24.40

Sa 23.65 23.79 24.48 25.54

St 23.60 23.97 24.76 26.06

Sa 24.26 25.31 25.99 26.92

S 2391 25.38 26.14 N/A

Table 4: BLEU Scores on English-Chinese with Different Lexical Weightings, Maximum Phrase Lengths and Training Data

LW=0Org | LW=Mod | LW=Mod
Alignment | MPL=3 MPL=3 MPL=7
Su 41.97 41.72 43.50
Sa 44.06 43.82 45.78
St 42.29 42.76 43.88
Sa 44.49 45.23 46.06
S 4492 45.39 46.66

Table 5: BLEU Scores on English-Arabic with Different
Lexical Weightings and Maximum Phrase Lengths

and the corresponding BLEU scores varies, de-
pending on the language, lexical weighting, maxi-
mum phrase length, and training data size. For ex-
ample, using a modified lexical weighting, the sys-
tems are ranked according to their BLEU scores as
follows: S, Sa, S, S1, Sy—an ordering that dif-
fers from that of AER but is identical to that of
CPER (with a phrase length of 3) for Chinese. On
the other hand, in Arabic, both AER and CPER
provide a slightly different ranking from that of
BLEU, with S and Sy swapping places.

4.2 Tight vs. Loose Phrases

To demonstrate how alignment-related compo-
nents of the MT system might change the trans-
lation quality significantly, we did an additional
experiment to compare different techniques for ex-
tracting phrases from a given alignment. Specifi-
cally, we are comparing two techniques for phrase

extraction:
1. Loose phrases (the original ‘consistent

phrase extraction’ method)

2. Tight phrases (the set of phrases where
the first/last words on each side are forced
to align to some word in the phrase pair)

Using tight phrases penalizes alignments with
many unaligned words, whereas using loose
phrases rewards them. Our goal is to compare
the performance of precision-oriented vs. recall-
oriented alignments when we allow only tight
phrases in the phrase extraction step. To sim-
plify things, we used only 2 alignments: Sg, the
best recall-oriented alignment, and Sp, the best
precision-oriented alignment. For this experiment,
we used modified lexical weighting and a maxi-
mum phrase length of 7.
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Chinese Arabic
Alignment | Loose | Tight | Loose | Tight
S 24.48 | 23.19 | 45.78 | 43.67
S 26.14 | 22.68 | 46.66 | 40.10

Table 6: BLEU Scores with Loose vs. Tight Phrases

Table 6 presents the BLEU scores for Sg and Sp
using two different phrase extraction techniques
on English-Chinese and English-Arabic. In both
languages, Sy outperforms S¢ significantly when
loose phrases are used. However, when we use
only tight phrases, the performance of Sy gets sig-
nificantly worse (3.5 to 6.5 BLEU-score reduction
in comparison to loose phrases). The performance
of Sg also gets worse but the degree of BLEU-
score reduction is less than that of Sg. Overall
S performs better than Sp with tight phrases;
for English-Arabic, the difference between the two
systems is more than 3 BLEU points. Note that, as
before, the relation between the alignment mea-
sures and the BLEU scores varies, this time de-
pending on whether loose phrases or tight phrases
are used: both CPER and AER track the BLEU
rankings for loose (but not for tight) phrases.

This suggests that changing alignment-related
components of the system (i.e., phrase extraction
and phrase scoring) influences the overall trans-
lation quality significantly for a particular align-
ment. Therefore, when comparing two align-
ments in the context of a MT system, it is im-
portant to take the alignment characteristics into
account. For instance, alignments with many un-
aligned words are severely penalized when using
tight phrases.

4.3 Untranslated Words

We analyzed the percentage of words left untrans-
lated during decoding. Figure 2 shows the per-
centage of untranslated words in the FL using the
Chinese and Arabic NIST MTEval’2003 test sets.

On English-Chinese data (using all four settings
given in Table 4) Sty and S yield the highest per-
centage of untranslated words while Sy produces
the lowest percentage of untranslated words. Sa
and Sp leave about 2% of the FL. words phrases



English-Chinese

Untranslated words (%)

Sys | Sys A Sys B

ELW=Mod, MPL=7, 107K
B LW=Mod, MPL=3, 241K

SysU Sys G

BLW=0rg, MPL=3, 107K
LW=Mod, MPL=7, 107K

English-Arabic

Untranslated words (%)

SysU Sys G

Sys | Sys A Sys B
mELW=Mod, MPL=7, 44K

ELW=0rg, MPL=3, 44K
%LW=Mod, MPL=7, 44K

Figure 2: Percentage of untranslated words out of the total
number of FL words

without translating them. Increasing the training
data size reduces the percentage of untranslated
words by nearly half with all five alignments. No
significant impact on untranslated words is ob-
served from modifying the lexical weights and
changing the phrase length.

On English-Arabic data, all alignments result
in higher percentages of untranslated words than
English-Chinese, most likely due to data spar-
sity. As in Chinese-to-English translation, Sy
is the worst and Sg is the best. S; behaves
quite differently, leaving nearly 7% of the words
untranslated—an indicator of why it produces a
higher BLEU score on Chinese but a lower score
on Arabic compared to other alignments.

4.4 Analysis of Phrase Tables

This section presents several experiments to an-
alyze how different alignments affect the size of
the generated phrase tables, the distribution of the
phrases that are used in decoding, and the cover-
age of the test set with the generated phrase tables.

Size of Phrase Tables The major impact of
using different alignments in a phrase-based MT
system is that each one results in a different phrase
table. Table 7 presents the number of phrases
that are extracted from five alignments using two
different maximum phrase lengths (3 vs. 7) in
two languages, after filtering the phrase table for
MTEval’2003 test set. The size of the phrase table
increases dramatically as the number of links in
the initial alignment gets smaller. As a result, for
both languages, Sy and Sg yield a much smaller
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Chinese Arabic
Alignment | MPL=3 | MPL=7 | MPL=3 | MPL=7
Su 106 122 32 38
Sa 161 181 48 55
St 1331 3498 377 984
Sa 954 1856 297 594
Ss 876 1624 262 486

Table 7: Number of Phrases in the Phrase Table Filtered for
MTEval’2003 Test Sets (in thousands)

phrase table than the other three alignments. As
the maximum phrase length increases, the size of
the phrase table gets bigger for all alignments;
however, the growth of the table is more signifi-
cant for precision-oriented alignments due to the
high number of unaligned words.

Distribution of Phrases To investigate how the
decoder chooses phrases of different lengths, we
analyzed the distribution of the phrases in the fil-
tered phrase table and the phrases that were used
to decode Chinese MTEval’2003 test set.” For the
remaining experiments in the paper, we use mod-
ified lexical weighting, a maximum phrase length
of 7, and 107K sentence pairs for training.

The top row in Figure 3 shows the distribution
of the phrases generated by the five alignments
(using a maximum phrase length of 7) according
to their length. The “j-i” designators correspond
to the phrase pairs with j FL. words and ¢ English
words. For Sy and S, the majority of the phrases
contain only one FL word, and the percentage of
the phrases with more than 2 FL. words is less than
18%. For the other three alignments, however, the
distribution of the phrases is almost inverted. For
S1, nearly 62% of the phrases contain more than 3
words on either FL or English side; for Sy and Sy,
this percentage is around 45-50%.

Given the completely different phrase distribu-
tion, the most obvious question is whether the
longer phrases generated by Sy, Sy and Sp are
actually used in decoding. In order to investigate
this, we did an analysis of the phrases used to de-
code the same test set.

The bottom row of Figure 3 shows the per-
centage of phrases used to decode the Chinese
MTEval’2003 test set. The distribution of the ac-
tual phrases used in decoding is completely the re-
verse of the distribution of the phrases in the en-
tire filtered table. For all five alignments, the ma-
jority of the used phrases is one-to-one (between

SDue to lack of space, we will present results on Chinese-
English only in the rest of this paper but the Arabic-English
results show the same trends.



English-Chinese

Phrases in the table (%)

3-2 3-3 Rest

1-3 241
‘EISysU @ESysG HEHSys| @ESysA %SysB

11 12 22 23 341

English-Chinese

Phrases used in decoding (%)

13 241
l\:\SysU BSysG HESys| @OSysA SysB‘

11 12 22 23 31 3-2 3-3 Rest

Figure 3: Distribution of the phrases in the phrase table
filtered for Chinese MTEval’2003 test set (top row) and the
phrases used in decoding the same test set (bottom row) ac-
cording to their lengths

50-65% of the total number of phrases used in de-
coding). Sy, Sa and Sp use the other phrase pairs
(particularly 1-to-2 phrases) more than Sy and S¢.

Note that S1, Sp and Sp use only a small portion
of the phrases with more than 3 words although the
majority of the phrase table contains phrases with
more than 3 words on one side. It is surprising
that the inclusion of phrase pairs with more than
3 words in the search space increases the BLEU
score although the majority of the phrases used in
decoding is mostly one-to-one.

Length of the Phrases used in Decoding We
also investigated the number and length of phrases
that are used to decode the given test set for dif-
ferent alignments. Table 8 presents the average
number of English and FL. words in the phrases
used in decoding Chinese MTEval’2003 test set.
The decoder uses fewer phrases with Sy, Sp and
Sp than for the other two, thus yielding a higher
number of FL. words per phrase. The number of
English words per phrase is also higher for these
three systems than the other two.

Coverage of the Test Set Finally, we examine
the coverage of a test set using phrases of a spe-
cific length in the phrase table. Table 9 presents
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Alignment | [Eng| | |FL]
Sy 1.39 | 1.28
Sa 1.45 | 1.33
S1 1.51 | 1.55
Sa 1.54 | 1.55
Sp 1.56 | 1.52

Table 8: The average length of the phrases that are used in
decoding Chinese MTEval’2003 test set

the coverage of the Chinese MTEval’2003 test set
(source side) using only phrases of a particular
length (from 1 to 7). For this experiment, we as-
sume that a word in the test set is covered if it is
part of a phrase pair that exists in the phrase table
(if a word is part of multiple phrases, it is counted
only once). Not surprisingly, using only phrases
with one FL word, more than 90% of the test set
can be covered for all 5 alignments. As the length
of the phrases increases, the coverage of the test
set decreases. For instance, using phrases with 5
FL words results in less than 5% coverage of the
test set.

Phrase Length (FL)
A 1 2 3 4 5 6 7
Su | 922 [ 595|214 ] 67 | 1.3 ] 04 | 0.1
Sg | 955|644 | 249 | 74 | 1.6 | 0.5] 0.3
S; [ 97.8 | 758|380 | 138 |46 |19 | 1.2
Sa | 973 | 753 | 36.1 | 125 | 3.8 | 1.5 | 0.8
Sg | 97.5 | 748 | 357 | 124 | 42 | 1.8 | 0.9

Table 9: Coverage of Chinese MTEval’2003 Test Set Using
Phrases with a Specific Length on FL side (in percentages)

Table 9 reveals that the coverage of the test set
is higher for precision-oriented alignments than
recall-oriented alignments for all different lengths
of the phrases. For instance, Sy, Sa, and Sp cover
nearly 75% of the corpus using only phrases with
2 FL words, and nearly 36% of the corpus using
phrases with 3 FL words. This suggests that recall-
oriented alignments fail to catch a significant num-
ber of phrases that would be useful to decode this
test set, and precision-oriented alignments would
yield potentially more useful phrases.

Since precision-oriented alignments make a
higher number of longer phrases available to the
decoder (based on the coverage of phrases pre-
sented in Table 9), they are used more during
decoding. Consequently, the major difference
between the alignments is the coverage of the
phrases extracted from different alignments. The
more the phrase table covers the test set, the more
the longer phrases are used during decoding, and
precision-oriented alignments are better at gener-
ating high-coverage phrases than recall-oriented
alignments.



5 Conclusions and Future Work

This paper investigated how different alignments
change the behavior of phrase-based MT. We
showed that AER is a poor indicator of MT
performance because it penalizes incorrect links
less than is reflected in the corresponding phrase-
based MT. During phrase-based MT, an incorrect
alignment link might prevent extraction of several
phrases, but the number of phrases affected by that
link depends on the context.

We designed CPER, a new phrase-oriented met-
ric that is more informative than AER when the
alignments are used in a phrase-based MT system
because it is an indicator of how the set of phrases
differ from one alignment to the next according to
a pre-specified maximum phrase length.

Even with refined evaluation metrics (including
CPER), we found it difficult to assess the impact
of alignment on MT performance because word
alignment is not the only factor that affects the
choice of the correct words (or phrases) during
decoding. We empirically showed that different
phrase extraction techniques result in better MT
output for certain alignments but the MT perfor-
mance gets worse for other alignments. Simi-
larly, adjusting the scores assigned to the phrases
makes a significant difference for certain align-
ments while it has no impact on some others. Con-
sequently, when comparing two BLEU scores, it is
difficult to determine whether the alignments are
bad to start with or the set of extracted phrases is
bad or the phrases extracted from the alignments
are assigned bad scores. This suggests that finding
a direct correlation between AER (or even CPER)
and the automated MT metrics is infeasible.

We demonstrated that recall-oriented alignment
methods yield smaller phrase tables and a higher
number of untranslated words when compared to
precision-oriented methods. We also showed that
the phrases extracted from recall-oriented align-
ments cover a smaller portion of a given test set
when compared to precision-oriented alignments.
Finally, we showed that the decoder with recall-
oriented alignments uses shorter phrases more fre-
quently as a result of unavailability of longer
phrases that are extracted.

Future work will involve an investigation into
how the phrase extraction and scoring should be
adjusted to take the nature of the alignment into
account and how the phrase-table size might be re-
duced without sacrificing the MT output quality.
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Abstract

We present a method for unsupervised
topic modelling which adapts methods
used in document classification (Blei et
al., 2003; Griffiths and Steyvers, 2004) to
unsegmented multi-party discourse tran-
scripts. We show how Bayesian infer-
ence in this generative model can be
used to simultaneously address the prob-
lems of topic segmentation and topic
identification: automatically segmenting
multi-party meetings into topically co-
herent segments with performance which
compares well with previous unsuper-
vised segmentation-only methods (Galley
et al., 2003) while simultaneously extract-
ing topics which rate highly when assessed
for coherence by human judges. We also
show that this method appears robust in
the face of off-topic dialogue and speech
recognition errors.

1 Introduction

Topic segmentation — division of a text or dis-
course into topically coherent segments — and
topic identification — classification of those seg-
ments by subject matter — are joint problems. Both
are necessary steps in automatic indexing, retrieval
and summarization from large datasets, whether
spoken or written. Both have received significant
attention in the past (see Section 2), but most ap-
proaches have been targeted at either text or mono-
logue, and most address only one of the two issues
(usually for the very good reason that the dataset
itself provides the other, for example by the ex-
plicit separation of individual documents or news
stories in a collection). Spoken multi-party meet-
ings pose a difficult problem: firstly, neither the
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segmentation nor the discussed topics can be taken
as given; secondly, the discourse is by nature less
tidily structured and less restricted in domain; and
thirdly, speech recognition results have unavoid-
ably high levels of error due to the noisy multi-
speaker environment.

In this paper we present a method for unsuper-
vised topic modelling which allows us to approach
both problems simultaneously, inferring a set of
topics while providing a segmentation into topi-
cally coherent segments. We show that this model
can address these problems over multi-party dis-
course transcripts, providing good segmentation
performance on a corpus of meetings (compara-
ble to the best previous unsupervised method that
we are aware of (Galley et al., 2003)), while also
inferring a set of topics rated as semantically co-
herent by human judges. We then show that its
segmentation performance appears relatively ro-
bust to speech recognition errors, giving us con-
fidence that it can be successfully applied in a real
speech-processing system.

The plan of the paper is as follows. Section 2
below briefly discusses previous approaches to the
identification and segmentation problems. Sec-
tion 3 then describes the model we use here. Sec-
tion 4 then details our experiments and results, and
conclusions are drawn in Section 5.

2 Background and Related Work

In this paper we are interested in spoken discourse,
and in particular multi-party human-human meet-
ings. Our overall aim is to produce information
which can be used to summarize, browse and/or
retrieve the information contained in meetings.
User studies (Lisowska et al., 2004; Banerjee et
al., 2005) have shown that topic information is im-
portant here: people are likely to want to know
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which topics were discussed in a particular meet-
ing, as well as have access to the discussion on
particular topics in which they are interested. Of
course, this requires both identification of the top-
ics discussed, and segmentation into the periods of
topically related discussion.

Work on automatic topic segmentation of fext
and monologue has been prolific, with a variety of
approaches used. (Hearst, 1994) uses a measure of
lexical cohesion between adjoining paragraphs in
text; (Reynar, 1999) and (Beeferman et al., 1999)
combine a variety of features such as statistical
language modelling, cue phrases, discourse infor-
mation and the presence of pronouns or named
entities to segment broadcast news; (Maskey and
Hirschberg, 2003) use entirely non-lexical fea-
tures. Recent advances have used generative mod-
els, allowing lexical models of the topics them-
selves to be built while segmenting (Imai et al.,
1997; Barzilay and Lee, 2004), and we take a sim-
ilar approach here, although with some important
differences detailed below.

Turning to multi-party discourse and meetings,
however, most previous work on automatic seg-
mentation (Reiter and Rigoll, 2004; Dielmann
and Renals, 2004; Banerjee and Rudnicky, 2004),
treats segments as representing meeting phases or
events which characterize the fype or style of dis-
course taking place (presentation, briefing, discus-
sion etc.), rather than the topic or subject matter.
While we expect some correlation between these
two types of segmentation, they are clearly differ-
ent problems. However, one comparable study is
described in (Galley et al., 2003). Here, a lex-
ical cohesion approach was used to develop an
essentially unsupervised segmentation tool (LC-
Seg) which was applied to both text and meet-
ing transcripts, giving performance better than that
achieved by applying text/monologue-based tech-
niques (see Section 4 below), and we take this
as our benchmark for the segmentation problem.
Note that they improved their accuracy by com-
bining the unsupervised output with discourse fea-
tures in a supervised classifier — while we do not
attempt a similar comparison here, we expect a
similar technique would yield similar segmenta-
tion improvements.

In contrast, we take a generative approach,
modelling the text as being generated by a se-
quence of mixtures of underlying topics. The ap-
proach is unsupervised, allowing both segmenta-
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tion and topic extraction from unlabelled data.

3 Learning topics and segments

We specify our model to address the problem of
topic segmentation: attempting to break the dis-
course into discrete segments in which a particu-
lar set of topics are discussed. Assume we have a
corpus of U utterances, ordered in sequence. The
uth utterance consists of N,, words, chosen from
a vocabulary of size W. The set of words asso-
ciated with the uth utterance are denoted w,,, and
indexed as w, ;. The entire corpus is represented
by w.

Following previous work on probabilistic topic
models (Hofmann, 1999; Blei et al., 2003; Grif-
fiths and Steyvers, 2004), we model each utterance
as being generated from a particular distribution
over topics, where each topic is a probability dis-
tribution over words. The utterances are ordered
sequentially, and we assume a Markov structure on
the distribution over topics: with high probability,
the distribution for utterance w is the same as for
utterance u— 1; otherwise, we sample a new distri-
bution over topics. This pattern of dependency is
produced by associating a binary switching vari-
able with each utterance, indicating whether its
topic is the same as that of the previous utterance.
The joint states of all the switching variables de-
fine segments that should be semantically coher-
ent, because their words are generated by the same
topic vector. We will first describe this generative
model in more detail, and then discuss inference
in this model.

3.1 A hierarchical Bayesian model

We are interested in where changes occur in the
set of topics discussed in these utterances. To this
end, let ¢, indicate whether a change in the distri-
bution over topics occurs at the uth utterance and
let P(c, = 1) = 7 (where 7 thus defines the ex-
pected number of segments). The distribution over
topics associated with the uth utterance will be de-
noted 0(“), and is a multinomial distribution over
T topics, with the probability of topic ¢ being Ht(u).
If ¢, = 0, then 6 = 9(=1)  Otherwise, §(*)
is drawn from a symmetric Dirichlet distribution
with parameter «. The distribution is thus:

{
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Figure 1: Graphical models indicating the dependencies among variables in (a) the topic segmentation
model and (b) the hidden Markov model used as a comparison.

where §(-, ) is the Dirac delta function, and I'(-)
is the generalized factorial function. This dis-
tribution is not well-defined when u 1, so
we set ¢; = 1 and draw 0V from a symmetric
Dirichlet(«) distribution accordingly.

As in (Hofmann, 1999; Blei et al., 2003; Grif-
fiths and Steyvers, 2004), each topic 17 is a multi-
nomial distribution ¢() over words, and the prob-

ability of the word w under that topic is ¢§3 ). The
uth utterance is generated by sampling a topic as-
signment z,, ; for each word 7 in that utterance with
P(zy o) = 0,5“), and then sampling a
word w,,; from ¢U), with P(w,; = w|zu; =
7, qﬁ(j)) = ¢$5 ). If we assume that 7 is generated
from a symmetric Beta(y) distribution, and each
#U) is generated from a symmetric Dirichlet(3)
distribution, we obtain a joint distribution over all
of these variables with the dependency structure
shown in Figure 1A.

3.2 Inference

Assessing the posterior probability distribution
over topic changes c given a corpus w can be sim-
plified by integrating out the parameters 6, ¢, and
m. According to Bayes rule we have:

_ _ P(wlz)P(z[c)P(c)
2 2.0 P(W[2)P(z]c) P(c)

P(z,clw) (1)
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Evaluating P(c) requires integrating over .
Specifically, we have:

P(c) = [ P(c|r)P(r)dnr
I'(2y) I'(n1+v)T(no+v)

T(7)?2

@

L(N+27)

where ny is the number of utterances for which
¢, = 1, and ng is the number of utterances for
which ¢, = 0. Computing P(w|z) proceeds along
similar lines:

P(wla) = [yp P(wlz,0)P(@) do
_ (r(wg))T " v, re®P+s G
T(;W =1 M 1wp)
where A%}, is the T-dimensional cross-product of

the multinomial simplex on W points, ng) is the
number of times word w is assigned to topic ¢ in
z, and n®) is the total number of words assigned

to topic ¢ in z. To evaluate P(z|c) we have:

P(z|c) = P(z|0)P(0|c) do

u
AT

“

The fact that the c,, variables effectively divide
the sequence of utterances into segments that use
the same distribution over topics simplifies solving
the integral and we obtain:
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where Uy = {ulc, = 1}, Uy = {u|c, = 0}, Su
denotes the set of utterances that share the same
topic distribution (i.e. belong to the same segment)
as u, and n§3“) is the number of times topic ¢ ap-
pears in the segment &, (i.e. in the values of z,/
corresponding for v’ € S,,).

Equations 2, 3, and 5 allow us to evaluate the
numerator of the expression in Equation 1. How-
ever, computing the denominator is intractable.
Consequently, we sample from the posterior dis-
tribution P(z,c|w) using Markov chain Monte
Carlo (MCMC) (Gilks et al., 1996). We use Gibbs
sampling, drawing the topic assignment for each
word, z,;, conditioned on all other topic assign-
ments, Z_(, ;), all topic change indicators, ¢, and
all words, w; and then drawing the topic change
indicator for each utterance, ¢, conditioned on all
other topic change indicators, c_,, all topic as-
signments z, and all words w.

The conditional probabilities we need can be
derived directly from Equations 2, 3, and 5. The
conditional probability of z,; indicates the prob-
ability that w, ; should be assigned to a particu-
lar topic, given other assignments, the current seg-
mentation, and the words in the utterances. Can-
celling constant terms, we obtain:
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P(zu,i|z—(u,i)7 C, W) =

where all counts (i.e. the n terms) exclude z ;.
The conditional probability of ¢, indicates the
probability that a new segment should start at .
In sampling c,, from this distribution, we are split-
ting or merging segments. Similarly we obtain the
expression in (7), where S} is S, for the segmen-
tation when ¢, = 1, S is S, for the segmentation
when ¢, = 0, and all counts (e.g. n1) exclude c,,.
For this paper, we fixed «, 0 and «y at 0.01.

Our algorithm is related to (Barzilay and Lee,
2004)’s approach to text segmentation, which uses
a hidden Markov model (HMM) to model segmen-
tation and topic inference for text using a bigram
representation in restricted domains. Due to the

20

adaptive combination of different topics our algo-
rithm can be expected to generalize well to larger
domains. It also relates to earlier work by (Blei
and Moreno, 2001) that uses a topic representation
but also does not allow adaptively combining dif-
ferent topics. However, while HMM approaches
allow a segmentation of the data by topic, they
do not allow adaptively combining different topics
into segments: while a new segment can be mod-
elled as being identical to a topic that has already
been observed, it can not be modelled as a com-
bination of the previously observed topics.! Note
that while (Imai et al., 1997)’s HMM approach al-
lows topic mixtures, it requires supervision with
hand-labelled topics.

In our experiments we therefore compared our
results with those obtained by a similar but simpler
10 state HMM, using a similar Gibbs sampling al-
gorithm. The key difference between the two mod-
els is shown in Figure 1. In the HMM, all variation
in the content of utterances is modelled at a single
level, with each segment having a distribution over
words corresponding to a single state. The hierar-
chical structure of our topic segmentation model
allows variation in content to be expressed at two
levels, with each segment being produced from a
linear combination of the distributions associated
with each topic. Consequently, our model can of-
ten capture the content of a sequence of words by
postulating a single segment with a novel distribu-
tion over topics, while the HMM has to frequently
switch between states.

4 [Experiments

4.1 Experiment 0: Simulated data

To analyze the properties of this algorithm we first
applied it to a simulated dataset: a sequence of
10,000 words chosen from a vocabulary of 25.
Each segment of 100 successive words had a con-

!Say that a particular corpus leads us to infer topics corre-
sponding to “speech recognition” and “discourse understand-
ing”. A single discussion concerning speech recognition for
discourse understanding could be modelled by our algorithm
as a single segment with a suitable weighted mixture of the
two topics; a HMM approach would tend to split it into mul-
tiple segments (or require a specific topic for this segment).
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Figure 2: Simulated data: A) inferred topics; B)
segmentation probabilities; C) HMM version.

stant topic distribution (with distributions for dif-
ferent segments drawn from a Dirichlet distribu-
tion with § = 0.1), and each subsequence of 10
words was taken to be one utterance. The topic-
word assignments were chosen such that when the
vocabulary is aligned in a 5 x 5 grid the topics were
binary bars. The inference algorithm was then run
for 200,000 iterations, with samples collected after
every 1,000 iterations to minimize autocorrelation.
Figure 2 shows the inferred topic-word distribu-
tions and segment boundaries, which correspond
well with those used to generate the data.

4.2 Experiment 1: The ICSI corpus

We applied the algorithm to the ICSI meeting
corpus transcripts (Janin et al., 2003), consist-
ing of manual transcriptions of 75 meetings. For
evaluation, we use (Galley et al., 2003)’s set of
human-annotated segmentations, which covers a
sub-portion of 25 meetings and takes a relatively
coarse-grained approach to topic with an average
of 5-6 topic segments per meeting. Note that
these segmentations were not used in training the
model: topic inference and segmentation was un-
supervised, with the human annotations used only
to provide some knowledge of the overall segmen-
tation density and to evaluate performance.

The transcripts from all 75 meetings were lin-
earized by utterance start time and merged into a
single dataset that contained 607,263 word tokens.
We sampled for 200,000 iterations of MCMC, tak-
ing samples every 1,000 iterations, and then aver-
aged the sampled c, variables over the last 100
samples to derive an estimate for the posterior
probability of a segmentation boundary at each ut-
terance start. This probability was then thresh-
olded to derive a final segmentation which was
compared to the manual annotations. More pre-
cisely, we apply a small amount of smoothing
(Gaussian kernel convolution) and take the mid-
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points of any areas above a set threshold to be the
segment boundaries. Varying this threshold allows
us to segment the discourse in a more or less fine-
grained way (and we anticipate that this could be
user-settable in a meeting browsing application).
If the correct number of segments is known for
a meeting, this can be used directly to determine
the optimum threshold, increasing performance; if
not, we must set it at a level which corresponds to
the desired general level of granularity. For each
set of annotations, we therefore performed two
sets of segmentations: one in which the threshold
was set for each meeting to give the known gold-
standard number of segments, and one in which
the threshold was set on a separate development
set to give the overall corpus-wide average number
of segments, and held constant for all test meet-
ings.> This also allows us to compare our results
with those of (Galley et al., 2003), who apply a
similar threshold to their lexical cohesion func-
tion and give corresponding results produced with
known/unknown numbers of segments.

Segmentation We assessed segmentation per-
formance using the P, and WindowDiff (Wp) er-
ror measures proposed by (Beeferman et al., 1999)
and (Pevzner and Hearst, 2002) respectively; both
intuitively provide a measure of the probability
that two points drawn from the meeting will be
incorrectly separated by a hypothesized segment
boundary — thus, lower P, and Wp figures indi-
cate better agreement with the human-annotated
results.? For the numbers of segments we are deal-
ing with, a baseline of segmenting the discourse
into equal-length segments gives both Py and Wp
about 50%. In order to investigate the effect of the
number of underlying topics 1', we tested mod-
els using 2, 5, 10 and 20 topics. We then com-
pared performance with (Galley et al., 2003)’s LC-
Seg tool, and with a 10-state HMM model as de-
scribed above. Results are shown in Table 1, aver-
aged over the 25 test meetings.

Results show that our model significantly out-
performs the HMM equivalent — because the
HMM cannot combine different topics, it places
a lot of segmentation boundaries, resulting in in-
ferior performance. Using stemming and a bigram

>The development set was formed from the other meet-
ings in the same ICSI subject areas as the annotated test meet-
ings.

3Wp takes into account the likely number of incorrectly
separating hypothesized boundaries; P only a binary cor-
rect/incorrect classification.
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Figure 3: Results from the ICSI corpus: A) the words most indicative for each topic; B) Probability of a
segment boundary, compared with human segmentation, for an arbitrary subset of the data; C) Receiver-
operator characteristic (ROC) curves for predicting human segmentation, and conditional probabilities
of placing a boundary at an offset from a human boundary; D) subjective topic coherence ratings.

Number of topics I’
Model 2 5 10 20 HMM | LCSeg
Py 284 297 329 290 375 319
known unknown
Model Py Wb Py Wb
T=10 | 2890 .329 | .329 353
LCSeg | 264 294 | 319 .359

Table 1: Results on the ICSI meeting corpus.

representation, however, might improve its perfor-
mance (Barzilay and Lee, 2004), although simi-
lar benefits might equally apply to our model. It
also performs comparably to (Galley et al., 2003)’s
unsupervised performance (exceeding it for some
settings of T"). It does not perform as well as their
hybrid supervised system, which combined LC-
Seg with supervised learning over discourse fea-
tures (P, = .23); but we expect that a similar ap-
proach would be possible here, combining our seg-
mentation probabilities with other discourse-based
features in a supervised way for improved per-
formance. Interestingly, segmentation quality, at
least at this relatively coarse-grained level, seems
hardly affected by the overall number of topics 7.

Figure 3B shows an example for one meeting of
how the inferred topic segmentation probabilities
at each utterance compare with the gold-standard
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segment boundaries. Figure 3C illustrates the per-
formance difference between our model and the
HMM equivalent at an example segment bound-
ary: for this example, the HMM model gives al-
most no discrimination.

Identification Figure 3A shows the most indica-
tive words for a subset of the topics inferred at the
last iteration. Encouragingly, most topics seem
intuitively to reflect the subjects we know were
discussed in the ICSI meetings — the majority of
them (67 meetings) are taken from the weekly
meetings of 3 distinct research groups, where dis-
cussions centered around speech recognition tech-
niques (topics 2, 5), meeting recording, annotation
and hardware setup (topics 6, 3, 1, 8), robust lan-
guage processing (topic 7). Others reflect general
classes of words which are independent of subject
matter (topic 4).

To compare the quality of these inferred topics
we performed an experiment in which 7 human
observers rated (on a scale of 1 to 9) the seman-
tic coherence of 50 lists of 10 words each. Of
these lists, 40 contained the most indicative words
for each of the 10 topics from different models:
the topic segmentation model; a topic model that
had the same number of segments but with fixed
evenly spread segmentation boundaries; an equiv-



alent with randomly placed segmentation bound-
aries; and the HMM. The other 10 lists contained
random samples of 10 words from the other 40
lists. Results are shown in Figure 3D, with the
topic segmentation model producing the most co-
herent topics and the HMM model and random
words scoring less well. Interestingly, using an
even distribution of boundaries but allowing the
topic model to infer topics performs similarly well
with even segmentation, but badly with random
segmentation — topic quality is thus not very sus-
ceptible to the precise segmentation of the text,
but does require some reasonable approximation
(on ICSI data, an even segmentation gives a Py of
about 50%, while random segmentations can do
much worse). However, note that the full topic
segmentation model is able to identify meaningful
segmentation boundaries at the same time as infer-
ring topics.

4.3 Experiment 2: Dialogue robustness

Meetings often include off-topic dialogue, in par-
ticular at the beginning and end, where infor-
mal chat and meta-dialogue are common. Gal-
ley et al. (2003) annotated these sections explic-
itly, together with the ICSI “digit-task™ sections
(participants read sequences of digits to provide
data for speech recognition experiments), and re-
moved them from their data, as did we in Ex-
periment 1 above. While this seems reasonable
for the purposes of investigating ideal algorithm
performance, in real situations we will be faced
with such off-topic dialogue, and would obviously
prefer segmentation performance not to be badly
affected (and ideally, enabling segmentation of
the off-topic sections from the meeting proper).
One might suspect that an unsupervised genera-
tive model such as ours might not be robust in the
presence of numerous off-topic words, as spuri-
ous topics might be inferred and used in the mix-
ture model throughout. In order to investigate this,
we therefore also tested on the full dataset with-
out removing these sections (806,026 word tokens
in total), and added the section boundaries as fur-
ther desired gold-standard segmentation bound-
aries. Table 2 shows the results: performance is
not significantly affected, and again is very simi-
lar for both our model and LCSeg.

4.4 Experiment 3: Speech recognition

The experiments so far have all used manual word
transcriptions. Of course, in real meeting pro-
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known unknown
Experiment Model Py Wp Py Wp
2 T=10 | 296 .342 | .325 .366
(off-topic data) | LCSeg | .307 .338 | .322 386
3 T=10 | 266 .306 | .291 .331
(ASR data) LCSeg | 289 339 | 378 472

Table 2: Results for Experiments 2 & 3: robust-
ness to off-topic and ASR data.

cessing systems, we will have to deal with speech
recognition (ASR) errors. We therefore also tested
on 1-best ASR output provided by ICSI, and re-
sults are shown in Table 2. The “off-topic” and
“digits” sections were removed in this test, so re-
sults are comparable with Experiment 1. Segmen-
tation accuracy seems extremely robust; interest-
ingly, LCSeg’s results are less robust (the drop in
performance is higher), especially when the num-
ber of segments in a meeting is unknown.

It is surprising to notice that the segmentation
accuracy in this experiment was actually slightly
higher than achieved in Experiment 1 (especially
given that ASR word error rates were generally
above 20%). This may simply be a smoothing ef-
fect: differences in vocabulary and its distribution
can effectively change the prior towards sparsity
instantiated in the Dirichlet distributions.

5 Summary and Future Work

We have presented an unsupervised generative
model which allows topic segmentation and iden-
tification from unlabelled data. Performance on
the ICSI corpus of multi-party meetings is compa-
rable with the previous unsupervised segmentation
results, and the extracted topics are rated well by
human judges. Segmentation accuracy is robust
in the face of noise, both in the form of off-topic
discussion and speech recognition hypotheses.

Future Work Spoken discourse exhibits several
features not derived from the words themselves
but which seem intuitively useful for segmenta-
tion, e.g. speaker changes, speaker identities and
roles, silences, overlaps, prosody and so on. As
shown by (Galley et al., 2003), some of these fea-
tures can be combined with lexical information to
improve segmentation performance (although in a
supervised manner), and (Maskey and Hirschberg,
2003) show some success in broadcast news seg-
mentation using only these kinds of non-lexical
features. We are currently investigating the addi-
tion of non-lexical features as observed outputs in



our unsupervised generative model.

We are also investigating improvements into the
lexical model as presented here, firstly via simple
techniques such as word stemming and replace-
ment of named entities by generic class tokens
(Barzilay and Lee, 2004); but also via the use of
multiple ASR hypotheses by incorporating word
confusion networks into our model. We expect
that this will allow improved segmentation and
identification performance with ASR data.
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Minimum Cut Model for Spoken Lecture Segmentation

Igor Malioutov and Regina Barzilay
Computer Science and Artificial Intelligence Laboratory
Massachusetts Institute of Technology
{igorm,regina  }@csail.mit.edu

Abstract structured datasets, such as spoken meeting tran-
scripts (Galley et al., 2003). Therefore, a more
We consider the task of unsupervised lec-  refined analysis of lexical distribution is needed.
ture segmentation. We formalize segmen- Our work addresses this challenge by casting
tation as a graph-partitioning task that op-  text segmentation in a graph-theoretic framework.
timizes the normalized cut criterion. Our  \we apstract a text into a weighted undirected
approach moves beyond localized com-  graph, where the nodes of the graph correspond
parisons and takes into account long- {5 sentences and edge weights represent the pair-
range cohesion dependencies. Our results ise sentence similarity. In this framework, text
demonstrate that global analysis improves  segmentation corresponds to a graph partitioning
the segmentation accuracy and is robustin  hat optimizes thevormalized-cut criterion (Shi
the presence of speech recognition errors. g Malik, 2000). This criterion measures both the
similarity within each partition and the dissimilar-
ity across different partitions. Thus, our approach
The development of computational models of textmoves beyond localized comparisons and takes
structure is a central concern in natural languag#to account long-range changes in lexical distri-
processing. Text segmentation is an important inbution. Our key hypothesis is that global analysis
stance of such work. The task is to partition ayields more accurate segmentation results than lo-
text into a linear sequence of topically coherentcal models.
segments and thereby induce a content structure We tested our algorithm on a corpus of spo-
of the text. The applications of the derived rep-ken lectures. Segmentation in this domain is chal-
resentation are broad, encompassing informatiotenging in several respects. Being less structured
retrieval, question-answering and summarization.than written text, lecture material exhibits digres-
Not surprisingly, text segmentation has been exsions, disfluencies, and other artifacts of sponta-
tensively investigated over the last decade. Folneous communication. In addition, the output of
lowing the first unsupervised segmentation apspeech recognizers is fraught with high word er-
proach by Hearst (1994), most algorithms assumégor rates due to specialized technical vocabulary
that variations in lexical distribution indicate topic and lack of in-domain spoken data for training.
changes. When documents exhibit sharp variaFinally, pedagogical considerations call for fluent
tions in lexical distribution, these algorithms aretransitions between different topics in a lecture,
likely to detect segment boundaries accuratelyfurther complicating the segmentation task.
For example, most algorithms achieve high per- Our experimental results confirm our hypothe-
formance on synthetic collections, generated byis: considering long-distance lexical dependen-
concatenation of random text blocks (Choi, 2000)cies yields substantial gains in segmentation per-
The difficulty arises, however, when transitionsformance. Our graph-theoretic approach com-
between topics are smooth and distributional varipares favorably to state-of-the-art segmentation al-
ations are subtle. This is evident in the perfor-gorithms and attains results close to the range of
mance of existing unsupervised algorithms on leshuman agreement scores. Another attractive prop-

1 Introduction
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erty of the algorithm is its robustness to noise: the
accuracy of our algorithm does not deteriorate sig
nificantly when applied to speech recognition out-
put.
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Most unsupervised algorithms assume that frag
ments of text with homogeneous lexical distribu-
tion correspond to topically coherent segments
Previous research has analyzed various facets
lexical distribution, including lexical weighting, 4l
similarity computation, and smoothing (Hearst, 3
1994; Utiyama and Isahara, 2001; Choi, 2000 *f
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The focus of our work, however, is on an or-
thogonal yet fundamental aspect of this analysigigure 1: Sentence similarity plot for a Physics
— the impact of long-range cohesion dependentecture, with vertical lines indicating true segment
cies on segmentation performance. In contrast tgoundaries.
previous approaches, the homogeneity of a seg-
ment is determined not only by the similarity of its Figure 1 illustrates these properties in a lec-
words, but also by their relation to words in Otherture transcript from an undergraduate Physics
segments of the text. We show that optimizing oulcj555. We use the text Dotplotting representation
global objective enables us to detect subtle topic%y (Church, 1993) and plot the cosine similar-
changes. _ S ity scores between every pair of sentences in the
Graph-Theoretic Approaches in Vision Seg-  text. The intensity of a pointi, j) on the plot in-
mentation Our work is inspired by minimum-Cut-  gicates the degree to which tigh sentence in
based segmentation algorithms developed for imgea text is similar to the-th sentence. The true
age analysis. Shi and Malik (2000) introducedsegment boundaries are denoted by vertical lines.
the normalized-cut criterion and demonstrated itsrhjs similarity plot reveals a block structure where
practical benefits for segmenting static images. {ye houndaries delimit blocks of text with high
Our method, however, is not a simple applicanter.sentential similarity. Sentences found in dif-

tion of the existing approach to a new task. Firstferent plocks, on the other hand, tend to exhibit
in order to make it work in the new linguistic | similarity.

framework, we had to redefine the underlying rep-
resentation and introduce a variety of smoothing
and lexical weighting techniques. Second, the
computational techniques for finding the optimal
partitioning are also quite different. Since the min-
imization of the normalized cut i& P-complete

in the general case, researchers in vision have to
approximate this computation. Fortunately, we

can find an exact solution due to the linearity con-

straint on text segmentation.

Figure 2: Graph-based Representation of Text

Formalizing the Objective Whereas previous
unsupervised approaches to segmentation rested
on intuitive notions of similarity density, we for-
malize the objective of text segmentation through
Linguistic research has shown that word repeticuts on graphs. We aim to jointly maximize the
tion in a particular section of a text is a device forintra-segmental similarity and minimize the simi-
creating thematic cohesion (Halliday and Hasanlarity between different segments. In other words,
1976), and that changes in the lexical distributionsve want to find the segmentation with a maximally
usually signal topic transitions. homogeneous set of segments that are also maxi-

3  Minimum Cut Framework
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mally different from each other. Decoding Papadimitriou proved that the prob-
Let G = {V,E} be an undirected, weighted lem of minimizing normalized cuts on graphs is
graph, whereV is the set of nodes correspond- N P-complete (Shi and Malik, 2000). However,
ing to sentences in the text ard is the set of in our case, the multi-way cut is constrained to
weighted edges (See Figure 2). The edge weightpreserve the linearity of the segmentation. By seg-
w(u,v), define a measure of similarity betweenmentation linearity, we mean that all of the nodes
pairs of nodes: and v, where higher scores in- between the leftmost and the rightmost nodes of
dicate higher similarity. Section 4 provides morea particular partition have to belong to that par-
details on graph construction. tition. With this constraint, we formulate a dy-
We consider the problem of partitioning the namic programming algorithm for exactly finding
graph into two disjoint sets of nodesandB. We  the minimum normalized multiway cut in polyno-
aim to minimize the cut, which is defined to be themial time:
sum of the crossing edges between the two sets of
nodes. In other words, we want to split the sen-
. . L ) . . L cut[Aj e,V — Ajk]
tences into two maximally dissimilar classes byC'[i, k] = min [C [i—1,5]+ ol (A 1] } @
choosing4 and B to minimize: b

cut(A, B) = Z w(u,v) Bi, k] = argmin [C [i—1,7]+ cut [Ag.r, V = Aj’k]} 2
u€AvEB j<k vol [A; k]
However, we need to ensure that the two parti-
. . . s1.C[0,1]=0,C[0,k] =00, 1 <k <N ©)
tions are not only maximally different from each BlOK =1 1<k<N @

other, but also that they are themselves homoge-
neous by accounting for intra-partition node simi-
larity. We formulate this requirementin the frame-  ¢'[; k] is the normalized cut value of the op-
work of normalized cuts (Shi and Malik, 2000), timal segmentation of the firét sentences into
where the cut value is normalized by the V0|Umesegments. Theth segment,; ,, begins at node
of the corresponding partitions. The volume of theuj and ends at node,. B [i, k] is the back-pointer
partition is the sum of its edges to the whole graphiap|e from which we recover the optimal sequence
of segment boundaries. Equations 3 and 4 capture

vol(A) = > w(u,v) respectively the condition that the normalized cut
u€A,vev value of the trivial segmentation of an empty text
The normalized cut criterionNcut) is then de- into one segment is zero and the constraint that the
fined as follows: first segment starts with the first node.

The time complexity of the dynamic program-
ming algorithm isO(K N?), whereK is the num-
ber of partitions andV is the number of nodes in
the graph or sentences in the transcript.

cut(A,B) cut(A,B)

Neut(A, B) = ol (A) vol(B)

By minimizing this objective we simultane-
ously minimize t_he_similarit_y across p.artitions a.nd4 Building the Graph
maximize the similarity within partitions. This
formulation also allows us to decompose the obClearly, the performance of our model depends
jective into a sum of individual terms, and formu- on the underlying representation, the definition of
late a dynamic programming solution to the mul-the pairwise similarity function, and various other

tiway cut problem. model parameters. In this section we provide fur-
This criterion is naturally extended to a k-way ther details on the graph construction process.
normalized cut: PreprocessingBefore building the graph, we
apply standard text preprocessing techniques to
Neuty(v) = ALV = A) | etV = A  ypo tort We stem words with the Porter stem-
vol(A1) vol(Ar)

mer (Porter, 1980) to alleviate the sparsity of word
where 4; ... A; form a partition of the graph, counts through stem equivalence classes. We also
andV — Ay, is the set difference between the entireremove words matching a prespecified list of stop
graph and partitioti. words.
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Graph Topology As we noted in the previ- Segments peifotal Word ASR WER
. . L . Corpus|Lectures Lecture Tokens | Accuracy
ous section, the normahz_ed cut criterion considersphysics 33 59 30K 19.4%
long-term similarity relationships between nodes.| Al 22 12.3 182K X

This effect is achieved by constructing a fully-
connected graph. However, considering all pair-
wise relations in a long text may be detrimen-
tal to segmentation accuracy. Therefor_e, we d's's_ub-topics, even though it is a fairly rare term
card edges between sentences exceeding a certzmn

: . T general English and bears much semantic con-
threshold distance. This reduction in the graph[ent' The same words can convey varying degrees
size also provides us with computational savings.

] . . ) of information across different lectures, and term
Similarity Computation In computing pair-

. ¢ imilariti ¢ weighting specific to individual lectures becomes
wise sentence similarities, sentences are repr'rhportant in the similarity computation.

ﬁer:[ed_ as vectorsl of wo(;d. cotun:s. Cosmte tglm- In order to address this issue, we introduce a
IS“ y |ts iggznon_)l/_ use .dm ex _seglmen ation | - riation on thetf-idf scoring scheme used in the
(Hearst, ). To avoid numerica PrECISION: ¢ rmation-retrieval literature (Salton and Buck-

issues when surrlmlng a SE,)[.rITSdOf very §m|al ey, 1988). A transcript is split uniformly intev
Scores, we compulte exponentiated cosine simi ar(Ehunks; each chunk serves as the equivalent of
ity scores between pairs of sentence vectors:

documents in thé-idf computation. The weights
8§75 are computed separately for each transcript, since
w(s;, s5) = el topic and word distributions vary across lectures.

We further refine our analysis by smoothing the

similarity metric. When comparing two sentences,5 Evaluation Set-Up

we also take into account Slmllarlty between their|n this section we present the different corpora
immediate neighborhoods.  The smoothing isused to evaluate our model and provide a brief
achieved by adding counts of words that occur ingverview of the evaluation metrics. Next, we de-

adjoining sentences to the current sentence featukribe our human segmentation study on the cor-
vector. These counts are weighted in accordancgus of spoken lecture data.

to their distance from the current sentence:

Table 1: Lecture Corpus Statistics

ik 5.1 Parameter Estimation
5= e U g A heldout development set of three lectures is-
=i

used for estimating the optimal word block length

where s; are vectors of word counts, andis a  for representing nodes, the threshold distances for
parameter that controls the degree of smoothing. discarding node edges, the number of uniform

In the formulation above we use sentences ashunks for estimatingf-idf lexical weights, the
our nodes. However, we can also represent grapdlpha parameter for smoothing, and the length of
nodes with non-overlapping blocks of words ofthe smoothing window. We use a simple greedy
fixed length. This is desirable, since the lecturesearch procedure for optimizing the parameters.
transcripts lack sentence boundary markers, ang
short utterances can skew the cosine similarity™”
scores. The optimal length of the block is tunedWe evaluate our segmentation algorithm on three
on a heldout development set. sets of data. Two of the datasets we use are new

Lexical Weighting Previous research has segmentation collections that we have compiled
shown that weighting schemes play an importanfor this study; and the remaining set includes a
role in segmentation performance (Ji and Zhastandard collection previously used for evaluation
2003; Choi et al., 2001). Of particular concern©of segmentation algorithms. Various corpus statis-
are words that may not be common in general EntiCS for the new datasets are presented in Table 1.
glish discourse but that occur throughout the texBelow we briefly describe each corpus.
for a particular lecture or subject. For example, in Physics LecturesOur first corpus consists of
a lecture about support vector machines, the ocspoken lecture transcripts from an undergraduate
currence of the term “SVM” is not going to CON- 15 maerials are publicly available bttp://www.
vey a lot of information about the distribution of csail.mit.edu/ ~ igorm/acl06.html

2 Corpora
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Physics class. In contrast to other segmentatiof.3 Evaluation Metric

datasets, our corpus contains much longer text§Ne use theP, and WindowDiff measures to eval-

A typical IecFllJSre of 90 dmlnuht_esh has 500 t(()j 70Ouate our system (Beeferman et al., 1999; Pevzner
sentences witB500 words, which corresponds to nd Hearst, 2002). Th8, measure estimates the

about 15 pages O_f raw text. We have access bOlgrobability that a randomly chosen pair of words
to manual transcriptions of these lectures and als\%ithin a window of lengthk words is inconsis-
output from an automatic speech recognition sysg. ., c|assified. The WindowDiff metric is a vari-

i 0,
terr:_].hT_he word errtort_rate fforttr:e l?tzﬁr IS %9&?” ant of theP, measure, which penalizes false posi-
which Is representative of state-ol-the-art periory, .o on an equal basis with near misses.

mance on lecture material (Leeuwis et al., 2003). Both of these metrics are defined with re-

The Physics lecture transcript segmentationg,e . 15 the average segment length of texts and
were produced by the teaching staff of the intro-o, ipit high variability on real data. We fol-

dgctory Physics course at.the _Ma_ssachusetts "T(')w Choi (2000) and compute the mean segment
stitute of Technology. Their objective was to fa- length used in determining the parameteron
cilitate access to lecture recordings available ORyach reference text separately.

the class website. This segmentation conveys the We also plot the Receiver Operating Character-

high-level topical structure of the It_actu_res. On AV-igtic (ROC) curve to gauge performance at a finer
erage, a lecture was annotated with six segments, | of discrimination (Swets, 1988). The ROC

and a typical segment corresponds to two pages ?ﬁot is the plot of the true positive rate against the

atranseript. false positive rate for various settings of a decision
Artificial Intelligence Lectures Our second  cyiterion. In our case, the true positive rate is the
lecture corpus differs in subject matter, lecturinGfraction of boundaries correctly classified, and the
style, and segmentation granularity. The gradusgse positive rate is the fraction of non-boundary
ate Avrtificial Intelligence class has, on averageysitions incorrectly classified as boundaries. In
twelve segments per lecture, and a typical segmerimputing the true and false positive rates, we
is about half of a page. One segment roughly COryary the threshold distance to the true boundary
responds to the content of a slide. This time th&iinin which a hypothesized boundary is consid-
segmentation was obtained from the lecturer hergreq correct. Larger areas under the ROC curve

self. The lecturer went through the transcripts ofyt 4 classifier indicate better discriminative perfor-
lecture recordings and segmented the lectures with5nce.

the objective of making the segments correspond

to presentation slides for the lectures. 5.4 Human Segmentation Study
Due to the low recording quality, we were un-

able to obtain the ASR transcripts for this class

Therefore, we only use manual transcriptions o

Spoken lectures are very different in style from
Pther corpora used in human segmentation studies
(Hearst, 1994; Galley et al., 2003). We are inter-
these Iectgres. ested in analyzing human performance on a corpus
Synthetic Corpus Also as part of our anal- ¢ ecture transcripts with much longer texts and a
ysis, we used the synthetic corpus created byygs clear-cut concept of a sub-topic. We define a
Choi (2000) which is commonly used in the eval-gegment to be a sub-topic that signals a prominent
uation of segmentation algorithms. This corpusghit in subject matter. Disregarding this sub-topic
consists of a set of concatenated segments rapange would impair the high-level understanding
domly sampled from the Brown corpus. The ut the structure and the content of the lecture.
length of the segments in this corpus ranges from As part of our human segmentation analysis,
three to e'e_Ve“ sente_r?ces._ It is important to NOIG e asked three annotators to segment the Physics
that the lexical transitions in these concatenateglec,[ure corpus. These annotators had taken the

texts are very she_lrp, since j[he segments Come frofljqq i, the past and were familiar with the subject
texts written in widely varying language styles on e ynder consideration. We wrote a detailed

completely different topics. instruction manual for the task, with annotation

— _ guidelines for the most part following the model
A speaker-dependent model of the lecturer was traine dbv G tein et al. (2005). Th tat
on 38 hours of lectures from other courses using the sumysed by Gruenstein et al. ( )- € annotators

MIT segment-based Speech Recognizer (Glass, 2003).  were instructed to segment at a level of granularity
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(0] A B C EDGE CUTOFF

MEAN SEG. COUNT [6.6 [8.9 [18.413.8 [10 [25 [50 [100 [200 [NONE
MEAN SEG. LENGTH|69.4 |51.5|24.933.2 PHYSICS (MANUAL)
SEG. LENGTHDEV. |39.6|37.4(34.5|39.4 PK [0.394/0.3730.3410.2950.3110.33(
WD |0.404/0.3830.3520.3080.3290.35(
Table 2: Annotator Segmentation Statistics for the PHYsSICS (ASR)
first ten Physics lectures. PK |0.4400.3710.3430.3300.3220.359
WD |0.456/0.3830.3560.3430.3420.398
RErF/HYP | O A B C Al
O 0 0.243| 0.418| 0.312 PK |0.480 0.4220.4080.4160.3930.397
A 0.219| 0 0.400| 0.355 WD |0.493/0.4350.4200.4400.4240.432
B 0.314| 0.337| 0 0.332 CHol
C 0.260| 0.296| 0.370| O PK |0.222/0.2020.2130.2160.2080.208
WD |0.234/0.2220.2330.2380.2300.23(

Table 3: P, annotation agreement between differ-
ent pairs of annotators. Table 4: Edges between nodes separated beyond a
certain threshold distance are removed.

that would identify most of the prominent topical

transitions necessary for a summary of the lectur&;|asses. Note that annotator A operated at a level
The annotators used the NOMOS annotationy¢ granularity consistent with the original refer-

software toolkit, developed for meeting segmentagnce segmentation. Hence, the 0R4measure

tion (Gruenstein etal., 2005). They were providedscore serves as the benchmark with which we can

with recorded audio of the lectures and the Cormesompare the results attained by segmentation al-

sponding text transcriptions. We intentionally did yorithms on the Physics lecture data.

not provide the subjects with the target number of As an additional point of reference we note that

boundaries, since we wanted to see if the annotgne yniform and random baseline segmentations

tors would converge on a common segmentatioRyiain 0.469 and 0.493 P, measure, respectively,

granularity. ~ on the Physics lecture set.
Table 2 presents the annotator segmentation

statistics. We see two classes of segmentatio6 Experimental Results
granularities. The original reference (O) and anno-
tator A segmented at a coarse level with an average
of 6.6 and 8.9 segments per lecture, respectively.
Annotators B and C operated at much finer levels
of discrimination with 18.4 and 13.8 segments per
lecture on average. We conclude that multiple lev-
els of granularity are acceptable in spoken lecture
segmentation. This is expected given the length of

the lectures and varying human judgments in se- /
lecting relevant topical content.

