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Özlem Çetinŏglu and Kemal Oflazer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .153

PCFGs with Syntactic and Prosodic Indicators of Speech Repairs
John Hale, Izhak Shafran, Lisa Yung, Bonnie Dorr, Mary Harper, Anna Krasnyanskaya,
Matthew Lease, Yang Liu, Brian Roark, Matthew Snover and Robin Stewart . . . . . . . . . . . . . . . . .161

Dependency Parsing of Japanese Spoken Monologue Based on Clause Boundaries
Tomohiro Ohno, Shigeki Matsubara, Hideki Kashioka, Takehiko Maruyama and Yasuyoshi
Inagaki . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .169

Trace Prediction and Recovery with Unlexicalized PCFGs and Slash Features
Helmut Schmid. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .177

Learning More Effective Dialogue Strategies Using Limited Dialogue Move Features
Matthew Frampton and Oliver Lemon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .185

Dependencies between Student State and Speech Recognition Problems in Spoken Tutoring
Dialogues

Mihai Rotaru and Diane J. Litman . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .193

Learning the Structure of Task-Driven Human-Human Dialogs
Srinivas Bangalore, Giuseppe Di Fabbrizio and Amanda Stent . . . . . . . . . . . . . . . . . . . . . . . . . . . . .201

Semi-Supervised Conditional Random Fields for Improved Sequence Segmentation and Labeling
Feng Jiao, Shaojun Wang, Chi-Hoon Lee, Russell Greiner and Dale Schuurmans . . . . . . . . . . . . .209

Training Conditional Random Fields with Multivariate Evaluation Measures
Jun Suzuki, Erik McDermott and Hideki Isozaki . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .217

Approximation Lasso Methods for Language Modeling
Jianfeng Gao, Hisami Suzuki and Bin Yu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .225

Automated Japanese Essay Scoring System based on Articles Written by Experts
Tsunenori Ishioka and Masayuki Kameda . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .233

A Feedback-Augmented Method for Detecting Errors in the Writing of Learners of English
Ryo Nagata, Atsuo Kawai, Koichiro Morihiro and Naoki Isu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .241

Correcting ESL Errors Using Phrasal SMT Techniques
Chris Brockett, William B. Dolan and Michael Gamon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .249

iv



Graph Transformations in Data-Driven Dependency Parsing
Jens Nilsson, Joakim Nivre and Johan Hall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .257

Learning to Generate Naturalistic Utterances Using Reviews in Spoken Dialogue Systems
Ryuichiro Higashinaka, Rashmi Prasad and Marilyn A. Walker . . . . . . . . . . . . . . . . . . . . . . . . . . . . .265

Measuring Language Divergence by Intra-Lexical Comparison
T. Mark Ellison and Simon Kirby . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .273

Enhancing Electronic Dictionaries with an Index Based on Associations
Olivier Ferret and Michael Zock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .281

Guiding a Constraint Dependency Parser with Supertags
Kilian Foth, Tomas By and Wolfgang Menzel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .289

Efficient Unsupervised Discovery of Word Categories Using Symmetric Patterns and High
Frequency Words

Dmitry Davidov and Ari Rappoport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .297

Bayesian Query-Focused Summarization
Hal Daumé III and Daniel Marcu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .305

Expressing Implicit Semantic Relations without Supervision
Peter D. Turney . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .313

Hybrid Parsing: Using Probabilistic Models as Predictors for a Symbolic Parser
Kilian A. Foth and Wolfgang Menzel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .321

Error Mining in Parsing Results
Benoît Sagot and Éric de La Clergerie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .329

Reranking and Self-Training for Parser Adaptation
David McClosky, Eugene Charniak and Mark Johnson . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .337

Automatic Classification of Verbs in Biomedical Texts
Anna Korhonen, Yuval Krymolowski and Nigel Collier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .345

Selection of Effective Contextual Information for Automatic Synonym Acquisition
Masato Hagiwara, Yasuhiro Ogawa and Katsuhiko Toyama . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .353

Scaling Distributional Similarity to Large Corpora
James Gorman and James R. Curran . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .361

Extractive Summarization using Inter- and Intra- Event Relevance
Wenjie Li, Mingli Wu, Qin Lu, Wei Xu and Chunfa Yuan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .369

Models for Sentence Compression: A Comparison across Domains, Training Requirements and
Evaluation Measures

James Clarke and Mirella Lapata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .377

A Bottom-Up Approach to Sentence Ordering for Multi-Document Summarization
Danushka Bollegala, Naoaki Okazaki and Mitsuru Ishizuka . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .385

Learning Event Durations from Event Descriptions
Feng Pan, Rutu Mulkar and Jerry R. Hobbs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .393

v



Automatic Learning of Textual Entailments with Cross-Pair Similarities
Fabio Massimo Zanzotto and Alessandro Moschitti . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .401

An Improved Redundancy Elimination Algorithm for Underspecified Representations
Alexander Koller and Stefan Thater . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .409

Integrating Syntactic Priming into an Incremental Probabilistic Parser, with an Application to
Psycholinguistic Modeling

Amit Dubey, Frank Keller and Patrick Sturt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .417

A Fast, Accurate Deterministic Parser for Chinese
Mengqiu Wang, Kenji Sagae and Teruko Mitamura . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .425

Learning Accurate, Compact, and Interpretable Tree Annotation
Slav Petrov, Leon Barrett, Romain Thibaux and Dan Klein . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .433

Semi-Supervised Learning of Partial Cognates Using Bilingual Bootstrapping
Oana Frunza and Diana Inkpen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .441

Direct Word Sense Matching for Lexical Substitution
Ido Dagan, Oren Glickman, Alfio Gliozzo, Efrat Marmorshtein and Carlo Strapparava . . . . . . . .449

An Equivalent Pseudoword Solution to Chinese Word Sense Disambiguation
Zhimao Lu, Haifeng Wang, Jianmin Yao, Ting Liu and Sheng Li . . . . . . . . . . . . . . . . . . . . . . . . . . .457

Improving the Scalability of Semi-Markov Conditional Random Fields for Named Entity
Recognition

Daisuke Okanohara, Yusuke Miyao, Yoshimasa Tsuruoka and Jun’ichi Tsujii . . . . . . . . . . . . . . . .465

Factorizing Complex Models: A Case Study in Mention Detection
Radu Florian, Hongyan Jing, Nanda Kambhatla and Imed Zitouni . . . . . . . . . . . . . . . . . . . . . . . . . .473

Segment-Based Hidden Markov Models for Information Extraction
Zhenmei Gu and Nick Cercone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .481

A DOM Tree Alignment Model for Mining Parallel Data from the Web
Lei Shi, Cheng Niu, Ming Zhou and Jianfeng Gao . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .489

QuestionBank: Creating a Corpus of Parse-Annotated Questions
John Judge, Aoife Cahill and Josef van Genabith . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .497

Creating a CCGbank and a Wide-Coverage CCG Lexicon for German
Julia Hockenmaier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .505

Improved Discriminative Bilingual Word Alignment
Robert C. Moore, Wen-tau Yih and Andreas Bode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .513

Maximum Entropy Based Phrase Reordering Model for Statistical Machine Translation
Deyi Xiong, Qun Liu and Shouxun Lin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .521

Distortion Models for Statistical Machine Translation
Yaser Al-Onaizan and Kishore Papineni . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .529

A Study on Automatically Extracted Keywords in Text Categorization
Anette Hulth and Beáta B. Megyesi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .537

vi



A Comparison and Semi-Quantitative Analysis of Words and Character-Bigrams as Features in
Chinese Text Categorization

Jingyang Li, Maosong Sun and Xian Zhang . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .545

Exploiting Comparable Corpora and Bilingual Dictionaries for Cross-Language Text
Categorization

Alfio Gliozzo and Carlo Strapparava . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .553

A Progressive Feature Selection Algorithm for Ultra Large Feature Spaces
Qi Zhang, Fuliang Weng and Zhe Feng . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .561

Annealing Structural Bias in Multilingual Weighted Grammar Induction
Noah A. Smith and Jason Eisner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .569

Maximum Entropy Based Restoration of Arabic Diacritics
Imed Zitouni, Jeffrey S. Sorensen and Ruhi Sarikaya . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .577

An Iterative Implicit Feedback Approach to Personalized Search
Yuanhua Lv, Le Sun, Junlin Zhang, Jian-Yun Nie, Wan Chen and Wei Zhang . . . . . . . . . . . . . . . .585

The Effect of Translation Quality in MT-Based Cross-Language Information Retrieval
Jiang Zhu and Haifeng Wang . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .593

A Comparison of Document, Sentence, and Term Event Spaces
Catherine Blake . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .601

Tree-to-String Alignment Template for Statistical Machine Translation
Yang Liu, Qun Liu and Shouxun Lin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .609

Incorporating Speech Recognition Confidence into Discriminative Named Entity Recognition of
Speech Data

Katsuhito Sudoh, Hajime Tsukada and Hideki Isozaki . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .617

Exploiting Syntactic Patterns as Clues in Zero-Anaphora Resolution
Ryu Iida, Kentaro Inui and Yuji Matsumoto . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .625

Self-Organizing n-gram Model for Automatic Word Spacing
Seong-Bae Park, Yoon-Shik Tae and Se-Young Park . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .633

Concept Unification of Terms in Different Languages for IR
Qing Li, Sung-Hyon Myaeng, Yun Jin and Bo-yeong Kang . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .641

Word Alignment in English-Hindi Parallel Corpus Using Recency-Vector Approach: Some Studies
Niladri Chatterjee and Saumya Agrawal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .649

Extracting Loanwords from Mongolian Corpora and Producing a Japanese-Mongolian
Bilingual Dictionary

Badam-Osor Khaltar, Atsushi Fujii and Tetsuya Ishikawa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .657

An Unsupervised Morpheme-Based HMM for Hebrew Morphological Disambiguation
Meni Adler and Michael Elhadad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .665

Contextual Dependencies in Unsupervised Word Segmentation
Sharon Goldwater, Thomas L. Griffiths and Mark Johnson . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .673

vii



MAGEAD: A Morphological Analyzer and Generator for the Arabic Dialects
Nizar Habash and Owen Rambow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .681

Noun Phrase Chunking in Hebrew: Influence of Lexical and Morphological Features
Yoav Goldberg, Meni Adler and Michael Elhadad. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .689

Multi-Tagging for Lexicalized-Grammar Parsing
James R. Curran, Stephen Clark and David Vadas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .697

Guessing Parts-of-Speech of Unknown Words Using Global Information
Tetsuji Nakagawa and Yuji Matsumoto. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .705

A Clustered Global Phrase Reordering Model for Statistical Machine Translation
Masaaki Nagata, Kuniko Saito, Kazuhide Yamamoto and Kazuteru Ohashi . . . . . . . . . . . . . . . . . .713

A Discriminative Global Training Algorithm for Statistical MT
Christoph Tillmann and Tong Zhang . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .721

Phoneme-to-Text Transcription System with an Infinite Vocabulary
Shinsuke Mori, Daisuke Takuma and Gakuto Kurata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .729

Automatic Generation of Domain Models for Call-Centers from Noisy Transcriptions
Shourya Roy and L Venkata Subramaniam . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .737

Proximity in Context: An Empirically Grounded Computational Model of Proximity for
Processing Topological Spatial Expressions

John D. Kelleher, Geert-Jan M. Kruijff and Fintan J. Costello . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .745

Machine Learning of Temporal Relations
Inderjeet Mani, Marc Verhagen, Ben Wellner, Chong Min Lee and James Pustejovsky . . . . . . . .753

An End-to-End Discriminative Approach to Machine Translation
Percy Liang, Alexandre Bouchard-Côté, Dan Klein and Ben Taskar . . . . . . . . . . . . . . . . . . . . . . . . .761

Semi-Supervised Training for Statistical Word Alignment
Alexander Fraser and Daniel Marcu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .769

Left-to-Right Target Generation for Hierarchical Phrase-Based Translation
Taro Watanabe, Hajime Tsukada and Hideki Isozaki . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .777

You Can’t Beat Frequency (Unless You Use Linguistic Knowledge) – A Qualitative Evaluation
of Association Measures for Collocation and Term Extraction

Joachim Wermter and Udo Hahn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .785

Ontologizing Semantic Relations
Marco Pennacchiotti and Patrick Pantel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .793

Semantic Taxonomy Induction from Heterogenous Evidence
Rion Snow, Daniel Jurafsky and Andrew Y. Ng . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .801

Names and Similarities on the Web: Fact Extraction in the Fast Lane
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G. Craig Murray, Bonnie J. Dorr, Jimmy Lin, Jan Hajič and Pavel Pecina . . . . . . . . . . . . . . . . . . . .945

Accurate Collocation Extraction Using a Multilingual Parser
Violeta Seretan and Eric Wehrli . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .953

Scalable Inference and Training of Context-Rich Syntactic Translation Models
Michel Galley, Jonathan Graehl, Kevin Knight, Daniel Marcu, Steve DeNeefe,
Wei Wang and Ignacio Thayer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .961

ix



Modelling Lexical Redundancy for Machine Translation
David Talbot and Miles Osborne . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .969

Empirical Lower Bounds on the Complexity of Translational Equivalence
Benjamin Wellington, Sonjia Waxmonsky and I. Dan Melamed . . . . . . . . . . . . . . . . . . . . . . . . . . . .977

A Hierarchical Bayesian Language Model Based On Pitman-Yor Processes
Yee Whye Teh. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .985

A Phonetic-Based Approach to Chinese Chat Text Normalization
Yunqing Xia, Kam-Fai Wong and Wenjie Li . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .993

Discriminative Pruning of Language Models for Chinese Word Segmentation
Jianfeng Li, Haifeng Wang, Dengjun Ren and Guohua Li . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1001

Novel Association Measures Using Web Search with Double Checking
Hsin-Hsi Chen, Ming-Shun Lin and Yu-Chuan Wei . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1009

Semantic Retrieval for the Accurate Identification of Relational Concepts in Massive Textbases
Yusuke Miyao, Tomoko Ohta, Katsuya Masuda, Yoshimasa Tsuruoka, Kazuhiro Yoshida,
Takashi Ninomiya and Jun’ichi Tsujii . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1017

Exploring Distributional Similarity Based Models for Query Spelling Correction
Mu Li, Muhua Zhu, Yang Zhang and Ming Zhou . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1025

Robust PCFG-Based Generation Using Automatically Acquired LFG Approximations
Aoife Cahill and Josef van Genabith . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1033

Incremental Generation of Spatial Referring Expressions in Situated Dialog
John D. Kelleher and Geert-Jan M. Kruijff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1041

Learning to Predict Case Markers in Japanese
Hisami Suzuki and Kristina Toutanova. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1049

Are These Documents Written from Different Perspectives? A Test of Different Perspectives
Based on Statistical Distribution Divergence

Wei-Hao Lin and Alexander Hauptmann . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1057

Word Sense and Subjectivity
Janyce Wiebe and Rada Mihalcea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1065

Improving QA Accuracy by Question Inversion
John Prager, Pablo Duboue and Jennifer Chu-Carroll . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1073

Reranking Answers for Definitional QA Using Language Modeling
Yi Chen, Ming Zhou and Shilong Wang . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1081

Highly Constrained Unification Grammars
Daniel Feinstein and Shuly Wintner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1089

A Polynomial Parsing Algorithm for the Topological Model: Synchronizing Constituent and
Dependency Grammars, Illustrated by German Word Order Phenomena

Kim Gerdes and Sylvain Kahane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1097

x



Stochastic Language Generation Using WIDL-Expressions and its Application in Machine
Translation and Summarization

Radu Soricut and Daniel Marcu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1105

Learning to Say It Well: Reranking Realizations by Predicted Synthesis Quality
Crystal Nakatsu and Michael White . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1113

An Effective Two-Stage Model for Exploiting Non-Local Dependencies in Named Entity
Recognition

Vijay Krishnan and Christopher D. Manning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1121

Learning Transliteration Lexicons from the Web
Jin-Shea Kuo, Haizhou Li and Ying-Kuei Yang . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1129

Punjabi Machine Transliteration
M.G. Abbas Malik . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1137

Multilingual Document Clustering: An Heuristic Approach Based on Cognate Named Entities
Soto Montalvo, Raquel Martínez, Arantza Casillas and Víctor Fresno . . . . . . . . . . . . . . . . . . . . . .1145

Time Period Identification of Events in Text
Taichi Noro, Takashi Inui, Hiroya Takamura and Manabu Okumura. . . . . . . . . . . . . . . . . . . . . . . .1153

Optimal Constituent Alignment with Edge Covers for Semantic Projection
Sebastian Padó and Mirella Lapata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1161

Utilizing Co-Occurrence of Answers in Question Answering
Min Wu and Tomek Strzalkowski . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1169

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1177

xi





Preface: General Chair

I am honoured to write the first few words of these Proceedings, as General Chair of COLING/ACL 2006
in Sydney, Australia. As we know, this is just the third time in their history that the two traditionally major
events in Computational Linguistics, COLING and ACL – organised respectively by ICCL (International
Committee on Computational Linguistics) and ACL (the Association for Computational Linguistics) –
are joined in one combined conference, after Stanford in 1984 and Montreal in 1998. I was lucky to
attend both those wonderful events and would have never imagined to be “in charge” of the next one, the
first of the new millennium!

When I accepted, I knew I didn’t have real work to do in this position, apart from mediate – if necessary
– among the several “real workers”, the various Chairs. I must say now that my work was even easier
than foreseen, because of the wonderful teamwork of all the COLING/ACL group.

In this joint Conference we have tried to maintain the spirit of both COLING and ACL, but the
combination will inevitably have its own personality, in a mixture that is more than the simple sum
of the two. Part of its character will be due to the location, for the first time – for both conferences
– in Australia. For this reason we decided to have a member of AFNLP (the Asian Federation of
Natural Language Processing) on the Advisory Board and to give particular attention and visibility to
the Asia-Pacific context, communities and languages. We sincerely thank both the AFNLP-Nagao Fund
for providing financial support for those presenting Asian NLP research, and ALTA (the Australasian
Language Technology Association) for their local support.

It is my task here – but I should say my pleasure – to express gratitude to all those without whom this
conference would not exist, and I think I can do that on behalf of all participants.

My biggest thanks go to all the Chairs, for their invaluable effort and dedication which made this
Conference possible.

First of all the two Program Chairs: Claire Cardie and Pierre Isabelle, who did a tremendous job,
managing so many submissions and taking care of both regular papers and posters, and the two Local
Arrangements Chairs: Robert Dale and Cécile Paris, who have succeeded in keeping so many details
under control, in such a smooth way as if everything were natural and effortless for them.

And all the others, for their precious, competent and hard work: the Workshops Chair: Suzanne
Stevenson; the Student Workshop Chair: Rebecca Hwa; the Tutorials Chair: Claire Gardent; the
Interactive Presentations Chair: James Curran; the Publications Chair: Olivia Kwong; the two
Sponsorship Chairs: Steven Krauwer (International) and Dominique Estival (Australia); the Mentoring
Chair: Richard Power, who kindly accepted to do this for the second time; the Publicity Chair:
Tim Baldwin; the Exhibits Chair: Menno van Zaanen; the Student Volunteers coordinator: Priscilla
Rasmussen, giving often advice to all of us as ACL business manager; the webmasters: Andrew Lampert
and Brett Powley; and finally Judy Potter and her team from Well Done Events for managing registrations
and assisting in the local organisation.

I warmly thank the Advisory Board – composed of four ICCL, four ACL, and one AFNLP members –
to whom we resorted for suggestions on important and sometimes delicate issues: Sandra Carberry, Eva
Hajicova, Aravind Joshi, Martin Kay, Kathleen McCoy, Martha Palmer, Priscilla Rasmussen, Benjamin
T’sou, Jun’ichi Tsujii.

I express my gratitude to all the sponsors for their great support to the conference.

I thank all the organizers of the so numerous surrounding workshops, tutorials, and other co-located
events – conferences, workshops, summer school – adding value to the main conference, creating
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altogether probably the biggest ever happening in Computational Linguistics.

My thanks to the area chairs, the reviewers, the invited speakers, the authors of the various presentations,
in particular the students who enter with enthusiasm in such an exciting field, all the participants who
will often make a long trip to be present at COLING/ACL 2006, and all those who contributed in many
ways to a success of the conference.

And I finally thank both ICCL and ACL for having decided to join forces again in such a great enterprise.
COLING/ACL 2006 will be, I’m sure, an exciting, stimulating and inspiring event for all of you.

Enjoy COLING/ACL 2006! . . . and consider that some of the youngest here do not know it yet, but they
will be chairing the next joint events in a few years.

Nicoletta Calzolari
COLING/ACL 2006 General Chair
June 2006

xiv



Preface: Program Committee Co-Chairs

This conference represents just the third time in their 40+ year history that the two premier conferences
in natural language processing, computational linguistics, and language technology have merged for a
joint COLING/ACL event; and it’s the first time that the joint conference will be held in the southern
hemisphere. It is fitting then, that we received a record number of 630 submissions from 40+ countries:
39% from 13 countries in Asia, 29% from 17 countries in Europe, 25% from Canada and the United
States, 4% from Australia and New Zealand, 2% from 4 countries in the Middle East, and less than 1%
from South America (Brazil) and Africa (South Africa and Tunisia). Of the 630 submissions, 23% were
accepted for paper presentations and an additional 20% for poster presentations.

Our rough estimate of the amount of work that went just into preparing the submissions, final versions
and on-site presentations for this year’s main program exceeds 32 person/years.1 If we include workshops
and EMNLP, this figure is probably doubled. Thanks to everyone who submitted their research to the
conference!

Much of the work in putting together the main program of papers and posters was done, of course, by
our tireless area chairs and reviewers (of which we had 19 and 384, respectively). A tribute to their joint
efforts is the fact that we obtained a 100% response rate for reviews – over 100% actually, since a few
crazy souls offered unsolicited or extra reviews.

COLING/ACL 2006 spans five days with the traditional COLING “excursion day” on day three. The
remaining four days of the conference include plenary sessions, four parallel paper sessions, the student
research workshop, and two evening poster sessions. The ACL Lifetime Achievement Award will also
be bestowed on its fifth recipient in a plenary session, followed by an invited talk by the esteemed award
winner. A Best Paper Award will be announced in a plenary session at the end of the conference. We
would like to especially thank our two invited speakers, Daniel Marcu and Sally McConnell-Ginet.

In honor of the joint conference’s location, we have planned a special Asian language event for Thursday
morning that consists of paper presentations of the top four Asian language papers followed by a plenary
panel focusing on issues in Asian language processing, and ending with the presentation of the Best
Asian Language Paper Award. We offer special thanks to our three distinguished panelists – Pushpak
Bhattacharyya, Benjamin T’sou, and Jun’ichi Tsujii – and to Aravind Joshi, who expertly organized the
panel.

Finally, we thank the ACL and ICCL conference oversight committee, for advice of all sorts along the
way; and Rich Gerber, the START conference system developer, who answered our countless questions
at all hours of the day and night.

After all of this work, by so many people, we are very much looking forward to sitting back and enjoying
the conference with you in Sydney in July!

Claire Cardie
Pierre Isabelle
June 2006

1We assume an average of 8 days of work to prepare each one of about 630 submissions to the COLING-ACL 2006 main
program; and an average of 5 days of work to produce final versions for each one of the 267 accepted contributions.
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Conference Program

Monday, 17 July 2006

09:00–09:30 Opening Session

Session 1A: Machine Translation I

09:30–10:00 Combination of Arabic Preprocessing Schemes for Statistical Machine Translation
Fatiha Sadat and Nizar Habash

10:00–10:30 Going Beyond AER: An Extensive Analysis of Word Alignments and Their Impact
on MT
Necip Fazil Ayan and Bonnie J. Dorr

Session 1B: Topic Segmentation

09:30–10:00 Unsupervised Topic Modelling for Multi-Party Spoken Discourse
Matthew Purver, Konrad P. Körding, Thomas L. Griffiths and Joshua B. Tenenbaum

10:00–10:30 Minimum Cut Model for Spoken Lecture Segmentation
Igor Malioutov and Regina Barzilay

Session 1C: Coreference

09:30–10:00 Bootstrapping Path-Based Pronoun Resolution
Shane Bergsma and Dekang Lin

10:00–10:30 Kernel-Based Pronoun Resolution with Structured Syntactic Knowledge
Xiaofeng Yang, Jian Su and Chew Lim Tan

Session 1D: Grammars I

09:30–10:00 A Finite-State Model of Human Sentence Processing
Jihyun Park and Chris Brew

10:00–10:30 Acceptability Prediction by Means of Grammaticality Quantification
Philippe Blache, Barbara Hemforth and Stéphane Rauzy

10:30–11:00 Break
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Monday, 17 July 2006 (continued)

Session 2A: Machine Translation II

11:00–11:30 Discriminative Word Alignment with Conditional Random Fields
Phil Blunsom and Trevor Cohn

11:30–12:00 Named Entity Transliteration with Comparable Corpora
Richard Sproat, Tao Tao and ChengXiang Zhai

12:00–12:30 Extracting Parallel Sub-Sentential Fragments from Non-Parallel Corpora
Dragos Stefan Munteanu and Daniel Marcu

Session 2B: Word Sense Disambiguation I

11:00–11:30 Estimating Class Priors in Domain Adaptation for Word Sense Disambiguation
Yee Seng Chan and Hwee Tou Ng

11:30–12:00 Ensemble Methods for Unsupervised WSD
Samuel Brody, Roberto Navigli and Mirella Lapata

12:00–12:30 Meaningful Clustering of Senses Helps Boost Word Sense Disambiguation Performance
Roberto Navigli

Session 2C: Information Extraction I

11:00–11:30 Espresso: Leveraging Generic Patterns for Automatically Harvesting Semantic Relations
Patrick Pantel and Marco Pennacchiotti

11:30–12:00 Modeling Commonality among Related Classes in Relation Extraction
GuoDong Zhou, Jian Su and Min Zhang

12:00–12:30 Relation Extraction Using Label Propagation Based Semi-Supervised Learning
Jinxiu Chen, Donghong Ji, Chew Lim Tan and Zhengyu Niu

Session 2D: Grammars II

11:00–11:30 Polarized Unification Grammars
Sylvain Kahane

11:30–12:00 Partially Specified Signatures: A Vehicle for Grammar Modularity
Yael Cohen-Sygal and Shuly Wintner

12:00–12:30 Morphology-Syntax Interface for Turkish LFG
Özlem Çetinŏglu and Kemal Oflazer

12:30–14:00 Lunch
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Monday, 17 July 2006 (continued)

Session 3A: Parsing I

14:00–14:30 PCFGs with Syntactic and Prosodic Indicators of Speech Repairs
John Hale, Izhak Shafran, Lisa Yung, Bonnie Dorr, Mary Harper, Anna Krasnyanskaya,
Matthew Lease, Yang Liu, Brian Roark, Matthew Snover and Robin Stewart

14:30–15:00 Dependency Parsing of Japanese Spoken Monologue Based on Clause Boundaries
Tomohiro Ohno, Shigeki Matsubara, Hideki Kashioka, Takehiko Maruyama and Ya-
suyoshi Inagaki

15:00–15:30 Trace Prediction and Recovery with Unlexicalized PCFGs and Slash Features
Helmut Schmid

Session 3B: Dialogue I

14:00–14:30 Learning More Effective Dialogue Strategies Using Limited Dialogue Move Features
Matthew Frampton and Oliver Lemon

14:30–15:00 Dependencies between Student State and Speech Recognition Problems in Spoken Tutoring
Dialogues
Mihai Rotaru and Diane J. Litman

15:00–15:30 Learning the Structure of Task-Driven Human-Human Dialogs
Srinivas Bangalore, Giuseppe Di Fabbrizio and Amanda Stent

Session 3C: Machine Learning Methods I

14:00–14:30 Semi-Supervised Conditional Random Fields for Improved Sequence Segmentation and
Labeling
Feng Jiao, Shaojun Wang, Chi-Hoon Lee, Russell Greiner and Dale Schuurmans

14:30–15:00 Training Conditional Random Fields with Multivariate Evaluation Measures
Jun Suzuki, Erik McDermott and Hideki Isozaki

15:00–15:30 Approximation Lasso Methods for Language Modeling
Jianfeng Gao, Hisami Suzuki and Bin Yu

Session 3D: Applications I

14:00–14:30 Automated Japanese Essay Scoring System based on Articles Written by Experts
Tsunenori Ishioka and Masayuki Kameda

14:30–15:00 A Feedback-Augmented Method for Detecting Errors in the Writing of Learners of English
Ryo Nagata, Atsuo Kawai, Koichiro Morihiro and Naoki Isu

15:00–15:30 Correcting ESL Errors Using Phrasal SMT Techniques
Chris Brockett, William B. Dolan and Michael Gamon

15:30–16:00 Break
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Monday, 17 July 2006 (continued)

Session 4A: Parsing II

16:00–16:30 Graph Transformations in Data-Driven Dependency Parsing
Jens Nilsson, Joakim Nivre and Johan Hall

Session 4B: Dialogue II

16:00–16:30 Learning to Generate Naturalistic Utterances Using Reviews in Spoken Dialogue Systems
Ryuichiro Higashinaka, Rashmi Prasad and Marilyn A. Walker

Session 4C: Linguistic Kinships

16:00–16:30 Measuring Language Divergence by Intra-Lexical Comparison
T. Mark Ellison and Simon Kirby

Session 4D: Applications II

16:00–16:30 Enhancing Electronic Dictionaries with an Index Based on Associations
Olivier Ferret and Michael Zock

16:30–17:30 ACL Lifetime Achievement Award

17:30–19:30 Poster Sessions
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Tuesday, 18 July 2006

09:00–10:00 Invited Talk by Daniel Marcu:Argmax Search in Natural Language Processing

Session 5A: Parsing III

10:00–10:30 Guiding a Constraint Dependency Parser with Supertags
Kilian Foth, Tomas By and Wolfgang Menzel

Session 5B: Lexical Issues I

10:00–10:30 Efficient Unsupervised Discovery of Word Categories Using Symmetric Patterns and High
Frequency Words
Dmitry Davidov and Ari Rappoport

Session 5C: Summarization I

10:00–10:30 Bayesian Query-Focused Summarization
Hal Daumé III and Daniel Marcu

Session 5D: Semantics I

10:00–10:30 Expressing Implicit Semantic Relations without Supervision
Peter D. Turney

10:30–11:00 Break
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Tuesday, 18 July 2006 (continued)

Session 6A: Parsing IV

11:00–11:30 Hybrid Parsing: Using Probabilistic Models as Predictors for a Symbolic Parser
Kilian A. Foth and Wolfgang Menzel

11:30–12:00 Error Mining in Parsing Results
Benoît Sagot and Éric de La Clergerie

12:00–12:30 Reranking and Self-Training for Parser Adaptation
David McClosky, Eugene Charniak and Mark Johnson

Session 6B: Lexical Issues II

11:00–11:30 Automatic Classification of Verbs in Biomedical Texts
Anna Korhonen, Yuval Krymolowski and Nigel Collier

11:30–12:00 Selection of Effective Contextual Information for Automatic Synonym Acquisition
Masato Hagiwara, Yasuhiro Ogawa and Katsuhiko Toyama

12:00–12:30 Scaling Distributional Similarity to Large Corpora
James Gorman and James R. Curran

Session 6C: Summarization II

11:00–11:30 Extractive Summarization using Inter- and Intra- Event Relevance
Wenjie Li, Mingli Wu, Qin Lu, Wei Xu and Chunfa Yuan

11:30–12:00 Models for Sentence Compression: A Comparison across Domains, Training Require-
ments and Evaluation Measures
James Clarke and Mirella Lapata

12:00–12:30 A Bottom-Up Approach to Sentence Ordering for Multi-Document Summarization
Danushka Bollegala, Naoaki Okazaki and Mitsuru Ishizuka

Session 6D: Semantics II

11:00–11:30 Learning Event Durations from Event Descriptions
Feng Pan, Rutu Mulkar and Jerry R. Hobbs

11:30–12:00 Automatic Learning of Textual Entailments with Cross-Pair Similarities
Fabio Massimo Zanzotto and Alessandro Moschitti

12:00–12:30 An Improved Redundancy Elimination Algorithm for Underspecified Representations
Alexander Koller and Stefan Thater

12:30–14:00 Lunch
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Tuesday, 18 July 2006 (continued)

Session 7A: Parsing V

14:00–14:30 Integrating Syntactic Priming into an Incremental Probabilistic Parser, with an Applica-
tion to Psycholinguistic Modeling
Amit Dubey, Frank Keller and Patrick Sturt

14:30–15:00 A Fast, Accurate Deterministic Parser for Chinese
Mengqiu Wang, Kenji Sagae and Teruko Mitamura

15:00–15:30 Learning Accurate, Compact, and Interpretable Tree Annotation
Slav Petrov, Leon Barrett, Romain Thibaux and Dan Klein

Session 7B: Word Sense Disambiguation II

14:00–14:30 Semi-Supervised Learning of Partial Cognates Using Bilingual Bootstrapping
Oana Frunza and Diana Inkpen

14:30–15:00 Direct Word Sense Matching for Lexical Substitution
Ido Dagan, Oren Glickman, Alfio Gliozzo, Efrat Marmorshtein and Carlo Strapparava

15:00–15:30 An Equivalent Pseudoword Solution to Chinese Word Sense Disambiguation
Zhimao Lu, Haifeng Wang, Jianmin Yao, Ting Liu and Sheng Li

Session 7C: Information Extraction II

14:00–14:30 Improving the Scalability of Semi-Markov Conditional Random Fields for Named Entity
Recognition
Daisuke Okanohara, Yusuke Miyao, Yoshimasa Tsuruoka and Jun’ichi Tsujii

14:30–15:00 Factorizing Complex Models: A Case Study in Mention Detection
Radu Florian, Hongyan Jing, Nanda Kambhatla and Imed Zitouni

15:00–15:30 Segment-Based Hidden Markov Models for Information Extraction
Zhenmei Gu and Nick Cercone

Session 7D: Resources I

14:00–14:30 A DOM Tree Alignment Model for Mining Parallel Data from the Web
Lei Shi, Cheng Niu, Ming Zhou and Jianfeng Gao

14:30–15:00 QuestionBank: Creating a Corpus of Parse-Annotated Questions
John Judge, Aoife Cahill and Josef van Genabith

15:00–15:30 Creating a CCGbank and a Wide-Coverage CCG Lexicon for German
Julia Hockenmaier

15:30–16:00 Break
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Tuesday, 18 July 2006 (continued)

Session 8A: Machine Translation III

16:00–16:30 Improved Discriminative Bilingual Word Alignment
Robert C. Moore, Wen-tau Yih and Andreas Bode

16:30–17:00 Maximum Entropy Based Phrase Reordering Model for Statistical Machine Translation
Deyi Xiong, Qun Liu and Shouxun Lin

17:00–17:30 Distortion Models for Statistical Machine Translation
Yaser Al-Onaizan and Kishore Papineni

Session 8B: Text Classification I

16:00–16:30 A Study on Automatically Extracted Keywords in Text Categorization
Anette Hulth and Beáta B. Megyesi

16:30–17:00 A Comparison and Semi-Quantitative Analysis of Words and Character-Bigrams as Fea-
tures in Chinese Text Categorization
Jingyang Li, Maosong Sun and Xian Zhang

17:00–17:30 Exploiting Comparable Corpora and Bilingual Dictionaries for Cross-Language Text Cat-
egorization
Alfio Gliozzo and Carlo Strapparava

Session 8C: Machine Learning Methods II

16:00–16:30 A Progressive Feature Selection Algorithm for Ultra Large Feature Spaces
Qi Zhang, Fuliang Weng and Zhe Feng

16:30–17:00 Annealing Structural Bias in Multilingual Weighted Grammar Induction
Noah A. Smith and Jason Eisner

17:00–17:30 Maximum Entropy Based Restoration of Arabic Diacritics
Imed Zitouni, Jeffrey S. Sorensen and Ruhi Sarikaya

Session 8D: Information Retrieval I

16:00–16:30 An Iterative Implicit Feedback Approach to Personalized Search
Yuanhua Lv, Le Sun, Junlin Zhang, Jian-Yun Nie, Wan Chen and Wei Zhang

16:30–17:00 The Effect of Translation Quality in MT-Based Cross-Language Information Retrieval
Jiang Zhu and Haifeng Wang

17:00–17:30 A Comparison of Document, Sentence, and Term Event Spaces
Catherine Blake

17:30–19:30 Poster Sessions
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Thursday, 20 July 2006

Session 9A: Best Asian Language Paper Nominee

09:00–09:30 Tree-to-String Alignment Template for Statistical Machine Translation
Yang Liu, Qun Liu and Shouxun Lin

Session 9B: Best Asian Language Paper Nominee

09:00–09:30 Incorporating Speech Recognition Confidence into Discriminative Named Entity Recogni-
tion of Speech Data
Katsuhito Sudoh, Hajime Tsukada and Hideki Isozaki

Session 9C: Best Asian Language Paper Nominee

09:00–09:30 Exploiting Syntactic Patterns as Clues in Zero-Anaphora Resolution
Ryu Iida, Kentaro Inui and Yuji Matsumoto

Session 9D: Best Asian Language Paper Nominee

09:00–09:30 Self-Organizing n-gram Model for Automatic Word Spacing
Seong-Bae Park, Yoon-Shik Tae and Se-Young Park

09:30–10:30 Asian Language Special Event:Challenges in NLP: Some New Perspectives from the East

10:30–11:00 Break
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Thursday, 20 July 2006 (continued)

Session 10A: Asian Language Processing

11:00–11:30 Concept Unification of Terms in Different Languages for IR
Qing Li, Sung-Hyon Myaeng, Yun Jin and Bo-yeong Kang

11:30–12:00 Word Alignment in English-Hindi Parallel Corpus Using Recency-Vector Approach: Some
Studies
Niladri Chatterjee and Saumya Agrawal

12:00–12:30 Extracting Loanwords from Mongolian Corpora and Producing a Japanese-Mongolian
Bilingual Dictionary
Badam-Osor Khaltar, Atsushi Fujii and Tetsuya Ishikawa

Session 10B: Morphology and Word Segmentation

11:00–11:30 An Unsupervised Morpheme-Based HMM for Hebrew Morphological Disambiguation
Meni Adler and Michael Elhadad

11:30–12:00 Contextual Dependencies in Unsupervised Word Segmentation
Sharon Goldwater, Thomas L. Griffiths and Mark Johnson

12:00–12:30 MAGEAD: A Morphological Analyzer and Generator for the Arabic Dialects
Nizar Habash and Owen Rambow

Session 10C: Tagging and Chunking

11:00–11:30 Noun Phrase Chunking in Hebrew: Influence of Lexical and Morphological Features
Yoav Goldberg, Meni Adler and Michael Elhadad

11:30–12:00 Multi-Tagging for Lexicalized-Grammar Parsing
James R. Curran, Stephen Clark and David Vadas

12:00–12:30 Guessing Parts-of-Speech of Unknown Words Using Global Information
Tetsuji Nakagawa and Yuji Matsumoto

12:30–13:30 Lunch

13:30–14:30 ACL Business Meeting
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Thursday, 20 July 2006 (continued)

Session 11A: Machine Translation IV

14:30–15:00 A Clustered Global Phrase Reordering Model for Statistical Machine Translation
Masaaki Nagata, Kuniko Saito, Kazuhide Yamamoto and Kazuteru Ohashi

15:00–15:30 A Discriminative Global Training Algorithm for Statistical MT
Christoph Tillmann and Tong Zhang

Session 11B: Speech

14:30–15:00 Phoneme-to-Text Transcription System with an Infinite Vocabulary
Shinsuke Mori, Daisuke Takuma and Gakuto Kurata

15:00–15:30 Automatic Generation of Domain Models for Call-Centers from Noisy Transcriptions
Shourya Roy and L Venkata Subramaniam

Session 11C: Discourse

14:30–15:00 Proximity in Context: An Empirically Grounded Computational Model of Proximity for
Processing Topological Spatial Expressions
John D. Kelleher, Geert-Jan M. Kruijff and Fintan J. Costello

15:00–15:30 Machine Learning of Temporal Relations
Inderjeet Mani, Marc Verhagen, Ben Wellner, Chong Min Lee and James Pustejovsky

15:30–16:00 Break
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Thursday, 20 July 2006 (continued)

Session 12A: Machine Translation V

16:00–16:30 An End-to-End Discriminative Approach to Machine Translation
Percy Liang, Alexandre Bouchard-Côté, Dan Klein and Ben Taskar

16:30–17:00 Semi-Supervised Training for Statistical Word Alignment
Alexander Fraser and Daniel Marcu

17:00–17:30 Left-to-Right Target Generation for Hierarchical Phrase-Based Translation
Taro Watanabe, Hajime Tsukada and Hideki Isozaki

Session 12B: Lexical Issues III

16:00–16:30 You Can’t Beat Frequency (Unless You Use Linguistic Knowledge) – A Qualitative Evalu-
ation of Association Measures for Collocation and Term Extraction
Joachim Wermter and Udo Hahn

16:30–17:00 Ontologizing Semantic Relations
Marco Pennacchiotti and Patrick Pantel

17:00–17:30 Semantic Taxonomy Induction from Heterogenous Evidence
Rion Snow, Daniel Jurafsky and Andrew Y. Ng

Session 12C: Information Extraction III

16:00–16:30 Names and Similarities on the Web: Fact Extraction in the Fast Lane
Marius Paşca, Dekang Lin, Jeffrey Bigham, Andrei Lifchits and Alpa Jain

16:30–17:00 Weakly Supervised Named Entity Transliteration and Discovery from Multilingual Com-
parable Corpora
Alexandre Klementiev and Dan Roth

17:00–17:30 A Composite Kernel to Extract Relations between Entities with Both Flat and Structured
Features
Min Zhang, Jie Zhang, Jian Su and GuoDong Zhou
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9:00–10:00 Invited Talk by Sally McConnell-Ginet:Language, Gender and Sexuality: Do Bodies
Always Matter?

Session 13A: Parsing VI

10:00–10:30 Japanese Dependency Parsing Using Co-Occurrence Information and a Combination of
Case Elements
Takeshi Abekawa and Manabu Okumura

Session 13B: Question Answering I

10:00–10:30 Answer Extraction, Semantic Clustering, and Extractive Summarization for Clinical Ques-
tion Answering
Dina Demner-Fushman and Jimmy Lin

Session 13C: Semantics III

10:00–10:30 Discovering Asymmetric Entailment Relations between Verbs Using Selectional Prefer-
ences
Fabio Massimo Zanzotto, Marco Pennacchiotti and Maria Teresa Pazienza

Session 13D: Applications III

10:00–10:30 Event Extraction in a Plot Advice Agent
Harry Halpin and Johanna D. Moore

10:30–11:00 Break
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Session 14A: Parsing VII

11:00–11:30 An All-Subtrees Approach to Unsupervised Parsing
Rens Bod

11:30–12:00 Advances in Discriminative Parsing
Joseph Turian and I. Dan Melamed

12:00–12:30 Prototype-Driven Grammar Induction
Aria Haghighi and Dan Klein

Session 14B: Question Answering II

11:00–11:30 Exploring Correlation of Dependency Relation Paths for Answer Extraction
Dan Shen and Dietrich Klakow

11:30–12:00 Question Answering with Lexical Chains Propagating Verb Arguments
Adrian Novischi and Dan Moldovan

12:00–12:30 Methods for Using Textual Entailment in Open-Domain Question Answering
Sanda Harabagiu and Andrew Hickl

Session 14C: Semantics IV

11:00–11:30 Using String-Kernels for Learning Semantic Parsers
Rohit J. Kate and Raymond J. Mooney

11:30–12:00 A Bootstrapping Approach to Unsupervised Detection of Cue Phrase Variants
Rashid M. Abdalla and Simone Teufel

12:00–12:30 Semantic Role Labeling via FrameNet, VerbNet and PropBank
Ana-Maria Giuglea and Alessandro Moschitti

Session 14D: Resources II

11:00–11:30 Multilingual Legal Terminology on the Jibiki Platform: The LexALP Project
Gilles Sérasset, Francis Brunet-Manquat and Elena Chiocchetti

11:30–12:00 Leveraging Reusability: Cost-Effective Lexical Acquisition for Large-Scale Ontology
Translation
G. Craig Murray, Bonnie J. Dorr, Jimmy Lin, Jan Hajič and Pavel Pecina

12:00–12:30 Accurate Collocation Extraction Using a Multilingual Parser
Violeta Seretan and Eric Wehrli

12:30–14:00 Lunch
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Session 15A: Machine Translation VI

14:00–14:30 Scalable Inference and Training of Context-Rich Syntactic Translation Models
Michel Galley, Jonathan Graehl, Kevin Knight, Daniel Marcu, Steve DeNeefe, Wei Wang
and Ignacio Thayer

14:30–15:00 Modelling Lexical Redundancy for Machine Translation
David Talbot and Miles Osborne

15:00–15:30 Empirical Lower Bounds on the Complexity of Translational Equivalence
Benjamin Wellington, Sonjia Waxmonsky and I. Dan Melamed

Session 15B: Language Modeling

14:00–14:30 A Hierarchical Bayesian Language Model Based On Pitman-Yor Processes
Yee Whye Teh

14:30–15:00 A Phonetic-Based Approach to Chinese Chat Text Normalization
Yunqing Xia, Kam-Fai Wong and Wenjie Li

15:00–15:30 Discriminative Pruning of Language Models for Chinese Word Segmentation
Jianfeng Li, Haifeng Wang, Dengjun Ren and Guohua Li

Session 15C: Information Retrieval II

14:00–14:30 Novel Association Measures Using Web Search with Double Checking
Hsin-Hsi Chen, Ming-Shun Lin and Yu-Chuan Wei

14:30–15:00 Semantic Retrieval for the Accurate Identification of Relational Concepts in Massive
Textbases
Yusuke Miyao, Tomoko Ohta, Katsuya Masuda, Yoshimasa Tsuruoka, Kazuhiro Yoshida,
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John D. Kelleher and Geert-Jan M. Kruijff
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Hisami Suzuki and Kristina Toutanova

15:30–16:00 Break
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Session 16A: Text Classification II

16:00–16:30 Are These Documents Written from Different Perspectives? A Test of Different Perspectives
Based on Statistical Distribution Divergence
Wei-Hao Lin and Alexander Hauptmann
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Abstract

Statistical machine translation is quite ro-
bust when it comes to the choice of in-
put representation. It only requires con-
sistency between training and testing. As
a result, there is a wide range of possi-
ble preprocessing choices for data used
in statistical machine translation. This
is even more so for morphologically rich
languages such as Arabic. In this paper,
we study the effect of different word-level
preprocessing schemes for Arabic on the
quality of phrase-based statistical machine
translation. We also present and evalu-
ate different methods for combining pre-
processing schemes resulting in improved
translation quality.

1 Introduction

Statistical machine translation (SMT) is quite ro-
bust when it comes to the choice of input represen-
tation. It only requires consistency between train-
ing and testing. As a result, there is a wide range
of possible preprocessing choices for data used in
SMT. This is even more so for morphologically
rich languages such as Arabic. We use the term
“preprocessing” to describe various input modifi-
cations applied to raw training and testing texts for
SMT. Preprocessing includes different kinds of to-
kenization, stemming, part-of-speech (POS) tag-
ging and lemmatization. The ultimate goal of pre-
processing is to improve the quality of the SMT
output by addressing issues such as sparsity in
training data. We refer to a specific kind of prepro-
cessing as a “scheme” and differentiate it from the
“technique” used to obtain it. In a previous pub-
lication, we presented results describing six pre-

processing schemes for Arabic (Habash and Sa-
dat, 2006). These schemes were evaluated against
three different techniques that vary in linguistic
complexity; and across a learning curve of train-
ing sizes. Additionally, we reported on the effect
of scheme/technique combination on genre varia-
tion between training and testing.

In this paper, we shift our attention to exploring
and contrasting additional preprocessing schemes
for Arabic and describing and evaluating differ-
ent methods for combining them. We use a sin-
gle technique throughout the experiments reported
here. We show an improved MT performance
when combining different schemes.

Similarly to Habash and Sadat (2006), the set of
schemes we explore are all word-level. As such,
we do not utilize any syntactic information. We
define the word to be limited to written Modern
Standard Arabic (MSA) strings separated by white
space, punctuation and numbers.

Section 2 presents previous relevant research.
Section 3 presents some relevant background on
Arabic linguistics to motivate the schemes dis-
cussed in Section 4. Section 5 presents the tools
and data sets used, along with the results of basic
scheme experiments. Section 6 presents combina-
tion techniques and their results.

2 Previous Work

The anecdotal intuition in the field is that reduc-
tion of word sparsity often improves translation
quality. This reduction can be achieved by increas-
ing training data or via morphologically driven
preprocessing (Goldwater and McClosky, 2005).
Recent publications on the effect of morphol-
ogy on SMT quality focused on morphologically
rich languages such as German (Nießen and Ney,
2004); Spanish, Catalan, and Serbian (Popović
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and Ney, 2004); and Czech (Goldwater and Mc-
Closky, 2005). They all studied the effects of vari-
ous kinds of tokenization, lemmatization and POS
tagging and show a positive effect on SMT quality.

Specifically considering Arabic, Lee (2004) in-
vestigated the use of automatic alignment of POS
tagged English and affix-stem segmented Ara-
bic to determine appropriate tokenizations. Her
results show that morphological preprocessing
helps, but only for the smaller corpora. As size
increases, the benefits diminish. Our results are
comparable to hers in terms of BLEU score and
consistent in terms of conclusions. Other research
on preprocessing Arabic suggests that minimal
preprocessing, such as splitting off the conjunc-
tion +� w+ ’and’, produces best results with very
large training data (Och, 2005).

System combination for MT has also been in-
vestigated by different researchers. Approaches to
combination generally either select one of the hy-
potheses produced by the different systems com-
bined (Nomoto, 2004; Paul et al., 2005; Lee,
2005) or combine lattices/n-best lists from the dif-
ferent systems with different degrees of synthesis
or mixing (Frederking and Nirenburg, 1994; Ban-
galore et al., 2001; Jayaraman and Lavie, 2005;
Matusov et al., 2006). These different approaches
use various translation and language models in ad-
dition to other models such as word matching, sen-
tence and document alignment, system translation
confidence, phrase translation lexicons, etc.

We extend on previous work by experimenting
with a wider range of preprocessing schemes for
Arabic and exploring their combination to produce
better results.

3 Arabic Linguistic Issues

Arabic is a morphologically complex language
with a large set of morphological features1 . These
features are realized using both concatenative
morphology (affixes and stems) and templatic
morphology (root and patterns). There is a va-
riety of morphological and phonological adjust-
ments that appear in word orthography and inter-
act with orthographic variations. Next we discuss
a subset of these issues that are necessary back-
ground for the later sections. We do not address

1Arabic words have fourteen morphological features:
POS, person, number, gender, voice, aspect, determiner pro-
clitic, conjunctive proclitic, particle proclitic, pronominal en-
clitic, nominal case, nunation, idafa (possessed), and mood.

derivational morphology (such as using roots as
tokens) in this paper.� Orthographic Ambiguity: The form of cer-
tain letters in Arabic script allows suboptimal or-
thographic variants of the same word to coexist in
the same text. For example, variants of Hamzated
Alif,

���
or ��� are often written without their

Hamza ( � ): 	 A. These variant spellings increase the
ambiguity of words. The Arabic script employs di-
acritics for representing short vowels and doubled
consonants. These diacritics are almost always ab-
sent in running text, which increases word ambi-
guity. We assume all of the text we are using is
undiacritized.� Clitics: Arabic has a set of attachable clitics to
be distinguished from inflectional features such as
gender, number, person, voice, aspect, etc. These
clitics are written attached to the word and thus
increase the ambiguity of alternative readings. We
can classify three degrees of cliticization that are
applicable to a word base in a strict order:

[CONJ+ [PART+ [Al+ BASE +PRON]]]

At the deepest level, the BASE can have a def-
inite article (+ 
�	 Al+ ‘the’) or a member of the
class of pronominal enclitics, +PRON, (e.g. ��
 +
+hm ‘their/them’). Pronominal enclitics can at-
tach to nouns (as possessives) or verbs and prepo-
sitions (as objects). The definite article doesn’t
apply to verbs or prepositions. +PRON and Al+
cannot co-exist on nouns. Next comes the class
of particle proclitics (PART+): +
 l+ ‘to/for’,
+� b+ ‘by/with’, + � k+ ‘as/such’ and +� s+
‘will/future’. b+ and k+ are only nominal; s+ is
only verbal and l+ applies to both nouns and verbs.
At the shallowest level of attachment we find the
conjunctions (CONJ+) +� w+ ‘and’ and +� f+
‘so’. They can attach to everything.� Adjustment Rules: Morphological features
that are realized concatenatively (as opposed to
templatically) are not always simply concatenated
to a word base. Additional morphological, phono-
logical and orthographic rules are applied to the
word. An example of a morphological rule is the
feminine morpheme, � +p (ta marbuta), which can
only be word final. In medial position, it is turned
into � t. For example, ��
 + ��������� mktbp+hm ap-
pears as ������������� mktbthm ‘their library’. An ex-
ample of an orthographic rule is the deletion of
the Alif ( 	 ) of the definite article + 
�	 Al+ in nouns
when preceded by the preposition +
 l+ ‘to/for’
but not with any other prepositional proclitic.
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� Templatic Inflections: Some of the inflec-
tional features in Arabic words are realized tem-
platically by applying a different pattern to the
Arabic root. As a result, extracting the lexeme (or
lemma) of an Arabic word is not always an easy
task and often requires the use of a morphological
analyzer. One common example in Arabic nouns
is Broken Plurals. For example, one of the plu-
ral forms of the Arabic word ���

� �
kAtb ‘writer’

is � ��� � ktbp ‘writers’. An alternative non-broken
plural (concatenatively derived) is ��� ��� � � kAtbwn
‘writers’.

These phenomena highlight two issues related
to the task at hand (preprocessing): First, ambigu-
ity in Arabic words is an important issue to ad-
dress. To determine whether a clitic or feature
should be split off or abstracted off requires that
we determine that said feature is indeed present
in the word we are considering in context – not
just that it is possible given an analyzer. Sec-
ondly, once a specific analysis is determined, the
process of splitting off or abstracting off a feature
must be clear on what the form of the resulting
word should be. In principle, we would like to
have whatever adjustments now made irrelevant
(because of the missing feature) to be removed.
This ensures reduced sparsity and reduced unnec-
essary ambiguity. For example, the word ��������� �
ktbthm has two possible readings (among others)
as ‘their writers’ or ‘I wrote them’. Splitting off
the pronominal enclitic ��
 + +hm without normal-
izing the � t to � p in the nominal reading leads the
coexistence of two forms of the noun � ��� � ktbp
and 	 ��� � ktbt. This increased sparsity is only
worsened by the fact that the second form is also
the verbal form (thus increased ambiguity).

4 Arabic Preprocessing Schemes

Given Arabic morphological complexity, the num-
ber of possible preprocessing schemes is very
large since any subset of morphological and or-
thographic features can be separated, deleted or
normalized in various ways. To implement any
preprocessing scheme, a preprocessing technique
must be able to disambiguate amongst the possible
analyses of a word, identify the features addressed
by the scheme in the chosen analysis and process
them as specified by the scheme. In this section
we describe eleven different schemes.

4.1 Preprocessing Technique

We use the Buckwalter Arabic Morphological An-
alyzer (BAMA) (Buckwalter, 2002) to obtain pos-
sible word analyses. To select among these anal-
yses, we use the Morphological Analysis and Dis-
ambiguation for Arabic (MADA) tool,2 an off-the-
shelf resource for Arabic disambiguation (Habash
and Rambow, 2005). Being a disambiguation sys-
tem of morphology, not word sense, MADA some-
times produces ties for analyses with the same in-
flectional features but different lexemes (resolving
such ties require word-sense disambiguation). We
resolve these ties in a consistent arbitrary manner:
first in a sorted list of analyses.

Producing a preprocessing scheme involves re-
moving features from the word analysis and re-
generating the word without the split-off features.
The regeneration ensures that the generated form
is appropriately normalized by addressing vari-
ous morphotactics described in Section 3. The
generation is completed using the off-the-shelf
Arabic morphological generation system Aragen
(Habash, 2004).

This preprocessing technique we use here is the
best performer amongst other explored techniques
presented in Habash and Sadat (2006).

4.2 Preprocessing Schemes

Table 1 exemplifies the effect of different schemes
on the same sentence.� ST: Simple Tokenization is the baseline pre-
processing scheme. It is limited to splitting off
punctuations and numbers from words. For exam-
ple the last non-white-space string in the example
sentence in Table 1, “trkyA.” is split into two to-
kens: “trkyA” and “.”. An example of splitting
numbers from words is the case of the conjunc-
tion +� w+ ‘and’ which can prefix numerals such
as when a list of numbers is described: 15 � w15
‘and 15’. This scheme requires no disambigua-
tion. Any diacritics that appear in the input are
removed in this scheme. This scheme is used as
input to produce the other schemes.� ON: Orthographic Normalization addresses
the issue of sub-optimal spelling in Arabic. We
use the Buckwalter answer undiacritized as the or-
thographically normalized form. An example of
ON is the spelling of the last letter in the first and

2The version of MADA used in this paper was trained on
the Penn Arabic Treebank (PATB) part 1 (Maamouri et al.,
2004).
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Table 1: Various Preprocessing Schemes

Input wsynhY Alr � ys jwlth bzyArp AlY trkyA.
Gloss and will finish the president tour his with visit to Turkey .
English The president will finish his tour with a visit to Turkey.
Scheme Baseline
ST wsynhY Alr � ys jwlth bzyArp AlY trkyA .
ON wsynhy Alr � ys jwlth bzyArp � lY trkyA .
D1 w+ synhy Alr � ys jwlth bzyArp � lY trkyA .
D2 w+ s+ ynhy Alr � ys jwlth b+ zyArp � lY trkyA .
D3 w+ s+ ynhy Al+ r � ys jwlp +P ����� b+ zyArp � lY trkyA .
WA w+ synhy Alr � ys jwlth bzyArp � lY trkyA .
TB w+ synhy Alr � ys jwlp +P ����� b+ zyArp � lY trkyA .
MR w+ s+ y+ nhy Al+ r � ys jwl +p +h b+ zyAr +p � lY trkyA .
L1 � nhY � r � ys 	 jwlp 	 zyArp 	 � lY 
 trkyA 
�	 .
L2 � nhY �
��
 r � ys 	�	 jwlp 	�	 zyArp 	�	 � lY � 	 trkyA 	�	�
 .
EN w+ s+ � nhY ����
 +S ����� Al+ r � ys 	�	 jwlp 	�	 +P ����� b+ zyArp 	�	 � lY � 	 trkyA 	�	�
 .

fifth words in the example in Table 1 (wsynhY and
AlY, respectively). Since orthographic normaliza-
tion is tied to the use of MADA and BAMA, all of
the schemes we use here are normalized.� D1, D2, and D3: Decliticization (degree 1, 2
and 3) are schemes that split off clitics in the order
described in Section 3. D1 splits off the class of
conjunction clitics (w+ and f+). D2 is the same
as D1 plus splitting off the class of particles (l+,
k+, b+ and s+). Finally D3 splits off what D2
does in addition to the definite article Al+ and all
pronominal enclitics. A pronominal clitic is repre-
sented as its feature representation to preserve its
uniqueness. (See the third word in the example in
Table 1.) This allows distinguishing between the
possessive pronoun and object pronoun which of-
ten look similar.� WA: Decliticizing the conjunction w+. This
is the simplest tokenization used beyond ON. It
is similar to D1, but without including f+. This
is included to compare to evidence in its support
as best preprocessing scheme for very large data
(Och, 2005).� TB: Arabic Treebank Tokenization. This is
the same tokenization scheme used in the Arabic
Treebank (Maamouri et al., 2004). This is similar
to D3 but without the splitting off of the definite
article Al+ or the future particle s+.� MR: Morphemes. This scheme breaks up
words into stem and affixival morphemes. It is
identical to the initial tokenization used by Lee
(2004).� L1 and L2: Lexeme and POS. These reduce
a word to its lexeme and a POS. L1 and L2 dif-
fer in the set of POS tags they use. L1 uses the
simple POS tags advocated by Habash and Ram-

bow (2005) (15 tags); while L2 uses the reduced
tag set used by Diab et al. (2004) (24 tags). The
latter is modeled after the English Penn POS tag
set. For example, Arabic nouns are differentiated
for being singular (NN) or Plural/Dual (NNS), but
adjectives are not even though, in Arabic, they in-
flect exactly the same way nouns do.� EN: English-like. This scheme is intended to
minimize differences between Arabic and English.
It decliticizes similarly to D3, but uses Lexeme
and POS tags instead of the regenerated word. The
POS tag set used is the reduced Arabic Treebank
tag set (24 tags) (Maamouri et al., 2004; Diab et
al., 2004). Additionally, the subject inflection is
indicated explicitly as a separate token. We do not
use any additional information to remove specific
features using alignments or syntax (unlike, e.g.
removing all but one Al+ in noun phrases (Lee,
2004)).

4.3 Comparing Various Schemes

Table 2 compares the different schemes in terms
of the number of tokens, number of out-of-
vocabulary (OOV) tokens, and perplexity. These
statistics are computed over the MT04 set, which
we use in this paper to report SMT results (Sec-
tion 5). Perplexity is measured against a language
model constructed from the Arabic side of the par-
allel corpus used in the MT experiments (Sec-
tion 5).

Obviously the more verbose a scheme is, the
bigger the number of tokens in the text. The ST,
ON, L1, and L2 share the same number of tokens
because they all modify the word without splitting
off any of its morphemes or features. The increase
in the number of tokens is in inverse correlation
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Table 2: Scheme Statistics
Scheme Tokens OOVs Perplexity

ST 36000 1345 1164
ON 36000 1212 944
D1 38817 1016 582
D2 40934 835 422
D3 52085 575 137
WA 38635 1044 596
TB 42880 662 338
MR 62410 409 69
L1 36000 392 401
L2 36000 432 460
EN 55525 432 103

with the number of OOVs and perplexity. The
only exceptions are L1 and L2, whose low OOV
rate is the result of the reductionist nature of the
scheme, which does not preserve morphological
information.

5 Basic Scheme Experiments

We now describe the system and the data sets we
used to conduct our experiments.

5.1 Portage

We use an off-the-shelf phrase-based SMT system,
Portage (Sadat et al., 2005). For training, Portage
uses IBM word alignment models (models 1 and
2) trained in both directions to extract phrase ta-
bles in a manner resembling (Koehn, 2004a). Tri-
gram language models are implemented using the
SRILM toolkit (Stolcke, 2002). Decoding weights
are optimized using Och’s algorithm (Och, 2003)
to set weights for the four components of the log-
linear model: language model, phrase translation
model, distortion model, and word-length feature.
The weights are optimized over the BLEU met-
ric (Papineni et al., 2001). The Portage decoder,
Canoe, is a dynamic-programming beam search
algorithm resembling the algorithm described in
(Koehn, 2004a).

5.2 Experimental data

All of the training data we use is available from
the Linguistic Data Consortium (LDC). We use
an Arabic-English parallel corpus of about 5 mil-
lion words for translation model training data.3

We created the English language model from
the English side of the parallel corpus together

3The parallel text includes Arabic News (LDC2004T17),
eTIRR (LDC2004E72), English translation of Arabic Tree-
bank (LDC2005E46), and Ummah (LDC2004T18).

with 116 million words the English Gigaword
Corpus (LDC2005T12) and 128 million words
from the English side of the UN Parallel corpus
(LDC2004E13).4

English preprocessing simply included lower-
casing, separating punctuation from words and
splitting off “’s”. The same preprocessing was
used on the English data for all experiments.
Only Arabic preprocessing was varied. Decoding
weight optimization was done using a set of 200
sentences from the 2003 NIST MT evaluation test
set (MT03). We report results on the 2004 NIST
MT evaluation test set (MT04) The experiment de-
sign and choices of schemes and techniques were
done independently of the test set. The data sets,
MT03 and MT04, include one Arabic source and
four English reference translations. We use the
evaluation metric BLEU-4 (Papineni et al., 2001)
although we are aware of its caveats (Callison-
Burch et al., 2006).

5.3 Experimental Results

We conducted experiments with all schemes dis-
cussed in Section 4 with different training corpus
sizes: 1%, 10%, 50% and 100%. The results of the
experiments are summarized in Table 3. These re-
sults are not English case sensitive. All reported
scores must have over 1.1% BLEU-4 difference
to be significant at the 95% confidence level for
1% training. For all other training sizes, the dif-
ference must be over 1.7% BLEU-4. Error in-
tervals were computed using bootstrap resampling
(Koehn, 2004b).

Across different schemes, EN performs the best
under scarce-resource condition; and D2 performs
as best under large resource conditions. The re-
sults from the learning curve are consistent with
previous published work on using morphologi-
cal preprocessing for SMT: deeper morph analysis
helps for small data sets, but the effect is dimin-
ished with more data. One interesting observation
is that for our best performing system (D2), the
BLEU score at 50% training (35.91) was higher
than the baseline ST at 100% training data (34.59).
This relationship is not consistent across the rest of
the experiments. ON improves over the baseline

4The SRILM toolkit has a limit on the size of the training
corpus. We selected portions of additional corpora using a
heuristic that picks documents containing the word “Arab”
only. The Language model created using this heuristic had a
bigger improvement in BLEU score (more than 1% BLEU-4)
than a randomly selected portion of equal size.
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Table 3: Scheme Experiment Results (BLEU-4)

Training Data
Scheme 1% 10% 50% 100%
ST 9.42 22.92 31.09 34.59
ON 10.71 24.3 32.52 35.91
D1 13.11 26.88 33.38 36.06
D2 14.19 27.72 35.91 37.10
D3 16.51 28.69 34.04 34.33
WA 13.12 26.29 34.24 35.97
TB 14.13 28.71 35.83 36.76
MR 11.61 27.49 32.99 34.43
L1 14.63 24.72 31.04 32.23
L2 14.87 26.72 31.28 33.00
EN 17.45 28.41 33.28 34.51

but only statistically significantly at the 1% level.
The results for WA are generally similar to D1.
This makes sense since w+ is by far the most com-
mon of the two conjunctions D1 splits off. The TB
scheme behaves similarly to D2, the best scheme
we have. It outperformed D2 in few instances, but
the difference were not statistically significant. L1
and L2 behaved similar to EN across the different
training size. However, both were always worse
than EN. Neither variant was consistently better
than the other.

6 System Combination

The complementary variation in the behavior of
different schemes under different resource size
conditions motivated us to investigate system
combination. The intuition is that even under large
resource conditions, some words will occur very
infrequently that the only way to model them is to
use a technique that behaves well under poor re-
source conditions.

We conducted an oracle study into system com-
bination. An oracle combination output was cre-
ated by selecting for each input sentence the out-
put with the highest sentence-level BLEU score.
We recognize that since the brevity penalty in
BLEU is applied globally, this score may not be
the highest possible combination score. The ora-
cle combination has a 24% improvement in BLEU
score (from 37.1 in best system to 46.0) when
combining all eleven schemes described in this pa-
per. This shows that combining of output from all
schemes has a large potential of improvement over
all of the different systems and that the different
schemes are complementary in some way.

In the rest of this section we describe two suc-
cessful methods for system combination of differ-
ent schemes: rescoring-only combination (ROC)

and decoding-plus-rescoring combination (DRC).
All of the experiments use the same training data,
test data (MT04) and preprocessing schemes de-
scribed in the previous section.

6.1 Rescoring-only Combination

This “shallow” approach rescores all the one-best
outputs generated from separate scheme-specific
systems and returns the top choice. Each scheme-
specific system uses its own scheme-specific pre-
processing, phrase-tables, and decoding weights.
For rescoring, we use the following features:

� The four basic features used by the decoder:
trigram language model, phrase translation
model, distortion model, and word-length
feature.

� IBM model 1 and IBM model 2 probabilities
in both directions.
We call the union of these two sets of features
standard.

� The perplexity of the preprocessed source
sentence (PPL) against a source language
model as described in Section 4.3.

� The number of out-of-vocabulary words in
the preprocessed source sentence (OOV).

� Length of the preprocessed source sentence
(SL).

� An encoding of the specific scheme used
(SC). We use a one-hot coding approach with
11 separate binary features, each correspond-
ing to a specific scheme.

Optimization of the weights on the rescoring
features is carried out using the same max-BLEU
algorithm and the same development corpus de-
scribed in Section 5.

Results of different sets of features with the
ROC approach are presented in Table 4. Using
standard features with all eleven schemes, we ob-
tain a BLEU score of 34.87 – a significant drop
from the best scheme system (D2, 37.10). Using
different subsets of features or limiting the num-
ber of systems to the best four systems (D2, TB,
D1 and WA), we get some improvements. The
best results are obtained using all schemes with
standard features plus perplexity and scheme cod-
ing. The improvements are small; however they
are statistically significant (see Section 6.3).
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Table 4: ROC Approach Results

Combination All Schemes 4 Best Schemes
standard 34.87 37.12
+PPL+SC 37.58 37.45
+PPL+SC+OOV 37.40
+PPL+SC+OOV+SL 37.39
+PPL+SC+SL 37.15

6.2 Decoding-plus-Rescoring Combination

This “deep” approach allows the decoder to con-
sult several different phrase tables, each generated
using a different preprocessing scheme; just as
with ROC, there is a subsequent rescoring stage.
A problem with DRC is that the decoder we use
can only cope with one format for the source sen-
tence at a time. Thus, we are forced to designate a
particular scheme as privileged when the system is
carrying out decoding. The privileged preprocess-
ing scheme will be the one applied to the source
sentence. Obviously, words and phrases in the
preprocessed source sentence will more frequently
match the phrases in the privileged phrase table
than in the non-privileged ones. Nevertheless, the
decoder may still benefit from having access to all
the tables. For each choice of a privileged scheme,
optimization of log-linear weights is carried out
(with the version of the development set prepro-
cessed in the same privileged scheme).

The middle column of Table 5 shows the results
for 1-best output from the decoder under differ-
ent choices of the privileged scheme. The best-
performing system in this column has as its priv-
ileged preprocessing scheme TB. The decoder for
this system uses TB to preprocess the source sen-
tence, but has access to a log-linear combination of
information from all 11 preprocessing schemes.

The final column of Table 5 shows the results
of rescoring the concatenation of the 1-best out-
puts from each of the combined systems. The
rescoring features used are the same as those used
for the ROC experiments. For rescoring, a priv-
ileged preprocessing scheme is chosen and ap-
plied to the development corpus. We chose TB for
this (since it yielded the best result when chosen
to be privileged at the decoding stage). Applied
to 11 schemes, this yields the best result so far:
38.67 BLEU. Combining the 4 best pre-processing
schemes (D2, TB, D1, WA) yielded a lower BLEU
score (37.73). These results show that combining
phrase tables from different schemes have a posi-
tive effect on MT performance.

Table 5: DRC Approach Results

Combination Decoding Rescoring
Scheme 1-best Standard+PPL
D2 37.16

All schemes TB 38.24 38.67
D1 37.89
WA 36.91
ON 36.42
ST 34.27
EN 30.78
MR 34.65
D3 34.73
L2 32.25
L1 30.47
D2 37.39

4 best schemes TB 37.53 37.73
D1 36.05
WA 37.53

Table 6: Statistical Significance using Bootstrap
Resampling

DRC ROC D2 TB D1 WA ON
100 0 0 0 0 0 0

97.7 2.2 0.1 0 0 0
92.1 7.9 0 0 0

98.8 0.7 0.3 0.2
53.8 24.1 22.1

59.3 40.7

6.3 Significance Test

We use bootstrap resampling to compute MT
statistical significance as described in (Koehn,
2004a). The results are presented in Table 6. Com-
paring the 11 individual systems and the two com-
binations DRC and ROC shows that DRC is sig-
nificantly better than the other systems – DRC got
a max BLEU score in 100% of samples. When ex-
cluding DRC from the comparison set, ROC got
max BLEU score in 97.7% of samples, while D2
and TB got max BLEU score in 2.2% and 0.1%
of samples, respectively. The difference between
ROC and D2 and ATB is statistically significant.

7 Conclusions and Future Work

We motivated, described and evaluated several
preprocessing schemes for Arabic. The choice
of a preprocessing scheme is related to the size
of available training data. We also presented two
techniques for scheme combination. Although the
results we got are not as high as the oracle scores,
they are statistically significant.

In the future, we plan to study additional
scheme variants that our current results support
as potentially helpful. We plan to include more
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syntactic knowledge. We also plan to continue in-
vestigating combination techniques at the sentence
and sub-sentence levels. We are especially inter-
ested in the relationship between alignment and
decoding and the effect of preprocessing scheme
on both.
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Abstract

This paper presents an extensive evalua-
tion of five different alignments and in-
vestigates their impact on the correspond-
ing MT system output. We introduce
new measures for intrinsic evaluations and
examine the distribution of phrases and
untranslated words during decoding to
identify which characteristics of different
alignments affect translation. We show
that precision-oriented alignments yield
better MT output (translating more words
and using longer phrases) than recall-
oriented alignments.

1 Introduction

Word alignments are a by-product of statistical
machine translation (MT) and play a crucial role
in MT performance. In recent years, researchers
have proposed several algorithms to generate word
alignments. However, evaluating word alignments
is difficult because even humans have difficulty
performing this task.

The state-of-the art evaluation metric—
alignment error rate (AER)—attempts to balance
the precision and recall scores at the level of
alignment links (Och and Ney, 2000). Other met-
rics assess the impact of alignments externally,
e.g., different alignments are tested by comparing
the corresponding MT outputs using automated
evaluation metrics (e.g., BLEU (Papineni et al.,
2002) or METEOR (Banerjee and Lavie, 2005)).
However, these studies showed that AER and
BLEU do not correlate well (Callison-Burch et al.,
2004; Goutte et al., 2004; Ittycheriah and Roukos,
2005). Despite significant AER improvements
achieved by several researchers, the improvements
in BLEU scores are insignificant or, at best, small.

This paper demonstrates the difficulty in assess-
ing whether alignment quality makes a difference
in MT performance. We describe the impact of
certain alignment characteristics on MT perfor-
mance but also identify several alignment-related
factors that impact MT performance regardless of
the quality of the initial alignments. In so doing,
we begin to answer long-standing questions about
the value of alignment in the context of MT.

We first evaluate 5 different word alignments
intrinsically, using: (1) community-standard
metrics—precision, recall and AER; and (2) a
new measure called consistent phrase error rate
(CPER). Next, we observe the impact of differ-
ent alignments on MT performance. We present
BLEU scores on a phrase-based MT system,
Pharaoh (Koehn, 2004), using five different align-
ments to extract phrases. We investigate the im-
pact of different settings for phrase extraction, lex-
ical weighting, maximum phrase length and train-
ing data. Finally, we present a quantitative analy-
sis of which phrases are chosen during the actual
decoding process and show how the distribution of
the phrases differ from one alignment into another.

Our experiments show that precision-oriented
alignments yield better phrases for MT than recall-
oriented alignments. Specifically, they cover a
higher percentage of our test sets and result in
fewer untranslated words and selection of longer
phrases during decoding.

The next section describes work related to our
alignment evaluation approach. Following this
we outline different intrinsic evaluation measures
of alignment and we propose a new measure to
evaluate word alignments within phrase-based MT
framework. We then present several experiments
to measure the impact of different word align-
ments on a phrase-based MT system, and inves-
tigate how different alignments change the phrase
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selection in the same MT system.

2 Related Work

Starting with the IBM models (Brown et al.,
1993), researchers have developed various statis-
tical word alignment systems based on different
models, such as hidden Markov models (HMM)
(Vogel et al., 1996), log-linear models (Och and
Ney, 2003), and similarity-based heuristic meth-
ods (Melamed, 2000). These methods are un-
supervised, i.e., the only input is large paral-
lel corpora. In recent years, researchers have
shown that even using a limited amount of manu-
ally aligned data improves word alignment signif-
icantly (Callison-Burch et al., 2004). Supervised
learning techniques, such as perceptron learn-
ing, maximum entropy modeling or maximum
weighted bipartite matching, have been shown to
provide further improvements on word alignments
(Ayan et al., 2005; Moore, 2005; Ittycheriah and
Roukos, 2005; Taskar et al., 2005).

The standard technique for evaluating word
alignments is to represent alignments as a set of
links (i.e., pairs of words) and to compare the gen-
erated alignment against manual alignment of the
same data at the level of links. Manual align-
ments are represented by two sets: Probable (P )
alignments and Sure (S) alignments, where S ⊆
P . Given A,P and S, the most commonly used
metrics—precision (Pr), recall (Rc) and alignment
error rate (AER)—are defined as follows:

Pr =
|A ∩ P |
|A|

Rc =
|A ∩ S|
|S|

AER = 1− |A ∩ S|+ |A ∩ P |
|A|+ |S|

Another approach to evaluating alignments is to
measure their impact on an external application,
e.g., statistical MT. In recent years, phrase-based
systems (Koehn, 2004; Chiang, 2005) have been
shown to outperform word-based MT systems;
therefore, in this paper, we use a publicly-available
phrase-based MT system, Pharaoh (Koehn, 2004),
to investigate the impact of different alignments.

Although it is possible to estimate phrases di-
rectly from a training corpus (Marcu and Wong,
2002), most phrase-based MT systems (Koehn,
2004; Chiang, 2005) start with a word alignment
and extract phrases that are consistent with the
given alignment. Once the consistent phrases are
extracted, they are assigned multiple scores (such

Test
Lang # of # Words Source
Pair Sent’s (en/fl)
en-ch 491 14K/12K NIST MTEval’2002
en-ar 450 13K/11K NIST MTEval’2003

Training
en-ch 107K 4.1M/3.3M FBIS
en-ar 44K 1.4M/1.1M News + Treebank

Table 1: Test and Training Data Used for Experiments

as translation probabilities and lexical weights),
and the decoder’s job is to choose the correct
phrases based on those scores using a log-linear
model.

3 Intrinsic Evaluation of Alignments

Our goal is to compare different alignments and
to investigate how their characteristics affect the
MT systems. We evaluate alignments in terms of
precision, recall, alignment error rate (AER), and
a new measure called consistent phrase error rate
(CPER).

We focus on 5 different alignments obtained by
combining two uni-directional alignments. Each
uni-directional alignment is the result of running
GIZA++ (Och, 2000b) in one of two directions
(source-to-target and vice versa) with default con-
figurations. The combined alignments that are
used in this paper are as follows:

1. Union of both directions (SU),
2. Intersection of both directions (SI),
3. A heuristic based combination technique

called grow-diag-final (SG), which is the
default alignment combination heuristic
employed in Pharaoh (Koehn, 2004),

4-5. Two supervised alignment combination
techniques (SA and SB) using 2 and 4 in-
put alignments as described in (Ayan et
al., 2005).