Following previous studies, we quantify the 0.1/ Tl
level of annotator agreement with tti2 measure o ‘ ‘
(Gruenstein et al., 2005).Table 3 shows the an- ’ o Falso Posiive R o °
notator agreement scores between different pairs

of annotators.P, measures ranged from24 and  Figure 3: ROC plot for the Minimum Cut Seg-

0.42. We observe greater consistency at similamenter on thirty Physics Lectures, with edge cut-
levels of granularity, and less so across the twmffs set at five and hundred sentences.

o
©

True Positive Rate

o o o o o

w S o o ~
T

o
N

*Kappa measure would not be the appropriate measure in Benefits of global analysisWe first determine
this case, because it is not sensitive to near misses, and . L .
cannot make the required independence assumption on t\ﬁg'e 'mpa_Ct of long-range palrW|se similarity de-
placement of boundaries. pendencies on segmentation performance. Our
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performance on the synthetic dataset. This is ex-

| CHol [ Ul [ MINCuT pected since the segments in the synthetic dataset
PHYSICS (MANUAL ) are randomly selected from widely-varying doc-
PK | 0.372| 0.310| 0.298 uments in the Brown corpus, even spanning dif-
wbD | 0.385] 0.323| 0.311 ferent genres of written language. So, effectively,
PHYsICS (ASR TRANSCRIPTY there are no genuine long-range dependencies that
PK | 0.361| 0.352| 0.322 can be exploited by the algorithm.
wD | 0.376| 0.364| 0.340

Comparison with local dependency models
We compare our system with the state-of-the-art
similarity-based segmentation system developed
by Choi (2000). We use the publicly available im-
plementation of the system and optimize the sys-
tem on a range of mask-sizes and different param-
eter settings described in (Choi, 2000) on a held-
_ . out development set of three lectures. To control
Table 5: Performance analysis of different algo+,, segmentation granularity, we specify the num-
rithms using theP;, and WindowDiff measures, per of segments in the reference (“O”) segmen-
with three lectures heldout for development. tation for both our system and the baseline. Ta-
ble 5 shows that the Minimum Cut algorithm con-

key hypothesis is that considering Iong-distancéiStemly outperforms the similarity-b_ased ba}seline
lexical relations contributes to the effectiveness of" &/l the lecture datasets. We attribute this gain
the algorithm. To test this hypothesis, we discarc}_0 th? presence of more att.enuated topic transi-
edges between nodes that are more than a cdfons in spoken language. Since spoken language
tain number of sentences apart. We test the syés more spontaneous and less structured than writ-
tem on a range of data sets, including the Physicgen language, the speaker needs to keep the listener

and Al lectures and the synthetic corpus created b9brea3t of the changes in topic content by intro-

Choi (2000). We also include segmentation resultgucing subtle cues and references to prior topics in
on Physics ASR transcripts the course of topical transitions. Non-local depen-

. , . dencies help to elucidate shifts in focus, because
The results in Table 4 confirm our hypothesis — . L
L ) . _the strength of a particular transition is measured
taking into account non-local lexical dependencies . .
) ) with respect to other local and long-distance con-
helps across different domains. On manually tran- . . )
; . textual discourse relationships.
scribed Physics lecture data, for example, the al- _
gorithm yields 0.394%, measure when taking into ~ Our system does not outperform Choi's algo-
account edges separated by up to ten sentencéghm on the synthetic data. This again can be at-
When dependencies up to a hundred sentences dfouted to the discrepancy in distributional prop-
considered, the algorithm yields a 25% reductiorrties of the synthetic corpus which lacks coher-
in P, measure. Figure 3 shows the ROC plotence in its thematic shifts and the lecture corpus
for the segmentation of the Physics lecture dat&f spontaneous speech with smooth distributional
with different cutoff parameters’ again demon_VariationS. We also note that we did not tl’y to ad-
strating clear gains attained by employing longJust our model to optimize its performance on the
range dependencies. As Table 4 shows, the inSynthetic data. The smoothing method developed
provement is consistent across all lecture datasetfr lecture segmentation may not be appropriate
We note, however, that after some point increasfor short segments ranging from three to eleven
ing the threshold degrades performance, becaug€ntences that constitute the synthetic set.
itintroduces too many spurious dependencies (see We also compared our method with another
the last column of Table 4). The speaker will oc-state-of-the-art algorithm which does not explic-
casionally return to a topic described at the beginitly rely on pairwise similarity analysis. This algo-
ning of the lecture, and this will bias the algorithm rithm (Utiyama and Isahara, 2001) (Ul) computes
to put the segment boundary closer to the end ofhe optimal segmentation by estimating changes in
the lecture. the language model predictions over different par-
Long-range dependencies do not improve thditions. We used the publicly available implemen-

Al
PK | 0.445| 0.374| 0.383
wD | 0.478| 0.420| 0.417
CHol
PK | 0.110| 0.105| 0.212
wD | 0.121| 0.116| 0.234
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Abstract

We present an approach to pronoun reso-
lution based on syntactic paths. Through a
simple bootstrapping procedure, we learn
the likelihood of coreference between a
pronoun and a candidate noun based on the
path in the parse tree between the two en-
tities. This path information enables us to
handle previously challenging resolution
instances, and also robustly addresses tra-
ditional syntactic coreference constraints.
Highly coreferent paths also allow mining
of precise probabilistic gender/number in-
formation. We combine statistical knowl-
edge with well known features in a Sup-
port Vector Machine pronoun resolution
classifier. Significant gains in performance
are observed on several datasets.

1 Introduction

Pronoun resolution is a difficult but vital part of the
overall coreference resolution task. In each of the
following sentences, a pronoun resolution system
must determine what the pronoun his refers to:

(1) John needs his friend.
(2) John needs his support.

In (1), John and his corefer. In (2), his refers
to some other, perhaps previously evoked entity.
Traditional pronoun resolution systems are not de-
signed to distinguish between these cases. They
lack the specific world knowledge required in the
second instance — the knowledge that a person
does not usually explicitly need his own support.

We collect statistical path-coreference informa-
tion from a large, automatically-parsed corpus to
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address this limitation. A dependency path is de-
fined as the sequence of dependency links between
two potentially coreferent entities in a parse tree.
A path does not include the terminal entities; for
example, “John needs his support” and “He needs
their support” have the same syntactic path. Our
algorithm determines that the dependency path
linking the Noun and pronoun is very likely to con-
nect coreferent entities for the path “Noun needs
pronoun’s friend,” while it is rarely coreferent for
the path “Noun needs pronoun’s support.”

This likelihood can be learned by simply count-
ing how often we see a given path in text with
an initial Noun and a final pronoun that are from
the same/different gender/number classes. Cases
such as “John needs her support” or “They need
his support” are much more frequent in text than
cases where the subject noun and pronoun termi-
nals agree in gender/number. When there is agree-
ment, the terminal nouns are likely to be corefer-
ent. When they disagree, they refer to different en-
tities. After a sufficient number of occurrences of
agreement or disagreement, there is a strong sta-
tistical indication of whether the path is coreferent
(terminal nouns tend to refer to the same entity) or
non-coreferent (nouns refer to different entities).

We show that including path coreference in-
formation enables significant performance gains
on three third-person pronoun resolution experi-
ments. We also show that coreferent paths can pro-
vide the seed information for bootstrapping other,
even more important information, such as the gen-
der/number of noun phrases.

2 Reated Work

Coreference resolution is generally conducted as
a pairwise classification task, using various con-
straints and preferences to determine whether two

Sydney, July 200602006 Association for Computational Linguistics



expressions corefer. Coreference is typically only
allowed between nouns matching in gender and
number, and not violating any intrasentential syn-
tactic principles. Constraints can be applied as a
preprocessing step to scoring candidates based on
distance, grammatical role, etc., with scores devel-
oped either manually (Lappin and Leass, 1994), or
through a machine-learning algorithm (Kehler et
al., 2004). Constraints and preferences have also
been applied together as decision nodes on a deci-
sion tree (Aone and Bennett, 1995).

When previous resolution systems handle cases
like (1) and (2), where no disagreement or syntac-
tic violation occurs, coreference is therefore de-
termined by the weighting of features or learned
decisions of the resolution classifier. ~Without
path coreference knowledge, a resolution process
would resolve the pronouns in (1) and (2) the
same way. Indeed, coreference resolution research
has focused on the importance of the strategy
for combining well known constraints and prefer-
ences (Mitkov, 1997; Ng and Cardie, 2002), devot-
ing little attention to the development of new fea-
tures for these difficult cases. The application of
world knowledge to pronoun resolution has been
limited to the semantic compatibility between a
candidate noun and the pronoun’s context (Yang
et al., 2005). We show semantic compatibility can
be effectively combined with path coreference in-
formation in our experiments below.

Our method for determining path coreference
is similar to an algorithm for discovering para-
phrases in text (Lin and Pantel, 2001). In that
work, the beginning and end nodes in the paths
are collected, and two paths are said to be similar
(and thus likely paraphrases of each other) if they
have similar terminals (i.e. the paths occur with a
similar distribution). Our work does not need to
store the terminals themselves, only whether they
are from the same pronoun group. Different paths
are not compared in any way; each path is individ-
ually assigned a coreference likelihood.

3 Path Coreference

We define a dependency path as the sequence of
nodes and dependency labels between two poten-
tially coreferent entities in a dependency parse
tree. We use the structure induced by the minimal-
ist parser Minipar (Lin, 1998) on sentences from
the news corpus described in Section 4. Figure 1
gives the parse tree of (2). As a short-form, we
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John needs his support

Figure 1: Example dependency tree.

write the dependency path in this case as “Noun
needs pronoun’s support.” The path itself does not
include the terminal nouns “John” and “his.”

Our algorithm finds the likelihood of coref-
erence along dependency paths by counting the
number of times they occur with terminals that
are either likely coreferent or non-coreferent. In
the simplest version, we count paths with termi-
nals that are both pronouns. We partition pronouns
into seven groups of matching gender, number,
and person; for example, the first person singular
group contains |, me, my, mine, and myself. If the
two terminal pronouns are from the same group,
coreference along the path is likely. If they are
from different groups, like | and his, then they are
non-coreferent. Let Ng(p) be the number of times
the two terminal pronouns of a path, p, are from
the same pronoun group, and let Np(p) be the
number of times they are from different groups.
We define the coreference of p as:

- Ns(p)
Cl) = Ns(p) + Np(p)

Our statistics indicate the example path, “Noun
needs pronoun’s support,” has a low C(p) value.
We could use this fact to prevent us from resolv-
ing “his” to “John” when “John needs his support”
is presented to a pronoun resolution system.

To mitigate data sparsity, we represent the path
with the root form of the verbs and nouns. Also,
we use Minipar’s named-entity recognition to re-
place named-entity nouns by the semantic cate-
gory of their named-entity, when available. All
modifiers not on the direct path, such as adjectives,
determiners and adverbs, are not considered. We
limit the maximum path length to eight nodes.

Tables 1 and 2 give examples of coreferent and
non-coreferent paths learned by our algorithm and
identified in our test sets. Coreferent paths are
defined as paths with a C'(p) value (and overall
number of occurrences) above a certain threshold,
indicating the terminal entities are highly likely




Table 1: Example coreferent paths

: Italicized entities generally corefer.

‘ Pattern

Example
| p

Noun left ... to pronoun’s wife

Buffett will leave the stock to his wife.

Noun says pronoun intends...

The newspaper says it intends to file a lawsuit.

Noun was punished for pronoun’s crime.

The criminal was punished for his crime.

... left Noun to fend for pronoun-self

They left Jane to fend for herself.

Noun lost pronoun’s job.

Dick lost his job.

... created Noun and populated pronoun.

Nzame created the earth and populated it

Noun consolidated pronoun’s power.

The revolutionaries consolidated their power.

Sl B R e Il B

Noun suffered ... in pronoun’s knee ligament.

The leopard suffered pain in its knee ligament.

to corefer. Non-coreferent paths have a C'(p) be-
low a certain cutoff; the terminals are highly un-
likely to corefer. Especially note the challenge of
resolving most of the examples in Table 2 with-
out path coreference information. Although these
paths encompass some cases previously covered
by Binding Theory (e.g. ‘“Mary suspended her,”
her cannot refer to Mary by Principle B (Haege-
man, 1994)), most have no syntactic justification
for non-coreference per se. Likewise, although
Binding Theory (Principle A) could identify the
reflexive pronominal relationship of Example 4 in
Table 1, most cases cannot be resolved through
syntax alone. Our analysis shows that successfully
handling cases that may have been handled with
Binding Theory constitutes only a small portion of
the total performance gain using path coreference.

In any case, Binding Theory remains a chal-
lenge with a noisy parser. Consider: “Alex gave
her money.” Minipar parses her as a possessive,
when it is more likely an object, “Alex gave money
to her.” Without a correct parse, we cannot rule
out the link between her and Alex through Bind-
ing Theory. Our algorithm, however, learns that
the path “Noun gave pronoun’s money,” is non-
coreferent. In a sense, it corrects for parser errors
by learning when coreference should be blocked,
given any consistent parse of the sentence.

We obtain path coreference for millions of paths
from our parsed news corpus (Section 4). While
Tables 1 and 2 give test set examples, many other
interesting paths are obtained. We learn corefer-
ence is unlikely between the nouns in “Bob mar-
ried his mother,” or “Sue wrote her obituary.” The
fact you don’t marry your own mother or write
your own obituary is perhaps obvious, but this
is the first time this kind of knowledge has been
made available computationally. Naturally, ex-
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ceptions to the coreference or non-coreference of
some of these paths can be found; our patterns
represent general trends only. And, as mentioned
above, reliable path coreference is somewhat de-
pendent on consistent parsing.

Paths connecting pronouns to pronouns are dif-
ferent than paths connecting both nouns and pro-
nouns to pronouns — the case we are ultimately in-
terested in resolving. Consider “Company A gave
its data on its website.” The pronoun-pronoun
path coreference algorithm described above would
learn the terminals in “Noun’s data on pronoun’s
website” are often coreferent. But if we see the
phrase “Company A gave Company B’s data on
its website,” then “its” is not likely to refer to
“Company B,” even though we identified this as
a coreferent path! We address this problem with a
two-stage extraction procedure. We first bootstrap
gender/number information using the pronoun-
pronoun paths as described in Section 4.1. We
then use this gender/number information to count
paths where an initial noun (with probabilistically-
assigned gender/number) and following pronoun
are connected by the dependency path, record-
ing the agreement or disagreement of their gen-
der/number category.! These superior paths are
then used to re-bootstrap our final gender/number
information used in the evaluation (Section 6).

We also bootstrap paths where the nodes in
the path are replaced by their grammatical cate-
gory. This allows us to learn general syntactic con-
straints not dependent on the surface forms of the
words (including, but not limited to, the Binding
Theory principles). A separate set of these non-
coreferent paths is also used as a feature in our sys-

! As desired, this modification allows the first example to
provide two instances of noun-pronoun paths with terminals
from the same gender/number group, linking each “its” to the
subject noun “Company A”, rather than to each other.



Table 2: Example non-coreferent paths: lItalicized entities do not generally corefer

‘ Pattern

Example

Noun thanked ... for pronoun’s assistance

John thanked him for his assistance.

Noun wanted pronoun to lie.

The president wanted her to lie.

... Noun into pronoun’s pool

Max put the floaties into their pool.

... use Noun to pronoun’s advantage

The company used the delay to its advantage.

Noun suspended pronoun

Mary suspended her.

Noun was pronoun’s relative.

The Smiths were their relatives.

Noun met pronoun’s demands

The players’ association met its demands.

Sl R N el Il B

... put Noun at the top of pronoun’s list.

The government put safety at the top of its list.

tem. We also tried expanding our coverage by us-
ing paths similar to paths with known path coref-
erence (based on distributionally similar words),
but this did not generally increase performance.

4 Bootstrapping in Pronoun Resolution

Our determination of path coreference can be con-
sidered a bootstrapping procedure. Furthermore,
the coreferent paths themselves can serve as the
seed for bootstrapping additional coreference in-
formation. In this section, we sketch previous ap-
proaches to bootstrapping in coreference resolu-
tion and explain our new ideas.

Coreference bootstrapping works by assuming
resolutions in unlabelled text, acquiring informa-
tion from the putative resolutions, and then mak-
ing inferences from the aggregate statistical data.
For example, we assumed two pronouns from the
same pronoun group were coreferent, and deduced
path coreference from the accumulated counts.

The potential of the bootstrapping approach can
best be appreciated by imagining millions of doc-
uments with coreference annotations. With such a
set, we could extract fine-grained features, perhaps
tied to individual words or paths. For example, we
could estimate the likelihood each noun belongs to
a particular gender/number class by the proportion
of times this noun was labelled as the antecedent
for a pronoun of this particular gender/number.

Since no such corpus exists, researchers have
used coarser features learned from smaller sets
through supervised learning (Soon et al., 2001;
Ng and Cardie, 2002), manually-defined corefer-
ence patterns to mine specific kinds of data (Bean
and Riloff, 2004; Bergsma, 2005), or accepted the
noise inherent in unsupervised schemes (Ge et al.,
1998; Cherry and Bergsma, 2005).

We address the drawbacks of these approaches

Table 3: Gender classification performance (%)

‘ Classifier ‘ F-Score ‘
Bergsma (2005) Corpus-based 85.4
Bergsma (2005) Web-based 90.4
Bergsma (2005) Combined 92.2
Duplicated Corpus-based 88.0
Coreferent Path-based 90.3

by using coreferent paths as the assumed resolu-
tions in the bootstrapping. Because we can vary
the threshold for defining a coreferent path, we can
trade-off coverage for precision. We now outline
two potential uses of bootstrapping with coref-
erent paths: learning gender/number information
(Section 4.1) and augmenting a semantic compat-
ibility model (Section 4.2). We bootstrap this data
on our automatically-parsed news corpus. The
corpus comprises 85 GB of news articles taken
from the world wide web over a 1-year period.

4.1 Probabilistic Gender/Number

Bergsma (2005) learns noun gender (and num-
ber) from two principal sources: 1) mining it
from manually-defined lexico-syntactic patterns in
parsed corpora, and 2) acquiring it on the fly by
counting the number of pages returned for various
gender-indicating patterns by the Google search
engine. The web-based approach outperformed
the corpus-based approach, while a system that
combined the two sets of information resulted in
the highest performance (Table 3). The combined
gender-classifying system is a machine-learned
classifier with 20 features.

The time delay of using an Internet search en-
gine within a large-scale anaphora resolution ef-
fort is currently impractical. Thus we attempted
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Table 4: Example gender/number probability (%)
| Word

| masc | fem | neut | plur |

company 06| 01981 1.2
condoleeza rice 401927 00| 32
pat 583|306 | 62| 49
president 941 | 30| 15| 14
wife 99 833 | 08| 6.1

to duplicate Bergsma’s corpus-based extraction of
gender and number, where the information can be
stored in advance in a table, but using a much
larger data set. Bergsma ran his extraction on
roughly 6 GB of text; we used roughly 85 GB.

Using the test set from Bergsma (2005), we
were only able to boost performance from an F-
Score of 85.4% to one of 88.0% (Table 3). This
result led us to re-examine the high performance
of Bergsma’s web-based approach. We realized
that the corpus-based and web-based approaches
are not exactly symmetric. The corpus-based ap-
proaches, for example, would not pick out gender
from a pattern such as “John and his friends...” be-
cause “Noun and pronoun’s NP” is not one of the
manually-defined gender extraction patterns. The
web-based approach, however, would catch this
instance with the “John * his/her/its/their” tem-
plate, where “*” is the Google wild-card opera-
tor. Clearly, there are patterns useful for capturing
gender and number information beyond the pre-
defined set used in the corpus-based extraction.

We thus decided to capture gender/number in-
formation from coreferent paths. If a noun is con-
nected to a pronoun of a particular gender along a
coreferent path, we count this as an instance of that
noun being that gender. In the end, the probability
that the noun is a particular gender is the propor-
tion of times it was connected to a pronoun of that
gender along a coreferent path. Gender informa-
tion becomes a single intuitive, accessible feature
(i.e. the probability of the noun being that gender)
rather than Bergsma’s 20-dimensional feature vec-
tor requiring search-engine queries to instantiate.

We acquire gender and number data for over 3
million nouns. We use add-one smoothing for data
sparsity. Some example gender/number probabil-
ities are given in Table 4 (cf. (Ge et al., 1998;
Cherry and Bergsma, 2005)). We get a perfor-
mance of 90.3% (Table 3), again meeting our re-
quirements of high performance and allowing for
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a fast, practical implementation. This is lower
than Bergsma’s top score of 92.2% (Figure 3),
but again, Bergsma’s top system relies on Google
search queries for each new word, while ours are
all pre-stored in a table for fast access.

We are pleased to be able to share our gender
and number data with the NLP community.” In
Section 6, we show the benefit of this data as a
probabilistic feature in our pronoun resolution sys-
tem. Probabilistic data is useful because it allows
us to rapidly prototype resolution systems with-
out incurring the overhead of large-scale lexical
databases such as WordNet (Miller et al., 1990).

4.2 Semantic Compatibility

Researchers since Dagan and Itai (1990) have var-
iously argued for and against the utility of col-
location statistics between nouns and parents for
improving the performance of pronoun resolution.
For example, can the verb parent of a pronoun be
used to select antecedents that satisfy the verb’s se-
lectional restrictions? If the verb phrase was shat-
ter it, we would expect it to refer to some kind
of brittle entity. Like path coreference, semantic
compatibility can be considered a form of world
knowledge needed for more challenging pronoun
resolution instances.

We encode the semantic compatibility between
a noun and its parse tree parent (and grammatical
relationship with the parent) using mutual infor-
mation (MI) (Church and Hanks, 1989). Suppose
we are determining whether ham is a suitable an-
tecedent for the pronoun it in eat it. We calculate
the MI as:

Pr(eat:obj:ham)

Ml (eat:obj, h =1
(eat:obj, ham) = log Pr(eat:obj)Pr(ham)

Although semantic compatibility is usually only
computed for possessive-noun, subject-verb, and
verb-object relationships, we include 121 differ-
ent kinds of syntactic relationships as parsed in
our news corpus.® We collected 4.88 billion par-
ent:rel:node triples, including over 327 million
possessive-noun values, 1.29 billion subject-verb
and 877 million verb-direct object. We use small
probability values for unseen Pr(parent:rel:node),
Pr(parent:rel), and Pr(node) cases, as well as a de-
fault MI when no relationship is parsed, roughly
optimized for performance on the training set. We

2 Available at http://www.cs.ualberta.ca/ bergsma/Gender/
3We convert prepositions to relationships to enhance our
model’s semantics, e.g. Joan:of:Arc rather than Joan:prep:of



include both the MI between the noun and the pro-
noun’s parent as well as the MI between the pro-
noun and the noun’s parent as features in our pro-
noun resolution classifier.

Kehler et al. (2004) saw no apparent gain from
using semantic compatibility information, while
Yang et al. (2005) saw about a 3% improvement
with compatibility data acquired by searching on
the world wide web. Section 6 analyzes the con-
tribution of MI to our system.

Bean and Riloff (2004) used bootstrapping to
extend their semantic compatibility model, which
they called contextual-role knowledge, by identi-
fying certain cases of easily-resolved anaphors and
antecedents. They give the example “Mr. Bush
disclosed the policy by reading it.” Once we iden-
tify that it and policy are coreferent, we include
read:obj:policy as part of the compatibility model.

Rather than using manually-defined heuristics
to bootstrap additional semantic compatibility in-
formation, we wanted to enhance our MI statistics
automatically with coreferent paths. Consider the
phrase, “Saddam’s wife got a Jordanian lawyer for
her husband.” It is unlikely we would see “wife’s
husband” in text; in other words, we would not
know that husband:gen:wife is, in fact, semanti-
cally compatible and thereby we would discour-
age selection of “wife” as the antecedent at res-
olution time. However, because “Noun gets ...
for pronoun’s husband” is a coreferent path, we
could capture the above relationship by adding a
parent:rel:node for every pronoun connected to a
noun phrase along a coreferent path in text.

We developed context models with and with-
out these path enhancements, but ultimately we
could find no subset of coreferent paths that im-
prove the semantic compatibility’s contribution to
training set accuracy. A mutual information model
trained on 85 GB of text is fairly robust on its own,
and any kind of bootstrapped extension seems to
cause more damage by increased noise than can be
compensated by increased coverage. Although we
like knowing audiences have noses, e.g. “the audi-
ence turned up its nose at the performance,” such
phrases are apparently quite rare in actual test sets.

5 Experimental Design

The noun-pronoun path coreference can be used
directly as a feature in a pronoun resolution sys-
tem. However, path coreference is undefined for
cases where there is no path between the pro-
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noun and the candidate noun — for example, when
the candidate is in the previous sentence. There-
fore, rather than using path coreference directly,
we have features that are true if C'(p) is above or
below certain thresholds. The features are thus set
when coreference between the pronoun and candi-
date noun is likely (a coreferent path) or unlikely
(a non-coreferent path).

We now evaluate the utility of path coreference
within a state-of-the-art machine-learned resolu-
tion system for third-person pronouns with nom-
inal antecedents. A standard set of features is used
along with the bootstrapped gender/number, se-
mantic compatibility, and path coreference infor-
mation. We refer to these features as our “proba-
bilistic features” (Prob. Features) and run experi-
ments using the full system trained and tested with
each absent, in turn (Table 5). We have 29 features
in total, including measures of candidate distance,
frequency, grammatical role, and different kinds
of parallelism between the pronoun and the can-
didate noun. Several reliable features are used as
hard constraints, removing candidates before con-
sideration by the scoring algorithm.

All of the parsing, noun-phrase identification,
and named-entity recognition are done automat-
ically with Minipar. Candidate antecedents are
considered in the current and previous sentence
only. We use SVM!9"* (Joachims, 1999) to learn
a linear-kernel classifier on pairwise examples in
the training set. When resolving pronouns, we
select the candidate with the farthest positive dis-
tance from the SVM classification hyperplane.

Our training set is the anaphora-annotated por-
tion of the American National Corpus (ANC) used
in Bergsma (2005), containing 1270 anaphoric
pronouns®*. We test on the ANC Test set (1291 in-
stances) also used in Bergsma (2005) (highest res-
olution accuracy reported: 73.3%), the anaphora-
labelled portion of AQUAINT used in Cherry and
Bergsma (2005) (1078 instances, highest accu-
racy: 71.4%), and the anaphoric pronoun subset
of the MUC7 (1997) coreference evaluation for-
mal test set (169 instances, highest precision of
62.1 reported on all pronouns in (Ng and Cardie,
2002)). These particular corpora were chosen so
we could test our approach using the same data
as comparable machine-learned systems exploit-
ing probabilistic information sources. Parameters

“See http://www.cs.ualberta.ca/bergsma/CorefTags/ for
instructions on acquiring annotations



Table 5: Resolution accuracy (%)

| Dataset | ANC | AQT | MUC |
1 Previous noun 36.7 | 345 | 30.8
2 No Prob. Features | 58.1 | 60.9 | 49.7
3 No Prob. Gender 65.8 | 71.0 | 68.6
4 NoMI 71.3 | 73.5 | 69.2
5 NoC(p) 723 | 73.7 | 69.8
6 Full System 739 | 75.0 | 71.6
7 Upper Bound 93.2 | 923 | 91.1

were set using cross-validation on the training set;
test sets were used only once to obtain the final
performance values.

Evaluation Metric: We report results in terms of
accuracy: Of all the anaphoric pronouns in the test
set, the proportion we resolve correctly.

6 Resultsand Discussion

We compare the accuracy of various configura-
tions of our system on the ANC, AQT and MUC
datasets (Table 5). We include the score from pick-
ing the noun immediately preceding the pronoun
(after our hard filters are applied). Due to the hard
filters and limited search window, it is not possi-
ble for our system to resolve every noun to a cor-
rect antecedent. We thus provide the performance
upper bound (i.e. the proportion of cases with a
correct answer in the filtered candidate list). On
ANC and AQT, each of the probabilistic features
results in a statistically significant gain in perfor-
mance over a model trained and tested with that
feature absent.> On the smaller MUC set, none of
the differences in 3-6 are statistically significant,
however, the relative contribution of the various
features remains reassuringly constant.

Aside from missing antecedents due to the hard
filters, the main sources of error include inaccurate
statistical data and a classifier bias toward preced-
ing pronouns of the same gender/number. It would
be interesting to see whether performance could be
improved by adding WordNet and web-mined fea-
tures. Path coreference itself could conceivably be
determined with a search engine.

Gender is our most powerful probabilistic fea-
ture. In fact, inspecting our system’s decisions,
gender often rules out coreference regardless of
path coreference. This is not surprising, since we
based the acquisition of C'(p) on gender. That is,

SWe calculate significance with McNemar's test, p=0.05.
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Figure 2: ANC pronoun resolution accuracy for
varying SVM-thresholds.

our bootstrapping assumption was that the major-
ity of times these paths occur, gender indicates
coreference or lack thereof. Thus when they oc-
cur in our test sets, gender should often sufficiently
indicate coreference. Improving the orthogonality
of our features remains a future challenge.

Nevertheless, note the decrease in performance
on each of the datasets when C(p) is excluded
(#5). This is compelling evidence that path coref-
erence is valuable in its own right, beyond its abil-
ity to bootstrap extensive and reliable gender data.

Finally, we can add ourselves to the camp of
people claiming semantic compatibility is useful
for pronoun resolution. Both the MI from the pro-
noun in the antecedent’s context and vice-versa
result in improvement. Building a model from
enough text may be the key.

The primary goal of our evaluation was to as-
sess the benefit of path coreference within a com-
petitive pronoun resolution system. Our system
does, however, outperform previously published
results on these datasets. Direct comparison of
our scoring system to other current top approaches
is made difficult by differences in preprocessing.
Ideally we would assess the benefit of our prob-
abilistic features using the same state-of-the-art
preprocessing modules employed by others such
as (Yang et al., 2005) (who additionally use a
search engine for compatibility scoring). Clearly,
promoting competitive evaluation of pronoun res-
olution scoring systems by giving competitors
equivalent real-world preprocessing output along
the lines of (Barbu and Mitkov, 2001) remains the
best way to isolate areas for system improvement.

Our pronoun resolution system is part of a larger
information retrieval project where resolution ac-



curacy is not necessarily the most pertinent mea-
sure of classifier performance. More than one can-
didate can be useful in ambiguous cases, and not
every resolution need be used. Since the SVM
ranks antecedent candidates, we can test this rank-
ing by selecting more than the top candidate (Top-
n) and evaluating coverage of the true antecedents.
We can also resolve only those instances where the
most likely candidate is above a certain distance
from the SVM threshold. Varying this distance
varies the precision-recall (PR) of the overall res-
olution. A representative PR curve for the Top-n
classifiers is provided (Figure 2). The correspond-
ing information retrieval performance can now be
evaluated along the Top-n / PR configurations.

7 Conclusion

We have introduced a novel feature for pronoun
resolution called path coreference, and demon-
strated its significant contribution to a state-of-the-
art pronoun resolution system. This feature aids
coreference decisions in many situations not han-
dled by traditional coreference systems. Also, by
bootstrapping with the coreferent paths, we are
able to build the most complete and accurate ta-
ble of probabilistic gender information yet avail-
able. Preliminary experiments show path coref-
erence bootstrapping can also provide a means of
identifying pleonastic pronouns, where pleonastic
neutral pronouns are often followed in a depen-
dency path by a terminal noun of different gender,
and cataphoric constructions, where the pronouns
are often followed by nouns of matching gender.
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Syntactic knowledge is important for pro-
noun resolution. Traditionally, the syntac-
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to be selected and defined heuristically.
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for resolution by using manually designed rules
(Lappin and Leass, 1994; Kennedy and Boguraev,
1996; Mitkov, 1998), or using machine-learning
methods (Aone and Bennett, 1995; Yang et al.,
2004; Luo and Zitouni, 2005).

However, such a solution has its limitation. The
syntactic features have to be selected and defined
manually, usually by linguistic intuition. Unfor-

method that can automatically mine the
syntactic information from the parse trees
for pronoun resolution. Specifically, we
utilize the parse trees directly as a struc-
tured feature and apply kernel functions to
this feature, as well as other normal fea-
tures, to learn the resolution classifier. In
this way, our approach avoids the efforts
of decoding the parse trees into the set of
flat syntactic features. The experimental
results show that our approach can bring
significant performance improvement and
is reliably effective for the pronoun reso-
lution task.

tunately, what kinds of syntactic information are
effective for pronoun resolution still remains an
open question in this research community. The
heuristically selected feature set may be insuffi-
cient to represent all the information necessary for
pronoun resolution contained in the parse trees.

In this paper we will explore how to utilize the
syntactic parse trees to help learning-based pro-
noun resolution. Specifically, we directly utilize
the parse trees as a structured feature, and then use
a kernel-based method to automatically mine the
knowledge embedded in the parse trees. The struc-
tured syntactic feature, together with other nor-
mal features, is incorporated in a trainable model
based on Support Vector Machine (SVM) (Vapnik,
1995) to learn the decision classifier for resolution.
Pronoun resolution is the task of finding the cor-Indeed, using kernel methods to mine structural
rect antecedent for a given pronominal anaphoknowledge has shown success in some NLP ap-
in a document. Prior studies have suggested thaications like parsing (Collins and Duffy, 2002;
syntactic knowledge plays an important role inMoschitti, 2004) and relation extraction (Zelenko
pronoun resolution. For a practical pronoun reset al., 2003; Zhao and Grishman, 2005). However,
olution system, the syntactic knowledge usuallyto our knowledge, the application of such a tech-
comes from the parse trees of the text. The isnique to the pronoun resolution task still remains
sue that arises is how to effectively incorporate theinexplored.
syntactic information embedded in the parse trees Compared with previous work, our approach
to help resolution. One common solution seen irhas several advantages: (1) The approach uti-
previous work is to define a set of features that replizes the parse trees as a structured feature, which
resent particular syntactic knowledge, such as thavoids the efforts of decoding the parse trees into
grammatical role of the antecedent candidates, the set of syntactic features in a heuristic manner.
governing relations between the candidate and th@) The approach is able to put together the struc-
pronoun, and so on. These features are calculatedred feature and the normal flat features in a
by mining the parse trees, and then could be usetlainable model, which allows different types of

1 Introduction
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information to be considered in combination for . . .
Category: whether the candidate is a definite noun phrase,

both learning and resolution. (3) The approach ipgefinite noun phrase, pronoun, named-entity or others.

IS appllcab!e_for prac_tlcal pronoun reSO_IUt'On 8S Reflexivenesswhether the pronominal anaphor is a reflex-
the syntactic information can be automatically ob- ive pronoun.

tained from machine-generated parse trees. AndType: whether the pronominal anaphor is a male-person
our study shows that the approach works well un- Pronoun (likehe), female-person pronoun (likehg, sin-
. gle gender-neuter pronoun (lik, or plural gender-neuter

der the commonly available parsers. pronoun (likethey)

We evaluate our approach on the ACE data set.sypject: whether the candidate is a subject of a sentence, a
The experimental results over the different do- subject of a clause, or not.
mains indicate that the structured syntactic fea- Object: whether the candidate is an object of a verb, an
ture incorporated with kernels can significantly ©biectofapreposition, or not.
improve the resolution performance (by 5%/ ;
. . . . the pronominal anaphor.
in the success rates), and is reliably effective for _ , )
h lution task Closeness:whether the candidate is the candidate closest
the pronoun resolution task. to the pronominal anaphor.

The remainder of the paper is organized as fol- girstnp: whether the candidate is the first noun phrase in
lows. Section 2 gives some related work that uti- the current sentence.
lizes the structured syntactic knowledge to do pro- Parallelism: whether the candidate has an identical collo-
noun resolution. Section 3 introduces the frame- cation pattem with the pronominal anaphor.
work for the pronoun resolution, as well as theT ble 1: Feat t for the baseli
baseline feature space and the SVM classifier.i"‘t_e ) fa ure setfor the baseliné pronoun res-
Section 4 presents in detail the structured featyr8'Ution system
and the kernel functions to incorporate such a fea-
ture in the resolution. Section 5 shows the expersalience measures have to be assigned manually.
imental results and has some discussion. Finally, |uo and Zitouni (2005) proposed a coreference

Distance: the sentence distance between the candidate and

Section 6 concludes the paper. resolution approach which also explores the infor-
mation from the syntactic parse trees. Different
2 Related Work from Lappin and Leass (1994)’s algorithm, they

. employed a maximum entropy based model to au-
One of the early work on pronoun resolution rely- . ) :
omatically compute the importance (in terms of

ing on parse trees was proposed by Hobbs (1978 veights) of the features extracted from the trees.

For ronoun r Iv H " algorithm . . . )
or a pronoun to be resolved, Hobbs' algorit Ip their work, the selection of their features is

works by searching the parse trees of the Currenmainly inspired by the government and binding

text. Specifically, the algorithm processes one Ser}'heory aiming to capture the c-command relation-
tence at a time, using a left-to-right breadth-first '

. . ships between the pronoun and its antecedent can-
searching strategy. It first checks the current se P P

n-. . "
. i . B ntr r roach simpl iliz
tence where the pronoun occurs. The first NPd date. By contrast, our approach simply utilizes
the parse trees as a structured feature, and lets the

that satisfies constraints, like number and gender

arning algorithm discover all possible embedded
agreements, would be selected as the anteceden . .
. . information that is necessary for pronoun resolu-
If the antecedent is not found in the current sen

tence, the algorithm would traverse the trees oP
previous sentences in the text. As the searching
processing is completely done on the parse trees,
the performance of the algorithm would rely heav-Our pronoun resolution system adopts the com-
ily on the accuracy of the parsing results. mon learning-based framework similar to those
Lappin and Leass (1994) reported a pronourby Soon et al. (2001) and Ng and Cardie (2002).
resolution algorithm which uses the syntactic rep- In the learning framework, a training or testing
resentation output by McCord’'s Slot Grammarinstance is formed by a pronoun and one of its
parser. A set of salience measures (egub- antecedent candidate. During training, for each
ject, Object or Accusativeemphasis) is derived pronominal anaphor encountered, a positive in-
from the syntactic structure. The candidate withstance is created by paring the anaphor and its
the highest salience score would be selected adosestantecedent. Also a set of negative instances
the antecedent. In their algorithm, the weights ofis formed by paring the anaphor with each of the

The Resolution Framework
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non-coreferential candidates. Based on the trainwill discuss how to use kernels to incorporate the
ing instances, a binary classifier is generated usinmore complex structured feature.
a particular learning algorithm. During resolution, . )
a pronominal anaphor to be resolved is paired it~ Incorporating Structured Syntactic
turn with each preceding antecedent candidate to  Information
form a testing instance. This instance is presentegd 1  Main Idea
to the classifier which then returns a class label .
. . o - A parse tree that covers a pronoun and its an-
with a confidence value indicating the likelihood . .
that the candidate is the antecedent. The candidaqig(:eo'ent candidate could provide us much syntac-

) . . . IC information related to the pair. The commonly
with the highest confidence value will be selecte . .
. used syntactic knowledge for pronoun resolution,
as the antecedent of the pronominal anaphor.

such as grammatical roles or the governing rela-
3.1 Feature Space tions, can be directly described by the tree struc-

As with many other learning-based approachesture' Other syntactic knowledge that may be help-

the knowledge for the reference determination iJUI for resolution could also be implicitly repre-

represented as a set of features associated wiﬁ?med in the tree. Therefore, by comparing the

the training or test instances. In our baseline sys(—:Ommon substructures between two trees we can

tem, the features adopted include lexical propertyf,md out to what degree two trees contain similar

morphologic type, distance, salience, parallelism,syntaﬁt'f_ mfsrmaliuon, ;Nh'Ch can be done using a
grammatical role and so on. Listed in Table 1, gjiconvolution tre€ kernet.

these features have been proved effective for prot-h Th? v_?lu_(: rebtu:ned frct)m the ttree kerr_1e| refltects
noun resolution in previous work. e similarity between two instances in syntax.

Such syntactic similarity can be further combined
3.2 Support Vector Machine with other knowledge to compute the overall simi-

In theory, any discriminative learning algorithm is 121ty between two instances, through a composite
kernel. And thus a SVM classifier can be learned

applicable to learn the classifier for pronoun res- ) o ,
olution. In our study, we use Support Vector Ma- and then used for resolution. This is just the main

chine (Vapnik, 1995) to allow the use of kernels to!d€2 Of our approach.

incorporate the structured feature. 4.2 Structured Syntactic Feature
Suppose the training s&consists of labelled

vectors{(z;, y;)}, wherex; is the feature vector

of a training instance ang is its class label. The

classifier learned by SVM is

Normally, parsing is done on the sentence level.
However, in many cases a pronoun and an an-
tecedent candidate do not occur in the same sen-
tence. To present their syntactic properties and
flz) = Sgn(z yiaix * x; + b) (1) relations in a single tree structure, we construct a

i1 syntax tree for an entire text, by attaching the parse

) trees of all its sentences to an upper node.

wherea; is th? leamed _parame_tgr for a su_pport Having obtained the parse tree of a text, we shall
vector?ci. '_A‘n Instancer Is Clasi'f'ed as positive consider how to select the appropriate portion of
(negative) iff(x) > 0 (f(z) < 0)". the tree as the structured feature for a given in-

One advantage of SVM is that we can use ker'stance. As each instance is related to a pronoun

nel methqu 0 map a feat_ure space fo a particyyy candidate, the structured feature at least
lar high-dimension space, in case that f[he CUreNl ould be able to cover both of these two expres-
grhoblt;:n ZOI:Id ngt ;e sepgratedl n 3 gneaL Wa¥sions. Generally, the more substructure of the tree
us the dot-product, = w IS replaced by a Ker- ¢ j,01,ded, the more syntactic information would
nel function (or kernel) between two vectors, thatbe provided, but at the same time the more noisy
IS K(”rl’x?)' Eor the learning W't_h the normal information that comes from parsing errors would
features listed in Table 1, we can just employ thelikely be introduced. In our study, we examine

well-known ponnom_la_I or radial basis kernells thatthree possible structured features that contain dif-
can be computed efficiently. In the next section W&arent substructures of the parse tree:

For our task, the result of(z) is used as the confidence

value of the candidate to be the antecedent of the pronouMm'EXpanSIon This fe"’_lture records the mini-
described byt. mal structure covering both the pronoun and
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DEY_ NN.CANDI, TN Ne Y pRPANAl {DET NN.cadDI VIV Ne W pRPoaNA’ DR NCANDI B TNRS. Y pmmana
Seeenn e /'-u..‘__‘\ RO B atadutaiadatel . A Temmmemme e m e m - S i -.,_,_‘____,,’
man M pEr oW him the  man i onn Ty him the  man in ‘_,‘DET/\"“W‘::. him
the  room the  room e room
Min-Expansion Simple-Expansion Full-Expansion

Figure 1: structured-features for the instanc®im”, “the man”}

the candidate in the parse tree. It only in- and candidate pair. The rightmost picture of
cludes the nodes occurring in the shortest  Figure 1 shows the structure for featumell-
path connecting the pronoun and the candi-  Expansiorof i{*him”, "the man”}. As illus-

date, via the nearest commonly commanding  trated, different from inSimple-Expansign
node. For example, considering the sentence  the subtree of “PP” (for “in the room”) is
“The man in the room saw himthe struc- fully expanded and all its children nodes are
tured feature for the instancd“him”“the included inFull-Expansion

man’} is circled with dash lines as shown in

the leftmost picture of Figure 1. Note that to distinguish from other words, we

explicitly mark up in the structured feature the

Simple-Expansion Min-Expansion could, to pronoun and the antecedent candidate under con-

some degree, describe the syntactic relationsideration, by appending a string tag “ANA” and
ships between the candidate and pronoun:CANDI” in their respective nodes (e.g.,"NN-
However, it is incapable of capturing the CANDI" for “man” and “PRP-ANA’ for “him” as
syntactic properties of the candidate orshown in Figure 1).

the pronoun, because the tree structure

. L . 4.3 Structural Kernel and Composite Kernel
surrounding the expression is not taken into

consideration. To incorporate such infor- To calculate the Simiiarity between two structured
mation, featureSimple-Expansiomot only  features, we use the convolution tree kernel that is
contains all the nodes iMin-Expansionbut ~ defined by Collins and Duffy (2002) and Moschitti
also includes the first-level children of these(2004). Given two trees, the kernel will enumerate
nodeg. The middle of Figure 1 shows such a all their subtrees and use the number of common
feature for {“him"’ "the man"}_ We can see subtrees as the measure of the Similarity between
that the nodes “PP” (for “in the room”) and the trees. As has been proved, the convolution

“VB” (for “saw”) are included in the feature, kernel can be efficiently computed in polynomial
which provides clues that the candidate istime.

modified by a prepositionaj phrase and the The above tree kernel Oniy aims for the struc-
pronoun is the object of a verb. tured feature. We also need a composite kernel

to combine together the structured feature and the

Full-Expansion This feature focusses on the normal features described in Section 3.1. In our

whole tree structure between the candidat,dy we define the composite kernel as follows:
and pronoun. It not only includes all the
Ky (21, 22) . Ky(21,22),

nodes in Simple-Expansignbut also the g (2, 2,) =
nodes (beneath the nearest commanding par- |Kn(z1,2)] | Ki(a1, 22)}

ent) that cover the words between the candi- whereK; is the convolution tree kernel defined
date and the pronodn Such a feature keeps for the structured feature, anil,, is the kernel
the most information related to the pronounapplied on the normal features. Both kernels are

2If the pronoun and the candidate are not in the same sendiVided by their respective Iengihior normaliza-

tence, we will not include the nodes denoting the sentencetion. The new composite kernél.., defined as the
before the candidate or after the pronoun.

3We will not expand the nodes denoting the sentences - The length of a kemek is defined agK (z1,22)| =

other than where the pronoun and the candidate occur. \/K(ml, x1) * K(z2,22)
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multiplier of normalizedk; and K,,, will return a NWire NPaper BNews

value close to 1 only if both the structured features Hobbs (1978) 66.1 66.4 72.7
and the normal features from the two vectors have NORM 744 774 74.2
high similarity under their respective kernels. NORM_MaxEnt 728 779 75.3
NORM_C5 719 759 71.6
5 Experiments and Discussions S Min 76.4 810 76.8
_ S_Simple 732 827 82.3
5.1 Experimental Setup S.Full 732 805 79.0

In our study we focussed on the third-person NORM+SMin 776 825 82.3
pronominal anaphora resolution. All the exper- NORM+S Simple 79.2 827 823
iments were done on the ACE-2 V1.0 corpus NORM+SFull 815 83.2 81.5
(NIST, 2003), which contain two data sets, train- ]
ing and devtest, used for training and testing rejl'able 2: Results of the syntactic structured fea-
spectively. Each of these sets is further dividedUres
into three domains: newswire (NWire), newspa-
per (NPaper), and broadcast news (BNews). Described in Section 2, the algorithm uses heuris-
An input raw text was preprocessed automatitic rules to search the parse tree for the antecedent,
cally by a pipeline of NLP components, including and will act as a good baseline to compare with the
sentence boundary detection, POS-tagging, Texéarned-based approach with the structured fea-
Chunking and Named-Entity Recognition. Theture. As shown in the first line of Table 2, Hobbs’
texts were parsed using the maximum-entropyalgorithm obtains 66%72% success rates on the
based Charniak parser (Charniak, 2000), based ahree domains.
which the structured features were computed au- The second block of Table 2 shows the baseline
tomatically. For learning, the SVM-Light soft- system (NORM) that uses only the normal features
ware (Joachims, 1999) was employed with thejsted in Table 1. Throughout our experiments, we
convolution tree kernel implemented by Moschitti app“ed the p0|ynomia| kernel on the normal fea-
(2004). All classifiers were trained with default tyres to learn the SVM classifiers. In the table we
learning parameters. also compared the SVM-based results with those
The performance was evaluated based on thgsing other learning algorithms, i.e., Maximum
metric successthe ratio of the number of cor- Entropy (Maxent) and C5 decision tree, which are
rectly resolved anaphor over the number of all more commonly used in the anaphora resolution
anaphors. For each anaphor, the NPs occurringask.
within the current and previous two sentences As shown in the table, the system with normal
were taken as the initial antecedent candidateseatures (NORM) obtains 74%77% success rates
Those with mismatched number and gender agregor the three domains. The performance is simi-
ments were filtered from the candidate set. AlsO|ar to other published results like those by Keller
pronouns or NEs that disagreed in person with thng Lapata (2003), who adopted a similar fea-
anaphor were removed in advance. For trainingyre set and reported around 75% success rates
there were 1207, 1440, and 1260 pronouns witlhn the ACE data set. The comparison between
non-empty candidate set found pronouns in thejifferent learning algorithms indicates that SVM
three domains respectively, while for testing, thecan work as well as or even better than Maxent

number was 313, 399 and 271. On average, &NORM._MaxEnt) or C5 (NORMCS5).
pronoun anaphor had~® antecedent candidates

ahead. Tota”y, we gO'[ around 10k, 13k and 8k53 Systems W|th Structured Features
training instances for the three domains.

The last two blocks of Table 2 summarize the re-
5.2 Baseline Systems sults using the three syntactic structured features,

) i i.e, Min_Expansion(S_MIN), SimpleExpansion
Table 2 lists the performance of different systems(S SIMPLE) andFull Expansion(S_FULL). Be-

We first tested Hobbs' algorithm (Hobbs, 1978)'tween them, the third block is for the systems us-

®An anaphor was deemed correctly resolved if the foundNY the individual structured feature alone. We
antecedent is in the same coreference chain of the anaphor.can see that all the three structured features per-
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NWire NPaper BNews
Sentence Distance 0 1 2 0 1 2 0 1 2
(Number of Prons) (192) (102) (19)| (237) (147) (15)| (175) (82) (14)
NORM 80.2 725 26.3 814 755 333 80.0 659 50.0
S_Simple 79.7 706 21.1 87.3 81.0 26.7| 89.7 70.7 57.1
NORM+SSimple | 85.4 76,5 31. 87.3 79.6 40.0| 88.6 74.4 50.0

Table 3: The resolution results for pronouns with antecedent in different sentences apart

NWire NPaper BNews
Type person neuter person neuter person neuter
(Number of Prons) (171) (142)| (250) (149)| (153) (118)
NORM 81.9 65.5 | 80.0 73.2| 745 73.7
S_Simple 81.9 62.7 | 832 819 | 824 822
NORM+S Simple | 87.1 69.7| 836 812 | 8.9 76.3

Table 4: The resolution results for different types of pronouns

form better than the normal features for NPapereason, our subsequent reports will focusSim-
(up to 5.3%succespand BNews (up to 8.1%uc- ple_.Expansionunless otherwise specified.
cesy, or equally well 1 ~ 2% in succesgfor
NWire. When used together with the normal fea- As described, to compute the structured fea-
tures, as shown in the last block, the three structure, parse trees for different sentences are con-
tured features all outperform the baselines. Esnected to form a large tree for the text. It would
pecially, the combinations of NORM+SIMPLE  be interesting to find how the structured feature
and NORM+SFULL can achieve significantfy works for pronouns whose antecedents reside in
better results than NORM, with the success ratglifferent sentences. For this purpose we tested
increasing by (4.8%, 5.3% and 8.1%) and (7.1%the success rates for the pronouns with the clos-
5.8%, 7.2%) respectively. All these results proveest antecedent occurring in the same sentence,
that the structured syntactic feature is effective folone-sentence apart, and two-sentence apart. Ta-
pronoun resolution. ble 3 compares the learning systems with/without
We further compare the performance of thethe structured feature present. From the table,
three different structured features. As shown irfor all the systems, the success rates drop with
Table 2, when used together with the normatthe increase of the distances between the pro-
features, Full_Expansiongives the highest suc- noun and the antecedent. However, in most cases,
cess rates in NWire and NPaper, but nevertheadding the structured feature would bring consis-
less the lowest in BNews. This should be betent improvement against the baselines regardless
cause featureFull-Expansioncaptures a larger of the number of sentence distance. This observa-
portion of the parse trees, and thus can providéion suggests that the structured syntactic informa-
more syntactic information thamin_Expansion tion is helpful for both intra-sentential and inter-
or SimpleExpansion However, if the texts are sentential pronoun resolution.
less-formally structured as those in BNewsiI-
Expansionwould inevitably involve more noises  We were also concerned about how the struc-
and thus adversely affect the resolution perfortured feature works for different types of pro-
mance. By contrast, featurimpleExpansion nouns. Table 4 lists the resolution results for two
would achieve balance between the informatiortypes of pronouns: person pronouns (i.e., “he”,
and the noises to be introduced: from Table 2 wefshe”) and neuter-gender pronouns (i.e., “it” and
can find that compared with the other two featuresithey”). As shown, with the structured feature in-
SimpleExpansionis capable of producing aver- corporated, the system NORM+8mple can sig-
age results for all the three domains. And for thisnificantly boost the performance of the baseline
(NORM), for both personal pronoun and neuter-

®p < 0.05 by a 2-tailed test. gender pronoun resolution.
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Figure 2: Learning curves of systems with different features

5.4 Learning Curves NWire NPaper BNews
NORM 744 774 742
Figure 2 plots the learning curves for the sys- NORM - subj/obj 68.7 76.2 72.7
tems with three feature sets, i.e, normal features NORM +SSimple ~ 79.2 82.7 82.3
(NORM), structured feature alone &mple), ~ NORM+SSimple - subjlobj ~ 77.3 830 812
and combined features (NORM+Simple). We NORM + Luo05 5T 719 749

trained each system with different number of in-14p16 5. Comparison of the structured feature and

stances from 1k, 2k, 3k, ..., till the full size. Each e 15t features extracted from parse trees
point in the figures was the average over two trails

with instances selected forwards and backwards—ggztre Parser NWire NPaper BNews
respectively. From the figures we can find that S.Simol Charniak00 ~ 73.2 82.7 823
(1) Used in combination (NORM+Simple), the -IMPIe  Collins99 751 832 804
structured feature shows superiority over NORM, NORM+ Charniak00  79.2 82.7 82.3
achieving results consistently better than the nor-_S-Simple _ Collins99 _ 80.8 815  82.3
mal features (NORM) do in all the three domains.
(2) With training instances above 3k, the struc-
tured feature, used either in isolation §ample)

or in combination (NORM+SSimple), leads to important for pronoun resolution.

steady increase in the success rates and exhibit\ye also tested the flat syntactic feature set pro-
smoother learning curves than the normal featureﬁosed in Luo and Zitouni (2005)'s work. As de-
(NORM). These observations further prove the rescriped in Section 2, the feature set is inspired
Iiapility of the structured feature in pronoun reso-ipe binding theory, including those features like
lution. whether the candidate isaommanding the pro-
noun, and the counts of “NP”, “VP”, “S” nodes

in the commanding path. The last line of Table 5
In our experiment we were also interested to COMghows the results by adding these features into the
pare the structured feature with the normal flatyorma) feature set. In line with the reports in (Luo
features extracted from the parse tree, like feagng zitouni, 2005) we do observe the performance
ture Subjectand Object For this purpose we jmprovement against the baseline (NORM) for all
took out these two grammatical features from thene gomains. However, the increase in the success
normal feature set, and then trained the systemgieg (up to 1.3%) is not so large as by adding the

again. As shown in Table 5, the two grammatical-syryctured feature (NORM+Simple) instead.
role features are important for the pronoun resolu-

tion:_removing thes_e features results in up to 5'70/%.6 Comparison with Different Parsers

(NWire) decrease isuccess However, when the

structured feature is included, the losssimccess As mentioned, the above reported results were
reduces to 1.9% and 1.1% for NWire and BNewspased on Charniak (2000)'s parser. It would be
and a slight improvement can even be achieved fanteresting to examine the influence of different

NPaper. This indicates that the structured featurparsers on the resolution performance. For this
can effectively provide the syntactic information purpose, we also tried the parser by Collins (1999)

Table 6: Results using different parsers

5.5 Feature Analysis
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(Mode 11)?, and the results are shown in Table 6. for Computational Linguistics (ACL'02pages 263—
We can see that Charniak (2000)'s parser leads to 270

higher success rates for NPaper and BNews, whil¥. Collins. 1999. Head-D(iven Statistical MO(_jeIS for
Collins (1999)’s achieves better results for NWire. ’S'ﬁ;%ﬁéﬁ\”/gg%ge ParsingPh.D. thesis, University
However, the difference between the results of the . _
two parsers is not significant (less than 2c- J. 33233:3%%7_%55350"””9 pronoun references
ces$ for the three domains, no matter whether the

structured feature is used alone or in combination!- Joachims. 1999. Making large-scale svm learning
practical. InAdvances in Kernel Methods - Support

Vector LearningMIT Press.

F. Keller and M. Lapata. 2003. Using the web to ob-
The purpose of this paper is to explore how to tain fregencies for unseen bigramSomputational

make use of the structured syntactic knowledge to -NGUistics 29(3):459-484.
do pronoun resolution. Traditionally, syntactic in- C. Kennedy and B. Boguraev. 1996. Anaphora

; ; for everyone: pronominal anaphra resolution with-
formation from parse trees Is represented as a set out a parser. IrProceedings of the 16th Inter-

of flat features. However, the features are usu- national Conference on Computational Linguistics
ally selected and defined by heuristics and may pages 113-118, Copenhagen, Denmark.

not necessarily capture all the syntactic informa=s | appin and H. Leass. 1994. An algorithm for
tion provided by the parse trees. In the paper, we pronominal anaphora resolution.Computational

propose a kernel-based method to incorporate the Linguistics 20(4):525-561.
information from parse trees. Specifically, we di-X. Luo and I. Zitouni. 2005. Milti-lingual coreference

rectly utilize the syntactic parse tree as a struc- resolution with syntactic features. Rroceedings of
Human Language Techonology conference and Con-

tured feature, and then apply kernels to such a fea- ference on Empirical Methods in Natural Language
ture, together with other normal features, to learn Processing (HLT/EMNLRpages 660-667.

the decision classifier and do the resolution. OUR_ witkov. 1998. Robust pronoun resolution with lim-
experimental results on ACE data set show that ited knowledge. IProceedings of the 17th Int. Con-
the system with the structured feature included ge;gnce on Computational Linguisticpages 869

can achieve significant increase in the success rate =

; ; A. Moschitti. 2004. A study on convolution kernels
0 0
by around 5%-8%, for all the different domains. for shallow semantic parsing. FProceedings of the

The deeper analysis on various factors like training 42nd Annual Meeting of the Association for Compu-
size, feature set or parsers further proves that the tational Linguistics (ACL'04)pages 335-342.