This paper examines the impact of alignments
according to their orientation toward precision or
recall. Among the five alignments above, SU and
SG are recall-oriented while the other three are
precision-oriented. SB is an improved version of
SA which attempts to increase recall without a sig-
nificant sacrifice in precision.

Manually aligned data from two language pairs
are used in our intrinsic evaluations using the five
combinations above. A summary of the training
and test data is presented in Table 1.

Our gold standard for each language pair is
a manually aligned corpus. English-Chinese an-
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notations distinguish between sure and probable
alignment links, but English-Arabic annotations
do not. The details of how the annotations are
done can be found in (Ayan et al., 2005) and (Itty-
cheriah and Roukos, 2005).

3.1 Precision, Recall and AER
Table 2 presents the precision, recall, and AER for
5 different alignments on 2 language pairs. For
each of these metrics, a different system achieves
the best score – respectively, these are SI, SU, and
SB. SU and SG yield low precision, high recall
alignments. In contrast, SI yields very high pre-
cision but very low recall. SA and SB attempt to
balance these two measures but their precision is
still higher than their recall. Both systems have
nearly the same precision but SB yields signifi-
cantly higher recall than SA.

Align. en-ch en-ar
Sys. Pr Rc AER Pr Rc AER
SU 58.3 84.5 31.6 56.0 84.1 32.8
SG 61.9 82.6 29.7 60.2 83.0 30.2
SI 94.8 53.6 31.2 96.1 57.1 28.4
SA 87.0 74.6 19.5 88.6 71.1 21.1
SB 87.8 80.5 15.9 90.1 76.1 17.5

Table 2: Comparison of 5 Different Alignments using AER
(on English-Chinese and English-Arabic)

3.2 Consistent Phrase Error Rate
In this section, we present a new method, called
consistent phrase error rate (CPER), for evalu-
ating word alignments in the context of phrase-
based MT. The idea is to compare phrases con-
sistent with a given alignment against phrases that
would be consistent with human alignments.

CPER is similar to AER but operates at the
phrase level instead of at the word level. To com-
pute CPER, we define a link in terms of the posi-
tion of its start and end words in the phrases. For
instance, the phrase link (i1, i2, j1, j2) indicates
that the English phrase ei1 , . . . , ei2 and the FL
phrase fj1 , . . . , fj2 are consistent with the given
alignment. Once we generate the set of phrases
PA and PG that are consistent with a given align-
ment A and a manual alignment G, respectively,
we compute precision (Pr), recall (Rc), and CPER
as follows:1

Pr =
|PA ∩ PG|
|PA|

Rc =
|PA ∩ PG|
|PG|

CPER = 1− 2× Pr ×Rc

Pr + Rc

1Note that CPER is equal to 1 - F-score.

Chinese Arabic
Align. CPER-3 CPER-7 CPER-3 CPER-7

SU 63.2 73.3 55.6 67.1
SG 59.5 69.4 52.0 62.6
SI 50.8 69.8 50.7 67.6
SA 40.8 51.6 42.0 54.1
SB 36.8 45.1 36.1 46.6

Table 3: Consistent Phrase Error Rates with Maximum
Phrase Lengths of 3 and 7

CPER penalizes incorrect or missing alignment
links more severely than AER. While comput-
ing AER, an incorrect alignment link reduces the
number of correct alignment links by 1, affecting
precision and recall slightly. Similarly, if there is
a missing link, only the recall is reduced slightly.
However, when computing CPER, an incorrect or
missing alignment link might result in more than
one phrase pair being eliminated from or added to
the set of phrases. Thus, the impact is more severe
on both precision and recall.

Figure 1: Sample phrases that are generated from a human
alignment and an automated alignment: Gray cells show the
alignment links, and rectangles show the possible phrases.

In Figure 1, the first box represents a manual
alignment and the other two represent automated
alignments A. In the case of a missing align-
ment link (Figure 1b), PA includes 9 valid phrases.
For this alignment, AER = 1 − (2 × 2/2 ×
2/3)/(2/2 + 2/3) = 0.2 and CPER = 1− (2×
5/9× 5/6)/(5/9+5/6) = 0.33. In the case of an
incorrect alignment link (Figure 1c), PA includes
only 2 valid phrases, which results in a higher
CPER (1− (2× 2/2× 2/6)/(2/2+2/6) = 0.49)
but a lower AER (1 − (2 × 3/4 × 3/3)/(3/4 +
3/3) = 0.14).

Table 3 presents the CPER values on two dif-
ferent language pairs, using 2 different maximum
phrase lengths. For both maximum phrase lengths,
SA and SB yield the lowest CPER. For all 5
alignments—in both languages—CPER increases
as the length of the phrase increases. For all
alignments except SI, this amount of increase is
nearly the same on both languages. Since SI con-
tains very few alignment points, the number of
generated phrases dramatically increases, yielding
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poor precision and CPER as the maximum phrase
length increases.

4 Evaluating Alignments within MT

We now move from intrinsic measurement to ex-
trinsic measurement using an off-the-shelf phrase-
based MT system Pharaoh (Koehn, 2004). Our
goal is to identify the characteristics of alignments
that change MT behavior and the types of changes
induced by these characteristics.

All MT system components were kept the same
in our experiments except for the component that
generates a phrase table from a given alignment.
We used the corpora presented in Table 1 to train
the MT system. The phrases were scored using
translation probabilities and lexical weights in two
directions and a phrase penalty score. We also use
a language model, a distortion model and a word
penalty feature for MT.

We measure the impact of different alignments
on Pharaoh using three different settings:

1. Different maximum phrase length,
2. Different sizes of training data, and
3. Different lexical weighting.

For maximum phrase length, we used 3 (based
on what was suggested by (Koehn et al., 2003) and
7 (the default maximum phrase length in Pharaoh).

For lexical weighting, we used the original
weighting scheme employed in Pharaoh and a
modified version. We realized that the publicly-
available implementation of Pharaoh computes
the lexical weights only for non-NULL alignment
links. As a consequence, loose phrases contain-
ing NULL-aligned words along their edges receive
the same lexical weighting as tight phrases with-
out NULL-aligned words along the edges. We
therefore adopted a modified weighting scheme
following (Koehn et al., 2003), which incorporates
NULL alignments.

MT output was evaluated using the standard
evaluation metric BLEU (Papineni et al., 2002).2

The parameters of the MT System were opti-
mized for BLEU metric on NIST MTEval’2002
test sets using minimum error rate training (Och,
2003), and the systems were tested on NIST
MTEval’2003 test sets for both languages.

2We used the NIST script (version 11a) for BLEU with
its default settings: case-insensitive matching of n-grams up
to n = 4, and the shortest reference sentence for the brevity
penalty. The words that were not translated during decoding
were deleted from the MT output before running the BLEU
script.

The SRI Language Modeling Toolkit was used
to train a trigram model with modified Kneser-Ney
smoothing on 155M words of English newswire
text, mostly from the Xinhua portion of the Gi-
gaword corpus. During decoding, the number of
English phrases per FL phrase was limited to 100
and phrase distortion was limited to 4.

4.1 BLEU Score Comparison

Table 4 presents the BLEU scores for Pharaoh runs
on Chinese with five different alignments using
different settings for maximum phrase length (3
vs. 7), size of training data (107K vs. 241K), and
lexical weighting (original vs. modified).3

The modified lexical weighting yields huge im-
provements when the alignment leaves several
words unaligned: the BLEU score for SA goes
from 24.26 to 25.31 and the BLEU score for SB

goes from 23.91 to 25.38. In contrast, when the
alignments contain a high number of alignment
links (e.g., SU and SG), modifying lexical weight-
ing does not bring significant improvements be-
cause the number of phrases containing unaligned
words is relatively low. Increasing the phrase
length increases the BLEU scores for all systems
by nearly 0.7 points and increasing the size of the
training data increases the BLEU scores by 1.5-2
points for all systems. For all settings, SU yields
the lowest BLEU scores while SB clearly outper-
forms the others.

Table 5 presents BLEU scores for Pharaoh runs
on 5 different alignments on English-Arabic, using
different settings for lexical weighting and max-
imum phrase lengths.4 Using the original lexi-
cal weighting, SA and SB perform better than the
others while SU and SI yield the worst results.
Modifying the lexical weighting leads to slight re-
ductions in BLEU scores for SU and SG, but im-
proves the scores for the other 3 alignments signif-
icantly. Finally, increasing the maximum phrase
length to 7 leads to additional improvements in
BLEU scores, where SG and SU benefit nearly 2
BLEU points. As in English-Chinese, the worst
BLEU scores are obtained by SU while the best
scores are produced by SB.

As we see from the tables, the relation between
intrinsic alignment measures (AER and CPER)

3We could not run SB on the larger corpus because of the
lack of required inputs.

4Due to lack of additional training data, we could not do
experiments using different sizes of training data on English-
Arabic.
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Original Modified Modified Modified
Alignment Max Phr Len = 3 Max Phr Len=3 Max Phr Len=7 Max Phr Len=3

|Corpus| = 107K |Corpus| = 107K |Corpus| = 107K |Corpus| = 241K
SU 22.56 22.66 23.30 24.40
SG 23.65 23.79 24.48 25.54
SI 23.60 23.97 24.76 26.06
SA 24.26 25.31 25.99 26.92
SB 23.91 25.38 26.14 N/A

Table 4: BLEU Scores on English-Chinese with Different Lexical Weightings, Maximum Phrase Lengths and Training Data

LW=Org LW=Mod LW=Mod
Alignment MPL=3 MPL=3 MPL=7

SU 41.97 41.72 43.50
SG 44.06 43.82 45.78
SI 42.29 42.76 43.88
SA 44.49 45.23 46.06
SB 44.92 45.39 46.66

Table 5: BLEU Scores on English-Arabic with Different
Lexical Weightings and Maximum Phrase Lengths

and the corresponding BLEU scores varies, de-
pending on the language, lexical weighting, maxi-
mum phrase length, and training data size. For ex-
ample, using a modified lexical weighting, the sys-
tems are ranked according to their BLEU scores as
follows: SB, SA, SG, SI, SU—an ordering that dif-
fers from that of AER but is identical to that of
CPER (with a phrase length of 3) for Chinese. On
the other hand, in Arabic, both AER and CPER
provide a slightly different ranking from that of
BLEU, with SG and SI swapping places.

4.2 Tight vs. Loose Phrases
To demonstrate how alignment-related compo-
nents of the MT system might change the trans-
lation quality significantly, we did an additional
experiment to compare different techniques for ex-
tracting phrases from a given alignment. Specifi-
cally, we are comparing two techniques for phrase
extraction:

1. Loose phrases (the original ‘consistent
phrase extraction’ method)

2. Tight phrases (the set of phrases where
the first/last words on each side are forced
to align to some word in the phrase pair)

Using tight phrases penalizes alignments with
many unaligned words, whereas using loose
phrases rewards them. Our goal is to compare
the performance of precision-oriented vs. recall-
oriented alignments when we allow only tight
phrases in the phrase extraction step. To sim-
plify things, we used only 2 alignments: SG, the
best recall-oriented alignment, and SB, the best
precision-oriented alignment. For this experiment,
we used modified lexical weighting and a maxi-
mum phrase length of 7.

Chinese Arabic
Alignment Loose Tight Loose Tight

SG 24.48 23.19 45.78 43.67
SB 26.14 22.68 46.66 40.10

Table 6: BLEU Scores with Loose vs. Tight Phrases

Table 6 presents the BLEU scores for SG and SB

using two different phrase extraction techniques
on English-Chinese and English-Arabic. In both
languages, SB outperforms SG significantly when
loose phrases are used. However, when we use
only tight phrases, the performance of SB gets sig-
nificantly worse (3.5 to 6.5 BLEU-score reduction
in comparison to loose phrases). The performance
of SG also gets worse but the degree of BLEU-
score reduction is less than that of SB. Overall
SG performs better than SB with tight phrases;
for English-Arabic, the difference between the two
systems is more than 3 BLEU points. Note that, as
before, the relation between the alignment mea-
sures and the BLEU scores varies, this time de-
pending on whether loose phrases or tight phrases
are used: both CPER and AER track the BLEU
rankings for loose (but not for tight) phrases.

This suggests that changing alignment-related
components of the system (i.e., phrase extraction
and phrase scoring) influences the overall trans-
lation quality significantly for a particular align-
ment. Therefore, when comparing two align-
ments in the context of a MT system, it is im-
portant to take the alignment characteristics into
account. For instance, alignments with many un-
aligned words are severely penalized when using
tight phrases.

4.3 Untranslated Words
We analyzed the percentage of words left untrans-
lated during decoding. Figure 2 shows the per-
centage of untranslated words in the FL using the
Chinese and Arabic NIST MTEval’2003 test sets.

On English-Chinese data (using all four settings
given in Table 4) SU and SG yield the highest per-
centage of untranslated words while SI produces
the lowest percentage of untranslated words. SA

and SB leave about 2% of the FL words phrases

13



Figure 2: Percentage of untranslated words out of the total
number of FL words

without translating them. Increasing the training
data size reduces the percentage of untranslated
words by nearly half with all five alignments. No
significant impact on untranslated words is ob-
served from modifying the lexical weights and
changing the phrase length.

On English-Arabic data, all alignments result
in higher percentages of untranslated words than
English-Chinese, most likely due to data spar-
sity. As in Chinese-to-English translation, SU

is the worst and SB is the best. SI behaves
quite differently, leaving nearly 7% of the words
untranslated—an indicator of why it produces a
higher BLEU score on Chinese but a lower score
on Arabic compared to other alignments.

4.4 Analysis of Phrase Tables
This section presents several experiments to an-
alyze how different alignments affect the size of
the generated phrase tables, the distribution of the
phrases that are used in decoding, and the cover-
age of the test set with the generated phrase tables.

Size of Phrase Tables The major impact of
using different alignments in a phrase-based MT
system is that each one results in a different phrase
table. Table 7 presents the number of phrases
that are extracted from five alignments using two
different maximum phrase lengths (3 vs. 7) in
two languages, after filtering the phrase table for
MTEval’2003 test set. The size of the phrase table
increases dramatically as the number of links in
the initial alignment gets smaller. As a result, for
both languages, SU and SG yield a much smaller

Chinese Arabic
Alignment MPL=3 MPL=7 MPL=3 MPL=7

SU 106 122 32 38
SG 161 181 48 55
SI 1331 3498 377 984
SA 954 1856 297 594
SB 876 1624 262 486

Table 7: Number of Phrases in the Phrase Table Filtered for
MTEval’2003 Test Sets (in thousands)

phrase table than the other three alignments. As
the maximum phrase length increases, the size of
the phrase table gets bigger for all alignments;
however, the growth of the table is more signifi-
cant for precision-oriented alignments due to the
high number of unaligned words.

Distribution of Phrases To investigate how the
decoder chooses phrases of different lengths, we
analyzed the distribution of the phrases in the fil-
tered phrase table and the phrases that were used
to decode Chinese MTEval’2003 test set.5 For the
remaining experiments in the paper, we use mod-
ified lexical weighting, a maximum phrase length
of 7, and 107K sentence pairs for training.

The top row in Figure 3 shows the distribution
of the phrases generated by the five alignments
(using a maximum phrase length of 7) according
to their length. The “j-i” designators correspond
to the phrase pairs with j FL words and i English
words. For SU and SG, the majority of the phrases
contain only one FL word, and the percentage of
the phrases with more than 2 FL words is less than
18%. For the other three alignments, however, the
distribution of the phrases is almost inverted. For
SI, nearly 62% of the phrases contain more than 3
words on either FL or English side; for SA and SB,
this percentage is around 45-50%.

Given the completely different phrase distribu-
tion, the most obvious question is whether the
longer phrases generated by SI, SA and SB are
actually used in decoding. In order to investigate
this, we did an analysis of the phrases used to de-
code the same test set.

The bottom row of Figure 3 shows the per-
centage of phrases used to decode the Chinese
MTEval’2003 test set. The distribution of the ac-
tual phrases used in decoding is completely the re-
verse of the distribution of the phrases in the en-
tire filtered table. For all five alignments, the ma-
jority of the used phrases is one-to-one (between

5Due to lack of space, we will present results on Chinese-
English only in the rest of this paper but the Arabic-English
results show the same trends.
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Figure 3: Distribution of the phrases in the phrase table
filtered for Chinese MTEval’2003 test set (top row) and the
phrases used in decoding the same test set (bottom row) ac-
cording to their lengths

50-65% of the total number of phrases used in de-
coding). SI, SA and SB use the other phrase pairs
(particularly 1-to-2 phrases) more than SU and SG.

Note that SI, SA and SB use only a small portion
of the phrases with more than 3 words although the
majority of the phrase table contains phrases with
more than 3 words on one side. It is surprising
that the inclusion of phrase pairs with more than
3 words in the search space increases the BLEU
score although the majority of the phrases used in
decoding is mostly one-to-one.

Length of the Phrases used in Decoding We
also investigated the number and length of phrases
that are used to decode the given test set for dif-
ferent alignments. Table 8 presents the average
number of English and FL words in the phrases
used in decoding Chinese MTEval’2003 test set.
The decoder uses fewer phrases with SI, SA and
SB than for the other two, thus yielding a higher
number of FL words per phrase. The number of
English words per phrase is also higher for these
three systems than the other two.

Coverage of the Test Set Finally, we examine
the coverage of a test set using phrases of a spe-
cific length in the phrase table. Table 9 presents

Alignment |Eng| |FL|
SU 1.39 1.28
SG 1.45 1.33
SI 1.51 1.55
SA 1.54 1.55
SB 1.56 1.52

Table 8: The average length of the phrases that are used in
decoding Chinese MTEval’2003 test set

the coverage of the Chinese MTEval’2003 test set
(source side) using only phrases of a particular
length (from 1 to 7). For this experiment, we as-
sume that a word in the test set is covered if it is
part of a phrase pair that exists in the phrase table
(if a word is part of multiple phrases, it is counted
only once). Not surprisingly, using only phrases
with one FL word, more than 90% of the test set
can be covered for all 5 alignments. As the length
of the phrases increases, the coverage of the test
set decreases. For instance, using phrases with 5
FL words results in less than 5% coverage of the
test set.

Phrase Length (FL)
A 1 2 3 4 5 6 7
SU 92.2 59.5 21.4 6.7 1.3 0.4 0.1
SG 95.5 64.4 24.9 7.4 1.6 0.5 0.3
SI 97.8 75.8 38.0 13.8 4.6 1.9 1.2
SA 97.3 75.3 36.1 12.5 3.8 1.5 0.8
SB 97.5 74.8 35.7 12.4 4.2 1.8 0.9

Table 9: Coverage of Chinese MTEval’2003 Test Set Using
Phrases with a Specific Length on FL side (in percentages)

Table 9 reveals that the coverage of the test set
is higher for precision-oriented alignments than
recall-oriented alignments for all different lengths
of the phrases. For instance, SI, SA, and SB cover
nearly 75% of the corpus using only phrases with
2 FL words, and nearly 36% of the corpus using
phrases with 3 FL words. This suggests that recall-
oriented alignments fail to catch a significant num-
ber of phrases that would be useful to decode this
test set, and precision-oriented alignments would
yield potentially more useful phrases.

Since precision-oriented alignments make a
higher number of longer phrases available to the
decoder (based on the coverage of phrases pre-
sented in Table 9), they are used more during
decoding. Consequently, the major difference
between the alignments is the coverage of the
phrases extracted from different alignments. The
more the phrase table covers the test set, the more
the longer phrases are used during decoding, and
precision-oriented alignments are better at gener-
ating high-coverage phrases than recall-oriented
alignments.
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5 Conclusions and Future Work

This paper investigated how different alignments
change the behavior of phrase-based MT. We
showed that AER is a poor indicator of MT
performance because it penalizes incorrect links
less than is reflected in the corresponding phrase-
based MT. During phrase-based MT, an incorrect
alignment link might prevent extraction of several
phrases, but the number of phrases affected by that
link depends on the context.

We designed CPER, a new phrase-oriented met-
ric that is more informative than AER when the
alignments are used in a phrase-based MT system
because it is an indicator of how the set of phrases
differ from one alignment to the next according to
a pre-specified maximum phrase length.

Even with refined evaluation metrics (including
CPER), we found it difficult to assess the impact
of alignment on MT performance because word
alignment is not the only factor that affects the
choice of the correct words (or phrases) during
decoding. We empirically showed that different
phrase extraction techniques result in better MT
output for certain alignments but the MT perfor-
mance gets worse for other alignments. Simi-
larly, adjusting the scores assigned to the phrases
makes a significant difference for certain align-
ments while it has no impact on some others. Con-
sequently, when comparing two BLEU scores, it is
difficult to determine whether the alignments are
bad to start with or the set of extracted phrases is
bad or the phrases extracted from the alignments
are assigned bad scores. This suggests that finding
a direct correlation between AER (or even CPER)
and the automated MT metrics is infeasible.

We demonstrated that recall-oriented alignment
methods yield smaller phrase tables and a higher
number of untranslated words when compared to
precision-oriented methods. We also showed that
the phrases extracted from recall-oriented align-
ments cover a smaller portion of a given test set
when compared to precision-oriented alignments.
Finally, we showed that the decoder with recall-
oriented alignments uses shorter phrases more fre-
quently as a result of unavailability of longer
phrases that are extracted.

Future work will involve an investigation into
how the phrase extraction and scoring should be
adjusted to take the nature of the alignment into
account and how the phrase-table size might be re-
duced without sacrificing the MT output quality.
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Abstract
We present a method for unsupervised
topic modelling which adapts methods
used in document classification (Blei et
al., 2003; Griffiths and Steyvers, 2004) to
unsegmented multi-party discourse tran-
scripts. We show how Bayesian infer-
ence in this generative model can be
used to simultaneously address the prob-
lems of topic segmentation and topic
identification: automatically segmenting
multi-party meetings into topically co-
herent segments with performance which
compares well with previous unsuper-
vised segmentation-only methods (Galley
et al., 2003) while simultaneously extract-
ing topics which rate highly when assessed
for coherence by human judges. We also
show that this method appears robust in
the face of off-topic dialogue and speech
recognition errors.

1 Introduction

Topic segmentation – division of a text or dis-
course into topically coherent segments – and
topic identification – classification of those seg-
ments by subject matter – are joint problems. Both
are necessary steps in automatic indexing, retrieval
and summarization from large datasets, whether
spoken or written. Both have received significant
attention in the past (see Section 2), but most ap-
proaches have been targeted at either text or mono-
logue, and most address only one of the two issues
(usually for the very good reason that the dataset
itself provides the other, for example by the ex-
plicit separation of individual documents or news
stories in a collection). Spoken multi-party meet-
ings pose a difficult problem: firstly, neither the

segmentation nor the discussed topics can be taken
as given; secondly, the discourse is by nature less
tidily structured and less restricted in domain; and
thirdly, speech recognition results have unavoid-
ably high levels of error due to the noisy multi-
speaker environment.

In this paper we present a method for unsuper-
vised topic modelling which allows us to approach
both problems simultaneously, inferring a set of
topics while providing a segmentation into topi-
cally coherent segments. We show that this model
can address these problems over multi-party dis-
course transcripts, providing good segmentation
performance on a corpus of meetings (compara-
ble to the best previous unsupervised method that
we are aware of (Galley et al., 2003)), while also
inferring a set of topics rated as semantically co-
herent by human judges. We then show that its
segmentation performance appears relatively ro-
bust to speech recognition errors, giving us con-
fidence that it can be successfully applied in a real
speech-processing system.

The plan of the paper is as follows. Section 2
below briefly discusses previous approaches to the
identification and segmentation problems. Sec-
tion 3 then describes the model we use here. Sec-
tion 4 then details our experiments and results, and
conclusions are drawn in Section 5.

2 Background and Related Work

In this paper we are interested in spoken discourse,
and in particular multi-party human-human meet-
ings. Our overall aim is to produce information
which can be used to summarize, browse and/or
retrieve the information contained in meetings.
User studies (Lisowska et al., 2004; Banerjee et
al., 2005) have shown that topic information is im-
portant here: people are likely to want to know
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which topics were discussed in a particular meet-
ing, as well as have access to the discussion on
particular topics in which they are interested. Of
course, this requires both identification of the top-
ics discussed, and segmentation into the periods of
topically related discussion.

Work on automatic topic segmentation of text
and monologue has been prolific, with a variety of
approaches used. (Hearst, 1994) uses a measure of
lexical cohesion between adjoining paragraphs in
text; (Reynar, 1999) and (Beeferman et al., 1999)
combine a variety of features such as statistical
language modelling, cue phrases, discourse infor-
mation and the presence of pronouns or named
entities to segment broadcast news; (Maskey and
Hirschberg, 2003) use entirely non-lexical fea-
tures. Recent advances have used generative mod-
els, allowing lexical models of the topics them-
selves to be built while segmenting (Imai et al.,
1997; Barzilay and Lee, 2004), and we take a sim-
ilar approach here, although with some important
differences detailed below.

Turning to multi-party discourse and meetings,
however, most previous work on automatic seg-
mentation (Reiter and Rigoll, 2004; Dielmann
and Renals, 2004; Banerjee and Rudnicky, 2004),
treats segments as representing meeting phases or
events which characterize the type or style of dis-
course taking place (presentation, briefing, discus-
sion etc.), rather than the topic or subject matter.
While we expect some correlation between these
two types of segmentation, they are clearly differ-
ent problems. However, one comparable study is
described in (Galley et al., 2003). Here, a lex-
ical cohesion approach was used to develop an
essentially unsupervised segmentation tool (LC-
Seg) which was applied to both text and meet-
ing transcripts, giving performance better than that
achieved by applying text/monologue-based tech-
niques (see Section 4 below), and we take this
as our benchmark for the segmentation problem.
Note that they improved their accuracy by com-
bining the unsupervised output with discourse fea-
tures in a supervised classifier – while we do not
attempt a similar comparison here, we expect a
similar technique would yield similar segmenta-
tion improvements.

In contrast, we take a generative approach,
modelling the text as being generated by a se-
quence of mixtures of underlying topics. The ap-
proach is unsupervised, allowing both segmenta-

tion and topic extraction from unlabelled data.

3 Learning topics and segments

We specify our model to address the problem of
topic segmentation: attempting to break the dis-
course into discrete segments in which a particu-
lar set of topics are discussed. Assume we have a
corpus of U utterances, ordered in sequence. The
uth utterance consists of Nu words, chosen from
a vocabulary of size W . The set of words asso-
ciated with the uth utterance are denoted wu, and
indexed as wu,i. The entire corpus is represented
by w.

Following previous work on probabilistic topic
models (Hofmann, 1999; Blei et al., 2003; Grif-
fiths and Steyvers, 2004), we model each utterance
as being generated from a particular distribution
over topics, where each topic is a probability dis-
tribution over words. The utterances are ordered
sequentially, and we assume a Markov structure on
the distribution over topics: with high probability,
the distribution for utterance u is the same as for
utterance u−1; otherwise, we sample a new distri-
bution over topics. This pattern of dependency is
produced by associating a binary switching vari-
able with each utterance, indicating whether its
topic is the same as that of the previous utterance.
The joint states of all the switching variables de-
fine segments that should be semantically coher-
ent, because their words are generated by the same
topic vector. We will first describe this generative
model in more detail, and then discuss inference
in this model.

3.1 A hierarchical Bayesian model
We are interested in where changes occur in the
set of topics discussed in these utterances. To this
end, let cu indicate whether a change in the distri-
bution over topics occurs at the uth utterance and
let P (cu = 1) = π (where π thus defines the ex-
pected number of segments). The distribution over
topics associated with the uth utterance will be de-
noted θ(u), and is a multinomial distribution over
T topics, with the probability of topic t being θ

(u)
t .

If cu = 0, then θ(u) = θ(u−1). Otherwise, θ(u)

is drawn from a symmetric Dirichlet distribution
with parameter α. The distribution is thus:

P (θ(u)|cu, θ(u−1)) =

(
δ(θ(u), θ(u−1)) cu = 0

Γ(Tα)

Γ(α)T

QT
t=1(θ

(u)
t )α−1 cu = 1
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Figure 1: Graphical models indicating the dependencies among variables in (a) the topic segmentation
model and (b) the hidden Markov model used as a comparison.

where δ(·, ·) is the Dirac delta function, and Γ(·)
is the generalized factorial function. This dis-
tribution is not well-defined when u = 1, so
we set c1 = 1 and draw θ(1) from a symmetric
Dirichlet(α) distribution accordingly.

As in (Hofmann, 1999; Blei et al., 2003; Grif-
fiths and Steyvers, 2004), each topic Tj is a multi-
nomial distribution φ(j) over words, and the prob-
ability of the word w under that topic is φ

(j)
w . The

uth utterance is generated by sampling a topic as-
signment zu,i for each word i in that utterance with
P (zu,i = t|θ(u)) = θ

(u)
t , and then sampling a

word wu,i from φ(j), with P (wu,i = w|zu,i =
j, φ(j)) = φ

(j)
w . If we assume that π is generated

from a symmetric Beta(γ) distribution, and each
φ(j) is generated from a symmetric Dirichlet(β)
distribution, we obtain a joint distribution over all
of these variables with the dependency structure
shown in Figure 1A.

3.2 Inference

Assessing the posterior probability distribution
over topic changes c given a corpus w can be sim-
plified by integrating out the parameters θ, φ, and
π. According to Bayes rule we have:

P (z, c|w) =
P (w|z)P (z|c)P (c)P
z,c P (w|z)P (z|c)P (c)

(1)

Evaluating P (c) requires integrating over π.
Specifically, we have:

P (c) =
R 1

0
P (c|π)P (π) dπ

= Γ(2γ)

Γ(γ)2
Γ(n1+γ)Γ(n0+γ)

Γ(N+2γ)

(2)

where n1 is the number of utterances for which
cu = 1, and n0 is the number of utterances for
which cu = 0. Computing P (w|z) proceeds along
similar lines:

P (w|z) =
R
∆T

W
P (w|z, φ)P (φ) dφ

=
“

Γ(Wβ)

Γ(β)W

”T QT
t=1

QW
w=1 Γ(n

(t)
w +β)

Γ(n
(t)
· +Wβ)

(3)

where ∆T
W is the T -dimensional cross-product of

the multinomial simplex on W points, n
(t)
w is the

number of times word w is assigned to topic t in
z, and n

(t)
· is the total number of words assigned

to topic t in z. To evaluate P (z|c) we have:

P (z|c) =

Z
∆U

T

P (z|θ)P (θ|c) dθ (4)

The fact that the cu variables effectively divide
the sequence of utterances into segments that use
the same distribution over topics simplifies solving
the integral and we obtain:

P (z|c) =

„
Γ(Tα)

Γ(α)T

«n1 Y
u∈U1

QT
t=1 Γ(n

(Su)
t + α)

Γ(n
(Su)
· + Tα)

. (5)
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P (cu|c−u, z,w) ∝

8>>><>>>:
QT

t=1 Γ(n
(S0

u)
t +α)

Γ(n
(S0

u)
· +Tα)

n0+γ
N+2γ

cu = 0

Γ(Tα)

Γ(α)T

QT
t=1 Γ(n

(S1
u−1)

t +α)

Γ(n
(S1

u−1)
· +Tα)

QT
t=1 Γ(n

(S1
u)

t +α)

Γ(n
(S1

u)
· +Tα)

n1+γ
N+2γ

cu = 1

(7)

where U1 = {u|cu = 1}, U0 = {u|cu = 0}, Su

denotes the set of utterances that share the same
topic distribution (i.e. belong to the same segment)
as u, and n

(Su)
t is the number of times topic t ap-

pears in the segment Su (i.e. in the values of zu′

corresponding for u′ ∈ Su).
Equations 2, 3, and 5 allow us to evaluate the

numerator of the expression in Equation 1. How-
ever, computing the denominator is intractable.
Consequently, we sample from the posterior dis-
tribution P (z, c|w) using Markov chain Monte
Carlo (MCMC) (Gilks et al., 1996). We use Gibbs
sampling, drawing the topic assignment for each
word, zu,i, conditioned on all other topic assign-
ments, z−(u,i), all topic change indicators, c, and
all words, w; and then drawing the topic change
indicator for each utterance, cu, conditioned on all
other topic change indicators, c−u, all topic as-
signments z, and all words w.

The conditional probabilities we need can be
derived directly from Equations 2, 3, and 5. The
conditional probability of zu,i indicates the prob-
ability that wu,i should be assigned to a particu-
lar topic, given other assignments, the current seg-
mentation, and the words in the utterances. Can-
celling constant terms, we obtain:

P (zu,i|z−(u,i), c,w) =
n

(t)
wu,i + β

n
(t)
· + Wβ

n
(Su)
zu,i + α

n
(Su)
· + Tα

. (6)

where all counts (i.e. the n terms) exclude zu,i.
The conditional probability of cu indicates the
probability that a new segment should start at u.
In sampling cu from this distribution, we are split-
ting or merging segments. Similarly we obtain the
expression in (7), where S1

u is Su for the segmen-
tation when cu = 1, S0

u is Su for the segmentation
when cu = 0, and all counts (e.g. n1) exclude cu.
For this paper, we fixed α, β and γ at 0.01.

Our algorithm is related to (Barzilay and Lee,
2004)’s approach to text segmentation, which uses
a hidden Markov model (HMM) to model segmen-
tation and topic inference for text using a bigram
representation in restricted domains. Due to the

adaptive combination of different topics our algo-
rithm can be expected to generalize well to larger
domains. It also relates to earlier work by (Blei
and Moreno, 2001) that uses a topic representation
but also does not allow adaptively combining dif-
ferent topics. However, while HMM approaches
allow a segmentation of the data by topic, they
do not allow adaptively combining different topics
into segments: while a new segment can be mod-
elled as being identical to a topic that has already
been observed, it can not be modelled as a com-
bination of the previously observed topics.1 Note
that while (Imai et al., 1997)’s HMM approach al-
lows topic mixtures, it requires supervision with
hand-labelled topics.

In our experiments we therefore compared our
results with those obtained by a similar but simpler
10 state HMM, using a similar Gibbs sampling al-
gorithm. The key difference between the two mod-
els is shown in Figure 1. In the HMM, all variation
in the content of utterances is modelled at a single
level, with each segment having a distribution over
words corresponding to a single state. The hierar-
chical structure of our topic segmentation model
allows variation in content to be expressed at two
levels, with each segment being produced from a
linear combination of the distributions associated
with each topic. Consequently, our model can of-
ten capture the content of a sequence of words by
postulating a single segment with a novel distribu-
tion over topics, while the HMM has to frequently
switch between states.

4 Experiments

4.1 Experiment 0: Simulated data

To analyze the properties of this algorithm we first
applied it to a simulated dataset: a sequence of
10,000 words chosen from a vocabulary of 25.
Each segment of 100 successive words had a con-

1Say that a particular corpus leads us to infer topics corre-
sponding to “speech recognition” and “discourse understand-
ing”. A single discussion concerning speech recognition for
discourse understanding could be modelled by our algorithm
as a single segment with a suitable weighted mixture of the
two topics; a HMM approach would tend to split it into mul-
tiple segments (or require a specific topic for this segment).
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Figure 2: Simulated data: A) inferred topics; B)
segmentation probabilities; C) HMM version.

stant topic distribution (with distributions for dif-
ferent segments drawn from a Dirichlet distribu-
tion with β = 0.1), and each subsequence of 10
words was taken to be one utterance. The topic-
word assignments were chosen such that when the
vocabulary is aligned in a 5×5 grid the topics were
binary bars. The inference algorithm was then run
for 200,000 iterations, with samples collected after
every 1,000 iterations to minimize autocorrelation.
Figure 2 shows the inferred topic-word distribu-
tions and segment boundaries, which correspond
well with those used to generate the data.

4.2 Experiment 1: The ICSI corpus

We applied the algorithm to the ICSI meeting
corpus transcripts (Janin et al., 2003), consist-
ing of manual transcriptions of 75 meetings. For
evaluation, we use (Galley et al., 2003)’s set of
human-annotated segmentations, which covers a
sub-portion of 25 meetings and takes a relatively
coarse-grained approach to topic with an average
of 5-6 topic segments per meeting. Note that
these segmentations were not used in training the
model: topic inference and segmentation was un-
supervised, with the human annotations used only
to provide some knowledge of the overall segmen-
tation density and to evaluate performance.

The transcripts from all 75 meetings were lin-
earized by utterance start time and merged into a
single dataset that contained 607,263 word tokens.
We sampled for 200,000 iterations of MCMC, tak-
ing samples every 1,000 iterations, and then aver-
aged the sampled cu variables over the last 100
samples to derive an estimate for the posterior
probability of a segmentation boundary at each ut-
terance start. This probability was then thresh-
olded to derive a final segmentation which was
compared to the manual annotations. More pre-
cisely, we apply a small amount of smoothing
(Gaussian kernel convolution) and take the mid-

points of any areas above a set threshold to be the
segment boundaries. Varying this threshold allows
us to segment the discourse in a more or less fine-
grained way (and we anticipate that this could be
user-settable in a meeting browsing application).
If the correct number of segments is known for
a meeting, this can be used directly to determine
the optimum threshold, increasing performance; if
not, we must set it at a level which corresponds to
the desired general level of granularity. For each
set of annotations, we therefore performed two
sets of segmentations: one in which the threshold
was set for each meeting to give the known gold-
standard number of segments, and one in which
the threshold was set on a separate development
set to give the overall corpus-wide average number
of segments, and held constant for all test meet-
ings.2 This also allows us to compare our results
with those of (Galley et al., 2003), who apply a
similar threshold to their lexical cohesion func-
tion and give corresponding results produced with
known/unknown numbers of segments.

Segmentation We assessed segmentation per-
formance using the Pk and WindowDiff (WD) er-
ror measures proposed by (Beeferman et al., 1999)
and (Pevzner and Hearst, 2002) respectively; both
intuitively provide a measure of the probability
that two points drawn from the meeting will be
incorrectly separated by a hypothesized segment
boundary – thus, lower Pk and WD figures indi-
cate better agreement with the human-annotated
results.3 For the numbers of segments we are deal-
ing with, a baseline of segmenting the discourse
into equal-length segments gives both Pk and WD

about 50%. In order to investigate the effect of the
number of underlying topics T , we tested mod-
els using 2, 5, 10 and 20 topics. We then com-
pared performance with (Galley et al., 2003)’s LC-
Seg tool, and with a 10-state HMM model as de-
scribed above. Results are shown in Table 1, aver-
aged over the 25 test meetings.

Results show that our model significantly out-
performs the HMM equivalent – because the
HMM cannot combine different topics, it places
a lot of segmentation boundaries, resulting in in-
ferior performance. Using stemming and a bigram

2The development set was formed from the other meet-
ings in the same ICSI subject areas as the annotated test meet-
ings.

3WD takes into account the likely number of incorrectly
separating hypothesized boundaries; Pk only a binary cor-
rect/incorrect classification.
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Figure 3: Results from the ICSI corpus: A) the words most indicative for each topic; B) Probability of a
segment boundary, compared with human segmentation, for an arbitrary subset of the data; C) Receiver-
operator characteristic (ROC) curves for predicting human segmentation, and conditional probabilities
of placing a boundary at an offset from a human boundary; D) subjective topic coherence ratings.

Number of topics T
Model 2 5 10 20 HMM LCSeg

Pk .284 .297 .329 .290 .375 .319

known unknown
Model Pk WD Pk WD

T = 10 .289 .329 .329 .353
LCSeg .264 .294 .319 .359

Table 1: Results on the ICSI meeting corpus.

representation, however, might improve its perfor-
mance (Barzilay and Lee, 2004), although simi-
lar benefits might equally apply to our model. It
also performs comparably to (Galley et al., 2003)’s
unsupervised performance (exceeding it for some
settings of T ). It does not perform as well as their
hybrid supervised system, which combined LC-
Seg with supervised learning over discourse fea-
tures (Pk = .23); but we expect that a similar ap-
proach would be possible here, combining our seg-
mentation probabilities with other discourse-based
features in a supervised way for improved per-
formance. Interestingly, segmentation quality, at
least at this relatively coarse-grained level, seems
hardly affected by the overall number of topics T .

Figure 3B shows an example for one meeting of
how the inferred topic segmentation probabilities
at each utterance compare with the gold-standard

segment boundaries. Figure 3C illustrates the per-
formance difference between our model and the
HMM equivalent at an example segment bound-
ary: for this example, the HMM model gives al-
most no discrimination.

Identification Figure 3A shows the most indica-
tive words for a subset of the topics inferred at the
last iteration. Encouragingly, most topics seem
intuitively to reflect the subjects we know were
discussed in the ICSI meetings – the majority of
them (67 meetings) are taken from the weekly
meetings of 3 distinct research groups, where dis-
cussions centered around speech recognition tech-
niques (topics 2, 5), meeting recording, annotation
and hardware setup (topics 6, 3, 1, 8), robust lan-
guage processing (topic 7). Others reflect general
classes of words which are independent of subject
matter (topic 4).

To compare the quality of these inferred topics
we performed an experiment in which 7 human
observers rated (on a scale of 1 to 9) the seman-
tic coherence of 50 lists of 10 words each. Of
these lists, 40 contained the most indicative words
for each of the 10 topics from different models:
the topic segmentation model; a topic model that
had the same number of segments but with fixed
evenly spread segmentation boundaries; an equiv-
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alent with randomly placed segmentation bound-
aries; and the HMM. The other 10 lists contained
random samples of 10 words from the other 40
lists. Results are shown in Figure 3D, with the
topic segmentation model producing the most co-
herent topics and the HMM model and random
words scoring less well. Interestingly, using an
even distribution of boundaries but allowing the
topic model to infer topics performs similarly well
with even segmentation, but badly with random
segmentation – topic quality is thus not very sus-
ceptible to the precise segmentation of the text,
but does require some reasonable approximation
(on ICSI data, an even segmentation gives a Pk of
about 50%, while random segmentations can do
much worse). However, note that the full topic
segmentation model is able to identify meaningful
segmentation boundaries at the same time as infer-
ring topics.

4.3 Experiment 2: Dialogue robustness
Meetings often include off-topic dialogue, in par-
ticular at the beginning and end, where infor-
mal chat and meta-dialogue are common. Gal-
ley et al. (2003) annotated these sections explic-
itly, together with the ICSI “digit-task” sections
(participants read sequences of digits to provide
data for speech recognition experiments), and re-
moved them from their data, as did we in Ex-
periment 1 above. While this seems reasonable
for the purposes of investigating ideal algorithm
performance, in real situations we will be faced
with such off-topic dialogue, and would obviously
prefer segmentation performance not to be badly
affected (and ideally, enabling segmentation of
the off-topic sections from the meeting proper).
One might suspect that an unsupervised genera-
tive model such as ours might not be robust in the
presence of numerous off-topic words, as spuri-
ous topics might be inferred and used in the mix-
ture model throughout. In order to investigate this,
we therefore also tested on the full dataset with-
out removing these sections (806,026 word tokens
in total), and added the section boundaries as fur-
ther desired gold-standard segmentation bound-
aries. Table 2 shows the results: performance is
not significantly affected, and again is very simi-
lar for both our model and LCSeg.

4.4 Experiment 3: Speech recognition
The experiments so far have all used manual word
transcriptions. Of course, in real meeting pro-

known unknown
Experiment Model Pk WD Pk WD

2 T = 10 .296 .342 .325 .366
(off-topic data) LCSeg .307 .338 .322 .386

3 T = 10 .266 .306 .291 .331
(ASR data) LCSeg .289 .339 .378 .472

Table 2: Results for Experiments 2 & 3: robust-
ness to off-topic and ASR data.

cessing systems, we will have to deal with speech
recognition (ASR) errors. We therefore also tested
on 1-best ASR output provided by ICSI, and re-
sults are shown in Table 2. The “off-topic” and
“digits” sections were removed in this test, so re-
sults are comparable with Experiment 1. Segmen-
tation accuracy seems extremely robust; interest-
ingly, LCSeg’s results are less robust (the drop in
performance is higher), especially when the num-
ber of segments in a meeting is unknown.

It is surprising to notice that the segmentation
accuracy in this experiment was actually slightly
higher than achieved in Experiment 1 (especially
given that ASR word error rates were generally
above 20%). This may simply be a smoothing ef-
fect: differences in vocabulary and its distribution
can effectively change the prior towards sparsity
instantiated in the Dirichlet distributions.

5 Summary and Future Work

We have presented an unsupervised generative
model which allows topic segmentation and iden-
tification from unlabelled data. Performance on
the ICSI corpus of multi-party meetings is compa-
rable with the previous unsupervised segmentation
results, and the extracted topics are rated well by
human judges. Segmentation accuracy is robust
in the face of noise, both in the form of off-topic
discussion and speech recognition hypotheses.

Future Work Spoken discourse exhibits several
features not derived from the words themselves
but which seem intuitively useful for segmenta-
tion, e.g. speaker changes, speaker identities and
roles, silences, overlaps, prosody and so on. As
shown by (Galley et al., 2003), some of these fea-
tures can be combined with lexical information to
improve segmentation performance (although in a
supervised manner), and (Maskey and Hirschberg,
2003) show some success in broadcast news seg-
mentation using only these kinds of non-lexical
features. We are currently investigating the addi-
tion of non-lexical features as observed outputs in
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our unsupervised generative model.
We are also investigating improvements into the

lexical model as presented here, firstly via simple
techniques such as word stemming and replace-
ment of named entities by generic class tokens
(Barzilay and Lee, 2004); but also via the use of
multiple ASR hypotheses by incorporating word
confusion networks into our model. We expect
that this will allow improved segmentation and
identification performance with ASR data.
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Abstract

We consider the task of unsupervised lec-
ture segmentation. We formalize segmen-
tation as a graph-partitioning task that op-
timizes the normalized cut criterion. Our
approach moves beyond localized com-
parisons and takes into account long-
range cohesion dependencies. Our results
demonstrate that global analysis improves
the segmentation accuracy and is robust in
the presence of speech recognition errors.

1 Introduction

The development of computational models of text
structure is a central concern in natural language
processing. Text segmentation is an important in-
stance of such work. The task is to partition a
text into a linear sequence of topically coherent
segments and thereby induce a content structure
of the text. The applications of the derived rep-
resentation are broad, encompassing information
retrieval, question-answering and summarization.

Not surprisingly, text segmentation has been ex-
tensively investigated over the last decade. Fol-
lowing the first unsupervised segmentation ap-
proach by Hearst (1994), most algorithms assume
that variations in lexical distribution indicate topic
changes. When documents exhibit sharp varia-
tions in lexical distribution, these algorithms are
likely to detect segment boundaries accurately.
For example, most algorithms achieve high per-
formance on synthetic collections, generated by
concatenation of random text blocks (Choi, 2000).
The difficulty arises, however, when transitions
between topics are smooth and distributional vari-
ations are subtle. This is evident in the perfor-
mance of existing unsupervised algorithms on less

structured datasets, such as spoken meeting tran-
scripts (Galley et al., 2003). Therefore, a more
refined analysis of lexical distribution is needed.

Our work addresses this challenge by casting
text segmentation in a graph-theoretic framework.
We abstract a text into a weighted undirected
graph, where the nodes of the graph correspond
to sentences and edge weights represent the pair-
wise sentence similarity. In this framework, text
segmentation corresponds to a graph partitioning
that optimizes thenormalized-cut criterion (Shi
and Malik, 2000). This criterion measures both the
similarity within each partition and the dissimilar-
ity across different partitions. Thus, our approach
moves beyond localized comparisons and takes
into account long-range changes in lexical distri-
bution. Our key hypothesis is that global analysis
yields more accurate segmentation results than lo-
cal models.

We tested our algorithm on a corpus of spo-
ken lectures. Segmentation in this domain is chal-
lenging in several respects. Being less structured
than written text, lecture material exhibits digres-
sions, disfluencies, and other artifacts of sponta-
neous communication. In addition, the output of
speech recognizers is fraught with high word er-
ror rates due to specialized technical vocabulary
and lack of in-domain spoken data for training.
Finally, pedagogical considerations call for fluent
transitions between different topics in a lecture,
further complicating the segmentation task.

Our experimental results confirm our hypothe-
sis: considering long-distance lexical dependen-
cies yields substantial gains in segmentation per-
formance. Our graph-theoretic approach com-
pares favorably to state-of-the-art segmentation al-
gorithms and attains results close to the range of
human agreement scores. Another attractive prop-
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erty of the algorithm is its robustness to noise: the
accuracy of our algorithm does not deteriorate sig-
nificantly when applied to speech recognition out-
put.

2 Previous Work

Most unsupervised algorithms assume that frag-
ments of text with homogeneous lexical distribu-
tion correspond to topically coherent segments.
Previous research has analyzed various facets of
lexical distribution, including lexical weighting,
similarity computation, and smoothing (Hearst,
1994; Utiyama and Isahara, 2001; Choi, 2000;
Reynar, 1998; Kehagias et al., 2003; Ji and Zha,
2003).

The focus of our work, however, is on an or-
thogonal yet fundamental aspect of this analysis
— the impact of long-range cohesion dependen-
cies on segmentation performance. In contrast to
previous approaches, the homogeneity of a seg-
ment is determined not only by the similarity of its
words, but also by their relation to words in other
segments of the text. We show that optimizing our
global objective enables us to detect subtle topical
changes.

Graph-Theoretic Approaches in Vision Seg-
mentation Our work is inspired by minimum-cut-
based segmentation algorithms developed for im-
age analysis. Shi and Malik (2000) introduced
the normalized-cut criterion and demonstrated its
practical benefits for segmenting static images.

Our method, however, is not a simple applica-
tion of the existing approach to a new task. First,
in order to make it work in the new linguistic
framework, we had to redefine the underlying rep-
resentation and introduce a variety of smoothing
and lexical weighting techniques. Second, the
computational techniques for finding the optimal
partitioning are also quite different. Since the min-
imization of the normalized cut isNP -complete
in the general case, researchers in vision have to
approximate this computation. Fortunately, we
can find an exact solution due to the linearity con-
straint on text segmentation.

3 Minimum Cut Framework

Linguistic research has shown that word repeti-
tion in a particular section of a text is a device for
creating thematic cohesion (Halliday and Hasan,
1976), and that changes in the lexical distributions
usually signal topic transitions.

Figure 1: Sentence similarity plot for a Physics
lecture, with vertical lines indicating true segment
boundaries.

Figure 1 illustrates these properties in a lec-
ture transcript from an undergraduate Physics
class. We use the text Dotplotting representation
by (Church, 1993) and plot the cosine similar-
ity scores between every pair of sentences in the
text. The intensity of a point(i, j) on the plot in-
dicates the degree to which thei-th sentence in
the text is similar to thej-th sentence. The true
segment boundaries are denoted by vertical lines.
This similarity plot reveals a block structure where
true boundaries delimit blocks of text with high
inter-sentential similarity. Sentences found in dif-
ferent blocks, on the other hand, tend to exhibit
low similarity.

u1 u2 u3 un

Figure 2: Graph-based Representation of Text

Formalizing the Objective Whereas previous
unsupervised approaches to segmentation rested
on intuitive notions of similarity density, we for-
malize the objective of text segmentation through
cuts on graphs. We aim to jointly maximize the
intra-segmental similarity and minimize the simi-
larity between different segments. In other words,
we want to find the segmentation with a maximally
homogeneous set of segments that are also maxi-
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mally different from each other.
Let G = {V,E} be an undirected, weighted

graph, whereV is the set of nodes correspond-
ing to sentences in the text andE is the set of
weighted edges (See Figure 2). The edge weights,
w(u, v), define a measure of similarity between
pairs of nodesu and v, where higher scores in-
dicate higher similarity. Section 4 provides more
details on graph construction.

We consider the problem of partitioning the
graph into two disjoint sets of nodesA andB. We
aim to minimize the cut, which is defined to be the
sum of the crossing edges between the two sets of
nodes. In other words, we want to split the sen-
tences into two maximally dissimilar classes by
choosingA andB to minimize:

cut(A,B) =
∑

u∈A,v∈B

w(u, v)

However, we need to ensure that the two parti-
tions are not only maximally different from each
other, but also that they are themselves homoge-
neous by accounting for intra-partition node simi-
larity. We formulate this requirement in the frame-
work of normalized cuts (Shi and Malik, 2000),
where the cut value is normalized by the volume
of the corresponding partitions. The volume of the
partition is the sum of its edges to the whole graph:

vol(A) =
∑

u∈A,v∈V

w(u, v)

The normalized cut criterion (Ncut) is then de-
fined as follows:

Ncut(A,B) =
cut(A,B)
vol(A)

+
cut(A,B)
vol(B)

By minimizing this objective we simultane-
ously minimize the similarity across partitions and
maximize the similarity within partitions. This
formulation also allows us to decompose the ob-
jective into a sum of individual terms, and formu-
late a dynamic programming solution to the mul-
tiway cut problem.

This criterion is naturally extended to a k-way
normalized cut:

Ncutk(V ) =
cut(A1, V −A1)

vol(A1)
+ . . .+

cut(Ak, V −Ak)

vol(Ak)

whereA1 . . . Ak form a partition of the graph,
andV −Ak is the set difference between the entire
graph and partitionk.

DecodingPapadimitriou proved that the prob-
lem of minimizing normalized cuts on graphs is
NP -complete (Shi and Malik, 2000). However,
in our case, the multi-way cut is constrained to
preserve the linearity of the segmentation. By seg-
mentation linearity, we mean that all of the nodes
between the leftmost and the rightmost nodes of
a particular partition have to belong to that par-
tition. With this constraint, we formulate a dy-
namic programming algorithm for exactly finding
the minimum normalized multiway cut in polyno-
mial time:

C [i, k] = min
j<k

[
C [i− 1, j] +

cut [Aj,k, V −Aj,k]

vol [Aj,k]

]
(1)

B [i, k] = argmin
j<k

[
C [i− 1, j] +

cut [Aj,k, V −Aj,k]

vol [Aj,k]

]
(2)

s.t.C [0, 1] = 0, C [0, k] =∞, 1 < k ≤ N (3)

B [0, k] = 1, 1 ≤ k ≤ N (4)

C [i, k] is the normalized cut value of the op-
timal segmentation of the firstk sentences intoi
segments. Thei-th segment,Aj,k, begins at node
uj and ends at nodeuk. B [i, k] is the back-pointer
table from which we recover the optimal sequence
of segment boundaries. Equations 3 and 4 capture
respectively the condition that the normalized cut
value of the trivial segmentation of an empty text
into one segment is zero and the constraint that the
first segment starts with the first node.

The time complexity of the dynamic program-
ming algorithm isO(KN2), whereK is the num-
ber of partitions andN is the number of nodes in
the graph or sentences in the transcript.

4 Building the Graph

Clearly, the performance of our model depends
on the underlying representation, the definition of
the pairwise similarity function, and various other
model parameters. In this section we provide fur-
ther details on the graph construction process.

PreprocessingBefore building the graph, we
apply standard text preprocessing techniques to
the text. We stem words with the Porter stem-
mer (Porter, 1980) to alleviate the sparsity of word
counts through stem equivalence classes. We also
remove words matching a prespecified list of stop
words.
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Graph Topology As we noted in the previ-
ous section, the normalized cut criterion considers
long-term similarity relationships between nodes.
This effect is achieved by constructing a fully-
connected graph. However, considering all pair-
wise relations in a long text may be detrimen-
tal to segmentation accuracy. Therefore, we dis-
card edges between sentences exceeding a certain
threshold distance. This reduction in the graph
size also provides us with computational savings.

Similarity Computation In computing pair-
wise sentence similarities, sentences are repre-
sented as vectors of word counts. Cosine sim-
ilarity is commonly used in text segmentation
(Hearst, 1994). To avoid numerical precision
issues when summing a series of very small
scores, we compute exponentiated cosine similar-
ity scores between pairs of sentence vectors:

w(si, sj) = e
si·sj

||si||×||sj ||

We further refine our analysis by smoothing the
similarity metric. When comparing two sentences,
we also take into account similarity between their
immediate neighborhoods. The smoothing is
achieved by adding counts of words that occur in
adjoining sentences to the current sentence feature
vector. These counts are weighted in accordance
to their distance from the current sentence:

s̃i =
i+k∑
j=i

e−α(j−i)sj ,

wheresi are vectors of word counts, andα is a
parameter that controls the degree of smoothing.

In the formulation above we use sentences as
our nodes. However, we can also represent graph
nodes with non-overlapping blocks of words of
fixed length. This is desirable, since the lecture
transcripts lack sentence boundary markers, and
short utterances can skew the cosine similarity
scores. The optimal length of the block is tuned
on a heldout development set.

Lexical Weighting Previous research has
shown that weighting schemes play an important
role in segmentation performance (Ji and Zha,
2003; Choi et al., 2001). Of particular concern
are words that may not be common in general En-
glish discourse but that occur throughout the text
for a particular lecture or subject. For example, in
a lecture about support vector machines, the oc-
currence of the term “SVM” is not going to con-
vey a lot of information about the distribution of

Segments perTotal Word ASR WER
Corpus Lectures Lecture Tokens Accuracy
Physics 33 5.9 232K 19.4%

AI 22 12.3 182K ×

Table 1: Lecture Corpus Statistics

sub-topics, even though it is a fairly rare term
in general English and bears much semantic con-
tent. The same words can convey varying degrees
of information across different lectures, and term
weighting specific to individual lectures becomes
important in the similarity computation.

In order to address this issue, we introduce a
variation on thetf-idf scoring scheme used in the
information-retrieval literature (Salton and Buck-
ley, 1988). A transcript is split uniformly intoN
chunks; each chunk serves as the equivalent of
documents in thetf-idf computation. The weights
are computed separately for each transcript, since
topic and word distributions vary across lectures.

5 Evaluation Set-Up

In this section we present the different corpora
used to evaluate our model and provide a brief
overview of the evaluation metrics. Next, we de-
scribe our human segmentation study on the cor-
pus of spoken lecture data.

5.1 Parameter Estimation

A heldout development set of three lectures is-
used for estimating the optimal word block length
for representing nodes, the threshold distances for
discarding node edges, the number of uniform
chunks for estimatingtf-idf lexical weights, the
alpha parameter for smoothing, and the length of
the smoothing window. We use a simple greedy
search procedure for optimizing the parameters.

5.2 Corpora

We evaluate our segmentation algorithm on three
sets of data. Two of the datasets we use are new
segmentation collections that we have compiled
for this study,1 and the remaining set includes a
standard collection previously used for evaluation
of segmentation algorithms. Various corpus statis-
tics for the new datasets are presented in Table 1.
Below we briefly describe each corpus.

Physics LecturesOur first corpus consists of
spoken lecture transcripts from an undergraduate

1Our materials are publicly available athttp://www.
csail.mit.edu/ ˜ igorm/acl06.html
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Physics class. In contrast to other segmentation
datasets, our corpus contains much longer texts.
A typical lecture of 90 minutes has 500 to 700
sentences with8500 words, which corresponds to
about 15 pages of raw text. We have access both
to manual transcriptions of these lectures and also
output from an automatic speech recognition sys-
tem. The word error rate for the latter is 19.4%,2

which is representative of state-of-the-art perfor-
mance on lecture material (Leeuwis et al., 2003).

The Physics lecture transcript segmentations
were produced by the teaching staff of the intro-
ductory Physics course at the Massachusetts In-
stitute of Technology. Their objective was to fa-
cilitate access to lecture recordings available on
the class website. This segmentation conveys the
high-level topical structure of the lectures. On av-
erage, a lecture was annotated with six segments,
and a typical segment corresponds to two pages of
a transcript.

Artificial Intelligence Lectures Our second
lecture corpus differs in subject matter, lecturing
style, and segmentation granularity. The gradu-
ate Artificial Intelligence class has, on average,
twelve segments per lecture, and a typical segment
is about half of a page. One segment roughly cor-
responds to the content of a slide. This time the
segmentation was obtained from the lecturer her-
self. The lecturer went through the transcripts of
lecture recordings and segmented the lectures with
the objective of making the segments correspond
to presentation slides for the lectures.

Due to the low recording quality, we were un-
able to obtain the ASR transcripts for this class.
Therefore, we only use manual transcriptions of
these lectures.

Synthetic Corpus Also as part of our anal-
ysis, we used the synthetic corpus created by
Choi (2000) which is commonly used in the eval-
uation of segmentation algorithms. This corpus
consists of a set of concatenated segments ran-
domly sampled from the Brown corpus. The
length of the segments in this corpus ranges from
three to eleven sentences. It is important to note
that the lexical transitions in these concatenated
texts are very sharp, since the segments come from
texts written in widely varying language styles on
completely different topics.

2A speaker-dependent model of the lecturer was trained
on 38 hours of lectures from other courses using the SUM-
MIT segment-based Speech Recognizer (Glass, 2003).

5.3 Evaluation Metric

We use thePk and WindowDiff measures to eval-
uate our system (Beeferman et al., 1999; Pevzner
and Hearst, 2002). ThePk measure estimates the
probability that a randomly chosen pair of words
within a window of lengthk words is inconsis-
tently classified. The WindowDiff metric is a vari-
ant of thePk measure, which penalizes false posi-
tives on an equal basis with near misses.

Both of these metrics are defined with re-
spect to the average segment length of texts and
exhibit high variability on real data. We fol-
low Choi (2000) and compute the mean segment
length used in determining the parameterk on
each reference text separately.

We also plot the Receiver Operating Character-
istic (ROC) curve to gauge performance at a finer
level of discrimination (Swets, 1988). The ROC
plot is the plot of the true positive rate against the
false positive rate for various settings of a decision
criterion. In our case, the true positive rate is the
fraction of boundaries correctly classified, and the
false positive rate is the fraction of non-boundary
positions incorrectly classified as boundaries. In
computing the true and false positive rates, we
vary the threshold distance to the true boundary
within which a hypothesized boundary is consid-
ered correct. Larger areas under the ROC curve
of a classifier indicate better discriminative perfor-
mance.

5.4 Human Segmentation Study

Spoken lectures are very different in style from
other corpora used in human segmentation studies
(Hearst, 1994; Galley et al., 2003). We are inter-
ested in analyzing human performance on a corpus
of lecture transcripts with much longer texts and a
less clear-cut concept of a sub-topic. We define a
segment to be a sub-topic that signals a prominent
shift in subject matter. Disregarding this sub-topic
change would impair the high-level understanding
of the structure and the content of the lecture.

As part of our human segmentation analysis,
we asked three annotators to segment the Physics
lecture corpus. These annotators had taken the
class in the past and were familiar with the subject
matter under consideration. We wrote a detailed
instruction manual for the task, with annotation
guidelines for the most part following the model
used by Gruenstein et al. (2005). The annotators
were instructed to segment at a level of granularity
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O A B C
MEAN SEG. COUNT 6.6 8.9 18.4 13.8
MEAN SEG. LENGTH 69.4 51.5 24.9 33.2
SEG. LENGTH DEV. 39.6 37.4 34.5 39.4

Table 2: Annotator Segmentation Statistics for the
first ten Physics lectures.

REF/HYP O A B C
O 0 0.243 0.418 0.312
A 0.219 0 0.400 0.355
B 0.314 0.337 0 0.332
C 0.260 0.296 0.370 0

Table 3:Pk annotation agreement between differ-
ent pairs of annotators.

that would identify most of the prominent topical
transitions necessary for a summary of the lecture.

The annotators used the NOMOS annotation
software toolkit, developed for meeting segmenta-
tion (Gruenstein et al., 2005). They were provided
with recorded audio of the lectures and the corre-
sponding text transcriptions. We intentionally did
not provide the subjects with the target number of
boundaries, since we wanted to see if the annota-
tors would converge on a common segmentation
granularity.

Table 2 presents the annotator segmentation
statistics. We see two classes of segmentation
granularities. The original reference (O) and anno-
tator A segmented at a coarse level with an average
of 6.6 and 8.9 segments per lecture, respectively.
Annotators B and C operated at much finer levels
of discrimination with 18.4 and 13.8 segments per
lecture on average. We conclude that multiple lev-
els of granularity are acceptable in spoken lecture
segmentation. This is expected given the length of
the lectures and varying human judgments in se-
lecting relevant topical content.

Following previous studies, we quantify the
level of annotator agreement with thePk measure
(Gruenstein et al., 2005).3 Table 3 shows the an-
notator agreement scores between different pairs
of annotators.Pk measures ranged from0.24 and
0.42. We observe greater consistency at similar
levels of granularity, and less so across the two

3Kappa measure would not be the appropriate measure in
this case, because it is not sensitive to near misses, and we
cannot make the required independence assumption on the
placement of boundaries.

EDGE CUTOFF

10 25 50 100 200 NONE

PHYSICS (MANUAL )
PK 0.394 0.3730.3410.2950.3110.330
WD 0.404 0.3830.3520.3080.3290.350

PHYSICS (ASR)
PK 0.440 0.3710.3430.3300.3220.359
WD 0.456 0.3830.3560.3430.3420.398

AI
PK 0.480 0.4220.4080.4160.3930.397
WD 0.493 0.4350.4200.4400.4240.432

CHOI

PK 0.222 0.2020.2130.2160.2080.208
WD 0.234 0.2220.2330.2380.2300.230

Table 4: Edges between nodes separated beyond a
certain threshold distance are removed.

classes. Note that annotator A operated at a level
of granularity consistent with the original refer-
ence segmentation. Hence, the 0.24Pk measure
score serves as the benchmark with which we can
compare the results attained by segmentation al-
gorithms on the Physics lecture data.

As an additional point of reference we note that
the uniform and random baseline segmentations
attain0.469 and0.493 Pk measure, respectively,
on the Physics lecture set.

6 Experimental Results
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Figure 3: ROC plot for the Minimum Cut Seg-
menter on thirty Physics Lectures, with edge cut-
offs set at five and hundred sentences.

Benefits of global analysisWe first determine
the impact of long-range pairwise similarity de-
pendencies on segmentation performance. Our
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CHOI UI M INCUT

PHYSICS (MANUAL )
PK 0.372 0.310 0.298
WD 0.385 0.323 0.311
PHYSICS (ASR TRANSCRIPTS)

PK 0.361 0.352 0.322
WD 0.376 0.364 0.340

AI
PK 0.445 0.374 0.383
WD 0.478 0.420 0.417

CHOI

PK 0.110 0.105 0.212
WD 0.121 0.116 0.234

Table 5: Performance analysis of different algo-
rithms using thePk and WindowDiff measures,
with three lectures heldout for development.

key hypothesis is that considering long-distance
lexical relations contributes to the effectiveness of
the algorithm. To test this hypothesis, we discard
edges between nodes that are more than a cer-
tain number of sentences apart. We test the sys-
tem on a range of data sets, including the Physics
and AI lectures and the synthetic corpus created by
Choi (2000). We also include segmentation results
on Physics ASR transcripts.

The results in Table 4 confirm our hypothesis —
taking into account non-local lexical dependencies
helps across different domains. On manually tran-
scribed Physics lecture data, for example, the al-
gorithm yields 0.394Pk measure when taking into
account edges separated by up to ten sentences.
When dependencies up to a hundred sentences are
considered, the algorithm yields a 25% reduction
in Pk measure. Figure 3 shows the ROC plot
for the segmentation of the Physics lecture data
with different cutoff parameters, again demon-
strating clear gains attained by employing long-
range dependencies. As Table 4 shows, the im-
provement is consistent across all lecture datasets.
We note, however, that after some point increas-
ing the threshold degrades performance, because
it introduces too many spurious dependencies (see
the last column of Table 4). The speaker will oc-
casionally return to a topic described at the begin-
ning of the lecture, and this will bias the algorithm
to put the segment boundary closer to the end of
the lecture.

Long-range dependencies do not improve the

performance on the synthetic dataset. This is ex-
pected since the segments in the synthetic dataset
are randomly selected from widely-varying doc-
uments in the Brown corpus, even spanning dif-
ferent genres of written language. So, effectively,
there are no genuine long-range dependencies that
can be exploited by the algorithm.

Comparison with local dependency models
We compare our system with the state-of-the-art
similarity-based segmentation system developed
by Choi (2000). We use the publicly available im-
plementation of the system and optimize the sys-
tem on a range of mask-sizes and different param-
eter settings described in (Choi, 2000) on a held-
out development set of three lectures. To control
for segmentation granularity, we specify the num-
ber of segments in the reference (“O”) segmen-
tation for both our system and the baseline. Ta-
ble 5 shows that the Minimum Cut algorithm con-
sistently outperforms the similarity-based baseline
on all the lecture datasets. We attribute this gain
to the presence of more attenuated topic transi-
tions in spoken language. Since spoken language
is more spontaneous and less structured than writ-
ten language, the speaker needs to keep the listener
abreast of the changes in topic content by intro-
ducing subtle cues and references to prior topics in
the course of topical transitions. Non-local depen-
dencies help to elucidate shifts in focus, because
the strength of a particular transition is measured
with respect to other local and long-distance con-
textual discourse relationships.

Our system does not outperform Choi’s algo-
rithm on the synthetic data. This again can be at-
tributed to the discrepancy in distributional prop-
erties of the synthetic corpus which lacks coher-
ence in its thematic shifts and the lecture corpus
of spontaneous speech with smooth distributional
variations. We also note that we did not try to ad-
just our model to optimize its performance on the
synthetic data. The smoothing method developed
for lecture segmentation may not be appropriate
for short segments ranging from three to eleven
sentences that constitute the synthetic set.

We also compared our method with another
state-of-the-art algorithm which does not explic-
itly rely on pairwise similarity analysis. This algo-
rithm (Utiyama and Isahara, 2001) (UI) computes
the optimal segmentation by estimating changes in
the language model predictions over different par-
titions. We used the publicly available implemen-
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tation of the system that does not require parame-
ter tuning on a heldout development set.

Again, our method achieves favorable perfor-
mance on a range of lecture data sets (See Ta-
ble 5), and both algorithms attain results close to
the range of human agreement scores. The attrac-
tive feature of our algorithm, however, is robust-
ness to recognition errors — testing it on the ASR
transcripts caused only 7.8% relative increase in
Pk measure (from 0.298 to 0.322), compared to
a 13.5% relative increase for the UI system. We
attribute this feature to the fact that the model is
less dependent on individual recognition errors,
which have a detrimental effect on the local seg-
ment language modeling probability estimates for
the UI system. The block-level similarity func-
tion is not as sensitive to individual word errors,
because the partition volume normalization factor
dampens their overall effect on the derived mod-
els.

7 Conclusions

In this paper we studied the impact of long-range
dependencies on the accuracy of text segmenta-
tion. We modeled text segmentation as a graph-
partitioning task aiming to simultaneously opti-
mize the total similarity within each segment and
dissimilarity across various segments. We showed
that global analysis of lexical distribution im-
proves the segmentation accuracy and is robust
in the presence of recognition errors. Combin-
ing global analysis with advanced methods for
smoothing (Ji and Zha, 2003) and weighting could
further boost the segmentation performance.

Our current implementation does not automati-
cally determine the granularity of a resulting seg-
mentation. This issue has been explored in the
past (Ji and Zha, 2003; Utiyama and Isahara,
2001), and we will explore the existing strategies
in our framework. We believe that the algorithm
has to produce segmentations for various levels of
granularity, depending on the needs of the appli-
cation that employs it.

Our ultimate goal is to automatically generate
tables of content for lectures. We plan to in-
vestigate strategies for generating titles that will
succinctly describe the content of each segment.
We will explore how the interaction between the
generation and segmentation components can im-
prove the performance of such a system as a
whole.
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Abstract

We present an approach to pronoun reso-
lution based on syntactic paths. Through a
simple bootstrapping procedure, we learn
the likelihood of coreference between a
pronoun and a candidate noun based on the
path in the parse tree between the two en-
tities. This path information enables us to
handle previously challenging resolution
instances, and also robustly addresses tra-
ditional syntactic coreference constraints.
Highly coreferent paths also allow mining
of precise probabilistic gender/number in-
formation. We combine statistical knowl-
edge with well known features in a Sup-
port Vector Machine pronoun resolution
classifier. Significant gains in performance
are observed on several datasets.

1 Introduction

Pronoun resolution is a difficult but vital part of the
overall coreference resolution task. In each of the
following sentences, a pronoun resolution system
must determine what the pronoun his refers to:

(1) John needs his friend.

(2) John needs his support.

In (1), John and his corefer. In (2), his refers
to some other, perhaps previously evoked entity.
Traditional pronoun resolution systems are not de-
signed to distinguish between these cases. They
lack the specific world knowledge required in the
second instance – the knowledge that a person
does not usually explicitly need his own support.

We collect statistical path-coreference informa-
tion from a large, automatically-parsed corpus to

address this limitation. A dependency path is de-
fined as the sequence of dependency links between
two potentially coreferent entities in a parse tree.
A path does not include the terminal entities; for
example, “John needs his support” and “He needs
their support” have the same syntactic path. Our
algorithm determines that the dependency path
linking the Noun and pronoun is very likely to con-
nect coreferent entities for the path “Noun needs
pronoun’s friend,” while it is rarely coreferent for
the path “Noun needs pronoun’s support.”

This likelihood can be learned by simply count-
ing how often we see a given path in text with
an initial Noun and a final pronoun that are from
the same/different gender/number classes. Cases
such as “John needs her support” or “They need
his support” are much more frequent in text than
cases where the subject noun and pronoun termi-
nals agree in gender/number. When there is agree-
ment, the terminal nouns are likely to be corefer-
ent. When they disagree, they refer to different en-
tities. After a sufficient number of occurrences of
agreement or disagreement, there is a strong sta-
tistical indication of whether the path is coreferent
(terminal nouns tend to refer to the same entity) or
non-coreferent (nouns refer to different entities).

We show that including path coreference in-
formation enables significant performance gains
on three third-person pronoun resolution experi-
ments. We also show that coreferent paths can pro-
vide the seed information for bootstrapping other,
even more important information, such as the gen-
der/number of noun phrases.

2 Related Work

Coreference resolution is generally conducted as
a pairwise classification task, using various con-
straints and preferences to determine whether two
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expressions corefer. Coreference is typically only
allowed between nouns matching in gender and
number, and not violating any intrasentential syn-
tactic principles. Constraints can be applied as a
preprocessing step to scoring candidates based on
distance, grammatical role, etc., with scores devel-
oped either manually (Lappin and Leass, 1994), or
through a machine-learning algorithm (Kehler et
al., 2004). Constraints and preferences have also
been applied together as decision nodes on a deci-
sion tree (Aone and Bennett, 1995).

When previous resolution systems handle cases
like (1) and (2), where no disagreement or syntac-
tic violation occurs, coreference is therefore de-
termined by the weighting of features or learned
decisions of the resolution classifier. Without
path coreference knowledge, a resolution process
would resolve the pronouns in (1) and (2) the
same way. Indeed, coreference resolution research
has focused on the importance of the strategy
for combining well known constraints and prefer-
ences (Mitkov, 1997; Ng and Cardie, 2002), devot-
ing little attention to the development of new fea-
tures for these difficult cases. The application of
world knowledge to pronoun resolution has been
limited to the semantic compatibility between a
candidate noun and the pronoun’s context (Yang
et al., 2005). We show semantic compatibility can
be effectively combined with path coreference in-
formation in our experiments below.

Our method for determining path coreference
is similar to an algorithm for discovering para-
phrases in text (Lin and Pantel, 2001). In that
work, the beginning and end nodes in the paths
are collected, and two paths are said to be similar
(and thus likely paraphrases of each other) if they
have similar terminals (i.e. the paths occur with a
similar distribution). Our work does not need to
store the terminals themselves, only whether they
are from the same pronoun group. Different paths
are not compared in any way; each path is individ-
ually assigned a coreference likelihood.

3 Path Coreference

We define a dependency path as the sequence of
nodes and dependency labels between two poten-
tially coreferent entities in a dependency parse
tree. We use the structure induced by the minimal-
ist parser Minipar (Lin, 1998) on sentences from
the news corpus described in Section 4. Figure 1
gives the parse tree of (2). As a short-form, we

John
needs
his
support


subj
 gen


obj


Figure 1: Example dependency tree.

write the dependency path in this case as “Noun
needs pronoun’s support.” The path itself does not
include the terminal nouns “John” and “his.”

Our algorithm finds the likelihood of coref-
erence along dependency paths by counting the
number of times they occur with terminals that
are either likely coreferent or non-coreferent. In
the simplest version, we count paths with termi-
nals that are both pronouns. We partition pronouns
into seven groups of matching gender, number,
and person; for example, the first person singular
group contains I, me, my, mine, and myself. If the
two terminal pronouns are from the same group,
coreference along the path is likely. If they are
from different groups, like I and his, then they are
non-coreferent. Let NS(p) be the number of times
the two terminal pronouns of a path, p, are from
the same pronoun group, and let ND(p) be the
number of times they are from different groups.
We define the coreference of p as:

C(p) =
NS(p)

NS(p) + ND(p)

Our statistics indicate the example path, “Noun
needs pronoun’s support,” has a low C(p) value.
We could use this fact to prevent us from resolv-
ing “his” to “John” when “John needs his support”
is presented to a pronoun resolution system.

To mitigate data sparsity, we represent the path
with the root form of the verbs and nouns. Also,
we use Minipar’s named-entity recognition to re-
place named-entity nouns by the semantic cate-
gory of their named-entity, when available. All
modifiers not on the direct path, such as adjectives,
determiners and adverbs, are not considered. We
limit the maximum path length to eight nodes.

Tables 1 and 2 give examples of coreferent and
non-coreferent paths learned by our algorithm and
identified in our test sets. Coreferent paths are
defined as paths with a C(p) value (and overall
number of occurrences) above a certain threshold,
indicating the terminal entities are highly likely
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Table 1: Example coreferent paths: Italicized entities generally corefer.
Pattern Example

1. Noun left ... to pronoun’s wife Buffett will leave the stock to his wife.
2. Noun says pronoun intends... The newspaper says it intends to file a lawsuit.
3. Noun was punished for pronoun’s crime. The criminal was punished for his crime.
4. ... left Noun to fend for pronoun-self They left Jane to fend for herself.
5. Noun lost pronoun’s job. Dick lost his job.
6. ... created Noun and populated pronoun. Nzame created the earth and populated it
7. Noun consolidated pronoun’s power. The revolutionaries consolidated their power.
8. Noun suffered ... in pronoun’s knee ligament. The leopard suffered pain in its knee ligament.

to corefer. Non-coreferent paths have a C(p) be-
low a certain cutoff; the terminals are highly un-
likely to corefer. Especially note the challenge of
resolving most of the examples in Table 2 with-
out path coreference information. Although these
paths encompass some cases previously covered
by Binding Theory (e.g. “Mary suspended her,”
her cannot refer to Mary by Principle B (Haege-
man, 1994)), most have no syntactic justification
for non-coreference per se. Likewise, although
Binding Theory (Principle A) could identify the
reflexive pronominal relationship of Example 4 in
Table 1, most cases cannot be resolved through
syntax alone. Our analysis shows that successfully
handling cases that may have been handled with
Binding Theory constitutes only a small portion of
the total performance gain using path coreference.