Stl’UC'[UI’ed feature incorporated W|th our kernel-v_ Ng and C. Cardie. 2002. |mproving machine learn-

based method is reliably effective for the pronoun ing approaches to coreference resolution. Pho-
resolution task ceedings of the 40th Annual Meeting of the Associa-

' tion for Computational Linguisticppages 104-111,
Philadelphia.
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Abstract

It has previously been assumed in the
psycholinguistic literature that finite-state
models of language are crucially limited
in their explanatory power by the local-
ity of the probability distribution and the
narrow scope of information used by the
model. We show that a simple computa-
tional model (a bigram part-of-speech tag-
ger based on the design used by Corley
and Crocker (2000)) makes correct predic-
tions on processing difficulty observed in a
wide range of empirical sentence process-
ing data. We use two modes of evaluation:
one that relies on comparison with a con-
trol sentence, paralleling practice in hu-
man studies; another that measures prob-
ability drop in the disambiguating region
of the sentence. Both are surprisingly
good indicators of the processing difficulty
of garden-path sentences. The sentences
tested are drawn from published sources
and systematically explore five different
types of ambiguity: previous studies have
been narrower in scope and smaller in
scale. We do not deny the limitations of
finite-state models, but argue that our re-
sults show that their usefulness has been
underestimated.

1 Introduction

: : : 2
The main purpose of the current study is to inves-

sentence processing mechanism (HSPRtjma
facie it seems unlikely that such a tagger will be
adequate, because almost all previous researchers
have assumed, following standard linguistic the-
ory, that a formally adequate account of recur-
sive syntactic structure is an essential component
of any model of the behaviour. In this study, we
tested a bigram POS tagger on different types of
structural ambiguities and (as a sanity check) to
the well-known asymmetry of subject and object
relative clause processing.

Theoretically, the garden-path effect is defined
as processing difficulty caused by reanalysis. Em-
pirically, it is attested as comparatively slower
reading time or longer eye fixation at a disam-
biguating region in an ambiguous sentence com-
pared to its control sentences (Frazier and Rayner,
1982; Trueswell, 1996). That is, the garden-path
effect detected in many human studies, in fact, is
measured through a “comparative” method.

This characteristic of the sentence processing
research design is reconstructed in the current
study using a probabilistic POS tagging system.
Under the assumption that larger probability de-
crease indicates slower reading time, the test re-
sults suggest that the probabilistic POS tagging
system can predict reading time penalties at the
disambiguating region of garden-path sentences
compared to that of non-garden-path sentences
(i.e. control sentences).

Previous Wor k

tigate the extent to which a probabilistic part-of- Corley and Crocker (2000) present a probabilistic
speech (POS) tagger can correctly model humamodel of lexical category disambiguation based on
sentence processing data. Syntactically ambigua bigram statistical POS tagger. Kim et al. (2002)
ous sentences have been studied in great depth suggest the feasibility of modeling human syntac-
psycholinguistics because the pattern of ambigutic processing as lexical ambiguity resolution us-
ity resolution provides a window onto the humaning a syntactic tagging system called Super-Tagger

49

Proceedings of the 21st International Conference on Computational Linguistics and 44th Annual Meeting of thageS149-56,
Sydney, July 200602006 Association for Computational Linguistics



(Joshi and Srinivas, 1994; Bangalore and Joshi, Using the Viterbi algorithm (Viterbi, 1967), the
1999). Probabilistic parsing techniques also havéagger finds the most likely POS sequence for a
been used for sentence processing modeling (Jgiven word string as shown in (2).
rafsky, 1996; Narayanan and Jurafsky, 2002; Hale,
2001; Crocker and Brants, 2000). Jurafsky (1996)
proposed a probabilistic model of HSPM usingThis is known technology, see Manning and
a parallel beam-search parsing technique base8chitze (1999), but the particular use we make
on the stochastic context-free grammar (SCFGYf it is unusual. The tagger takes a word string
and subcategorization probabilities. Crocker andis an input, outputs the most likely POS sequence
Brants (2000) used broad coverage statistical parsind the final probability. Additionally, it presents
ing techniques in their modeling of human syn-accumulated probability at each word break and
tactic parsing. Hale (2001) reported that a probaprobability re-ranking, if any. Note that the run-
bilistic Earley parser can make correct predictionsning probability at the beginning of a sentence will
of garden-path effects and the subject/object relabe 1, and will keep decreasing at each word break
tive asymmetry. These previous studies have usegince it is a product of conditional probabilities.
small numbers of examples of, for example, the We tested the predictability of the model on em-
Reduced-relative clause ambiguity and the Directpirical reading data with the probability decrease
Object/Sentential-Complement ambiguity. and the presence or absence of probability re-
The current study is closest in spirit to a pre-ranking. Adopting the standard experimental de-
vious attempt to use the technology of part-sign used in human sentence processing studies,
of-speech tagging (Corley and Crocker, 2000)where word-by-word reading time or eye-fixation
Among the computational models of the HSPMtime is compared between an experimental sen-
mentioned above, theirs is the simplest. Theytence and its control sentence, this study compares
tested a statistical bigram POS tagger on lexiprobability at each word break between a pair of
cally ambiguous sentences to investigate whethesentences. Comparatively faster or larger drop of
the POS tagger correctly predicted reading-timeprobability is expected to be a good indicator of
penalty. When a previously preferred POS secomparative processing difficulty. Probability re-
quence is less favored later, the tagger makes a reanking, which is a simplified model of the reanal-
pair. They claimed that the tagger’s reanalysis calysis process assumed in many human studies, is
model the processing difficulty in human’s disam-also tested as another indicator of garden-path ef-
biguating lexical categories when there exists dect. Given a word string, all the possible POS
discrepancy between lexical bias and resolution. sequences compete with each other based on their
_ probability. Probability re-ranking occurs when an
3 Experiments initially dispreferred POS sub-sequence becomes
the preferred candidate later in the parse, because

In the current study, Corley and Crocker’'s model s in b ith | q
is further tested on a wider range of so-calledIt Its in better with later words.
The model parameters, P(w;|t;) and

structural ambiguity types. A Hidden Markov i q f
Model POS tagger based on bigrams was used, (tilti-1), are estimated from a small sec-

We made our own implementation to be sure oi“on (9_7_0’995 j[okens,47,831 distinct "".°rd§) of
getting as close as possible to the design of CorI-he British National Corpus (BNC), which is a

ley and Crocker (2000). Given a word string,éooh miII_ion-worgI COIIiCtiondOf ?ritisg tI)Eninsh,
wo, w1, - - -, Wy, the tagger calculates the proba- oth written and spoken, developed by Oxford

bility of every possible tag pathy, - - -, £,,. Un- University Press (Burnard, 1995). The BNC was

der the Markov assumption, the joint probabilityChosen for training the model because it is a

of the given word sequence and each possible PO%OS"'JIMOJ["’lted corpus, which allows supervised

sequence can be approximated as a product of co aining. In the implementation we use log

ditional probability and transition probability as probabilitie_s_ .to gvoid underflow, and we report
shown in (1). log probabilities in the sequel.

(2) argmaXP(to,tl, e 7tn‘w07w17' : '7wn7:u’)'

3.1 Hypotheses
(1) P(wﬂvwb'"7wn7t07t17”'7tn) P . . .
If the HSPM is affected by frequency information,

~ I P(w;|t;) - P(ti|ti—1), wheren > 1. we can assume that it will be easier to process
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events with higher frequency or probability com- (7) Clausal Boundary ambiguity
pared to those with lower frequency or probability. Though George kept on readitige storyre-
Under this general assumption, the overall diffi- ally bothered him.

culty of a sentence is expected to be measured or There are two types of control sentences: unam-

predicted by the mean size of probability decrease,;q, s sentences and ambiguous but non-garden-
That is, probability will drop faster in garden-path path sentences as shown in the examples below.

sentences than in control sentences (€.9. UNamkyain the ambiguous region is italicized and the
biguous sentences or ambiguous but non'garde'&isambiguating region is bolded

path sentences).
More importantly, the probability decrease pat- (8) Garden-Path Sentence
tern at disambiguating regions will predict the  The hors@acedpast the barrell.
trends in the reading time data. All other things be- (9) Ambiguous but Non-Garden-Path Control
ing equal, we might expect a reading time penalty =~ The horsgacedpast the barand fell.
when the size of the probability decrease at th¢10) Unambiguous Control
disambiguating region in garden-path sentences is  Tne horse that was raced past the barn fell.

greater compared to the control sentences. This is N hat th q h 8) and i
a simple and intuitive assumption that can be eas- ote that the garden-path sentence (8) and its

ily tested. We could have formed the sum Overambiguous control sentence (9) share exactly the

all possible POS sequences in association with thgdMme v_vord sequence egcept for the_ disambiguat-
word strings, but for the present study we simplymg region. This allows direct comparison of prob-

used the Viterbi path: justifying this because thisab'l_Ity a:)the cnﬂcsl region (i.e. d|sarr}b|guat|ng i
is the best single-path approximation to the jointreg'on) _etween _t e two sen_tences. est mater_l-
probability. als used in experimental studies are constructed in

Lastly, re-ranking of POS sequences is expecte@is way in order to control extraneous variables

to predict reanalysis of lexical categories. This is_SUCh as word frequency. We use these sentences

because re-ranking in the tagger is parallel to reln the same form as the experimentalists so we in-

analysis in human subjects, which is known to beherlt th_elr careful design.
cognitively costly. In this study, a total of 76 sentences were tested:

10 for lexical category ambiguity, 12 for RR am-
3.2 Materials biguity, 20 for PP ambiguity, 16 for DO/SC am-

In this study, five different types of ambiguity were Piguity, and 18 for clausal boundary ambiguity.

tested including Lexical Category ambiguity, Re- ThiS set of materials is, to our knowledge, the

duced Relative ambiguity (RR ambiguity), Prepo-MOost comprehensive yet subjected to this type of
sitional Phrase Attachment ambiguity (PP ambiStudy. The sentences are directly adopted from
guity), Direct-Object/Sentential-Complement am-Various psycholmgwsgc studles_ (Frazier, 1978;

biguity (DO/SC ambiguity), and Clausal Bound- Tr_ueswell, 1'996; Frazier and 'Cllfton, 1996; Fer-

ary ambiguity. The following are example sen-'€lra and Clifton, 1986; Ferreira and Henderson,
tences for each ambiguity type, shown with the1986)- _

ambiguous region italicized and the disambiguat- AS @ baseline test case of the tagger, the
ing region bolded. All of the example sentencedvell-established asymmetry between subject- and

are garden-path sentneces. object-relative clauses was tested as shown in (11).
(3) Lexical Category ambiguity (11) a. The editor who kicked the writer fired
The foreman knows that the warehouse the entire staff. (Subject-relative)
pricesthe beer very modestly. b. The editor who the writer kicked fired
(4) RR ambiguity the entire staff. (Object-relative)
The horseacedpast the barmell. The reading time advantage of subject-relative

clauses over object-relative clauses is robust in En-

glish (Traxler et al., 2002) as well as other lan-

guages (Mak et al., 2002; Homes et al., 1981). For

(6) DO/SC ambiguity this test, materials from Traxler et al. (2002) (96
He forgot Pammeeded a ride with him. sentences) are used.

(5) PP ambiguity
Katie laid the dresen the flooronto the bed.
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4 Results (a) PP Attachment Ambiguity

Katie put the dress on the floor and / onto the ...

4.1 TheProbability Decrease per Word the

Unambiguous sentences are usually longer tha
garden-path sentences. To compare sentences
different lengths, the joint probability of the whole

sentence and tags was divided by the number ¢
words in the sentence. The result showed tha

Log Probability

the average probability decrease was greater i (&) DOJSC Ambiguity (DO Bias)
garden-path sentences compared to their unan He forgot Susan but / remembered ...
biguous control sentences. This indicates tha forgot

garden-path sentences are more difficult than un
ambiguous sentences, which is consistent witl
empirical findings.

Probability decreased faster in object-relative
sentences than in subject relatives as predictec.
In the psycholinguistics literature, the comparative
difficulty of objectrelative clauses has been ®Figure 1: Probability Transition (Garden-Path vs.
plained in terms of verbal working memory (King Non Garden-Path)
and Just, 1991), distance between the gap and the .
filler (Bever and McElree, 1988), or perspectivefgga}‘zgo%'\;?&iﬁ{dggfath (Adjunct PR},  — : Garden
shifting (MacWhinney, 1982). However, the testh) — o — . Non-Garden-Path (DO-Biased, DO-Resolved),
results in this study provide a simpler account for— * — : Garden-Path (DO-Biased, SC-Resolved)
the effect. That is, the comparative difficulty of
ess frequent POS sequence, This account s pag, TN® (WO 0raphs in Figure L lustzate the com-
ticularly convincing since each pair of sentences ir4O arison of probability decrease between a pair of

th . tshare th i tof dsentence. The-axis of both graphs in Figure 1
€ experiment share the exactly same et otworgg log probability. The first graph compares the
except their order.

probability drop for the prepositional phrase (PP)
attachment ambiguityKatie put the dress on the
floor and/onto the bed.). The empirical result
for this type of ambiguity shows that reading time
A total of 30 pairs of a garden-path sentencepenalty is observed when the second &Rp the
and its ambiguous, non-garden-path control werded is introduced, and there is no such effect for
tested for a comparison of the probability decreaséhe other sentence. Indeed, the sharper probability
at the disambiguating region. In 80% of the casesdrop indicates that the additional PP is less likely,
the probability drops more sharply in garden-pathwhich makes a prediction of a comparative pro-
sentences than in control sentences at the criticaglessing difficulty. The second graph exhibits the
word. The test results are presented in (12) wittprobability comparison for the DO/SC ambiguity.
the number of test sets for each ambiguous typ&he verbforgetis a DO-biased verb and thus pro-
and the number of cases where the model correctlgessing difficulty is observed when it has a senten-
predicted reading-time penalty of garden-path sential complement. Again, this effect was replicated
tences. here.

The results showed that the disambiguating
(12) Ambiguity Type (Correct Predictions/Test word given the previous context is more difficult

Susan

but

Log Probability

remembered

4.2 Probability Decrease at the
Disambiguating Region

Sets) in garden-path sentences compared to control sen-
a. Lexical Category Ambiguity (4/4) tences. There are two possible explanations for
b. PP Ambiguity (10/10) the processing difficulty. One is that the POS se-
c. RR Ambiguity (3/4) guence of a garden-path sentence is less probable
d. DO/SC Ambiguity (4/6) than that of its control sentence. The other account
e. Clausal Boundary Ambiguity (3/6) is that the disambiguating word in a garden-path
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sentence is a lower frequency word compared to (a) " The woman chiased by ..."

that of its control sentence. 5 hN
For example, slower reading time was observed -1 ~,
in (13a) and (14a) compared to (13b) and (14b) at -5 WO
the disambiguating region that is bolded. 20
251 \%c\hafefj (MV) e
(13) Different POS at the Disambiguating Region | chased (PR === g

a. Katie laid the dresson the floor onto (b) * The woman told the joke did not ... "
(—57.80) the bed. -2 PR
b. Katie laid the dresson the floor after -26f et
(—55.77) her mother yelled at her. a o
\&‘\pk\e
(14) Same POS at the Disambiguating Region 36 ERRCRTE
a. The umpire helped the childn (—42.77) 1 4 did
third base.
b. The umpire helped the chiltb (—42.23) Figure 2: Probability Transition in the RR Ambi-
third base. guity

(@) — o — : Non-Garden-Path (Past Tense Verb)x — :
The log probability for each disambiguating word %?fdeg-PthN(gr?SéaF’rzgirg:iglaet)h (Past Tense Verbys — -
is given at the end of each sentence. As exgg, en-Pa.th, (Past Participle) ’ ‘
pected, the probability at the disambiguating re-
gion in (13a) and (14a) is lower than in (13b) and
(14b) respectively. The disambiguating words intences. When the ambiguity was not correctly re-
(13) have different POS'’s; Preposition in (13a) andsolved, the probability comparison correctly mod-
Conjunction (13b). This suggests that the prob£eled the comparative difficulty of the garden-path
abilities of different POS sequences can accour€ntences
for different reading time at the region. In (14), Of particular interest in this study is RR ambi-
however, both disambiguating words are the sam@uity resolution. The tagger predicted the process-
POS (i.e. Preposition) and the POS sequencedgg difficulty of the RR ambiguity with probabil-
for both sentences are identical. Instead, “on’ity re-ranking. That is, the tagger initially favors
and “to”, have different frequencies and this in-the main-verb interpretation for the ambiguead
formation is reflected in the conditional probabil- form, and later it makes a repair when the ambigu-
ity P(word;|state). Therefore, the slower read- ity is resolved as a past-participle.
ing time in (14b) might be attributable to the lower In the first graph of Figure 2, “chased” is re-
frequency of the disambiguating word, “to” com- solved as a past participle also with a revision

pared to “on”. since the disambiguating word “by” is immedi-
. _ ately following. When revision occurred, proba-
4.3 Probability Re-ranking bility dropped more sharply at the revision point

The probability re-ranking reported in Corley andand at the disambiguation region compared to the
Crocker (2000) was replicated. The tagger suceontrol sentences. When the disambiguating word
cessfully resolved the ambiguity by reanalysisis not immediately followed by the ambiguous
when the ambiguous word was immediately fol-word as in the second graph of Figure 2, the ambi-
lowed by the disambiguating word (e.g. With- guity was not resolved correctly, but the probaba-
out her he was lost.). If the disambiguating word biltly decrease at the disambiguating regions cor-
did not immediately follow the ambiguous region, rectly predict that the garden-path sentence would
(e.g. Withouther contributionswould be very in-  be harder.
adequate.) the ambiguity is sometimes incorrectly The RR ambiguity is often categorized as a syn-
resolved. tactic ambiguity, but the results suggest that the
When revision occurred, probability droppedambiguity can be resolved locally and its pro-
more sharply at the revision point and at the dis-cessing difficulty can be detected by a finite state
ambiguation region compared to the control senmodel. This suggests that we should be cautious
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in assuming that a structural explanation is neededsed and the interpretation of the model for human
for the RR ambiguity resolution, and it could be sentence processing. Corley and Crocker clearly
that similar cautions are in order for other ambi-state that their model is strictly limited to lexical
guities usually seen as syntactic. ambiguity resolution, and their test of the model
Although the probability re-ranking reported in was bounded to the noun-verb ambiguity. How-
the previous studies (Corley and Crocker, 2000g¢ver, the findings in the current study play out dif-
Frazier, 1978) is correctly replicated, the taggeferently. The experiments conducted in this study
sometimes made undesired revisions. For exan@re parallel to empirical studies with regard to the
ple, the tagger did not make a repair for the sendesign of experimental method and the test mate-
tenceThe friend accepted by the man was very im+ial. The garden-path sentences used in this study
pressed Trueswell, 1996) becausecepteds bi-  are authentic, most of them are selected from the
ased as a past participle. This result is compatibleited literature, not conveniently coined by the
with the findings of Trueswell (1996). However, authors. The word-by-word probability compar-
the bias towards past-participle produces a repaison between garden-path sentences and their con-
in the control sentence, which is unexpected. Fotrols is parallel to the experimental design widely
the sentenceThe friend accepted the man who adopted in empirical studies in the form of region-
was very impressedhe tagger showed a repair by-region reading or eye-gaze time comparison.
since it initially preferred a past-participle analy- In the word-by-word probability comparison, the
sis foracceptedand later it had to reanalyze. This model is tested whether or not it correctly pre-
is a limitation of our model, and does not matchdicts the comparative processing difficulty at the

any previous empirical finding. garden-path region. Contrary to the major claim
made in previous empirical studies, which is that
5 Discussion the garden-path phenomena are either modeled by

syntactic principles or by structural frequency, the
The current study explores Corley and Crockersingings here show that the same phenomena can

model(2000) further on the model's account of hu-pe predicted without such structural information.
man sentence processing data seen in empirical therefore, the work is neither a mere extended
studies. Although there have been studies on pplication of Corley and Crockers work to a
POS tagger evaluating it as a potential cognitive, ey range of data, nor does it simply con-
module of lexical category disambiguation, theregm eaplier observations that finite state machines
has been little work that tests it as a modeling toohight accurately account for psycholinguistic re-
of syntactically ambiguous sentence processing. g jts 1o some degree. The current study provides

The findings here suggest that a statistical POgore concrete answers to what finite state machine
tagging system is more informative than Crockefis relevant to what kinds of processing difficulty
and Corley demonstrated. It has a predictiveynq 1o what extent.

power of processing delay not only for lexi-
cally ambiguous sentences but also for structurallyy  £,ture Work
garden-pathed sentences. This model is attractive
since it is computationally simpler and requiresEven though comparative analysis is a widely
few statistical parameters. More importantly, it isadopted research design in experimental studies,
clearly defined what predictions can be and cana sound scientific model should be independent
not be made by this model. This allows system-of this comparative nature and should be able to
atic testability and refutability of the model un- make systematic predictions. Currently, proba-
like some other probabilistic frameworks. Also, bility re-ranking is one way to make systematic
the model training and testing is transparent ananodule-internal predictions about the garden-path
observable, and true probability rather than transeffect. This brings up the issue of encoding more
formed weights are used, all of which makes itinformation in lexical entries and increasing am-
easy to understand the mechanism of the proposdsiguity so that other ambiguity types also can be
model. disambiguated in a similar way via lexical cate-
Although the model we used in the currentgory disambiguation. This idea has been explored
study is not a novelty, the current work largely dif- as one of the lexicalist approaches to sentence pro-
fers from the previous study in its scope of datacessing (Kim et al., 2002; Bangalore and Joshi,
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1999). dition to the current model. The implementation
and the evaluation of the model will be exactly the

Kim et al. (2002) suggest the feasibility of mod- o . .
eling structural analysis as lexical ambiguity res—>ame as a statistical POS tagger provided with a

olution. They developed a connectionist neural|arge parsed corpus from which elementary trees
network model of word recognition, which takes can be extracted.

orthographic information, semantic information, .

and the previous two words as its input and out-7 Conclusion

puts a SuperTag for the current word. A SU-q; stydies show that, at least for the sample of
perTag is an elemen.ta.ry syntactic tree, or SiMieq materials that we culled from the standard lit-
ply a structural description composed of feature%rature, a statistical POS tagging system can pre-

like POS, the number of complements, categoryjict processing difficulty in structurally ambigu-

of each complement, and the position of compley s garden-path sentences. The statistical POS

_mer_1ts. In their view, struct_ural dlsamblgu_atlontagger\,\h,JlS surprisingly effective in modeling sen-
is simply another type of lexical category disam-yoco processing data, given the locality of the
biguation, i.e. SuperTag disambiguation. Whery, o apijity distribution. The findings in this study
applied to DO/SC ambiguous fragments, Such a3, e an alternative account for the garden-path
“The economist decided ..", their model showedqte ot ghserved in empirical studies, specifically,
a general bias toward the NP-complement struCg 4t the siower processing times associated with
ture. This NP-complement bias was overcome by o qen_nath sentences are due in part to their rela-

lexical information frpm high-frequency S-biasgd tively unlikely POS sequences in comparison with
verbs, meaning that if the S-biased verb was a h'glihose of non-garden-path sentences and in part to

frequency word, it was correctly tagged, but if the it rences in the emission probabilities that the
verb had low frequency, then it was more likely 10,446 jeams. One attractive future direction is to
be tagged as NP-complement verb. This result iga .y oyt simulations that compare the evolution
glso reported_ in other constraint-based model studs probabilities in the tagger with that in a theo-
ies (e.g. Juliano and Tanenhaus (1994)), but thgaicaily more powerful model trained on the same
difference between the previous constraint-baseg,, s ich as an incremental statistical parser (Kim
studies and Kim et. al is that the result of theet al., 2002; Roark, 2001). In so doing we can
latter is based on training of the model on NoiS-q the places where the prediction problem faced
ier data (sentences that were not tailored to th%oth by the HSPM and the machines that aspire
specific research purpose). The |mpl.e'me.ntat|on Olfo emulate it actually warrants the greater power
SuperTag advances the formal specification of they i ,cturally sensitive models, using this knowl-

constralnt-bqsed lexicalist theory. Howeve.r, t_heedge to mine large corpora for future experiments
scope of their sentence processing model is "m\'/vith human subjects

ited to the DO/SC ambiguity, and the description We have not necessarily cast doubt on the hy-

.Of ;henr)modzl 's not cllear.tlr:_ atgldnllon, ;hel’.'r tthd_el pothesis that the HSPM makes crucial use of struc-
IS Tar beyond a simple statistical model. the In'tural information, but we have demonstrated that

teraction of different sources Qf information is notmuch of the relevant behavior can be captured in
transparent. Nevertheless, Kim et al. (2002) pro-

id tuture direction for th ¢ stud da simple model. The ’'structural’ regularities that
vides a future direction for the current study and,,, opserve are reasonably well encoded into this
a starting point for considering what information

. ) : model. For purposes of initial real-time process-

should be included in the lexicon. ing it could be that the HSPM is using a similar

The fundamental goal of the current research igncoding of structural regularities into convenient
to explore a model that takes the most restrictivgorobabilistic or neural form. It is as yet unclear
position on the size of parameters until additionalWwhat the final form of a cognitively accurate model
parameters are demanded by data. Equally impoelong these lines would be, but it is clear from our
tant, the quality of architectural simplicity should study that it is worthwhile, for the sake of clarity
be maintained. Among the different sources ofand explicit testability, to consider models that are
information manipulated by Kim et. al., the so- simpler and more precisely specified than those
called elementary structural information is consid-assumed by dominant theories of human sentence
ered as a reasonable and ideal parameter for agrocessing.
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Abstract

We propose in this paper a method for
quantifying sentence grammaticality. The
approach based on Property Grammars,
a constraint-based syntactic formalism,
makes it possible to evaluate a grammat-
icality index for any kind of sentence, in-
cluding ill-formed ones. We compare on
a sample of sentences the grammaticality
indices obtained from PG formalism and
the acceptability judgements measured by
means of a psycholinguistic analysis. The
results show that the derived grammatical-
ity index is a fairly good tracer of accept-
ability scores.

1 Introduction

Syntactic formalisms make it possible to describe
precisely the question of grammaticality. When
a syntactic structure can be associated to a sen-
tence, according to a given grammar, we can de-
cide whether or not the sentence is grammatical.
In this conception, a language (be it natural or not)
is produced (or generated) by a grammar by means
of a specific mechanism, for example derivation.
However, when no structure can be built, nothing
can be said about the input to be parsed except,
eventually, the origin of the failure. This is a prob-
lem when dealing with non canonical inputs such
as spoken language, e-mails, non-native speaker
productions, etc. From this perspective, we need
robust approaches that are at the same time ca-
pable of describing precisely the form of the in-
put, the source of the problem and to continue the
parse. Such capabilities render it possible to arrive
at a precise evaluation of the grammaticality of the
input. In other words, instead of deciding on the
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grammaticality of the input, we can give an indica-
tion of its grammaticality, quantified on the basis
of the description of the properties of the input.

This paper addresses the problem of ranking the
grammaticality of different sentences. This ques-
tion is of central importance for the understanding
of language processing, both from an automatic
and from a cognitive perspective. As for NLP,
ranking grammaticality makes it possible to con-
trol dynamically the parsing process (in choosing
the most adequate structures) or to find the best
structure among a set of solutions (in case of non-
deterministic approaches). Likewise the descrip-
tion of cognitive processes involved in language
processing by human has to explain how things
work when faced with unexpected or non canoni-
cal material. In this case too, we have to explain
why some productions are more acceptable and
easier to process than others.

The question of ranking grammaticality has
been addressed from time to time in linguistics,
without being a central concern. Chomsky, for
example, mentioned this problem quite regularly
(see for example (Chomsky75)). However he
rephrases it in terms of “degrees of ’belonging-
ness’ to the language”, a somewhat fuzzy notion
both formally and linguistically. More recently,
several approaches have been proposed illustrat-
ing the interest of describing these mechanisms
in terms of constraint violations. The idea con-
sists in associating weights to syntactic constraints
and to evaluate, either during or after the parse,
the weight of violated constraints. This approach
is at the basis of Linear Optimality Theory (see
(Keller00), and (Sorace05) for a more general per-
spective) in which grammaticality is judged on the
basis of the total weights of violated constraints. It
is then possible to rank different candidate struc-
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tures. A similar idea is proposed in the framework
of Constraint Dependency Grammar (see (Men-
7el98), (Schroder02)). In this case too, acceptabil-
ity is function of the violated constraints weights.

However, constraint violation cannot in itself
constitute a measure of grammaticality without
taking into account other parameters as well. The
type and the number of constraints that are sat-
isfied are of central importance in acceptability
judgment: a construction violating 1 constraint
and satisfying 15 of them is more acceptable than
one violating the same constraint but satisfying
only 5 others. In the same way, other informa-
tions such as the position of the violation in the
structure (whether it occurs in a deeply embedded
constituent or higher one in the structure) plays an
important role as well.

In this paper, we propose an approach over-
coming such limitations. It takes advantage of a
fully constraint-based syntactic formalism (called
Property Grammars, cf. (Blache05b)) that of-
fers the possibility of calculating a grammatical-
ity index, taking into account automatically de-
rived parameters as well as empirically determined
weights. This index is evaluated automatically and
we present a psycholinguistic study showing how
the parser predictions converge with acceptability
judgments.

2 Constraint-based parsing

Constraints are generally used in linguistics as a
control process, verifying that a syntactic struc-
ture (e.g. a tree) verifies some well-formedness
conditions. They can however play a more general
role, making it possible to express syntactic infor-
mation without using other mechanism (such as a
generation function). Property Grammars (noted
hereafter PG) are such a fully constraint-based for-
malism. In this approach, constraints stipulate dif-
ferent kinds of relation between categories such as
linear precedence, imperative co-occurrence, de-
pendency, repetition, etc. Each of these syntactic
relations corresponds to a type of constraint (also
called property):

e Linear precedence: Det < N (a determiner
precedes the noun)

e Dependency: AP ~» N (an adjectival phrase
depends on the noun)

e Requirement: V[inf] = to (an infinitive

comes with 70)

o Exclusion: seems < ThatClause[subj] (the
verb seems cannot have That clause subjects)

e Uniqueness : Uniqnp{Det} (the determiner
is unique in a NP)

e Obligation : Oblignp{N, Pro} (a pronoun or
a noun is mandatory in a NP)

e Constituency : Constyp{Det, AP, N, Pro}
(set of possible constituents of NP)

In PG, each category of the grammar is de-
scribed with a set of properties. A grammar is then
made of a set of properties. Parsing an input con-
sists in verifying for each category of description
the set of corresponding properties in the gram-
mar. More precisely, the idea consists in verifying,
for each subset of constituents, the properties for
which they are relevant (i.e. the constraints that
can be evaluated). Some of these properties are
satisfied, some others possibly violated. The re-
sult of a parse, for a given category, is the set of its
relevant properties together with their evaluation.
This result is called characterization and is formed
by the subset of the satisfied properties, noted P,
and the set of the violated ones, noted P~.

For example, the characterizations associated to
the NPs “the book’ and “book the” are respectively
of the form:

Pt={Det < N; Det ~ N; N < Pro; Uniq(Det),
Oblig(N), etc.}, P~=0
P*:{Det ~» N; N & Pro; Uniq(Det), Oblig(N),
etc.}, P~={Det < N}

This approach allows to characterize any kind
of syntactic object. In PG, following the pro-
posal made in Construction Grammar (see (Fill-
more98), (Kay99)), all such objects are called
constructions. They correspond to a phrase (NP,
PP, etc.) as well as a syntactic turn (cleft, wh-
questions, etc.). All these objects are described by
means of a set of properties (see (Blache05b)).

In terms of parsing, the mechanism consists
in exhibiting the potential constituents of a given
construction. This stage corresponds, in constraint
solving techniques, to the search of an assignment
satisfying the constraint system. The particular-
ity in PG comes from constraint relaxation. Here,
the goal is not to find the assignment satisfying
the constraint system, but the best assignment (i.e.
the one satisfying as much as possible the system).
In this way, the PG approach permits to deal with
more or less grammatical sentences. Provided that



some control mechanisms are added to the pro-
cess, PG parsing can be robust and efficient (see
(Blache06)) and parse different material, includ-
ing spoken language corpora.

Using a constraint-based approach such as the
one proposed here offers several advantages. First,
constraint relaxation techniques make it possi-
ble to process any kind of input. When pars-
ing non canonical sentences, the system identi-
fies precisely, for each constituent, the satisfied
constraints as well as those which are violated.
It furnishes the possibility of parsing any kind
of input, which is a pre-requisite for identifying
a graded scale of grammaticality. The second
important interest of constraints lies in the fact
that syntactic information is represented in a non-
holistic manner or, in other words, in a decentral-
ized way. This characteristic allows to evaluate
precisely the syntactic description associated with
the input. As shown above, such a description is
made of sets of satisfied and violated constraints.
The idea is to take advantage of such a represen-
tation for proposing a quantitative evaluation of
these descriptions, elaborated from different indi-
cators such as the number of satisfied or violated
constraints or the number of evaluated constraints.

The hypothesis, in the perspective of a gradi-
ence account, is to exhibit a relation between a
quantitative evaluation and the level of grammat-
icality: the higher the evaluation value, the more
grammatical the construction. The value is then
an indication of the quality of the input, according
to a given grammar. In the next section we propose
a method for computing this value.

3 Characterization evaluation

The first idea that comes to mind when trying to
quantify the quality of a characterization is to cal-
culate the ratio of satisfied properties with respect
to the total set of evaluated properties. This infor-
mation is computed as follows:

Let C a construction defined in the grammar by
means of a set of properties S, let A¢ an assign-
ment for the construction C,

e P =get of satisfied properties for Ac
e P~ =set of violated properties for A¢x

e N : number of satisfied properties N* =
card(PT)
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e N~ : number of violated properties N~ =
card(P™)

e Satisfaction ratio (S R): the number of satis-
fied properties divided by the number of eval-
uated properties SR = ]\%

The SR value varies between 0 and 1, the two
extreme values indicating that no properties are
satisfied (SR=0) or none of them are violated
(SR=1). However, SR only relies on the evalu-
ated properties. It is also necessary to indicate
whether a characterization uses a small or a large
subpart of the properties describing the construc-
tion in the grammar. For example, the VP in our
grammar is described by means of 25 constraints
whereas the PP only uses 7 of them. Let’s imag-
ine the case where 7 constraints can be evaluated
for both constructions, with an equal SR. However,
the two constructions do not have the same qual-
ity: one relies on the evaluation of all the possible
constraints (in the PP) whereas the other only uses
a few of them (in the VP). The following formula
takes these differences into account :

e F : number of relevant (i.e. evaluated) prop-
erties E = Nt + N~

e 7= number of properties specifying con-
struction C' = card(SC)

e Completeness coefficient (C'C') : the number
of evaluated properties divided by the num-
ber of properties describing the construction
in the grammar CC = %

These purely quantitative aspects have to be
contrasted according to the constraint types. Intu-
itively, some constraints, for a given construction,
play a more important role than some others. For
example, linear precedence in languages with poor
morphology such as English or French may have a
greater importance than obligation (i.e. the neces-
sity of realizing the head). To its turn, obligation
may be more important than uniqueness (i.e. im-
possible repetition). In this case, violating a prop-
erty would have different consequences according
to its relative importance. The following examples
illustrate this aspect:

(D
b. The who spoke with me man is my brother.

In (la), the determiner is repeated, violating
a uniqueness constraint of the first NP, whereas
(1c) violates a linearity constraint of the same NP.

a. The the man who spoke with me is my brother.



Clearly, (1a) seems to be more grammatical than
(1b) whereas in both cases, only one constraint is
violated. This contrast has to be taken into account
in the evaluation. Before detailing this aspect, it is
important to note that this intuition does not mean
that constraints have to be organized into a rank-
ing scheme, as with the Optimality Theory (see
(Prince93)). The parsing mechanism remains the
same with or without this information and the hi-
erarchization only plays the role of a process con-
trol.

Identifying a relative importance of the types of
constraints comes to associate them with a weight.
Note that at this stage, we assign weights to con-
straint types, not directly to the constraints, dif-
ferently from other approaches (cf. (Menzel98),
(Foth05)). The experiment described in the next
section will show that this weighting level seems
to be efficient enough. However, in case of neces-
sity, it remains possible to weight directly some
constraints into a given construction, overriding
thus the default weight assigned to the constraint
types.

The notations presented hereafter are used to
describe constraint weighting. Remind that P™
and P~ indicate the set of satisfied and violated
properties of a given construction.

e p; : property belonging to P+
[ ]

p; : property belonging to P~

w(p) : weight of the property of type p

e W™ : sum of the satisfied properties weights
N+
W =>"w(p])
i=1

e W~ : sum of the violated properties weights
N
W => wp;)
i=1

One indication of the relative importance of the
constraints involved in the characterization of a
construction is given by the following formula:

e (I: the quality index of a construction

Wt —w-

[=— —
=
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The @I index varies then between -1 and 1.
A negative value indicates that the set of violated
constraints has a greater importance than the set of
satisfied one. This does not mean that more con-
straints are violated than satisfied, but indicates the
importance of the violated ones.

We now have three different indicators that can
be used in the evaluation of the characterization:
the satisfaction ratio (noted S R) indicating the ra-
tio of satisfied constraints, the completeness coef-
ficient (noted C'C') specifying the ratio of evalu-
ated constraints, and the quality index (noted Q1)
associated to the quality of the characterization ac-
cording to the respective degree of importance of
evaluated constraints. These three indices are used
to form a global precision index (noted PI). These
three indicators do not have the same impact in the
evaluation of the characterization, they are then
balanced with coefficients in the normalized for-
mula:

o PI = (kXQI)+(l><§R)+(m><CC)

As such, PI constitutes an evaluation of the
characterization for a given construction. How-
ever, it is necessary to take into account the “qual-
ity” of the constituents of the construction as well.
A construction can satisfy all the constraints de-
scribing it, but can be made of embedded con-
stituents more or less well formed. The overall
indication of the quality of a construction has then
to integrate in its evaluation the quality of each of
its constituents. This evaluation depends finally
on the presence or not of embedded constructions.
In the case of a construction made of lexical con-
stituents, no embedded construction is present and
the final evaluation is the precision index P/ as de-
scribed above. We will call hereafter the evalua-
tion of the quality of the construction the “gram-
maticality index” (noted GI). It is calculated as
follows:

e Let d the number of embedded constructions

e If d = 0then GI = PI,else

d .
a1 — pr x 2i=1G1C) SI(C’)

In this formula, we note GI(C;) the grammat-
icality index of the construction C;. The general
formula for a construction C'is then a function of
its precision index and of the sum of the grammat-
icality indices of its embedded constituents. This



formula implements the propagation of the quality
of each constituent. This means that the grammati-
cality index of a construction can be lowered when
its constituents violate some properties. Recipro-
cally, this also means that violating a property at
an embedded level can be partially compensated at
the upper levels (provided they have a good gram-
maticality index).

4 Grammaticality index from PG

We describe in the remainder of the paper predic-
tions of the model as well as the results of a psy-
cholinguistic evaluation of these predictions. The
idea is to evaluate for a given set of sentences on
the one hand the grammaticality index (done auto-
matically), on the basis of a PG grammar, and on
the other hand the acceptability judgment given by
a set of subjects. This experiment has been done
for French, a presentation of the data and the ex-
periment itself will be given in the next section.
We present in this section the evaluation of gram-
maticality index.

Before describing the calculation of the differ-
ent indicators, we have to specify the constraints
weights and the balancing coefficients used in PIL.
These values are language-dependent, they are
chosen intuitively and partly based on earlier anal-
ysis, this choice being evaluated by the experiment
as described in the next section. In the remainder,
the following values are used:

’ Constraint type Weight ‘
Exclusion, Uniqueness, Requirement | 2
Obligation 3
Linearity, Constituency 5

Concerning the balancing coefficients, we give
a greater importance to the quality index (coeffi-
cient k=2), which seems to have important conse-
quences on the acceptability, as shown in the pre-
vious section. The two other coefficients are signi-
ficatively less important, the satisfaction ratio be-
ing at the middle position (coefficient /=7) and the
completeness at the lowest (coefficient m=0,5).

Let’s start with a first example, illustrating the
process in the case of a sentence satisfying all con-

straints. ) R )
@) Marie a emprunté un trés long chemin

pour le retour.

Mary took a very long way for the return.
The first NP contains one lexical constituent,

Mary. Three constraints, among the 14 describing

the NP, are evaluated and all satisfied: Oblig(N),

stipulating that the head is realized, Const(N), in-
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dicating the category N as a possible constituent,
and Excl(N, Pro), verifying that N is not realized
together with a pronoun. The following values
come from this characterization:

[N+ [N-JEJT [ W [W-[Q[SR[CC [P |Gl
[3 0 [ 3 |14 [10 [0 |1 [ 1 |02 | 104 104 |
We can see that, according to the fact that
all evaluated constraints are satisfied, QI and SR
equal 1. However, the fact that only 3 constraints
among 14 are evaluated lowers down the gram-
matical index. This last value, insofar as no con-
stituents are embedded, is the same as PI.

These results can be compared with another
constituent of the same sentence, the VP. This
construction also only contains satisfied prop-
erties. Its characterization is the following :
Char(VP)=Const(Aux, V, NP, PP) ; Oblig(V) ;
Uniq(V) ; Unig(NP) ; Uniq(PP) ; Aux=-V[part]
; VNP ; Aux<V ; V<PP. On top of this set
of evaluated constraints (9 among the possible
25), the VP includes two embedded constructions

a PP and a NP. A grammaticality index has
been calculated for each of them: GI(PP) = 1.24
GI(NP)=1.23. The following table indicates the
different values involved in the calculation of the
GI.
[N ]

9

o1

[cC [ PL_|

N- |
0 [ 036 | 1.06_|

l

SR
1

E[T [ Wr [ W [ Q
9 [ 25 |31 [0 |1

GI_Emb_Const

The final GI of the VP reaches a high value. It
benefits on the one hand from its own quality (in-
dicated by PI) and on another hand from that of
its embedded constituents. In the end, the final G/
obtained at the sentence level is function of its own
PI (very good) and the NP and VP GIs, as shown
in the table:

[N [N ]
[5 [0 ]

[T T W+ [ W-
[9 17 |o0

GI_LEmb_Const GI
I

Let’s compare now these evaluations with those
obtained for sentences with violated constraints,
as in the following examples:

3) a Marie a emprunté tres long chemin un
pour le retour.
Mary took very long way a for the return.

E
5

b. Marie a emprunté un tres chemin pour le retour.

Mary took a very way for the return.

In (2a), 2 linear constraints are violated: a de-
terminer follows a noun and an AP in “tres long
chemin un”. Here are the figures calculated for
this NP:

[Nt [N- [ E [T [ W+ [W-]Q [SR [ CC [Pl_] Gl

[8 [2 |10 ] 1423 [10-[0,39[0.80[0.71[0,65[0.71]




The QI indicator is very low, the violated con-
straints being of heavy weight. The grammatical-
ity index is a little bit higher because a lot of con-
straints are also satisfied. The NP GI is then prop-
agated to its dominating construction, the VP. This
phrase is well formed and also contains a well-
formed construction (PP) as sister of the NP. Note
that in the following table summarizing the VP
indicators, the GI product of the embedded con-
stituents is higher than the GI of the NP. This is
due to the well-formed PP constituent. In the end,
the GI index of the VP is better than that of the
ill-formed NP:

[N+ [N- [ E T [ Wr [ W ][ Q[SR]CC [Pl |
[9 [0 |92 [ 3 |0 [ 1 | T |03 106

For the same reasons, the higher level construc-
tion S also compensates the bad score of the NP.
However, in the end, the final GI of the sentence
is much lower than that of the corresponding well-
formed sentence (see above).

[N+ [N-[E [T W+ [ W [ QI]SR]CC [Pl |
[5 [0 | 5917 [0 |1 [T |05 | 109]

The different figures of the sentence (2b) show
that the violation of a unique constraint (in this
case the Oblig(Adj) indicating the absence of the
head in the AP) can lead to a global lower GI than
the violation of two heavy constraints as for (2a).
In this case, this is due to the fact that the AP only
contains one constituent (a modifier) that does not
suffice to compensate the violated constraint. The
following table indicates the indices of the differ-
ent phrases. Note that in this table, each phrase is
a constituent of the following (i.e. AP belongs to
NP itself belonging to VP, and so on).

N+ E W+ QI SR CC PI

AP 2 3 7 7 0.40 0.67 0.43 0.56

W-

3
10 10 33 0 1 1
0

0.71 1.12

9 9 31 1 1 0.36 1.06

olo|o| =z

S 5 5 9 17 0 1 1 0.56 1.09

GI_LEmb_Const
AP 1

0.56

0.93

1.01

GI

0.56
0.63
0.99
1.11

5 Judging acceptability of violations

We ran a questionnaire study presenting partic-
ipants with 60 experimental sentences like (11)
to (55) below. 44 native speakers of French
completed the questionnaire giving acceptability
judgements following the Magnitude Estimation
technique. 20 counterbalanced forms of the ques-
tionnaire were constructed. Three of the 60 ex-
perimental sentences appeared in each version in
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each form of the questionnaire, and across the 20
forms, each experimental sentence appeared once
in each condition. Each sentence was followed
by a question concerning its acceptability. These
60 sentences were combined with 36 sentences of
various forms varying in complexity (simple main
clauses, simple embeddings and doubly nested
embeddings) and plausibility (from fully plausible
to fairly implausible according to the intuitions of
the experimenters). One randomization was made
of each form.

Procedure: The rating technique used was mag-
nitude estimation (ME, see (Bard96)). Partici-
pants were instructed to provide a numeric score
that indicates how much better (or worse) the cur-
rent sentence was compared to a given reference
sentence (Example: If the reference sentence was
given the reference score of 100, judging a tar-
get sentence five times better would result in 500,
judging it five times worse in 20). Judging the ac-
ceptability ratio of a sentence in this way results in
a scale which is open-ended on both sides. It has
been demonstrated that ME is therefore more sen-
sitive than fixed rating-scales, especially for scores
that would approach the ends of such rating scales
(cf. (Bard96)). Each questionnaire began with a
written instruction where the subject was made fa-
miliar with the task based on two examples. After
that subjects were presented with a reference sen-
tence for which they had to provide a reference
score. All following sentences had to be judged
in relation to the reference sentence. Individual
judgements were logarithmized (to arrive at a lin-
ear scale) and normed (z-standardized) before sta-
tistical analyses.

Global mean scores are presented figure 1. We
tested the reliability of results for different ran-
domly chosen subsets of the materials. Construc-
tions for which the judgements remain highly sta-
ble across subsets of sentences are marked by an
asterisk (rs > 0.90; p < 0.001). The mean relia-
bility across subsets is rs > 0.65 (p < 0.001).

What we can see in these data is that in par-
ticular violations within prepositional phrases are
not judged in a very stable way. The way they
are judged appears to be highly dependent on the
preposition used and the syntactic/semantic con-
text. This is actually a very plausible result, given
that heads of prepositional phrases are closed class
items that are much more predictable in many syn-
tactic and semantic environments than heads of



noun phrases and verb phrases. We will there-
fore base our further analyses mainly on violations
within noun phrases, verb phrases, and adjectival
phrases. Results including prepositional phrases
will be given in parentheses. Since the constraints
described above do not make any predictions for
semantic violations, we excluded examples 25, 34,
45, and 55 from further analyses.

6 Acceptability versus grammaticality
index

We compare in this section the results coming
from the acceptability measurements described in
section 5 and the values of grammaticality indices
obtained as proposed section 4.

From the sample of 20 sentences presented in fig-
ure 1, we have discarded 4 sentences, namely sen-
tence 25, 34, 45 and 55, for which the property
violation is of semantic order (see above). We are
left with 16 sentences, the reference sentence sat-
isfying all the constraints and 15 sentences violat-
ing one of the syntactic constraints. The results
are presented figure 2. Acceptability judgment
(ordinate) versus grammaticality index (abscissa)
is plotted for each sentence. We observe a high
coefficient of correlation (p = 0.76) between the
two distributions, indicating that the grammatical-
ity index derived from PG is a fairly good tracer of
the observed acceptability measurements.

The main contribution to the grammaticality in-
dex comes from the quality index QI (p = 0.69)
while the satisfaction ratio SR and the complete-

No violations

11. Marie a emprunté un trés long chemin pour le retour 0.465
NP-violations

21. Marie a emprunté trés long chemin un pour le retour -0.643 *
22. Marie a emprunté un trés long chemin chemin pour le retour -0.161 *
23. Marie a emprunté un trés long pour le retour -0.871 *
24. Marie a emprunté trés long chemin pour le retour -0.028 *
25. Marie a emprunté un trés heureux chemin pour le retour -0.196 *
AP-violations

31. Marie a emprunté un long trés chemin pour le retour -041 *
32. Marie a emprunté un trés long long chemin pour le retour -0.216 -
33. Marie a emprunté un trés chemin pour le retour -0.619 -
34. Marie a emprunté un grossiérement long chemin pour le retour -0.058 *
PP-violations

41. Marie a emprunté un trés long chemin le retour pour -0.581 -
42. Marie a emprunté un tres long chemin pour pour le retour -0.078 -
43. Marie a emprunté un trés long chemin le retour -0.213 -
44. Marie a emprunté un tres long chemin pour -0.385 -
45. Marie a emprunté un trés long chemin dans le retour -0.415 -
'VP-violations

S1. Marie un trés long chemin a emprunté pour le retour -0.56 *
52.Marie a emprunté emprunté un trés long chemin pour le retour -0.194 *
53.Marie un trés long chemin pour le retour -0.905 *
54. Marie emprunté un tres long chemin pour le retour -0.322 *
55. Marie a persuadé un trés long chemin pour le retour -0.394 *

Figure 1: Acceptability results
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ness coefficient CC contributions, although signif-
icant, are more modest (p = 0.18 and p = 0.17
respectively).

We present in figure 3 the correlation between
acceptability judgements and grammaticality in-
dices after the removal of the 4 sentences pre-
senting PP violations. The analysis of the experi-
ment described in section 5 shows indeed that ac-
ceptability measurements of the PP-violation sen-
tences is less reliable than for others phrases. We
thus expect that removing these data from the sam-
ple will strengthen the correlation between the two
distributions. The coefficient of correlation of the
12 remaining data jumps to p = 0.87, as expected.

Gramm aticality index

0,87 1,02 1,07 1,12 117 1,22 1,27
0,6

L 2
03

Acceptability

Figure 2: Correlation between acceptability judgement and
grammaticality index

Grammaticality index

0,87 1,02 107 1,12 117 1,22 1,27
0.6 . ‘ . . X X
&
0,3

0 M‘é
0,3
0,6 —7—%‘/'
-0,9 %// v 3

1,2

Acceptability

p=0,87

Figure 3: Correlation between acceptability judgement and
grammaticality index removing PP violations

Finally, the adequacy of the PG grammatical-
ity indices to the measurements was investigated
by means of resultant analysis. We adapted the
parameters of the model in order to arrive at a
good fit based on half of the sentences materials
(randomly chosen from the full set), with a cor-
relation of p = 0.85 (p = 0.76 including PPs)
between the grammaticality index and acceptabil-
ity judgements. Surprisingly, we arrived at the
best fit with only two different weights: A weight
of 2 for Exclusion, Uniqueness, and Requirement,
and a weight of 5 for Obligation, Linearity, and
Constituency. This result converges with the hard



and soft constraint repartition idea as proposed by
(Keller00).

The fact that the grammaticality index is based
on these properties as well as on the number of
constraints to be evaluated, the number of con-
straints to the satisfied, and the goodness of em-
bedded constituents apparently results in a fined
grained and highly adequate prediction even with
this very basic distinction of constraints.

Fixing these parameters, we validated the pre-
dictions of the model for the remaining half of the
materials. Here we arrived at a highly reliable cor-
relation of p = 0.86 (p = 0.67 including PPs) be-
tween PG grammaticality indices and acceptabil-
ity judgements.

7 Conclusion

The method described in this paper makes it pos-
sible to give a quantified indication of sentence
grammaticality. This approach is direct and takes
advantage of a constraint-based representation of
syntactic information, making it possible to repre-
sent precisely the syntactic characteristics of an in-
put in terms of satisfied and (if any) violated con-
straints. The notion of grammaticality index we
have proposed here integrates different kind of in-
formation: the quality of the description (in terms
of well-formedness degree), the density of infor-
mation (the quantity of constraints describing an
element) as well as the structure itself. These three
parameters are the basic indicators of the gram-
maticality index.

The relevance of this method has been ex-
perimentally shown, and the results described in
this paper illustrate the correlation existing be-
tween the prediction (automatically calculated)
expressed in terms of GI and the acceptability
judgment given by subjects.

This approach also presents a practical interest:
it can be directly implemented into a parser. The
next step of our work will be its validation on large
corpora. Our parser will associate a grammatical
index to each sentence. This information will be
validated by means of acceptability judgments ac-
quired on the basis of a sparse sampling strategy.
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Abstract

In this paper we present a novel approach
for inducing word alignments from sen-
tence aligned data. We use a Condi-
tional Random Field (CRF), a discrimina-
tive model, which is estimated on a small
supervised training set. The CRF is condi-
tioned on both the source and target texts,
and thus allows for the use of arbitrary
and overlapping features over these data.
Moreover, the CRF has efficient training
and decoding processes which both find
globally optimal solutions.

We apply this alignment model to both
French-English and Romanian-English
language pairs. We show how a large
number of highly predictive features can
be easily incorporated into the CRF, and
demonstrate that even with only a few hun-
dred word-aligned training sentences, our
model improves over the current state-of-
the-art with alignment error rates of 5.29
and 25.8 for the two tasks respectively.

1 Introduction

Modern phrase based statistical machine transla-
tion (SMT) systems usually break the translation
task into two phases. The first phase induces word
alignments over a sentence-aligned bilingual cor-
pus, and the second phase uses statistics over these
predicted word alignments to decode (translate)
novel sentences. This paper deals with the first of
these tasks: word alignment.

Most current SMT systems (Och and Ney,
2004; Koehn et al., 2003) use a generative model
for word alignment such as the freely available

Proceedings of the 21st International Conference on Computational Linguistics and 44th Annual Meeting of thag&S165—72,
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GIZA++ (Och and Ney, 2003), an implementa-
tion of the IBM alignment models (Brown et al.,
1993). These models treat word alignment as a
hidden process, and maximise the probability of
the observed (e, f) sentence pairs' using the ex-
pectation maximisation (EM) algorithm. After the
maximisation process is complete, the word align-
ments are set to maximum posterior predictions of
the model.

While GIZA++ gives good results when trained
on large sentence aligned corpora, its generative
models have a number of limitations. Firstly,
they impose strong independence assumptions be-
tween features, making it very difficult to incor-
porate non-independent features over the sentence
pairs. For instance, as well as detecting that a
source word is aligned to a given target word,
we would also like to encode syntactic and lexi-
cal features of the word pair, such as their parts-
of-speech, affixes, lemmas, etc. Features such as
these would allow for more effective use of sparse
data and result in a model which is more robust
in the presence of unseen words. Adding these
non-independent features to a generative model
requires that the features’ inter-dependence be
modelled explicitly, which often complicates the
model (eg. Toutanova et al. (2002)). Secondly, the
later IBM models, such as Model 4, have to re-
sort to heuristic search techniques to approximate
forward-backward and Viterbi inference, which
sacrifice optimality for tractability.

This paper presents an alternative discrimina-
tive method for word alignment. We use a condi-
tional random field (CRF) sequence model, which
allows for globally optimal training and decod-
ing (Lafferty et al., 2001). The inference algo-

"We adopt the standard notation of e and f to denote the
target (English) and source (foreign) sentences, respectively.

Sydney, July 200602006 Association for Computational Linguistics



rithms are tractable and efficient, thereby avoid-
ing the need for heuristics. The CRF is condi-
tioned on both the source and target sentences,
and therefore supports large sets of diverse and
overlapping features. Furthermore, the model al-
lows regularisation using a prior over the parame-
ters, a very effective and simple method for limit-
ing over-fitting. We use a similar graphical struc-
ture to the directed hidden Markov model (HMM)
from GIZA++ (Och and Ney, 2003). This mod-
els one-to-many alignments, where each target
word is aligned with zero or more source words.
Many-to-many alignments are recoverable using
the standard techniques for superimposing pre-
dicted alignments in both translation directions.