In any case, Binding Theory remains a chal-
lenge with a noisy parser. Consider: “Alex gave
her money.” Minipar parses her as a possessive,
when it is more likely an object, “Alex gave money
to her.” Without a correct parse, we cannot rule
out the link between her and Alex through Bind-
ing Theory. Our algorithm, however, learns that
the path “Noun gave pronoun’s money,” is non-
coreferent. In a sense, it corrects for parser errors
by learning when coreference should be blocked,
given any consistent parse of the sentence.

We obtain path coreference for millions of paths
from our parsed news corpus (Section 4). While
Tables 1 and 2 give test set examples, many other
interesting paths are obtained. We learn corefer-
ence is unlikely between the nouns in “Bob mar-
ried his mother,” or “Sue wrote her obituary.” The
fact you don’t marry your own mother or write
your own obituary is perhaps obvious, but this
is the first time this kind of knowledge has been
made available computationally. Naturally, ex-

ceptions to the coreference or non-coreference of
some of these paths can be found; our patterns
represent general trends only. And, as mentioned
above, reliable path coreference is somewhat de-
pendent on consistent parsing.

Paths connecting pronouns to pronouns are dif-
ferent than paths connecting both nouns and pro-
nouns to pronouns – the case we are ultimately in-
terested in resolving. Consider “Company A gave
its data on its website.” The pronoun-pronoun
path coreference algorithm described above would
learn the terminals in “Noun’s data on pronoun’s
website” are often coreferent. But if we see the
phrase “Company A gave Company B’s data on
its website,” then “its” is not likely to refer to
“Company B,” even though we identified this as
a coreferent path! We address this problem with a
two-stage extraction procedure. We first bootstrap
gender/number information using the pronoun-
pronoun paths as described in Section 4.1. We
then use this gender/number information to count
paths where an initial noun (with probabilistically-
assigned gender/number) and following pronoun
are connected by the dependency path, record-
ing the agreement or disagreement of their gen-
der/number category.1 These superior paths are
then used to re-bootstrap our final gender/number
information used in the evaluation (Section 6).

We also bootstrap paths where the nodes in
the path are replaced by their grammatical cate-
gory. This allows us to learn general syntactic con-
straints not dependent on the surface forms of the
words (including, but not limited to, the Binding
Theory principles). A separate set of these non-
coreferent paths is also used as a feature in our sys-

1As desired, this modification allows the first example to
provide two instances of noun-pronoun paths with terminals
from the same gender/number group, linking each “its” to the
subject noun “Company A”, rather than to each other.
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Table 2: Example non-coreferent paths: Italicized entities do not generally corefer
Pattern Example

1. Noun thanked ... for pronoun’s assistance John thanked him for his assistance.
2. Noun wanted pronoun to lie. The president wanted her to lie.
3. ... Noun into pronoun’s pool Max put the floaties into their pool.
4. ... use Noun to pronoun’s advantage The company used the delay to its advantage.
5. Noun suspended pronoun Mary suspended her.
6. Noun was pronoun’s relative. The Smiths were their relatives.
7. Noun met pronoun’s demands The players’ association met its demands.
8. ... put Noun at the top of pronoun’s list. The government put safety at the top of its list.

tem. We also tried expanding our coverage by us-
ing paths similar to paths with known path coref-
erence (based on distributionally similar words),
but this did not generally increase performance.

4 Bootstrapping in Pronoun Resolution

Our determination of path coreference can be con-
sidered a bootstrapping procedure. Furthermore,
the coreferent paths themselves can serve as the
seed for bootstrapping additional coreference in-
formation. In this section, we sketch previous ap-
proaches to bootstrapping in coreference resolu-
tion and explain our new ideas.

Coreference bootstrapping works by assuming
resolutions in unlabelled text, acquiring informa-
tion from the putative resolutions, and then mak-
ing inferences from the aggregate statistical data.
For example, we assumed two pronouns from the
same pronoun group were coreferent, and deduced
path coreference from the accumulated counts.

The potential of the bootstrapping approach can
best be appreciated by imagining millions of doc-
uments with coreference annotations. With such a
set, we could extract fine-grained features, perhaps
tied to individual words or paths. For example, we
could estimate the likelihood each noun belongs to
a particular gender/number class by the proportion
of times this noun was labelled as the antecedent
for a pronoun of this particular gender/number.

Since no such corpus exists, researchers have
used coarser features learned from smaller sets
through supervised learning (Soon et al., 2001;
Ng and Cardie, 2002), manually-defined corefer-
ence patterns to mine specific kinds of data (Bean
and Riloff, 2004; Bergsma, 2005), or accepted the
noise inherent in unsupervised schemes (Ge et al.,
1998; Cherry and Bergsma, 2005).

We address the drawbacks of these approaches

Table 3: Gender classification performance (%)
Classifier F-Score
Bergsma (2005) Corpus-based 85.4
Bergsma (2005) Web-based 90.4
Bergsma (2005) Combined 92.2
Duplicated Corpus-based 88.0
Coreferent Path-based 90.3

by using coreferent paths as the assumed resolu-
tions in the bootstrapping. Because we can vary
the threshold for defining a coreferent path, we can
trade-off coverage for precision. We now outline
two potential uses of bootstrapping with coref-
erent paths: learning gender/number information
(Section 4.1) and augmenting a semantic compat-
ibility model (Section 4.2). We bootstrap this data
on our automatically-parsed news corpus. The
corpus comprises 85 GB of news articles taken
from the world wide web over a 1-year period.

4.1 Probabilistic Gender/Number

Bergsma (2005) learns noun gender (and num-
ber) from two principal sources: 1) mining it
from manually-defined lexico-syntactic patterns in
parsed corpora, and 2) acquiring it on the fly by
counting the number of pages returned for various
gender-indicating patterns by the Google search
engine. The web-based approach outperformed
the corpus-based approach, while a system that
combined the two sets of information resulted in
the highest performance (Table 3). The combined
gender-classifying system is a machine-learned
classifier with 20 features.

The time delay of using an Internet search en-
gine within a large-scale anaphora resolution ef-
fort is currently impractical. Thus we attempted
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Table 4: Example gender/number probability (%)
Word masc fem neut plur

company 0.6 0.1 98.1 1.2
condoleeza rice 4.0 92.7 0.0 3.2
pat 58.3 30.6 6.2 4.9
president 94.1 3.0 1.5 1.4
wife 9.9 83.3 0.8 6.1

to duplicate Bergsma’s corpus-based extraction of
gender and number, where the information can be
stored in advance in a table, but using a much
larger data set. Bergsma ran his extraction on
roughly 6 GB of text; we used roughly 85 GB.

Using the test set from Bergsma (2005), we
were only able to boost performance from an F-
Score of 85.4% to one of 88.0% (Table 3). This
result led us to re-examine the high performance
of Bergsma’s web-based approach. We realized
that the corpus-based and web-based approaches
are not exactly symmetric. The corpus-based ap-
proaches, for example, would not pick out gender
from a pattern such as “John and his friends...” be-
cause “Noun and pronoun’s NP” is not one of the
manually-defined gender extraction patterns. The
web-based approach, however, would catch this
instance with the “John * his/her/its/their” tem-
plate, where “*” is the Google wild-card opera-
tor. Clearly, there are patterns useful for capturing
gender and number information beyond the pre-
defined set used in the corpus-based extraction.

We thus decided to capture gender/number in-
formation from coreferent paths. If a noun is con-
nected to a pronoun of a particular gender along a
coreferent path, we count this as an instance of that
noun being that gender. In the end, the probability
that the noun is a particular gender is the propor-
tion of times it was connected to a pronoun of that
gender along a coreferent path. Gender informa-
tion becomes a single intuitive, accessible feature
(i.e. the probability of the noun being that gender)
rather than Bergsma’s 20-dimensional feature vec-
tor requiring search-engine queries to instantiate.

We acquire gender and number data for over 3
million nouns. We use add-one smoothing for data
sparsity. Some example gender/number probabil-
ities are given in Table 4 (cf. (Ge et al., 1998;
Cherry and Bergsma, 2005)). We get a perfor-
mance of 90.3% (Table 3), again meeting our re-
quirements of high performance and allowing for

a fast, practical implementation. This is lower
than Bergsma’s top score of 92.2% (Figure 3),
but again, Bergsma’s top system relies on Google
search queries for each new word, while ours are
all pre-stored in a table for fast access.

We are pleased to be able to share our gender
and number data with the NLP community.2 In
Section 6, we show the benefit of this data as a
probabilistic feature in our pronoun resolution sys-
tem. Probabilistic data is useful because it allows
us to rapidly prototype resolution systems with-
out incurring the overhead of large-scale lexical
databases such as WordNet (Miller et al., 1990).

4.2 Semantic Compatibility

Researchers since Dagan and Itai (1990) have var-
iously argued for and against the utility of col-
location statistics between nouns and parents for
improving the performance of pronoun resolution.
For example, can the verb parent of a pronoun be
used to select antecedents that satisfy the verb’s se-
lectional restrictions? If the verb phrase was shat-
ter it, we would expect it to refer to some kind
of brittle entity. Like path coreference, semantic
compatibility can be considered a form of world
knowledge needed for more challenging pronoun
resolution instances.

We encode the semantic compatibility between
a noun and its parse tree parent (and grammatical
relationship with the parent) using mutual infor-
mation (MI) (Church and Hanks, 1989). Suppose
we are determining whether ham is a suitable an-
tecedent for the pronoun it in eat it. We calculate
the MI as:

MI(eat:obj, ham) = log
Pr(eat:obj:ham)

Pr(eat:obj)Pr(ham)

Although semantic compatibility is usually only
computed for possessive-noun, subject-verb, and
verb-object relationships, we include 121 differ-
ent kinds of syntactic relationships as parsed in
our news corpus.3 We collected 4.88 billion par-
ent:rel:node triples, including over 327 million
possessive-noun values, 1.29 billion subject-verb
and 877 million verb-direct object. We use small
probability values for unseen Pr(parent:rel:node),
Pr(parent:rel), and Pr(node) cases, as well as a de-
fault MI when no relationship is parsed, roughly
optimized for performance on the training set. We

2Available at http://www.cs.ualberta.ca/˜bergsma/Gender/
3We convert prepositions to relationships to enhance our

model’s semantics, e.g. Joan:of:Arc rather than Joan:prep:of

37



include both the MI between the noun and the pro-
noun’s parent as well as the MI between the pro-
noun and the noun’s parent as features in our pro-
noun resolution classifier.

Kehler et al. (2004) saw no apparent gain from
using semantic compatibility information, while
Yang et al. (2005) saw about a 3% improvement
with compatibility data acquired by searching on
the world wide web. Section 6 analyzes the con-
tribution of MI to our system.

Bean and Riloff (2004) used bootstrapping to
extend their semantic compatibility model, which
they called contextual-role knowledge, by identi-
fying certain cases of easily-resolved anaphors and
antecedents. They give the example “Mr. Bush
disclosed the policy by reading it.” Once we iden-
tify that it and policy are coreferent, we include
read:obj:policy as part of the compatibility model.

Rather than using manually-defined heuristics
to bootstrap additional semantic compatibility in-
formation, we wanted to enhance our MI statistics
automatically with coreferent paths. Consider the
phrase, “Saddam’s wife got a Jordanian lawyer for
her husband.” It is unlikely we would see “wife’s
husband” in text; in other words, we would not
know that husband:gen:wife is, in fact, semanti-
cally compatible and thereby we would discour-
age selection of “wife” as the antecedent at res-
olution time. However, because “Noun gets ...
for pronoun’s husband” is a coreferent path, we
could capture the above relationship by adding a
parent:rel:node for every pronoun connected to a
noun phrase along a coreferent path in text.

We developed context models with and with-
out these path enhancements, but ultimately we
could find no subset of coreferent paths that im-
prove the semantic compatibility’s contribution to
training set accuracy. A mutual information model
trained on 85 GB of text is fairly robust on its own,
and any kind of bootstrapped extension seems to
cause more damage by increased noise than can be
compensated by increased coverage. Although we
like knowing audiences have noses, e.g. “the audi-
ence turned up its nose at the performance,” such
phrases are apparently quite rare in actual test sets.

5 Experimental Design

The noun-pronoun path coreference can be used
directly as a feature in a pronoun resolution sys-
tem. However, path coreference is undefined for
cases where there is no path between the pro-

noun and the candidate noun – for example, when
the candidate is in the previous sentence. There-
fore, rather than using path coreference directly,
we have features that are true if C(p) is above or
below certain thresholds. The features are thus set
when coreference between the pronoun and candi-
date noun is likely (a coreferent path) or unlikely
(a non-coreferent path).

We now evaluate the utility of path coreference
within a state-of-the-art machine-learned resolu-
tion system for third-person pronouns with nom-
inal antecedents. A standard set of features is used
along with the bootstrapped gender/number, se-
mantic compatibility, and path coreference infor-
mation. We refer to these features as our “proba-
bilistic features” (Prob. Features) and run experi-
ments using the full system trained and tested with
each absent, in turn (Table 5). We have 29 features
in total, including measures of candidate distance,
frequency, grammatical role, and different kinds
of parallelism between the pronoun and the can-
didate noun. Several reliable features are used as
hard constraints, removing candidates before con-
sideration by the scoring algorithm.

All of the parsing, noun-phrase identification,
and named-entity recognition are done automat-
ically with Minipar. Candidate antecedents are
considered in the current and previous sentence
only. We use SVMlight (Joachims, 1999) to learn
a linear-kernel classifier on pairwise examples in
the training set. When resolving pronouns, we
select the candidate with the farthest positive dis-
tance from the SVM classification hyperplane.

Our training set is the anaphora-annotated por-
tion of the American National Corpus (ANC) used
in Bergsma (2005), containing 1270 anaphoric
pronouns4 . We test on the ANC Test set (1291 in-
stances) also used in Bergsma (2005) (highest res-
olution accuracy reported: 73.3%), the anaphora-
labelled portion of AQUAINT used in Cherry and
Bergsma (2005) (1078 instances, highest accu-
racy: 71.4%), and the anaphoric pronoun subset
of the MUC7 (1997) coreference evaluation for-
mal test set (169 instances, highest precision of
62.1 reported on all pronouns in (Ng and Cardie,
2002)). These particular corpora were chosen so
we could test our approach using the same data
as comparable machine-learned systems exploit-
ing probabilistic information sources. Parameters

4See http://www.cs.ualberta.ca/˜bergsma/CorefTags/ for
instructions on acquiring annotations
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Table 5: Resolution accuracy (%)
Dataset ANC AQT MUC
1 Previous noun 36.7 34.5 30.8
2 No Prob. Features 58.1 60.9 49.7
3 No Prob. Gender 65.8 71.0 68.6
4 No MI 71.3 73.5 69.2
5 No C(p) 72.3 73.7 69.8
6 Full System 73.9 75.0 71.6
7 Upper Bound 93.2 92.3 91.1

were set using cross-validation on the training set;
test sets were used only once to obtain the final
performance values.

Evaluation Metric: We report results in terms of
accuracy: Of all the anaphoric pronouns in the test
set, the proportion we resolve correctly.

6 Results and Discussion

We compare the accuracy of various configura-
tions of our system on the ANC, AQT and MUC
datasets (Table 5). We include the score from pick-
ing the noun immediately preceding the pronoun
(after our hard filters are applied). Due to the hard
filters and limited search window, it is not possi-
ble for our system to resolve every noun to a cor-
rect antecedent. We thus provide the performance
upper bound (i.e. the proportion of cases with a
correct answer in the filtered candidate list). On
ANC and AQT, each of the probabilistic features
results in a statistically significant gain in perfor-
mance over a model trained and tested with that
feature absent.5 On the smaller MUC set, none of
the differences in 3-6 are statistically significant,
however, the relative contribution of the various
features remains reassuringly constant.

Aside from missing antecedents due to the hard
filters, the main sources of error include inaccurate
statistical data and a classifier bias toward preced-
ing pronouns of the same gender/number. It would
be interesting to see whether performance could be
improved by adding WordNet and web-mined fea-
tures. Path coreference itself could conceivably be
determined with a search engine.

Gender is our most powerful probabilistic fea-
ture. In fact, inspecting our system’s decisions,
gender often rules out coreference regardless of
path coreference. This is not surprising, since we
based the acquisition of C(p) on gender. That is,

5We calculate significance with McNemar’s test, p=0.05.
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Figure 2: ANC pronoun resolution accuracy for
varying SVM-thresholds.

our bootstrapping assumption was that the major-
ity of times these paths occur, gender indicates
coreference or lack thereof. Thus when they oc-
cur in our test sets, gender should often sufficiently
indicate coreference. Improving the orthogonality
of our features remains a future challenge.

Nevertheless, note the decrease in performance
on each of the datasets when C(p) is excluded
(#5). This is compelling evidence that path coref-
erence is valuable in its own right, beyond its abil-
ity to bootstrap extensive and reliable gender data.

Finally, we can add ourselves to the camp of
people claiming semantic compatibility is useful
for pronoun resolution. Both the MI from the pro-
noun in the antecedent’s context and vice-versa
result in improvement. Building a model from
enough text may be the key.

The primary goal of our evaluation was to as-
sess the benefit of path coreference within a com-
petitive pronoun resolution system. Our system
does, however, outperform previously published
results on these datasets. Direct comparison of
our scoring system to other current top approaches
is made difficult by differences in preprocessing.
Ideally we would assess the benefit of our prob-
abilistic features using the same state-of-the-art
preprocessing modules employed by others such
as (Yang et al., 2005) (who additionally use a
search engine for compatibility scoring). Clearly,
promoting competitive evaluation of pronoun res-
olution scoring systems by giving competitors
equivalent real-world preprocessing output along
the lines of (Barbu and Mitkov, 2001) remains the
best way to isolate areas for system improvement.

Our pronoun resolution system is part of a larger
information retrieval project where resolution ac-

39



curacy is not necessarily the most pertinent mea-
sure of classifier performance. More than one can-
didate can be useful in ambiguous cases, and not
every resolution need be used. Since the SVM
ranks antecedent candidates, we can test this rank-
ing by selecting more than the top candidate (Top-
n) and evaluating coverage of the true antecedents.
We can also resolve only those instances where the
most likely candidate is above a certain distance
from the SVM threshold. Varying this distance
varies the precision-recall (PR) of the overall res-
olution. A representative PR curve for the Top-n
classifiers is provided (Figure 2). The correspond-
ing information retrieval performance can now be
evaluated along the Top-n / PR configurations.

7 Conclusion

We have introduced a novel feature for pronoun
resolution called path coreference, and demon-
strated its significant contribution to a state-of-the-
art pronoun resolution system. This feature aids
coreference decisions in many situations not han-
dled by traditional coreference systems. Also, by
bootstrapping with the coreferent paths, we are
able to build the most complete and accurate ta-
ble of probabilistic gender information yet avail-
able. Preliminary experiments show path coref-
erence bootstrapping can also provide a means of
identifying pleonastic pronouns, where pleonastic
neutral pronouns are often followed in a depen-
dency path by a terminal noun of different gender,
and cataphoric constructions, where the pronouns
are often followed by nouns of matching gender.
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Abstract

Syntactic knowledge is important for pro-
noun resolution. Traditionally, the syntac-
tic information for pronoun resolution is
represented in terms of features that have
to be selected and defined heuristically.
In the paper, we propose a kernel-based
method that can automatically mine the
syntactic information from the parse trees
for pronoun resolution. Specifically, we
utilize the parse trees directly as a struc-
tured feature and apply kernel functions to
this feature, as well as other normal fea-
tures, to learn the resolution classifier. In
this way, our approach avoids the efforts
of decoding the parse trees into the set of
flat syntactic features. The experimental
results show that our approach can bring
significant performance improvement and
is reliably effective for the pronoun reso-
lution task.

1 Introduction

Pronoun resolution is the task of finding the cor-
rect antecedent for a given pronominal anaphor
in a document. Prior studies have suggested that
syntactic knowledge plays an important role in
pronoun resolution. For a practical pronoun res-
olution system, the syntactic knowledge usually
comes from the parse trees of the text. The is-
sue that arises is how to effectively incorporate the
syntactic information embedded in the parse trees
to help resolution. One common solution seen in
previous work is to define a set of features that rep-
resent particular syntactic knowledge, such as the
grammatical role of the antecedent candidates, the
governing relations between the candidate and the
pronoun, and so on. These features are calculated
by mining the parse trees, and then could be used

for resolution by using manually designed rules
(Lappin and Leass, 1994; Kennedy and Boguraev,
1996; Mitkov, 1998), or using machine-learning
methods (Aone and Bennett, 1995; Yang et al.,
2004; Luo and Zitouni, 2005).

However, such a solution has its limitation. The
syntactic features have to be selected and defined
manually, usually by linguistic intuition. Unfor-
tunately, what kinds of syntactic information are
effective for pronoun resolution still remains an
open question in this research community. The
heuristically selected feature set may be insuffi-
cient to represent all the information necessary for
pronoun resolution contained in the parse trees.

In this paper we will explore how to utilize the
syntactic parse trees to help learning-based pro-
noun resolution. Specifically, we directly utilize
the parse trees as a structured feature, and then use
a kernel-based method to automatically mine the
knowledge embedded in the parse trees. The struc-
tured syntactic feature, together with other nor-
mal features, is incorporated in a trainable model
based on Support Vector Machine (SVM) (Vapnik,
1995) to learn the decision classifier for resolution.
Indeed, using kernel methods to mine structural
knowledge has shown success in some NLP ap-
plications like parsing (Collins and Duffy, 2002;
Moschitti, 2004) and relation extraction (Zelenko
et al., 2003; Zhao and Grishman, 2005). However,
to our knowledge, the application of such a tech-
nique to the pronoun resolution task still remains
unexplored.

Compared with previous work, our approach
has several advantages: (1) The approach uti-
lizes the parse trees as a structured feature, which
avoids the efforts of decoding the parse trees into
a set of syntactic features in a heuristic manner.
(2) The approach is able to put together the struc-
tured feature and the normal flat features in a
trainable model, which allows different types of
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information to be considered in combination for
both learning and resolution. (3) The approach
is applicable for practical pronoun resolution as
the syntactic information can be automatically ob-
tained from machine-generated parse trees. And
our study shows that the approach works well un-
der the commonly available parsers.

We evaluate our approach on the ACE data set.
The experimental results over the different do-
mains indicate that the structured syntactic fea-
ture incorporated with kernels can significantly
improve the resolution performance (by 5%∼8%
in the success rates), and is reliably effective for
the pronoun resolution task.

The remainder of the paper is organized as fol-
lows. Section 2 gives some related work that uti-
lizes the structured syntactic knowledge to do pro-
noun resolution. Section 3 introduces the frame-
work for the pronoun resolution, as well as the
baseline feature space and the SVM classifier.
Section 4 presents in detail the structured feature
and the kernel functions to incorporate such a fea-
ture in the resolution. Section 5 shows the exper-
imental results and has some discussion. Finally,
Section 6 concludes the paper.

2 Related Work

One of the early work on pronoun resolution rely-
ing on parse trees was proposed by Hobbs (1978).
For a pronoun to be resolved, Hobbs’ algorithm
works by searching the parse trees of the current
text. Specifically, the algorithm processes one sen-
tence at a time, using a left-to-right breadth-first
searching strategy. It first checks the current sen-
tence where the pronoun occurs. The first NP
that satisfies constraints, like number and gender
agreements, would be selected as the antecedent.
If the antecedent is not found in the current sen-
tence, the algorithm would traverse the trees of
previous sentences in the text. As the searching
processing is completely done on the parse trees,
the performance of the algorithm would rely heav-
ily on the accuracy of the parsing results.

Lappin and Leass (1994) reported a pronoun
resolution algorithm which uses the syntactic rep-
resentation output by McCord’s Slot Grammar
parser. A set of salience measures (e.g.Sub-
ject, Object or Accusativeemphasis) is derived
from the syntactic structure. The candidate with
the highest salience score would be selected as
the antecedent. In their algorithm, the weights of

Category: whether the candidate is a definite noun phrase,
indefinite noun phrase, pronoun, named-entity or others.

Reflexiveness:whether the pronominal anaphor is a reflex-
ive pronoun.

Type: whether the pronominal anaphor is a male-person
pronoun (likehe), female-person pronoun (likeshe), sin-
gle gender-neuter pronoun (likeit), or plural gender-neuter
pronoun (likethey)

Subject: whether the candidate is a subject of a sentence, a
subject of a clause, or not.

Object: whether the candidate is an object of a verb, an
object of a preposition, or not.

Distance: the sentence distance between the candidate and
the pronominal anaphor.

Closeness:whether the candidate is the candidate closest
to the pronominal anaphor.

FirstNP: whether the candidate is the first noun phrase in
the current sentence.

Parallelism: whether the candidate has an identical collo-
cation pattern with the pronominal anaphor.

Table 1: Feature set for the baseline pronoun res-
olution system

salience measures have to be assigned manually.
Luo and Zitouni (2005) proposed a coreference

resolution approach which also explores the infor-
mation from the syntactic parse trees. Different
from Lappin and Leass (1994)’s algorithm, they
employed a maximum entropy based model to au-
tomatically compute the importance (in terms of
weights) of the features extracted from the trees.
In their work, the selection of their features is
mainly inspired by the government and binding
theory, aiming to capture the c-command relation-
ships between the pronoun and its antecedent can-
didate. By contrast, our approach simply utilizes
the parse trees as a structured feature, and lets the
learning algorithm discover all possible embedded
information that is necessary for pronoun resolu-
tion.

3 The Resolution Framework

Our pronoun resolution system adopts the com-
mon learning-based framework similar to those
by Soon et al. (2001) and Ng and Cardie (2002).

In the learning framework, a training or testing
instance is formed by a pronoun and one of its
antecedent candidate. During training, for each
pronominal anaphor encountered, a positive in-
stance is created by paring the anaphor and its
closest antecedent. Also a set of negative instances
is formed by paring the anaphor with each of the
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non-coreferential candidates. Based on the train-
ing instances, a binary classifier is generated using
a particular learning algorithm. During resolution,
a pronominal anaphor to be resolved is paired in
turn with each preceding antecedent candidate to
form a testing instance. This instance is presented
to the classifier which then returns a class label
with a confidence value indicating the likelihood
that the candidate is the antecedent. The candidate
with the highest confidence value will be selected
as the antecedent of the pronominal anaphor.

3.1 Feature Space

As with many other learning-based approaches,
the knowledge for the reference determination is
represented as a set of features associated with
the training or test instances. In our baseline sys-
tem, the features adopted include lexical property,
morphologic type, distance, salience, parallelism,
grammatical role and so on. Listed in Table 1, all
these features have been proved effective for pro-
noun resolution in previous work.

3.2 Support Vector Machine

In theory, any discriminative learning algorithm is
applicable to learn the classifier for pronoun res-
olution. In our study, we use Support Vector Ma-
chine (Vapnik, 1995) to allow the use of kernels to
incorporate the structured feature.

Suppose the training setS consists of labelled
vectors{(xi, yi)}, wherexi is the feature vector
of a training instance andyi is its class label. The
classifier learned by SVM is

f(x) = sgn(
∑

i=1

yiaix ∗ xi + b) (1)

whereai is the learned parameter for a support
vectorxi. An instancex is classified as positive
(negative) iff(x) > 0 (f(x) < 0)1.

One advantage of SVM is that we can use ker-
nel methods to map a feature space to a particu-
lar high-dimension space, in case that the current
problem could not be separated in a linear way.
Thus the dot-productx1 ∗ x2 is replaced by a ker-
nel function (or kernel) between two vectors, that
is K(x1, x2). For the learning with the normal
features listed in Table 1, we can just employ the
well-known polynomial or radial basis kernels that
can be computed efficiently. In the next section we

1For our task, the result off(x) is used as the confidence
value of the candidate to be the antecedent of the pronoun
described byx.

will discuss how to use kernels to incorporate the
more complex structured feature.

4 Incorporating Structured Syntactic
Information

4.1 Main Idea

A parse tree that covers a pronoun and its an-
tecedent candidate could provide us much syntac-
tic information related to the pair. The commonly
used syntactic knowledge for pronoun resolution,
such as grammatical roles or the governing rela-
tions, can be directly described by the tree struc-
ture. Other syntactic knowledge that may be help-
ful for resolution could also be implicitly repre-
sented in the tree. Therefore, by comparing the
common substructures between two trees we can
find out to what degree two trees contain similar
syntactic information, which can be done using a
convolution tree kernel.

The value returned from the tree kernel reflects
the similarity between two instances in syntax.
Such syntactic similarity can be further combined
with other knowledge to compute the overall simi-
larity between two instances, through a composite
kernel. And thus a SVM classifier can be learned
and then used for resolution. This is just the main
idea of our approach.

4.2 Structured Syntactic Feature

Normally, parsing is done on the sentence level.
However, in many cases a pronoun and an an-
tecedent candidate do not occur in the same sen-
tence. To present their syntactic properties and
relations in a single tree structure, we construct a
syntax tree for an entire text, by attaching the parse
trees of all its sentences to an upper node.

Having obtained the parse tree of a text, we shall
consider how to select the appropriate portion of
the tree as the structured feature for a given in-
stance. As each instance is related to a pronoun
and a candidate, the structured feature at least
should be able to cover both of these two expres-
sions. Generally, the more substructure of the tree
is included, the more syntactic information would
be provided, but at the same time the more noisy
information that comes from parsing errors would
likely be introduced. In our study, we examine
three possible structured features that contain dif-
ferent substructures of the parse tree:

Min-Expansion This feature records the mini-
mal structure covering both the pronoun and
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Min-Expansion Simple-Expansion Full-Expansion

Figure 1: structured-features for the instance i{“him”, “the man”}

the candidate in the parse tree. It only in-
cludes the nodes occurring in the shortest
path connecting the pronoun and the candi-
date, via the nearest commonly commanding
node. For example, considering the sentence
“The man in the room saw him.”, the struc-
tured feature for the instance i{“him”,“the
man”} is circled with dash lines as shown in
the leftmost picture of Figure 1.

Simple-Expansion Min-Expansion could, to
some degree, describe the syntactic relation-
ships between the candidate and pronoun.
However, it is incapable of capturing the
syntactic properties of the candidate or
the pronoun, because the tree structure
surrounding the expression is not taken into
consideration. To incorporate such infor-
mation, featureSimple-Expansionnot only
contains all the nodes inMin-Expansion, but
also includes the first-level children of these
nodes2. The middle of Figure 1 shows such a
feature for i{“him”, ”the man”}. We can see
that the nodes “PP” (for “in the room”) and
“VB” (for “saw”) are included in the feature,
which provides clues that the candidate is
modified by a prepositional phrase and the
pronoun is the object of a verb.

Full-Expansion This feature focusses on the
whole tree structure between the candidate
and pronoun. It not only includes all the
nodes in Simple-Expansion, but also the
nodes (beneath the nearest commanding par-
ent) that cover the words between the candi-
date and the pronoun3. Such a feature keeps
the most information related to the pronoun

2If the pronoun and the candidate are not in the same sen-
tence, we will not include the nodes denoting the sentences
before the candidate or after the pronoun.

3We will not expand the nodes denoting the sentences
other than where the pronoun and the candidate occur.

and candidate pair. The rightmost picture of
Figure 1 shows the structure for featureFull-
Expansionof i{“him”, ”the man”}. As illus-
trated, different from inSimple-Expansion,
the subtree of “PP” (for “in the room”) is
fully expanded and all its children nodes are
included inFull-Expansion.

Note that to distinguish from other words, we
explicitly mark up in the structured feature the
pronoun and the antecedent candidate under con-
sideration, by appending a string tag “ANA” and
“CANDI” in their respective nodes (e.g.,“NN-
CANDI” for “man” and “PRP-ANA” for “him” as
shown in Figure 1).

4.3 Structural Kernel and Composite Kernel

To calculate the similarity between two structured
features, we use the convolution tree kernel that is
defined by Collins and Duffy (2002) and Moschitti
(2004). Given two trees, the kernel will enumerate
all their subtrees and use the number of common
subtrees as the measure of the similarity between
the trees. As has been proved, the convolution
kernel can be efficiently computed in polynomial
time.

The above tree kernel only aims for the struc-
tured feature. We also need a composite kernel
to combine together the structured feature and the
normal features described in Section 3.1. In our
study we define the composite kernel as follows:

Kc(x1, x2) =
Kn(x1, x2)
|Kn(x1, x2)| ∗

Kt(x1, x2)
|Kt(x1, x2)|(2)

whereKt is the convolution tree kernel defined
for the structured feature, andKn is the kernel
applied on the normal features. Both kernels are
divided by their respective length4 for normaliza-
tion. The new composite kernelKc, defined as the

4The length of a kernelK is defined as|K(x1, x2)| =√
K(x1, x1) ∗K(x2, x2)
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multiplier of normalizedKt andKn, will return a
value close to 1 only if both the structured features
and the normal features from the two vectors have
high similarity under their respective kernels.

5 Experiments and Discussions

5.1 Experimental Setup

In our study we focussed on the third-person
pronominal anaphora resolution. All the exper-
iments were done on the ACE-2 V1.0 corpus
(NIST, 2003), which contain two data sets, train-
ing and devtest, used for training and testing re-
spectively. Each of these sets is further divided
into three domains: newswire (NWire), newspa-
per (NPaper), and broadcast news (BNews).

An input raw text was preprocessed automati-
cally by a pipeline of NLP components, including
sentence boundary detection, POS-tagging, Text
Chunking and Named-Entity Recognition. The
texts were parsed using the maximum-entropy-
based Charniak parser (Charniak, 2000), based on
which the structured features were computed au-
tomatically. For learning, the SVM-Light soft-
ware (Joachims, 1999) was employed with the
convolution tree kernel implemented by Moschitti
(2004). All classifiers were trained with default
learning parameters.

The performance was evaluated based on the
metric success, the ratio of the number of cor-
rectly resolved5 anaphor over the number of all
anaphors. For each anaphor, the NPs occurring
within the current and previous two sentences
were taken as the initial antecedent candidates.
Those with mismatched number and gender agree-
ments were filtered from the candidate set. Also,
pronouns or NEs that disagreed in person with the
anaphor were removed in advance. For training,
there were 1207, 1440, and 1260 pronouns with
non-empty candidate set found pronouns in the
three domains respectively, while for testing, the
number was 313, 399 and 271. On average, a
pronoun anaphor had 6∼9 antecedent candidates
ahead. Totally, we got around 10k, 13k and 8k
training instances for the three domains.

5.2 Baseline Systems

Table 2 lists the performance of different systems.
We first tested Hobbs’ algorithm (Hobbs, 1978).

5An anaphor was deemed correctly resolved if the found
antecedent is in the same coreference chain of the anaphor.

NWire NPaper BNews
Hobbs (1978) 66.1 66.4 72.7

NORM 74.4 77.4 74.2
NORM MaxEnt 72.8 77.9 75.3

NORM C5 71.9 75.9 71.6
S Min 76.4 81.0 76.8

S Simple 73.2 82.7 82.3
S Full 73.2 80.5 79.0

NORM+S Min 77.6 82.5 82.3
NORM+S Simple 79.2 82.7 82.3

NORM+S Full 81.5 83.2 81.5

Table 2: Results of the syntactic structured fea-
tures

Described in Section 2, the algorithm uses heuris-
tic rules to search the parse tree for the antecedent,
and will act as a good baseline to compare with the
learned-based approach with the structured fea-
ture. As shown in the first line of Table 2, Hobbs’
algorithm obtains 66%∼72% success rates on the
three domains.

The second block of Table 2 shows the baseline
system (NORM) that uses only the normal features
listed in Table 1. Throughout our experiments, we
applied the polynomial kernel on the normal fea-
tures to learn the SVM classifiers. In the table we
also compared the SVM-based results with those
using other learning algorithms, i.e., Maximum
Entropy (Maxent) and C5 decision tree, which are
more commonly used in the anaphora resolution
task.

As shown in the table, the system with normal
features (NORM) obtains 74%∼77% success rates
for the three domains. The performance is simi-
lar to other published results like those by Keller
and Lapata (2003), who adopted a similar fea-
ture set and reported around 75% success rates
on the ACE data set. The comparison between
different learning algorithms indicates that SVM
can work as well as or even better than Maxent
(NORM MaxEnt) or C5 (NORMC5).

5.3 Systems with Structured Features

The last two blocks of Table 2 summarize the re-
sults using the three syntactic structured features,
i.e, Min Expansion(S MIN), SimpleExpansion
(S SIMPLE) andFull Expansion(S FULL). Be-
tween them, the third block is for the systems us-
ing the individual structured feature alone. We
can see that all the three structured features per-
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NWire NPaper BNews
Sentence Distance 0 1 2 0 1 2 0 1 2
(Number of Prons) (192) (102) (19) (237) (147) (15) (175) (82) (14)

NORM 80.2 72.5 26.3 81.4 75.5 33.3 80.0 65.9 50.0
S Simple 79.7 70.6 21.1 87.3 81.0 26.7 89.7 70.7 57.1

NORM+S Simple 85.4 76.5 31.6 87.3 79.6 40.0 88.6 74.4 50.0

Table 3: The resolution results for pronouns with antecedent in different sentences apart

NWire NPaper BNews
Type person neuter person neuter person neuter

(Number of Prons) (171) (142) (250) (149) (153) (118)
NORM 81.9 65.5 80.0 73.2 74.5 73.7

S Simple 81.9 62.7 83.2 81.9 82.4 82.2
NORM+S Simple 87.1 69.7 83.6 81.2 86.9 76.3

Table 4: The resolution results for different types of pronouns

form better than the normal features for NPaper
(up to 5.3%success) and BNews (up to 8.1%suc-
cess), or equally well (±1 ∼ 2% in success) for
NWire. When used together with the normal fea-
tures, as shown in the last block, the three struc-
tured features all outperform the baselines. Es-
pecially, the combinations of NORM+SSIMPLE
and NORM+SFULL can achieve significantly6

better results than NORM, with the success rate
increasing by (4.8%, 5.3% and 8.1%) and (7.1%,
5.8%, 7.2%) respectively. All these results prove
that the structured syntactic feature is effective for
pronoun resolution.

We further compare the performance of the
three different structured features. As shown in
Table 2, when used together with the normal
features,Full Expansiongives the highest suc-
cess rates in NWire and NPaper, but neverthe-
less the lowest in BNews. This should be be-
cause featureFull-Expansion captures a larger
portion of the parse trees, and thus can provide
more syntactic information thanMin Expansion
or SimpleExpansion. However, if the texts are
less-formally structured as those in BNews,Full-
Expansionwould inevitably involve more noises
and thus adversely affect the resolution perfor-
mance. By contrast, featureSimpleExpansion
would achieve balance between the information
and the noises to be introduced: from Table 2 we
can find that compared with the other two features,
SimpleExpansionis capable of producing aver-
age results for all the three domains. And for this

6p < 0.05 by a 2-tailedt test.

reason, our subsequent reports will focus onSim-
ple Expansion, unless otherwise specified.

As described, to compute the structured fea-
ture, parse trees for different sentences are con-
nected to form a large tree for the text. It would
be interesting to find how the structured feature
works for pronouns whose antecedents reside in
different sentences. For this purpose we tested
the success rates for the pronouns with the clos-
est antecedent occurring in the same sentence,
one-sentence apart, and two-sentence apart. Ta-
ble 3 compares the learning systems with/without
the structured feature present. From the table,
for all the systems, the success rates drop with
the increase of the distances between the pro-
noun and the antecedent. However, in most cases,
adding the structured feature would bring consis-
tent improvement against the baselines regardless
of the number of sentence distance. This observa-
tion suggests that the structured syntactic informa-
tion is helpful for both intra-sentential and inter-
sentential pronoun resolution.

We were also concerned about how the struc-
tured feature works for different types of pro-
nouns. Table 4 lists the resolution results for two
types of pronouns: person pronouns (i.e., “he”,
“she”) and neuter-gender pronouns (i.e., “it” and
“they”). As shown, with the structured feature in-
corporated, the system NORM+SSimple can sig-
nificantly boost the performance of the baseline
(NORM), for both personal pronoun and neuter-
gender pronoun resolution.
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Figure 2: Learning curves of systems with different features

5.4 Learning Curves

Figure 2 plots the learning curves for the sys-
tems with three feature sets, i.e, normal features
(NORM), structured feature alone (SSimple),
and combined features (NORM+SSimple). We
trained each system with different number of in-
stances from 1k, 2k, 3k, . . . , till the full size. Each
point in the figures was the average over two trails
with instances selected forwards and backwards
respectively. From the figures we can find that
(1) Used in combination (NORM+SSimple), the
structured feature shows superiority over NORM,
achieving results consistently better than the nor-
mal features (NORM) do in all the three domains.
(2) With training instances above 3k, the struc-
tured feature, used either in isolation (SSimple)
or in combination (NORM+SSimple), leads to
steady increase in the success rates and exhibit
smoother learning curves than the normal features
(NORM). These observations further prove the re-
liability of the structured feature in pronoun reso-
lution.

5.5 Feature Analysis

In our experiment we were also interested to com-
pare the structured feature with the normal flat
features extracted from the parse tree, like fea-
ture Subjectand Object. For this purpose we
took out these two grammatical features from the
normal feature set, and then trained the systems
again. As shown in Table 5, the two grammatical-
role features are important for the pronoun resolu-
tion: removing these features results in up to 5.7%
(NWire) decrease insuccess. However, when the
structured feature is included, the loss insuccess
reduces to 1.9% and 1.1% for NWire and BNews,
and a slight improvement can even be achieved for
NPaper. This indicates that the structured feature
can effectively provide the syntactic information

NWire NPaper BNews
NORM 74.4 77.4 74.2

NORM - subj/obj 68.7 76.2 72.7

NORM + S Simple 79.2 82.7 82.3
NORM + S Simple - subj/obj 77.3 83.0 81.2

NORM + Luo05 75.7 77.9 74.9

Table 5: Comparison of the structured feature and
the flat features extracted from parse trees

Feature Parser NWire NPaper BNews
Charniak00 73.2 82.7 82.3

S Simple Collins99 75.1 83.2 80.4

NORM+ Charniak00 79.2 82.7 82.3
S Simple Collins99 80.8 81.5 82.3

Table 6: Results using different parsers

important for pronoun resolution.

We also tested the flat syntactic feature set pro-
posed in Luo and Zitouni (2005)’s work. As de-
scribed in Section 2, the feature set is inspired
the binding theory, including those features like
whether the candidate is ccommanding the pro-
noun, and the counts of “NP”, “VP”, “S” nodes
in the commanding path. The last line of Table 5
shows the results by adding these features into the
normal feature set. In line with the reports in (Luo
and Zitouni, 2005) we do observe the performance
improvement against the baseline (NORM) for all
the domains. However, the increase in the success
rates (up to 1.3%) is not so large as by adding the
structured feature (NORM+SSimple) instead.

5.6 Comparison with Different Parsers

As mentioned, the above reported results were
based on Charniak (2000)’s parser. It would be
interesting to examine the influence of different
parsers on the resolution performance. For this
purpose, we also tried the parser by Collins (1999)
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(Mode II)7, and the results are shown in Table 6.
We can see that Charniak (2000)’s parser leads to
higher success rates for NPaper and BNews, while
Collins (1999)’s achieves better results for NWire.
However, the difference between the results of the
two parsers is not significant (less than 2%suc-
cess) for the three domains, no matter whether the
structured feature is used alone or in combination.

6 Conclusion

The purpose of this paper is to explore how to
make use of the structured syntactic knowledge to
do pronoun resolution. Traditionally, syntactic in-
formation from parse trees is represented as a set
of flat features. However, the features are usu-
ally selected and defined by heuristics and may
not necessarily capture all the syntactic informa-
tion provided by the parse trees. In the paper, we
propose a kernel-based method to incorporate the
information from parse trees. Specifically, we di-
rectly utilize the syntactic parse tree as a struc-
tured feature, and then apply kernels to such a fea-
ture, together with other normal features, to learn
the decision classifier and do the resolution. Our
experimental results on ACE data set show that
the system with the structured feature included
can achieve significant increase in the success rate
by around 5%∼8%, for all the different domains.
The deeper analysis on various factors like training
size, feature set or parsers further proves that the
structured feature incorporated with our kernel-
based method is reliably effective for the pronoun
resolution task.
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Abstract

It has previously been assumed in the
psycholinguistic literature that finite-state
models of language are crucially limited
in their explanatory power by the local-
ity of the probability distribution and the
narrow scope of information used by the
model. We show that a simple computa-
tional model (a bigram part-of-speech tag-
ger based on the design used by Corley
and Crocker (2000)) makes correct predic-
tions on processing difficulty observed in a
wide range of empirical sentence process-
ing data. We use two modes of evaluation:
one that relies on comparison with a con-
trol sentence, paralleling practice in hu-
man studies; another that measures prob-
ability drop in the disambiguating region
of the sentence. Both are surprisingly
good indicators of the processing difficulty
of garden-path sentences. The sentences
tested are drawn from published sources
and systematically explore five different
types of ambiguity: previous studies have
been narrower in scope and smaller in
scale. We do not deny the limitations of
finite-state models, but argue that our re-
sults show that their usefulness has been
underestimated.

1 Introduction

The main purpose of the current study is to inves-
tigate the extent to which a probabilistic part-of-
speech (POS) tagger can correctly model human
sentence processing data. Syntactically ambigu-
ous sentences have been studied in great depth in
psycholinguistics because the pattern of ambigu-
ity resolution provides a window onto the human

sentence processing mechanism (HSPM).Prima
facie it seems unlikely that such a tagger will be
adequate, because almost all previous researchers
have assumed, following standard linguistic the-
ory, that a formally adequate account of recur-
sive syntactic structure is an essential component
of any model of the behaviour. In this study, we
tested a bigram POS tagger on different types of
structural ambiguities and (as a sanity check) to
the well-known asymmetry of subject and object
relative clause processing.

Theoretically, the garden-path effect is defined
as processing difficulty caused by reanalysis. Em-
pirically, it is attested as comparatively slower
reading time or longer eye fixation at a disam-
biguating region in an ambiguous sentence com-
pared to its control sentences (Frazier and Rayner,
1982; Trueswell, 1996). That is, the garden-path
effect detected in many human studies, in fact, is
measured through a “comparative” method.

This characteristic of the sentence processing
research design is reconstructed in the current
study using a probabilistic POS tagging system.
Under the assumption that larger probability de-
crease indicates slower reading time, the test re-
sults suggest that the probabilistic POS tagging
system can predict reading time penalties at the
disambiguating region of garden-path sentences
compared to that of non-garden-path sentences
(i.e. control sentences).

2 Previous Work

Corley and Crocker (2000) present a probabilistic
model of lexical category disambiguation based on
a bigram statistical POS tagger. Kim et al. (2002)
suggest the feasibility of modeling human syntac-
tic processing as lexical ambiguity resolution us-
ing a syntactic tagging system called Super-Tagger
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(Joshi and Srinivas, 1994; Bangalore and Joshi,
1999). Probabilistic parsing techniques also have
been used for sentence processing modeling (Ju-
rafsky, 1996; Narayanan and Jurafsky, 2002; Hale,
2001; Crocker and Brants, 2000). Jurafsky (1996)
proposed a probabilistic model of HSPM using
a parallel beam-search parsing technique based
on the stochastic context-free grammar (SCFG)
and subcategorization probabilities. Crocker and
Brants (2000) used broad coverage statistical pars-
ing techniques in their modeling of human syn-
tactic parsing. Hale (2001) reported that a proba-
bilistic Earley parser can make correct predictions
of garden-path effects and the subject/object rela-
tive asymmetry. These previous studies have used
small numbers of examples of, for example, the
Reduced-relative clause ambiguity and the Direct-
Object/Sentential-Complement ambiguity.

The current study is closest in spirit to a pre-
vious attempt to use the technology of part-
of-speech tagging (Corley and Crocker, 2000).
Among the computational models of the HSPM
mentioned above, theirs is the simplest. They
tested a statistical bigram POS tagger on lexi-
cally ambiguous sentences to investigate whether
the POS tagger correctly predicted reading-time
penalty. When a previously preferred POS se-
quence is less favored later, the tagger makes a re-
pair. They claimed that the tagger’s reanalysis can
model the processing difficulty in human’s disam-
biguating lexical categories when there exists a
discrepancy between lexical bias and resolution.

3 Experiments

In the current study, Corley and Crocker’s model
is further tested on a wider range of so-called
structural ambiguity types. A Hidden Markov
Model POS tagger based on bigrams was used.
We made our own implementation to be sure of
getting as close as possible to the design of Cor-
ley and Crocker (2000). Given a word string,
w0, w1, · · · , wn, the tagger calculates the proba-
bility of every possible tag path,t0, · · · , tn. Un-
der the Markov assumption, the joint probability
of the given word sequence and each possible POS
sequence can be approximated as a product of con-
ditional probability and transition probability as
shown in (1).

(1) P (w0, w1, · · · , wn, t0, t1, · · · , tn)

≈ Πn

i=1
P (wi|ti) · P (ti|ti−1), wheren ≥ 1.

Using the Viterbi algorithm (Viterbi, 1967), the
tagger finds the most likely POS sequence for a
given word string as shown in (2).

(2) arg max P (t0, t1, · · · , tn|w0, w1, · · · , wn, µ).

This is known technology, see Manning and
Scḧutze (1999), but the particular use we make
of it is unusual. The tagger takes a word string
as an input, outputs the most likely POS sequence
and the final probability. Additionally, it presents
accumulated probability at each word break and
probability re-ranking, if any. Note that the run-
ning probability at the beginning of a sentence will
be 1, and will keep decreasing at each word break
since it is a product of conditional probabilities.

We tested the predictability of the model on em-
pirical reading data with the probability decrease
and the presence or absence of probability re-
ranking. Adopting the standard experimental de-
sign used in human sentence processing studies,
where word-by-word reading time or eye-fixation
time is compared between an experimental sen-
tence and its control sentence, this study compares
probability at each word break between a pair of
sentences. Comparatively faster or larger drop of
probability is expected to be a good indicator of
comparative processing difficulty. Probability re-
ranking, which is a simplified model of the reanal-
ysis process assumed in many human studies, is
also tested as another indicator of garden-path ef-
fect. Given a word string, all the possible POS
sequences compete with each other based on their
probability. Probability re-ranking occurs when an
initially dispreferred POS sub-sequence becomes
the preferred candidate later in the parse, because
it fits in better with later words.

The model parameters, P (wi|ti) and
P (ti|ti−1), are estimated from a small sec-
tion (970,995 tokens,47,831 distinct words) of
the British National Corpus (BNC), which is a
100 million-word collection of British English,
both written and spoken, developed by Oxford
University Press (Burnard, 1995). The BNC was
chosen for training the model because it is a
POS-annotated corpus, which allows supervised
training. In the implementation we use log
probabilities to avoid underflow, and we report
log probabilities in the sequel.

3.1 Hypotheses

If the HSPM is affected by frequency information,
we can assume that it will be easier to process
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events with higher frequency or probability com-
pared to those with lower frequency or probability.
Under this general assumption, the overall diffi-
culty of a sentence is expected to be measured or
predicted by the mean size of probability decrease.
That is, probability will drop faster in garden-path
sentences than in control sentences (e.g. unam-
biguous sentences or ambiguous but non-garden-
path sentences).

More importantly, the probability decrease pat-
tern at disambiguating regions will predict the
trends in the reading time data. All other things be-
ing equal, we might expect a reading time penalty
when the size of the probability decrease at the
disambiguating region in garden-path sentences is
greater compared to the control sentences. This is
a simple and intuitive assumption that can be eas-
ily tested. We could have formed the sum over
all possible POS sequences in association with the
word strings, but for the present study we simply
used the Viterbi path: justifying this because this
is the best single-path approximation to the joint
probability.

Lastly, re-ranking of POS sequences is expected
to predict reanalysis of lexical categories. This is
because re-ranking in the tagger is parallel to re-
analysis in human subjects, which is known to be
cognitively costly.

3.2 Materials

In this study, five different types of ambiguity were
tested including Lexical Category ambiguity, Re-
duced Relative ambiguity (RR ambiguity), Prepo-
sitional Phrase Attachment ambiguity (PP ambi-
guity), Direct-Object/Sentential-Complement am-
biguity (DO/SC ambiguity), and Clausal Bound-
ary ambiguity. The following are example sen-
tences for each ambiguity type, shown with the
ambiguous region italicized and the disambiguat-
ing region bolded. All of the example sentences
are garden-path sentneces.

(3) Lexical Category ambiguity
The foreman knows that the warehouse
pricesthe beer very modestly.

(4) RR ambiguity
The horseracedpast the barnfell.

(5) PP ambiguity
Katie laid the dresson the flooronto the bed.

(6) DO/SC ambiguity
He forgot Pamneeded a ride with him.

(7) Clausal Boundary ambiguity
Though George kept on readingthe storyre-
ally bothered him.

There are two types of control sentences: unam-
biguous sentences and ambiguous but non-garden-
path sentences as shown in the examples below.
Again, the ambiguous region is italicized and the
disambiguating region is bolded.

(8) Garden-Path Sentence
The horseracedpast the barnfell.

(9) Ambiguous but Non-Garden-Path Control
The horseracedpast the barnand fell.

(10) Unambiguous Control
The horse that was raced past the barn fell.

Note that the garden-path sentence (8) and its
ambiguous control sentence (9) share exactly the
same word sequence except for the disambiguat-
ing region. This allows direct comparison of prob-
ability at the critical region (i.e. disambiguating
region) between the two sentences. Test materi-
als used in experimental studies are constructed in
this way in order to control extraneous variables
such as word frequency. We use these sentences
in the same form as the experimentalists so we in-
herit their careful design.

In this study, a total of 76 sentences were tested:
10 for lexical category ambiguity, 12 for RR am-
biguity, 20 for PP ambiguity, 16 for DO/SC am-
biguity, and 18 for clausal boundary ambiguity.
This set of materials is, to our knowledge, the
most comprehensive yet subjected to this type of
study. The sentences are directly adopted from
various psycholinguistic studies (Frazier, 1978;
Trueswell, 1996; Frazier and Clifton, 1996; Fer-
reira and Clifton, 1986; Ferreira and Henderson,
1986).

As a baseline test case of the tagger, the
well-established asymmetry between subject- and
object-relative clauses was tested as shown in (11).

(11) a. The editor who kicked the writer fired
the entire staff. (Subject-relative)

b. The editor who the writer kicked fired
the entire staff. (Object-relative)

The reading time advantage of subject-relative
clauses over object-relative clauses is robust in En-
glish (Traxler et al., 2002) as well as other lan-
guages (Mak et al., 2002; Homes et al., 1981). For
this test, materials from Traxler et al. (2002) (96
sentences) are used.
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4 Results

4.1 The Probability Decrease per Word

Unambiguous sentences are usually longer than
garden-path sentences. To compare sentences of
different lengths, the joint probability of the whole
sentence and tags was divided by the number of
words in the sentence. The result showed that
the average probability decrease was greater in
garden-path sentences compared to their unam-
biguous control sentences. This indicates that
garden-path sentences are more difficult than un-
ambiguous sentences, which is consistent with
empirical findings.

Probability decreased faster in object-relative
sentences than in subject relatives as predicted.
In the psycholinguistics literature, the comparative
difficulty of object-relative clauses has been ex-
plained in terms of verbal working memory (King
and Just, 1991), distance between the gap and the
filler (Bever and McElree, 1988), or perspective
shifting (MacWhinney, 1982). However, the test
results in this study provide a simpler account for
the effect. That is, the comparative difficulty of
an object-relative clause might be attributed to its
less frequent POS sequence. This account is par-
ticularly convincing since each pair of sentences in
the experiment share the exactly same set of words
except their order.

4.2 Probability Decrease at the
Disambiguating Region

A total of 30 pairs of a garden-path sentence
and its ambiguous, non-garden-path control were
tested for a comparison of the probability decrease
at the disambiguating region. In 80% of the cases,
the probability drops more sharply in garden-path
sentences than in control sentences at the critical
word. The test results are presented in (12) with
the number of test sets for each ambiguous type
and the number of cases where the model correctly
predicted reading-time penalty of garden-path sen-
tences.

(12) Ambiguity Type (Correct Predictions/Test
Sets)
a. Lexical Category Ambiguity (4/4)
b. PP Ambiguity (10/10)
c. RR Ambiguity (3/4)
d. DO/SC Ambiguity (4/6)
e. Clausal Boundary Ambiguity (3/6)
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Figure 1: Probability Transition (Garden-Path vs.
Non Garden-Path)
(a)− ◦ − : Non-Garden-Path (Adjunct PP),− ∗ − : Garden
-Path (Complement PP)
(b) − ◦ − : Non-Garden-Path (DO-Biased, DO-Resolved),
− ∗ − : Garden-Path (DO-Biased, SC-Resolved)

The two graphs in Figure 1 illustrate the com-
parison of probability decrease between a pair of
sentence. They-axis of both graphs in Figure 1
is log probability. The first graph compares the
probability drop for the prepositional phrase (PP)
attachment ambiguity (Katie put the dress on the
floor and/onto the bed....) The empirical result
for this type of ambiguity shows that reading time
penalty is observed when the second PP,onto the
bed, is introduced, and there is no such effect for
the other sentence. Indeed, the sharper probability
drop indicates that the additional PP is less likely,
which makes a prediction of a comparative pro-
cessing difficulty. The second graph exhibits the
probability comparison for the DO/SC ambiguity.
The verbforget is a DO-biased verb and thus pro-
cessing difficulty is observed when it has a senten-
tial complement. Again, this effect was replicated
here.

The results showed that the disambiguating
word given the previous context is more difficult
in garden-path sentences compared to control sen-
tences. There are two possible explanations for
the processing difficulty. One is that the POS se-
quence of a garden-path sentence is less probable
than that of its control sentence. The other account
is that the disambiguating word in a garden-path
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sentence is a lower frequency word compared to
that of its control sentence.

For example, slower reading time was observed
in (13a) and (14a) compared to (13b) and (14b) at
the disambiguating region that is bolded.

(13) Different POS at the Disambiguating Region

a. Katie laid the dresson the floor onto
(−57.80) the bed.

b. Katie laid the dresson the floor after
(−55.77) her mother yelled at her.

(14) Same POS at the Disambiguating Region

a. The umpire helped the childon (−42.77)
third base.

b. The umpire helped the childto (−42.23)
third base.

The log probability for each disambiguating word
is given at the end of each sentence. As ex-
pected, the probability at the disambiguating re-
gion in (13a) and (14a) is lower than in (13b) and
(14b) respectively. The disambiguating words in
(13) have different POS’s; Preposition in (13a) and
Conjunction (13b). This suggests that the prob-
abilities of different POS sequences can account
for different reading time at the region. In (14),
however, both disambiguating words are the same
POS (i.e. Preposition) and the POS sequences
for both sentences are identical. Instead, “on”
and “to”, have different frequencies and this in-
formation is reflected in the conditional probabil-
ity P (wordi|state). Therefore, the slower read-
ing time in (14b) might be attributable to the lower
frequency of the disambiguating word, “to” com-
pared to “on”.

4.3 Probability Re-ranking

The probability re-ranking reported in Corley and
Crocker (2000) was replicated. The tagger suc-
cessfully resolved the ambiguity by reanalysis
when the ambiguous word was immediately fol-
lowed by the disambiguating word (e.g. With-
out her he was lost.). If the disambiguating word
did not immediately follow the ambiguous region,
(e.g. Withouther contributionswould be very in-
adequate.) the ambiguity is sometimes incorrectly
resolved.

When revision occurred, probability dropped
more sharply at the revision point and at the dis-
ambiguation region compared to the control sen-
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Figure 2: Probability Transition in the RR Ambi-
guity
(a) − ◦ − : Non-Garden-Path (Past Tense Verb),− ∗ − :

Garden-Path (Past Participle)
(b) − ◦ − : Non-Garden-Path (Past Tense Verb),− ∗ − :

Garden-Path, (Past Participle)

tences. When the ambiguity was not correctly re-
solved, the probability comparison correctly mod-
eled the comparative difficulty of the garden-path
sentences

Of particular interest in this study is RR ambi-
guity resolution. The tagger predicted the process-
ing difficulty of the RR ambiguity with probabil-
ity re-ranking. That is, the tagger initially favors
the main-verb interpretation for the ambiguous-ed
form, and later it makes a repair when the ambigu-
ity is resolved as a past-participle.

In the first graph of Figure 2, “chased” is re-
solved as a past participle also with a revision
since the disambiguating word “by” is immedi-
ately following. When revision occurred, proba-
bility dropped more sharply at the revision point
and at the disambiguation region compared to the
control sentences. When the disambiguating word
is not immediately followed by the ambiguous
word as in the second graph of Figure 2, the ambi-
guity was not resolved correctly, but the probaba-
biltiy decrease at the disambiguating regions cor-
rectly predict that the garden-path sentence would
be harder.

The RR ambiguity is often categorized as a syn-
tactic ambiguity, but the results suggest that the
ambiguity can be resolved locally and its pro-
cessing difficulty can be detected by a finite state
model. This suggests that we should be cautious
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in assuming that a structural explanation is needed
for the RR ambiguity resolution, and it could be
that similar cautions are in order for other ambi-
guities usually seen as syntactic.

Although the probability re-ranking reported in
the previous studies (Corley and Crocker, 2000;
Frazier, 1978) is correctly replicated, the tagger
sometimes made undesired revisions. For exam-
ple, the tagger did not make a repair for the sen-
tenceThe friend accepted by the man was very im-
pressed(Trueswell, 1996) becauseacceptedis bi-
ased as a past participle. This result is compatible
with the findings of Trueswell (1996). However,
the bias towards past-participle produces a repair
in the control sentence, which is unexpected. For
the sentence,The friend accepted the man who
was very impressed, the tagger showed a repair
since it initially preferred a past-participle analy-
sis foracceptedand later it had to reanalyze. This
is a limitation of our model, and does not match
any previous empirical finding.

5 Discussion

The current study explores Corley and Crocker’s
model(2000) further on the model’s account of hu-
man sentence processing data seen in empirical
studies. Although there have been studies on a
POS tagger evaluating it as a potential cognitive
module of lexical category disambiguation, there
has been little work that tests it as a modeling tool
of syntactically ambiguous sentence processing.

The findings here suggest that a statistical POS
tagging system is more informative than Crocker
and Corley demonstrated. It has a predictive
power of processing delay not only for lexi-
cally ambiguous sentences but also for structurally
garden-pathed sentences. This model is attractive
since it is computationally simpler and requires
few statistical parameters. More importantly, it is
clearly defined what predictions can be and can-
not be made by this model. This allows system-
atic testability and refutability of the model un-
like some other probabilistic frameworks. Also,
the model training and testing is transparent and
observable, and true probability rather than trans-
formed weights are used, all of which makes it
easy to understand the mechanism of the proposed
model.

Although the model we used in the current
study is not a novelty, the current work largely dif-
fers from the previous study in its scope of data

used and the interpretation of the model for human
sentence processing. Corley and Crocker clearly
state that their model is strictly limited to lexical
ambiguity resolution, and their test of the model
was bounded to the noun-verb ambiguity. How-
ever, the findings in the current study play out dif-
ferently. The experiments conducted in this study
are parallel to empirical studies with regard to the
design of experimental method and the test mate-
rial. The garden-path sentences used in this study
are authentic, most of them are selected from the
cited literature, not conveniently coined by the
authors. The word-by-word probability compar-
ison between garden-path sentences and their con-
trols is parallel to the experimental design widely
adopted in empirical studies in the form of region-
by-region reading or eye-gaze time comparison.
In the word-by-word probability comparison, the
model is tested whether or not it correctly pre-
dicts the comparative processing difficulty at the
garden-path region. Contrary to the major claim
made in previous empirical studies, which is that
the garden-path phenomena are either modeled by
syntactic principles or by structural frequency, the
findings here show that the same phenomena can
be predicted without such structural information.

Therefore, the work is neither a mere extended
application of Corley and Crocker’s work to a
broader range of data, nor does it simply con-
firm earlier observations that finite state machines
might accurately account for psycholinguistic re-
sults to some degree. The current study provides
more concrete answers to what finite state machine
is relevant to what kinds of processing difficulty
and to what extent.

6 Future Work

Even though comparative analysis is a widely
adopted research design in experimental studies,
a sound scientific model should be independent
of this comparative nature and should be able to
make systematic predictions. Currently, proba-
bility re-ranking is one way to make systematic
module-internal predictions about the garden-path
effect. This brings up the issue of encoding more
information in lexical entries and increasing am-
biguity so that other ambiguity types also can be
disambiguated in a similar way via lexical cate-
gory disambiguation. This idea has been explored
as one of the lexicalist approaches to sentence pro-
cessing (Kim et al., 2002; Bangalore and Joshi,
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1999).

Kim et al. (2002) suggest the feasibility of mod-
eling structural analysis as lexical ambiguity res-
olution. They developed a connectionist neural
network model of word recognition, which takes
orthographic information, semantic information,
and the previous two words as its input and out-
puts a SuperTag for the current word. A Su-
perTag is an elementary syntactic tree, or sim-
ply a structural description composed of features
like POS, the number of complements, category
of each complement, and the position of comple-
ments. In their view, structural disambiguation
is simply another type of lexical category disam-
biguation, i.e. SuperTag disambiguation. When
applied to DO/SC ambiguous fragments, such as
“The economist decided ...”, their model showed
a general bias toward the NP-complement struc-
ture. This NP-complement bias was overcome by
lexical information from high-frequency S-biased
verbs, meaning that if the S-biased verb was a high
frequency word, it was correctly tagged, but if the
verb had low frequency, then it was more likely to
be tagged as NP-complement verb. This result is
also reported in other constraint-based model stud-
ies (e.g. Juliano and Tanenhaus (1994)), but the
difference between the previous constraint-based
studies and Kim et. al is that the result of the
latter is based on training of the model on nois-
ier data (sentences that were not tailored to the
specific research purpose). The implementation of
SuperTag advances the formal specification of the
constraint-based lexicalist theory. However, the
scope of their sentence processing model is lim-
ited to the DO/SC ambiguity, and the description
of their model is not clear. In addition, their model
is far beyond a simple statistical model: the in-
teraction of different sources of information is not
transparent. Nevertheless, Kim et al. (2002) pro-
vides a future direction for the current study and
a starting point for considering what information
should be included in the lexicon.

The fundamental goal of the current research is
to explore a model that takes the most restrictive
position on the size of parameters until additional
parameters are demanded by data. Equally impor-
tant, the quality of architectural simplicity should
be maintained. Among the different sources of
information manipulated by Kim et. al., the so-
called elementary structural information is consid-
ered as a reasonable and ideal parameter for ad-

dition to the current model. The implementation
and the evaluation of the model will be exactly the
same as a statistical POS tagger provided with a
large parsed corpus from which elementary trees
can be extracted.

7 Conclusion

Our studies show that, at least for the sample of
test materials that we culled from the standard lit-
erature, a statistical POS tagging system can pre-
dict processing difficulty in structurally ambigu-
ous garden-path sentences. The statistical POS
tagger was surprisingly effective in modeling sen-
tence processing data, given the locality of the
probability distribution. The findings in this study
provide an alternative account for the garden-path
effect observed in empirical studies, specifically,
that the slower processing times associated with
garden-path sentences are due in part to their rela-
tively unlikely POS sequences in comparison with
those of non-garden-path sentences and in part to
differences in the emission probabilities that the
tagger learns. One attractive future direction is to
carry out simulations that compare the evolution
of probabilities in the tagger with that in a theo-
retically more powerful model trained on the same
data, such as an incremental statistical parser (Kim
et al., 2002; Roark, 2001). In so doing we can
find the places where the prediction problem faced
both by the HSPM and the machines that aspire
to emulate it actually warrants the greater power
of structurally sensitive models, using this knowl-
edge to mine large corpora for future experiments
with human subjects.

We have not necessarily cast doubt on the hy-
pothesis that the HSPM makes crucial use of struc-
tural information, but we have demonstrated that
much of the relevant behavior can be captured in
a simple model. The ’structural’ regularities that
we observe are reasonably well encoded into this
model. For purposes of initial real-time process-
ing it could be that the HSPM is using a similar
encoding of structural regularities into convenient
probabilistic or neural form. It is as yet unclear
what the final form of a cognitively accurate model
along these lines would be, but it is clear from our
study that it is worthwhile, for the sake of clarity
and explicit testability, to consider models that are
simpler and more precisely specified than those
assumed by dominant theories of human sentence
processing.

55



Acknowledgments

This project was supported by the Cognitive Sci-
ence Summer 2004 Research Award at the Ohio
State University. We acknowledge support from
NSF grant IIS 0347799.

References

S. Bangalore and A. K. Joshi. Supertagging: an
approach to almost parsing.Computational Lin-
guistics, 25(2):237–266, 1999.

T. G. Bever and B. McElree. Empty categories
access their antecedents during comprehension.
Linguistic Inquiry, 19:35–43, 1988.

L Burnard. Users Guide for the British National
Corpus. British National Corpus Consortium,
Oxford University Computing Service, 1995.

S. Corley and M. W Crocker.The Modular Sta-
tistical Hypothesis: Exploring Lexical Category
Ambiguity. Architectures and Mechanisms for
Language Processing, M. Crocker, M. Picker-
ing. and C. Charles (Eds.) Cambridge Univer-
sity Press, 2000.

W. C. Crocker and T. Brants. Wide-coverage prob-
abilistic sentence processing, 2000.

F. Ferreira and C. Clifton. The independence of
syntactic processing.Journal of Memory and
Language, 25:348–368, 1986.

F. Ferreira and J. Henderson. Use of verb infor-
mation in syntactic parsing: Evidence from eye
movements and word-by-word self-paced read-
ing. Journal of Experimental Psychology, 16:
555–568, 1986.

L. Frazier. On comprehending sentences: Syntac-
tic parsing strategies.Ph.D. dissertation, Uni-
versity of Massachusetts, Amherst, MA, 1978.

L. Frazier and C. Clifton.Construal. Cambridge,
MA: MIT Press, 1996.

L. Frazier and K. Rayner. Making and correct-
ing errors during sentence comprehension: Eye
movements in the analysis of structurally am-
biguous sentences.Cognitive Psychology, 14:
178–210, 1982.

J. Hale. A probabilistic earley parser as a psy-
cholinguistic model. Proceedings of NAACL-
2001, 2001.

V. M. Homes, J. O’Regan, and K.G. Evensen. Eye
fixation patterns during the reading of relative
clause sentences.Journal of Verbal Learning
and Verbal Behavior, 20:417–430, 1981.

A. K. Joshi and B. Srinivas. Disambiguation of
super parts of speech (or supertags): almost

parsing. The Proceedings of the 15th Inter-
national Confer-ence on Computational Lin-
gusitics (COLING′94), pages 154–160, 1994.

C. Juliano and M.K. Tanenhaus. A constraint-
based lexicalist account of the subject-object at-
tachment preference.Journal of Psycholinguis-
tic Research, 23:459–471, 1994.

D Jurafsky. A probabilistic model of lexical and
syntactic access and disambiguation.Cognitive
Science, 20:137–194, 1996.

A. E. Kim, Bangalore S., and J. Trueswell. A com-
putational model of the grammatical aspects of
word recognition as supertagging. paola merlo
and suzanne stevenson (eds.).The Lexical Basis
of Sentence Processing: Formal, computational
and experimental issues, University of Geneva
University of Toronto:109–135, 2002.

J. King and M. A. Just. Individual differences in
syntactic processing: The role of working mem-
ory. Journal of Memory and Language, 30:580–
602, 1991.

B. MacWhinney. Basic syntactic processes.Lan-
guage acquisition; Syntax and semantics, S.
Kuczaj (Ed.), 1:73–136, 1982.

W. M. Mak, Vonk W., and H. Schriefers. The influ-
ence of animacy on relative clause processing.
Journal of Memory and Language,, 47:50–68,
2002.

C.D. Manning and H. Scḧutze. Foundations of
Statistical Natural Language Processing. The
MIT Press, Cambridge, Massachusetts, 1999.

S. Narayanan and D Jurafsky. A bayesian model
predicts human parse preference and reading
times in sentence processing.Proceedings
of Advances in Neural Information Processing
Systems, 2002.

B. Roark. Probabilistic top-down parsing and lan-
guage modeling.Computational Linguistics, 27
(2):249–276, 2001.

M. J. Traxler, R. K. Morris, and R. E. Seely. Pro-
cessing subject and object relative clauses: evi-
dence from eye movements.Journal of Memory
and Language, 47:69–90, 2002.

J. C. Trueswell. The role of lexical frequency
in syntactic ambiguity resolution.Journal of
Memory and Language, 35:556–585, 1996.

A. Viterbi. Error bounds for convolution codes and
an asymptotically optimal decoding algorithm.
IEEE Transactions of Information Theory, 13:
260–269, 1967.

56



Proceedings of the 21st International Conference on Computational Linguistics and 44th Annual Meeting of the ACL, pages 57–64,
Sydney, July 2006.c©2006 Association for Computational Linguistics

Acceptability Prediction by Means of Grammaticality Quantification

Philippe Blache, Barbara Hemforth & Stéphane Rauzy
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Abstract

We propose in this paper a method for
quantifying sentence grammaticality. The
approach based on Property Grammars,
a constraint-based syntactic formalism,
makes it possible to evaluate a grammat-
icality index for any kind of sentence, in-
cluding ill-formed ones. We compare on
a sample of sentences the grammaticality
indices obtained from PG formalism and
the acceptability judgements measured by
means of a psycholinguistic analysis. The
results show that the derived grammatical-
ity index is a fairly good tracer of accept-
ability scores.

1 Introduction

Syntactic formalisms make it possible to describe
precisely the question of grammaticality. When
a syntactic structure can be associated to a sen-
tence, according to a given grammar, we can de-
cide whether or not the sentence is grammatical.
In this conception, a language (be it natural or not)
is produced (or generated) by a grammar by means
of a specific mechanism, for example derivation.
However, when no structure can be built, nothing
can be said about the input to be parsed except,
eventually, the origin of the failure. This is a prob-
lem when dealing with non canonical inputs such
as spoken language, e-mails, non-native speaker
productions, etc. From this perspective, we need
robust approaches that are at the same time ca-
pable of describing precisely the form of the in-
put, the source of the problem and to continue the
parse. Such capabilities render it possible to arrive
at a precise evaluation of the grammaticality of the
input. In other words, instead of deciding on the

grammaticality of the input, we can give an indica-
tion of its grammaticality, quantified on the basis
of the description of the properties of the input.

This paper addresses the problem of ranking the
grammaticality of different sentences. This ques-
tion is of central importance for the understanding
of language processing, both from an automatic
and from a cognitive perspective. As for NLP,
ranking grammaticality makes it possible to con-
trol dynamically the parsing process (in choosing
the most adequate structures) or to find the best
structure among a set of solutions (in case of non-
deterministic approaches). Likewise the descrip-
tion of cognitive processes involved in language
processing by human has to explain how things
work when faced with unexpected or non canoni-
cal material. In this case too, we have to explain
why some productions are more acceptable and
easier to process than others.

The question of ranking grammaticality has
been addressed from time to time in linguistics,
without being a central concern. Chomsky, for
example, mentioned this problem quite regularly
(see for example (Chomsky75)). However he
rephrases it in terms of “degrees of ’belonging-
ness’ to the language”, a somewhat fuzzy notion
both formally and linguistically. More recently,
several approaches have been proposed illustrat-
ing the interest of describing these mechanisms
in terms of constraint violations. The idea con-
sists in associating weights to syntactic constraints
and to evaluate, either during or after the parse,
the weight of violated constraints. This approach
is at the basis of Linear Optimality Theory (see
(Keller00), and (Sorace05) for a more general per-
spective) in which grammaticality is judged on the
basis of the total weights of violated constraints. It
is then possible to rank different candidate struc-
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tures. A similar idea is proposed in the framework
of Constraint Dependency Grammar (see (Men-
zel98), (Schröder02)). In this case too, acceptabil-
ity is function of the violated constraints weights.

However, constraint violation cannot in itself
constitute a measure of grammaticality without
taking into account other parameters as well. The
type and the number of constraints that are sat-
isfied are of central importance in acceptability
judgment: a construction violating 1 constraint
and satisfying 15 of them is more acceptable than
one violating the same constraint but satisfying
only 5 others. In the same way, other informa-
tions such as the position of the violation in the
structure (whether it occurs in a deeply embedded
constituent or higher one in the structure) plays an
important role as well.

In this paper, we propose an approach over-
coming such limitations. It takes advantage of a
fully constraint-based syntactic formalism (called
Property Grammars, cf. (Blache05b)) that of-
fers the possibility of calculating a grammatical-
ity index, taking into account automatically de-
rived parameters as well as empirically determined
weights. This index is evaluated automatically and
we present a psycholinguistic study showing how
the parser predictions converge with acceptability
judgments.

2 Constraint-based parsing

Constraints are generally used in linguistics as a
control process, verifying that a syntactic struc-
ture (e.g. a tree) verifies some well-formedness
conditions. They can however play a more general
role, making it possible to express syntactic infor-
mation without using other mechanism (such as a
generation function). Property Grammars (noted
hereafter PG) are such a fully constraint-based for-
malism. In this approach, constraints stipulate dif-
ferent kinds of relation between categories such as
linear precedence, imperative co-occurrence, de-
pendency, repetition, etc. Each of these syntactic
relations corresponds to a type of constraint (also
called property):

• Linear precedence: Det ≺ N (a determiner
precedes the noun)

• Dependency: AP ; N (an adjectival phrase
depends on the noun)

• Requirement: V[inf] ⇒ to (an infinitive
comes with to)

• Exclusion: seems < ThatClause[subj] (the
verb seems cannot have That clause subjects)

• Uniqueness : UniqNP {Det} (the determiner
is unique in a NP)

• Obligation : ObligNP {N, Pro} (a pronoun or
a noun is mandatory in a NP)

• Constituency : ConstNP {Det, AP, N, Pro}
(set of possible constituents of NP)

In PG, each category of the grammar is de-
scribed with a set of properties. A grammar is then
made of a set of properties. Parsing an input con-
sists in verifying for each category of description
the set of corresponding properties in the gram-
mar. More precisely, the idea consists in verifying,
for each subset of constituents, the properties for
which they are relevant (i.e. the constraints that
can be evaluated). Some of these properties are
satisfied, some others possibly violated. The re-
sult of a parse, for a given category, is the set of its
relevant properties together with their evaluation.
This result is called characterization and is formed
by the subset of the satisfied properties, noted P+,
and the set of the violated ones, noted P−.

For example, the characterizations associated to
the NPs “the book” and “book the” are respectively
of the form:
P+={Det ≺ N; Det ; N; N < Pro; Uniq(Det),
Oblig(N), etc.}, P−=∅
P+={Det ; N; N < Pro; Uniq(Det), Oblig(N),
etc.}, P−={Det ≺ N}

This approach allows to characterize any kind
of syntactic object. In PG, following the pro-
posal made in Construction Grammar (see (Fill-
more98), (Kay99)), all such objects are called
constructions. They correspond to a phrase (NP,
PP, etc.) as well as a syntactic turn (cleft, wh-
questions, etc.). All these objects are described by
means of a set of properties (see (Blache05b)).