The paper is structured as follows. Section
2 presents CRFs for word alignment, describing
their form and their inference techniques. The
features of our model are presented in Section 3,
and experimental results for word aligning both
French-English and Romanian-English sentences
are given in Section 4. Section 5 presents related
work, and we describe future work in Section 6.
Finally, we conclude in Section 7.

2 Conditional random fields

CREFs are undirected graphical models which de-
fine a conditional distribution over a label se-
quence given an observation sequence. We use
a CRF to model many-to-one word alignments,
where each source word is aligned with zero or
one target words, and therefore each target word
can be aligned with many source words. Each
source word is labelled with the index of its
aligned target, or the special value null, denot-
ing no alignment. An example word alignment
is shown in Figure 1, where the hollow squares
and circles indicate the correct alignments. In this
example the French words une and autre would
both be assigned the index 24 — for the English
word another — when French is the source lan-
guage. When the source language is English, an-
other could be assigned either index 25 or 26; in
these ambiguous situations we take the first index.
The joint probability density of the alignment,
a (a vector of target indices), conditioned on the
source and target sentences, e and f, is given by:

€xp Zt Zk )‘khk(t7 ai—1,0¢, €, f)
ZA(ea f)

pa(ale, f) =
(D

where we make a first order Markov assumption
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Figure 1. A word-aligned example from the Canadian
Hansards test set. Hollow squares represent gold stan-
dard sure alignments, circles are gold possible align-
ments, and filled squares are predicted alignments.

over the alignment sequence. Here ¢ ranges over
the indices of the source sentence (f), k£ ranges
over the model’s features, and A = {\;} are the
model parameters (weights for their correspond-
ing features). The feature functions hj are pre-
defined real-valued functions over the source and
target sentences coupled with the alignment labels
over adjacent times (source sentence locations),
t. These feature functions are unconstrained, and
may represent overlapping and non-independent
features of the data. The distribution is globally
normalised by the partition function, Z,(e,f),
which sums out the numerator in (1) for every pos-
sible alignment:

ZA(e> f) = Z eXp Z Z Akhk(ta ai—1,0a¢, €, f)
a t k

We use a linear chain CRF, which is encoded in
the feature functions of (1).

The parameters of the CRF are usually esti-
mated from a fully observed training sample (word
aligned), by maximising the likelihood of these
data. Le. AML = argmax, pa(D), where D =
{(a,e,f)} are the training data. Because max-
imum likelihood estimators for log-linear mod-
els have a tendency to overfit the training sam-
ple (Chen and Rosenfeld, 1999), we define a prior
distribution over the model parameters and de-
rive a maximum a posteriori (MAP) estimate,
AMAP — argmax, pa(D)p(A). We use a zero-
mean Gaussian prior, with the probability density

507 ) . This yields a
k
log-likelihood objective function of:

L > logpa(ale, f) + > logpo(Ar)
k

(a,e,f)eD

AL

function po(A\g) o exp<



— Z ZZ)\khktat 1,0, €, f)

(aef)eD 1
log Z (e, £) ZAsz )
g Z (e, 4 207 const.

In order to train the model, we maximize (2).
While the log-likelihood cannot be maximised for
the parameters, A, in closed form, it is a con-
vex function, and thus we resort to numerical op-
timisation to find the globally optimal parame-
ters. We use L-BFGS, an iterative quasi-Newton
optimisation method, which performs well for
training log-linear models (Malouf, 2002; Sha
and Pereira, 2003). Each L-BFGS iteration re-
quires the objective value and its gradient with
respect to the model parameters. These are cal-
culated using forward-backward inference, which
yields the partition function, Zx(e,f), required
for the log-likelihood, and the pair-wise marginals,
pa(ai—1,atle, f), required for its derivatives.

The Viterbi algorithm is used to find the maxi-
mum posterior probability alignment for test sen-
tences, a* = argmax,pa(ale,f). Both the
forward-backward and Viterbi algorithm are dy-
namic programs which make use of the Markov
assumption to calculate efficiently the exact
marginal distributions.

3 The alignment model

Before we can apply our CRF alignment model,
we must first specify the feature set — the func-
tions hy, in (1). Typically CRFs use binary indica-
tor functions as features; these functions are only
active when the observations meet some criteria
and the label a; (or label pair, (a;—1, a;)) matches
a pre-specified label (pair). However, in our model
the labellings are word indices in the target sen-
tence and cannot be compared readily to labellings
at other sites in the same sentence, or in other sen-
tences with a different length. Such naive features
would only be active for one labelling, therefore
this model would suffer from serious sparse data
problems.

We instead define features which are functions
of the source-target word match implied by a la-
belling, rather than the labelling itself. For exam-
ple, from the sentence in Figure 1 for the labelling
of foy = de with agy = 16 (for e1g = of) we
might detect the following feature:

1, ifeq = ‘of N fr =

h(t,at—1,as,f,€) = { 0, otherwise

Note that it is the target word indexed by a;, rather
than the index itself, which determines whether
the feature is active, and thus the sparsity of the
index label set is not an issue.

3.1 Features

One of the main advantages of using a conditional
model is the ability to explore a diverse range of
features engineered for a specific task. In our
CRF model we employ two main types of features:
those defined on a candidate aligned pair of words;
and Markov features defined on the alignment se-
quence predicted by the model.

Dice and Model 1 As we have access to only a
small amount of word aligned data we wish to be
able to incorporate information about word associ-
ation from any sentence aligned data available. A
common measure of word association is the Dice
coefficient (Dice, 1945):

2 X CEF(e, f)
CE(E) + OF(S)

where Cg and C are counts of the occurrences
of the words e and f in the corpus, while Cgp is
their co-occurrence count. We treat these Dice val-
ues as translation scores: a high (low) value inci-
dates that the word pair is a good (poor) candidate
translation.

However, the Dice score often over-estimates
the association between common words. For in-
stance, the words the and of both score highly
when combined with either le or de, simply be-
cause these common words frequently co-occur.
The GIZA++ models can be used to provide better
translation scores, as they enforce competition for
alignment beween the words. For this reason, we
used the translation probability distribution from
Model 1 in addition to the DICE scores. Model 1
is a simple position independent model which can
be trained quickly and is often used to bootstrap
parameters for more complex models. It models
the conditional probability distribution:

Dice(e, f)

I£]|

Hp ft|€at

where p(f|e) are the word translation probabili-
ties.
We use both the Dice value and the Model 1

p(lf]lle])

f
( a‘ ) |e|+1 |f|

‘de’ translation probability as real-valued features for

each candidate pair, as well as a normalised score



over all possible candidate alignments for each tar-
get word. We derive a feature from both the Dice
and Model 1 translation scores to allow compe-
tition between sources words for a particular tar-
get alignment. This feature indicates whether a
given alignment has the highest translation score
of all the candidate alignments for a given tar-
get word. For the example in Figure 1, the words
la, de and une all receive a high translation score
when paired with the. To discourage all of these
French words from aligning with the, the best of
these (la) is flagged as the best candidate. This al-
lows for competition between source words which
would otherwise not occur.

Orthographic features Features based on
string overlap allow our model to recognise
cognates and orthographically similar translation
pairs, which are particularly common between
European languages. Here we employ a number
of string matching features inspired by similar
features in Taskar et al. (2005). We use an indica-
tor feature for every possible source-target word
pair in the training data. In addition, we include
indicator features for an exact string match, both
with and without vowels, and the edit-distance
between the source and target words as a real-
valued feature. We also used indicator features to
test for matching prefixes and suffixes of length
three. As stated earlier, the Dice translation
score often erroneously rewards alignments with
common words. In order to address this problem,
we include the absolute difference in word length
as a real-valued feature and an indicator feature
testing whether both words are shorter than 4
characters. Together these features allow the
model to disprefer alignments between words
with very different lengths — i.e. aligning rare
(long) words with frequent (short) determiners,
verbs etc.

POS tags Part-of-speech tags are an effective
method for addressing the sparsity of the lexi-
cal features. Observe in Figure 2 that the noun-
adjective pair Canadian experts aligns with the
adjective-noun pair spécialistes canadiens: the
alignment exactly matches the parts-of-speech.
Access to the words’ POS tags will allow simple
modelling of such effects. POS can also be useful
for less closely related language pairs, such as En-
glish and Japanese where English determiners are
never aligned; nor are Japanese case markers.

68

For our French-English language pair we POS
tagged the source and target sentences with Tree-
Tagger.> We created indicator features over the
POS tags of each candidate source and target word
pair, as well as over the source word and target
POS (and vice-versa). As we didn’t have access to
a Romanian POS tagger, these features were not
used for the Romanian-English language pair.

Bilingual dictionary Dictionaries are another
source of information for word alignment. We
use a single indicator feature which detects when
the source and target words appear in an entry of
the dictionary. For the English-French dictionary
we used FreeDict,? which contains 8,799 English
words. For Romanian-English we used a dictio-
nary compiled by Rada Mihalcea,* which contains
approximately 38,000 entries.

Markov features Features defined over adja-
cent aligment labels allow our model to reflect the
tendency for monotonic alignments between Eu-
ropean languages. We define a real-valued align-
ment index jump width feature:

Jump_width(t — 1,t) = abs(a; — as—1 — 1)

this feature has a value of O if the alignment labels
follow the downward sloping diagonal, and is pos-
itive otherwise. This differs from the GIZA++ hid-
den Markov model which has individual parame-
ters for each different jump width (Och and Ney,
2003; Vogel et al., 1996): we found a single fea-
ture (and thus parameter) to be more effective.

We also defined three indicator features over
null transitions to allow the modelling of the prob-
ability of transition between, to and from null la-
bels.

Relative sentence postion A feature for the
absolute difference in relative sentence position
(abs(% - ﬁ)) allows the model to learn a pref-
erence for aligning words close to the alignment
matrix diagonal. We also included two conjunc-
tion features for the relative sentence position mul-
tiplied by the Dice and Model 1 translation scores.

Null We use a number of variants on the above
features for alignments between a source word and
the null target. The maximum translation score
between the source and one of the target words

Zhttp://www.ims.uni-stuttgart.de/projekte/corplex/Tree Tagger
3http://www.freedict.de
*http://lit.csci.unt.edu/ rada/downloads/RoNLP/R.E.tralex



model [ precision [ recall [ f-score | AER

Model 4 refined 87.4 95.1 | 91.1 | 9.81
Model 4 intersection 97.9 86.0 | 91.6 | 742
French — English 96.7 85.0 | 90.5 | 9.21
English — French 97.3 83.0 | 89.6 [10.01
intersection 98.7 78.6 | 87.5 |12.02
refined 95.7 89.2 | 923 | 7.37

Table 1. Results on the Hansard data using all features

model [ precision [ recall | f-score | AER
Model 4 refined 80.49 [64.10| 71,37 |28.63
Model 4 intersected 95.94 |53.56| 68.74 |31.26
Romanian — English| 82.9 613 | 70.5 [29.53
English — Romanian| 82.8 60.6 | 70.0 |29.98
intersection 94.4 525 | 67.5 |3245
refined 77.1 68.5 | 72.6 |27.41

Table 2. Results on the Romanian data using all fea-
tures

is used as a feature to represent whether there is
a strong alignment candidate. The sum of these
scores is also used as a feature. Each source word
and POS tag pair are used as indicator features
which allow the model to learn particular words
of tags which tend to commonly (or rarely) align.

3.2 Symmetrisation

In order to produce many-to-many alignments we
combine the outputs of two models, one for each
translation direction. We use the refined method
from Och and Ney (2003) which starts from the
intersection of the two models’ predictions and
‘grows’ the predicted alignments to neighbouring
alignments which only appear in the output of one
of the models.

4 Experiments

We have applied our model to two publicly avail-
able word aligned corpora. The first is the
English-French Hansards corpus, which consists
of 1.1 million aligned sentences and 484 word-
aligned sentences. This data set was used for
the 2003 NAACL shared task (Mihalcea and Ped-
ersen, 2003), where the word-aligned sentences
were split into a 37 sentence trial set and a 447 sen-
tence testing set. Unlike the unsupervised entrants
in the 2003 task, we require word-aligned training
data, and therefore must cannibalise the test set for
this purpose. We follow Taskar et al. (2005) by us-
ing the first 100 test sentences for training and the
remaining 347 for testing. This means that our re-
sults should not be directly compared to those en-
trants, other than in an approximate manner. We
used the original 37 sentence trial set for feature
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engineering and for fitting a Gaussian prior.

The word aligned data are annotated with both
sure (.S) and possible (P) alignments (S C P; Och
and Ney (2003)), where the possible alignments
indicate ambiguous or idiomatic alignments. We
measure the performance of our model using
alignment error rate (AER), which is defined as:

|ANS|+|ANP|
Al +15]

where A is the set of predicted alignments.

The second data set is the Romanian-English
parallel corpus from the 2005 ACL shared task
(Martin et al., 2005). This consists of approxi-
mately 50,000 aligned sentences and 448 word-
aligned sentences, which are split into a 248 sen-
tence trial set and a 200 sentence test set. We
used these as our training and test sets, respec-
tively. For parameter tuning, we used the 17 sen-
tence trial set from the Romanian-English corpus
in the 2003 NAACL task (Mihalcea and Pedersen,
2003). For this task we have used the same test
data as the competition entrants, and therefore can
directly compare our results. The word alignments
in this corpus were only annotated with sure (S)
alignments, and therefore the AER is equivalent
to the F; score. In the shared task it was found
that models which were trained on only the first
four letters of each word obtained superior results
to those using the full words (Martin et al., 2005).
We observed the same result with our model on
the trial set and thus have only used the first four
letters when training the Dice and Model 1 trans-
lation probabilities.

Tables 1 and 2 show the results when all feature
types are employed on both language pairs. We re-
port the results for both translation directions and
when combined using the refined and intersection
methods. The Model 4 results are from GIZA++
with the default parameters and the training data
lowercased. For Romanian, Model 4 was trained
using the first four letters of each word.

The Romanian results are close to the best re-
ported result of 26.10 from the ACL shared task
(Martin et al., 2005). This result was from a sys-
tem based on Model 4 plus additional parameters
such as a dictionary. The standard Model 4 imple-
mentation in the shared task achieved a result of
31.65, while when only the first 4 letters of each
word were used it achieved 28.80.°

AER(A,S,P)=1—

These results differ slightly our Model 4 results reported
in Table 2.
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Figure 2. An example from the Hansard test set, showing the effect of the Markov features.

Table 3 shows the effect of removing each of the
feature types in turn from the full model. The most
useful features are the Dice and Model 1 values
which allow the model to incorporate translation
probabilities from the large sentence aligned cor-
pora. This is to be expected as the amount of word
aligned data are extremely small, and therefore the
model can only estimate translation probabilities
for only a fraction of the lexicon. We would expect
the dependence on sentence aligned data to de-
crease as more word aligned data becomes avail-
able.

The effect of removing the Markov features can
be seen from comparing Figures 2 (a) and (b). The
model has learnt to prefer alignments that follow
the diagonal, thus alignments such as 3 « three
and prestation < provision are found, and miss-
alignments such as de < of, which lie well off the
diagonal, are avoided.

The differing utility of the alignment word pair
feature between the two tasks is probably a result
of the different proportions of word- to sentence-
aligned data. For the French data, where a very
large lexicon can be estimated from the million
sentence alignments, the sparse word pairs learnt
on the word aligned sentences appear to lead to
overfitting. In contrast, for Romanian, where more
word alignments are used to learn the translation
pair features and much less sentence aligned data
are available, these features have a significant im-
pact on the model. Suprisingly the orthographic
features actually worsen the performance in the
tasks (incidentally, these features help the trial
set). Our explanation is that the other features
(eg. Model 1) already adequately model these cor-
respondences, and therefore the orthographic fea-
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feature group [Rom — Eng|Fre — Eng

ALL 27.41 7.37
—orthographic 27.30 7.25
—Dice 27.68 7.73
—dictionary 27.72 7.21
—sentence position 28.30 8.01
-POS - 8.19
—Model 1 28.62 8.45
—alignment word pair 32.41 7.20
—Markov 32.75 12.44
—Dice & -Model 1 35.43 14.10

Table 3. The resulting AERs after removing individual
groups of features from the full model.

tures do not add much additional modelling power.
We expect that with further careful feature engi-
neering, and a larger trial set, these orthographic
features could be much improved.

The Romanian-English language pair appears
to offer a more difficult modelling problem than
the French-English pair. With both the transla-
tion score features (Dice and Model 1) removed
— the sentence aligned data are not used — the
AER of the Romanian is more than twice that of
the French, despite employing more word aligned
data. This could be caused by the lack of possi-
ble (P) alignment markup in the Romanian data,
which provide a boost in AER on the French data
set, rewarding what would otherwise be consid-
ered errors. Interestingly, without any features
derived from the sentence aligned corpus, our
model achieves performance equivalent to Model
3 trained on the full corpus (Och and Ney, 2003).
This is a particularly strong result, indicating that
this method is ideal for data-impoverished align-
ment tasks.



4.1 Training with possible alignments

Up to this point our Hansards model has been
trained using only the sure (S) alignments. As
the data set contains many possible (P) alignments,
we would like to use these to improve our model.
Most of the possible alignments flag blocks of
ambiguous or idiomatic (or just difficult) phrase
level alignments. These many-to-many align-
ments cannot be modelled with our many-to-one
setup. However, a number of possibles flag one-
to-one or many-to-one aligments: for this experi-
ment we used these possibles in training to inves-
tigate their effect on recall. Using these additional
alignments our refined precision decreased from
95.7 to 93.5, while recall increased from 89.2 to
92.4. This resulted in an overall decrease in AER
to 6.99. We found no benefit from using many-to-
many possible alignments as they added a signifi-
cant amount of noise to the data.

4.2 Model 4 as a feature

Previous work (Taskar et al., 2005) has demon-
strated that by including the output of Model 4 as
a feature, it is possible to achieve a significant de-
crease in AER. We trained Model 4 in both direc-
tions on the two language pairs. We added two
indicator features (one for each direction) to our
CRF which were active if a given word pair were
aligned in the Model 4 output. Table 4 displays
the results on both language pairs when these ad-
ditional features are used with the refined model.
This produces a large increase in performance, and
when including the possibles, produces AERs of
5.29 and 25.8, both well below that of Model 4
alone (shown in Tables 1 and 2).

4.3 Cross-validation

Using 10-fold cross-validation we are able to gen-
erate results on the whole of the Hansards test data
which are comparable to previously published re-
sults. As the sentences in the test set were ran-
domly chosen from the training corpus we can ex-
pect cross-validation to give an unbiased estimate
of generalisation performance. These results are
displayed in Table 5, using the possible (P) align-
ments for training. As the training set for each fold
is roughly four times as big previous training set,
we see a small improvement in AER.

The final results of 6.47 and 5.19 with and
without Model 4 features both exceed the perfor-
mance of Model 4 alone. However the unsuper-
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model [ precision [ recall [ f-score | AER

Rom < Eng 79.0 70.0 | 742 |25.8

Fre < Eng 97.9 90.8 | 942 |549

Fre < Eng (P) 95.5 93.7 | 94.6 |529
Table 4. Results using features from Model 4 bi-

directional alignments, training with and without the
possible (P) alignments.

model [ precision [ recall [ f-score | AER
Fre < Eng 94.6 922 | 934 | 647
Fre < Eng (Model 4) 96.1 933 | 947 |5.19

Table 5. 10-fold cross-validation results, with and with-
out Model 4 features.

vised Model 4 did not have access to the word-
alignments in our training set. Callison-Burch et
al. (2004) demonstrated that the GIZA++ mod-
els could be trained in a semi-supervised manner,
leading to a slight decrease in error. To our knowl-
edge, our AER of 5.19 is the best reported result,
generative or discriminative, on this data set.

5 Related work

Recently, a number of discriminative word align-
ment models have been proposed, however these
early models are typically very complicated with
many proposing intractable problems which re-
quire heuristics for approximate inference (Liu et
al., 2005; Moore, 2005).

An exception is Taskar et al. (2005) who pre-
sented a word matching model for discriminative
alignment which they they were able to solve opti-
mally. However, their model is limited to only pro-
viding one-to-one alignments. Also, no features
were defined on label sequences, which reduced
the model’s ability to capture the strong monotonic
relationships present between European language
pairs. On the French-English Hansards task, using
the same training/testing setup as our work, they
achieve an AER of 5.4 with Model 4 features, and
10.7 without (compared to 5.29 and 6.99 for our
CREF). One of the strengths of the CRF MAP es-
timation is the powerful smoothing offered by the
prior, which allows us to avoid heuristics such as
early stopping and hand weighted loss-functions
that were needed for the maximum-margin model.

Liu et al. (2005) used a conditional log-linear
model with similar features to those we have em-
ployed. They formulated a global model, without
making a Markovian assumption, leading to the
need for a sub-optimal heuristic search strategies.

Ittycheriah and Roukos (2005) trained a dis-



criminative model on a corpus of ten thousand
word aligned Arabic-English sentence pairs that
outperformed a GIZA++ baseline. As with other
approaches, they proposed a model which didn’t
allow a tractably optimal solution and thus had to
resort to a heuristic beam search. They employed
a log-linear model to learn the observation proba-
bilities, while using a fixed transition distribution.
Our CRF model allows both the observation and
transition components of the model to be jointly
optimised from the corpus.

6 Further work

The results presented in this paper were evaluated
in terms of AER. While a low AER can be ex-
pected to improve end-to-end translation quality,
this is may not necessarily be the case. There-
fore, we plan to assess how the recall and preci-
sion characteristics of our model affect translation
quality. The tradeoff between recall and precision
may affect the quality and number of phrases ex-
tracted for a phrase translation table.

7 Conclusion

We have presented a novel approach for induc-
ing word alignments from sentence aligned data.
We showed how conditional random fields could
be used for word alignment. These models al-
low for the use of arbitrary and overlapping fea-
tures over the source and target sentences, making
the most of small supervised training sets. More-
over, we showed how the CRF’s inference and es-
timation methods allowed for efficient processing
without sacrificing optimality, improving on pre-
vious heuristic based approaches.

On both French-English and Romanian-English
we showed that many highly predictive features
can be easily incorporated into the CRF, and
demonstrated that with only a few hundred word-
aligned training sentences, our model outperforms
the generative Model 4 baseline. When no features
are extracted from the sentence aligned corpus our
model still achieves a low error rate. Furthermore,
when we employ features derived from Model 4
alignments our CRF model achieves the highest
reported results on both data sets.
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Abstract

In this paper we investigate Chinese-
English name transliteration usitegmpa-
rable corpora, corpora where texts in the
two languages deal in some of the same
topics — and therefore share references
to named entities — but are not transla-
tions of each other. We present two dis-
tinct methods for transliteration, one ap-
proach using phonetic transliteration, and
the second using the temporal distribu-
tion of candidate pairs. Each of these ap-
proaches works quite well, but by com-
bining the approaches one can achieve
even better results. We then propose a
novel score propagation method that uti-
lizes the co-occurrence of transliteration
pairs within document pairs. This prop-
agation method achieves further improve-
ment over the best results from the previ-
ous step.

I ntroduction

{t aot ao, czhai }@s. ui uc. edu

comparable stories across the three papeisle
wish to use this expectation to leverage translit-
eration, and thus the identification of named enti-
ties across languages. Our idea is that the occur-
rence of a cluster of names in, say, an English text,
should be useful if we find a cluster of what looks
like the same names in a Chinese or Arabic text.

An example of what we are referring to can be
found in Figure 1. These are fragments of two
stories from the June 8, 2001 Xinhua English and
Chinese newswires, each covering an international
women'’s badminton championship. Though these
two stories are from the same newswire source,
and cover the same event, they aoktranslations
of each other. Still, not surprisingly, a lot of the
names that occur in one, also occur in the other.
Thus (Camilla) Martin shows up in the Chinese
version as® F & ma-er-ting; Judith Meulendijks
is F - Bl # yu mo-lun-di-ke-si; and Mette
Sorensen is i - Z{tFHmai su-lun-sen. Several
other correspondences also occur. While some of
the transliterations are “standard” — thus Martin
is conventionally transliterated a$ /&% ma-er-
ting — many of them were clearly more novel,
though all of them follow the standard Chinese

As part of a mprg ger?gral. project on.mult|l|n- conventions for transliterating foreign names.
gual named entity identification, we are interested

in the problem of name transliteration across lan- These sample documents illustrate an important
guages that use different scripts. One particular ispoint: if a document in language; has a set of
sue is the discovery of named entities in “comparanhames, and one finds a documenLincontaining
ble” texts in multiple languages, where by compa-a set of names that look as if they could be translit-
rable we mean texts that are about the same topi€rations of the names in the; document, then
but arenot in general translations of each other.this should boost one’s confidence that the two sets
For example, if one were to go through an Englishof names are indeed transliterations of each other.
Chinese and Arabic newspaper on the same dayVe will demonstrate that this intuition is correct.

it is likely that the more important international

events in various topics such as politics, business,

science and sports, would each be covered in each *Many names, particularly of organizations, may be trans-
of the newspapers. Names of the same person@!,ted rather than transliterated; the transliterationhoettwe
locations and so forth — which are oftérandit- discuss here obviously will not account for such casesghou

_ the time correlation and propagation methods we discugs wil
erated rather than translated — would be found instill be useful.
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Dai Yun Nips World No. 1_Martinto Shake off Olympic our work differs from this work in that we use
Shadow ... In the day’s other matches, second seed Zhou N&omparable corpora (in particular, news data) and

overwhelmed Ling Wan Ting of Hong Kong, China 11-4, 11- |ayerage the time correlation information naturally
4, Zhang Ning defeat Judith Meulendijk$ Netherlands 11- available in comparable corpora.

2, 11-9 and third seed Gong Ruina took 21 minutes to elimi- . . . .
nate Tine Rasmusseri Denmark 11-1, 11-1, enabling China 3 Chinese Trandliteration with

to claim five quarterfinal places in the women’s singles. Compar able Cor pora
HEFREBRIEZEEZT HHEF AE  \We assume that we have comparable corpora, con-
- SRy S GRS AT P EALBIME . gisting of newspaper articles in English and Chi-
SEHHTRABSUUATILIRBAZET  qege from the same day, or almost the same day. In
B - SnAPRSAR, T AE B LIL2MILORIR S = B oyr experiments we use data from the English and

T BRI R RAET F BLLLAMILL LR BE T Chinese stories from the Xinhua News agency for
TR T E b about 6 months of 2002.We assume that we have

. ) . . identified names for persons and locations—two
Figure 1: Sample from two stories about an inter- .
. , . . ; types that have a strong tendency to be translit-
national women’s badminton championship.

erated wholly or mostly phonetically—in the En-

glish text; in this work we use the named-entity

2 PreviousWork recognizer described in (Li et al., 2004), which
is based on the SNoW machine learning toolkit

In previous work on Chinese named-entity (Carlson et al., 1999).

transliteration — e.g. (Meng et al., 2001; Gao  1q perform the transliteration task, we propose

et al., 2004), the problem has been cast as thge following general three-step approach:
problem of producing, for a given Chinese name,

an English equivalent such as one might need in 1. Given an English name, identify candi-
a machine translation system. For example, for  date Chinese character n-grams as possible
the name#t - g B ¥ fiwel wei-lian-mu-si, one transliterations.
would like to arrive at the English naméenus)
Williams. Common approaches include source- 2. Score each candidate based on how likely the
channel methods, following (Knight and Graehl, candidate is to be a transliteration of the En-
1998) or maximum-entropy models. glish name. We propose two different scoring
Comparable corpora have been studied exten methods. The first involves phonetic scor_ing,
sively in the literature (e.g.,(Fung, 1995: Rapp, and the §econd uses the. frequency _proflle of
1995; Tanaka and lwasaki, 1996; Franz et al., (he candidate pair over time. We will show
1998; Ballesteros and Croft, 1998; Masuichi etal., ~ that each of these approaches works quite
2000; Sadat et al., 2003)), but transliteration in the ~ Well, but by combining the approaches one
context of comparable corpora has not been well ~ ¢an achieve even better results.
addressed. 3
The general idea of exploiting frequency corre-
lations to acquire word translations from compara-
ble corpora has been explored in several previous
studies (e.g., (Fung, 1995; Rapp, 1995; Tanaka
and Iwasaki, 1996)).Recently, a method based ofThe intuition behind the third step is the following.
Pearson correlation was proposed to mine wor&uppose several high-confidence name transliter-
pairs from comparable corpora (Tao and Zhaiation pairs occur in a pair of English and Chi-
2005), an idea similar to the method used in (Kaynese documents. Intuitively, this would increase
and Roscheisen, 1993) for sentence alignment. Iour confidence in the other plausible translitera-
our work, we adopt the method proposed in (Tacion pairs in the same document pair. We thus pro-
and Zhai, 2005) and apply it to the problem ofpose a score propagation method to allow these
transliteration. We also study several variations ohigh-confidence pairs to propagate some of their
the similarity measures.

. Propagate scores of all the candidate translit-
eration pairs globally based on their co-
occurrences in document pairs in the compa-
rable corpora.

Mini i . f lili | b 2pvailable from the LDC via the English Gigaword
Ining trans |t.erat|.0ns rom multi |n_gua we (LDC2003T05) and Chinese Gigaword (LDC2003T09) cor-
pages was studied in (Zhang and Vines, 2004)pora.
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scores to other co-occurring transliteration pairsof the English phone string. For training data we
As we will show later, such a propagation strat-have a small list of 721 names in Roman script and
egy can generally further improve the translitera-their Chinese equivaledt.Pronunciations for En-

tion accuracy; in particular, it can further improve glish words are obtained using the Festival text-to-
the already high performance from combining thespeech system (Taylor et al., 1998); for Chinese,
two scoring methods. we use the standard pinyin transliteration of the
31 Candidate Selection characters. English-Chinese pairs in our training

, , _ . dictionary were aligned using the alignment algo-
The English named entity candidate selection proziip,  from (Kruskal, 1999), and a hand-derived
cess was already described above. Candidate Chiz, ot 21 rules-of-thumb: for example, we have

nese transliterations are generated by consultingjos that encode the fact that Chinese /If can cor-
a list of characters that are frequently used fof g0 to English /t/, /n/ or /er/; and that Chinese
transliterating foreign names. As discussed elsefW/ may be used to represent /v/. Given that there
where (Sproat et al., 1996), a subset of a few hung e qyer 400 syllables in Mandarin (not count-

dred characters (oqt of several th_ousa_nd) tent_:ls lmg tone) and each of these syllables can match
be used.overwh'elmlngly fortransllt_eratlng foreign large number of potential English phone spans,
names into Chinese. We use a list of 495 suchy,iq js clearly not enough training data to cover all
characters, derived from various online dictionar-y,o parameters, and so we use Good-Turing esti-
ies. A sequence of three or more characters fromy 4ion to estimate probabilities for unseen corre-
the listis taken as a possible name. If the charactet,,jences. Since we would like to filter implau-

- " oceurs, which is frequently used to representgjy o rangjiteration pairs we are less lenient than
the space between parts of an English name, theg, 4 estimation techniques in that we are will-

question is pot in the Ii§t of “foreigp" characte.rs. glish phone span to correspond to a Chinese sylla-
Armed with the English and Chinese candidatey|e the initial phone of the English span must have

lists, we then consider the pairing of every En-peen seen in the training data as corresponding to
glish candidate with every Chinese candidate. Obg,q initial of the Chinese syllable some minimum

viously it would be impractical to do this for all of ,mper of times. For consonant-initial syllables
the candidates generated for, say, an entire yeafe set the minimum to 4. We omit further details
we consider as plausible pairings those candidates; oy estimation technique for lack of space. This
that occur within a day of each other in the tWo phonetic correspondence model can then be used

corpora. to score putative transliteration pairs.
3.2 Candidate scoring based on 3.3 Candidate Scoring based on Frequency
pronunciation Correlation

We adopt a source-channel model for scoringNames of the same entity that occur in different
English-Chinese transliteration pairs. In generallanguages often have correlated frequency patterns
we seek to estimat®(e|c), wheree is a word in  due to common triggers such as a major event.
Roman script, and is a word in Chinese script. Thus if we have comparable news articles over a
Since Chinese transliteration is mostly based omufficiently long time period, it is possible to ex-
pronunciation, we estimat®(¢’|c'), wheree’ is  ploit such correlations to learn the associations of
the pronunciation of andc’ is the pronunciation names in different languages. The idea of exploit-
of c. Again following standard practice, we de- ing frequency correlation has been well studied.
compose the estimate d?(¢/|c’) as P(¢/|c/) = (See the previous work section.) We adopt the
[1; P(ei|c}). Here, ¢l is theith subsequence of method proposed in (Tao and Zhai, 2005), which

the English phone string, and is theith subse- ———— _ _
3The LDC provides a much larger list of transliterated

quence of the Chinese phone string. Since ChlC:hinese-Eninsh names, but we did not use this here for two

nese transliteration attempts to match the syllablereasons. First, we have found it it be quite noisy. Secondly,
sized characters to equivalent sounding spans dfe were interested in seeing how well one could do with a

the Enalish | fix theto b labl limited resource of just a few hundred names, which is a more
e English language, we fix thgto be syllables, realistic scenario for languages that have fewer resotinees

and let thez; range over all possible subsequencegnglish and Chinese.
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works as follows: We pool all documents in a sin- Ca °4 (65, ¢)

gle day to form a large pseudo-document. Then, / ©s: Cﬂ___

for each transliteration candidate (both Chinese

and English), we compute its frequency in each (e cy @ )
of those pseudo-documents and obtain a raw fre- oo o n
quency vector. We further normalize the raw fre- (5. C5)

quency vector so that it becomes a frequency disgigure 2: Graph representing transliteration pairs
tribution over all the time points (days). In order gnd cooccurence relations.

to compute the similarity between two distribution

vectors, The Pearson correlation coefficient was

used in (Tao and Zhai, 2005); here we also consid-

ered two other commonly used measuressine  Updating the scores of all the transliteration pairs.

(Salton and McGill, 1983), andensen-Shannon n
divergence (Lin, 1991), though our results show w{® =a x w* " + (1 —a)x Y @{"V x P(ji)),
that Pearson correlation coefficient performs bet- g7hi=1
ter than these two other methods. (k)
wherew,”’ is the new score of the paie;, ¢;)

. . . ~1) . .
after an iteration, Whllewgk ) is its old score

before updating;ac € [0,1] is a parameter to

In both scoring methods described above, scoring%ontrOI the overall amount of propagation (when

of each candidate transliteration pairiglepen- o= 1, no propa_lgatlon OCCWSP.(] i) is the con-
dent of the other. As we have noted documentdmonal probability of propagating a score from
pairs that contain lots of plausible transliteration"CY€ (€5 ¢ ;) 10 node(es, ¢;, w).

: . . We estimateP(j|i) in two different ways: 1)
pairs should be viewed as more plausible docu- :
o . . o The number of cooccurrences in the whole collec-
ment pairs; at the same time, in such a situation w

should also trust the putative transliteration pairsﬁon (Denote as CO)(jli) = > Clig")’ where

more. Thus these document pairs and translitera=' (4, j) is the cooccurrence count ¢¢;, c;) and
tion pairs mutually “reinforce” each other, and this (¢;, ¢;); 2) A mutual information-based method
can be exploited to further optimize our translit- (Denote as MI).P(j|i) = <22&d) _ \where

eration scores by allowing transliteration pairs to Yy MIG)
4 J P M (i, ) is the mutual information ofe;, ¢;) and

propagate their scores to each other according tf)ej, ¢;). As we will show, the CO method works
their co-occurrence strengths. better. Note that the transition probabilities be-
Formally, suppose the current generation ofween indirect neighbors are always 0. Thus prop-
transliteration scores afe;, c;,w;) i = 1,...,n,  agation only happens between direct neighbors.
where(e;, c;) is a distinct pair of English and Chi-  This formulation is very similar to PageRank,
nese names. Note that although for @ny j, we  a link-based ranking algorithm for Web retrieval
have(e;, c;) # (ej,¢;), itis possible that; = e¢;  (Brin and Page, 1998). However, our motivation
or¢; = c;j for somei # j. w; is the transliteration s propagating scores to exploit cooccurrences, so
score of(e;, c;). we do not necessarily want the equation to con-
These pairs along with their co-occurrence reverge. Indeed, our results show that although the

lation computed based on our comparable coritig| jterations always help improve accuracy, too
pora can be formally represented by a graph as

shown in Figure 2. In such a graph, a node repreMany iterations actually would decrease the per-
sents(e;, ¢;, w; ). An edge betweete;, c;,w;) and  formance.

(ej,¢j,w;) is constructed iff(e;, ;) and (e;, ;) )

co-occur in a certain document pdi;, C,), i.e. 4 Evaluation

there exists a document pdit;, C;), such that . .
cie; € B, andeic; € pg(t_t Gtizlen a node We use a comparable English-Chinese corpus to

(e;,¢;,w;), we refer to all its directly-connected €valuate our methods for Chinese transliteration.
nodes as its “neighbors”. The documents do notVe take one day’s worth of comparable news arti-

appear explicitly in the graph, but they implicitly i i i i
aﬁect the graph's topology and the weight of eachCIes (234 Chinese stories and 322 English stories),

edge. Our idea of score propagation can now bgenerate about 600 English names with the entity
formulated as the following recursive equation forrecognizer (Li et al., 2004) as described above, and

3.4 Score Propagation
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find potential Chinese transliterations also as pre- *paris R 26 A pei-lei-si 3.51

viously described. We generated 627 Chinese can-iraq {25 047 yi-la-ke 3.74
didates. In principle, all thesg00 x 627 pairs are  Staub LR g is] si-ta-bo 4.45
potential transliterations. We then apply the pho- canada  fi& X jia-na-da 4.85
netic and time correlation methods to score and belfast NipgHids  bei-er-fa-si-te 4.90
rank all the candidate Chinese-English correspon- fischer EIE- i fei-she-er 4.91
dences. philippine FE# = fei-lu-bin 4.97

To evaluate the proposed transliteration meth- 1€sotho  3&Z4E lai-suo-two  5.12
ods quantitatively, we measure the accuracy of the *tirana gt tye-lu-na 5.15
ranked list by Mean Reciprocal Rank (MRR), a freeman  #22 fu-li-man 5.26

measture co_mmonl_y used in information remevalTabIe 1: Ten highest-scoring matches for the Xin-
when there is precisely one correct_ answer (Ka_nﬁua corpus for 8/13/01. The final column is the
tor and_ Voorhees, 2000). The reciprocal rank IS—log P estimate for the transliteration. Starred
the reciprocal of the rank of the correct answer._ . - :

: : entries are incorrect.
For example, if the correct answer is ranked as the
first, the reciprocal rank would bke0, whereas if
it is ranked the second, it would 5, and SO core names it is 0.89. Thus on average, the cor-
forth. To evaluate the results for a set of Englishyect answer, if it is included in our candidate list,
names, we take the mean of the reciprocal rank of ranked mostly as the first one.

each English name.

We attempted to create a complete set of an4.2 Frequency correlation
swers for all the English names in our test set,
but a small number of English names do not seem
to have any standard transliteration according to
the resources that we consulted. We ended up Pear.son 0.1360 0.3643
with a list of about 490 out of the 600 English Cosme 0.1141 0.3015
names judged. We further notice that some an- JS-div 0.0785 0.2016
swers (about 20%) are not in our Chinese canditgpe 2: MRRs of the frequency correlation meth-
date set. This could be due to two reasons: (1) Thgyg.
answer does not occur in the Chinese news articles

we look at. (2) The answer is there, but our candi- o
We proposed three similarity measures for the

date generation method has missed it. In order t? lati thod. i the Cosi
see more clearly how accurate each method is fof cauency correfation metnod, 1.€., the Losine,
earson coefficient, and Jensen-Shannon diver-

ranking the candidates, we also compute the MRR : .
for the subset of English names whose translitergence' In Table 2, we show their MRRS.' Given
that the only resource the method needs is compa-

ation answers are in our candidate list. We dis- ble text d i Hiciently |
tinguish the MRRs computed on these two sets ofdD’e text documents over a sutliciently fong pe-

English names as “AlIMRR” and “CoreMRR". riod, thesfe results are quite encouraging. qu ex-
. . ample, with Pearson correlation, when the Chinese
Below we first discuss the results of each of the . . . o .
transliteration of an English name is included in
two methods. We then compare the two methods . . .
. . our candidate list, the correct answer is, on aver-
and discuss results from combining the two meth-
ods age, ranked at the 3rd place or better. The results
' thus show that the idea of exploiting frequency
correlation does work. We also see that among
the three similarity measures, Pearson correlation
We show sample results for the phonetic scoringperforms the best; it performs better than Cosine,
method in Table 1. This table shows the 10 high-which is better than JS-divergence.
est scoring transliterations for each Chinese char- Compared with the phonetic correspondence
acter sequence based on all texts in the Chineseethod, the performance of the frequency correla-
and English Xinhua newswire for the 13th of Au- tion method is in general much worse, which is not
gust, 2001. 8 out of these 10 are correct. For alkurprising, given the fact that terms may be corre-

the English names the MRR is 0.3, and for thelated merely because they are topically related.

| Similarity | AIMRR | CoreMRR |

4.1 Phonetic Correspondence
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4.3 Combination of phonetic correspondence  exploit the discriminative power provided by the

and frequency correlation phonetic correspondence scores and this is shown
to bring in additional benefit, giving the best per-
‘ Method ‘ AIVMRR ‘ CoreMRR\ formance among all the methods.
Phonetic 0.2999 0.8895
Freq 0.1360 0.3643 4.4 Error Ana]ysis
Freg+PhoneticFilte 0.3062 0.9083
Freg+PhoneticScore 0.3194 0.9474 From the results above, we see that the MRRs for

the core English names are substantially higher
_ than those for all the English names. This means
ing methods. that our methods perform very well whenever we
have the answer in our candidate list, but we have
Since the two methods exploit Complementarya|80 missed the answers for many English names.
resources, it is natural to see if we can improvel he missing of an answer in the candidate list is
performance by combining the two methods. In-thus a major source of errors. To further under-
deed, intuitively the best candidate is the one thastand the upper bound of our method, we manu-
has a good pronunciation alignment as well as &lly add the missing correct answers to our can-
correlated frequency distribution with the Englishdidate set and apply all the methods to rank this
name. We evaluated two strategies for combiningiugmented set of candidates. The performance is
the two methods. The first strategy is to use théeported in Table 4 with the corresponding perfor-
phonetic model to filter out (clearly impossible) mance on the original candidate set. We see that,

candidates and then use the frequency correlation

Table 3: Effectiveness of combining the two scor-

method to rank the candidates. The second is t Method ALLMRR
combine the scores of these two methods. Since Original | Augmented
W 2 phonet P Freq 0.1360 | 0.3455

score by dividing all scores by the maximum score
so that the maximum normalized value is also 1.
We then take the average of the two scores anc
rank the candidates based on their average scoresgple 4: MRRs on the augmented candidate list.
Note that the second strategy implies the applica-

tion of the first strategy.

The results of these two combination strategiess expected, the performance on the augmented
are shown in Table 3 along with the results of thecandidate list, which can be interpreted as an up-
two individual methods. We see that both com-per bound of our method, is indeed much better,
bination strategies are effective and the MRRs okuggesting that if we can somehow improve the
the combined results are all better than those of theandidate generation method to include the an-
two individual methods. Itis interesting to see thatswers in the list, we can expect to significantly im-
the benefit of applying the phonetic correspon-prove the performance for all the methods. This
dence model as a filter is quite significant. Indeedis clearly an interesting topic for further research.
although the performance of the frequency correThe relative performance of different methods on
lation method alone is much worse than that of thehis augmented candidate list is roughly the same
phonetic correspondence method, when workingis on the original candidate list, except that the
on the subset of candidates passing the phoneti€¢req+PhoneticFilter” is slightly worse than that
filter (i.e., those candidates that have a reasonablgf the phonetic method alone, though it is still
phonetic alignment with the English name), it canmuch better than the performance of the frequency
outperform the phonetic correspondence methodtorrelation alone. One possible explanation may
This once again indicates that exploiting the fre-be that since these names do not necessarily oc-
quency correlation can be effective. When com-cur in our comparable corpora, we may not have
bining the scores of these two methods, we nosufficient frequency observations for some of the
only (implicitly) apply the phonetic filter, but also names.

Freg+PhoneticFilten 0.3062 0.6232
, Freg+PhoneticScore 0.3194 0.7338

78



Method AlIMRR CoreMRR

int. | CO | MI int. | CO | MI
Freg+PhoneticFilten 0.3171| 0.3255| 0.3255| 0.9058| 0.9372| 0.9372
Freg+PhoneticScore 0.3290| 0.3373| 0.3392| 0.9422| 0.9659| 0.9573

Table 5: Effectiveness of score propagation.

4.5 Experimentson score propagation 0.98

To demonstrate that score propagation can further > | I e

. . . . 0.94
help transliteration, we use the combination scores 002 |
in Table 3 as the initial scores, and apply our prop- 6‘9 I
agation algorithm to iteratively update them. V;ge 0.88
remove the entries when they do not co-occur with .. |
others. There are 25 such English name caBdi- yg, | apnazo.0, i
dates. Thus, the initial scores are actually slightly g, | ;E#:;ggévcﬁ e |
different from the values in Table 3. We show (g!| alpha=0.95CO =
the new scores and the best propagation scores iry 7s |
Table 5. In the table, “init.” refers to the initial o.76
scores. and “CO” and “MI” stand for best scores
obtained using either the co-occurrence or mutual
information method. While both methods result
in gains, CO very slightly outperforms the Ml ap-
proach. In the score propagation process, we in-
troduce two additional parameters: the interpola-
tion parametery and the number of iteration's.  that both methods yield good results, and that even
Figure 3 and Figure 4 show the effects of thesdbetter results can be achieved by combining the
parameters. Intuitively, we want to preserve themethods. We have further showed that one can
initial score of a pair, but add a slight boost from improve upon the combined model by using rein-
its neighbors. Thus, we setvery close to 1 (0.9 forcement via score propagation when translitera-
and 0.95), and allow the system to perform 20 it-tion pairs cluster together in document pairs.
erations. In both figures, the first few iterations The work we report is ongoing. We are inves-
certainly leverage the transliteration, demonstrattigating transliterations among several language
ing that the propagation method works. Howeverpairs, and are extending these methods to Ko-
we observe that the performance drops when moreean, Arabic, Russian and Hindi — see (Tao et al.,
iterations are used, presumably due to noise intrc2006).
duced from more distantly connected nodes. Thus,

a relatively conservative approach is to choose & Acknowledgments
high « value, and run only a few iterations. Note

X ¥0
X %0

0 2 4 6 8 10 12 14 16 18 20
number of iterations

Figure 3: Propagation: Core items

_ ' This work was funded by Dept. of the Interior con-
finally, that the CO method seems to be more Stafract NBCHC040176 (REFLEX). We also thank
ble than the MI method. three anonymous reviewers for ACLO6.
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Abstract

We present a novel method for extract-
ing parallel sub-sentential fragments from
comparable, non-parallel bilingual cor-
pora. By analyzing potentially similar
sentence pairs using a signal processing-
inspired approach, we detect which seg-
ments of the source sentence are translated
into segments in the target sentence, and
which are not. This method enables us
to extract useful machine translation train-
ing data even from very non-parallel cor-
pora, which contain no parallel sentence
pairs. We evaluate the quality of the ex-
tracted data by showing that it improves
the performance of a state-of-the-art sta-
tistical machine translation system.

1 Introduction

Recently, there has been a surge of interest in
the automatic creation of parallel corpora. Sev-
eral researchers (Zhao and Vogel, 2002; Vogel,
2003; Resnik and Smith, 2003; Fung and Cheung,
2004a; Wu and Fung, 2005; Munteanu and Marcu,
2005) have shown how fairly good-quality parallel
sentence pairs can be automatically extracted from
comparable corpora, and used to improve the per-
formance of machine translation (MT) systems.
This work addresses a major bottleneck in the de-
velopment of Statistical MT (SMT) systems: the
lack of sufficiently large parallel corpora for most
language pairs. Since comparable corpora exist in
large quantities and for many languages — tens of
thousands of words of news describing the same
events are produced daily — the ability to exploit
them for parallel data acquisition is highly benefi-
cial for the SMT field.
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Comparable corpora exhibit various degrees of
parallelism. Fung and Cheung (2004a) describe
corpora ranging from noisy parallel, to compara-
ble, and finally to very non-parallel. Corpora from
the last category contain “... disparate, very non-
parallel bilingual documents that could either be
on the same topic (on-topic) or not”. This is the
kind of corpora that we are interested to exploit in
the context of this paper.

Existing methods for exploiting comparable
corpora look for parallel data at the sentence level.
However, we believe that very non-parallel cor-
pora have none or few good sentence pairs; most
of their parallel data exists at the sub-sentential
level. As an example, consider Figure 1, which
presents two news articles from the English and
Romanian editions of the BBC. The articles re-
port on the same event (the one-year anniversary
of Ukraine’s Orange Revolution), have been pub-
lished within 25 minutes of each other, and express
overlapping content.

Although they are “on-topic”, these two docu-
ments are non-parallel. In particular, they contain
no parallel sentence pairs; methods designed to ex-
tract full parallel sentences will not find any use-
ful data in them. Still, as the lines and boxes from
the figure show, some parallel fragments of data
do exist; but they are present at the sub-sentential
level.

In this paper, we present a method for extracting
such parallel fragments from comparable corpora.
Figure 2 illustrates our goals. It shows two sen-
tences belonging to the articles in Figure 1, and
highlights and connects their parallel fragments.

Although the sentences share some common
meaning, each of them has content which is not
translated on the other side. The English phrase
reports the BBC’s Helen Fawkes in Kiev, as well

Sydney, July 200602006 Association for Computational Linguistics
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x " —1 Ukraine marks|Orange Reuolutlnn
Ucraina: un an de I4 Revolutia Portocalie)

Tens of thausands of
Ukrainians are gathering in
Kiev to mark the first
anniversary of the mass
street protests known as the
Orange Revolution.

B Trimite unui

Ucraina aniverseaza un an
de la protestele
pro-democratie de dupa
alegerile de anul trecut,
cunoscute acum drept
Revolutia Portocalie.
Demonstratiile au izbucnit in «
urma anuntarii rezultatelor § support of Viktor Yushchenko,
alegerilor prezidentiale si au B the losing candidats in a rigged
durat trei saptamani, 4 presidential election. >
determinand in cele din urma venirea la putere a liderului
opozitiei, Viktor Iuscenko.

Aniversarea de azi este marcats printr-un discurs al
presedintelui luscenka si un cancert in aer liber.

Piata Independentei din Kiev e impodobita din nou in
portocaliu.[Aici au inceput protestele in masa de acum Deeart.
Sondajele de opinia arat3 c3 multi ucrainiel dezam3ait

de lipsa de succes a noii puteri.|Promisiunile nu au fost tinute|

The demonstrations were in

Mr ¥ushchenko - now president - is due to address the nation
on a stage in Independence Square

Ar\alvsts say many expectations in 2004 were unrsalistically
arr[some key pledges have not been realised

BUt President Yushchenko has Urged people to focus on the
past year's achiewvements, which, he says, include greater
democracy [Teports the BEC's Helen Fawkes in Kiev.

Day of Freedom

Independence Square - known in Ukrainian as Maidan - has
turned orange once again,[3s people gather in the square -

many of them wearing scarves or waving flags in the bright

Printre cei aflati in Piata Independentei din Kiev se numard si
cdtiva care sunt dispusi s3 fie rabd3tori:

"Nu m¥ asteptam s se intample prea multe intr-un an i imi
dau seama c presedintele Iuscenko are nevoie de mai mul
timp ca s isi pund ideile in aplicare". colour of the revolution.

4 m Just like last year it is a freezing cold day|in the capital, our
De altfel, vorbind inaintea aniversdrii,|presedintele Iugenko a Y el ki H
2 Orrespondent says,
cerut ucrainienilor s3 se concentreze pe succesele anului
trecut, care, printre altele, au adus mai mult3 democratie.
Astdzi, in ziua aniversari[este la fel de frig ca si anul trecut

iar z&pada s-a asternut pe alocuri.

Figure 1: A pair of comparable, non-parallel documents

But president Yuschenko has urged people to focus on the past year's achievements, which, he says, include greater democracy, reports the BBC’s Helen Fawkes in Kiev.
<

»
De altfel, vorbind inaintea aniversarii, presedintele lusenko a cerut ukrainienilor sa se t pe le anului trecut, care, printre altele, au adus mai multa democratie.
president Yuschenko has uged to focus onthe past year’s achievements, wh/ch among other things have brought more democracy

krainian.
Besides, speaking before the anniversary ukrainians

Figure 2: A pair of comparable sentences.

as the Romanian one De altfel, vorbind inaintea
aniversarii have no translation correspondent, ei-
ther in the other sentence or anywhere in the whole
document. Since the sentence pair contains so
much untranslated text, it is unlikely that any par-
allel sentence detection method would consider it
useful. And, even if the sentences would be used
for MT training, considering the amount of noise
they contain, they might do more harm than good
for the system’s performance. The best way to
make use of this sentence pair is to extract and use
for training just the translated (highlighted) frag-
ments. This is the aim of our work.

Identifying parallel subsentential fragments is
a difficult task. It requires the ability to recog-
nize translational equivalence in very noisy en-
vironments, namely sentence pairs that express
different (although overlapping) content. How-
ever, a good solution to this problem would have a
strong impact on parallel data acquisition efforts.
Enabling the exploitation of corpora that do not
share parallel sentences would greatly increase the
amount of comparable data that can be used for
SMT.

2 Finding Parallel Sub-Sentential
Fragmentsin Comparable Corpora

2.1 Introduction

The high-level architecture of our parallel frag-
ment extraction system is presented in Figure 3.

The first step of the pipeline identifies docu-
ment pairs that are similar (and therefore more
likely to contain parallel data), using the Lemur
information retrieval toolkit® (Ogilvie and Callan,
2001); each document in the source language is
translated word-for-word and turned into a query,
which is run against the collection of target lan-
guage documents. The top 20 results are retrieved
and paired with the query document. We then take
all sentence pairs from these document pairs and
run them through the second step in the pipeline,
the candidate selection filter. This step discards
pairs which have very few words that are trans-
lations of each other. To all remaining sentence
pairs we apply the fragment detection method (de-
scribed in Section 2.3), which produces the output
of the system.

We use two probabilistic lexicons, learned au-

*htt p: // ww 2. cs. crru. edu/ $\ si nl errur
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Figure 3: A Parallel Fragment Extraction System

tomatically from the same initial parallel corpus.
The first one, GIZA-Lex, is obtained by running
the GIZA++2 implementation of the IBM word
alignment models (Brown et al., 1993) on the ini-
tial parallel corpus. One of the characteristics of
this lexicon is that each source word is associated
with many possible translations. Although most of
its high-probability entries are good translations,
there are a lot of entries (of non-negligible proba-
bility) where the two words are at most related. As
an example, in our GIZA-Lex lexicon, each source
word has an average of 12 possible translations.
This characteristic is useful for the first two stages
of the extraction pipeline, which are not intended
to be very precise. Their purpose is to accept most
of the existing parallel data, and not too much of
the non-parallel data; using such a lexicon helps
achieve this purpose.

For the last stage, however, precision is
paramount. We found empirically that when us-
ing GIZA-Lex, the incorrect correspondences that
it contains seriously impact the quality of our re-
sults; we therefore need a cleaner lexicon. In addi-
tion, since we want to distinguish between source
words that have a translation on the target side and
words that do not, we also need a measure of the
probability that two words are not translations of
each other. All these are part of our second lexi-
con, LLR-Lex, which we present in detail in Sec-
tion 2.2. Subsequently, in Section 2.3, we present
our algorithm for detecting parallel sub-sentential
fragments.

2.2 Using Log-Likelihood-Ratios to Estimate
Word Trandation Probabilities

Our method for computing the probabilistic trans-
lation lexicon LLR-Lex is based on the the Log-

2http: // ww. fj och. coml Gl ZA++. ht
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Likelihood-Ratio (LLR) statistic (Dunning, 1993),
which has also been used by Moore (2004a;
2004b) and Melamed (2000) as a measure of
word association. Generally speaking, this statis-
tic gives a measure of the likelihood that two sam-
ples are not independent (i.e. generated by the
same probability distribution). We use it to es-
timate the independence of pairs of words which
cooccur in our parallel corpus.

If source word f and target word e are indepen-
dent (i.e. they are not translations of each other),
we would expect that p(e|f) = p(e|=f) = p(e),
i.e. the distribution of e given that f is present
is the same as the distribution of e when f is not
present. The LLR statistic gives a measure of the
likelihood of this hypothesis. The LLR score of a
word pair is low when these two distributions are
very similar (i.e. the words are independent), and
high otherwise (i.e. the words are strongly associ-
ated). However, high LLR scores can indicate ei-
ther a positive association (i.e. p(e|f) > p(e|=f))
or a negative one; and we can distinguish between
them by checking whether p(e, f) > p(e)p(f).