In terms of parsing, the mechanism consists
in exhibiting the potential constituents of a given
construction. This stage corresponds, in constraint
solving techniques, to the search of an assignment
satisfying the constraint system. The particular-
ity in PG comes from constraint relaxation. Here,
the goal is not to find the assignment satisfying
the constraint system, but the best assignment (i.e.
the one satisfying as much as possible the system).
In this way, the PG approach permits to deal with
more or less grammatical sentences. Provided that
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some control mechanisms are added to the pro-
cess, PG parsing can be robust and efficient (see
(Blache06)) and parse different material, includ-
ing spoken language corpora.

Using a constraint-based approach such as the
one proposed here offers several advantages. First,
constraint relaxation techniques make it possi-
ble to process any kind of input. When pars-
ing non canonical sentences, the system identi-
fies precisely, for each constituent, the satisfied
constraints as well as those which are violated.
It furnishes the possibility of parsing any kind
of input, which is a pre-requisite for identifying
a graded scale of grammaticality. The second
important interest of constraints lies in the fact
that syntactic information is represented in a non-
holistic manner or, in other words, in a decentral-
ized way. This characteristic allows to evaluate
precisely the syntactic description associated with
the input. As shown above, such a description is
made of sets of satisfied and violated constraints.
The idea is to take advantage of such a represen-
tation for proposing a quantitative evaluation of
these descriptions, elaborated from different indi-
cators such as the number of satisfied or violated
constraints or the number of evaluated constraints.

The hypothesis, in the perspective of a gradi-
ence account, is to exhibit a relation between a
quantitative evaluation and the level of grammat-
icality: the higher the evaluation value, the more
grammatical the construction. The value is then
an indication of the quality of the input, according
to a given grammar. In the next section we propose
a method for computing this value.

3 Characterization evaluation

The first idea that comes to mind when trying to
quantify the quality of a characterization is to cal-
culate the ratio of satisfied properties with respect
to the total set of evaluated properties. This infor-
mation is computed as follows:

Let C a construction defined in the grammar by
means of a set of properties SC , let AC an assign-
ment for the construction C,

• P+ = set of satisfied properties for AC

• P− = set of violated properties for AC

• N+ : number of satisfied properties N+ =
card(P+)

• N− : number of violated properties N− =
card(P−)

• Satisfaction ratio (SR): the number of satis-
fied properties divided by the number of eval-
uated properties SR = N+

E

The SR value varies between 0 and 1, the two
extreme values indicating that no properties are
satisfied (SR=0) or none of them are violated
(SR=1). However, SR only relies on the evalu-
ated properties. It is also necessary to indicate
whether a characterization uses a small or a large
subpart of the properties describing the construc-
tion in the grammar. For example, the VP in our
grammar is described by means of 25 constraints
whereas the PP only uses 7 of them. Let’s imag-
ine the case where 7 constraints can be evaluated
for both constructions, with an equal SR. However,
the two constructions do not have the same qual-
ity: one relies on the evaluation of all the possible
constraints (in the PP) whereas the other only uses
a few of them (in the VP). The following formula
takes these differences into account :

• E : number of relevant (i.e. evaluated) prop-
erties E = N+ + N−

• T= number of properties specifying con-
struction C = card(SC)

• Completeness coefficient (CC) : the number
of evaluated properties divided by the num-
ber of properties describing the construction
in the grammar CC = E

T

These purely quantitative aspects have to be
contrasted according to the constraint types. Intu-
itively, some constraints, for a given construction,
play a more important role than some others. For
example, linear precedence in languages with poor
morphology such as English or French may have a
greater importance than obligation (i.e. the neces-
sity of realizing the head). To its turn, obligation
may be more important than uniqueness (i.e. im-
possible repetition). In this case, violating a prop-
erty would have different consequences according
to its relative importance. The following examples
illustrate this aspect:
(1) a. The the man who spoke with me is my brother.

b. The who spoke with me man is my brother.
In (1a), the determiner is repeated, violating

a uniqueness constraint of the first NP, whereas
(1c) violates a linearity constraint of the same NP.
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Clearly, (1a) seems to be more grammatical than
(1b) whereas in both cases, only one constraint is
violated. This contrast has to be taken into account
in the evaluation. Before detailing this aspect, it is
important to note that this intuition does not mean
that constraints have to be organized into a rank-
ing scheme, as with the Optimality Theory (see
(Prince93)). The parsing mechanism remains the
same with or without this information and the hi-
erarchization only plays the role of a process con-
trol.

Identifying a relative importance of the types of
constraints comes to associate them with a weight.
Note that at this stage, we assign weights to con-
straint types, not directly to the constraints, dif-
ferently from other approaches (cf. (Menzel98),
(Foth05)). The experiment described in the next
section will show that this weighting level seems
to be efficient enough. However, in case of neces-
sity, it remains possible to weight directly some
constraints into a given construction, overriding
thus the default weight assigned to the constraint
types.

The notations presented hereafter are used to
describe constraint weighting. Remind that P+

and P− indicate the set of satisfied and violated
properties of a given construction.

• p+
i : property belonging to P+

• p−i : property belonging to P−

• w(p) : weight of the property of type p

• W+ : sum of the satisfied properties weights

W+ =
N+∑
i=1

w(p+
i )

• W− : sum of the violated properties weights

W− =
N−∑
i=1

w(p−i )

One indication of the relative importance of the
constraints involved in the characterization of a
construction is given by the following formula:

• QI: the quality index of a construction

QI =
W+ −W−

W+ + W−

The QI index varies then between -1 and 1.
A negative value indicates that the set of violated
constraints has a greater importance than the set of
satisfied one. This does not mean that more con-
straints are violated than satisfied, but indicates the
importance of the violated ones.

We now have three different indicators that can
be used in the evaluation of the characterization:
the satisfaction ratio (noted SR) indicating the ra-
tio of satisfied constraints, the completeness coef-
ficient (noted CC) specifying the ratio of evalu-
ated constraints, and the quality index (noted QI)
associated to the quality of the characterization ac-
cording to the respective degree of importance of
evaluated constraints. These three indices are used
to form a global precision index (noted PI). These
three indicators do not have the same impact in the
evaluation of the characterization, they are then
balanced with coefficients in the normalized for-
mula:

• PI = (k×QI)+(l×SR)+(m×CC)
3

As such, PI constitutes an evaluation of the
characterization for a given construction. How-
ever, it is necessary to take into account the “qual-
ity” of the constituents of the construction as well.
A construction can satisfy all the constraints de-
scribing it, but can be made of embedded con-
stituents more or less well formed. The overall
indication of the quality of a construction has then
to integrate in its evaluation the quality of each of
its constituents. This evaluation depends finally
on the presence or not of embedded constructions.
In the case of a construction made of lexical con-
stituents, no embedded construction is present and
the final evaluation is the precision index PI as de-
scribed above. We will call hereafter the evalua-
tion of the quality of the construction the “gram-
maticality index” (noted GI). It is calculated as
follows:

• Let d the number of embedded constructions

• If d = 0 then GI = PI , else

GI = PI ×
∑d

i=1 GI(Ci)
d

In this formula, we note GI(Ci) the grammat-
icality index of the construction Ci. The general
formula for a construction C is then a function of
its precision index and of the sum of the grammat-
icality indices of its embedded constituents. This
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formula implements the propagation of the quality
of each constituent. This means that the grammati-
cality index of a construction can be lowered when
its constituents violate some properties. Recipro-
cally, this also means that violating a property at
an embedded level can be partially compensated at
the upper levels (provided they have a good gram-
maticality index).

4 Grammaticality index from PG

We describe in the remainder of the paper predic-
tions of the model as well as the results of a psy-
cholinguistic evaluation of these predictions. The
idea is to evaluate for a given set of sentences on
the one hand the grammaticality index (done auto-
matically), on the basis of a PG grammar, and on
the other hand the acceptability judgment given by
a set of subjects. This experiment has been done
for French, a presentation of the data and the ex-
periment itself will be given in the next section.
We present in this section the evaluation of gram-
maticality index.

Before describing the calculation of the differ-
ent indicators, we have to specify the constraints
weights and the balancing coefficients used in PI.
These values are language-dependent, they are
chosen intuitively and partly based on earlier anal-
ysis, this choice being evaluated by the experiment
as described in the next section. In the remainder,
the following values are used:

Constraint type Weight
Exclusion, Uniqueness, Requirement 2
Obligation 3
Linearity, Constituency 5
Concerning the balancing coefficients, we give

a greater importance to the quality index (coeffi-
cient k=2), which seems to have important conse-
quences on the acceptability, as shown in the pre-
vious section. The two other coefficients are signi-
ficatively less important, the satisfaction ratio be-
ing at the middle position (coefficient l=1) and the
completeness at the lowest (coefficient m=0,5).

Let’s start with a first example, illustrating the
process in the case of a sentence satisfying all con-
straints.
(2)

Marie a emprunté un très long chemin
pour le retour.
Mary took a very long way for the return.

The first NP contains one lexical constituent,
Mary. Three constraints, among the 14 describing
the NP, are evaluated and all satisfied: Oblig(N),
stipulating that the head is realized, Const(N), in-

dicating the category N as a possible constituent,
and Excl(N, Pro), verifying that N is not realized
together with a pronoun. The following values
come from this characterization:

N+ N- E T W+ W- QI SR CC PI GI
3 0 3 14 10 0 1 1 0.21 1.04 1.04

We can see that, according to the fact that
all evaluated constraints are satisfied, QI and SR
equal 1. However, the fact that only 3 constraints
among 14 are evaluated lowers down the gram-
matical index. This last value, insofar as no con-
stituents are embedded, is the same as PI.

These results can be compared with another
constituent of the same sentence, the VP. This
construction also only contains satisfied prop-
erties. Its characterization is the following :
Char(VP)=Const(Aux, V, NP, PP) ; Oblig(V) ;
Uniq(V) ; Uniq(NP) ; Uniq(PP) ; Aux⇒V[part]
; V≺NP ; Aux≺V ; V≺PP. On top of this set
of evaluated constraints (9 among the possible
25), the VP includes two embedded constructions
: a PP and a NP. A grammaticality index has
been calculated for each of them: GI(PP) = 1.24
GI(NP)=1.23. The following table indicates the
different values involved in the calculation of the
GI.

N+ N- E T W+ W- QI SR CC PI
9 0 9 25 31 0 1 1 0.36 1.06

GI Emb Const GI
1.23 1.31

The final GI of the VP reaches a high value. It
benefits on the one hand from its own quality (in-
dicated by PI) and on another hand from that of
its embedded constituents. In the end, the final GI
obtained at the sentence level is function of its own
PI (very good) and the NP and VP GIs, as shown
in the table:

N+ N- E T W+ W- QI SR CC PI
5 0 5 9 17 0 1 1 0.56 1.09

GI Emb Const GI
1.17 1.28

Let’s compare now these evaluations with those
obtained for sentences with violated constraints,
as in the following examples:

(3) a.
Marie a emprunté très long chemin un
pour le retour.

Mary took very long way a for the return.

b. Marie a emprunté un très chemin pour le retour.
Mary took a very way for the return.

In (2a), 2 linear constraints are violated: a de-
terminer follows a noun and an AP in “très long
chemin un”. Here are the figures calculated for
this NP:

N+ N- E T W+ W- QI SR CC PI GI
8 2 10 14 23 10 0.39 0.80 0.71 0.65 0.71
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The QI indicator is very low, the violated con-
straints being of heavy weight. The grammatical-
ity index is a little bit higher because a lot of con-
straints are also satisfied. The NP GI is then prop-
agated to its dominating construction, the VP. This
phrase is well formed and also contains a well-
formed construction (PP) as sister of the NP. Note
that in the following table summarizing the VP
indicators, the GI product of the embedded con-
stituents is higher than the GI of the NP. This is
due to the well-formed PP constituent. In the end,
the GI index of the VP is better than that of the
ill-formed NP:

N+ N- E T W+ W- QI SR CC PI
9 0 9 25 31 0 1 1 0.36 1.06

GI Emb Const GI
0.97 1.03

For the same reasons, the higher level construc-
tion S also compensates the bad score of the NP.
However, in the end, the final GI of the sentence
is much lower than that of the corresponding well-
formed sentence (see above).

N+ N- E T W+ W- QI SR CC PI
5 0 5 9 17 0 1 1 0.56 1.09

GI Emb Const GI
1.03 1.13

The different figures of the sentence (2b) show
that the violation of a unique constraint (in this
case the Oblig(Adj) indicating the absence of the
head in the AP) can lead to a global lower GI than
the violation of two heavy constraints as for (2a).
In this case, this is due to the fact that the AP only
contains one constituent (a modifier) that does not
suffice to compensate the violated constraint. The
following table indicates the indices of the differ-
ent phrases. Note that in this table, each phrase is
a constituent of the following (i.e. AP belongs to
NP itself belonging to VP, and so on).

N+ N- E T W+ W- QI SR CC PI
AP 2 1 3 7 7 3 0.40 0.67 0.43 0.56
NP 10 0 10 14 33 0 1 1 0.71 1.12
VP 9 0 9 25 31 0 1 1 0.36 1.06
S 5 0 5 9 17 0 1 1 0.56 1.09

GI Emb Const GI
AP 1 0.56
NP 0.56 0.63
VP 0.93 0.99
S 1.01 1.11

5 Judging acceptability of violations

We ran a questionnaire study presenting partic-
ipants with 60 experimental sentences like (11)
to (55) below. 44 native speakers of French
completed the questionnaire giving acceptability
judgements following the Magnitude Estimation
technique. 20 counterbalanced forms of the ques-
tionnaire were constructed. Three of the 60 ex-
perimental sentences appeared in each version in

each form of the questionnaire, and across the 20
forms, each experimental sentence appeared once
in each condition. Each sentence was followed
by a question concerning its acceptability. These
60 sentences were combined with 36 sentences of
various forms varying in complexity (simple main
clauses, simple embeddings and doubly nested
embeddings) and plausibility (from fully plausible
to fairly implausible according to the intuitions of
the experimenters). One randomization was made
of each form.

Procedure: The rating technique used was mag-
nitude estimation (ME, see (Bard96)). Partici-
pants were instructed to provide a numeric score
that indicates how much better (or worse) the cur-
rent sentence was compared to a given reference
sentence (Example: If the reference sentence was
given the reference score of 100, judging a tar-
get sentence five times better would result in 500,
judging it five times worse in 20). Judging the ac-
ceptability ratio of a sentence in this way results in
a scale which is open-ended on both sides. It has
been demonstrated that ME is therefore more sen-
sitive than fixed rating-scales, especially for scores
that would approach the ends of such rating scales
(cf. (Bard96)). Each questionnaire began with a
written instruction where the subject was made fa-
miliar with the task based on two examples. After
that subjects were presented with a reference sen-
tence for which they had to provide a reference
score. All following sentences had to be judged
in relation to the reference sentence. Individual
judgements were logarithmized (to arrive at a lin-
ear scale) and normed (z-standardized) before sta-
tistical analyses.

Global mean scores are presented figure 1. We
tested the reliability of results for different ran-
domly chosen subsets of the materials. Construc-
tions for which the judgements remain highly sta-
ble across subsets of sentences are marked by an
asterisk (rs > 0.90; p < 0.001). The mean relia-
bility across subsets is rs > 0.65 (p < 0.001).

What we can see in these data is that in par-
ticular violations within prepositional phrases are
not judged in a very stable way. The way they
are judged appears to be highly dependent on the
preposition used and the syntactic/semantic con-
text. This is actually a very plausible result, given
that heads of prepositional phrases are closed class
items that are much more predictable in many syn-
tactic and semantic environments than heads of
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noun phrases and verb phrases. We will there-
fore base our further analyses mainly on violations
within noun phrases, verb phrases, and adjectival
phrases. Results including prepositional phrases
will be given in parentheses. Since the constraints
described above do not make any predictions for
semantic violations, we excluded examples 25, 34,
45, and 55 from further analyses.

6 Acceptability versus grammaticality
index

We compare in this section the results coming
from the acceptability measurements described in
section 5 and the values of grammaticality indices
obtained as proposed section 4.
From the sample of 20 sentences presented in fig-
ure 1, we have discarded 4 sentences, namely sen-
tence 25, 34, 45 and 55, for which the property
violation is of semantic order (see above). We are
left with 16 sentences, the reference sentence sat-
isfying all the constraints and 15 sentences violat-
ing one of the syntactic constraints. The results
are presented figure 2. Acceptability judgment
(ordinate) versus grammaticality index (abscissa)
is plotted for each sentence. We observe a high
coefficient of correlation (ρ = 0.76) between the
two distributions, indicating that the grammatical-
ity index derived from PG is a fairly good tracer of
the observed acceptability measurements.
The main contribution to the grammaticality in-
dex comes from the quality index QI (ρ = 0.69)
while the satisfaction ratio SR and the complete-

No violations
11. Marie a emprunté un très long chemin pour le retour 0.465

NP-violations
21. Marie a emprunté très long chemin un pour le retour -0.643 *
22. Marie a emprunté un très long chemin chemin pour le retour -0.161 *
23. Marie a emprunté un très long pour le retour -0.871 *
24. Marie a emprunté très long chemin pour le retour -0.028 *
25. Marie a emprunté un très heureux chemin pour le retour -0.196 *

AP-violations
31. Marie a emprunté un long très chemin pour le retour -0.41 *
32. Marie a emprunté un très long long chemin pour le retour -0.216 -
33. Marie a emprunté un très chemin pour le retour -0.619 -
34. Marie a emprunté un grossièrement long chemin pour le retour -0.058 *

PP-violations
41. Marie a emprunté un très long chemin le retour pour -0.581 -
42. Marie a emprunté un très long chemin pour pour le retour -0.078 -
43. Marie a emprunté un très long chemin le retour -0.213 -
44. Marie a emprunté un très long chemin pour -0.385 -
45. Marie a emprunté un très long chemin dans le retour -0.415 -

VP-violations
51. Marie un très long chemin a emprunté pour le retour -0.56 *
52.Marie a emprunté emprunté un très long chemin pour le retour -0.194 *
53.Marie un très long chemin pour le retour -0.905 *
54. Marie emprunté un très long chemin pour le retour -0.322 *
55. Marie a persuadé un très long chemin pour le retour -0.394 *

Figure 1: Acceptability results

ness coefficient CC contributions, although signif-
icant, are more modest (ρ = 0.18 and ρ = 0.17
respectively).

We present in figure 3 the correlation between
acceptability judgements and grammaticality in-
dices after the removal of the 4 sentences pre-
senting PP violations. The analysis of the experi-
ment described in section 5 shows indeed that ac-
ceptability measurements of the PP-violation sen-
tences is less reliable than for others phrases. We
thus expect that removing these data from the sam-
ple will strengthen the correlation between the two
distributions. The coefficient of correlation of the
12 remaining data jumps to ρ = 0.87, as expected.

Figure 2: Correlation between acceptability judgement and
grammaticality index

Figure 3: Correlation between acceptability judgement and
grammaticality index removing PP violations

Finally, the adequacy of the PG grammatical-
ity indices to the measurements was investigated
by means of resultant analysis. We adapted the
parameters of the model in order to arrive at a
good fit based on half of the sentences materials
(randomly chosen from the full set), with a cor-
relation of ρ = 0.85 (ρ = 0.76 including PPs)
between the grammaticality index and acceptabil-
ity judgements. Surprisingly, we arrived at the
best fit with only two different weights: A weight
of 2 for Exclusion, Uniqueness, and Requirement,
and a weight of 5 for Obligation, Linearity, and
Constituency. This result converges with the hard
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and soft constraint repartition idea as proposed by
(Keller00).

The fact that the grammaticality index is based
on these properties as well as on the number of
constraints to be evaluated, the number of con-
straints to the satisfied, and the goodness of em-
bedded constituents apparently results in a fined
grained and highly adequate prediction even with
this very basic distinction of constraints.

Fixing these parameters, we validated the pre-
dictions of the model for the remaining half of the
materials. Here we arrived at a highly reliable cor-
relation of ρ = 0.86 (ρ = 0.67 including PPs) be-
tween PG grammaticality indices and acceptabil-
ity judgements.

7 Conclusion

The method described in this paper makes it pos-
sible to give a quantified indication of sentence
grammaticality. This approach is direct and takes
advantage of a constraint-based representation of
syntactic information, making it possible to repre-
sent precisely the syntactic characteristics of an in-
put in terms of satisfied and (if any) violated con-
straints. The notion of grammaticality index we
have proposed here integrates different kind of in-
formation: the quality of the description (in terms
of well-formedness degree), the density of infor-
mation (the quantity of constraints describing an
element) as well as the structure itself. These three
parameters are the basic indicators of the gram-
maticality index.

The relevance of this method has been ex-
perimentally shown, and the results described in
this paper illustrate the correlation existing be-
tween the prediction (automatically calculated)
expressed in terms of GI and the acceptability
judgment given by subjects.

This approach also presents a practical interest:
it can be directly implemented into a parser. The
next step of our work will be its validation on large
corpora. Our parser will associate a grammatical
index to each sentence. This information will be
validated by means of acceptability judgments ac-
quired on the basis of a sparse sampling strategy.
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Abstract

In this paper we present a novel approach
for inducing word alignments from sen-
tence aligned data. We use a Condi-
tional Random Field (CRF), a discrimina-
tive model, which is estimated on a small
supervised training set. The CRF is condi-
tioned on both the source and target texts,
and thus allows for the use of arbitrary
and overlapping features over these data.
Moreover, the CRF has efficient training
and decoding processes which both find
globally optimal solutions.

We apply this alignment model to both
French-English and Romanian-English
language pairs. We show how a large
number of highly predictive features can
be easily incorporated into the CRF, and
demonstrate that even with only a few hun-
dred word-aligned training sentences, our
model improves over the current state-of-
the-art with alignment error rates of 5.29
and 25.8 for the two tasks respectively.

1 Introduction

Modern phrase based statistical machine transla-
tion (SMT) systems usually break the translation
task into two phases. The first phase induces word
alignments over a sentence-aligned bilingual cor-
pus, and the second phase uses statistics over these
predicted word alignments to decode (translate)
novel sentences. This paper deals with the first of
these tasks: word alignment.

Most current SMT systems (Och and Ney,
2004; Koehn et al., 2003) use a generative model
for word alignment such as the freely available

GIZA++ (Och and Ney, 2003), an implementa-
tion of the IBM alignment models (Brown et al.,
1993). These models treat word alignment as a
hidden process, and maximise the probability of
the observed (e, f) sentence pairs1 using the ex-
pectation maximisation (EM) algorithm. After the
maximisation process is complete, the word align-
ments are set to maximum posterior predictions of
the model.

While GIZA++ gives good results when trained
on large sentence aligned corpora, its generative
models have a number of limitations. Firstly,
they impose strong independence assumptions be-
tween features, making it very difficult to incor-
porate non-independent features over the sentence
pairs. For instance, as well as detecting that a
source word is aligned to a given target word,
we would also like to encode syntactic and lexi-
cal features of the word pair, such as their parts-
of-speech, affixes, lemmas, etc. Features such as
these would allow for more effective use of sparse
data and result in a model which is more robust
in the presence of unseen words. Adding these
non-independent features to a generative model
requires that the features’ inter-dependence be
modelled explicitly, which often complicates the
model (eg. Toutanova et al. (2002)). Secondly, the
later IBM models, such as Model 4, have to re-
sort to heuristic search techniques to approximate
forward-backward and Viterbi inference, which
sacrifice optimality for tractability.

This paper presents an alternative discrimina-
tive method for word alignment. We use a condi-
tional random field (CRF) sequence model, which
allows for globally optimal training and decod-
ing (Lafferty et al., 2001). The inference algo-

1We adopt the standard notation of e and f to denote the
target (English) and source (foreign) sentences, respectively.
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rithms are tractable and efficient, thereby avoid-
ing the need for heuristics. The CRF is condi-
tioned on both the source and target sentences,
and therefore supports large sets of diverse and
overlapping features. Furthermore, the model al-
lows regularisation using a prior over the parame-
ters, a very effective and simple method for limit-
ing over-fitting. We use a similar graphical struc-
ture to the directed hidden Markov model (HMM)
from GIZA++ (Och and Ney, 2003). This mod-
els one-to-many alignments, where each target
word is aligned with zero or more source words.
Many-to-many alignments are recoverable using
the standard techniques for superimposing pre-
dicted alignments in both translation directions.

The paper is structured as follows. Section
2 presents CRFs for word alignment, describing
their form and their inference techniques. The
features of our model are presented in Section 3,
and experimental results for word aligning both
French-English and Romanian-English sentences
are given in Section 4. Section 5 presents related
work, and we describe future work in Section 6.
Finally, we conclude in Section 7.

2 Conditional random fields

CRFs are undirected graphical models which de-
fine a conditional distribution over a label se-
quence given an observation sequence. We use
a CRF to model many-to-one word alignments,
where each source word is aligned with zero or
one target words, and therefore each target word
can be aligned with many source words. Each
source word is labelled with the index of its
aligned target, or the special value null, denot-
ing no alignment. An example word alignment
is shown in Figure 1, where the hollow squares
and circles indicate the correct alignments. In this
example the French words une and autre would
both be assigned the index 24 – for the English
word another – when French is the source lan-
guage. When the source language is English, an-
other could be assigned either index 25 or 26; in
these ambiguous situations we take the first index.

The joint probability density of the alignment,
a (a vector of target indices), conditioned on the
source and target sentences, e and f , is given by:

pΛ(a|e, f) =
exp

∑
t

∑
k λkhk(t, at−1, at, e, f)

ZΛ(e, f)
(1)

where we make a first order Markov assumption
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Figure 1. A word-aligned example from the Canadian
Hansards test set. Hollow squares represent gold stan-
dard sure alignments, circles are gold possible align-
ments, and filled squares are predicted alignments.

over the alignment sequence. Here t ranges over
the indices of the source sentence (f ), k ranges
over the model’s features, and Λ = {λk} are the
model parameters (weights for their correspond-
ing features). The feature functions hk are pre-
defined real-valued functions over the source and
target sentences coupled with the alignment labels
over adjacent times (source sentence locations),
t. These feature functions are unconstrained, and
may represent overlapping and non-independent
features of the data. The distribution is globally
normalised by the partition function, ZΛ(e, f),
which sums out the numerator in (1) for every pos-
sible alignment:

ZΛ(e, f) =
∑
a

exp
∑

t

∑
k

λkhk(t, at−1, at, e, f)

We use a linear chain CRF, which is encoded in
the feature functions of (1).

The parameters of the CRF are usually esti-
mated from a fully observed training sample (word
aligned), by maximising the likelihood of these
data. I.e. ΛML = arg maxΛ pΛ(D), where D =
{(a, e, f)} are the training data. Because max-
imum likelihood estimators for log-linear mod-
els have a tendency to overfit the training sam-
ple (Chen and Rosenfeld, 1999), we define a prior
distribution over the model parameters and de-
rive a maximum a posteriori (MAP) estimate,
ΛMAP = arg maxΛ pΛ(D)p(Λ). We use a zero-
mean Gaussian prior, with the probability density
function p0(λk) ∝ exp

(
− λ2

k

2σ2
k

)
. This yields a

log-likelihood objective function of:

L =
∑

(a,e,f)∈D

log pΛ(a|e, f) +
∑

k

log p0(λk)
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=
∑

(a,e,f)∈D

∑
t

∑
k

λkhk(t, at−1, at, e, f)

− log ZΛ(e, f)−
∑

k

λ2
k

2σ2
k

+ const. (2)

In order to train the model, we maximize (2).
While the log-likelihood cannot be maximised for
the parameters, Λ, in closed form, it is a con-
vex function, and thus we resort to numerical op-
timisation to find the globally optimal parame-
ters. We use L-BFGS, an iterative quasi-Newton
optimisation method, which performs well for
training log-linear models (Malouf, 2002; Sha
and Pereira, 2003). Each L-BFGS iteration re-
quires the objective value and its gradient with
respect to the model parameters. These are cal-
culated using forward-backward inference, which
yields the partition function, ZΛ(e, f), required
for the log-likelihood, and the pair-wise marginals,
pΛ(at−1, at|e, f), required for its derivatives.

The Viterbi algorithm is used to find the maxi-
mum posterior probability alignment for test sen-
tences, a∗ = arg maxa pΛ(a|e, f). Both the
forward-backward and Viterbi algorithm are dy-
namic programs which make use of the Markov
assumption to calculate efficiently the exact
marginal distributions.

3 The alignment model

Before we can apply our CRF alignment model,
we must first specify the feature set – the func-
tions hk in (1). Typically CRFs use binary indica-
tor functions as features; these functions are only
active when the observations meet some criteria
and the label at (or label pair, (at−1, at)) matches
a pre-specified label (pair). However, in our model
the labellings are word indices in the target sen-
tence and cannot be compared readily to labellings
at other sites in the same sentence, or in other sen-
tences with a different length. Such naive features
would only be active for one labelling, therefore
this model would suffer from serious sparse data
problems.

We instead define features which are functions
of the source-target word match implied by a la-
belling, rather than the labelling itself. For exam-
ple, from the sentence in Figure 1 for the labelling
of f24 = de with a24 = 16 (for e16 = of ) we
might detect the following feature:

h(t, at−1, at, f , e) =
{

1, if eat = ‘of’ ∧ ft = ‘de’
0, otherwise

Note that it is the target word indexed by at, rather
than the index itself, which determines whether
the feature is active, and thus the sparsity of the
index label set is not an issue.

3.1 Features
One of the main advantages of using a conditional
model is the ability to explore a diverse range of
features engineered for a specific task. In our
CRF model we employ two main types of features:
those defined on a candidate aligned pair of words;
and Markov features defined on the alignment se-
quence predicted by the model.

Dice and Model 1 As we have access to only a
small amount of word aligned data we wish to be
able to incorporate information about word associ-
ation from any sentence aligned data available. A
common measure of word association is the Dice
coefficient (Dice, 1945):

Dice(e, f) =
2× CEF (e, f)
CE(e) + CF (e)

where CE and CF are counts of the occurrences
of the words e and f in the corpus, while CEF is
their co-occurrence count. We treat these Dice val-
ues as translation scores: a high (low) value inci-
dates that the word pair is a good (poor) candidate
translation.

However, the Dice score often over-estimates
the association between common words. For in-
stance, the words the and of both score highly
when combined with either le or de, simply be-
cause these common words frequently co-occur.
The GIZA++ models can be used to provide better
translation scores, as they enforce competition for
alignment beween the words. For this reason, we
used the translation probability distribution from
Model 1 in addition to the DICE scores. Model 1
is a simple position independent model which can
be trained quickly and is often used to bootstrap
parameters for more complex models. It models
the conditional probability distribution:

p(f ,a|e) =
p(|f |||e|)

(|e|+ 1)|f |
×

|f |∏
t=1

p(ft|eat)

where p(f |e) are the word translation probabili-
ties.

We use both the Dice value and the Model 1
translation probability as real-valued features for
each candidate pair, as well as a normalised score
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over all possible candidate alignments for each tar-
get word. We derive a feature from both the Dice
and Model 1 translation scores to allow compe-
tition between sources words for a particular tar-
get alignment. This feature indicates whether a
given alignment has the highest translation score
of all the candidate alignments for a given tar-
get word. For the example in Figure 1, the words
la, de and une all receive a high translation score
when paired with the. To discourage all of these
French words from aligning with the, the best of
these (la) is flagged as the best candidate. This al-
lows for competition between source words which
would otherwise not occur.

Orthographic features Features based on
string overlap allow our model to recognise
cognates and orthographically similar translation
pairs, which are particularly common between
European languages. Here we employ a number
of string matching features inspired by similar
features in Taskar et al. (2005). We use an indica-
tor feature for every possible source-target word
pair in the training data. In addition, we include
indicator features for an exact string match, both
with and without vowels, and the edit-distance
between the source and target words as a real-
valued feature. We also used indicator features to
test for matching prefixes and suffixes of length
three. As stated earlier, the Dice translation
score often erroneously rewards alignments with
common words. In order to address this problem,
we include the absolute difference in word length
as a real-valued feature and an indicator feature
testing whether both words are shorter than 4
characters. Together these features allow the
model to disprefer alignments between words
with very different lengths – i.e. aligning rare
(long) words with frequent (short) determiners,
verbs etc.

POS tags Part-of-speech tags are an effective
method for addressing the sparsity of the lexi-
cal features. Observe in Figure 2 that the noun-
adjective pair Canadian experts aligns with the
adjective-noun pair spécialistes canadiens: the
alignment exactly matches the parts-of-speech.
Access to the words’ POS tags will allow simple
modelling of such effects. POS can also be useful
for less closely related language pairs, such as En-
glish and Japanese where English determiners are
never aligned; nor are Japanese case markers.

For our French-English language pair we POS
tagged the source and target sentences with Tree-
Tagger.2 We created indicator features over the
POS tags of each candidate source and target word
pair, as well as over the source word and target
POS (and vice-versa). As we didn’t have access to
a Romanian POS tagger, these features were not
used for the Romanian-English language pair.

Bilingual dictionary Dictionaries are another
source of information for word alignment. We
use a single indicator feature which detects when
the source and target words appear in an entry of
the dictionary. For the English-French dictionary
we used FreeDict,3 which contains 8,799 English
words. For Romanian-English we used a dictio-
nary compiled by Rada Mihalcea,4 which contains
approximately 38,000 entries.

Markov features Features defined over adja-
cent aligment labels allow our model to reflect the
tendency for monotonic alignments between Eu-
ropean languages. We define a real-valued align-
ment index jump width feature:

jump width(t− 1, t) = abs(at − at−1 − 1)

this feature has a value of 0 if the alignment labels
follow the downward sloping diagonal, and is pos-
itive otherwise. This differs from the GIZA++ hid-
den Markov model which has individual parame-
ters for each different jump width (Och and Ney,
2003; Vogel et al., 1996): we found a single fea-
ture (and thus parameter) to be more effective.

We also defined three indicator features over
null transitions to allow the modelling of the prob-
ability of transition between, to and from null la-
bels.

Relative sentence postion A feature for the
absolute difference in relative sentence position
(abs( at

|e| −
t
|f |)) allows the model to learn a pref-

erence for aligning words close to the alignment
matrix diagonal. We also included two conjunc-
tion features for the relative sentence position mul-
tiplied by the Dice and Model 1 translation scores.

Null We use a number of variants on the above
features for alignments between a source word and
the null target. The maximum translation score
between the source and one of the target words

2http://www.ims.uni-stuttgart.de/projekte/corplex/TreeTagger
3http://www.freedict.de
4http://lit.csci.unt.edu/˜rada/downloads/RoNLP/R.E.tralex
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model precision recall f-score AER
Model 4 refined 87.4 95.1 91.1 9.81
Model 4 intersection 97.9 86.0 91.6 7.42
French→ English 96.7 85.0 90.5 9.21
English→ French 97.3 83.0 89.6 10.01
intersection 98.7 78.6 87.5 12.02
refined 95.7 89.2 92.3 7.37

Table 1. Results on the Hansard data using all features

model precision recall f-score AER
Model 4 refined 80.49 64.10 71,37 28.63
Model 4 intersected 95.94 53.56 68.74 31.26
Romanian→ English 82.9 61.3 70.5 29.53
English→ Romanian 82.8 60.6 70.0 29.98
intersection 94.4 52.5 67.5 32.45
refined 77.1 68.5 72.6 27.41

Table 2. Results on the Romanian data using all fea-
tures

is used as a feature to represent whether there is
a strong alignment candidate. The sum of these
scores is also used as a feature. Each source word
and POS tag pair are used as indicator features
which allow the model to learn particular words
of tags which tend to commonly (or rarely) align.

3.2 Symmetrisation
In order to produce many-to-many alignments we
combine the outputs of two models, one for each
translation direction. We use the refined method
from Och and Ney (2003) which starts from the
intersection of the two models’ predictions and
‘grows’ the predicted alignments to neighbouring
alignments which only appear in the output of one
of the models.

4 Experiments

We have applied our model to two publicly avail-
able word aligned corpora. The first is the
English-French Hansards corpus, which consists
of 1.1 million aligned sentences and 484 word-
aligned sentences. This data set was used for
the 2003 NAACL shared task (Mihalcea and Ped-
ersen, 2003), where the word-aligned sentences
were split into a 37 sentence trial set and a 447 sen-
tence testing set. Unlike the unsupervised entrants
in the 2003 task, we require word-aligned training
data, and therefore must cannibalise the test set for
this purpose. We follow Taskar et al. (2005) by us-
ing the first 100 test sentences for training and the
remaining 347 for testing. This means that our re-
sults should not be directly compared to those en-
trants, other than in an approximate manner. We
used the original 37 sentence trial set for feature

engineering and for fitting a Gaussian prior.
The word aligned data are annotated with both

sure (S) and possible (P ) alignments (S ⊆ P ; Och
and Ney (2003)), where the possible alignments
indicate ambiguous or idiomatic alignments. We
measure the performance of our model using
alignment error rate (AER), which is defined as:

AER(A,S, P ) = 1− |A ∩ S|+ |A ∩ P |
|A|+ |S|

where A is the set of predicted alignments.
The second data set is the Romanian-English

parallel corpus from the 2005 ACL shared task
(Martin et al., 2005). This consists of approxi-
mately 50,000 aligned sentences and 448 word-
aligned sentences, which are split into a 248 sen-
tence trial set and a 200 sentence test set. We
used these as our training and test sets, respec-
tively. For parameter tuning, we used the 17 sen-
tence trial set from the Romanian-English corpus
in the 2003 NAACL task (Mihalcea and Pedersen,
2003). For this task we have used the same test
data as the competition entrants, and therefore can
directly compare our results. The word alignments
in this corpus were only annotated with sure (S)
alignments, and therefore the AER is equivalent
to the F1 score. In the shared task it was found
that models which were trained on only the first
four letters of each word obtained superior results
to those using the full words (Martin et al., 2005).
We observed the same result with our model on
the trial set and thus have only used the first four
letters when training the Dice and Model 1 trans-
lation probabilities.

Tables 1 and 2 show the results when all feature
types are employed on both language pairs. We re-
port the results for both translation directions and
when combined using the refined and intersection
methods. The Model 4 results are from GIZA++
with the default parameters and the training data
lowercased. For Romanian, Model 4 was trained
using the first four letters of each word.

The Romanian results are close to the best re-
ported result of 26.10 from the ACL shared task
(Martin et al., 2005). This result was from a sys-
tem based on Model 4 plus additional parameters
such as a dictionary. The standard Model 4 imple-
mentation in the shared task achieved a result of
31.65, while when only the first 4 letters of each
word were used it achieved 28.80.5

5These results differ slightly our Model 4 results reported
in Table 2.
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(a) With Markov features
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(b) Without Markov features

Figure 2. An example from the Hansard test set, showing the effect of the Markov features.

Table 3 shows the effect of removing each of the
feature types in turn from the full model. The most
useful features are the Dice and Model 1 values
which allow the model to incorporate translation
probabilities from the large sentence aligned cor-
pora. This is to be expected as the amount of word
aligned data are extremely small, and therefore the
model can only estimate translation probabilities
for only a fraction of the lexicon. We would expect
the dependence on sentence aligned data to de-
crease as more word aligned data becomes avail-
able.

The effect of removing the Markov features can
be seen from comparing Figures 2 (a) and (b). The
model has learnt to prefer alignments that follow
the diagonal, thus alignments such as 3 ↔ three
and prestation ↔ provision are found, and miss-
alignments such as de ↔ of, which lie well off the
diagonal, are avoided.