Thus, we can split the set of cooccurring word
pairs into positively and negatively associated
pairs, and obtain a measure for each of the two as-
sociation types. The first type of association will
provide us with our (cleaner) lexicon, while the
second will allow us to estimate probabilities of
words not being translations of each other.

Before describing our new method more for-
mally, we address the notion of word cooc-
currence. In the work of Moore (2004a) and
Melamed (2000), two words cooccur if they are
present in a pair of aligned sentences in the parallel
training corpus. However, most of the words from
aligned sentences are actually unrelated; therefore,
this is a rather weak notion of cooccurrence. We
follow Resnik et. al (2001) and adopt a stronger
definition, based not on sentence alignment but
on word alignment: two words cooccur if they
are linked together in the word-aligned parallel
training corpus. We thus make use of the signifi-
cant amount of knowledge brought in by the word
alignment procedure.

We compute LLR(e, f), the LLR score for
words e and f, using the formula presented by
Moore (2004b), which we do not repeat here due
to lack of space. We then use these values to
compute two conditional probability distributions:
P*(e|f), the probability that source word f trans-
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Figure 4: Translated fragments, according to the lexicon.

lates into target word e, and P~ (e|f), the proba-
bility that f does not translate into e. We obtain
the distributions by normalizing the LLR scores
for each source word.

The whole procedure follows:

e Word-align the parallel corpus. Following
Och and Ney (2003), we run GIZA++ in both
directions, and then symmetrize the align-
ments using the refined heuristic.

Compute all LLR scores. There will be an
LLR score for each pair of words which are
linked at least once in the word-aligned cor-
pus

Classify all LLR(e, f) as either LLR™ (e, f)
(positive association) if p(e, f) > p(e)p(f),
or LLR™ (e, f) (negative association) other-
wise.

For each f, compute the normalizing factors

> LLR*(e, f)and > _LLR (e, f).

Divide all LLR™ (e, f) terms by the cor-
responding normalizing factors to obtain

Pt (elf).

Divide all LLR™ (e, f) terms by the cor-
responding normalizing factors to obtain

P~ (e|f).

In order to compute the P(f|e) distributions,
we reverse the source and target languages and re-
peat the procedure.

As we mentioned above, in GIZA-Lex the aver-
age number of possible translations for a source
word is 12. In LLR-Lex that average is 5, which is
a significant decrease.

2.3 Detecting Parallel Sub-Sentential
Fragments

Intuitively speaking, our method tries to distin-
guish between source fragments that have a trans-
lation on the target side, and fragments that do not.
In Figure 4 we show the sentence pair from Fig-
ure 2, in which we have underlined those words of
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each sentence that have a translation in the other
sentence, according to our lexicon LLR-Lex. The
phrases “to focus on the past year’s achievements,
which,” and “sa se concentreze pe succesele an-
ului trecut, care,” are mostly underlined (the lexi-
con is unaware of the fact that “achievements” and
“succesele” are in fact translations of each other,
because “succesele” is a morphologically inflected
form which does not cooccur with “achievements”
in our initial parallel corpus). The rest of the
sentences are mostly not underlined, although we
do have occasional connections, some correct and
some wrong. The best we can do in this case is to
infer that these two phrases are parallel, and dis-
card the rest. Doing this gains us some new knowI-
edge: the lexicon entry (achievements, succesele).

We need to quantify more precisely the notions
of “mostly translated” and “mostly not translated”.
Our approach is to consider the target sentence as
a numeric signal, where translated words corre-
spond to positive values (coming from the P+ dis-
tribution described in the previous Section), and
the others to negative ones (coming from the P~
distribution). We want to retain the parts of the
sentence where the signal is mostly positive. This
can be achieved by applying a smoothing filter to
the signal, and selecting those fragments of the
sentence for which the corresponding filtered val-
ues are positive.

The details of the procedure are presented be-
low, and also illustrated in Figure 5. Let the Ro-
manian sentence be the source sentence ', and the
English one be the target, E. We compute a word
alignment FF — FE by greedily linking each En-
glish word with its best translation candidate from
the Romanian sentence. For each of the linked tar-
get words, the corresponding signal value is the
probability of the link (there can be at most one
link for each target word). Thus, if target word e
is linked to source word f, the signal value cor-
responding to e is P*(e|f) (the distribution de-
scribed in Section 2.2), i.e. the probability that e
is the translation of f.

For the remaining target words, the signal value
should reflect the probability that they are not
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Figure 5: Our approach for detecting parallel fragments. The lower part of the figure shows the source
and target sentence together with their alignment. Above are displayed the initial signal and the filtered
signal. The circles indicate which fragments of the target sentence are selected by the procedure.

translated; for this, we employ the P~ distribu-
tion. Thus, for each non-linked target word e, we
look for the source word least likely to be its non-
translation: fo = argminscp P~ (e|f). If fo ex-
ists, we set the signal value for e to —P~ (el fo);
otherwise, we set it to —1. This is the initial sig-
nal. We obtain the filtered signal by applying an
averaging filter, which sets the value at each point
to be the average of several values surrounding it.
In our experiments, we use the surrounding 5 val-
ues, which produced good results on a develop-
ment set. We then simply retain the “positive frag-
ments” of E, i.e. those fragments for which the
corresponding filtered signal values are positive.

However, this approach will often produce short
“positive fragments” which are not, in fact, trans-
lated in the source sentence. An example of this
is the fragment “, reports” from Figure 5, which
although corresponds to positive values of the fil-
tered signal, has no translation in Romanian. In
an attempt to avoid such errors, we disregard frag-
ments with less than 3 words.

We repeat the procedure in the other direction
(F — F) to obtain the fragments for f, and
consider the resulting two text chunks as parallel.
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For the sentence pair from Figure 5, our system
will output the pair:
people to focus on the past year's achievements, which, he says

sa se concentreze pe succesele anului trecut, care, printre

3 Experiments

In our experiments, we compare our fragment
extraction method (which we call FragmentEx-
tract) with the sentence extraction approach of
Munteanu and Marcu (2005) (SentenceExtract).
All extracted datasets are evaluated by using them
as additional MT training data and measuring their
impact on the performance of the MT system.

3.1 Corpora

We perform experiments in the context of Roma-
nian to English machine translation. We use two
initial parallel corpora. One is the training data
for the Romanian-English word alignment task
from the Workshop on Building and Using Par-
allel Corpora® which has approximately 1M En-
glish words. The other contains additional data

3htt p: / / www. st at nt . or g/ wpt 05/



Romanian English
Source | #articles # tokens #articles #tokens
BBC | 6k 25M | 200k 118M
Ezz | 183k 91M | 14k 8.5M

Table 1: Sizes of our comparable corpora

from the Romanian translations of the European
Union’s acquis communautaire which we mined
from the Web, and has about 10M English words.

We downloaded comparable data from three on-
line news sites: the BBC, and the Romanian news-
papers “Evenimentul Zilei” and “Ziua”. The BBC
corpus is precisely the kind of corpus that our
method is designed to exploit. It is truly non-
parallel; as our example from Figure 1 shows, even
closely related documents have few or no parallel
sentence pairs. Therefore, we expect that our ex-
traction method should perform best on this cor-
pus.

The other two sources are fairly similar, both in
genre and in degree of parallelism, so we group
them together and refer to them as the EZZ cor-
pus. This corpus exhibits a higher degree of par-
allelism than the BBC one; in particular, it con-
tains many article pairs which are literal transla-
tions of each other. Therefore, although our sub-
sentence extraction method should produce useful
data from this corpus, we expect the sentence ex-
traction method to be more successful. Using this
second corpus should help highlight the strengths
and weaknesses of our approach.

Table 1 summarizes the relevant information
concerning these corpora.

3.2 Extraction Experiments

On each of our comparable corpora, and using
each of our initial parallel corpora, we apply
both the fragment extraction and the sentence ex-
traction method of Munteanu and Marcu (2005).
In order to evaluate the importance of the LLR-
Lex lexicon, we also performed fragment extrac-
tion experiments that do not use this lexicon, but
only GIZA-Lex. Thus, for each initial parallel
corpus and each comparable corpus, we extract
three datasets: FragmentExtract, SentenceExtract,
and Fragment-noLLR. The sizes of the extracted
datasets, measured in million English tokens, are
presented in Table 2.
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Initial Source FragmentExtract SentenceExtract Fragment-noLLR

corpus

1M | BBC 0.4M 0.3M 0.8M

1M | EZZ 6M 4aM 8.1M
10M | BBC 1.3M 0.9M 2M
10M | EZZ 10M 7.9M 14.3M

Table 2: Sizes of the extracted datasets.

3.3 SMT Performance Results

We evaluate our extracted corpora by measuring
their impact on the performance of an SMT sys-
tem. We use the initial parallel corpora to train
Baseline systems; and then train comparative sys-
tems using the initial corpora plus: the Frag-
mentExtract corpora; the SentenceExtract cor-
pora; and the FragmentExtract-noLLR corpora. In
order to verify whether the fragment and sentence
detection method complement each other, we also
train a Fragment+Sentence system, on the ini-
tial corpus plus FragmentExtract and SentenceEx-
tract.

All MT systems are trained using a variant
of the alignment template model of Och and
Ney (2004). All systems use the same 2 language
models: one trained on 800 million English to-
kens, and one trained on the English side of all
our parallel and comparable corpora. This ensures
that differences in performance are caused only by
differences in the parallel training data.

Our test data consists of news articles from the
Time Bank corpus, which were translated into
Romanian, and has 1000 sentences. Transla-
tion performance is measured using the automatic
BLEU (Papineni et al., 2002) metric, on one ref-
erence translation. We report BLEU% numbers,
i.e. we multiply the original scores by 100. The
95% confidence intervals of our scores, computed
by bootstrap resampling (Koehn, 2004), indicate
that a score increase of more than 1 BLEU% is
statistically significant.

The scores are presented in Figure 6. On the
BBC corpus, the fragment extraction method pro-
duces statistically significant improvements over
the baseline, while the sentence extraction method
does not. Training on both datasets together brings
further improvements. This indicates that this cor-
pus has few parallel sentences, and that by go-
ing to the sub-sentence level we make better use
of it. On the EZZ corpus, although our method
brings improvements in the BLEU score, the sen-
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Figure 6: SMT performance results

tence extraction method does better. Joining both
extracted datasets does not improve performance;
since most of the parallel data in this corpus exists
at sentence level, the extracted fragments cannot
bring much additional knowledge.

The Fragment-noLLR datasets bring no transla-
tion performance improvements; moreover, when
the initial corpus is small (LM words) and the com-
parable corpus is noisy (BBC), the data has a nega-
tive impact on the BLEU score. This indicates that
LLR-Lex is a higher-quality lexicon than GIZA-
Lex, and an important component of our method.

4 PreviousWork

Much of the work involving comparable corpora
has focused on extracting word translations (Fung
and Yee, 1998; Rapp, 1999; Diab and Finch, 2000;
Koehn and Knight, 2000; Gaussier et al., 2004;
Shao and Ng, 2004; Shinyama and Sekine, 2004).
Another related research effort is that of Resnik
and Smith (2003), whose system is designed to
discover parallel document pairs on the Web.

Our work lies between these two directions; we
attempt to discover parallelism at the level of frag-
ments, which are longer than one word but shorter
than a document. Thus, the previous research most
relevant to this paper is that aimed at mining com-
parable corpora for parallel sentences.

The earliest efforts in this direction are those
of Zhao and Vogel (2002) and Utiyama and lsa-
hara (2003). Both methods extend algorithms de-
signed to perform sentence alignment of parallel
texts: they use dynamic programming to do sen-
tence alignment of documents hypothesized to be
similar. These approaches are only applicable to
corpora which are at most “noisy-parallel”, i.e.
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contain documents which are fairly similar, both
in content and in sentence ordering.

Munteanu and Marcu (2005) analyze sentence
pairs in isolation from their context, and clas-
sify them as parallel or non-parallel. They match
each source document with several target ones,
and classify all possible sentence pairs from each
document pair. This enables them to find sen-
tences from fairly dissimilar documents, and to
handle any amount of reordering, which makes the
method applicable to truly comparable corpora.

The research reported by Fung and Che-
ung (2004a; 2004b), Cheung and Fung (2004) and
Wu and Fung (2005) is aimed explicitly at “very
non-parallel corpora”. They also pair each source
document with several target ones and examine all
possible sentence pairs; but the list of document
pairs is not fixed. After one round of sentence ex-
traction, the list is enriched with additional docu-
ments, and the system iterates. Thus, they include
in the search document pairs which are dissimilar.

One limitation of all these methods is that they
are designed to find only full sentences. Our
methodology is the first effort aimed at detecting
sub-sentential correspondences. This is a difficult
task, requiring the ability to recognize translation-
ally equivalent fragments even in non-parallel sen-
tence pairs.

The work of Deng et. al (2006) also deals with
sub-sentential fragments. However, they obtain
parallel fragments from parallel sentence pairs (by
chunking them and aligning the chunks appropri-
ately), while we obtain them from comparable or
non-parallel sentence pairs.

Since our approach can extract parallel data
from texts which contain few or no parallel sen-
tences, it greatly expands the range of corpora
which can be usefully exploited.

5 Conclusion

We have presented a simple and effective method
for extracting sub-sentential fragments from com-
parable corpora. We also presented a method for
computing a probabilistic lexicon based on the
LLR statistic, which produces a higher quality lex-
icon. We showed that using this lexicon helps im-
prove the precision of our extraction method.

Our approach can be improved in several
aspects. The signal filtering function is very
simple; more advanced filters might work better,
and eliminate the need of applying additional



heuristics (such as our requirement that the
extracted fragments have at least 3 words). The
fact that the source and target signal are filtered
separately is also a weakness; a joint analysis
should produce better results. Despite the better
lexicon, the greatest source of errors is still related
to false word correspondences, generally involv-
ing punctuation and very common, closed-class
words.  Giving special attention to such cases
should help get rid of these errors, and improve
the precision of the method.
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Abstract

Instances of a word drawn from different
domains may have different sense priors
(the proportions of the different senses of
a word). This in turn affects the accuracy
of word sense disambiguation (WSD) sys-
tems trained and applied on different do-
mains. This paper presents a method to
estimate the sense priors of words drawn
from a new domain, and highlights the im-
portance of using well calibrated probabil-
ities when performing these estimations.
By using well calibrated probabilities, we
are able to estimate the sense priors effec-
tively to achieve significant improvements
in WSD accuracy.

1 Introduction

Many words have multiple meanings, and the pro-
cess of identifying the correct meaning, or sense
of a word in context, is known as word sense
disambiguation (WSD). Among the various ap-
proaches to WSD, corpus-based supervised ma-
chine learning methods have been the most suc-
cessful to date. With this approach, one would
need to obtain a corpus in which each ambiguous
word has been manually annotated with the correct
sense, to serve as training data.

However, supervised WSD systems faced an
important issue of domain dependence when using
such a corpus-based approach. To investigate this,
Escudero et al. (2000) conducted experiments
using the DSO corpus, which contains sentences
drawn from two different corpora, namely Brown
Corpus (BC) and Wall Street Journal (WSJ). They
found that training a WSD system on one part (BC
or WSJ) of the DSO corpus and applying it to the
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other part can result in an accuracy drop of 12%
to 19%. One reason for this is the difference in
sense priors (i.e., the proportions of the different
senses of a word) between BC and WSJ. For in-
stance, the noun interest has these 6 senses in the
DSO corpus: sense 1, 2, 3, 4, 5, and 8. In the BC
part of the DSO corpus, these senses occur with
the proportions: 34%, 9%, 16%, 14%, 12%, and
15%. However, in the WSJ part of the DSO cor-
pus, the proportions are different: 13%, 4%, 3%,
56%, 22%, and 2%. When the authors assumed
they knew the sense priors of each word in BC and
WSJ, and adjusted these two datasets such that the
proportions of the different senses of each word
were the same between BC and WSJ, accuracy im-
proved by 9%. In another work, Agirre and Mar-
tinez (2004) trained a WSD system on data which
was automatically gathered from the Internet. The
authors reported a 14% improvement in accuracy
if they have an accurate estimate of the sense pri-
ors in the evaluation data and sampled their train-
ing data according to these sense priors. The work
of these researchers showed that when the domain
of the training data differs from the domain of the
data on which the system is applied, there will be
a decrease in WSD accuracy.

To build WSD systems that are portable across
different domains, estimation of the sense priors
(i.e., determining the proportions of the differ-
ent senses of a word) occurring in a text corpus
drawn from a domain is important. McCarthy et
al. (2004) provided a partial solution by describing
a method to predict the predominant sense, or the
most frequent sense, of a word in a corpus. Using
the noun interest as an example, their method will
try to predict that sense 1 is the predominant sense
in the BC part of the DSO corpus, while sense 4
is the predominant sense in the WSJ part of the
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corpus.

In our recent work (Chan and Ng, 2005b), we
directly addressed the problem by applying ma-
chine learning methods to automatically estimate
the sense priors in the target domain. For instance,
given the noun interest and the WSJ part of the
DSO corpus, we attempt to estimate the propor-
tion of each sense of interest occurring in WSJ and
showed that these estimates help to improve WSD
accuracy. In our work, we used naive Bayes as
the training algorithm to provide posterior proba-
bilities, or class membership estimates, for the in-
stances in the target domain. These probabilities
were then used by the machine learning methods
to estimate the sense priors of each word in the
target domain.

However, it is known that the posterior proba-
bilities assigned by naive Bayes are not reliable, or
not well calibrated (Domingos and Pazzani, 1996).
These probabilities are typically too extreme, of-
ten being very near 0 or 1. Since these probabil-
ities are used in estimating the sense priors, it is
important that they are well calibrated.

In this paper, we explore the estimation of sense
priors by first calibrating the probabilities from
naive Bayes. We also propose using probabilities
from another algorithm (logistic regression, which
already gives well calibrated probabilities) to esti-
mate the sense priors. We show that by using well
calibrated probabilities, we can estimate the sense
priors more effectively. Using these estimates im-
proves WSD accuracy and we achieve results that
are significantly better than using our earlier ap-
proach described in (Chan and Ng, 2005b).

In the following section, we describe the algo-
rithm to estimate the sense priors. Then, we de-
scribe the notion of being well calibrated and dis-
cuss why using well calibrated probabilities helps
in estimating the sense priors. Next, we describe
an algorithm to calibrate the probability estimates
from naive Bayes. Then, we discuss the corpora
and the set of words we use for our experiments
before presenting our experimental results. Next,
we propose using the well calibrated probabilities
of logistic regression to estimate the sense priors,
and perform significance tests to compare our var-
ious results before concluding.

2 Estimation of Priors

To estimate the sense priors, or a priori proba-
bilities of the different senses in a new dataset,
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we used a confusion matrix algorithm (Vucetic
and Obradovic, 2001) and an EM based algorithm
(Saerens et al., 2002) in (Chan and Ng, 2005b).
Our results in (Chan and Ng, 2005b) indicate that
the EM based algorithm is effective in estimat-
ing the sense priors and achieves greater improve-
ments in WSD accuracy compared to the confu-
sion matrix algorithm. Hence, to estimate the
sense priors in our current work, we use the EM
based algorithm, which we describe in this sec-
tion.

2.1 EM Based Algorithm

Most of this section is based on (Saerens et al.,
2002). Assume we have a set of labeled data Dy,
with n classes and a set of N independent instances
(x1,...,xn) from a new data set. The likelihood
of these N instances can be defined as:
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Assuming the within-class densities p(x|w;),
i.e., the probabilities of observing x; given the
class w;, do not change from the training set Dy,
to the new data set, we can define: p(xi|w;) =
pr(xx|w;). To determine the a priori probability
estimates p(w;) of the new data set that will max-
imize the likelihood of (1) with respect to p(w;),
we can apply the iterative procedure of the EM al-
gorithm. In effect, through maximizing the likeli-
hood of (1), we obtain the a priori probability es-
timates as a by-product.

Let us now define some notations. When we
apply a classifier trained on Dy, on an instance
xp drawn from the new data set Dy, we get
pr.(wi|xx), which we define as the probability of
instance x; being classified as class w; by the clas-
sifier trained on Dy,. Further, let us define pr, (w;)
as the a priori probabilities of class w; in Dy,. This
can be estimated by the class frequency of w; in
Dr.. We also define 5(*) (w;) and 5(*) (w;|xz) as es-
timates of the new a priori and a posteriori proba-
bilities at step s of the iterative EM procedure. As-
suming we initialize p(°)(w;) = pr(w;), then for
each instance x;, in Dy and each class w;, the EM
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algorithm provides the following iterative steps:
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where Equation (2) represents the expectation E-
step, Equation (3) represents the maximization M-
step, and N represents the number of instances in
Dy. Note that the probabilities pr,(w;|x) and
pr.(w;) in Equation (2) will stay the same through-
out the iterations for each particular instance x;,
and class w;. The new a posteriori probabilities
p1) (w;|xy) at step sin Equation (2) are simply the
a posteriori probabilities in the conditions of the
labeled data, pr,(w;|xz), weighted by the ratio of
the new priors p{*)(w;) to the old priors pr,(w;).
The denominator in Equation (2) is simply a nor-
malizing factor.

The a posteriori p{*) (w;|x;) and a priori proba-
bilities p(*) (w;) are re-estimated sequentially dur-
ing each iteration s for each new instance x;, and
each class w;, until the convergence of the esti-
mated probabilities p(*) (w;). This iterative proce-
dure will increase the likelihood of (1) at each step.

2.2 Using A Priori Estimates

If a classifier estimates posterior class probabili-
ties pr, (w;|xx) when presented with a new instance
xr. from Dy, it can be directly adjusted according
to estimated a priori probabilities p(w;) on Dy:

g(wi)‘
PL (W1) (4)

5Bl 2,

pr(wi|xxk)

Padjust (Wil Xk) =

where pr,(w;) denotes the a priori probability of
class w; from Dy, and p,q;ust (wi|x) denotes the
adjusted predictions.

3 Calibration of Probabilities

In our eariler work (Chan and Ng, 2005b), the
posterior probabilities assigned by a naive Bayes
classifier are used by the EM procedure described
in the previous section to estimate the sense pri-
ors p(w;) in a new dataset. However, it is known
that the posterior probabilities assigned by naive
Bayes are not well calibrated (Domingos and Paz-
zani, 1996).

It is important to use an algorithm which gives
well calibrated probabilities, if we are to use the
probabilities in estimating the sense priors. In
this section, we will first describe the notion of
being well calibrated before discussing why hav-
ing well calibrated probabilities helps in estimat-
ing the sense priors. Finally, we will introduce
a method used to calibrate the probabilities from
naive Bayes.

3.1 Well Calibrated Probabilities

Assume for each instance x, a classifier out-
puts a probability S.,(x) between 0 and 1, of
x belonging to class w;. The classifier is well-
calibrated if the empirical class membership prob-
ability p(w;|S,,; (x) = t) converges to the proba-
bility value S, (x) = ¢ as the number of examples
classified goes to infinity (Zadrozny and Elkan,
2002). Intuitively, if we consider all the instances
to which the classifier assigns a probability S, (x)
of say 0.6, then 60% of these instances should be
members of class w;.

3.2 Being Well Calibrated Helps Estimation

To see why using an algorithm which gives well
calibrated probabilities helps in estimating the
sense priors, let us rewrite Equation (3), the M-
step of the EM procedure, as the following:

S 1 S
P (W) = v Z Z P (wilxr)
tESwi kG{qisui (xq):t}
®)

where S, ={t1, ..., %} denotes the set of poste-
rior probability values for class w;, and S, (x,)
denotes the posterior probability of class w; as-
signed by the classifier for instance x,,.

Based on %q,...,%,, we can imagine that we
have m bins, where each bin is associated with a
specific ¢ value. Now, distribute all the instances
in the new dataset D¢; into the m bins according
to their posterior probabilities S, (x). Let By, for
[ =1, ..., m,denote the set of instances in bin /.

Note that |By| 4+ ---+ |Bj| + -+ -+ |Bn| = N.
Now, let p; denote the proportion of instances with
true class label w; in B;. Given a well calibrated
algorithm, p; = ¢; by definition and Equation (5)
can be rewritten as:

P (W) = (t1[Bi] 4 - -+ 1 [Brm)
(P1|Bi] + - 4 P [Bra)

= N (6)
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Input: training set (px, yx ) sorted in ascending order of p.
Initialize gr = yx

While 3 k such that g;,...,9x—1 > gx,...,q:, Where
gi=-=gimrandgy=---=q (j <k <I)
Set Dmy
m= "7
Replace g;, ..., g withm

Figure 1: PAV algorithm.

where N, denotes the number of instances in Dy
with true class label w;. Therefore, (1) (w;) re-
flects the proportion of instances in D¢y with true
class label w;. Hence, using an algorithm which
gives well calibrated probabilities helps in the es-
timation of sense priors.

3.3

Zadrozny and Elkan (2002) successfully used a
method based on isotonic regression (Robertson
et al., 1988) to calibrate the probability estimates
from naive Bayes. To compute the isotonic regres-
sion, they used the pair-adjacent violators (PAV)
(Ayer et al., 1955) algorithm, which we show in
Figure 1. Briefly, what PAV does is to initially
view each data value as a level set. While there
are two adjacent sets that are out of order (i.e., the
left level set is above the right one) then the sets
are combined and the mean of the data values be-
comes the value of the new level set.

PAV works on binary class problems. In
a binary class problem, we have a positive
class and a negative class. Now, let D
(pr,xx), 1 < k < N,where xq, ..., xy represent
N examples and py, is the probability of x; belong-
ing to the positive class, as predicted by a classi-
fier. Further, let y; represent the true label of x.
For a binary class problem, we let y, = 1 if x;,
is a positive example and . = 0 if x; is a neg-
ative example. The PAV algorithm takes in a set
of (px, yx), sorted in ascending order of p; and re-
turns a series of increasing step-values, where each
step-value g;; (denoted by min Figure 1) is associ-
ated with a lowest boundary value p; and a highest
boundary value p;. We performed 10-fold cross-
validation on the training data to assign values to
pr. We then applied the PAV algorithm to obtain
values for gr. To obtain the calibrated probability
estimate for a test instance x, we find the bound-
ary values p; and p; where p; < S,.(x) < p; and
assign g;; as the calibrated probability estimate.

To apply PAV on a multiclass problem, we first
reduce the problem into a number of binary class

Isotonic Regression
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problems. For reducing a multiclass problem into
a set of binary class problems, experiments in
(Zadrozny and Elkan, 2002) suggest that the one-
against-all approach works well. In one-against-
all, a separate classifier is trained for each class w;,
where examples belonging to class w; are treated
as positive examples and all other examples are
treated as negative examples. A separate classifier
is then learnt for each binary class problem and the
probability estimates from each classifier are cali-
brated. Finally, the calibrated binary-class proba-
bility estimates are combined to obtain multiclass
probabilities, computed by a simple normalization
of the calibrated estimates from each binary clas-
sifier, as suggested by Zadrozny and Elkan (2002).

4 Selection of Dataset

In this section, we discuss the motivations in
choosing the particular corpora and the set of
words used in our experiments.

4.1 DSO Corpus

The DSO corpus (Ng and Lee, 1996) contains
192,800 annotated examples for 121 nouns and 70
verbs, drawn from BC and WSJ. BC was builtas a
balanced corpus and contains texts in various cate-
gories such as religion, fiction, etc. In contrast, the
focus of the WSJ corpus is on financial and busi-
ness news. Escudero et al. (2000) exploited the
difference in coverage between these two corpora
to separate the DSO corpus into its BC and WSJ
parts for investigating the domain dependence of
several WSD algorithms. Following their setup,
we also use the DSO corpus in our experiments.

The widely used SEMCOR (SC) corpus (Miller
et al., 1994) is one of the few currently avail-
able manually sense-annotated corpora for WSD.
SEMCOR is a subset of BC. Since BC is a bal-
anced corpus, and training a classifier on a general
corpus before applying it to a more specific corpus
is a natural scenario, we will use examples from
BC as training data, and examples from WSJ as
evaluation data, or the target dataset.

4.2 Parallel Texts

Scalability is a problem faced by current super-
vised WSD systems, as they usually rely on man-
ually annotated data for training. To tackle this
problem, in one of our recent work (Ng et al.,
2003), we had gathered training data from paral-
lel texts and obtained encouraging results in our



evaluation on the nouns of SENSEVAL-2 English
lexical sample task (Kilgarriff, 2001). In another
recent evaluation on the nouns of SENSEVAL-
2 English all-words task (Chan and Ng, 2005a),
promising results were also achieved using exam-
ples gathered from parallel texts. Due to the po-
tential of parallel texts in addressing the issue of
scalability, we also drew training data for our ear-
lier sense priors estimation experiments (Chan and
Ng, 2005b) from parallel texts. In addition, our
parallel texts training data represents a natural do-
main difference with the test data of SENSEVAL-
2 English lexical sample task, of which 91% is
drawn from the British National Corpus (BNC).
As part of our experiments, we followed the ex-
perimental setup of our earlier work (Chan and
Ng, 2005b), using the same 6 English-Chinese
parallel corpora (Hong Kong Hansards, Hong
Kong News, Hong Kong Laws, Sinorama, Xinhua
News, and English trandation of Chinese Tree-
bank), available from Linguistic Data Consortium.
To gather training examples from these parallel
texts, we used the approach we described in (Ng
et al.,, 2003) and (Chan and Ng, 2005b). We
then evaluated our estimation of sense priors on
the nouns of SENSEVAL-2 English lexical sam-
ple task, similar to the evaluation we conducted
in (Chan and Ng, 2005b). Since the test data for
the nouns of SENSEVAL-3 English lexical sample
task (Mihalcea et al., 2004) were also drawn from
BNC and represented a difference in domain from
the parallel texts we used, we also expanded our
evaluation to these SENSEVAL-3 nouns.

4.3 Choice of Words

Research by (McCarthy et al., 2004) highlighted
that the sense priors of a word in a corpus depend
on the domain from which the corpus is drawn.
A change of predominant sense is often indicative
of a change in domain, as different corpora drawn
from different domains usually give different pre-
dominant senses. For example, the predominant
sense of the noun interest in the BC part of the
DSO corpus has the meaning “a sense of concern
with and curiosity about someone or something”.
In the WSJ part of the DSO corpus, the noun in-
terest has a different predominant sense with the
meaning “a fixed charge for borrowing money”,
reflecting the business and finance focus of the
WSJ corpus.

Estimation of sense priors is important when
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there is a significant change in sense priors be-
tween the training and target dataset, such as when
there is a change in domain between the datasets.
Hence, in our experiments involving the DSO cor-
pus, we focused on the set of nouns and verbs
which had different predominant senses between
the BC and WSJ parts of the corpus. This gave
us a set of 37 nouns and 28 verbs. For experi-
ments involving the nouns of SENSEVAL-2 and
SENSEVAL-3 English lexical sample task, we
used the approach we described in (Chan and Ng,
2005b) of sampling training examples from the
parallel texts using the natural (empirical) distri-
bution of examples in the parallel texts. Then, we
focused on the set of nouns having different pre-
dominant senses between the examples gathered
from parallel texts and the evaluation data for the
two SENSEVAL tasks. This gave a set of 6 nouns
for SENSEVAL-2 and 9 nouns for SENSEVAL-
3. For each noun, we gathered a maximum of 500
parallel text examples as training data, similar to
what we had done in (Chan and Ng, 2005b).

5 Experimental Results

Similar to our previous work (Chan and Ng,
2005b), we used the supervised WSD approach
described in (Lee and Ng, 2002) for our exper-
iments, using the naive Bayes algorithm as our
classifier. Knowledge sources used include parts-
of-speech, surrounding words, and local colloca-
tions. This approach achieves state-of-the-art ac-
curacy. All accuracies reported in our experiments
are micro-averages over all test examples.

In (Chan and Ng, 2005b), we used a multiclass
naive Bayes classifier (denoted by NB) for each
word. Following this approach, we noted the WSD
accuracies achieved without any adjustment, in the
column L under NB in Table 1. The predictions
pr.(wi|xx) of these naive Bayes classifiers are then
used in Equation (2) and (3) to estimate the sense
priors p(w;), before being adjusted by these esti-
mated sense priors based on Equation (4). The re-
sulting WSD accuracies after adjustment are listed
in the column EMy 5 in Table 1, representing the
WSD accuracies achievable by following the ap-
proach we described in (Chan and Ng, 2005b).

Next, we used the one-against-all approach to
reduce each multiclass problem into a set of binary
class problems. We trained a naive Bayes classifier
for each binary problem and calibrated the prob-
abilities from these binary classifiers. The WSD



Classifier NB NBcal

Method L EMnyB EMLOQR L EMx~Beal EMLOQR
DSO nouns | 445 46.1 46.6 45.8 47.0 51.1
DSO verbs | 46.7 48.3 48.7 46.9 495 50.8
SE2 nouns | 61.7 62.4 63.0 62.3 63.2 63.5
SE3 nouns | 53.9 54.9 55.7 55.4 58.8 58.4

Table 1: Micro-averaged WSD accuracies using the various methods. The different naive Bayes classifiers are: multiclass

naive Bayes (NB) and naive Bayes with calibrated probabilities (NBcal).

Dataset True — L EMnyBear — L EMLOgR —L Dataset EMnyB EMnyBeat EMLOQR
DSO nouns 11.6 1.2 (10.3%) 5.3 (45.7%) DSO nouns 0.621 0.586 0.293
DSO verbs 10.3 2.6 (25.2%) 3.9 (37.9%) DSO verbs 0.651 0.602 0.307
SE2 nouns 3.0 0.9 (30.0%) 1.2 (40.0%) SE2 nouns 0.371 0.307 0.214
SE3 nouns 3.7 3.4 (91.9%) 3.0 (81.1%) SE3 nouns 0.693 0.632 0.408

Table 2: Relative accuracy improvement based on cali-
brated probabilities.

accuracies of these calibrated naive Bayes classi-
fiers (denoted by NBcal) are given in the column L
under NBcal.! The predictions of these classifiers
are then used to estimate the sense priors p(w;),
before being adjusted by these estimates based on
Equation (4). The resulting WSD accuracies after
adjustment are listed in column EMy g4 in Table
1.

The results show that calibrating the proba-
bilities improves WSD accuracy. In particular,
EMx B.q; aChieves the highest accuracy among the
methods described so far. To provide a basis for
comparison, we also adjusted the calibrated prob-
abilities by the true sense priors p(w;) of the test
data. The increase in WSD accuracy thus ob-
tained is given in the column True — L in Table
2. Note that this represents the maximum possi-
ble increase in accuracy achievable provided we
know these true sense priors p(w;). In the col-
umn EMy Beos — L in Table 2, we list the increase
in WSD accuracy when adjusted by the sense pri-
ors p(w;) which were automatically estimated us-
ing the EM procedure. The relative improvements
obtained with using p(w;) (compared against us-
ing p(w;)) are given as percentages in brackets.
As an example, according to Table 1 for the DSO
verbs, EMpy .. gives an improvement of 49.5%
— 46.9% = 2.6% in WSD accuracy, and the rela-
tive improvement compared to using the truesense
priors is 2.6/10.3 = 25.2%, as shown in Table 2.
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Table 3: KL divergence between the true and estimated
sense distributions.

6 Discussion

The experimental results show that the sense
priors estimated using the calibrated probabilities
of naive Bayes are effective in increasing the WSD
accuracy. However, using a learning algorithm
which already gives well calibrated posterior prob-
abilities may be more effective in estimating the
sense priors. One possible algorithm is logis-
tic regression, which directly optimizes for get-
ting approximations of the posterior probabilities.
Hence, its probability estimates are already well
calibrated (Zhang and Yang, 2004; Niculescu-
Mizil and Caruana, 2005).

In the rest of this section, we first conduct ex-
periments to estimate sense priors using the pre-
dictions of logistic regression. Then, we perform
significance tests to compare the various methods.

6.1 Using Logistic Regression

We trained logistic regression classifiers and eval-
uated them on the 4 datasets. However, the WSD
accuracies of these unadjusted logistic regression
classifiers are on average about 4% lower than
those of the unadjusted naive Bayes classifiers.
One possible reason is that being a discriminative
learner, logistic regression requires more train-
ing examples for its performance to catch up to,
and possibly overtake the generative naive Bayes
learner (Ng and Jordan, 2001).

Although the accuracy of logistic regression as
a basic classifier is lower than that of naive Bayes,
its predictions may still be suitable for estimating

Though not shown, we also calculated the accuracies of
these binary classifiers without calibration, and found them
to be similar to the accuracies of the multiclass naive Bayes
shown in the column L under NB in Table 1.



Method comparison DSO nouns | DSO verbs | SE2 nouns | SE3 nouns
NB-EMLOQR vs. NB-EMy B > > > >
NBcal-EM yBcai VS. NB-EMx B ~ > > >
NBC&'-EMNBCGL vs. NB-EM LogR ~ > ~ >
NBcal-EM.yr VS. NB-EMy 5 > > > >
NBcal-EMogr VS. NB-EMyogr > > ~ >
NBcal-EM;ogr VS. NBcal-EMy 5ea: > > ~ ~

Table 4: Paired t-tests between the various methods for the 4 datasets.

sense priors. To gauge how well the sense pri-
ors are estimated, we measure the KL divergence
between the true sense priors and the sense pri-
ors estimated by using the predictions of (uncal-
ibrated) multiclass naive Bayes, calibrated naive
Bayes, and logistic regression. These results are
shown in Table 3 and the column EMr,,,r shows
that using the predictions of logistic regression to
estimate sense priors consistently gives the lowest
KL divergence.

Results of the KL divergence test motivate us to
use sense priors estimated by logistic regression
on the predictions of the naive Bayes classifiers.
To elaborate, we first use the probability estimates
pr.(wi|xx) of logistic regression in Equations (2)
and (3) to estimate the sense priors p(w;). These
estimates p(w;) and the predictions pr, (w;|xx) of
the calibrated naive Bayes classifier are then used
in Equation (4) to obtain the adjusted predictions.
The resulting WSD accuracy is shown in the col-
umn EMy,,r under NBcal in Table 1. Corre-
sponding results when the predictions pr, (w;|xx)
of the multiclass naive Bayes is used in Equation
(4), are given in the column EMr,,,r under NB.
The relative improvements against using the true
sense priors, based on the calibrated probabilities,
are given in the column EMy,,,r — L in Table 2.
The results show that the sense priors provided by
logistic regression are in general effective in fur-
ther improving the results. In the case of DSO
nouns, this improvement is especially significant.

6.2 Significance Test

Paired t-tests were conducted to see if one method
is significantly better than another. The t statistic
of the difference between each test instance pair is
computed, giving rise to a p value. The results of
significance tests for the various methods on the 4
datasets are given in Table 4, where the symbols
“ >”,and “>>” correspond to p-value > 0.05,
(0.01, 0.05], and < 0.01 respectively.

The methods in Table 4 are represented in the
form al-a2, where al denotes adjusting the pre-
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dictions of which classifier, and a2 denotes how
the sense priors are estimated. As an example,
NBcal-EMr,.,r specifies that the sense priors es-
timated by logistic regression is used to adjust the
predictions of the calibrated naive Bayes classifier,
and corresponds to accuracies in column EMyz,.,r
under NBcal in Table 1. Based on the signifi-
cance tests, the adjusted accuracies of EM g and
EMy .. in Table 1 are significantly better than
their respective unadjusted L accuracies, indicat-
ing that estimating the sense priors of a new do-
main via the EM approach presented in this paper
significantly improves WSD accuracy compared
to just using the sense priors from the old domain.

NB-EMy g represents our earlier approach in
(Chan and Ng, 2005b). The significance tests
show that our current approach of using calibrated
naive Bayes probabilities to estimate sense priors,
and then adjusting the calibrated probabilities by
these estimates (NBcal-EMuy..;) performs sig-
nificantly better than NB-EMy g (refer to row 2
of Table 4). For DSO nouns, though the results
are similar, the p value is a relatively low 0.06.

Using sense priors estimated by logistic regres-
sion further improves performance. For example,
row 1 of Table 4 shows that adjusting the pre-
dictions of multiclass naive Bayes classifiers by
sense priors estimated by logistic regression (NB-
EMr..4r) performs significantly better than using
sense priors estimated by multiclass naive Bayes
(NB-EMy ). Finally, using sense priors esti-
mated by logistic regression to adjust the predic-
tions of calibrated naive Bayes (NBcal-EMy,,4Rr)
in general performs significantly better than most
other methods, achieving the best overall perfor-
mance.

In addition, we implemented the unsupervised
method of (McCarthy et al., 2004), which calcu-
lates a prevalence score for each sense of a word
to predict the predominant sense. As in our earlier
work (Chan and Ng, 2005b), we normalized the
prevalence score of each sense to obtain estimated
sense priors for each word, which we then used



to adjust the predictions of our naive Bayes classi-
fiers. We found that the WSD accuracies obtained
with the method of (McCarthy et al., 2004) are
on average 1.9% lower than our NBcal-EMy,,,r
method, and the difference is statistically signifi-
cant.

7 Conclusion

Differences in sense priors between training and
target domain datasets will result in a loss of WSD
accuracy. In this paper, we show that using well
calibrated probabilities to estimate sense priors is
important. By calibrating the probabilities of the
naive Bayes algorithm, and using the probabilities
given by logistic regression (which is already well
calibrated), we achieved significant improvements
in WSD accuracy over previous approaches.

References

Eneko Agirre and David Martinez. 2004. Unsuper-
vised WSD based on automatically retrieved exam-
ples: The importance of bias. In Proc. of EMNLPOA4.

Miriam Ayer, H. D. Brunk, G. M. Ewing, W. T. Reid,
and Edward Silverman. 1955. An empirical distri-
bution function for sampling with incomplete infor-
mation. Annals of Mathematical Statistics, 26(4).

Yee Seng Chan and Hwee Tou Ng. 2005a. Scaling
up word sense disambiguation via parallel texts. In
Proc. of AAAIQS.

Yee Seng Chan and Hwee Tou Ng. 2005b. Word
sense disambiguation with distribution estimation.
In Proc. of IJCAIQ5.

Pedro Domingos and Michael Pazzani. 1996. Beyond
independence: Conditions for the optimality of the
simple Bayesian classifier. In Proc. of ICML-1996.

Gerard Escudero, Lluis Marquez, and German Rigau.
2000. Anempirical study of the domain dependence
of supervised word sense disambiguation systems.
In Proc. of EMNLP/VLCOO.

Adam Kilgarriff. 2001. English lexical sample task
description. In Proc. of SENSEVAL-2.

Yoong Keok Lee and Hwee Tou Ng. 2002. An empir-
ical evaluation of knowledge sources and learning
algorithms for word sense disambiguation. In Proc.
of EMNLPO2.

Diana McCarthy, Rob Koeling, Julie Weeds, and John
Carroll. 2004. Finding predominant word senses in
untagged text. In Proc. of ACLO4.

Rada Mihalcea, Timothy Chklovski, and Adam Kilgar-
riff. 2004. The senseval-3 english lexical sample
task. In Proc. of SENSEVAL-3.

96

George A. Miller, Martin Chodorow, Shari Landes,
Claudia Leacock, and Robert G. Thomas. 1994.
Using a semantic concordance for sense identifica-
tion. In Proc. of ARPA Human Language Technol-
ogy Workshop.

Andrew Y. Ng and Michael 1. Jordan. 2001. On dis-
criminative vs. generative classifiers: A comparison
of logistic regression and naive Bayes. In Proc. of
NIPS14.

Hwee Tou Ng and Hian Beng Lee. 1996. Integrating
multiple knowledge sources to disambiguate word
sense: An exemplar-based approach. In Proc. of
ACL96.

Hwee Tou Ng, Bin Wang, and Yee Seng Chan. 2003.
Exploiting parallel texts for word sense disambigua-
tion: An empirical study. In Proc. of ACLO3.

Alexandru Niculescu-Mizil and Rich Caruana. 2005.
Predicting good probabilities with supervised learn-
ing. In Proc. of ICMLO5.

Tim Robertson, F. T. Wright, and R. L. Dykstra. 1988.
Chapter 1. Isotonic Regression. In Order Restricted
Satistical Inference. John Wiley & Sons.

Marco Saerens, Patrice Latinne, and Christine De-
caestecker. 2002. Adjusting the outputs of a clas-
sifier to new a priori probabilities: A simple proce-
dure. Neural Computation, 14(1).

Slobodan Vucetic and Zoran Obradovic. 2001. Clas-
sification on data with biased class distribution. In
Proc. of ECMLO1.

Bianca Zadrozny and Charles Elkan. 2002. Trans-
forming classifier scores into accurate multiclass
probability estimates. In Proc. of KDDO2.

Jian Zhang and Yiming Yang. 2004. Probabilistic
score estimation with piecewise logistic regression.
In Proc. of ICMLO4.



Ensemble M ethods for Unsupervised WSD

Samuel Brody
School of Informatics

Roberto Navigli
Dipartimento di Informatica

Mirella Lapata
School of Informatics

University of Edinburgh Universita di Roma “La Sapienza” University of Edinburgh

S. brody@ns. ed. ac. uk

Abstract

Combination methods are an effective way
of improving system performance. This
paper examines the benefits of system
combination for unsupervised WSD. We
investigate several voting- and arbiter-
based combination strategies over a di-
verse pool of unsupervised WSD systems.
Our combination methods rely on predom-
inant senses which are derived automati-
cally from raw text. Experiments using the
SemCor and Senseval-3 data sets demon-
strate that our ensembles yield signifi-
cantly better results when compared with
state-of-the-art.

1

Word sense disambiguation (WSD), the task of
identifying the intended meanings (senses) of
words in context, holds promise for many NLP
applications requiring broad-coverage language
understanding. Examples include summarization,
question answering, and text simplification. Re-
cent studies have also shown that WSD can ben-
efit machine translation (Vickrey et al., 2005) and
information retrieval (Stokoe, 2005).

Given the potential of WSD for many NLP
tasks, much work has focused on the computa-
tional treatment of sense ambiguity, primarily us-
ing data-driven methods. Most accurate WSD sys-
tems to date are supervised and rely on the avail-
ability of training data, i.e., corpus occurrences of
ambiguous words marked up with labels indicat-
ing the appropriate sense given the context (see
Mihalcea and Edmonds 2004 and the references
therein). A classifier automatically learns disam-
biguation cues from these hand-labeled examples.

Although supervised methods typically achieve
better performance than unsupervised alternatives,
their applicability is limited to those words for
which sense labeled data exists, and their accu-
racy is strongly correlated with the amount of la-
beled data available (Yarowsky and Florian, 2002).
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Furthermore, obtaining manually labeled corpora
with word senses is costly and the task must be
repeated for new domains, languages, or sense in-
ventories. Ng (1997) estimates that a high accu-
racy domain independent system for WSD would
probably need a corpus of about 3.2 million sense
tagged words. At a throughput of one word per
minute (Edmonds, 2000), this would require about
27 person-years of human annotation effort.

This paper focuses on unsupervised methods
which we argue are useful for broad coverage
sense disambiguation. Unsupervised WSD algo-
rithms fall into two general classes: those that per-
form token-based WSD by exploiting the simi-
larity or relatedness between an ambiguous word
and its context (e.g., Lesk 1986); and those that
perform type-based WSD, simply by assigning
all instances of an ambiguous word its most fre-
quent (i.e., predominant) sense (e.g., McCarthy
et al. 2004; Galley and McKeown 2003). The pre-
dominant senses are automatically acquired from
raw text without recourse to manually annotated
data. The motivation for assigning all instances
of a word to its most prevalent sense stems from
the observation that current supervised approaches
rarely outperform the simple heuristic of choos-
ing the most common sense in the training data,
despite taking local context into account (Hoste
et al., 2002). Furthermore, the approach allows
sense inventories to be tailored to specific do-
mains.

The work presented here evaluates and com-
pares the performance of well-established unsu-
pervised WSD algorithms. We show that these
algorithms yield sufficiently diverse outputs, thus
motivating the use of combination methods for im-
proving WSD performance. While combination
approaches have been studied previously for su-
pervised WSD (Florian et al., 2002), their use
in an unsupervised setting is, to our knowledge,
novel. We examine several existing and novel
combination methods and demonstrate that our
combined systems consistently outperform the
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state-of-the-art (e.g., McCarthy et al. 2004). Im-
portantly, our WSD algorithms and combination
methods do not make use of training material in
any way, nor do they use the first sense informa-
tion available in WordNet.

In the following section, we briefly describe the
unsupervised WSD algorithms considered in this
paper. Then, we present a detailed comparison of
their performance on SemCor (Miller et al., 1993).
Next, we introduce our system combination meth-
ods and report on our evaluation experiments. We
conclude the paper by discussing our results.

2 TheDisambiguation Algorithms

In this section we briefly describe the unsuper-
vised WSD algorithms used in our experiments.
We selected methods that vary along the follow-
ing dimensions: (a) the type of WSD performed
(i.e., token-based vs. type-based), (b) the represen-
tation and size of the context surrounding an am-
biguous word (i.e., graph-based vs. word-based,
document vs. sentence), and (c) the number and
type of semantic relations considered for disam-
biguation. We base most of our discussion below
on the WordNet sense inventory; however, the ap-
proaches are not limited to this particular lexicon
but could be adapted for other resources with tra-
ditional dictionary-like sense definitions and alter-
native structure.

Extended Gloss Overlap Gloss Overlap was
originally introduced by Lesk (1986) for perform-
ing token-based WSD. The method assigns a sense
to a target word by comparing the dictionary defi-
nitions of each of its senses with those of the words
in the surrounding context. The sense whose defi-
nition has the highest overlap (i.e., words in com-
mon) with the context words is assumed to be the
correct one. Banerjee and Pedersen (2003) aug-
ment the dictionary definition (gloss) of each sense
with the glosses of related words and senses. The
extended glosses increase the information avail-
able in estimating the overlap between ambiguous
words and their surrounding context.

The range of relationships used to extend the
glosses is a parameter, and can be chosen from
any combination of WordNet relations. For every
sense S, of the target word we estimate:

SenseScore(sx) =
Rele

Overlap(context, Rel (s¢))

ations

where context is a simple (space separated) con-
catenation of all words w; for —n <i < n,i # 0 in
a context window of length +n around the target
word Wy. The overlap scoring mechanism is also
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parametrized and can be adjusted to take the into
account gloss length or to ignore function words.

Distributional and WordNet  Similarity
McCarthy et al. (2004) propose a method for
automatically ranking the senses of ambiguous
words from raw text. Key in their approach is the
observation that distributionally similar neighbors
often provide cues about a word’s senses. As-
suming that a set of neighbors is available, sense
ranking is equivalent to quantifying the degree
of similarity among the neighbors and the sense
descriptions of the polysemous word.

Let N(w) = {n;,ny,...,ng} be the k most (dis-
tributionally) similar words to an ambiguous tar-
get word W and senses(w) = {S;,S,...S} the set
of senses for w. For each sense S and for each
neighbor nj, the algorithm selects the neighbor’s
sense which has the highest WordNet similarity
score (Wnss) with regard to . The ranking score
of sense S is then increased as a function of the
WordNet similarity score and the distributional
similarity score (dss) between the target word and
the neighbor:

wnss(s;, ;)
RankScore(s) = dess(w, nj)
0 V7S wnss(s,n))
S €senses(w)
where Wnss(s,nj) =  max  Wnss(s;, nsy).
nsyesenses(n; )

The predominant sense is simply the sense with
the highest ranking score (RankScore) and can be
consequently used to perform type-based disam-
biguation. The method presented above has four
parameters: (a) the semantic space model repre-
senting the distributional properties of the target
words (it is acquired from a large corpus repre-
sentative of the domain at hand and can be aug-
mented with syntactic relations such as subject or
object), (b) the measure of distributional similarity
for discovering neighbors (c) the number of neigh-
bors that the ranking score takes into account, and
(d) the measure of sense similarity.

Lexical Chains Lexical cohesion is often rep-
resented via lexical chains, i.e., sequences of re-
lated words spanning a topical text unit (Mor-
ris and Hirst, 1991). Algorithms for computing
lexical chains often perform WSD before infer-
ring which words are semantically related. Here
we describe one such disambiguation algorithm,
proposed by Galley and McKeown (2003), while
omitting the details of creating the lexical chains
themselves.

Galley and McKeown’s (2003) method consists
of two stages. First, a graph is built represent-
ing all possible interpretations of the target words



in question. The text is processed sequentially,
comparing each word against all words previously
read. If a relation exists between the senses of the
current word and any possible sense of a previous
word, a connection is formed between the appro-
priate words and senses. The strength of the con-
nection is a function of the type of relationship and
of the distance between the words in the text (in
terms of words, sentences and paragraphs). Words
are represented as nodes in the graph and seman-
tic relations as weighted edges. Again, the set of
relations being considered is a parameter that can
be tuned experimentally.

In the disambiguation stage, all occurrences of a
given word are collected together. For each sense
of a target word, the strength of all connections
involving that sense are summed, giving that sense
a unified score. The sense with the highest unified
score is chosen as the correct sense for the target
word. In subsequent stages the actual connections
comprising the winning unified score are used as a
basis for computing the lexical chains.

The algorithm is based on the “one sense per
discourse” hypothesis and uses information from
every occurrence of the ambiguous target word in
order to decide its appropriate sense. It is there-
fore a type-based algorithm, since it tries to de-
termine the sense of the word in the entire doc-
ument/discourse at once, and not separately for
each instance.

Structural Semantic Interconnections  In-
spired by lexical chains, Navigli and Velardi
(2005) developed Structural Semantic Intercon-
nections (SSI), a WSD algorithm which makes use
of an extensive lexical knowledge base. The latter
is primarily based on WordNet and its standard re-
lation set (i.e., hypernymy, meronymy, antonymy,
similarity, nominalization, pertainymy) but is also
enriched with collocation information represent-
ing semantic relatedness between sense pairs. Col-
locations are gathered from existing resources
(such as the Oxford Collocations, the Longman
Language Activator, and collocation web sites).
Each collocation is mapped to the WordNet sense
inventory in a semi-automatic manner (Navigli,
2005) and transformed into a relatedness edge.
Given a local word context C = {Wj,...,Wn},
SSI builds a graph G = (V,E) such that V =

n

U senses(w;) and (s,S) € E if there is at least
i—

one interconnection j between S (a sense of the
word) and S (a sense of its context) in the lexical
knowledge base. The set of valid interconnections

is determined by a manually-created context-free
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| Method | WSD | Context | Relations
LexChains | types | document | first-order
Overlap tokens | sentence | first-order
Similarity | types | corpus higher-order
SSI tokens | sentence | higher-order

Table 1: Properties of the WSD algorithms

grammar consisting of a small number of rules.
Valid interconnections are computed in advance
on the lexical database, not at runtime.

Disambiguation is performed in an iterative
fashion. At each step, for each sense S of a word
in C (the set of senses of words yet to be disam-
biguated), SSI determines the degree of connectiv-
ity between s and the other senses in (:

1
ength(j)

2 > i
s _ dec\{s} jelnterconn(ss)
SCOI‘G(S) - S |Interconn(s,s)|
dec\{s}

where Interconn(s,s’) is the set of interconnec-
tions between senses Sand S'. The contribution of a
single interconnection is given by the reciprocal of
its length, calculated as the number of edges con-
necting its ends. The overall degree of connectiv-
ity is then normalized by the number of contribut-
ing interconnections. The highest ranking sense S
of word wj; is chosen and the senses of W; are re-
moved from the context C. The procedure termi-
nates when either C is the empty set or there is no
sense such that its SS9 Scoreexceeds a fixed thresh-
old.

Summary The properties of the different
WSD algorithms just described are summarized
in Table 1. The methods vary in the amount of
data they employ for disambiguation. SSI and Ex-
tended Gloss Overlap (Overlap) rely on sentence-
level information for disambiguation whereas Mc-
Carthy et al. (2004) (Similarity) and Galley and
McKeown (2003) (LexChains) utilize the entire
document or corpus. This enables the accumula-
tion of large amounts of data regarding the am-
biguous word, but does not allow separate consid-
eration of each individual occurrence of that word.
LexChains and Overlap take into account a re-
stricted set of semantic relations (paths of length
one) between any two words in the whole docu-
ment, whereas SSI and Similarity use a wider set
of relations.



3 Experiment 1. Comparison of
Unsupervised Algorithmsfor WSD

3.1 Method

We evaluated the disambiguation algorithms out-
lined above on two tasks: predominant sense ac-
quisition and token-based WSD. As previously
explained, Overlap and SSI were not designed for
acquiring predominant senses (see Table 1), but
a token-based WSD algorithm can be trivially
modified to acquire predominant senses by dis-
ambiguating every occurrence of the target word
in context and selecting the sense which was cho-
sen most frequently. Type-based WSD algorithms
simply tag all occurrences of a target word with its
predominant sense, disregarding the surrounding
context.

Our first set of experiments was conducted on
the SemCor corpus, on the same 2,595 polyse-
mous nouns (53,674 tokens) used as a test set by
McCarthy et al. (2004). These nouns were attested
in SemCor with a frequency > 2 and occurred in
the British National Corpus (BNC) more than 10
times. We used the WordNet 1.7.1 sense inventory.

The following notation describes our evaluation
measures: W is the set of all noun types in the
SemCor corpus (|[W| = 2,595), and W is the set
of noun types with a dominant sense. senses(w)
is the set of senses for noun type w, while fg(w)
and fm(w) refer to W’s first sense according to the
SemCor gold standard and our algorithms, respec-
tively. Finally, T (w) is the set of tokens of w and
senses(t) denotes the sense assigned to token t ac-
cording to SemCor.

We first measure how well our algorithms can
identify the predominant sense, if one exists:

_ [{w € Wi | fs(W) = fm(W)}
Wi |

Accps

A baseline for this task can be easily defined for
each word type by selecting a sense at random
from its sense inventory and assuming that this is
the predominant sense:

1 1
Basdlinegy =
Wil o 2, [Senses(w)]

We evaluate the algorithms’ disambiguation per-
formance by measuring the ratio of tokens for
which our models choose the right sense:

3 I{te T fn(w) = sensex(0)}
5 [Tw)

wew

ACCysd =

In the predominant sense detection task, in case of
ties in SemCor, any one of the predominant senses
was considered correct. Also, all algorithms were
designed to randomly choose from among the top
scoring options in case of a tie in the calculated
scores. This introduces a small amount of ran-
domness (less than 0.5%) in the accuracy calcu-
lation, and was done to avoid the pitfall of default-
ing to the first sense listed in WordNet, which is
usually the actual predominant sense (the order of
senses in WordNet is based primarily on the Sem-
Cor sense distribution).

3.2 Parameter Settings

We did not specifically tune the parameters of our
WSD algorithms on the SemCor corpus, as our
goal was to use hand labeled data solely for testing
purposes. We selected parameters that have been
considered “optimal” in the literature, although
admittedly some performance gains could be ex-
pected had parameter optimization taken place.

For Overlap, we used the semantic relations
proposed by Banerjee and Pedersen (2003),
namely hypernyms, hyponyms, meronyms,
holonyms, and troponym synsets. We also
adopted their overlap scoring mechanism which
treats each gloss as a bag of words and assigns an
n word overlap the score of n?. Function words
were not considered in the overlap computation.
For LexChains, we used the relations reported
in Galley and McKeown (2003). These are all
first-order WordNet relations, with the addition of
the siblings — two words are considered siblings
if they are both hyponyms of the same hypernym.
The relations have different weights, depending
on their type and the distance between the words
in the text. These weights were imported from
Galley and McKeown into our implementation
without modification.

Because the SemCor corpus is relatively small
(less than 700,00 words), it is not ideal for con-
structing a neighbor thesaurus appropriate for Mc-
Carthy et al.’s (2004) method. The latter requires
each word to participate in a large number of co-
occurring contexts in order to obtain reliable dis-
tributional information. To overcome this prob-
lem, we followed McCarthy et al. and extracted
the neighbor thesaurus from the entire BNC. We
also recreated their semantic space, using a RASP-
parsed (Briscoe and Carroll, 2002) version of the
BNC and their set of dependencies (i.e., Verb-
Object, Verb-Subject, Noun-Noun and Adjective-
Noun relations). Similarly to McCarthy et al., we
used Lin’s (1998) measure of distributional simi-
larity, and considered only the 50 highest ranked
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Method | Accps | Accwsd/dir | AcCwsd/ps]|

| | Overlap | LexChains | Similarity |

|Baseline | 345 | — | 230 |
LexChains | 48.3*T - 40.7#7%
Overlap 49.418 | 3655 | 4258
Similarity | 54.9* - 46.5*
SSI 53.7* 42.7 47.9*

| UpperBnd | 100 | — | 684 |

Table 2: Results of individual disambiguation al-
gorithms on SemCor nouns® (*: sig. diff. from
Baseline, T: sig. diff. from Similarity, *: sig diff.
from SSI, #: sig. diff. from Overlap, p < 0.01)

neighbors for a given target word. Sense similar-
ity was computed using the Lesk’s (Banerjee and

Pedersen, 2003) similarity measure'.

3.3 Resaults

The performance of the individual algorithms is
shown in Table 2. We also include the baseline
discussed in Section 3 and the upper bound of
defaulting to the first (i.e., most frequent) sense
provided by the manually annotated SemCor. We
report predominant sense accuracy (Accps), and
WSD accuracy when using the automatically ac-
quired predominant sense (AcCysgps)- For token-
based algorithms, we also report their WSD per-
formance in context, i.e., without use of the pre-
dominant sense (AcCysd/dir)-

As expected, the accuracy scores in the WSD
task are lower than the respective scores in the
predominant sense task, since detecting the pre-
dominant sense correctly only insures the correct
tagging of the instances of the word with that
first sense. All methods perform significantly bet-
ter than the baseline in the predominant sense de-
tection task (using a X’-test, as indicated in Ta-
ble 2). LexChains and Overlap perform signif-
icantly worse than Similarity and SSI, whereas
LexChains is not significantly different from Over-
lap. Likewise, the difference in performance be-
tween SSI and Similarity is not significant. With
respect to WSD, all the differences in performance
are statistically significant.

IThis measure is identical to the Extended gloss Overlap
from Section 2, but instead of searching for overlap between
an extended gloss and a word’s context, the comparison is
done between two extended glosses of two synsets.

>The LexChains results presented here are not directly
comparable to those reported by Galley and McKeown
(2003), since they tested on a subset of SemCor, and included
monosemous nouns. They also used the first sense in Sem-
Cor in case of ties. The results for the Similarity method are
slightly better than those reported by McCarthy et al. (2004)
due to minor improvements in implementation.

LexChains| 28.05
Similarity 35.87 33.10
SSI 30.48 31.67 37.14

Table 3: Algorithms’ pairwise agreement in de-
tecting the predominant sense (as % of all words)

Interestingly, using the predominant sense de-
tected by the Gloss Overlap and the SSI algo-
rithm to tag all instances is preferable to tagging
each instance individually (compare AcCyed,dir
and Accygg/ps for Overlap and SSI in Table 2).
This means that a large part of the instances which
were not tagged individually with the predominant
sense were actually that sense.

A close examination of the performance of the
individual methods in the predominant-sense de-
tection task shows that while the accuracy of all
the methods is within a range of 7%, the actual
words for which each algorithm gives the cor-
rect predominant sense are very different. Table 3
shows the degree of overlap in assigning the ap-
propriate predominant sense among the four meth-
ods. As can be seen, the largest amount of over-
lap is between Similarity and SSI, and this cor-
responds approximately to % of the words they
correctly label. This means that each of these two
methods gets more than 350 words right which the
other labels incorrectly.

If we had an “oracle” which would tell us
which method to choose for each word, we would
achieve approximately 82.4% in the predominant
sense task, giving us 58% in the WSD task. We
see that there is a large amount of complementa-
tion between the algorithms, where the successes
of one make up for the failures of the others. This
suggests that the errors of the individual methods
are sufficiently uncorrelated, and that some advan-
tage can be gained by combining their predictions.

4 Combination Methods

An important finding in machine learning is that
a set of classifiers whose individual decisions are
combined in some way (an ensemble) can be more
accurate than any of its component classifiers, pro-
vided that the individual components are relatively
accurate and diverse (Dietterich, 1997). This sim-
ple idea has been applied to a variety of classi-
fication problems ranging from optical character
recognition to medical diagnosis, part-of-speech
tagging (see Dietterich 1997 and van Halteren
et al. 2001 for overviews), and notably supervised
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WSD (Florian et al., 2002).

Since our effort is focused exclusively on un-
supervised methods, we cannot use most ma-
chine learning approaches for creating an en-
semble (e.g., stacking, confidence-based combina-
tion), as they require a labeled training set. We
therefore examined several basic ensemble com-
bination approaches that do not require parameter
estimation from training data.

We define Score(M;,sj) as the (normalized)
score which a method M; gives to word sense S;.
The predominant sense calculated by method M;
for word w is then determined by:

PS(Mj,w) = argmax Score(M;,s;)

Sj €senses(w)

All ensemble methods receive a set {M;}K | of in-
dividual methods to combine, so we denote each
ensemble method by MethodName({M; }£_,).

Direct Voting Each ensemble component has
one vote for the predominant sense, and the sense
with the most votes is chosen. The scoring func-
tion for the voting ensemble is defined as:

=~

Score(Voting({M; }¥_,) z

eq[s, PS(M;,w)]

1 if s=PYM;,w)
0 otherwise

where eqs, PS(M;,w)] = {

Probability Mixture Each method provides
a probability distribution over the senses. These
probabilities (normalized scores) are summed, and
the sense with the highest score is chosen:

k
Score(ProbMix({M; }<_)) Z Score(M;, s)

Rank-Based Combination Each method
provides a ranking of the senses for a given target
word. For each sense, its placements according to
each of the methods are summed and the sense
with the lowest total placement (closest to first
place) wins.

Score(Ranking({Mi}¥_,),s)) = S (—1)-Place(s)

M~

where Place (s) is the number of distinct scores
that are larger or equal to Score(M;, S).

Arbiter-based Combination One WSD
method can act as an arbiter for adjudicating dis-
agreements among component systems. It makes
sense for the adjudicator to have reasonable
performance on its own. We therefore selected

Method

| Accps | ACCysi/ps |

Similarity 54.9 46.5
SSI 53.5 47.9
Voting 573 | 4987
PrMixture 57.21% | 50.478¢
Rank-based | 58.1%% | 50.37$¢
Arbiter-based | 56.3%% | 4877+

] UpperBnd |100 | 68.4 |

Table 4: Ensemble Combination Results (T: sig.
diff. from Similarity, $: sig. diff. from SSI, #: sig.
diff. from Voting, p < 0.01)

SSI as the arbiter since it had the best accuracy on
the WSD task (see Table 2). For each disagreed
word W, and for each sense S of w assigned by
any of the systems in the ensemble {M;}K |, we
calculate the following score:
Score(Arbiter ({M;}K ,),s) = SS Score’(s)

where SSI Score’(s) is a modified version of the
score introduced in Section 2 which exploits as a
context for S the set of agreed senses and the re-
maining words of each sentence. We exclude from
the context used by SSI the senses of W which were
not chosen by any of the systems in the ensem-
ble . This effectively reduces the number of senses
considered by the arbiter and can positively influ-
ence the algorithm’s performance, since it elimi-
nates noise coming from senses which are likely
to be wrong.

5 Experiment 2: Ensemblesfor
Unsupervised WSD

5.1 Method and Parameter Settings

We assess the performance of the different en-
semble systems on the same set of SemCor nouns
on which the individual methods were tested. For
the best ensemble, we also report results on dis-
ambiguating all nouns in the Senseval-3 data set.
We focus exclusively on nouns to allow com-
parisons with the results obtained from SemCor.
We used the same parameters as in Experiment 1
for constructing the ensembles. As discussed ear-
lier, token-based methods can disambiguate target
words either in context or using the predominant
sense. SSI was employed in the predominant sense
setting in our arbiter experiment.

5.2 Resaults

Our results are summarized in Table 4. As can be
seen, all ensemble methods perform significantly
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| Ensemble |  Accps | AcCusi/ps |

| Rank-based | 58.1 | 50.3 |
Overlap 57.6 (—0.5) | 49.7 (—0.6)
LexChains | 57.2 (=0.7) | 50.2 (—0.1)
Similarity 56.3(—1.8) | 494 (-0.9)
SSI 56.3(—1.8) | 48.2 (—2.1)

Table 5: Decrease in accuracy as a result of re-
moval of each method from the rank-based ensem-
ble.

better than the best individual methods, i.e., Simi-
larity and SSI. On the WSD task, the voting, prob-
ability mixture, and rank-based ensembles signif-
icantly outperform the arbiter-based one. The per-
formances of the probability mixture, and rank-
based combinations do not differ significantly but
both ensembles are significantly better than vot-
ing. One of the factors contributing to the arbiter’s
worse performance (compared to the other ensem-
bles) is the fact that in many cases (almost 30%),
none of the senses suggested by the disagreeing
methods is correct. In these cases, there is no way
for the arbiter to select the correct sense. We also
examined the relative contribution of each compo-
nent to overall performance. Table 5 displays the
drop in performance by eliminating any particular
component from the rank-based ensemble (indi-
cated by —). The system that contributes the most
to the ensemble is SSI. Interestingly, Overlap and
Similarity yield similar improvements in WSD ac-
curacy (0.6 and 0.9, respectively) when added to
the ensemble.

Figure 1 shows the WSD accuracy of the best
single methods and the ensembles as a function of
the noun frequency in SemCor. We can see that
there is at least one ensemble outperforming any
single method in every frequency band and that
the rank-based ensemble consistently outperforms
Similarity and SSI in all bands. Although Similar-
ity has an advantage over SSI for low and medium
frequency words, it delivers worse performance
for high frequency words. This is possibly due to
the quality of neighbors obtained for very frequent
words, which are not semantically distinct enough
to reliably discriminate between different senses.

Table 6 lists the performance of the rank-based
ensemble on the Senseval-3 (noun) corpus. We
also report results for the best individual method,
namely SSI, and compare our results with the best
unsupervised system that participated in Senseval-
3. The latter was developed by Strapparava et al.
(2004) and performs domain driven disambigua-
tion (IRST-DDD). Specifically, the approach com-

54 [O Similarity m Voting
r 0O SSI B ProbMix|

501~ | M Arbiter M Ranking
§ 50
2t . .
5 48
2’ L
A 46
g L

44

42

40 14 59 10-19  20-99 100+

Noun frequency bands

Figure 1: WSD accuracy as a function of noun fre-
quency in SemCor

[Method | Precision | Recall | Fscore |
|Baseline | 36.8 | 36.8 | 36.8 |
SSI 62.5 62.5 62.5
IRST-DDD 63.3 62.2 61.2
Rank-based 63.9 63.9 63.9
|Uppeand | 68.7 | 68.7 | 68.7 |

Table 6: Results of individual disambiguation al-
gorithms and rank-based ensemble on Senseval-3
nouns

pares the domain of the context surrounding the
target word with the domains of its senses and uses
a version of WordNet augmented with domain la-
bels (e.g., economy, geography). Our baseline se-
lects the first sense randomly and uses it to disam-
biguate all instances of a target word. Our upper
bound defaults to the first sense from SemCor. We
report precision, recall and Fscore. In cases where
precision and recall figures coincide, the algorithm
has 100% coverage.

As can be seen the rank-based, ensemble out-
performs both SSI and the IRST-DDD system.
This is an encouraging result, suggesting that there
may be advantages in developing diverse classes
of unsupervised WSD algorithms for system com-
bination. The results in Table 6 are higher than
those reported for SemCor (see Table 4). This is
expected since the Senseval-3 data set contains
monosemous nouns as well. Taking solely polyse-
mous nouns into account, SSI’s Fscore is 53.39%
and the ranked-based ensemble’s 55.0%. We fur-
ther note that not all of the components in our en-
semble are optimal. Predominant senses for Lesk
and LexChains were estimated from the Senseval-
3 data, however a larger corpus would probably
yield more reliable estimates.
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6 Conclusionsand Discussion

In this paper we have presented an evaluation
study of four well-known approaches to unsuper-
vised WSD. Our comparison involved type- and
token-based disambiguation algorithms relying on
different kinds of WordNet relations and different
amounts of corpus data. Our experiments revealed
two important findings. First, type-based disam-
biguation yields results superior to a token-based
approach. Using predominant senses is preferable
to disambiguating instances individually, even for
token-based algorithms. Second, the outputs of
the different approaches examined here are suffi-
ciently diverse to motivate combination methods
for unsupervised WSD. We defined several ensem-
bles on the predominant sense outputs of individ-
ual methods and showed that combination systems
outperformed their best components both on the
SemCor and Senseval-3 data sets.

The work described here could be usefully em-
ployed in two tasks: (a) to create preliminary an-
notations, thus supporting the “annotate automati-
cally, correct manually” methodology used to pro-
vide high volume annotation in the Penn Treebank
project; and (b) in combination with supervised
WSD methods that take context into account; for
instance, such methods could default to an unsu-
pervised system for unseen words or words with
uninformative contexts.

In the future we plan to integrate more com-
ponents into our ensembles. These include not
only domain driven disambiguation algorithms
(Strapparava et al., 2004) but also graph theoretic
ones (Mihalcea, 2005) as well as algorithms that
quantify the degree of association between senses
and their co-occurring contexts (Mohammad and
Hirst, 2006). Increasing the number of compo-
nents would allow us to employ more sophisti-
cated combination methods such as unsupervised
rank aggregation algorithms (Tan and Jin, 2004).
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Abstract

Fine-grained sense distinctions are one of
the major obstacles to successful Word
Sense Disambiguation. In this paper,
we present a method for reducing the
granularity of the WordNet sense inven-
tory based on the mapping to a manually
crafted dictionary encoding sense hierar-
chies, namely the Oxford Dictionary of
English. We assess the quality of the map-
ping and the induced clustering, and eval-
uate the performance of coarse WSD sys-
tems in the Senseval-3 English all-words
task.

1 Introduction

the English all-words test set at Senseval-3 (Sny-
der and Palmer, 2004) and 67.3% on the Open
Mind Word Expert annotation exercise (Chklovski
and Mihalcea, 2002). These numbers lead us to
believe that a credible upper bound for unrestricted
fine-grained WSD is around 70%, a figure that
state-of-the-art automatic systems find it difficult
to outperform. Furthermore, even if a system were
able to exceed such an upper bound, it would be
unclear how to interpret such a result.

It seems therefore that the major obstacle to ef-
fective WSD is the fine granularity of the Word-
Net sense inventory, rather than the performance
of the best disambiguation systems. Interestingly,
Ng et al. (1999) show that, when a coarse-grained
sense inventory is adopted, the increase in inter-
annotator agreement is much higher than the re-

Word Sense Disambiguation (WSD) is undoubt-duction of the polysemy degree.

edly one of the hardest tasks in the field of Nat- Following these observations, the main ques-
ural Language Processing. Even though some "§ion that we tackle in this paper izan we pro-

cent studies report benefits in the use of WSD inyce and evaluate coarse-grained sense distinc-
specific applications (e.g. Vickrey et al. (2005)jons and show that they help boost disambigua-
and Stokoe (2005)), the present performance Ao on standard test sets@le believe that this is
the best ranking WSD systems does not provide g ¢ cial research topic in the field of WSD, that

sufficient degree of accuracy to enable real-worldeoy g potentially benefit several application areas.
language-aware applications. o . _ _
The contribution of this paper is two-fold. First,

Most of the disambiguation approaches adopfye nrovide a wide-coverage method for clustering
the WordNet dictionary (Fellbaum, 1998) as ayyorgnet senses via a mapping to a coarse-grained
sense inventory, thanks to its free availability, W'desense inventory, namely the Oxford Dictionary of
coverage, and existence of a number of standarg, yjish (soanes and Stevenson, 2003) (Section 2).
test sets based on it. Unfortunately, WordNet is 3\/e show that this method is well-founded and ac-
fine-grained resource, encoding sense distinctiona”ate with respect to manually-made clusterings
that are often difficult to recognize even for h“man(Section 3). Second, we evaluate the performance
annotators (Edmonds and Kilgariff, 1998). of WSD systems when using coarse-grained sense

Recent estimations of the inter-annotator agreeinventories (Section 4). We conclude the paper
ment when using the WordNet inventory reportwith an account of related work (Section 5), and
figures of 72.5% agreement in the preparation osome final remarks (Section 6).
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2 Producing a Coarse-Grained Sense root) which is not taken into account in WordNet.
Inventory The structure of the ODE senses is clearly hier-
) ) archical: if we were able to map with a high accu-
In this section, we present an approach to the al, ., \wordNet senses to ODE entries, then a sense

tomatic construction of a coarse-grained sense iy stering could be trivially induced from the map-
ventory based on the mapping of WordNet sensegjng - as a result, the granularity of the WordNet

to coarse senses in the Oxford Dictionary of ENgjnyentory would be drastically reduced. Further-

lish. In section 2.1, we introduce the two dictio- e gisregarding errors, the clustering would be
naries, in Section 2.2 we illustrate the creation of .|| _founded. as the ODE sense groupings were

sense descriptions fr(_)m both resources, while IManually crafted by expert lexicographers. In the
Section 2.3 we describe a lexical and a semantif,. section we illustrate a general way of con-

method for mapping sense descriptions of Word

> structing sense descriptions that we use for deter-
Net senses to ODE coarse entries.

mining a complete, automatic mapping between

21 The Dictionaries the two dictionaries.

WordNet (Fellbaum, 1998) is a computational lex-2.2  Constructing Sense Descriptions

icon of Engllsh which encodes concepts as SYNgor each wordv, and for each sensg of w in a
onym setsgynsetl according to psycholinguistic given dictionaryD 2 fworoNET; ODEY, we con-
principles. For each word sense, WordNet prostruct a sense descriptidg(S) as a bag of words:

vides a gloss (i.e. a textual definition) and a set _ .
of relations such as hypernymy (e.g. apkiled-of do(S) = def ,(S) L hypero(S) [ domains,(S)

edible fruit), meronymy (e.g. computbas-part where:
CPU), etc. _ .

The Oxford Dictionary of English (ODE) T def ,(S) s the set of W‘”?'S in the tex-
(Soanes and Stevenson, 200Bjovides a hierar- tual definition of _S (excludlng_ usage ex-
chical structure of senses, distinguishing between amples), automatlca!ly lemmatized and_ p_art—
homonymy (i.e. completely distinct senses, like of-speech_tagged with the RASP statistical
race as a competition and race as a taxonomic _ Parser (Brl_scoe and Carr_oll, 2002);
group) and polysemy (e.g. race as a channel and t hy_perD(S) s the set _Of direct hyperrjyms of
as a current). Each polysemous sense is further di- S in the t_axonomy_hlerarchy d (5 if hy-
vided into acore sens@and a set ofubsensed~or pernymyis nqt available); :
each sense (both core and subsenses), the ODEJr domalnsD_(S) mcl_udes the set of domain la-
provides a textual definition, and possibly hyper- bels p'os.3|bly g55|gned o ser&s¢; when no
nyms and domain labels. Excluding monosemous domain is assigned).
senses, the ODE has an average number of 2.56 Specifically, in the case of WordNet, we

senses per vyord compared to the average p_ohfjenerate def,(S) from the gloss of S,
semy of 3.21 in WordNet on the same words (W'thhyperWN(S) from the noun and verb taxonomy,

peaks for verbs of 2.73 and 3.75 senses, respegyq domains,,(S) from the subject field codes,

tively). _i.e. domain labels produced semi-automatically
In Tz_alble 1 we show an excerpt (_)f the sense ity Magnini and Cavagii (2000) for each Word-

ventories of the noumace as provided by both Nt synset (we exclude the general-purpose label,

dictionarie$. The ODE identifies 3 homonyms calledFacTotum).

and 3 polysemous senses for the first homonym, g, example, for the first WordNet sense of

while WordNet encodes a flat list of 6 sensesyacexn we obtain the following description:

some of which strongly related (e.gace#1 and

race#3). Also, the ODE provides a sense (ginger ~ Gwv(race#n#1) = fcompetition#ng [

fcontest#ng [ fPoLiTics#N; SPORTNG

1The ODE was kindly made available by Ken Litkowski .
(CL Research) in the context of a license agreement. In the case of the ODHE]ef ,..(S) is gener-

?In the following, we denote a WordNet sense with the ated from the definitions of the core sense and

conventionw#p#iwherew is a word,p a part of speechand  the subsenses of the ent8; Hypernymy (for
is a sense number; analogously, we denote an ODE sense with | d d in label h ilabl
the conventiorw#tp#th:k whereh is the homonym number nouns only) an omain labels, when available,

andk is thek-th polysemous entry under homonym are included in the respective sdtgperqype(S)
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Table 1: The sense inventory odice#nin WordNet and ODE (definitions are abridged, bulletd (
indicate a subsense in the ODE, arrovls) (indicate hypernymybowmain LaBELs are in small caps).

race#n (WordNet) race#n (ODE)
#1 | Any competition (! contest). #1.1 | Core: srorTA competition between runners, horses, vehicles, et
#2 | People who are believed to be t Racine A series of such competitions for horses or ddghs sit-

2]

long to the same genetic stogk uation in which individuals or groups competd (contest)t As-
(¥ group). TrRoNoMy The course of the sun or moon through the heavehs|(
#3 | A contest of speedX contest). trajectory).

#4 | The flow of air that is driven #1.2 | Core: NauTicaL A strong or rapid current¥ flow).
backwards by an aircraft pro #1.3 | Core: A groove, channel, or passage.

peller (¥ flow). t Mechanics A water channet Smooth groove or guide for ball<(

#5 | A taxonomic group that is a indentation, conduit) Farmine Fenced passageway in a stockyard
division of a species; usually (¥ route)t TextiLes The channel along which the shuttle moves.
arises as a consequence of ge-| #2.1 | Core: AntHropoLocy Division of humankind @ ethnic group).
ographical isolation within 4 t The condition of belonging to a racial division or grotig\ group
species @ taxonomic group). of people sharing the same culture, history, langubgeLocy A

#6 | A canal for a current of watet group of people descended from a common ancestor.

(¥ canal). #3.1 | Core: Botany, Foop A ginger root (T plant part).

anddomainsqype(S). For example, the first ODE ~ where is a threshold below which a matching

sense oface#n is described as follows: between sense descriptions is considered unreli-
dooe(race##n#1:1) = fcompetition#n; able. Finally, we define the clustering of senses
runner#n; horse#n; vehicle#n;:::; c(w) of a wordw as:
heavens#ng [ fcontest#n;trajectory#ng [ c(w) =
TSPORTN; RACING#N; ASTRONOMY#N( f,,i1(S") : S? 2 Sensesqpe(W); ,,11(SY) & ;g
Notice that, for evens, dp(S) is non-empty as [ ffSg: S 2 Sensesyy(W); ,,(S) = 1g

a definition is always prOVided by both dictionar- where,, 1 1(80) is the group of WordNet senses

ies. This approach to sense descriptions is germapped to the same serSkof the ODE, while

eral enough to be applicable to any other dictiothe second set includes singletons of WordNet

nary with similar characteristics (e.g. the Long-senses for which no mapping can be provided ac-

man Dictionary of Contemporary English in place cording to the definition of,.

of ODE). For example, an ideal mapping between entries
in Table 1 would be as follows:

. _ ,»(race#n#l) = race#n#l.](race#n#2) = race#n#2.1,
In order to produce a coarse-grained version of the ,,(race#n#3) = race#n#1.](race#n#5) = race#n#2.1,

WordNet inventory, we aim at defining an auto-  ~("ace#n#4) = race#n#1.2(race#n#6) = race#n#1.3,
matic mapping between WordNet and ODE, i.eresulting in the following clustering:

2.3 Mapping Word Senses

a function,, : Senses,y ¥ Sensesope [ ffg, c(race#n) = Ffrace#n#1; race#n#3g;
whereSenses;, is the set of senses in the dictio- frace#n#2; race#n#5g;
nary D andt is a special element assigned when frace#tn#t4g; frace#n#6qg

no plausible option is available for mapping (e.g.
when the ODE encodes no entry corresponding t%
a WordNet sense).

Given a WordNet sensg 2 Senses,, (W) we

In Sections 2.3.1 and 2.3.2 we describe two
ifferent choices for thenatch function, respec-
tively based on the use of lexical and semantic in-

definerh(S), the best matching sense in the ODE,formatlon.
as: 2.3.1 Lexical matching
m(S) = argmax match(S; S“) As a first approach, we adopted a purely lexi-
S'2Sensesope(w) cal matching function based on the notion of lex-

wherematch : Senses,wE£Sensesq,: ¥ [0;1]  ical overlap (Lesk, 1986). The function counts
is a function that measures the degree of matchinthe number of lemmas that two sense descriptions
between the sense descriptionsSofndS'. We  of a word have in common (we neglect parts of

define the r&apping as: speech), and is normalized by the minimum of the
)= m(S) if match(S; M(S)) . two description lengths:
» = . . — _ j9wn(S)\dope(SY)i
T otherwise matChLESK(S, SO) - mi,{f%u,N(g)j;?ggDE(sjo)jg
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P P )

where S 2 Sensesy(w) and S' 2 St menTsasa1C(ssty TP
Sensesqpe(W). For instance: Scoressi(S;C) = B c e
slacnfsg
match esk (race#n#1; race#n#1:1) = wherel C(S; ") is the set of interconnections be-
m =$=075 tween senseS andS!. The contribution of a sin-
match gsk (race#n#2; race#n#1:1) = gle interconnection is given by the reciprocal of its
§ =0:125 length, calculated as the number of edges connect-

Notice that unrelated senses can get a positivﬁ_“g its ends. The overall degree of connectivity is

score because of an overlap of the sense descri 1en normalized by the number of contributing in-

tions. In the examplegroup#n, the hypernym erconnfections. The highest ranking se&sef
of race#n#2, is also present in the definition of wordw is chosen and the sensesiéare removed

racetntl:l. from the sema_lntlc contegt The glgorlthm termi-
nates when eithe? = ; or there is no sense such

2.3.2  Semantic matching that its score exceeds a fixed threshold.

Given a wordw, semantic matching is per-

Unfortunately, the very same concept can b‘?‘ormed in two steps. First, for each dictionary

defined with entirely different words. To match )
I . . 2 fworbNeT; ODEQ, and for each sensg 2
definitions in a semantic manner we adopte e L
: . ._Sensesy(w), the sense description & is dis-
a knowledge-based Word Sense Disambiguation . )
. . . “ambiguated by applying SSI wp(S). As a re-
algorithm, Structural Semantic InterconnectlonsSult we obtain a semantic description as a bag of
(SSI, Navigli and Velardi (2004)). ! P 9

. . _ conceptd¥™(S). Notice that sense descriptions
SSE exploits an extensive lexical knowledge(L bt ™ (S) P

b built the WordNet lexi d enrich rom both dictionaries are disambiguated with re-
E.ltie’ IlIJ' ur_)on_ fe ort_ etiexicon ?_n enriche pect to the WordNet sense inventory.
::I.VI (I:ot c:jca |ont;ntorma ion represen |r(1:g ITem?n- Second, given a WordNet sense
ic relatec nﬁsfs e Wgetp sense pairs. |'k0 t(;]cacl)o 2 Sensesyy(w) and an ODE sense
fredaéqﬁ"e ; rom ?;]"S 'Lng reso”“ies(' € ‘Z t.x's0 2 Sensesqpe(W), we definematchss; (S: SY)
ord L-oflocations, the Longman Language ACl-,q 5 fynction of the direct relations connecting
vator, collocation web sites, etc.). Each colloca- - sem semaly.
o ) - senses i, "(S) andd3 ' (S°):
tion is mapped to the WordNet sense inventory in e o tSem s

. . . h S: SO _ Ic Ll c_:chWN (S_);c 2d0DE_ (S"j
a semi-automatic manner and transformed into amatchss; (S; S°) JaSeT (S)IGaST (S0
relatednesedge (Navigli and Velardi, 2005). wherec ¥ ¢! denotes the existence of a relation

Given a word contexC_ = fwi;Wng, SSI gqge in the lexical knowledge base between a con-
%ulds a graphG = (ViE) such thatV = centc in the description o6 and a concept! in
Senses,y(wj) and (S;S% 2 E if there is the description oB!. Edges include the WordNet
i=1 :
at least one semantic interconnection betw8en relation set.(s'yn(.)nymy, .hyp'ernymy, meronymy,
antonymy, similarity, nominalization, etc.) and the

andS! in the lexical knowledge base. geman- )
L . . relatednesedge mentioned above (we adopt only
tic interconnection patteriis a relevant sequence . ) - . -

((j]Jrect relations to maintain a high precision).

of edges selected according to a manually-create .
g 9 y For example, some of the relations found

context-free grammar, i.e. a path connecting a pair .
of Wor);I sensgs ossi’bll inclzdin anumkl)e? Ofl?n_lbetween concepts indy" (race#n#3) and
P y g oM (race#n#1:1) are:

termediate concepts. The grammar consists of a°°¢
small number of rules, inspired by the notion of
lexical chains (Morris and Hirst, 1991).

race#n#3  relation  race#n#1:1
speed#n#l  "'HH T vehicle#n#l

rela_teil ito
SSI performs disambiguation in an iterative race#n3 g of competesvil
fashion, by maintaining a s€tof senses as a se- racing#nl - it sportii
race#n#3 il contest#n#1

mantic context. Initially,C = V (the entire set
of senses of words |ﬁ:) At each Step, for each Contributing to the final value of the function on
senseS in C, the algorithm calculates a score of the two senses:

the degree of connectivity betweBrand the other  matchgg) (race#n#3; race#n#1:1) = 0:41

senses iit: L . .
Due to the normalization factor in the denomi-

3Available online from: http://Icl.di.uniromadl.it/ssi nator, these values are generally low, but unrelated
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] . . As a second experiment, we used two
Table 2: Performance of the lexical and semantic . :
. . information-theoretic measures, namedgtropy
mapping functions.

andpurity (Zhao and Karypis, 2004), to compare
Func. | Prec. | Recall F1 Acc. an automatic clusteringfw) (i.e. the sense groups
Lesk | 84.74%| 65.43%| 73.84% | 66.08%| @acdquired for wordw) with a manual clustering
SS| 86.87%| 79.67%| 83.11%] 77.94%| ¢(W). The entropy quantifies the distribution of the
senses of a group over manually-defined groups,
senses have values much closer to 0. We chod¥hile the purity measures the extent to which a

SS! for the semantic matching function as it hagdroUp contains senses primarily from one manual
the best performance among untrained systems dHUP-

unconstrained WSD (cf. Section 4.1). Given a wordw, and a sense group 2 c(w),
the entropy ofG is defined as:
3 Evaluating the Clusterin _ .1 P ié\Gi; .. i6\Gj
J J O = g, e 90

We evaluated the accuracy of the mapping pro-
duced with the lexical and semantic methods de- i.e., the entropyof the distribution of senses of
scribed in Sections 2.3.1 and 2.3.2, respectivelygroupG over the groups of the manual clustering
We produced a gold-standard data set by manuali§(w). The entropy of an entire clusteringw) is
mapping 5,077 WordNet senses of 763 randomlydefined as: B
sglected words to the respective ODE entries (dis- Entropy(c(w)) = jSensés#(w)jH (G)
tributed as follows: 466 nouns, 231 verbs, 50 ad- G2c(w)
jectives, 16 adverbs). The data set was created that is, the entropy of each group weighted by
by two annotators and included only polysemousts size. The purity of a sense gro@?2 c(w) is
words. These words had 2,600 senses in the ODKefined as:
Overall, 4,599 qut of the 5,_077 WorplNet senses PU(G) = J%J max jé \ Gj
had a corresponding sense in ODE (i.e. the ODE G26(w)
coveredd0:58% of the WordNet senses inthe data j e, the normalized size of the largest subset of
set), while 2,053 out of the 2,600 ODE senses hag; contained in a single groufs of the manual
an analogous entry in WordNet (i.e. WordNet cov-clystering. The overall purity of a clustering is ob-
ered78:69% of the ODE senses). The WordNet tained as a weighted sum of the individual cluster
clustering induced by the manual mapping wasyyrities:
49.85% of the original size and the average degree . P iGj
of polysemy decreased frofa65 to 3:32. Puritycw) = ) IS
The rgllgblllty of our data set is substantiated by We calculated the entropy and purity of the
a quantitative assessment: 548 WordNet senses 8F

60 words were mapped to ODE entries by both ustering produced automatically with the lexical

) L . ztmd the semantic method, when compared to the
annotators, with a pairwise mapping agreemen rouping induced by our manual mapping (ODE)
of 92:7%. The average Cohens agreement be- grouping y bping ’

ween the two annotators WasS74. and _to the grouping manually produced for the
. English all-words task at Senseval-2 (3,499 senses
In Table 2 we report the precision and recall of

the lexical and tic functi i iding th of 403 nouns). We excluded from both gold stan-
€ lexical and semantic functions in providing th€ y, 5 \yords having a single cluster. The figures

appropriate a_ssociation_ for the sgt of senses haviné;re shown in Table 3 (good entropy and purity val-
a corresponding entry in OD.E (1.e. excluding theues should be close to 0 and 1 respectively).
cases where asentsg/as assigned by the mahual Table 3 shows that the quality of the cluster-
annotators, cf. Section 2.3). We als_o report in th?ng induced with a semantic function outperforms
Table the accuracy of the two functions when w oth lexical overlap and a random baseline. The
view the problem as a classification task: an auto . . .jine was computed averaging among 200 ran-
matic association is correct if it corresponds to thedom clustering solutions for each word. Random
manual association provided by the annotatorsor '
if both assign no answer (equivalently, if both pro- “Notice that we are comparing clusterings against the
id + label). All the diff b Lesk manual clustering (rather than viceversa), as otherwise a
vide anf label). i _t ea _er(_arjces etween Les completely unclustered solution would result in 1.0 entropy
and SSI are statistically significamt € 0:01). and 0.0 purity.

Pu(G)
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Table 3: Comparison with gold standards.  Table 4: Performance of WSD systems at
Senseval-3 on coarse-grained sense inventories.

Gold standard | Method | Entropy | Purity
ODE Lesk 0.15 0.87 System Prec. | Rec. F1 Fline
SSi 0.11 0.87 Gambl 0.779| 0.779| 0.779| 0.652
Baseline| 0.28 0.67 SenselLearner 0.769 | 0.769 | 0.769| 0.646
Senseval Lesk 0.17 0.71 KOC Univ. 0.768| 0.768| 0.768| 0.641
SSi 0.16 0.69 SSi 0.758| 0.758| 0.758| 0.612
Baseline| 0.27 0.57 IRST-DDD 0.721| 0.719| 0.720| 0.583
FS baseline | 0.769| 0.769| 0.769| 0.624
clusterings were the result of a random mapping Random BL | 0.497| 0.497| 0.497 | 0.340
function between WordNet and ODE senses. As

expected, the automatic clusterings have a lowetrJniversity (Yuret, 2004) — and the best unsuper-

purity when compared to the Senseval-2 NouURjiseq system, namely IRST-DDD (Strapparava et
grouping as the granularity of the latter is mucha|_, 2004). We also included SSI as it outper-

finer than ODE (entropy is only partially affected formg gl the untrained systems (Navigli and Ve-

by this difference, indicating that we are producing|ardi, 2005). To evaluate the performance of the
larger groups). Indeed, our gold standard (ODE)je systems on our coarse clustering, we consid-
when compared to the Senseval groupings, obtaingeq 5 fine-grained answer to be correct if it be-
alow purity as well 0:75) and an entropy d:13.  |5ngs to the same cluster as that of the correct an-
swer. Table 4 reports the performance of the sys-
tems, together with the first sense and the random

The main reason for building a clustering of Word-baseline (in the last column we report the perfor-
Net senses is to make Word Sense Disambigudnance on the original fine-grained test set).
tion a feasible task, thus overcoming the obstacles The best system, Gambl, obtains almost 78%
that even humans encounter when annotating segtecision and recall, an interesting figure com-
tences with excessively fine-grained word sensespared to 65% performance in the fine-grained
As the semantic method outperformed the lexWSD task. An interesting aspect is that the rank-
ical overlap in the evaluations of previous Sec-ing across systems was maintained when mov-
tion, we decided to acquire a clustering on thedng from a fine-grained to a coarse-grained sense
entire WordNet sense inventory using this ap-4nventory, although two systems (SSI and IRST-
proach. As a result, we obtained a reduction o©DD) show the best improvement.
33.54% in the number of entries (from 60,302 to In order to show that the general improvement
40,079 senses) and a decrease of the polyseniy the result of an appropriate clustering, we as-
degree from3:14 to 2:09. These figures exclude sessed the performance of Gambl by averaging its
monosemous senses and derivatives in WordNetesults when using 100 randomly-generated differ-
As we are experimenting on an automatically-ent clusterings. We excluded monosemous clus-
acquired clustering, all the figures are affected byers from the test set (i.e. words with all the senses

4 Evaluating Coarse-Grained WSD

the 22.06% error rate resulting from Table 2. mapped to the same ODE entry), so as to clar-
_ ify the real impact of properly grouped clusters.
4.1 Experiments on Senseval-3 As a result, the random setting obtaing156%

As a first experiment, we assessed the effect ofiverage accuracy, while the performance when
the automatic sense clustering on the English alladopting our automatic clustering wa®:84%
words task at Senseval-3 (Snyder and Palmef]1,025/1,447 items).
2004). This task required WSD systems to pro- To make it clear that the performance improve-
vide a sense choice for 2,081 content words in anent is not only due to polysemy reduction, we
set of 301 sentences from the fiction, news storyconsidered a subset of the Senseval-3 test set in-
and editorial domains. cluding only the incorrect answers given by the
We considered the three best-ranking WSD sysfine-grained version of Gambl (623 items). In
tems — GAMBL (Decadt et al.,, 2004), Sense-other words, on this data set Gambl performs with
Learner (Mihalcea and Faruque, 2004), and Ko®% accuracy. We compared the performance of
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WordNet for the identification of sense regular-
ﬁies: to this end, they provide a set of seman-
tic and probabilistic rules. An evaluation of the

Table 5: Performance of SSI on coarse inventorie
(SSt” uses a coarse-grained knowledge base).

System Prec. | Recall | F1 heuristics provided leads to a polysemy reduc
SSI + baselind 0.758| 0.758 | 0.758 ! b polysemy T

tion of 39% and an error rate of 5.6%. A differ-
SS| 0.717| 0.576 | 0.639 L )

ent principle for clustering WordNet senses, based
SSt™ 0.748| 0.674 | 0.709 o o ) .

on the Minimum Description Length, is described

by Tomuro (2001). The clustering is evaluated

isﬁq talevézizr:gog??hge ?;: d?)li:\og; icl:incelus{fg?gggainst WordNet cousins and used for the study of

Y 0 o inter-annotator disagreement. Another approach
Su_llt_fle\?/seer:(eser:iersg\ﬁ;y i?)featﬁgtlisz g?;ﬁ:;cc%xploits the (dis)agreements of human annotators
. P P P fo derive coarse-grained sense clusters (Chklovski
in Table 4 is not due to chance, but to an effec-

. : and Mihalcea, 2003), where sense similarity is
tive way of clustering word senses. Furthermore . .
tomputed from confusion matrices.

th t in the Tabl t taki dvant .
© Systems In fthe favle are not axing advantage Agirre and Lopez (2003) analyze a set of meth-

of the information given by the clustering (trained
g oy 9( ods to cluster WordNet senses based on the use
systems could be retrained on the coarse cluster- . .
. : of confusion matrices from the results of WSD
ing). To assess this aspect, we performed a fur- . : o
. o . systems, translation equivalences, and topic sig-
ther experiment. We modified the sense inventory
: . natures (word co-occurrences extracted from the
of the SSI lexical knowledge base by adopting the . . :
. . ; . web). They assess the acquired clusterings against
coarse inventory acquired automatically. To this .
20 words from the Senseval-2 sense groupings.

end, we merged the semantic interconnections be-"
Finally, McCarthy (2006) proposes the use

longing to the same cluster. We also disabled the . R
ging f ranked lists, based on distributionally nearest

first sense baseline heuristic, that most of the sysQ

tems use as a back-off when they have no inforneighbours, to relate word senses. This softer no-

mation about the word at hand. We call this newtion of sense relatedness allows to adopt the most

settingSSt” (as opposed to SSI used in Table 4). appropriate granularity for a specific application.
In Table 5 we report the results. The algorithm Compared to our approach, most of these meth-

obtains an improvement of 9.8% recall and 3_1%ods do not evaluate the clustering produced with

precision (both statistically significant,< 0:05). respect to a go'ld-standard cIu'st.ering. InFjeed,
The increase in recall is mostly due to the facSUCN an evaluation would be difficult and time-

that different senses belonging to the same clu£Onsuming without a coarse sense inventory like
ter now contribute together to the choice of that"at of ODE. Alimited assessment of coarse WSD
cluster (rather than individually to the choice of a!S Performed by Fellbaum et al. (2001), who ob-

fine-grained sense). tain a large improvement in the accuracy of a

maximum-entropy system on clustered verbs.
5 Related Work

_ ~ 6 Conclusions
Dolan (1994) describes a method for clustering

word senses with the use of information providedin this paper, we presented a study on the construc-
in the electronic version of LDOCE (textual de- tion of a coarse sense inventory for the WordNet
finitions, semantic relations, domain labels, etc.)lexicon and its effects on unrestricted WSD.
Unfortunately, the approach is not described in de- A key feature in our approach is the use of a
tail and no evaluation is provided. well-established dictionary encoding sense hierar-
Most of the approaches in the literature makechies. As remarked in Section 2.2, the method can
use of the WordNet structure to cluster its senseemploy any dictionary with a sufficiently struc-
Peters et al. (1998) exploit specific patterns in theured inventory of senses, and can thus be applied
WordNet hierarchy (e.g. sisters, autohyponymyto reduce the granularity of, e.g., wordnets of other
twins, etc.) to group word senses. They studyanguages. One could argue that the adoption of
semantic regularities or generalizations obtainethe ODE as a sense inventory for WSD would be a
and analyze the effect of clustering on the com-better solution. While we are not against this pos-
patibility of language-specific wordnets. Mihal- sibility, there are problems that cannot be solved
cea and Moldovan (2001) study the structure ofat present: the ODE does not encode semantic re-
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lations and is not freely available. Also, most of Christiane Fellbaum, editor. 1998VordNet: an Electronic
the present research and standard data sets focug-€xical DatabaseMIT Press. _ o
on WordNet Michael Lesk. 1986. Automatic sense disambiguation us-
i ) ] ) ing machine readable dictionaries: how to tell a pine code
The fine granularity of the WordNet sense in-  from an ice cream cone. Iroc. of5™" Conf. on Systems
ventory is unsuitable for most applications, thus DocumentationACM Press.

A Bernardo Magnini and Gabriela Cavagli2000. Integrating
constituting an obstacle that must be overcome: subject field codes into wordnet. Rroc. of the2™ Con-

We believe that the research topic analyzed in this ference on Language Resources and Evaluation (LREC)
paper is a first step towards making WSD a fea- Athens, Greece.

. . _ :.Diana McCarthy. 2006. Relating wordnet senses for word
sible task and enabling language-aware appllcaD sense disambiguation. Rroc. of ACL Workshop on Mak-

tions, like information retrieval, question answer- ing Sense of Sens@rento, Italy.
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Abstract

In this paper, we present Espresso, a
weakly-supervised, general-purpose,
and accurate algorithm for harvesting
semantic relations. The main contribu-
tions are: i) a method for exploiting ge-
neric patterns by filtering incorrect
instances using the Web; and ii) a prin-
cipled measure of pattern and instance
reliability enabling the filtering algo-
rithm. We present an empirical com-
parison of Espresso with various state of
the art systems, on different size and
genre corpora, on extracting various
general and specific relations. Experi-
mental results show that our exploita-
tion of generic patterns substantially
increases system recall with small effect
on overall precision.

1 Introduction

Recent attention to knowledge-rich problems
such as question answering (Pasca and Harabagiu
2001) and textual entailment (Geffet and Dagan
2005) has encouraged natural language process-
ing researchers to develop algorithms for auto-
matically harvesting shallow semantic resources.
With seemingly endless amounts of textual data
at our disposal, we have a tremendous opportu-
nity to automatically grow semantic term banks
and ontological resources.

To date, researchers have harvested, with
varying success, several resources, including
concept lists (Lin and Pantel 2002), topic signa-
tures (Lin and Hovy 2000), facts (Etzioni et al.
2005), and word similarity lists (Hindle 1990).
Many recent efforts have also focused on extract-
ing semantic relations between entities, such as

Marco Pennacchiotti
ART Group - DISP
University of Rome “Tor Vergata”
Viale del Politecnico 1
Rome, Italy

pennacchiotti@info.uniroma2.it

entailments (Szpektor et al. 2004), is-a (Ravi-
chandran and Hovy 2002), part-of (Girju et al.
2006), and other relations.
The following desiderata outline the properties
of an ideal relation harvesting algorithm:
= Performance: it must generate both high preci-
sion and high recall relation instances;
< Minimal supervision: it must require little or no
human annotation;
= Breadth: it must be applicable to varying cor-
pus sizes and domains; and
= Generality: it must be applicable to a wide va-
riety of relations (i.e., not just is-a or part-of).
To our knowledge, no previous harvesting algo-
rithm addresses all these properties concurrently.
In this paper, we present Espresso, a general-
purpose, broad, and accurate corpus harvesting
algorithm requiring minimal supervision. The
main algorithmic contribution is a novel method
for exploiting generic patterns, which are broad
coverage noisy patterns — i.e., patterns with high
recall and low precision. Insofar, difficulties in
using these patterns have been a major impedi-
ment for minimally supervised algorithms result-
ing in either very low precision or recall. We
propose a method to automatically detect generic
patterns and to separate their correct and incor-
rect instances. The key intuition behind the algo-
rithm is that given a set of reliable (high
precision) patterns on a corpus, correct instances
of a generic pattern will fire more with reliable
patterns on a very large corpus, like the Web,
than incorrect ones. Below is a summary of the
main contributions of this paper:
= Algorithm for exploiting generic patterns:
Unlike previous algorithms that require signifi-
cant manual work to make use of generic pat-
terns, we propose an unsupervised Web-
filtering method for using generic patterns; and
= Principled reliability measure: We propose a
new measure of pattern and instance reliability
which enables the use of generic patterns.
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Espresso addresses the desiderata as follows:

= Performance: Espresso generates balanced
precision and recall relation instances by ex-
ploiting generic patterns;

< Minimal supervision: Espresso requires as in-
put only a small number of seed instances;

= Breadth: Espresso works on both small and
large corpora — it uses Web and syntactic ex-
pansions to compensate for lacks of redun-
dancy in small corpora;

= Generality: Espresso is amenable to a wide
variety of binary relations, from classical is-a
and part-of to specific ones such as reaction
and succession.

Previous work like (Girju et al. 2006) that has

made use of generic patterns through filtering has

shown both high precision and high recall, at the

expensive cost of much manual semantic annota-

tion. Minimally supervised algorithms, like

(Hearst 1992; Pantel et al. 2004), typically ignore

generic patterns since system precision dramati-

cally decreases from the introduced noise and

bootstrapping quickly spins out of control.

2 Relevant Work

To date, most research on relation harvesting has
focused on is-a and part-of. Approaches fall into
two categories: pattern- and clustering-based.
Most common are pattern-based approaches.
Hearst (1992) pioneered using patterns to extract
hyponym (is-a) relations. Manually building
three lexico-syntactic patterns, Hearst sketched a
bootstrapping algorithm to learn more patterns
from instances, which has served as the model
for most subsequent pattern-based algorithms.
Berland and Charniak (1999) proposed a sys-
tem for part-of relation extraction, based on the
(Hearst 1992) approach. Seed instances are used
to infer linguistic patterns that are used to extract
new instances. While this study introduces statis-
tical measures to evaluate instance quality, it re-
mains vulnerable to data sparseness and has the
limitation of considering only one-word terms.
Improving upon (Berland and Charniak 1999),
Girju et al. (2006) employ machine learning al-
gorithms and WordNet (Fellbaum 1998) to dis-
ambiguate part-of generic patterns like “X’s Y”
and “X of Y”. This study is the first extensive at-
tempt to make use of generic patterns. In order to
discard incorrect instances, they learn WordNet-
based selectional restrictions, like “X(scene#4)’s
Y(movie#1)”. While making huge grounds on
improving precision/recall, heavy supervision is
required through manual semantic annotations.

Ravichandran and Hovy (2002) focus on scal-
ing relation extraction to the Web. A simple and
effective algorithm is proposed to infer surface
patterns from a small set of instance seeds by
extracting substrings relating seeds in corpus sen-
tences. The approach gives good results on spe-
cific relations such as birthdates, however it has
low precision on generic ones like is-a and part-
of. Pantel et al. (2004) proposed a similar, highly
scalable approach, based on an edit-distance
technique, to learn lexico-POS patterns, showing
both good performance and efficiency. Espresso
uses a similar approach to infer patterns, but we
make use of generic patterns and apply refining
techniques to deal with wide variety of relations.

Other pattern-based algorithms include (Riloff
and Shepherd 1997), who used a semi-automatic
method for discovering similar words using a
few seed examples, KnowltAll (Etzioni et al.
2005) that performs large-scale extraction of
facts from the Web, Mann (2002) who used part
of speech patterns to extract a subset of is-a rela-
tions involving proper nouns, and (Downey et al.
2005) who formalized the problem of relation
extraction in a coherent and effective combinato-
rial model that is shown to outperform previous
probabilistic frameworks.

Clustering approaches have so far been ap-
plied only to is-a extraction. These methods use
clustering algorithms to group words according
to their meanings in text, label the clusters using
its members’ lexical or syntactic dependencies,
and then extract an is-a relation between each
cluster member and the cluster label. Caraballo
(1999) proposed the first attempt, which used
conjunction and apposition features to build noun
clusters. Recently, Pantel and Ravichandran
(2004) extended this approach by making use of
all syntactic dependency features for each noun.
The advantage of clustering approaches is that
they permit algorithms to identify is-a relations
that do not explicitly appear in text, however
they generally fail to produce coherent clusters
from fewer than 100 million words; hence they
are unreliable for small corpora.

3 The Espresso Algorithm

Espresso is based on the framework adopted in
(Hearst 1992). It is a minimally supervised boot-
strapping algorithm that takes as input a few seed
instances of a particular relation and iteratively
learns surface patterns to extract more instances.
The key to Espresso lies in its use of generic pat-
ters, i.e., those broad coverage noisy patterns that
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extract both many correct and incorrect relation
instances. For example, for part-of relations, the
pattern “X of Y” extracts many correct relation
instances like “wheel of the car” but also many
incorrect ones like “house of representatives”.

The key assumption behind Espresso is that in
very large corpora, like the Web, correct in-
stances generated by a generic pattern will be
instantiated by some reliable patterns, where
reliable patterns are patterns that have high preci-
sion but often very low recall (e.g., “X consists of
Y” for part-of relations). In this section, we de-
scribe the overall architecture of Espresso, pro-
pose a principled measure of reliability, and give
an algorithm for exploiting generic patterns.

3.1 System Architecture

Espresso iterates between the following three
phases: pattern induction, pattern rank-
ing/selection, and instance extraction.

The algorithm begins with seed instances of a
particular binary relation (e.g., is-a) and then it-
erates through the phases until it extracts t; pat-
terns or the average pattern score decreases by
more than t, from the previous iteration. In our
experiments, we set t; = 5 and 1, = 50%.

For our tokenization, in order to harvest multi-
word terms as relation instances, we adopt a
slightly modified version of the term definition
given in (Justeson 1995), as it is one of the most
commonly used in the NLP literature:
((Adj|Noun)+|((Adj|Noun)*(NounPrep)?)(Adj|Noun)*)Noun

Pattern Induction

In the pattern induction phase, Espresso infers a
set of surface patterns P that connects as many of
the seed instances as possible in a given corpus.
Any pattern learning algorithm would do. We
chose the state of the art algorithm described in
(Ravichandran and Hovy 2002) with the follow-
ing slight modification. For each input instance
{x, y}, we first retrieve all sentences containing
the two terms x and y. The sentences are then
generalized into a set of new sentences Sy, by
replacing all terminological expressions by a
terminological label, TR. For example:
“Because/IN HF/NNP is/VBZ a/DT weak/JJ acid/NN
and/CC x is/VBZ a/DT y”’
is generalized as:
“Because/IN TR is/VBZ a/DT TR and/CC x is/VBZ a/DT y”’

Term generalization is useful for small corpora to
ease data sparseness. Generalized patterns are
naturally less precise, but this is ameliorated by
our filtering step described in Section 3.3.

As in the original algorithm, all substrings
linking terms x and y are then extracted from S, ,
and overall frequencies are computed to form P.

Pattern Ranking/Selection

In (Ravichandran and Hovy 2002), a frequency
threshold on the patterns in P is set to select the
final patterns. However, low frequency patterns
may in fact be very good. In this paper, instead of
frequency, we propose a novel measure of pat-
tern reliability, r,, which is described in detail in
Section 3.2.

Espresso ranks all patterns in P according to
reliability r, and discards all but the top-k, where
k is set to the number of patterns from the previ-
ous iteration plus one. In general, we expect that
the set of patterns is formed by those of the pre-
vious iteration plus a new one. Yet, new statisti-
cal evidence can lead the algorithm to discard a
pattern that was previously discovered.

Instance Extraction

In this phase, Espresso retrieves from the corpus
the set of instances | that match any of the pat-
terns in P. In Section 3.2, we propose a princi-
pled measure of instance reliability, r, for
ranking instances. Next, Espresso filters incor-
rect instances using the algorithm proposed in
Section 3.3 and then selects the highest scoring m
instances, according to r,, as input for the subse-
quent iteration. We experimentally set m=200.

In small corpora, the number of extracted in-
stances can be too low to guarantee sufficient
statistical evidence for the pattern discovery
phase of the next iteration. In such cases, the sys-
tem enters an expansion phase, where instances
are expanded as follows:

Web expansion: New instances of the patterns
in P are retrieved from the Web, using the
Google search engine. Specifically, for each in-
stance {X, y} € I, the system creates a set of que-
ries, using each pattern in P instantiated with y.
For example, given the instance “Italy, country”
and the pattern “Y such as X”, the resulting
Google query will be “country such as *””. New
instances are then created from the retrieved Web
results (e.g. “Canada, country”) and added to |I.
The noise generated from this expansion is at-
tenuated by the filtering algorithm described in
Section 3.3.

Syntactic expansion: New instances are cre-
ated from each instance {x, y} | by extracting
sub-terminological expressions from x corre-
sponding to the syntactic head of terms. For ex-
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ample, the relation “new record of a criminal
conviction part-of FBI report” expands to: “‘new
record part-of FBI report™, and “record part-of
FBI report”.

3.2 Pattern and Instance Reliability

Intuitively, a reliable pattern is one that is both
highly precise and one that extracts many in-
stances. The recall of a pattern p can be approxi-
mated by the fraction of input instances that are
extracted by p. Since it is non-trivial to estimate
automatically the precision of a pattern, we are
wary of keeping patterns that generate many in-
stances (i.e., patterns that generate high recall but
potentially disastrous precision). Hence, we de-
sire patterns that are highly associated with the
input instances. Pointwise mutual information
(Cover and Thomas 1991) is a commonly used
metric for measuring this strength of association
between two events x and y:

pmi(x, y)= log%

We define the reliability of a pattern p, rp),
as its average strength of association across each
input instance i in I, weighted by the reliability of

each instance i:
Z[ pmi(i, p) *r,(i)J

max

(p)=

where r (i) is the reliability of instance i (defined
below) and maxy, is the maximum pointwise
mutual information between all patterns and all
instances. r(p) ranges from [0,1]. The reliability
of the manually supplied seed instances are r (i)
= 1. The pointwise mutual information between
instance i = {x, y} and pattern p is estimated us-
ing the following formula:

pmii, p)=log L
X%, Y|, P
where |x, p, y| is the frequency of pattern p in-
stantiated with terms x and y and where the aster-
isk (*) represents a wildcard. A well-known
problem is that pointwise mutual information is
biased towards infrequent events. We thus multi-
ply pmi(i, p) with the discounting factor sug-
gested in (Pantel and Ravichandran 2004).
Estimating the reliability of an instance is
similar to estimating the reliability of a pattern.
Intuitively, a reliable instance is one that is
highly associated with as many reliable patterns
as possible (i.e., we have more confidence in an

instance when multiple reliable patterns instanti-
ate it.) Hence, analogous to our pattern reliability
measure, we define the reliability of an instance
i, r(i), as:
¥ pmi(i, p) r (p)
pop max .

P

r,(i)=

where r,(p) is the reliability of pattern p (defined
earlier) and maxym is as before. Note that r (i)
and r(p) are recursively defined, where r (i) = 1
for the manually supplied seed instances.

3.3 Exploiting Generic Patterns

Generic patterns are high recall / low precision
patterns (e.g, the pattern “X of Y” can ambigu-
ously refer to a part-of, is-a and possession rela-
tions). Using them blindly increases system
recall while dramatically reducing precision.
Minimally supervised algorithms have typically
ignored them for this reason. Only heavily super-
vised approaches, like (Girju et al. 2006) have
successfully exploited them.

Espresso’s recall can be significantly in-
creased by automatically separating correct in-
stances extracted by generic patterns from
incorrect ones. The challenge is to harness the
expressive power of the generic patterns while
remaining minimally supervised.

The intuition behind our method is that in a
very large corpus, like the Web, correct instances
of a generic pattern will be instantiated by many
of Espresso’s reliable patterns accepted in P. Re-
call that, by definition, Espresso’s reliable pat-
terns extract instances with high precision (yet
often low recall). In a very large corpus, like the
Web, we assume that a correct instance will oc-
cur in at least one of Espresso’s reliable pattern
even though the patterns’ recall is low. Intui-
tively, our confidence in a correct instance in-
creases when, i) the instance is associated with
many reliable patterns; and ii) its association
with the reliable patterns is high. At a given Es-
presso iteration, where Pr represents the set of
previously selected reliable patterns, this intui-
tion is captured by the following measure of con-
fidence in an instance i = {x, y}:

s(i)= s, (i)x rﬂip)

pePy

where T is the sum of the reliability scores r{p)
for each pattern p € Pg, and

X, p,y

* A

X%,y x

S, (i)= pmi(i, p) = log
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Table 1. Sample seeds used for each semantic relation and sample outputs from Espresso. The number
in the parentheses for each relation denotes the total number of seeds used as input for the system.

Is-a (12) Part-Of (12) Succession (12) Reaction (13) Production (14)
wheat :: crop leader :: panel Khrushchev :: Stalin magnesium :: oxygen bright flame :: flares
George Wendt :: star |city :: region Carla Hills :: Yeutter hydrazine :: water hydrogen :: metal hydrides
Seeds | . . S . . ¥ o
nitrogen :: element  |ion :: matter Bush :: Reagan aluminum metal :: oxygen [ammonia :: nitric oxide
.................. diborane :: substance |oxygen :: water Julio Barbosa :: Mendes lithium metal :: fluorine gas |copper :: brown gas
Picasso :: artist trees :: land Ford :: Nixon hydrogen :: oxygen electron :: ions
Es- |tax :: charge material :: FBI report |Setrakian :: John Griesemer |Ni :: HCI glycerin :: nitroglycerin
presso|protein :: biopolymer |oxygen :: air Camero Cardiel :: Camacho |carbon dioxide :: methane  |kidneys :: kidney stones
HCI :: strong acid atom :: molecule Susan Weiss :: editor boron :: fluorine ions :: charge

where pointwise mutual information between
instance i and pattern p is estimated with Google
as follows:

S kb
S0~ eyl

An instance i is rejected if S(i) is smaller than
some threshold .

Although this filtering may also be applied to
reliable patterns, we found this to be detrimental
in our experiments since most instances gener-
ated by reliable patterns are correct. In Espresso,
we classify a pattern as generic when it generates
more than 10 times the instances of previously
accepted reliable patterns.

4 Experimental Results

In this section, we present an empirical compari-
son of Espresso with three state of the art sys-
tems on the task of extracting various semantic
relations.

4.1

We perform our experiments using the following

two datasets:

< TREC: This dataset consists of a sample of
articles from the Aquaint (TREC-9) newswire
text collection. The sample consists of
5,951,432 words extracted from the following
data files: AP890101 — AP890131, AP890201
— AP890228, and AP890310 — AP890319.

e CHEM: This small dataset of 313,590 words
consists of a college level textbook of introduc-
tory chemistry (Brown et al. 2003).

Each corpus is pre-processed using the Alembic

Workbench POS-tagger (Day et al. 1997).

Below we describe the systems used in our
empirical evaluation of Espresso.

< RHO2: The algorithm by Ravichandran and
Hovy (2002) described in Section 2.

= GI103: The algorithm by Girju et al. (2006) de-
scribed in Section 2.

Experimental Setup

= PR04: The algorithm by Pantel and Ravi-
chandran (2004) described in Section 2.

« ESP-: The Espresso algorithm using the pat-
tern and instance reliability measures, but
without using generic patterns.

= ESP+: The full Espresso algorithm described
in this paper exploiting generic patterns.

For ESP+, we experimentally set t from Section

3.3to t =0.4 for TREC and t = 0.3 for CHEM

by manually inspecting a small set of instances.

Espresso is designed to extract various seman-
tic relations exemplified by a given small set of
seed instances. We consider the standard is-a and
part-of relations as well as the following more
specific relations:

= succession: This relation indicates that a person
succeeds another in a position or title. For ex-
ample, George Bush succeeded Bill Clinton
and Pope Benedict XVI succeeded Pope John
Paul 1l. We evaluate this relation on the
TREC-9 corpus.

= reaction: This relation occurs between chemi-
cal elements/molecules that can be combined
in a chemical reaction. For example, hydrogen
gas reacts-with oxygen gas and zinc reacts-with
hydrochloric acid. We evaluate this relation on
the CHEM corpus.

= production: This relation occurs when a proc-
ess or element/object produces a result'. For
example, ammonia produces nitric oxide. We
evaluate this relation on the CHEM corpus.

For each semantic relation, we manually ex-

tracted a small set of seed examples. The seeds

were used for both Espresso as well as RHO2.

Table 1 lists a sample of the seeds as well as

sample outputs from Espresso.

4.2

We implemented the systems outlined in Section
4.1, except for GI03, and applied them to the

Precision and Recall

! Production is an ambiguous relation; it is intended to be
a causation relation in the context of chemical reactions.
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Table 2. System performance: TREC/is-a.

Table 3. System performance: CHEM/is-a.

SYSTEM INSTANCES ~ PRrecisioN” REL RecaLL' SYSTEM INSTANCES ~ PRrecisioN” REL RecaLL'
RHO02 57,525 28.0% 5.31 RH02 2556 25.0% 3.76
PR0O4 1,504 47.0% 0.23 PRO4 108 40.0% 0.25
ESP- 4,154 73.0% 1.00 ESP- 200 85.0% 1.00
ESP+ 69,156 36.2% 8.26 ESP+ 1490 76.0% 6.66

Table 4. System performance: TREC/part-of.

Table 5. System performance: CHEM/part-of.

SYSTEM INSTANCES ~ PREcCISION”  REL REcALL' SYSTEM INSTANCES ~ PRECISION”  REL RECALL'
RHO02 12,828 35.0% 42.52 RHO02 11,582 33.8% 58.78
ESP- 132 80.0% 1.00 ESP- 111 60.0% 1.00
ESP+ 87,203 69.9% 577.22 ESP+ 5973 50.7% 45.47

Table 6. System performance: TREC/succession.

Table 7. System performance: CHEM/reaction.

SYSTEM INSTANCES ~ PReCISION”  REL REcCALL' SYSTEM INSTANCES ~ PRECISION”  REL RECALL'
RHO02 49,798 2.0% 36.96 RHO02 6,083 30% 53.67
ESP- 55 49.0% 1.00 ESP- 40 85% 1.00
ESP+ 55 49.0% 1.00 ESP+ 3102 91.4% 89.39

TREC and CHEM datasets. For each output set,
per relation, we evaluate the precision of the sys-
tem by extracting a random sample of instances
(50 for the TREC corpus and 20 for the CHEM
corpus) and evaluating their quality manually
using two human judges (a total of 680 instances
were annotated per judge). For each instance,
judges may assign a score of 1 for correct, O for
incorrect, and % for partially correct. Example
instances that were judged partially correct in-
clude “analyst is-a manager” and “pilot is-a
teacher”. The kappa statistic (Siegel and Castel-
lan Jr. 1988) on this task was K = 0.69° The pre-
cision for a given set of instances is the sum of
the judges’ scores divided by the total instances.
Although knowing the total number of correct
instances of a particular relation in any non-
trivial corpus is impossible, it is possible to com-
pute the recall of a system relative to another sys-
tem’s recall. Following (Pantel et al. 2004), we
define the relative recall of system A given sys-
tem B, Rapg, as:
Ra_ ¢ _Ca_Pux|A
RAlB -5 ~ =< =

R, & C, P,x|B

where R, is the recall of A, C, is the number of
correct instances extracted by A, C is the (un-
known) total number of correct instances in the
corpus, P, is A’s precision in our experiments,

2 The kappa statistic jumps to K = 0.79 if we treat partially
correct classifications as correct.

Table 8. System performance: CHEM/production.

SYSTEM INSTANCES ~ PRECISION”  REL RECALL'
RH02 197 57.5% 0.80
ESP- 196 72.5% 1.00
ESP+ 1676 55.8% 6.58

and |A| is the total number of instances discov-
ered by A.

Tables 2 — 8 report the total number of in-
stances, precision, and relative recall of each sys-
tem on the TREC-9 and CHEM corpora . The
relative recall is always given in relation to the
ESP- system. For example, in Table 2, RH02 has
a relative recall of 5.31 with ESP-, which means
that the RHO2 system outputs 5.31 times more
correct relations than ESP- (at a cost of much
lower precision). Similarly, PR0O4 has a relative
recall of 0.23 with ESP-, which means that PR04
outputs 4.35 fewer correct relations than ESP-
(also with a smaller precision). We did not in-
clude the results from GI03 in the tables since the
system is only applicable to part-of relations and
we did not reproduce it. However, the authors
evaluated their system on a sample of the TREC-
9 dataset and reported 83% precision and 72%
recall (this algorithm is heavily supervised.)

“ Because of the small evaluation sets, we estimate the
95% confidence intervals using bootstrap resampling to be
in the order of + 10-15% (absolute numbers).

T Relative recall is given in relation to ESP-.
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d) CHEM/reaction: "X and Y"
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Figure 1. Precision, recall and F-score curves of the Top-K% ranking instances of patterns “X is a Y”
(TREC/is-a), “X in Y” (TREC/part-of), “X in the Y” (CHEM/part-of), and “X and Y” (CHEM/reaction).

In all tables, RHO2 extracts many more rela-
tions than ESP-, but with a much lower precision,
because it uses generic patterns without filtering.
The high precision of ESP- is due to the effective
reliability measures presented in Section 3.2.

4.3 Effect of Generic Patterns

Experimental results, for all relations and the two
different corpus sizes, show that ESP- greatly
outperforms the other methods on precision.
However, without the use of generic patterns, the
ESP- system shows lower recall in all but the
production relation.

As hypothesized, exploiting generic patterns
using the algorithm from Section 3.3 substan-
tially improves recall without much deterioration
in precision. ESP+ shows one to two orders of
magnitude improvement on recall while losing
on average below 10% precision. The succession
relation in Table 6 was the only relation where
Espresso found no generic pattern. For other re-
lations, Espresso found from one to five generic
patterns. Table 4 shows the power of generic pat-
terns where system recall increases by 577 times
with only a 10% drop in precision. In Table 7, we
see a case where the combination of filtering
with a large increase in retrieved instances re-
sulted in both higher precision and recall.

In order to better analyze our use of generic
patterns, we performed the following experiment.

For each relation, we randomly sampled 100 in-
stances for each generic pattern and built a gold
standard for them (by manually tagging each in-
stance as correct or incorrect). We then sorted the
100 instances according to the scoring formula
S(i) derived in Section 3.3 and computed the av-
erage precision, recall, and F-score of each top-K
ranked instances for each pattern®. Due to lack of
space, we only present the graphs for four of the
22 generic patterns: “X is a Y” for the is-a rela-
tion of Table 2, “X in the Y” for the part-of rela-
tion of Table 4, “X in Y” for the part-of relation
of Table 5, and “X and Y” for the reaction rela-
tion of Table 7. Figure 1 illustrates the results.

In each figure, notice that recall climbs at a
much faster rate than precision decreases. This
indicates that the scoring function of Section 3.3
effectively separates correct and incorrect in-
stances. In Figure 1a), there is a big initial drop
in precision that accounts for the poor precision
reported in Table 1.

Recall that the cutoff points on S(i) were set to
1t = 0.4 for TREC and t = 0.3 for CHEM. The
figures show that this cutoff is far from the
maximum F-score. An interesting avenue of fu-
ture work would be to automatically determine
the proper threshold for each individual generic
pattern instead of setting a uniform threshold.

® We can directly compute recall here since we built a
gold standard for each set of 100 samples.
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5 Conclusions

We proposed a weakly-supervised, general-
purpose, and accurate algorithm, called Espresso,
for harvesting binary semantic relations from raw
text. The main contributions are: i) a method for
exploiting generic patterns by filtering incorrect
instances using the Web; and ii) a principled
measure of pattern and instance reliability ena-
bling the filtering algorithm.

We have empirically compared Espresso’s
precision and recall with other systems on both a
small domain-specific textbook and on a larger
corpus of general news, and have extracted sev-
eral standard and specific semantic relations: is-
a, part-of, succession, reaction, and production.
Espresso achieves higher and more balanced per-
formance than other state of the art systems. By
exploiting generic patterns, system recall sub-
stantially increases with little effect on precision.

There are many avenues of future work both in
improving system performance and making use
of the relations in applications like question an-
swering. For the former, we plan to investigate
the use of WordNet to automatically learn selec-
tional constraints on generic patterns, as pro-
posed by (Girju et al. 2006). We expect here that
negative instances will play a key role in deter-
mining the selectional restrictions.

Espresso is the first system, to our knowledge,
to emphasize concurrently performance, minimal
supervision, breadth, and generality. It remains
to be seen whether one could enrich existing on-
tologies with relations harvested by Espresso,
and it is our hope that these relations will benefit
NLP applications.
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Abstract

This paper proposes a novel hierarchical learn-
ing strategy to deal with the data sparseness
problem in relation extraction by modeling the
commonality among related classes. For each
class in the hierarchy either manually prede-
fined or automatically clustered, a linear dis-
criminative function is determined in a top-
down way using a perceptron algorithm with
the lower-level weight vector derived from the
upper-level weight vector. As the upper-level
class normally has much more positive train-
ing examples than the lower-level class, the
corresponding linear discriminative function
can be determined more reliably. The upper-
level discriminative function then can effec-
tively guide the discriminative function learn-
ing in the lower-level, which otherwise might
suffer from limited training data. Evaluation
on the ACE RDC 2003 corpus shows that the
hierarchical strategy much improves the per-
formance by 5.6 and 5.1 in F-measure on
least- and medium- frequent relations respec-
tively. It also shows that our system outper-
forms the previous best-reported system by 2.7
in F-measure on the 24 subtypes using the
same feature set.

1 Introduction

With the dramatic increase in the amount of tex-
tual information available in digital archives and
the WWW, there has been growing interest in
techniques for automatically extracting informa-
tion from text. Information Extraction (IE) is
such a technology that IE systems are expected
to identify relevant information (usually of pre-
defined types) from text documents in a certain
domain and put them in a structured format.
According to the scope of the ACE program
(ACE 2000-2005), current research in IE has
three main objectives: Entity Detection and
Tracking (EDT), Relation Detection and
Characterization (RDC), and Event Detection
and Characterization (EDC). This paper will
focus on the ACE RDC task, which detects and
classifies various semantic relations between two

entities. For example, we want to determine
whether a person is at a location, based on the
evidence in the context. Extraction of semantic
relationships between entities can be very useful
for applications such as question answering, e.g.
to answer the query “Who is the president of the
United States?”.

One major challenge in relation extraction is
due to the data sparseness problem (Zhou et al
2005). As the largest annotated corpus in relation
extraction, the ACE RDC 2003 corpus shows
that different subtypes/types of relations are
much unevenly distributed and a few relation
subtypes, such as the subtype “Founder” under
the type “ROLE”, suffers from a small amount of
annotated data. Further experimentation in this
paper (please see Figure 2) shows that most rela-
tion subtypes suffer from the lack of the training
data and fail to achieve steady performance given
the current corpus size. Given the relative large
size of this corpus, it will be time-consuming and
very expensive to further expand the corpus with
a reasonable gain in performance. Even if we can
somehow expend the corpus and achieve steady
performance on major relation subtypes, it will
be still far beyond practice for those minor sub-
types given the much unevenly distribution
among different relation subtypes. While various
machine learning approaches, such as generative
modeling (Miller et al 2000), maximum entropy
(Kambhatla 2004) and support vector machines
(Zhao and Grisman 2005; Zhou et al 2005), have
been applied in the relation extraction task, no
explicit learning strategy is proposed to deal with
the inherent data sparseness problem caused by
the much uneven distribution among different
relations.

This paper proposes a novel hierarchical
learning strategy to deal with the data sparseness
problem by modeling the commonality among
related classes. Through organizing various
classes hierarchically, a linear discriminative
function is determined for each class in a top-
down way using a perceptron algorithm with the
lower-level weight vector derived from the up-
per-level weight vector. Evaluation on the ACE
RDC 2003 corpus shows that the hierarchical
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strategy achieves much better performance than
the flat strategy on least- and medium-frequent
relations. It also shows that our system based on
the hierarchical strategy outperforms the previ-
ous best-reported system.

The rest of this paper is organized as follows.
Section 2 presents related work. Section 3
describes the hierarchical learning strategy using
the perceptron algorithm. Finally, we present
experimentation in Section 4 and conclude this
paper in Section 5.

2 Related Work

The relation extraction task was formulated at
MUC-7(1998). With the increasing popularity of
ACE, this task is starting to attract more and
more researchers within the natural language
processing and machine learning communities.
Typical works include Miller et al (2000), Ze-
lenko et al (2003), Culotta and Sorensen (2004),
Bunescu and Mooney (2005a), Bunescu and
Mooney (2005b), Zhang et al (2005), Roth and
Yih (2002), Kambhatla (2004), Zhao and Grisman
(2005) and Zhou et al (2005).

Miller et al (2000) augmented syntactic full
parse trees with semantic information of entities
and relations, and built generative models to in-
tegrate various tasks such as POS tagging, named
entity recognition, template element extraction
and relation extraction. The problem is that such
integration may impose big challenges, e.g. the
need of a large annotated corpus. To overcome
the data sparseness problem, generative models
typically applied some smoothing techniques to
integrate different scales of contexts in parameter
estimation, e.g. the back-off approach in Miller
et al (2000).

Zelenko et al (2003) proposed extracting re-
lations by computing kernel functions between
parse trees. Culotta and Sorensen (2004) extended
this work to estimate kernel functions between
augmented dependency trees and achieved F-
measure of 45.8 on the 5 relation types in the
ACE RDC 2003 corpus®. Bunescu and Mooney
(2005a) proposed a shortest path dependency
kernel. They argued that the information to
model a relationship between two entities can be
typically captured by the shortest path between
them in the dependency graph. It achieved the F-
measure of 52.5 on the 5 relation types in the
ACE RDC 2003 corpus. Bunescu and Mooney
(2005b) proposed a subsequence kernel and ap-

! The ACE RDC 2003 corpus defines 5/24 relation
types/subtypes between 4 entity types.

plied it in protein interaction and ACE relation
extraction tasks. Zhang et al (2005) adopted clus-
tering algorithms in unsupervised relation extrac-
tion using tree kernels. To overcome the data
sparseness problem, various scales of sub-trees
are applied in the tree kernel computation. Al-
though tree kernel-based approaches are able to
explore the huge implicit feature space without
much feature engineering, further research work
is necessary to make them effective and efficient.

Comparably,  feature-based  approaches
achieved much success recently. Roth and Yih
(2002) used the SNoW classifier to incorporate
various features such as word, part-of-speech and
semantic information from WordNet, and pro-
posed a probabilistic reasoning approach to inte-
grate named entity recognition and relation
extraction. Kambhatla (2004) employed maxi-
mum entropy models with features derived from
word, entity type, mention level, overlap, de-
pendency tree, parse tree and achieved F-
measure of 52.8 on the 24 relation subtypes in
the ACE RDC 2003 corpus. Zhao and Grisman
(2005)* combined various kinds of knowledge
from tokenization, sentence parsing and deep
dependency analysis through support vector ma-
chines and achieved F-measure of 70.1 on the 7
relation types of the ACE RDC 2004 corpus®.
Zhou et al (2005) further systematically explored
diverse lexical, syntactic and semantic features
through support vector machines and achieved F-
measure of 68.1 and 55.5 on the 5 relation types
and the 24 relation subtypes in the ACE RDC
2003 corpus respectively. To overcome the data
sparseness problem, feature-based approaches
normally incorporate various scales of contexts
into the feature vector extensively. These ap-
proaches then depend on adopted learning algo-
rithms to weight and combine each feature
effectively. For example, an exponential model
and a linear model are applied in the maximum
entropy models and support vector machines re-
spectively to combine each feature via the
learned weight vector.

In summary, although various approaches
have been employed in relation extraction, they
implicitly attack the data sparseness problem by
using features of different contexts in feature-
based approaches or including different sub-

% Here, we classify this paper into feature-based ap-
proaches since the feature space in the kernels of
Zhao and Grisman (2005) can be easily represented
by an explicit feature vector.

® The ACE RDC 2004 corpus defines 7/27 relation
types/subtypes between 7 entity types.
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structures in kernel-based approaches. Until now,
there are no explicit ways to capture the hierar-
chical topology in relation extraction. Currently,
all the current approaches apply the flat learning
strategy which equally treats training examples
in different relations independently and ignore
the commonality among different relations. This
paper proposes a novel hierarchical learning
strategy to resolve this problem by considering
the relatedness among different relations and
capturing the commonality among related rela-
tions. By doing so, the data sparseness problem
can be well dealt with and much better perform-
ance can be achieved, especially for those rela-
tions with small amounts of annotated examples.

3 Hierarchical Learning Strategy

Traditional classifier learning approaches apply
the flat learning strategy. That is, they equally
treat training examples in different classes
independently and ignore the commonality
among related classes. The flat strategy will not
cause any problem when there are a large amount
of training examples for each class, since, in this
case, a classifier learning approach can always
learn a nearly optimal discriminative function for
each class against the remaining classes. How-
ever, such flat strategy may cause big problems
when there is only a small amount of training
examples for some of the classes. In this case, a
classifier learning approach may fail to learn a
reliable (or nearly optimal) discriminative func-
tion for a class with a small amount of training
examples, and, as a result, may significantly af-
fect the performance of the class or even the
overall performance.

To overcome the inherent problems in the
flat strategy, this paper proposes a hierarchical
learning strategy which explores the inherent
commonality among related classes through a
class hierarchy. In this way, the training exam-
ples of related classes can help in learning a reli-
able discriminative function for a class with only
a small amount of training examples. To reduce
computation time and memory requirements, we
will only consider linear classifiers and apply the
simple and widely-used perceptron algorithm for
this purpose with more options open for future
research. In the following, we will first introduce
the perceptron algorithm in linear classifier
learning, followed by the hierarchical learning
strategy using the perceptron algorithm. Finally,
we will consider several ways in building the
class hierarchy.

3.1 Perceptron Algorithm

Input:  the initial weight vector W, the training
example sequence
X,y € XxY,t=12..T 504 the number of
the maximal iterations N (e.ﬁg. 10 in this
paper) of the training sequence )

Output: the weight vector W for the linear
discriminative function f=Ww-x

BEGIN

W, =W
REPEAT for t=1,2,...,T*N

1. Receive the instance x, € R"
2. Compute the output o, =w, - x,
3. Give the prediction )A/t =sign(o,)
4. Receive the desired label y, e {-1,+1}
5. Update the hypothesis according to
Weyy =W + G Y% (1)
where &, =0 if the margin of w, at the
given example (x,y,) YW, -X >0
and ¢, =1 otherwise
END REPEAT
N
Return W= 2 Wry.1 /5
END BEGIN ™

Figure 1: the perceptron algorithm
This section first deals with binary classification
using linear classifiers. Assume an instance space
X =R" and a binary label space Y ={-1+1} .
With any weight vector weR" and a given

instance x e R", we associate a linear classifier
h, with a linear discriminative function °
f(x)=w-x Dby h,(x)=sign(w-x) , where
sign(w-x)=-1 if w-x<0 and sign(w-x)=+1
otherwise. Here, the margin of w at (x,y,) is
defined as y,w-x,. Then if the margin is positive,
we have a correct prediction with h,(x)=y,, and

if the margin is negative, we have an error with
h,(x) =y, . Therefore, given a sequence of
training examples (x,y,)e XxY,t=12...T ,
linear classifier learning attemps to find a weight
vector w that achieves a positive margin on as
many examples as possible.

* The training example sequence is feed N times for
better performance. Moreover, this number can con-
trol the maximal affect a training example can pose.
This is similar to the regulation parameter C in
SVM, which affects the trade-off between complex-
ity and proportion of non-separable examples. As a
result, it can be used to control over-fitting and
robustness.

® (w-x) denotes the dot product of the weight vector

w e R" and a given instance xe R".
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The well-known perceptron algorithm, as
shown in Figure 1, belongs to online learning of
linear classifiers, where the learning algorithm
represents its t -th hyposthesis by a weight vector

w, e R". At trial t, an online algorithm receives

an instance x eR" , makes its prediction

A

Y, =sign(w, - x,) and receives the desired label

y, e{-1+1}. What distinguishes different online
algorithms is how they update w, into w,,, based
on the example (x,y,) received at trial t. In

particular, the perceptron algorithm updates the
hypothesis by adding a scalar multiple of the
instance, as shown in Equation 1 of Figure 1,
when there is an error. Normally, the tradictional
perceptron algorithm initializes the hypothesis as
the zero vector w, =0. This is usually the most

natural choice, lacking any other preference.

Smoothing

In order to further improve the performance, we
iteratively feed the training examples for a possi-
ble better discriminative function. In this paper,
we have set the maximal iteration number to 10
for both efficiency and stable performance and
the final weight vector in the discriminative func-
tion is averaged over those of the discriminative
functions in the last few iterations (e.g. 5 in this

paper).

Bagging

One more problem with any online classifier
learning algorithm, including the perceptron al-
gorithm, is that the learned discriminative func-
tion somewhat depends on the feeding order of
the training examples. In order to eliminate such
dependence and further improve the perform-
ance, an ensemble technique, called bagging
(Breiman 1996), is applied in this paper. In bag-
ging, the bootstrap technique is first used to build
M (e.g. 10 in this paper) replicate sample sets by
randomly re-sampling with replacement from the
given training set repeatedly. Then, each training
sample set is used to train a certain discrimina-
tive function. Finally, the final weight vector in
the discriminative function is averaged over
those of the M discriminative functions in the
ensemble.

Multi-Class Classification

Basically, the perceptron algorithm is only for
binary classification. Therefore, we must extend
the perceptron algorithms to multi-class
classification, such as the ACE RDC task. For
efficiency, we apply the one vs. others strategy,

which builds K classifiers so as to separate one
class from all others. However, the outputs for
the perceptron algorithms of different classes
may be not directly comparable since any
positive scalar multiple of the weight vector will
not affect the actual prediction of a perceptron
algorithm. For comparability, we map the
perceptron algorithm output into the probability
by using an additional sigmoid model:

1
D(Y=1|f)=m 2

where f =w-x is the output of a perceptron

algorithm and the coefficients A & B are to be
trained using the model trust alorithm as
described in Platt (1999). The final decision of an
instance in  multi-class  classification s
determined by the class which has the maximal
probability from the corresponding perceptron
algorithm.

3.2 Hierarchical Learning Strategy using the
Perceptron Algorithm

Assume we have a class hierarchy for a task, e.g.
the one in the ACE RDC 2003 corpus as shown
in Table 1 of Section 4.1. The hierarchical learn-
ing strategy explores the inherent commonality
among related classes in a top-down way. For
each class in the hierarchy, a linear discrimina-
tive function is determined in a top-down way
with the lower-level weight vector derived from
the upper-level weight vector iteratively. This is
done by initializing the weight vector in training
the linear discriminative function for the lower-
level class as that of the upper-level class. That
is, the lower-level discriminative function has the
preference toward the discriminative function of
its upper-level class. For an example, let’s look
at the training of the “Located” relation subtype

in the class hierarchy as shown in Table 1:

1) Train the weight vector of the linear
discriminative function for the “YES”
relation vs. the “NON” relation with the
weight vector initialized as the zero vector.

2) Train the weight vector of the linear
discriminative function for the “AT” relation
type vs. all the remaining relation types
(including the “NON” relation) with the
weight vector initialized as the weight vector
of the linear discriminative function for the
“YES” relation vs. the “NON” relation.

3) Train the weight vector of the linear
discriminative function for the “Located”
relation subtype vs. all the remaining relation
subtypes under all the relation types
(including the “NON” relation) with the
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weight vector initialized as the weight vector

of the linear discriminative function for the

“AT” relation type vs. all the remaining

relation types.

4) Return the above trained weight vector as the
discriminatie function for the “Located”
relation subtype.

In this way, the training examples in differ-
ent classes are not treated independently any
more, and the commonality among related
classes can be captured via the hierarchical learn-
ing strategy. The intuition behind this strategy is
that the upper-level class normally has more
positive training examples than the lower-level
class so that the corresponding linear discrimina-
tive function can be determined more reliably. In
this way, the training examples of related classes
can help in learning a reliable discriminative
function for a class with only a small amount of
training examples in a top-down way and thus
alleviate its data sparseness problem.

3.3 Building the Class Hierarchy

We have just described the hierarchical learning
strategy using a given class hierarchy. Normally,
a rough class hierarchy can be given manually
according to human intuition, such as the one in
the ACE RDC 2003 corpus. In order to explore
more commonality among sibling classes, we
make use of binary hierarchical clustering for
sibling classes at both lowest and all levels. This
can be done by first using the flat learning strat-
egy to learn the discriminative functions for indi-
vidual classes and then iteratively combining the
two most related classes using the cosine similar-

ity function between their weight vectors in a

bottom-up way. The intuition is that related

classes should have similar hyper-planes to sepa-
rate from other classes and thus have similar
weight vectors.

o Lowest-level hybrid: Binary hierarchical
clustering is only done at the lowest level
while keeping the upper-level class hierar-
chy. That is, only sibling classes at the low-
est level are hierarchically clustered.

o All-level hybrid: Binary hierarchical cluster-
ing is done at all levels in a bottom-up way.
That is, sibling classes at the lowest level are
hierarchically clustered first and then sibling
classes at the upper-level. In this way, the bi-
nary class hierarchy can be built iteratively
in a bottom-up way.

4 Experimentation

This paper uses the ACE RDC 2003 corpus pro-
vided by LDC to train and evaluate the hierarchi-
cal learning strategy. Same as Zhou et al (2005),
we only model explicit relations and explicitly
model the argument order of the two mentions
involved.

4.1 Experimental Setting

Type Subtype Freq Bin Type
AT Based-In 347 Medium
Located 2126  Large
Residence 308 Medium
NEAR Relative-Location 201 Medium
PART Part-Of 947 Large
Subsidiary 355 Medium
Other 6 Small
ROLE Affiliate-Partner 204 Medium
Citizen-Of 328 Medium
Client 144 Small
Founder 26 Small
General-Staff 1331  Large
Management 1242 Large
Member 1091  Large
Owner 232 Medium
Other 158 Small
SOCIAL Associate 91 Small
Grandparent 12 Small
Other-Personal 85 Small
Other-Professional 339 Medium
Other-Relative 78 Small
Parent 127 Small
Sibling 18 Small
Spouse 77 Small

Table 1: Statistics of relation types and subtypes
in the training data of the ACE RDC 2003 corpus
(Note: According to frequency, all the subtypes
are divided into three bins: large/ middle/ small,
with 400 as the lower threshold for the large bin
and 200 as the upper threshold for the small bin).

The training data consists of 674 documents
(~300k words) with 9683 relation examples
while the held-out testing data consists of 97
documents (~50k words) with 1386 relation ex-
amples. All the experiments are done five times
on the 24 relation subtypes in the ACE corpus,
except otherwise specified, with the final per-
formance averaged using the same re-sampling
with replacement strategy as the one in the bag-
ging technique. Table 1 lists various types and
subtypes of relations for the ACE RDC 2003
corpus, along with their occurrence frequency in
the training data. It shows that this corpus suffers
from a small amount of annotated data for a few
subtypes such as the subtype “Founder” under
the type “ROLE”.

For comparison, we also adopt the same fea-
ture set as Zhou et al (2005): word, entity type,
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mention level, overlap, base phrase chunking,
dependency tree, parse tree and semantic infor-
mation.

4.2  Experimental Results

Table 2 shows the performance of the hierarchi-
cal learning strategy using the existing class hier-
archy in the given ACE corpus and its
comparison with the flat learning strategy, using
the perceptron algorithm. It shows that the pure
hierarchical strategy outperforms the pure flat
strategy by 1.5 (56.9 vs. 55.4) in F-measure. It
also shows that further smoothing and bagging
improve the performance of the hierarchical and
flat strategies by 0.6 and 0.9 in F-measure re-
spectively. As a result, the final hierarchical
strategy achieves F-measure of 57.8 and outper-
forms the final flat strategy by 1.8 in F-measure.

Strategies P R F

Flat 58.2 528 554
Flat+Smoothing 58.9 531 559
Flat+Bagging 59.0 531 559
Flat+Both 59.1 532 56.0
Hierarchical 619 526 56.9
Hierarchical+Smoothing  62.7 53.1 57.5
Hierarchical+Bagging 629 531 576
Hierarchical+Both 63.0 534 578

Table 2: Performance of the hierarchical learning
strategy using the existing class hierarchy and its
comparison with the flat learning strategy

Class Hierarchies P R F

Existing 63.0 53.4 5738
Entirely Automatic 63.4 531 578
Lowest-level Hybrid 63.6 535 581
All-level Hybrid 63.6 53.6 58.2

Table 3: Performance of the hierarchical learning
strategy using different class hierarchies

Table 3 compares the performance of the hi-
erarchical learning strategy using different class
hierarchies. It shows that, the lowest-level hybrid
approach, which only automatically updates the
existing class hierarchy at the lowest level, im-
proves the performance by 0.3 in F-measure
while further updating the class hierarchy at up-
per levels in the all-level hybrid approach only
has very slight effect. This is largely due to the
fact that the major data sparseness problem oc-
curs at the lowest level, i.e. the relation subtype
level in the ACE corpus. As a result, the final
hierarchical learning strategy using the class hi-
erarchy built with the all-level hybrid approach
achieves F-measure of 58.2 in F-measure, which
outperforms the final flat strategy by 2.2 in F-
measure. In order to justify the usefulness of our

hierarchical learning strategy when a rough class
hierarchy is not available and difficult to deter-
mine manually, we also experiment using en-
tirely automatically built class hierarchy (using
the traditional binary hierarchical clustering algo-
rithm and the cosine similarity measurement)
without considering the existing class hierarchy.
Table 3 shows that using automatically built
class hierarchy performs comparably with using
only the existing one.

With the major goal of resolving the data
sparseness problem for the classes with a small
amount of training examples, Table 4 compares
the best-performed hierarchical and flat learning
strategies on the relation subtypes of different
training data sizes. Here, we divide various rela-
tion subtypes into three bins: large/middle/small,
according to their available training data sizes.
For the ACE RDC 2003 corpus, we use 400 as
the lower threshold for the large bin® and 200 as
the upper threshold for the small bin’. As a re-
sult, the large/medium/small bin includes 5/8/11
relation subtypes, respectively. Please see Table
1 for details. Table 4 shows that the hierarchical
strategy outperforms the flat strategy by
1.0/5.1/5.6 in F-measure on the
large/middle/small bin respectively. This indi-
cates that the hierarchical strategy performs
much better than the flat strategy for those
classes with a small or medium amount of anno-
tated examples although the hierarchical strategy
only performs slightly better by 1.0 and 2.2 in F-
measure than the flat strategy on those classes
with a large size of annotated corpus and on all
classes as a whole respectively. This suggests
that the proposed hierarchical strategy can well
deal with the data sparseness problem in the
ACE RDC 2003 corpus.

An interesting question is about the similar-
ity between the linear discriminative functions
learned using the hierarchical and flat learning
strategies. Table 4 compares the cosine similari-
ties between the weight vectors of the linear dis-
criminative functions using the two strategies for
different bins, weighted by the training data sizes

® The reason to choose this threshold is that no rela-
tion subtype in the ACE RC 2003 corpus has train-
ing examples in between 400 and 900.

" A few minor relation subtypes only have very few
examples in the testing set. The reason to choose
this threshold is to guarantee a reasonable number of
testing examples in the small bin. For the ACE RC
2003 corpus, using 200 as the upper threshold will
fill the small bin with about 100 testing examples
while using 100 will include too few testing exam-
ples for reasonable performance evaluation.
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of different relation subtypes. It shows that the
linear discriminative functions learned using the
two strategies are very similar (with the cosine
similarity 0.98) for the relation subtypes belong-
ing to the large bin while the linear discrimina-
tive functions learned using the two strategies are
not for the relation subtypes belonging to the
medium/small bin with the cosine similarity
0.92/0.81 respectively. This means that the use of
the hierarchical strategy over the flat strategy
only has very slight change on the linear dis-
criminative functions for those classes with a
large amount of annotated examples while its
effect on those with a small amount of annotated
examples is obvious. This contributes to and ex-
plains (the degree of) the performance difference
between the two strategies on the different train-
ing data sizes as shown in Table 4.

Due to the difficulty of building a large an-
notated corpus, another interesting question is
about the learning curve of the hierarchical learn-
ing strategy and its comparison with the flat
learning strategy. Figure 2 shows the effect of
different training data sizes for some major rela-
tion subtypes while keeping all the training ex-
amples of remaining relation subtypes. It shows

that the hierarchical strategy performs much bet-
ter than the flat strategy when only a small
amount of training examples is available. It also
shows that the hierarchical strategy can achieve
stable performance much faster than the flat
strategy. Finally, it shows that the ACE RDC
2003 task suffers from the lack of training exam-
ples. Among the three major relation subtypes,
only the subtype “Located” achieves steady per-
formance.

Finally, we also compare our system with the
previous best-reported systems, such as Kamb-
hatla (2004) and Zhou et al (2005). Table 5
shows that our system outperforms the previous
best-reported system by 2.7 (58.2 vs. 55.5) in F-
measure, largely due to the gain in recall. It indi-
cates that, although support vector machines and
maximum entropy models always perform better
than the simple perceptron algorithm in most (if
not all) applications, the hierarchical learning
strategy using the perceptron algorithm can eas-
ily overcome the difference and outperforms the
flat learning strategy using the overwhelming
support vector machines and maximum entropy
models in relation extraction, at least on the ACE
RDC 2003 corpus.

Bin Type(cosine similarity) Large Bin (0.98) Middle Bin (0.92) Small Bin (0.81)
P R F P R F P R F

Flat Strategy 62.3 619 62.1 608 387 473 330 217 26.2

Hierarchical Strategy 66.4 60.2 63.1 676 427 524 402 263 318

Table 4: Comparison of the hierarchical and flat learning strategies on the relation subtypes of differ-
ent training data sizes. Notes: the figures in the parentheses indicate the cosine similarities between
the weight vectors of the linear discriminative functions learned using the two strategies.

70

—+&— HS: General-Staff
---o--- FS: General-Staff
—>— HS: Part-Of
---%-- FS: Part-Of

F-measure

304
208 —e— HS: Located
. D ---+--- FS: Located
I R T

Training Data Size

Figure 2: Learning curve of the hierarchical strategy and its comparison with the flat strategy for some
major relation subtypes (Note: FS for the flat strategy and HS for the hierarchical strategy)

System Performance

P R F
Our: Perceptron Algorithm + Hierarchical Strategy 63.6 53.6 58.2
Zhou et al (2005): SVM + Flat Strategy 63.1 49.5 55.5
Kambhatla (2004): Maximum Entropy + Flat Strategy 63.5 45.2 52.8

Table 5: Comparison of our system with other best-reported systems
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5 Conclusion

This paper proposes a novel hierarchical learning
strategy to deal with the data sparseness problem
in relation extraction by modeling the common-
ality among related classes. For each class in a
class hierarchy, a linear discriminative function
is determined in a top-down way using the per-
ceptron algorithm with the lower-level weight
vector derived from the upper-level weight vec-
tor. In this way, the upper-level discriminative
function can effectively guide the lower-level
discriminative function learning. Evaluation on
the ACE RDC 2003 corpus shows that the hier-
archical strategy performs much better than the
flat strategy in resolving the critical data sparse-
ness problem in relation extraction.

In the future work, we will explore the hier-
archical learning strategy using other machine
learning approaches besides online classifier
learning approaches such as the simple percep-
tron algorithm applied in this paper. Moreover,
just as indicated in Figure 2, most relation sub-
types in the ACE RDC 2003 corpus (arguably
the largest annotated corpus in relation extrac-
tion) suffer from the lack of training examples.
Therefore, a critical research in relation extrac-
tion is how to rely on semi-supervised learning
approaches (e.g. bootstrap) to alleviate its de-
pendency on a large amount of annotated training
examples and achieve better and steadier per-
formance. Finally, our current work is done when
NER has been perfectly done. Therefore, it
would be interesting to see how imperfect NER
affects the performance in relation extraction.
This will be done by integrating the relation ex-
traction system with our previously developed
NER system as described in Zhou and Su (2002).
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Abstract

Shortage of manually labeled data is an
obstacle to supervised relation extraction
methods. In this paper we investigate a
graph based semi-supervised learning al-
gorithm, a label propagation (LP) algo-

rithm, for relation extraction. It represents

labeled and unlabeled examples and their
distances as the nodes and the weights of
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amount of manually labeled relation instances. Un-
supervised methods do not need the definition of
relation types and manually labeled data, but they
cannot detect relations between entity pairs and its
result cannot be directly used in many NLP tasks
since there is no relation type label attached to
each instance in clustering result. Considering both
the availability of a large amount of untagged cor-
pora and direct usage of extracted relations, semi-
supervised learning methods has received great at-

tention.

DIPRE (Dual lterative Pattern Relation Expan-
sion) (Brin, 1998) is a bootstrapping-based sys-
tem that used a pattern matching system as clas-
sifier to exploit the duality between sets of pat-
terns and relations. Snowball (Agichtein and Gra-
vano, 2000) is another system that used bootstrap-
ping techniques for extracting relations from un-
structured text. Snowball shares much in common
with DIPRE, including the employment of the boot-
strapping framework as well as the use of pattern
matching to extract new candidate relations. The
third system approaches relation classification prob-

Relation extraction is the task of detecting andem with bootstrapping on top of SVM, proposed by
classifying relationships between two entities fronfhang (2004). This system focuses on the ACE sub-
text. Many machine learning methods have beeproblem, RDC, and extracts various lexical and syn-
proposed to address this problem, e.g., supervisé%PtiC features for the classification task. However,
learning algorithms (Miller et al., 2000; Zelenko etZhang (2004)’s method doesn't actually “detect” re-
al., 2002; Culotta and Soresen, 2004: Kambhaﬂ@itons but only performs relation classification be-
2004; Zhou et al., 2005), semi-supervised learrfween two entities given that they are known to be
ing algorithms (Brin, 1998; Agichtein and Gravanofelated.
2000; Zhang, 2004), and unsupervised learning al- Bootstrapping works by iteratively classifying un-
gorithms (Hasegawa et al., 2004). labeled examples and adding confidently classified
Supervised methods for relation extraction perexamples into labeled data using a model learned
form well on the ACE Data, but they require a largdrom augmented labeled data in previous iteration. It

edges of a graph, and tries to obtain a la-
beling function to satisfy two constraints:
1) it should be fixed on the labeled nodes,
2) it should be smooth on the whole graph.
Experiment results on the ACE corpus
showed that this LP algorithm achieves
better performance than SVM when only
very few labeled examples are available,
and it also performs better than bootstrap-
ping for the relation extraction task.

1 Introduction
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can be found that the affinity information amongun2 The Proposed Method
Iabelet_j examples is not fully explored in this boot—zl1 Problem Definition
strapping process.

Recently a promising family of semi-supervisedThe problem qf relation extraction is to assign an ap-
learning algorithm is introduced, which can effeclPropriate relation type to an occurrence of two entity
tively combine unlabeled data with labeled data if?@irs in @ given context. It can be represented as fol-
learning process by exploiting manifold structurdOWs:
(cluster structure) in data (Belkin and Niyogi, 2002;
Blum and Chawla, 2001; Blum et al., 2004; Zhu
and Ghahramani, 2002; Zhu et al., 2003). Thesgheree; and e, denote the entity mentions, and
graph-based semi-supervised methods usually de€s,.,C,,;q,and Cp.s: are the contexts before, be-
fine a graph where the nodes represent labeled afwgeen and after the entity mention pairs. In this pa-
unlabeled examples in a dataset, and edges (may &, we set the mid-context window as the words be-
weighted) reflect the similarity of examples. Thenween the two entity mentions and the pre- and post-
one wants a labeling function to satisfy two concontext as up to two words before and after the cor-
straints at the same time: 1) it should be close to th@sponding entity mention.
given labels on the labeled nodes, and 2) it should be Let X = {z;}" ; be a set of contexts of occur-
smooth on the whole graph. This can be expressednces of all the entity mention pairs, whergerep-
in a regularization framework where the first ternresents the contexts of thieh occurrence, and is
is a loss function, and the second term is a reguhe total number of occurrences. The firstxam-
larizer. These methods differ from traditional semiples (or contexts) are labeled as(y, € {Tj}?:P
supervised learning methods in that they use graph) denotes relation type arlis the total number of
structure to smooth the labeling function. relation types). The remainingu = n — [) exam-

To the best of our knowledge, no work has beeples are unlabeled.
done on using graph based semi-supervised learninglntuitively, if two occurrences of entity mention
algorithms for relation extraction. Here we invespairs have the similarity context, they tend to hold
tigate a label propagation algorithm (LP) (Zhu andhe same relation type. Based on the assumption, we
Ghahramani, 2002) for relation extraction task. Thislefine a graph where the vertices represent the con-
algorithm works by representing labeled and unlaexts of labeled and unlabeled occurrences of entity
beled examples as vertices in a connected grapigention pairs, and the edge between any two ver-
then propagating the label information from any verticesz; andz; is weighted so that the closer the ver-
tex to nearby vertices through weighted edges iteréices in some distance measure, the larger the weight
tively, finally inferring the labels of unlabeled exam-associated with this edge. Hence, the weights are de-
ples after the propagation process converges. In tHfised as follows:
paper we focus on the ACE RDC tdsk §2

The rest of this paper is organized as follows. Sec- Wi; = e:cp(—%) 2)
tion 2 presents related work. Section 3 formulates @
relation extraction problem in the context of semiwheres;; is the similarity between; andx; calcu-
supervised learning and describes our proposed dpted by some similarity measures, e.g., cosine sim-
proach. Then we provide experimental results of odlarity, and « is used to scale the weights. In this
proposed method and compare with a popular s@aper, we set as the average similarity between la-
pervised learning algorithm (SVM) and bootstrapbeled examples from different classes.
ping algorithm in Section 4. Finally we conclude
our work in section 5.

R — (Cprea €1, Cmid7 €2, CPOSt) (l)

2.2 A Label Propagation Algorithm

In the LP algorithm, the label information of any

. http://www.ldc.upenn.edu/Projects/ACE/, Three tasks ofertex in a graph is propagated to nearby vertices
ACE program: Entity Detection and Tracking (EDT), Rela- hrough weighted edaes until a alobal stable stage is
tion Detection and Characterization (RDC), and Event Deted! g g g g g

tion and Characterization (EDC) achieved. Larger edge weights allow labels to travel
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through easier. Thus the closer the examples are, tBeep 5: Assignz, (I + 1 < h < n) with a label:
more likely they have similar labels. yn = argmax;Yp;.

We define soft label as a vector that is a proba- _
bilistic distribution over all the classes. In the la- 1h€ @bove algorithm can ensure that the labeled

bel propagation process, the soft label of each initiflat@Yz never changes since itis clamped in Step 3.
labeled example is clamped in each iteration to ré>ctually we are interested in onlyy;. This algo-
plenish label sources from these labeled data. Thiidm has been shown to converge to a unique solu-
the labeled data act like sources to push out labdi@N Yo = lim; oo Y77 = (I — T) ™' Ty (Zhu
through unlabeled data. With this push from la@&"d Ghahramani, 2002). Herg,, andT, are ac-
beled examples, the class boundaries will be pushdyired by splitting matrix” after thei-th row and
through edges with large weights and settle in ga8€-th column into4 sub-matrices. And is u x u
along edges with small weights. Hopefully, the Val_ldgl’.\tlty matrlx. _We_can see that the |r_1|t|aI|Ozat|on of
ues ofi¥;; across different classes would be as smalfv In this solution is not important, since; does

as possible and the values @f;; within the same not affect the estimation dfy.

class would be as large as possible. This will mak§
label propagation to stay within the same class. This
label propagation process will make the labelin®.1 Feature Set

function smooth on the graph. N _ Following (Zhang, 2004), we used lexical and syn-
Define ann x n probabilistic transition matrif’  (4ic features in the contexts of entity pairs, which
Wi 3) are extracted and computed from the parse trees de-
> h—1 Wi rived from Charniak Parser (Charniak, 1999) and the
Chunklink script written by Sabine Buchholz from
Tilburg University.

Experiments and Results

Ty = P(j— i) =

whereT;; is the probability to jump from vertex;
to vertexz;. We define an x R label matrixY’,
whereY;; representing the probabilities of vertgx Words: Surface tokens of the two entities and

to have the labet;. words in the three contexts.
Then the label propagation algorithm consists the
following main steps: Entity Type: the entity type of both entity men-
tions, which can be PERSON, ORGANIZA-
Stepl: Initialization TION, FACILITY, LOCATION and GPE.

e Set the iteration index = 0;

o LetY" be the initial soft labels attached to
each vertex, wher]e’ig = 1if y; is labelr;
andO0 otherwise.

e Let Y be the topl rows of Y andY}} Chunking features: This category of features are
be the remaining rows.YL0 is consistent extracted from the chunklink representation,
with the labeling in labeled data and the  which includes:
initialization of ;% can be arbitrary.

POS features: Part-Of-Speech tags corresponding
to all tokens in the two entities and words in
the three contexts.

e Chunk tag information of the two enti-

Step 2 Propagate the labels of any vertex to ties and words in the three contexts. The
nearby vertices byy‘t! = TY! , where “0” tag means that the word is not in any
T is the row-normalized matrix off’, i.e. chunk. The “I-XP" tag means that this
T; = Ti;/ Xk Tir, Which can maintain the word is inside an XP chunk. The “B-XP”
class probab|||ty interpretation. by default means that the word is at the

_ beginning of an XP chunk.

Step 3: Clamp thteJrIlabgled (gl)ata, that is, replace the e Grammatical function of the two enti-
top! row of Y with Y. ties and words in the three contexts. The

Step 4 : Repeat from step 2 unfit converges. 2Software available at http://ilk.uvt.alsabine/chunklink/
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I word in h chunk is its h n
ast Oq each chu ) s its eaq’ a able 1:Frequency of Relation SubTypes in the ACE training
the function of the head is the function of 3pq gevtest corpus.

the whole chunk. “NP-SBJ” means a NP Type [ SubType [ Training Devtest
chunk as the subject of the sentence. The ROLE SAeneral-Staff 233 igg
: anagement
other words in a chunk that_ are not the Citizen-Of 127 o4
head have “NOFUNC" as their function. Founder 11 5
. . Owner 146 15
. IQB-chalns of the head_s of th_e two enti- Affiliate-Partner 111 15
ties. So-called I0B-chain, noting the syn- Member 460 145
tactic categories of all the constituents on Client 67 13
h th from the root node to this leaf Other = !
the pa PART | Part-Of 490 103
node of tree. Subsidiary 85 19
Other 2 1
. . . . . . AT Located 975 192
The position information is also specified in the Based-In 187 64
description of each feature above. For example, — gﬁfidegci _ igg 245‘-
. e . : : . er-rroressiona
word features with position |.nformat|on include: Other-Personal 60 10
1) WE1 (WEZ2): all words ire; (e2) Parent 68 24
2) WHE1 (WHE2): head word of; (e2) Spouse 21 4
WMNULL: no words inCiy,; Associate 29 !
3) . ~mid Other-Relative 23 10
4) WMFL.: the only word inC,,,;4 Sibling 7 4
5) WMF, WML, WM2, WM3, .. first word, last xR gg?;tfvzaﬁgﬁon 83 3%
word, second word, third word, ...i@,,,;; when at
least two words irC,,,;4
6) WEL1, WELZ2, ...: first word, second word, ... .
beforee; JS(q,7) = 5[Dxr(allp) + Drce(r]|p)] 4)
7) WER1, WER?2, ...: first word, second word, ...
afterey ~ a(y)
We combine the above lexical and syntactic features Dicr(allp) = Y a(y)(og 7)) ®)
with their position information in the contexts to
form context vectors. Before that, we filter out.Iow Dxi(r||p) = Z r(y)(log %) (6)
frequency features which appeared only once in the v Py

dataset. wherep = (¢ + r) andJS(q,r) represents JS

divergence between probability distribution q(y) and
r(y) (y is a random variable), which is defined in

The similaritys;; between two occurrences of entityterms of KL-divergence.
pairs is |mpor_tant to the p(_arform_ance of the_LI? alél3 Experimental Evaluation
gorithm. In this paper, we investigated two similar-
ity measures, cosine similarity measure and Jensep3-1  Experiment Setup

Shannon (JS) divergence (Lin, 1991). Cosine sim- We evaluated this label propagation based rela-
ilarity is commonly used semantic distance, whichion extraction method for relation subtype detection
measures the angle between two feature vectors. d8d characterization task on the official ACE 2003
divergence has ever been used as distance meastwepus. It contains 519 files from sources including
for document clustering, which outperforms cosinédroadcast, newswire, and newspaper. We dealt with
similarity based document clustering (Slonim et al.only intra-sentence explicit relations and assumed
2002). JS divergence measures the distance betwehat all entities have been detected beforehand in the
two probability distributions if feature vector is con-EDT sub-task of ACE. Table 1 lists the types and
sidered as probability distribution over features. JSubtypes of relations for the ACE Relation Detection
divergence is defined as follows: and Characterization (RDC) task, along with their

3.2 Similarity Measures
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Table 2:The Performance of SVM and LP algorithm with different sizes of labeled data for relation detection on relation subtypes.
The LP algorithm is run with two similarity measures: cosine similarity and JS divergence.

[ SVM [ LPcosme [ LPJS
Percentage P R F P R F P R F
1% | 35.9 32.6 34.4 58.3 56.1 57.1 58.5 58.7 58.5
10% | 51.3 41.5 45.9 64.5 57.5 60.7 64.6 62.0 63.2
25% | 67.1 52.9 590.1 68.7 59.0 63.4 68.9 63.7 66.1
50% | 74.0 57.8 64.9 69.9 61.8 65.6 70.1 64.1 66.9
75% | 77.6 59.4 67.2 71.8 63.4 67.3 72.4 64.8 68.3
100% | 79.8 62.9 70.3 73.9 66.9 70.2 74.2 68.2 711

Table 3:The performance of SVM and LP algorithm with different sizes of labeled data for relation detection and classification
on relation subtypes. The LP algorithm is run with two similarity measures: cosine similarity and JS divergence.

[ SVM [ LPCosine [ LPJS
Percentage P R F P R F P R F

1% | 31.6 26.1 28.6 39.6 37.5 38.5 40.1 38.0 39.0
10% | 39.1 32.7 35.6 45.9 39.6 42.5 46.2 41.6 43.7
25% | 49.8 35.0 41.1 51.0 445 47.3 52.3 46.0 48.9
50% | 52.5 41.3 46.2 54.1 48.6 51.2 54.9 50.8 52.7
75% | 58.7 46.7 52.0 56.0 52.0 53.9 56.1 52.6 54.3
100% | 60.8 48.9 54.2 56.2 52.3 54.1 56.3 52.9 54.6

frequency of occurrence in the ACE training set anthg set). If any relation subtype was absent from the
test set. We constructed labeled data by randomgampled labeled set, we redid the sampling. For each
sampling some examples from ACE training dataize, we performed 20 trials and calculated average
and additionally sampling examples with the samecores on test set over these 20 random trials.

size from the pool of unrelated entity pairs for the Taple 2 reports the performance of SVM and LP
“NONE” class. We used the remaining examples iRith different sizes of labled data for relation detec-

the ACE training set and the whole ACE test set agon task. We used the same sampled labeled data in
unlabeled data. The testing set was used for fingp a5 the training data for SVM model.

evaluation. From Table 2, we see that both &B;.. and

3.3.2 LPvs. SVM LP ;s achieve higheRecallthan SVM. Specifically,

Support Vector Machine (SVM) is a state of thewith small labeled dataset (p«_arcentage of labeled
art technique for relation extraction task. In this exdata< 25%), the performance improvement by LP
periment, we use LIBSVM todl with linear kernel 1S significant. When the percentage of labeled data
function. increases from30% to 100%, LP¢sine is Still com-

For comparison between SVM and LP, we rafparable to SVM inF-measurewhile LP; s achieves
SVM and LP with different sizes of labeled dataS/ightly betterF-measurethan SVM. On the other
and evaluate their performance on unlabeled dafi@nd. LPys consistently outperforms Lsine-
using precision, recall and F-measure. Firstly, we Table 3 reports the performance of relation clas-
ran SVM or LP algorithm to detect possible relasification by using SVM and LP with different sizes
tions from unlabeled data. If an entity mention paiof labled data. And the performance describes the
is classified not to the “NONE?” class but to the otheaverage values d®recision Recalland F-measure
24 subtype classes, then it has a relation. Then copver major relation subtypes.
struct labeled datasets with different sampling set From Table 3, we see that kB.;,.. and LP;g out-
sizel, including1% x Nirqin, 10% X Nirain, 25% % perform SVM byF-measurein almost all settings
Nirain, 50% X Nirain, 75% X Nirain, 100% X Nizain - of labeled data, which is due to the increaséRef
(Ntrain is the number of examples in the ACE train-call. With smaller labeled dataset (percentage of la-

SLIBSV M: a library for support vector machines. Soft- _beIEd data< 50%)' the gap between LP and SVM
ware available at http://www.csie.ntu.edu dveflin/libsvm. is larger. When the percentage of labeled data in-
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Figure 1. Comparison of the performance of S\ | . 1 :
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and LP with different sizes of labeled data s o . s ..
[e) o

creases fronT5% to 100%, the performance of LP

algorithm is still comparable to SVM. On the otherFigure 2: An example: comparison of SVM and LP

hand, the LP algorithm based on JS divergence coalgorithm on a data set from ACE corpus. and

sistently outperforms the LP algorithm based on CoA denote the unlabeled examples in training set and

sine similarity. Figure 1 visualizes the accuracy ofest set respectively, and other symbeglsx(, O, +

three algorithms. andsy) represent the labeled examples with respec-
As shown in Figure 1, the gap between SVMive relation type sampled from training set.

curve and LBg curves is large when the percentage

of labeled data s relatively low. strategy achieves better performance than the local

3.3.3 An Example consistency based SVM strategy when the size of

. . . . labeled data is quite small.
In Figure 2, we selected 25 instances in train- d

ing set and 15 instances in test set from the ACB.3.4 LP vs. Bootstrapping

corpus,which covered five relation types. Using |, (Zhang, 2004), they perform relation classifi-
Isomap tool %, the 40 instances with 229 feature di-cation on ACE corpus with bootstrapping on top of
mensions are visualized in a two-dimensional spacg\/p. To compare with their proposed Bootstrapped
as the figure. We randomly sampled only one lagy/ algorithm, we use the same feature stream set-
beled example for each relation type from the 2§ and randomly selected 100 instances from the
training examples as labeled data. Figure 2(a) anhjning data as the size of initial labeled data.

2(b) show the initial state and ground truth result re- Taple 4 lists the performance of the bootstrapped
spectively. Figure 2(c) reports the classification res\/m method from (Zhang, 2004) and LP method
sult on test set by SVMagcuracy = 15 = 26.7%),  with 100 seed labeled examples for relation type
and Figure 2(d) gives the classification result on botRj5ssification task. We can see that LP algorithm
training set and test set by LRdcuracy = 15 = outperforms the bootstrapped SVM algorithm on
73.3%). four relation type classification tasks, and perform

Comparing Figure 2(b) and Figure 2(c), we findcomparably on the relation "SOC” classification
that many examples are misclassified from class tggk.

to other class symbols. This may be caused that
SVMs method ignores the intrinsic structure in data4  Discussion

For Figure 2(d), the labels of unlabeled examples hi h . , q h-based
are determined not only by nearby labeled examplegf this paper,we have investigated a graph-base

but also by nearby unlabeled examples, so using ﬁ@mi—supervised learning approach for relation ex-
traction problem. Experimental results showed that

“The tool is available at http://isomap.stanford.edu/. the LP algorithm performs better than SVM and
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Table 4: Comparison of the performance of the bootstrapped SVM method from (Zhang, 2004) and LP method with 100 seed
labeled examples for relation type classification task.

Bootstrapping [ LPss
Relation type|| P R F P R F
ROLE 78.5 69.7 73.8 81.0 4.7 7.7
PART 65.6 34.1 44.9 70.1 41.6 52.2
AT 61.0 84.8 70.9 74.2 79.1 76.6
SOC 47.0 57.4 51.7 45.0 59.1 51.0
NEAR — — — 13.7 125 13.0

Table 5:Comparison of the performance of previous methods on ACE RDC task.

[ | Relation Dectection| Relation Detection and Classification
\ | on Types on Subtypes
| Method [ P R F P R F P R F
Culotta and Soresen (2004) Tree kernel based 81.2 518 632 671 350 458 - - -
Kambhatla (2004) Feature based, Maxir - - - - - - 63.5 452 528
mum Entropy
Zhou et al. (2005) Feature based,SVM | 84.8 66.7 74.7| 77.2 60.7 68.0 63.1 495 555

bootstrapping. We have some findings from thesgaper focuses on the investigation of a graph based
results: semi-supervised learning algorithm for relation ex-

The LP based relation extraction method can u traction. In the future, we would like to use more ef-

the graph structure to smooth the labels of unlabelegcnve feature sets Zhou et al. (2005) or kemnel based

examples. Therefore, the labels of unlabeled eXam%l_mllarlty measure with LP for relation extraction.

ples are determined not only by the nearby labeled
examples, _but also by nearby unlabeled exampleg. Conclusion and Euture Work
For supervised methods, e.g., SVM, very few la-
beled examples are not enough to reveal the struc-
ture of each class. Therefore they can not perforfhis paper approaches the problem of semi-
well, since the classification hyperplane was learneslipervised relation extraction using a label propaga-
only from few labeled data and the coherent strudion algorithm. It represents labeled and unlabeled
ture in unlabeled data was not explored when inexamples and their distances as the nodes and the
ferring class boundary. Hence, our LP-based semiveights of edges of a graph, and tries to obtain a
supervised method achieves better performance abeling function to satisfy two constraints: 1) it
both relation detection and classification when onlghould be fixed on the labeled nodes, 2) it should
few labeled data is available. Bootstrapping be smooth on the whole graph. In the classifica-
tion process, the labels of unlabeled examples are
Currently most of works on the RDC task ofI pre ’ u xamp
) . determined not only by nearby labeled examples,
ACE focused on supervised learning methods Cl,b-
ut also by nearby unlabeled examples. Our exper-
lotta and Soresen (2004; Kambhatla (2004; Zhou )
. . Imental results demonstrated that this graph based
et al. (2005). Table 5 lists a comparison on re- . :
. : e algorithm can achieve better performance than SVM
lation detection and classification of these meth-

h I few label I ilabl
ods. Zhou et al. (2005) reported the best result aV\sI en only very few labeled examples are available,

63.1%/49.5%/55.5% iRrecision/Recall/F-measure and also outperforms the bootstrapping method for

. . . relation extraction task.
on the relation subtype classification using feature

based method, which outperforms tree kernel based!n the future, we would like to investigate more
method by Culotta and Soresen (2004). Compareffective feature set or use feature selection to im-
with Zhou et al.’s method, the performance of LP alProve the performance of this graph-based semi-
gorithm is slightly lower. It may be due to that wesupervised relation extraction method.

used a much simpler feature set. Our work in this
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Abstract

This paper proposes a generic mathemati-
cal formalism for the combination of
various structures: strings, trees, dags,
graphs and products of them. The polari-
zation of the objects of the elementary
structures controls the saturation of the
final structure. This formalism is both
elementary and powerful enough to
strongly simulate many grammar formal-
isms, such as rewriting systems, depend-
ency grammars, TAG, HPSG and LFG.

1 Introduction

Our aim is to propose a generic formalism as
simple as possible but powerful enough to write
real grammars for natural language and to handle
complex linguistic structures. The formalism we
propose can strongly simulate most rule-based
formalisms used in linguistics.'

Language utterances are both strongly struc-
tured and compositional and the structure of a
complex utterance can be obtained by combining
elementary structures associated to the elemen-
tary units of language.” The most simple way to

A formalism A strongly simulates a formalism B if A has a
better strong generative capacity than B, that is, if A can
generate the languages generated by B with the same struc-
tures associated to the utterances of these languages.

2 Whether a natural language utterance contains one or
several structures depends on our point of view. On the one
hand it is clear that a sentence can receive various structures
according to the semantic, syntactic, morphological or
phonological point of view. On the other hand these differ-
ent structures are not independent from each other and even
if they are not structures on the same objects (for instance
the semantic units do not correspond one to one to the syn-
tactic units, that is the words) there are links between the
different objects of these structures. In other words, consid-
ering separately the different simple structures of the sen-
tence does not take into account the whole structure of the
sentence, because we lost the interrelation between struc-
tures of different levels.

combine two structures A and B is unification,
that is, to build a new structure C by partially
superimposing A and B and identifying a part of
the objects of A with those of B. This idea recalls
an old idea, used by Jespersen (1924), Tesnicre
(1934) or Ajduckiewicz (1935): the sentence is
like a molecule whose words are atoms, each
word bearing a valence (a linguistic term explic-
itly borrowed from chemistry) that forces or al-
lows it to meet some other words. Nevertheless,
unification grammars cannot directly take into
account the fact that some linguistic units are
unsaturated in a sense that they must absolutely
combine with other structures to form a stable
unit. Saturation is ensured by additional mecha-
nisms, such as the distinction of terminal and
non-terminal symbols in rewriting systems or by
requiring some features to have an empty list as a
value in HPSG.

This paper presents a new family of formal-
isms, Polarized Unification Grammars (PUGS).
PUGs extend Unification Grammars with an
explicit control of the saturation of structures by
attributing a polarity to each object. Using polari-
ties allows integrating the treatment of saturation
in the formalism of the rules. Thus the processing
of saturation will pilot the combination of struc-
tures during the generation processing. Some
polarities are neutral, others are not, but a final
structure must be completely neutral. Two non-
neutral objects can unify (that is, identify) and
form a neutral object (that is, neutralizing each
other). Proper unification holds no equivalent.

Polarization takes its source in categorial
grammar and subsequent works on resource-
sensitive logic (see Lambek’s, Girard’s or van
Benthem’s works). Nasr (1995) is among the first
to introduce a rule-based formalism using an
explicit polarization of structures. Duchier &
Thater (1999) propose a formalism for tree de-
scription where they put forward the notion of
polarity (and they uses the terms of polarity and
neutralization). Perrier (2000) is probably the
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first to develop a linguistic formalism entirely
based on these ideas, the Interaction Grammar.

PUG is both an elementary formalism (struc-
tures simply combine by identifying objects) and
a powerful formalism, equivalent to Turing ma-
chines and capable of handling strings, trees,
dags, n-graphs and products of such structures
(such as ordered trees).” But, above all, PUG is a
well-adapted formalism for writing grammars
and it is capable of strongly simulating many
classic formalisms.

Part 2 presents the general framework of PUG
and its system of polarities. Part 3 proposes sev-
eral examples of PUG and the translation in PUG
of rewriting grammars, TAG, HPSG and LFG.
We hope that these translations shed light on
some common features of these formalisms.

2 Polarities and unification

2.1 Polarized Unification Grammars

Polarized Unification Grammars generate sets of
finite structures. A structure is based on objects.
For instance, for a (directed) graph, objects are
nodes and edges. These two types of objects are
linked, giving us the proper structure: if X is the
set of nodes and U, the set of edges, the graph is
defined by two maps m; and m, from U into X
which associate an edge with its source and its
target.

Our structures are polarized, that is, objects
are associated to polarities. The set P of polarities
is provided with an operation noted “.”” and called
product. The product is commutative and gener-
ally associative; (P,.) is called the system of
polarities. A non-empty strict subset N of P con-
tains the neutral polarities. A polarized structure
is neutral if all its polarities are neutral.

Structures are defined on a collection of ob-
jects of various types (syntactic nodes, semantic
nodes, syntactic edges ...) and a collection of
maps: structural maps linking objects to objects
(such as source and target for edges), label maps
linking objects to labels and polarity maps link-
ing objects to polarities.

Structures combine by unification. The unifi-
cation of two structures A and B gives a new
structure A®@B obtained by “pasting” together
these structures and identifying a part of the ob-
jects of the first structure with objects of the sec-
ond structure. When two polarized structures A

* A dag is a directed acyclic graph. An n-graph is a graph
whose nodes are edges of a (n-1)-graph and a 1-graph is a
standard graph.

and B are unified, the polarity of an object of
A®B obtained by identifying two objects of A
and B is the product of their polarities; if the two
objects bear the same map, these maps must be
identified and their values, unified. (For instance
identifying two edges forces us to identify their
sources and targets.)

A Polarized Unification Grammar (PUG) is
defined by a finite family T of types of objects, a
set of maps attached to the objects of each type, a
system (P,.) of polarities, a subset N of P of neu-
tral polarities, and a finite subset of elementary
polarized structures, whose objects are described
by T; one elementary structure is marked as the
initial one and must be used exactly once. The
structures generated by the grammar are the neu-
tral structures obtained by combining the initial
structure and a finite number of elementary struc-
tures. In the derivation process, elementary struc-
tures combine successively, each new elementary
structure combining with at least one object of
the previous result; this ensures that the derived
structure is continuous. Polarities are only neces-
sary to control the saturation and are not consid-
ered when the strong generative capacity of the
grammar is estimated. Polarities belong to the
declarative part of the grammar, but they rather
play a role in the processing of the grammar.

2.2 The system of polarities

In this paper we will use the system of polarities
P = {=,0,—+,m} (which are called like this: = =
black = saturated, + = positive, — = negative, o =
white = obligatory context and = grey
=absolutely neutral), with N = {= =} and a
product defined by the following array (where L
represents the impossibility to combine). Note
that = is the neutral element of the product. The
symbol — can be interpreted as a need and + as
the corresponding resource.

o|— |+ | =
o|— |+ | =
ojo|o|— |+ |m=
—|-|-L|=|L
+1+|+|= | L|L
nlw = | L | L |1

The system {o,m} is used by Nasr (1995),
while the system {=,m—+} noted {=,<,<,—},
is considered by Bonfante et al. (2004), who
show advantages of negative and positive polari-
ties for prefiltration in parsing (a set of structures
bearing negative and positive polarities can only

138



be reduced into a neutral structure if the sum of
negative polarities of each object type is equal
the sum of positive polarities).

The system (P,.) we have presented is
commutative and associative. Commutativity
implies that the combination of two structures is
not procedurally oriented (and we can begin a
derivation by any elementary structure, provided
we use only once the initial structure).
Associativity implies that the combination of
structures is unordered: if an object B must
combine with A and C, there is no precedence
order between the combination of A and B and
the one of B and C, that is, A®B®C) =
(A@By@(Ueave polarities aside, our formalism is
trivially monotonic: the combination of two
structures A and B by a PUG gives us a structure
A®B that contains A and B as substructures. We
can add a (partial) order on P in order to make
the formalism monotonic.* Let < be this order. In
order to give us a monotonic formalism, < must
verify the following monotonicity property:
Vx,yEP x.y > x. This provides us with the follow-
ing order: = <o < +/— < = A PUG built with an
ordered system of polarities (P, . ,<) verifying the
monotonicity property is monotonic. Monotonic-
ity implies good computational properties; for
instance it allows translating the parsing with
PUG into a problem of constraint resolution
(Duchier & Thater, 1999).

3 Examples of PUGs
3.1

The first tree grammars belonging to the para-
digm of PUGs was proposed by Nasr 1995. The
following grammar G; allows generating all fi-
nite trees (a tree is a connected directed graph
such that every node except one is the target of at
most one edge); objects are nodes and edges; the
initial structure (the box on the left) is reduced to
a black node; the grammar has only one other
elementary structure, which is composed of a
black edge linking a white node to a black node.
Each white node must unify with a black node in
order to be neutralized and each black node can
unify with whatever number of white nodes. It
can easily be verified that the structures gener-
ated by the grammar are trees, because every
node has one and only one governor, except the
node introduced by the initial structure, which is
the root of the tree.

Tree grammars

* I was suggested this idea by Guy Perrier.

® O| @

G, G,

The grammar G; does not control the number
of dependents of nodes. A grammar like G, al-
lows controlling the valence of each node, but it
does not ensure that generated structures are
trees, because two white nodes can unify and a
node can have more than one governor.’ The
grammar G; solves the problem. In fact, G; can
be viewed as the superimposition of G; and G,.
Indeed, if P() = {D,'}, P1 = P()XP() =
{(o,o0),(o,m),(m,o),(=,m)} is equivalent to {o,+,—
,m}. The first polarity controls the tree structure
as G; does, while the second polarity controls the
valence as G, does.

X

Gs

With the same principles, one can build a de-
pendency grammar generating the syntactic de-
pendency trees of a fragment of natural language.
Grammar Gy, directly inspired from Nasr 1995,
proposes a fragment of grammar for English
generating the syntactic tree of Pefer eats red
beans. Nodes of this grammar are labeled by two
label maps, /cat/ and /lex/. Note that the root of

cat: V
cat: N cat: N
lex: Peter lex: beans
cat: V cat: N
lex: eat O
mod
subi |/ \ dobi
[ )
cat: Adj
cat: N cat: N lex: red

G4 (Dependency grammar for English)

5 Nasr 1995 proposes such a grammar in order to generate
trees. He uses an external requirement, which forces, when
two structures are combined, the root of one to combine
with a node of the other one.
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the elementary structure of an adjective is a white
node, allowing an unlimited number of such
structures to adjoin to a noun.

3.2 Rewriting systems and ordered trees

PUG can simulate any rewriting system and have
the weak generative capacity of Turing machines.
We follow ideas developed by Burroni 1993 or
Dymetman 1999, themselves following van
Kampen 1933’s ideas.

A sequence abc is represented by a string of
labeled edges a, b and c:

a b c
© »O >0 »O
Intuitively, edges are intervals and nodes model
their extremities. This is the simplest way to
model linear order and precedence rules: X pre-
cedes Y iff the end of X is the beginning of Y.

The initial category S of the grammar gives us
the initial structure:

S
@) o
A terminal symbol a corresponds to a positive

edge:
a

@) o

A rewriting rule ABC — DE gives us the ele-
mentary structure:

Av@—3-0-C
© o
D @) E

This elementary structure is a “cell” whose
upper frontier is a string of positive edges corre-
sponding to the left part of the rule, while the
lower frontier is a string of negative edges corre-
sponding to the right part of the rule. Each posi-
tive edge must unify with a negative edge and
vice versa, in order to give a black edge. Nodes
are grey (= absolutely neutral) and their unifica-
tion is entirely driven by the unification of edges.

Cells will unify with each other to give a final
structure representing the derivation structure of
a sequence, which is the lower edge of this struc-
ture. The next figure shows the derivation struc-
ture of the sequence Peter eats red beans with a
standard phrase structure grammar, which can be
reconstructed by the reader. In such a representa-
tion, edges represent phrases and correspond to
intervals in the cutting of the sequence, while
nodes are bounds of these intervals.

For a context-free rewriting system, the gram-
mar generates the derivation tree, which can be
represented in a more traditional way by adding
the branches of the tree (giving us a 2-graph).

S
e Y o
NP =@ VP

Let us recall that a derivation tree for a context-
free grammar is an ordered tree. An ordered tree
combines two structures on the same set of
nodes: a structure of tree and a precedence rela-
tion on the node of the tree. Here the precedence
relation is explicitly represented (a “node” of the
tree precedes another “node” if the target of the
first one is the source of the second one). It is not
possible, with a PUG, to generate the derivation
tree, including the precedence relation, in a sim-
pler way.6 Note that the usual representation of
ordered trees (where the precedence relation is
not explicit, but only deductible from the planar-
ity of the representation) is very misleading from
the computational viewpoint. When they calcu-
late the precedence relation, parsers (of the CKY
type for instance) in fact calculate a data structure
like the one we present here, where beginnings
and ends of phrase are explicitly considered as
objects.

3.3 TAG (Tree Adjoining Grammar)

PUG has a clear kinship with TAG, which is the
first formalism based on combination of struc-
tures to be studied at length. TAGs are generally
presented as grammars combining (ordered)
trees. In fact, as a tree grammar, TAG is not

® The most natural idea would be to encode a rewriting rule
with a tree of depth 1 and the precedence relation with edges
from a node to its successor. The difficulty is then to propa-
gate the order relation to the descendants of two sister nodes
when we apply a rewriting rule by substituting a tree of
depth 1. The simplest solution is undeniably the one pre-
sented here, consisting to introduce objects representing the
beginning and the end of phrases (our grey nodes) and to
indicate the relation between a phrase, its beginning and its
end by representing the phrase with an edge from the begin-
ning to the end.
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monotonic and cannot be simulated with PUG.
As shown by Vijay-Shanker 1992, to obtain a
monotonic formalism, TAG must be viewed as a
grammar combining quasi-trees. Intuitively, a
quasi-tree is a tree whose nodes has been split in
two parts and have each one an upper part and a
lower part, between which another quasi-tree can
be inserted (this is the famous adjoining opera-
tion of TAG). Formally, a quasi-tree is a tree
whose branches have two types: dependency
relations and dominance relations (respectively
noted by plain lines and dotted lines). Two nodes
linked by a negative dominance relation are po-
tentially the two parts of a same node; only the
lower part can have dependents.

The next figures give an a-tree (= to be sub-
stituted) and a B-tree (= to be adjoined) with the
corresponding PUG structures.” A substitution
node (like D|) gives a negative node, which will
unify with the root of an o tree. A B-tree gives a
white root node and a black foot node, which will
unify with the upper and the lower part of a split
node. This is why the root and the foot node are
linked by a positive dominance link, which will
unify with a negative dominance link connecting
the two parts of a split node.

A

/N

B C B

D) B O

>

®C

$c

D

An a tree and its PUG translation

" For sake of simplicity, we leave aside the precedence
relation on sister nodes. It might be encoded in the same
way as context-free rewriting systems, by modeling semi-
nodes of TAG trees by edges. It does not pose any problem
but would make the figures difficult to read.

&\ Of\
]L (N $c

D

A B tree and its PUG translation

At the end of the derivation, the structure
must be a tree and all nodes must be recon-
structed: this is why we introduce the next rule,
which presents a positive dominance link linking
a node to itself and which will force two semi-
nodes to unify by neutralizing the dominance link
between them.

O

This last rule again shows the advantage of
PUG: the reunification of nodes, which is proce-
durally ensured in Vijay-Shanker 1992 is given
here as a declarative rule.

3.4 HPSG (Head-driven Phrase Structure
Grammar)

There are two ways to translate feature structures
(FSs) into PUG. Clearly atomic values must be
labels and (embedded) feature structures must be
nodes, but features can be translated by maps or
by edges, that is, objects. Encoding features by
maps ensures to identify them in PUG. Encoding
them by edges allows us to polarize them and
control the number of identifications.®

For the sake of clarification of HSPG struc-
tures, we choose to translate structural features
such as HDTR and NHDTR, which give the
phrase structure and which never unify with other
“features”, by edges and other features by maps
(which will be represented by hashed arrows). In
any case, the result looks like a dag whose
“edges” (true edges and maps) represent features
and whose nodes represent values (e.g. Kesper &
Monnich 2003). We exemplify the translation of
HPSG in PUG with the schema of combination

¥ Perrier 2000 uses a feature-structure based formalism
where only features are polarized. Although more or less
equivalent we prefer to polarize the FS themselves, i.e. the
nodes.
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of head phrase with a subcategorized sister
phrase, namely the head-daughter-phrase:’

HEAD:[1]
SUBCAT{ 3]
HDTR: HEAD:[1]
SUBCAT: ((2]) ® ]
NHDTR: [ HEAD:[Z] ]
SUBCAT : elist

This FS gives the following structure, where a
list is represented recursively in two pieces: its
head (value of H) and its queue (value of Q).

,————-"S‘Q --------- -
|/ HDTRy iié‘gQ,Q,——vO
NMRQTR >O
D
SC\\—\SO elist

A negative node of this FS can be neutralized
by the combination with a similar FS represent-
ing a phrase or with a lexical entry. The next
figure proposes a lexical entry for eat, indicating
that eat is a V whose SUBCAT list contains two
phrases headed by an N (for sake of simplicity
we deal with the subject as a subcategorized
phrase).

eat

-
ey

HD 7 cat
0%
g B0 >N
SC A. H cat
Q “@>0> N

Q A‘elzsz‘

The combination of two head-daughter-
phrases with the lexical entry of eat gives us the
previous lexicalized rule, equivalent to the rule
for eat of the dependency grammar Gy (/subj/ is
the NHDTR of the maximal projection and /obj/

 Numbers in boxes are values shared by several features.
The value of SUBCAT (= SC) is a list (the list of subcatego-
rized phrases). The non-head daughter phrase (NHDTR) has
a saturated valence and so needs an empty SUBCAT list
(elist). The subcat list of the head daughter phrase (HDTR)
is the concatenation, noted @, of two lists: a list with one
element that is the description of the non-head daughter
phrase and the SUBCAT list of the whole phrase. The rest
of the description of this phrase (value of HEAD) is equal to
the one of the head daughter phrase.

the NHDTR of the intermediate projection of
eat).

cat

sc= Oelist

S\CAO elist

Polarization of objects shows exactly what is
constructed by each rule and what are the re-
quests filled by other rules. Moreover it allows us
to force SUBCAT lists to be instantiated (and
therefore allows us to control the saturation of the
valence), which is ensured in the usual formalism
of HPSG by a bottom-up procedural presentation.

3.5 LFG (Lexical Functional Grammar)
and synchronous grammars

We propose a translation of LFG into PUG that
makes LFG appear as a synchronous grammar
approach (see Shieber & Schabes 1990). LFG
synchronizes two structures (a phrase structure or
c-structure and a dependency/functional structure
or f-structure) and it can be viewed as the syn-
chronization of a phrase structure grammar and a
dependency grammar.

Let us consider a first LFG rule and its trans-
lation in PUG:

[1] S — NP "
{ =1 SuBJ L=1
S e —
oy N\ Lo
NP OVP ..................... ’ ...................
............................................. ’

Equations under phrases (in the right side of [1])
ensure the synchronization between the objects of
the c-structure and the f-structure: each phrase is
synchronized with a “functional” node. Symbols
{ and 1 respectively designate the functional
node synchronized with the current phrase and
the one synchronized with the mother phrase
(here S). Thus the equation |=1 means that the
current phrase (VP) and its mother (S) are syn-
chronized with the same functional node. The
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expression | SUBJ designates the functional node
depending on ! by the relation SUBIJ.

In PUG we model the synchronization of the
phrases and the functional nodes by synchroniza-
tion links (represented by dotted lines with dia-
mond-shaped polarities) (see Bresnan 2000 for
non-formalized similar representations). The two
synchronizations ensured by the two constraints
=1 SuBJ and |=1 of [1], and therefore built by
this rule, are polarized in black.

A phrasal rule such as [1] introduces an f-
structure with a totally white polarization. It will
be neutralized by lexical rules such as [2]:

2] V — wants

[
1 PRED = ‘want (SUBJ,VCOMP)’
1 SUBJ = 1 VCOMP SUBJ

AV — o — VCOI\%O
W SUBI
‘want’
wants SUBJ

The feature Pred is interpreted as the labeling of
the functional node, while the valence
(SUBJ,VCOMP) gives us two black edges and two
white nodes. The functional equation SUBJ =
1 VCOMP SUBJ introduces a white edge SUBJ
between the nodes 1 SUBJ and {VCOMP (and is
therefore to be interpreted very differently from
the constraints of [1], which introduce black syn-
chronization links.)

PUG allows to easily split up a rule into more
elementary rules. For instance, the rule [1] can be
split up into three rules: a phrase structure rules
linearizing the daughter phrases and two rules of
synchronization indicating the functional link
between a phrase and one of its daughter phrases.

S S ey
—
NP =@ VP v, |
VP . 0
I O,
—
¢ l SUBIJ
NP I

Our decomposition shows that LFG articulated
two different grammars: a classical phrase struc-
ture generating the c-structure and an interface
grammar between c- and f-structures (and even a
third grammar because the f-structure is really

generated only by the lexical rules). With PUG it
is easy to join two (or more) grammars: it suf-
fices to add on the objects by both grammars a
white polarity that will be saturated in the other
grammar (and vice versa) (Kahane & Lareau
2005).

Let us consider another problem, illustrated
here by the rule for the topicalization of an ob-
ject. The unbounded dependency of the object
with its functional governor is an undetermined
path expressed by a regular expression (here
VCOMP* OBJ; functional uncertainty, Kaplan &
Zaenen 1989).

[3] ' — NP S

{ = 1 VCOMP* OBJ =1

{ =1 TOP

............... O
S
oy o
NP O S ..................... &
........................................................... S

The path VCOMP* (represented by a dashed ar-
row) is expanded by the following regular gram-
mar, with two rules, one for the propagation and
one for the ending.

VCOMP*

=~

-
s

< 4 N\
L \A C; :, VCOMP*
20—»0 %

13

VCOMP* VCOMP

Again the translation into PUG brings to the
fore some fundamental components of the for-
malism (like synchronization links) and some
non-explicit mechanisms such as the fact that the
lexical equation 1 PRED = ‘want (SUBJ,VCOMP)’
introduces both resources (a node ‘want’) and
needs (its valence).

4 Conclusion

The PUG formalism is extremely simple: it only
imposes that combining two structures involves
at least the unification of two objects. Forcing or
forbidding more objects to combine is then en-
tirely controlled by polarization of objects. Po-
larization will thus guide the process of
combination of elementary structures. In spite of
its simplicity, the PUG formalism is powerful
enough to elegantly simulate most of the rule-
based formalisms used in formal linguistics and
NLP. This sheds new light on these formalisms
and allows us to bring to the fore the exact nature
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of the structures they handle and to extract some
procedural mechanisms hidden by the formalism.
But above all, the PUG formalism allows us to
write separately several modules of the grammar
handling various structures and to put them to-
gether in a same formalism by synchronization of
the grammars, as we show with our translation of
LFG. Thus PUGs extend unification grammars
based on feature structures by allowing a greatest
diversity of geometric structures and a best con-
trol of resources. Further investigations must
concern the computational properties of PUGs,
notably restrictions allowing polynomial time
parsing.
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Abstract

This work provides the essential founda-
tions for modular construction of (typed)
unification grammars for natural lan-
guages. Much of the information in such
grammars is encoded in the signature, and
hence the key is facilitating a modularized
development of type signatures. We intro-
duce a definition of signature modules and
show how two modules combine. Our def-
initions are motivated by the actual needs
of grammar developers obtained through a
careful examination of large scale gram-
mars. We show that our definitions meet
these needs by conforming to a detailed set
of desiderata.

1 Introduction

Shuly Wintner
Dept. of Computer Science
University of Haifa
shuly@s. haifa.ac. il

lutions for the programmer, no grammar develop-
ment environment supports even the most basic
needs, such as grammar modularization, combi-
nation of sub-grammars, separate compilation and
automatic linkage of grammars, information en-

capsulation, etc.

This work provides the essential foundations for
modular construction of signatures in typed unifi-
cation grammars. After a review of some basic
notions and a survey of related work we list a set
of desiderata in section 4, which leads to a defi-
nition of signature modules in section 5. In sec-
tion 6 we show how two modules are combined,
outlining the mathematical properties of the com-
bination (proofs are suppressed for lack of space).
Extending the resulting module to a stand-alone
type signature is the topic of section 7. We con-
clude with suggestions for future research.

Type signatures

Development of large scale grammars for natura12
languages is an active area of research in humawe assume familiarity with theories of (typed)
language technology. Such grammars are devetmnification grammars, as formulated by, e.g., Car-
oped not only for purposes of theoretical linguis-penter (1992) and Penn (2000). The definitions
tic research, but also for natural language applicain this section set the notation and recall basic no-
tions such as machine translation, speech genergens. For a partial functiod’, ‘ F'(x)|’ means that
tion, etc. Wide-coverage grammars are being def is defined for the value.

veloped for various languages (Oepen et al., Zoozlf)efinition 1 Given a partially ordered set?, <),

Hllnr;%tz)sset_ al., 2004|; Eende_r etl ?I" 2005; Ifmg etthe set olupper boundsof a subsetS C P is the
al., ) in several theoretical frameworks, €.0.gotqu — (yeP|VresS «<yh

LFG (Dalrymple, 2001) and HPSG (Pollard and

Sag, 1994). For a given partially ordered seP, <), if S C
Grammar development is a complex enterprise!” Nas a least element then it is unique.

itis not unusual for a single grammar to be devel-Definition 2 A partially ordered set(P, <) is a

oped by a team including several linguists, com-bounded complete partial order (BCPO) if for

putational linguists and computer scientists. ThesveryS C P such thatS* # (), S* has a least

scale of grammars is overwhelming: for exam-element, called éeast upper bound (lub).

ple, the English resource grammar (Copestakg).finition 3 A type signature is a structure

anq FI|F:k|nger, 2000) mclgd_es thousands of types<TYPE’ C, FEAT, Approp), where:

This raises problems reminiscent of those encoun-

tered in large-scale software development. Yet 1. (Typg, C) is a finite bounded complete par-

while software engineering provides adequate so- tial order (thetype hierarchy)
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2. FEAT is afinite set, disjoint fronT YPE. Kaplan et al. (2002) introduce a system de-
signed for building a grammar by both extending
and restricting another grammar. An LFG gram-
mar is presented to the system in a priority-ordered
sequence of files where the grammar can include
(a) (Feature Introduction) there exists a only one definition of an item of a given type (e.g.,

type Intro(F) € TyPE such that rule) with a particular name. Items in a higher pri-

Approp(Intro(F), F) |, and for every ority file override lower priority items of the same

t € Tvypg, if Approp(t,F) |, then type with the same name. The override convention

Intro(F) C t; makes it possible to add, delete or modify rules.
(b) (Upward Closur¢ if Approp(s,F) |  However, a basis grammar is needed and when

and s C ¢, then Approp(t, F) | and  modifying arule, the entire rule has to be rewritten

Approp(s, F') C Approp(t, F). even if the modifications are minor. The only in-
teraction among files in this approach is overriding
of information.

King et al. (2005) augment LFG with a
gggkeshift signature to allow modular development
of untypedunification grammars. In addition, they
suggest that any development team should agree in
advance on the feature space. This work empha-
sizes the observation that the modularization of the
signature is the key for modular development of
grammars. However, the proposed solution is ad-
hoc and cannot be taken seriously as a concept of
3 Related Work modularization. In particular, the suggestion for
an agreement on the feature space undermines the

Several authors address the issue of grammar modssence of modular design.
ularization in unification formalisms. Moshier  geyeral works address the problem of modular-
(1997) views HPSG , and in particular its signa-ity in other, related, formalisms. Candito (1996)
ture, as a collection of constraints over maps bejoduces a description language for the trees of
tween sets. This allows the grammar writer t0) TAG. Combining two descriptions is done by
specify any partial information about the signa-conjunction. To constrain undesired combina-
ture, and provides the needed mathematical anfl,ns Candito (1996) uses a finite set of names
computational capabilities to integrate the infor-yhere each node of a tree description is associ-
mation with the rest of the signature. However,gied with a name. The only channel of interac-
this work does not define modules or module in+jon petween two descriptions is the names of the
teraction. It does not address several basic issu%des, which can be used only to allow identifi-
such as bounded completeness of the partial Ogation but not to prevent it. To overcome these
der and the feature introduction and upward Clo'shortcomings, Craféband Duchier (2004) suggest
sure conditions of the appropriateness specificay replace node naming by colors. Then, when
tion. Furthermore, Moshier (1997) shows how Sig-yjfying two trees, the colors can prevent or force
natures are distributed into components, but Nofhe gentification of nodes. Adapting this solution

the conditions they are required to obey in ordeg, type signatures would yield undesired order-
to assure the well-definedness of the Combinatiorblependence (see below).

Keselj (2001) presents a modular HPSG, where
each module is an ordinary type signature, buy pesiderata
each of the sets #AT and TvPE is divided into
two disjoint sets of private and public elements. InTo better understand the needs of grammar devel-
this solution, modules do not support specificatioropers we carefully explored two existing gram-
of partial information; module combination is not mars: the LINGO grammar matrix (Bender et al.,
associative; and the only channel of interaction be2002), which is a basis grammar for the rapid de-
tween modules is the names of types. velopment of cross-linguistically consistent gram-

3. Approp : TYPEX FEAT — TYPE (theappro-
priateness specificatioris a partial function
such that for every” € FEAT:

Notice that every signature has a least type
since the subset = () of TYPE has the non-empty
set of upper bounds§* = TYPE, which must
have a least element due to bounded completene

Definition 4 Let (TypPg,C) be a type hierarchy
and letz,y € TYPE. If 2 C y, thenz is a su-
pertype of y andy is asubtypeof . If x C y,
x # y and there is na such thatr C z C y and
z # x,y thenz is animmediate supertypeof y
andy is animmediate subtypeof z.
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mars; and a grammar of a fragment of Modern HeDefinition 5 A partially labeled graph (PLG)
brew, focusing on inverted constructions (Melnik,over TYPE and FEAT is a finite, directed labeled
2006). These grammars were chosen since theyraphS = (Q, T, <, Ap), where:

are comprehensive enough to reflect the kind of ) o o
data large scale grammar encode, but are not tool- @ 1S @ finite, nonempty set of nodes, disjoint
large to encumber this process. Motivated by these ~ flOM TYPE and FEAT.

two grammars, we experimented with ways to di-
vide the signatures of grammars into modules and
with different methods of module interaction. This
process resulted in the following desiderata for a 3. <C Q x Q is a relation specifying (immedi-
beneficial solution for signature modularization: ate) subsumption.

2. T : @ — TypPEis a patrtial function, marking
some of the nodes with types.

1. The grammar designer should be provided 4 Ap C Q x FEAT x Q is a relation specifying
with as much flexibility as possible. Modules appropriateness.

should not be unnecessarily constrained.
_ . Definition6 A  partially  specified signa-
2. Signature modules should provide meang e (PSS) over TYPE and FEAT is a PLG
for specifyingpartial information about the ¢ _ (Q, T, <, Ap), where:

components of a grammar.

_ 1. T is one to one.
3. A good solution should enable one module to

refer to types defined in another. Moreover, 2. ‘<’ is antireflexive; its reflexive-transitive
it should enable the designer of modulé
to use a type defined if/; without specify-
ing the type explicitly. Rather, some of the 3. (a) (Relaxed Upward Closure) for all
attributes of the type can be (partially) speci- @,9,2 € Q and F € FeAT, if
fied, e.g., its immediate subtypes or its appro-
priateness conditions.

*
closure, denoted?’, is antisymmetric.

(q1, F,q2) € Apandq; < ¢}, thenthere
existsg, € @ such thatgs < ¢, and

4. While modules can specify partial informa- (¢}, F,q,) € Ap; and
tion, it must be possible to deterministically (b) (Maximality) for allg;, ¢» € Q andF €
extend a module (which can be the result of FEAT, if (¢1,F,q2) € Ap then for all

the combination of several modules) into a

. ! / _Z /
full type signature. ¢ € Q such thalg, < ¢, andg, 7 g3,

(Q17F7 qé) ¢ Ap

A PSS is a finite directed graph whose nodes
denote types and whose edges denote the sub-
sumption and appropriateness relations. Nodes
The solution we propose below satisfies these recan bemarkedby types through the functioff,
quirements. but can also benonymougunmarked). Anony-
mous nodes facilitate reference, in one module, to
types that are defined in another modds one-

We definepartially specified signatures (PSSs) to-one since we assume that two marked nodes de-
also referred to asmoduleselow, which are struc- hote different types.

tures containing partial information about a sig- The ‘X’ relation specifies an immediate sub-
nature: part of the subsumption relation and pargumption order over the nodes, with the intention
of the appropriateness specification. We assum@at this order hold later for the types denoted by
enumerable, disjoint setsyPE of types and EAT  nodes. This is why=’ is required to be a partial

of features, over which signatures are definedorder. The type hierarchy of a type signature is a
We begin, however, by definingartially labeled  BCPO, but current approaches (Copestake, 2002)

5. Signature combination must be associative
and commutative: the order in which mod-
ules are combined must not affect the result.

5 Partially specified signatures

graphs of which PSSs are a special case. relax this requirement to allow more flexibility in
'The examples in the paper are inspired by actual gramdfammar design. PSS Subsumptlon is also a par-
mars but are obviously much simplified. tial order but not necessarily a bounded complete
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one. After all modules are combined, the resultings unique with respect to the information it en-
subsumption relation will be extended to a BCPOcodes. If two nodes are indistinguishable then one
(see section 7), but any intermediate result can beaf them can be removed without affecting the in-
general partial order. Relaxing the BCPO requireformation encoded by the PSS. The existence of
ment also helps guaranteeing the associativity ofhdistinguishable nodes in a PSS unnecessarily in-
module combination. creases its size, resulting in inefficient processing.
Consider now the appropriateness relation. In Given a PSSS, it can becompactednto a PSS,
contrast to type signaturesip is not required compact(S), by unifying all the indistinguishable
to be a function. Rather, it is a relation which nodes inS. compact(S) encodes the same infor-
may specifyseveralappropriate nodes for the val- mation asS but does not include indistinguish-
ues of a featurd” at a nodeg. The intention is able nodes. Two nodes, only one of which is
that the eventual value ofpprop(T'(q), F') be the  anonymous, can still be otherwise indistinguish-
lub of the types of all those nodeg such that able. Such nodes will, eventually, be coalesced,
Ap(q, F,q). This relaxation allows more ways for but only after all modules are combined (to ensure
modules to interact. We do restrict tde relation,  the associativity of module combination). The de-
however. Condition 3a enforces a relaxed versiomailed computation of the compacted PSS is sup-
of upward closure. Condition 3b disallows redun-pressed for lack of space.
dant appropriateness arcs: if two nodes are ap- i .
propriate for the same node and feature, then thegxample 2 Let S, be the PSS of Figure 25 in-

should not be related by subsumption. The featur ludes two pairs of indistinguishable nodes; ¢4

introduction condition of type signatures is not en-a,nd%’ qr- The compacted PSSEfis dep"?te‘?' in
Figure 3. All nodes incompact(Sy) are pairwise

forced by PSSs. This, again, results in more erxa_ . <habl
ibility for the grammar designer; the condition is Istinguishable.
restored after all modules combine, see section 7.

Example 1 A simple PSSS; is depicted in Fig-

ure 1, where solid arrows represent thg’‘(sub-

sumption) relation and dashed arrows, labeled by /
[

features, thedp relation. S; stipulates two sub- T F I F
Ve

types ofcat, n and v, with a common subtype, . . . ,
gerund. The featureaGRr is appropriate for all @ @ / @
three categories, with distinct (but anonymous) \ ', /

values forApprop(n, AGR) and Approp(v, AGR).
Approp(gerund, AGR) will eventually be the lub a

of Approp(n,AGR) and Approp(v, AGR), hence
the multiple outgoin@GR arcs fromgerund.

Observe that inSy, ‘<’ is nhot a BCPO,Ap is
not a function and the feature introduction condi-
tion does not hold.

QQ‘

7

Tn
-

A

Figure 2: A partially specified signature with in-
distinguishable node$;

- -

/ =-——-—_ _ AGR \\\ F

O
A
|
'/ RN N [
\/ \AGR o SN O o ) O
L U AGR\ S \1/
/

@) @)
N/ 0

Figure 1: A partially specified signaturé; Figure 3: The compacted partially specified signa-
ture of Sy

We impose an additional restriction on PSSs: N _ _
a PSS iswell-formedif any two different anony- Proposition 1 If S'is a PSS thenompact(S) is a
mous nodes ardistinguishablei.e., if each node Well formed PSS.

148



6 Module combination Ap C Ap since for all (q1, F,q2) € Ap, by

We now describe how to combine modules, an opch00osingq; = ¢ it follows thatq; = ¢1 =X ¢

eration we callmergebellow. When two mod- a@nd (¢, F,q2) = (q1,F,q2) € Ap and hence

ules are combined, nodes that are marked by the/1, F> ¢2) = (q1, F, q2) € Ap.

same type are coalesced along with their attributes. TWO PSSs can be merged only if the result-

Nodes that are marked by different types cannotnd subsumption relation is indeed a partial order,

be coalesced and must denote different types. Thehere the only obstacle can be the antisymme-

main complication is caused when tanonymous try of the resulting relation. The combination of

nodes are considered: such nodes are coalescltf appropriateness relations, in contrast, cannot

only if they are indistinguishable. cause the merge operation to fail because any vi-
The merge of two modules is performed in sey-olation of the appropriateness conditions in PSSs

eral stages: First, the two graphs are unioned (thigan be deterministically resolved.

is a simple pointwise union of the coordinatespefinition 9 Let Sy = (Q1,T1, <1, Ap1), So =

pf the graph, see definition 7). _Then the result—<Q2’T2’ <5, Aps) be two PSSs such thag; N

ing graph is compacted, coalescing nodes marke@2 — 0. S,,S, are mergeableif there are no

by the same type as well as indistinguishable,, ., < Q, and g3, ¢, € Q, such that the fol-
anonymous nodes. However, the resulting grapkying hold:

does not necessarily maintain the relaxed upward

closure and maximality conditions, and therefore 1. 7' (q;)|, T1(g2)!, T2(g3)l andTs(q4)]
some modifications are needed. This is done by

Ap-Closure see definition 8. Finally, the addi- 2. T1(q1) = T2>(q4) andTi(q2) = T2(qs3)
tion of appropriateness arcs may turn two anony- . .

mous distinguishable nodes into indistinguishable 3. ¢1 <1 ¢2 andgs <2 q1

ones and therefore another compactness operation

is needed (definition 9). If 51 and S, are mergeable, then themergg

o denotedS; .Sy, is compact( ApCl(compact(S1U
Definition 7 Let 51 = <Q1,T1, jl,Ap1>, Sy = 52)))
(Q2,Ts, <2, Aps) be two PLGssuch thaf); N
Q- = 0. Theunion of $; and S5, denotedS; U.Ss, In the merged module, pairs of nodes marked
is the PLGS = (Q1 U Q2,71 U Ty, =1 U =9, by the same type and pairs of indistinguishable
Apy U Apo). anonymous nodes are coalesced. An anonymous

node cannot be coalesced with a typed node, even

if they are otherwise indistinguishable, since that

will result in an unassociative combination oper-

ation. Anonymous nodes are assigned types only

e Ap' = {(q1,F,q2) | ¢1,¢2 € Q and there after all modules combine, see section 7.1.
exists¢, € Q such thatg, g o and _Ifanode has multiple outgoingp-arcs labeled
(¢, F,q0) € Ap} with the same feature_, these arcs are not replaced

! by a single arc, even if thieib of the target nodes
o Ap" = {(q1,F,q2) € Ap |forall ¢, € Q, exists in the resulting PSS. Again, this is done to

* uarantee the associativity of the merge operation.
such thatgy < ¢y andgqs # b, (q1, F,¢b) ¢ 9 y geop

Ap'} Example 3 Figure 4 depicts a nizke agreement

) module, S5. Combined withS; of Figure 1,
Ap-Closureadds to a PLG the arcs required forS1 USs = 55U S, — S, whereSs is depicted

?t to rnaintain_@he rela>.<ed upward closure and maxs Figure 5. All dashed arrows are labeletGr,
'm"’?"‘y _condltlons. First, arcs are addedy() to_ but these labels are suppressed for readability.
maintain upward closure (to create the relations

between elements separated between the two moExample 4 Let Sz and S be the PSSs depicted
ules and related by mutual elements). Then, rein Figures 6 and 7, respectively. Théh U Sg =
dundant arcs are removed to maintain the maxiSsUS7 = Sy, whereSy is depicted in Figure 8. By
mality condition (the removed arcs may be addedtandard conventiondp arcs that can be inferred
by Ap’ but may also exist indp). Notice that by upward closure are not depicted.

Definition 8 Let S = (Q,T, <, Ap) be a PLG.
The Ap-Closure of S, denotedApC1i(S), is the
PLG(Q,T, <, Ap”) where:
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n nagr gerund vagr v first  second thzrd —|—
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Figure 4: Néve agreement modulé; \ /
- :’: —————————————————— T~a. num
,/ gerund h RATIRN Figure 7: A partially specified signaturgs
[ O§FIIIIT TS < A
V1 ~ \\ R P RN U
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\{\n/ U = 2DRagr T~ _nagpry y fzrst second thzrd +
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Figure 5:S5 = S U Ss &7 pe“"” & /5001
R // nvagr 0/,’
| O /
Proposition 2 Given two mergeable PSSs, Ss, \O/ \O/ o o
S1 U Sy is a well formed PSS. vag}\ /Lagr sg\ /pl
Proposition 3 PSS merge is commutative: for any O--—-—-=-=-=-=—- -0
two PSSsS, Ss, S1US, = S, US,. In particular, agr NUM num
either both are defined or both are undefined. Figure 8:5 = S; U Ss
Proposition 4 PSS merge is associative: for all
51, 52,93, (51U 5) U S3 = 51 U (S U S). algorithm of Penn (2000).

7 Extending PSSs to type signatures 21 Name resolution

When developing large scale grammars, the sigBy the definition of a well-formed PSS, each
nature can be distributed among several modulesinonymous node is unique with respect to the in-
A PSS encodes only partial information and thereformation it encodes among the anonymous nodes,
fore is not required to conform with all the con- put there may exist anarkednode encoding the
straints imposed on ordinary signatures. After allsame information. The goal of the name resolution
the modules are combined, however, the PSS mugkocedure is to assign a type to every anonymous
be extended into a signature. This process is dongode, by coalescing it with a similar marked node,
in 4 stages, each dealing with one property: 1if one exists. If no such node exists, or if there is
Name resolution: assigning types to anonymousgnore than one such node, the anonymous node is
nodes (section 7.1); 2. Determinizidgp, convert- given an arbitrary type.
ing it from a relation to a function (section 7.2); 3.  The name resolution algorithm iterates as long
Extending <’ to a BCPO. This is done using the as there are nodes to coalesce. In each iteration,
algorithm of Penn (2000); 4. Extendingp to a  for each anonymous node the set of its similar
full appropriateness specification by enforcing theryped nodes is computed. Then, using this compu-
feature introduction condition: Again, we use thetation, anonymous nodes are coalesced with their
paired similar typed node, if such a node uniquely
exists. After coalescing all such pairs, the result-

person nvagr bool ing PSS may be non well-formed and therefore the
,0 PSS is compacted. Compactness can trigger more
/ ,/DEF pairs that need to be coalesced, and therefore the

PERSON hNe)

above procedure is repeated. When no pairs that
vag\ /agr
(19

need to be coalesced are left, the remaining anony-
mous nodes are assigned arbitrary names and the
algorithm halts. The detailed algorithm is sup-
Figure 6: An agreement modulg; pressed for lack of space.

r NUM num
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Example 5 Let S¢ be the PSS depicted in Fig- (b) add the ardq, F, p) to Ap.
ure 5. Executing the name resolution algorithm

on this module results in the PSS of Figure 9
(AGR-labels are suppressed for readability.) The
two anonymous nodes ifi; are coalesced with

the nodes markedagr and vagr, as per their
attributes. Cf. Figure 1, in particular how two 3
anonymous nodes ifi; are assigned types from

(c) for all ¢ € @ such thatq 2 q, if
(¢,F,p) ¢ Ap then add(¢, F,p) to
Ap.

(d) goto (2).

(a) Add a new node, to Q with:

Ss (Figure 4). e sup(p) = target(q, I")
e sub(p) = (target(q, F))"
eI T T~a hd OU’t(p) = Uq/eta'r'get(q7F) OUt(q,)
.~ gerg"d TN (b) Markp with a fresh type fronNAMES.
[ S=SSCT T T ———__ \ *
v \O——\—\—:O ‘\\*b (c) For all ¢ € @ such thaty < ¢/, add
', F,p)to Ap.
n v vagr fhagr (¢, F,p p
\O/ \O/ (d) For all ¢ € target(q, F'), remove the
cat agr arc (¢, F,q’) from Ap.
Figure 9: Name resolution result & (e) Add(q, F',p) to Ap.
(f) goto (1).
7.2 Appropriateness consolidation The order in which nodes are selected in step 1

of the algorithm is from supertypes to subtypes.
This is done to preserve upward closure. In ad-
dition, when replacing a set of outgoing appropri-

For each node, the set of outgoing appropriate-
ness arcs with the same labB| {(q, F,q')}, is
replaced by the single arng, F, ¢;), whereg; is i
marked by thdub of the types of ally’. If no lup ~ 2t€ness arcs with the same lat#el {(¢, F. ')},
exists, a new node is added and is marked by thy @ single ard(¢, F, ¢;), ¢ is added as an ap-
lub. The result is that the appropriateness relatiorﬁ’mp,”ate_V"_’llue forf” and all the subtypes of.
is a function, and upward closure is preserved; feg~92iN. this is done to preserve upward closure. If
ture introduction is dealt with separately. anew node is added (stage 3), then its appropriate
The input to the following procedure is a PSSfeatures and values are inherited from its immedi-
whose typing function7’, is total: its output is a ate supertypes. During the iterations of the algo-
PSS whose typing functioff}, is total and whose rithm, condition 3b (maximality) of the definition
appropriateness relation is a function. L&t— of a PSS may be violated but the resulting graph is

(Q.T, =, Ap) be a PSS. For eaghe ( andF ¢ ~ 9udranteedtobe a PSS.

FEAT, let Example 6 Consider the PSS depicted in Fig-
ure 9. Executing the appropriateness consolida-
target(q, F) = {dq' | (¢, F,q') € Ap} tion algorithm on this module results in the module
sup(q) = {¢' € Q | ¢ 2 ¢} depicted in Figure 10AGR-labels are suppressed.
sub(q) ={¢' € Q | ¢ = ¢}
out(q) = {(F,q') | (¢, F,q') € Ap T TTTTT T -
Igorithm 1 Appropriateness  consolidation ’ gergnd ngw \\\\
Algori ;i O-=—========- -
(S - <Q7 T7 57 Ap)) ‘\g/