The differing utility of the alignment word pair
feature between the two tasks is probably a result
of the different proportions of word- to sentence-
aligned data. For the French data, where a very
large lexicon can be estimated from the million
sentence alignments, the sparse word pairs learnt
on the word aligned sentences appear to lead to
overfitting. In contrast, for Romanian, where more
word alignments are used to learn the translation
pair features and much less sentence aligned data
are available, these features have a significant im-
pact on the model. Suprisingly the orthographic
features actually worsen the performance in the
tasks (incidentally, these features help the trial
set). Our explanation is that the other features
(eg. Model 1) already adequately model these cor-
respondences, and therefore the orthographic fea-

feature group Rom↔ Eng Fre↔ Eng
ALL 27.41 7.37
–orthographic 27.30 7.25
–Dice 27.68 7.73
–dictionary 27.72 7.21
–sentence position 28.30 8.01
–POS – 8.19
–Model 1 28.62 8.45
–alignment word pair 32.41 7.20
–Markov 32.75 12.44
–Dice & –Model 1 35.43 14.10

Table 3. The resulting AERs after removing individual
groups of features from the full model.

tures do not add much additional modelling power.
We expect that with further careful feature engi-
neering, and a larger trial set, these orthographic
features could be much improved.

The Romanian-English language pair appears
to offer a more difficult modelling problem than
the French-English pair. With both the transla-
tion score features (Dice and Model 1) removed
– the sentence aligned data are not used – the
AER of the Romanian is more than twice that of
the French, despite employing more word aligned
data. This could be caused by the lack of possi-
ble (P) alignment markup in the Romanian data,
which provide a boost in AER on the French data
set, rewarding what would otherwise be consid-
ered errors. Interestingly, without any features
derived from the sentence aligned corpus, our
model achieves performance equivalent to Model
3 trained on the full corpus (Och and Ney, 2003).
This is a particularly strong result, indicating that
this method is ideal for data-impoverished align-
ment tasks.
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4.1 Training with possible alignments

Up to this point our Hansards model has been
trained using only the sure (S) alignments. As
the data set contains many possible (P) alignments,
we would like to use these to improve our model.
Most of the possible alignments flag blocks of
ambiguous or idiomatic (or just difficult) phrase
level alignments. These many-to-many align-
ments cannot be modelled with our many-to-one
setup. However, a number of possibles flag one-
to-one or many-to-one aligments: for this experi-
ment we used these possibles in training to inves-
tigate their effect on recall. Using these additional
alignments our refined precision decreased from
95.7 to 93.5, while recall increased from 89.2 to
92.4. This resulted in an overall decrease in AER
to 6.99. We found no benefit from using many-to-
many possible alignments as they added a signifi-
cant amount of noise to the data.

4.2 Model 4 as a feature

Previous work (Taskar et al., 2005) has demon-
strated that by including the output of Model 4 as
a feature, it is possible to achieve a significant de-
crease in AER. We trained Model 4 in both direc-
tions on the two language pairs. We added two
indicator features (one for each direction) to our
CRF which were active if a given word pair were
aligned in the Model 4 output. Table 4 displays
the results on both language pairs when these ad-
ditional features are used with the refined model.
This produces a large increase in performance, and
when including the possibles, produces AERs of
5.29 and 25.8, both well below that of Model 4
alone (shown in Tables 1 and 2).

4.3 Cross-validation

Using 10-fold cross-validation we are able to gen-
erate results on the whole of the Hansards test data
which are comparable to previously published re-
sults. As the sentences in the test set were ran-
domly chosen from the training corpus we can ex-
pect cross-validation to give an unbiased estimate
of generalisation performance. These results are
displayed in Table 5, using the possible (P) align-
ments for training. As the training set for each fold
is roughly four times as big previous training set,
we see a small improvement in AER.

The final results of 6.47 and 5.19 with and
without Model 4 features both exceed the perfor-
mance of Model 4 alone. However the unsuper-

model precision recall f-score AER
Rom↔ Eng 79.0 70.0 74.2 25.8
Fre↔ Eng 97.9 90.8 94.2 5.49
Fre↔ Eng (P) 95.5 93.7 94.6 5.29

Table 4. Results using features from Model 4 bi-
directional alignments, training with and without the
possible (P) alignments.

model precision recall f-score AER
Fre↔ Eng 94.6 92.2 93.4 6.47
Fre↔ Eng (Model 4) 96.1 93.3 94.7 5.19

Table 5. 10-fold cross-validation results, with and with-
out Model 4 features.

vised Model 4 did not have access to the word-
alignments in our training set. Callison-Burch et
al. (2004) demonstrated that the GIZA++ mod-
els could be trained in a semi-supervised manner,
leading to a slight decrease in error. To our knowl-
edge, our AER of 5.19 is the best reported result,
generative or discriminative, on this data set.

5 Related work

Recently, a number of discriminative word align-
ment models have been proposed, however these
early models are typically very complicated with
many proposing intractable problems which re-
quire heuristics for approximate inference (Liu et
al., 2005; Moore, 2005).

An exception is Taskar et al. (2005) who pre-
sented a word matching model for discriminative
alignment which they they were able to solve opti-
mally. However, their model is limited to only pro-
viding one-to-one alignments. Also, no features
were defined on label sequences, which reduced
the model’s ability to capture the strong monotonic
relationships present between European language
pairs. On the French-English Hansards task, using
the same training/testing setup as our work, they
achieve an AER of 5.4 with Model 4 features, and
10.7 without (compared to 5.29 and 6.99 for our
CRF). One of the strengths of the CRF MAP es-
timation is the powerful smoothing offered by the
prior, which allows us to avoid heuristics such as
early stopping and hand weighted loss-functions
that were needed for the maximum-margin model.

Liu et al. (2005) used a conditional log-linear
model with similar features to those we have em-
ployed. They formulated a global model, without
making a Markovian assumption, leading to the
need for a sub-optimal heuristic search strategies.

Ittycheriah and Roukos (2005) trained a dis-
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criminative model on a corpus of ten thousand
word aligned Arabic-English sentence pairs that
outperformed a GIZA++ baseline. As with other
approaches, they proposed a model which didn’t
allow a tractably optimal solution and thus had to
resort to a heuristic beam search. They employed
a log-linear model to learn the observation proba-
bilities, while using a fixed transition distribution.
Our CRF model allows both the observation and
transition components of the model to be jointly
optimised from the corpus.

6 Further work

The results presented in this paper were evaluated
in terms of AER. While a low AER can be ex-
pected to improve end-to-end translation quality,
this is may not necessarily be the case. There-
fore, we plan to assess how the recall and preci-
sion characteristics of our model affect translation
quality. The tradeoff between recall and precision
may affect the quality and number of phrases ex-
tracted for a phrase translation table.

7 Conclusion

We have presented a novel approach for induc-
ing word alignments from sentence aligned data.
We showed how conditional random fields could
be used for word alignment. These models al-
low for the use of arbitrary and overlapping fea-
tures over the source and target sentences, making
the most of small supervised training sets. More-
over, we showed how the CRF’s inference and es-
timation methods allowed for efficient processing
without sacrificing optimality, improving on pre-
vious heuristic based approaches.

On both French-English and Romanian-English
we showed that many highly predictive features
can be easily incorporated into the CRF, and
demonstrated that with only a few hundred word-
aligned training sentences, our model outperforms
the generative Model 4 baseline. When no features
are extracted from the sentence aligned corpus our
model still achieves a low error rate. Furthermore,
when we employ features derived from Model 4
alignments our CRF model achieves the highest
reported results on both data sets.
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Abstract

In this paper we investigate Chinese-
English name transliteration usingcompa-
rable corpora, corpora where texts in the
two languages deal in some of the same
topics — and therefore share references
to named entities — but are not transla-
tions of each other. We present two dis-
tinct methods for transliteration, one ap-
proach using phonetic transliteration, and
the second using the temporal distribu-
tion of candidate pairs. Each of these ap-
proaches works quite well, but by com-
bining the approaches one can achieve
even better results. We then propose a
novel score propagation method that uti-
lizes the co-occurrence of transliteration
pairs within document pairs. This prop-
agation method achieves further improve-
ment over the best results from the previ-
ous step.

1 Introduction

As part of a more general project on multilin-
gual named entity identification, we are interested
in the problem of name transliteration across lan-
guages that use different scripts. One particular is-
sue is the discovery of named entities in “compara-
ble” texts in multiple languages, where by compa-
rable we mean texts that are about the same topic,
but arenot in general translations of each other.
For example, if one were to go through an English,
Chinese and Arabic newspaper on the same day,
it is likely that the more important international
events in various topics such as politics, business,
science and sports, would each be covered in each
of the newspapers. Names of the same persons,
locations and so forth — which are oftentranslit-
erated rather than translated — would be found in

comparable stories across the three papers.1 We
wish to use this expectation to leverage translit-
eration, and thus the identification of named enti-
ties across languages. Our idea is that the occur-
rence of a cluster of names in, say, an English text,
should be useful if we find a cluster of what looks
like the same names in a Chinese or Arabic text.

An example of what we are referring to can be
found in Figure 1. These are fragments of two
stories from the June 8, 2001 Xinhua English and
Chinese newswires, each covering an international
women’s badminton championship. Though these
two stories are from the same newswire source,
and cover the same event, they arenot translations
of each other. Still, not surprisingly, a lot of the
names that occur in one, also occur in the other.
Thus (Camilla) Martin shows up in the Chinese
version asíû¢ ma-er-ting; Judith Meulendijks
is Ú¤¬×ÏË¹ yu mo-lun-di-ke-si; and Mette
Sorensen is õ¤÷×­mai su-lun-sen. Several
other correspondences also occur. While some of
the transliterations are “standard” — thus Martin
is conventionally transliterated asíû¢ ma-er-
ting — many of them were clearly more novel,
though all of them follow the standard Chinese
conventions for transliterating foreign names.

These sample documents illustrate an important
point: if a document in languageL1 has a set of
names, and one finds a document inL2 containing
a set of names that look as if they could be translit-
erations of the names in theL1 document, then
this should boost one’s confidence that the two sets
of names are indeed transliterations of each other.
We will demonstrate that this intuition is correct.

1Many names, particularly of organizations, may be trans-
lated rather than transliterated; the transliteration method we
discuss here obviously will not account for such cases, though
the time correlation and propagation methods we discuss will
still be useful.
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Dai Yun Nips World No. 1 Martinto Shake off Olympic

Shadow . . . In the day’s other matches, second seed Zhou Mi

overwhelmed Ling Wan Ting of Hong Kong, China 11-4, 11-

4, Zhang Ning defeat Judith Meulendijksof Netherlands 11-

2, 11-9 and third seed Gong Ruina took 21 minutes to elimi-

nate Tine Rasmussenof Denmark 11-1, 11-1, enabling China

to claim five quarterfinal places in the women’s singles.ð « ò À õ ü � ú ® ¥ ¡ Ö « ¿ Ò í Ë ¿
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Figure 1: Sample from two stories about an inter-
national women’s badminton championship.

2 Previous Work

In previous work on Chinese named-entity
transliteration — e.g. (Meng et al., 2001; Gao
et al., 2004), the problem has been cast as the
problem of producing, for a given Chinese name,
an English equivalent such as one might need in
a machine translation system. For example, for
the name¬¤þ®·¹wei wei-lian-mu-si, one
would like to arrive at the English nameV(enus)
Williams. Common approaches include source-
channel methods, following (Knight and Graehl,
1998) or maximum-entropy models.

Comparable corpora have been studied exten-
sively in the literature (e.g.,(Fung, 1995; Rapp,
1995; Tanaka and Iwasaki, 1996; Franz et al.,
1998; Ballesteros and Croft, 1998; Masuichi et al.,
2000; Sadat et al., 2003)), but transliteration in the
context of comparable corpora has not been well
addressed.

The general idea of exploiting frequency corre-
lations to acquire word translations from compara-
ble corpora has been explored in several previous
studies (e.g., (Fung, 1995; Rapp, 1995; Tanaka
and Iwasaki, 1996)).Recently, a method based on
Pearson correlation was proposed to mine word
pairs from comparable corpora (Tao and Zhai,
2005), an idea similar to the method used in (Kay
and Roscheisen, 1993) for sentence alignment. In
our work, we adopt the method proposed in (Tao
and Zhai, 2005) and apply it to the problem of
transliteration. We also study several variations of
the similarity measures.

Mining transliterations from multilingual web
pages was studied in (Zhang and Vines, 2004);

Our work differs from this work in that we use
comparable corpora (in particular, news data) and
leverage the time correlation information naturally
available in comparable corpora.

3 Chinese Transliteration with
Comparable Corpora

We assume that we have comparable corpora, con-
sisting of newspaper articles in English and Chi-
nese from the same day, or almost the same day. In
our experiments we use data from the English and
Chinese stories from the Xinhua News agency for
about 6 months of 2001.2 We assume that we have
identified names for persons and locations—two
types that have a strong tendency to be translit-
erated wholly or mostly phonetically—in the En-
glish text; in this work we use the named-entity
recognizer described in (Li et al., 2004), which
is based on the SNoW machine learning toolkit
(Carlson et al., 1999).

To perform the transliteration task, we propose
the following general three-step approach:

1. Given an English name, identify candi-
date Chinese character n-grams as possible
transliterations.

2. Score each candidate based on how likely the
candidate is to be a transliteration of the En-
glish name. We propose two different scoring
methods. The first involves phonetic scoring,
and the second uses the frequency profile of
the candidate pair over time. We will show
that each of these approaches works quite
well, but by combining the approaches one
can achieve even better results.

3. Propagate scores of all the candidate translit-
eration pairs globally based on their co-
occurrences in document pairs in the compa-
rable corpora.

The intuition behind the third step is the following.
Suppose several high-confidence name transliter-
ation pairs occur in a pair of English and Chi-
nese documents. Intuitively, this would increase
our confidence in the other plausible translitera-
tion pairs in the same document pair. We thus pro-
pose a score propagation method to allow these
high-confidence pairs to propagate some of their

2Available from the LDC via the English Gigaword
(LDC2003T05) and Chinese Gigaword (LDC2003T09) cor-
pora.
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scores to other co-occurring transliteration pairs.
As we will show later, such a propagation strat-
egy can generally further improve the translitera-
tion accuracy; in particular, it can further improve
the already high performance from combining the
two scoring methods.

3.1 Candidate Selection

The English named entity candidate selection pro-
cess was already described above. Candidate Chi-
nese transliterations are generated by consulting
a list of characters that are frequently used for
transliterating foreign names. As discussed else-
where (Sproat et al., 1996), a subset of a few hun-
dred characters (out of several thousand) tends to
be used overwhelmingly for transliterating foreign
names into Chinese. We use a list of 495 such
characters, derived from various online dictionar-
ies. A sequence of three or more characters from
the list is taken as a possible name. If the character
“¤” occurs, which is frequently used to represent
the space between parts of an English name, then
at least one character to the left and right of this
character will be collected, even if the character in
question is not in the list of “foreign” characters.

Armed with the English and Chinese candidate
lists, we then consider the pairing of every En-
glish candidate with every Chinese candidate. Ob-
viously it would be impractical to do this for all of
the candidates generated for, say, an entire year:
we consider as plausible pairings those candidates
that occur within a day of each other in the two
corpora.

3.2 Candidate scoring based on
pronunciation

We adopt a source-channel model for scoring
English-Chinese transliteration pairs. In general,
we seek to estimateP (e|c), wheree is a word in
Roman script, andc is a word in Chinese script.
Since Chinese transliteration is mostly based on
pronunciation, we estimateP (e′|c′), wheree′ is
the pronunciation ofe andc′ is the pronunciation
of c. Again following standard practice, we de-
compose the estimate ofP (e′|c′) as P (e′|c′) =∏

i P (e′i|c
′

i). Here, e′i is the ith subsequence of
the English phone string, andc′i is the ith subse-
quence of the Chinese phone string. Since Chi-
nese transliteration attempts to match the syllable-
sized characters to equivalent sounding spans of
the English language, we fix thec′i to be syllables,
and let thee′i range over all possible subsequences

of the English phone string. For training data we
have a small list of 721 names in Roman script and
their Chinese equivalent.3 Pronunciations for En-
glish words are obtained using the Festival text-to-
speech system (Taylor et al., 1998); for Chinese,
we use the standard pinyin transliteration of the
characters. English-Chinese pairs in our training
dictionary were aligned using the alignment algo-
rithm from (Kruskal, 1999), and a hand-derived
set of 21 rules-of-thumb: for example, we have
rules that encode the fact that Chinese /l/ can cor-
respond to English /r/, /n/ or /er/; and that Chinese
/w/ may be used to represent /v/. Given that there
are over 400 syllables in Mandarin (not count-
ing tone) and each of these syllables can match
a large number of potential English phone spans,
this is clearly not enough training data to cover all
the parameters, and so we use Good-Turing esti-
mation to estimate probabilities for unseen corre-
spondences. Since we would like to filter implau-
sible transliteration pairs we are less lenient than
standard estimation techniques in that we are will-
ing to assign zero probability to some correspon-
dences. Thus we set a hard rule that for an En-
glish phone span to correspond to a Chinese sylla-
ble, the initial phone of the English span must have
been seen in the training data as corresponding to
the initial of the Chinese syllable some minimum
number of times. For consonant-initial syllables
we set the minimum to 4. We omit further details
of our estimation technique for lack of space. This
phonetic correspondence model can then be used
to score putative transliteration pairs.

3.3 Candidate Scoring based on Frequency
Correlation

Names of the same entity that occur in different
languages often have correlated frequency patterns
due to common triggers such as a major event.
Thus if we have comparable news articles over a
sufficiently long time period, it is possible to ex-
ploit such correlations to learn the associations of
names in different languages. The idea of exploit-
ing frequency correlation has been well studied.
(See the previous work section.) We adopt the
method proposed in (Tao and Zhai, 2005), which

3The LDC provides a much larger list of transliterated
Chinese-English names, but we did not use this here for two
reasons. First, we have found it it be quite noisy. Secondly,
we were interested in seeing how well one could do with a
limited resource of just a few hundred names, which is a more
realistic scenario for languages that have fewer resourcesthan
English and Chinese.
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works as follows: We pool all documents in a sin-
gle day to form a large pseudo-document. Then,
for each transliteration candidate (both Chinese
and English), we compute its frequency in each
of those pseudo-documents and obtain a raw fre-
quency vector. We further normalize the raw fre-
quency vector so that it becomes a frequency dis-
tribution over all the time points (days). In order
to compute the similarity between two distribution
vectors, The Pearson correlation coefficient was
used in (Tao and Zhai, 2005); here we also consid-
ered two other commonly used measures –cosine
(Salton and McGill, 1983), andJensen-Shannon
divergence (Lin, 1991), though our results show
that Pearson correlation coefficient performs bet-
ter than these two other methods.

3.4 Score Propagation

In both scoring methods described above, scoring
of each candidate transliteration pair isindepen-
dent of the other. As we have noted, document
pairs that contain lots of plausible transliteration
pairs should be viewed as more plausible docu-
ment pairs; at the same time, in such a situation we
should also trust the putative transliteration pairs
more. Thus these document pairs and translitera-
tion pairs mutually “reinforce” each other, and this
can be exploited to further optimize our translit-
eration scores by allowing transliteration pairs to
propagate their scores to each other according to
their co-occurrence strengths.

Formally, suppose the current generation of
transliteration scores are(ei, ci, wi) i = 1, ..., n,
where(ei, ci) is a distinct pair of English and Chi-
nese names. Note that although for anyi 6= j, we
have(ei, ci) 6= (ej , cj), it is possible thatei = ej

or ci = cj for somei 6= j. wi is the transliteration
score of(ei, ci).

These pairs along with their co-occurrence re-
lation computed based on our comparable cor-
pora can be formally represented by a graph as
shown in Figure 2. In such a graph, a node repre-
sents(ei, ci, wi). An edge between(ei, ci, wi) and
(ej , cj , wj) is constructed iff(ei, ci) and (ej , cj)
co-occur in a certain document pair(Et, Ct), i.e.
there exists a document pair(Et, Ct), such that
ei, ej ∈ Et and ci, cj ∈ Ct. Given a node
(ei, ci, wi), we refer to all its directly-connected
nodes as its “neighbors”. The documents do not
appear explicitly in the graph, but they implicitly
affect the graph’s topology and the weight of each
edge. Our idea of score propagation can now be
formulated as the following recursive equation for

w1

w4

w2

w3

w5

w6

w7

(e4, c4)

(e3, c3)

(e5, c5)

(e5, c5)

(e2, c2)

(e7, c7)

(e6, c6)

Figure 2: Graph representing transliteration pairs
and cooccurence relations.

updating the scores of all the transliteration pairs.

w
(k)
i = α× w

(k−1)
i + (1− α)×

n∑

j 6=i,j=1

(w
(k−1)
j × P (j|i)),

wherew
(k)
i is the new score of the pair(ei, ci)

after an iteration, whilew(k−1)
i is its old score

before updating;α ∈ [0, 1] is a parameter to
control the overall amount of propagation (when
α = 1, no propagation occurs);P (j|i) is the con-
ditional probability of propagating a score from
node(ej , cj , wj) to node(ei, ci, wi).

We estimateP (j|i) in two different ways: 1)
The number of cooccurrences in the whole collec-
tion (Denote as CO).P (j|i) = C(i,j)∑

j′
C(i,j′)

, where

C(i, j) is the cooccurrence count of(ei, ci) and
(ej , cj); 2) A mutual information-based method

(Denote as MI).P (j|i) = MI(i,j)∑
j′

MI(i,j′)
, where

MI(i, j) is the mutual information of(ei, ci) and
(ej , cj). As we will show, the CO method works
better. Note that the transition probabilities be-
tween indirect neighbors are always 0. Thus prop-
agation only happens between direct neighbors.

This formulation is very similar to PageRank,
a link-based ranking algorithm for Web retrieval
(Brin and Page, 1998). However, our motivation
is propagating scores to exploit cooccurrences, so
we do not necessarily want the equation to con-
verge. Indeed, our results show that although the
initial iterations always help improve accuracy, too
many iterations actually would decrease the per-
formance.

4 Evaluation

We use a comparable English-Chinese corpus to
evaluate our methods for Chinese transliteration.
We take one day’s worth of comparable news arti-
cles (234 Chinese stories and 322 English stories),
generate about 600 English names with the entity
recognizer (Li et al., 2004) as described above, and
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find potential Chinese transliterations also as pre-
viously described. We generated 627 Chinese can-
didates. In principle, all these600 × 627 pairs are
potential transliterations. We then apply the pho-
netic and time correlation methods to score and
rank all the candidate Chinese-English correspon-
dences.

To evaluate the proposed transliteration meth-
ods quantitatively, we measure the accuracy of the
ranked list by Mean Reciprocal Rank (MRR), a
measure commonly used in information retrieval
when there is precisely one correct answer (Kan-
tor and Voorhees, 2000). The reciprocal rank is
the reciprocal of the rank of the correct answer.
For example, if the correct answer is ranked as the
first, the reciprocal rank would be1.0, whereas if
it is ranked the second, it would be0.5, and so
forth. To evaluate the results for a set of English
names, we take the mean of the reciprocal rank of
each English name.

We attempted to create a complete set of an-
swers for all the English names in our test set,
but a small number of English names do not seem
to have any standard transliteration according to
the resources that we consulted. We ended up
with a list of about 490 out of the 600 English
names judged. We further notice that some an-
swers (about 20%) are not in our Chinese candi-
date set. This could be due to two reasons: (1) The
answer does not occur in the Chinese news articles
we look at. (2) The answer is there, but our candi-
date generation method has missed it. In order to
see more clearly how accurate each method is for
ranking the candidates, we also compute the MRR
for the subset of English names whose transliter-
ation answers are in our candidate list. We dis-
tinguish the MRRs computed on these two sets of
English names as “AllMRR” and “CoreMRR”.

Below we first discuss the results of each of the
two methods. We then compare the two methods
and discuss results from combining the two meth-
ods.

4.1 Phonetic Correspondence

We show sample results for the phonetic scoring
method in Table 1. This table shows the 10 high-
est scoring transliterations for each Chinese char-
acter sequence based on all texts in the Chinese
and English Xinhua newswire for the 13th of Au-
gust, 2001. 8 out of these 10 are correct. For all
the English names the MRR is 0.3, and for the

∗paris å×¹ pei-lei-si 3.51
iraq Á­Ë yi-la-ke 3.74
staub ¹þ® si-ta-bo 4.45
canada Ó�ó jia-na-da 4.85
belfast ´û¨¹Ø bei-er-fa-si-te 4.90
fischer Æáû fei-she-er 4.91
philippine ÆÉö fei-lü-bin 4.97
lesotho ³÷� lai-suo-two 5.12
∗tirana ú·Ú tye-lu-na 5.15
freeman ¥ïü fu-li-man 5.26

Table 1: Ten highest-scoring matches for the Xin-
hua corpus for 8/13/01. The final column is the
−log P estimate for the transliteration. Starred
entries are incorrect.

core names it is 0.89. Thus on average, the cor-
rect answer, if it is included in our candidate list,
is ranked mostly as the first one.

4.2 Frequency correlation

Similarity AllMRR CoreMRR

Pearson 0.1360 0.3643
Cosine 0.1141 0.3015
JS-div 0.0785 0.2016

Table 2: MRRs of the frequency correlation meth-
ods.

We proposed three similarity measures for the
frequency correlation method, i.e., the Cosine,
Pearson coefficient, and Jensen-Shannon diver-
gence. In Table 2, we show their MRRs. Given
that the only resource the method needs is compa-
rable text documents over a sufficiently long pe-
riod, these results are quite encouraging. For ex-
ample, with Pearson correlation, when the Chinese
transliteration of an English name is included in
our candidate list, the correct answer is, on aver-
age, ranked at the 3rd place or better. The results
thus show that the idea of exploiting frequency
correlation does work. We also see that among
the three similarity measures, Pearson correlation
performs the best; it performs better than Cosine,
which is better than JS-divergence.

Compared with the phonetic correspondence
method, the performance of the frequency correla-
tion method is in general much worse, which is not
surprising, given the fact that terms may be corre-
lated merely because they are topically related.
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4.3 Combination of phonetic correspondence
and frequency correlation

Method AllMRR CoreMRR

Phonetic 0.2999 0.8895
Freq 0.1360 0.3643

Freq+PhoneticFilter 0.3062 0.9083
Freq+PhoneticScore 0.3194 0.9474

Table 3: Effectiveness of combining the two scor-
ing methods.

Since the two methods exploit complementary
resources, it is natural to see if we can improve
performance by combining the two methods. In-
deed, intuitively the best candidate is the one that
has a good pronunciation alignment as well as a
correlated frequency distribution with the English
name. We evaluated two strategies for combining
the two methods. The first strategy is to use the
phonetic model to filter out (clearly impossible)
candidates and then use the frequency correlation
method to rank the candidates. The second is to
combine the scores of these two methods. Since
the correlation coefficient has a maximum value
of 1, we normalize the phonetic correspondence
score by dividing all scores by the maximum score
so that the maximum normalized value is also 1.
We then take the average of the two scores and
rank the candidates based on their average scores.
Note that the second strategy implies the applica-
tion of the first strategy.

The results of these two combination strategies
are shown in Table 3 along with the results of the
two individual methods. We see that both com-
bination strategies are effective and the MRRs of
the combined results are all better than those of the
two individual methods. It is interesting to see that
the benefit of applying the phonetic correspon-
dence model as a filter is quite significant. Indeed,
although the performance of the frequency corre-
lation method alone is much worse than that of the
phonetic correspondence method, when working
on the subset of candidates passing the phonetic
filter (i.e., those candidates that have a reasonable
phonetic alignment with the English name), it can
outperform the phonetic correspondence method.
This once again indicates that exploiting the fre-
quency correlation can be effective. When com-
bining the scores of these two methods, we not
only (implicitly) apply the phonetic filter, but also

exploit the discriminative power provided by the
phonetic correspondence scores and this is shown
to bring in additional benefit, giving the best per-
formance among all the methods.

4.4 Error Analysis

From the results above, we see that the MRRs for
the core English names are substantially higher
than those for all the English names. This means
that our methods perform very well whenever we
have the answer in our candidate list, but we have
also missed the answers for many English names.
The missing of an answer in the candidate list is
thus a major source of errors. To further under-
stand the upper bound of our method, we manu-
ally add the missing correct answers to our can-
didate set and apply all the methods to rank this
augmented set of candidates. The performance is
reported in Table 4 with the corresponding perfor-
mance on the original candidate set. We see that,

Method ALLMRR
Original Augmented

Phonetic 0.2999 0.7157
Freq 0.1360 0.3455

Freq+PhoneticFilter 0.3062 0.6232
Freq+PhoneticScore 0.3194 0.7338

Table 4: MRRs on the augmented candidate list.

as expected, the performance on the augmented
candidate list, which can be interpreted as an up-
per bound of our method, is indeed much better,
suggesting that if we can somehow improve the
candidate generation method to include the an-
swers in the list, we can expect to significantly im-
prove the performance for all the methods. This
is clearly an interesting topic for further research.
The relative performance of different methods on
this augmented candidate list is roughly the same
as on the original candidate list, except that the
“Freq+PhoneticFilter” is slightly worse than that
of the phonetic method alone, though it is still
much better than the performance of the frequency
correlation alone. One possible explanation may
be that since these names do not necessarily oc-
cur in our comparable corpora, we may not have
sufficient frequency observations for some of the
names.
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Method AllMRR CoreMRR
init. CO MI init. CO MI

Freq+PhoneticFilter 0.3171 0.3255 0.3255 0.9058 0.9372 0.9372
Freq+PhoneticScore 0.3290 0.3373 0.3392 0.9422 0.9659 0.9573

Table 5: Effectiveness of score propagation.

4.5 Experiments on score propagation

To demonstrate that score propagation can further
help transliteration, we use the combination scores
in Table 3 as the initial scores, and apply our prop-
agation algorithm to iteratively update them. We
remove the entries when they do not co-occur with
others. There are 25 such English name candi-
dates. Thus, the initial scores are actually slightly
different from the values in Table 3. We show
the new scores and the best propagation scores in
Table 5. In the table, “init.” refers to the initial
scores. and “CO” and “MI” stand for best scores
obtained using either the co-occurrence or mutual
information method. While both methods result
in gains, CO very slightly outperforms the MI ap-
proach. In the score propagation process, we in-
troduce two additional parameters: the interpola-
tion parameterα and the number of iterationsk.
Figure 3 and Figure 4 show the effects of these
parameters. Intuitively, we want to preserve the
initial score of a pair, but add a slight boost from
its neighbors. Thus, we setα very close to 1 (0.9
and 0.95), and allow the system to perform 20 it-
erations. In both figures, the first few iterations
certainly leverage the transliteration, demonstrat-
ing that the propagation method works. However,
we observe that the performance drops when more
iterations are used, presumably due to noise intro-
duced from more distantly connected nodes. Thus,
a relatively conservative approach is to choose a
high α value, and run only a few iterations. Note,
finally, that the CO method seems to be more sta-
ble than the MI method.

5 Conclusions and Future Work

In this paper we have discussed the problem of
Chinese-English name transliteration as one com-
ponent of a system to find matching names in com-
parable corpora. We have proposed two methods
for transliteration, one that is more traditional and
based on phonetic correspondences, and one that
is based on word distributions and adopts meth-
ods from information retrieval. We have shown
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that both methods yield good results, and that even
better results can be achieved by combining the
methods. We have further showed that one can
improve upon the combined model by using rein-
forcement via score propagation when translitera-
tion pairs cluster together in document pairs.

The work we report is ongoing. We are inves-
tigating transliterations among several language
pairs, and are extending these methods to Ko-
rean, Arabic, Russian and Hindi — see (Tao et al.,
2006).
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Abstract

We present a novel method for extract-
ing parallel sub-sentential fragments from
comparable, non-parallel bilingual cor-
pora. By analyzing potentially similar
sentence pairs using a signal processing-
inspired approach, we detect which seg-
ments of the source sentence are translated
into segments in the target sentence, and
which are not. This method enables us
to extract useful machine translation train-
ing data even from very non-parallel cor-
pora, which contain no parallel sentence
pairs. We evaluate the quality of the ex-
tracted data by showing that it improves
the performance of a state-of-the-art sta-
tistical machine translation system.

1 Introduction

Recently, there has been a surge of interest in
the automatic creation of parallel corpora. Sev-
eral researchers (Zhao and Vogel, 2002; Vogel,
2003; Resnik and Smith, 2003; Fung and Cheung,
2004a; Wu and Fung, 2005; Munteanu and Marcu,
2005) have shown how fairly good-quality parallel
sentence pairs can be automatically extracted from
comparable corpora, and used to improve the per-
formance of machine translation (MT) systems.
This work addresses a major bottleneck in the de-
velopment of Statistical MT (SMT) systems: the
lack of sufficiently large parallel corpora for most
language pairs. Since comparable corpora exist in
large quantities and for many languages – tens of
thousands of words of news describing the same
events are produced daily – the ability to exploit
them for parallel data acquisition is highly benefi-
cial for the SMT field.

Comparable corpora exhibit various degrees of
parallelism. Fung and Cheung (2004a) describe
corpora ranging from noisy parallel, to compara-
ble, and finally to very non-parallel. Corpora from
the last category contain “... disparate, very non-
parallel bilingual documents that could either be
on the same topic (on-topic) or not”. This is the
kind of corpora that we are interested to exploit in
the context of this paper.

Existing methods for exploiting comparable
corpora look for parallel data at the sentence level.
However, we believe that very non-parallel cor-
pora have none or few good sentence pairs; most
of their parallel data exists at the sub-sentential
level. As an example, consider Figure 1, which
presents two news articles from the English and
Romanian editions of the BBC. The articles re-
port on the same event (the one-year anniversary
of Ukraine’s Orange Revolution), have been pub-
lished within 25 minutes of each other, and express
overlapping content.

Although they are “on-topic”, these two docu-
ments are non-parallel. In particular, they contain
no parallel sentence pairs; methods designed to ex-
tract full parallel sentences will not find any use-
ful data in them. Still, as the lines and boxes from
the figure show, some parallel fragments of data
do exist; but they are present at the sub-sentential
level.

In this paper, we present a method for extracting
such parallel fragments from comparable corpora.
Figure 2 illustrates our goals. It shows two sen-
tences belonging to the articles in Figure 1, and
highlights and connects their parallel fragments.

Although the sentences share some common
meaning, each of them has content which is not
translated on the other side. The English phrase
reports the BBC’s Helen Fawkes in Kiev, as well
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Figure 1: A pair of comparable, non-parallel documents

Figure 2: A pair of comparable sentences.

as the Romanian one De altfel, vorbind inaintea
aniversarii have no translation correspondent, ei-
ther in the other sentence or anywhere in the whole
document. Since the sentence pair contains so
much untranslated text, it is unlikely that any par-
allel sentence detection method would consider it
useful. And, even if the sentences would be used
for MT training, considering the amount of noise
they contain, they might do more harm than good
for the system’s performance. The best way to
make use of this sentence pair is to extract and use
for training just the translated (highlighted) frag-
ments. This is the aim of our work.

Identifying parallel subsentential fragments is
a difficult task. It requires the ability to recog-
nize translational equivalence in very noisy en-
vironments, namely sentence pairs that express
different (although overlapping) content. How-
ever, a good solution to this problem would have a
strong impact on parallel data acquisition efforts.
Enabling the exploitation of corpora that do not
share parallel sentences would greatly increase the
amount of comparable data that can be used for
SMT.

2 Finding Parallel Sub-Sentential
Fragments in Comparable Corpora

2.1 Introduction

The high-level architecture of our parallel frag-
ment extraction system is presented in Figure 3.

The first step of the pipeline identifies docu-
ment pairs that are similar (and therefore more
likely to contain parallel data), using the Lemur
information retrieval toolkit1 (Ogilvie and Callan,
2001); each document in the source language is
translated word-for-word and turned into a query,
which is run against the collection of target lan-
guage documents. The top 20 results are retrieved
and paired with the query document. We then take
all sentence pairs from these document pairs and
run them through the second step in the pipeline,
the candidate selection filter. This step discards
pairs which have very few words that are trans-
lations of each other. To all remaining sentence
pairs we apply the fragment detection method (de-
scribed in Section 2.3), which produces the output
of the system.

We use two probabilistic lexicons, learned au-

1http://www-2.cs.cmu.edu/$\sim$lemur
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Figure 3: A Parallel Fragment Extraction System

tomatically from the same initial parallel corpus.
The first one, GIZA-Lex, is obtained by running
the GIZA++2 implementation of the IBM word
alignment models (Brown et al., 1993) on the ini-
tial parallel corpus. One of the characteristics of
this lexicon is that each source word is associated
with many possible translations. Although most of
its high-probability entries are good translations,
there are a lot of entries (of non-negligible proba-
bility) where the two words are at most related. As
an example, in our GIZA-Lex lexicon, each source
word has an average of 12 possible translations.
This characteristic is useful for the first two stages
of the extraction pipeline, which are not intended
to be very precise. Their purpose is to accept most
of the existing parallel data, and not too much of
the non-parallel data; using such a lexicon helps
achieve this purpose.

For the last stage, however, precision is
paramount. We found empirically that when us-
ing GIZA-Lex, the incorrect correspondences that
it contains seriously impact the quality of our re-
sults; we therefore need a cleaner lexicon. In addi-
tion, since we want to distinguish between source
words that have a translation on the target side and
words that do not, we also need a measure of the
probability that two words are not translations of
each other. All these are part of our second lexi-
con, LLR-Lex, which we present in detail in Sec-
tion 2.2. Subsequently, in Section 2.3, we present
our algorithm for detecting parallel sub-sentential
fragments.

2.2 Using Log-Likelihood-Ratios to Estimate
Word Translation Probabilities

Our method for computing the probabilistic trans-
lation lexicon LLR-Lex is based on the the Log-

2http://www.fjoch.com/GIZA++.html

Likelihood-Ratio (LLR) statistic (Dunning, 1993),
which has also been used by Moore (2004a;
2004b) and Melamed (2000) as a measure of
word association. Generally speaking, this statis-
tic gives a measure of the likelihood that two sam-
ples are not independent (i.e. generated by the
same probability distribution). We use it to es-
timate the independence of pairs of words which
cooccur in our parallel corpus.

If source word
�

and target word � are indepen-
dent (i.e. they are not translations of each other),
we would expect that ������� �	��
 �������
� �	��
 ����� � ,
i.e. the distribution of � given that

�
is present

is the same as the distribution of � when
�

is not
present. The LLR statistic gives a measure of the
likelihood of this hypothesis. The LLR score of a
word pair is low when these two distributions are
very similar (i.e. the words are independent), and
high otherwise (i.e. the words are strongly associ-
ated). However, high LLR scores can indicate ei-
ther a positive association (i.e. ������� �	��� �������
� �	� )
or a negative one; and we can distinguish between
them by checking whether ������� �	��� ����� � ��� �	� .

Thus, we can split the set of cooccurring word
pairs into positively and negatively associated
pairs, and obtain a measure for each of the two as-
sociation types. The first type of association will
provide us with our (cleaner) lexicon, while the
second will allow us to estimate probabilities of
words not being translations of each other.

Before describing our new method more for-
mally, we address the notion of word cooc-
currence. In the work of Moore (2004a) and
Melamed (2000), two words cooccur if they are
present in a pair of aligned sentences in the parallel
training corpus. However, most of the words from
aligned sentences are actually unrelated; therefore,
this is a rather weak notion of cooccurrence. We
follow Resnik et. al (2001) and adopt a stronger
definition, based not on sentence alignment but
on word alignment: two words cooccur if they
are linked together in the word-aligned parallel
training corpus. We thus make use of the signifi-
cant amount of knowledge brought in by the word
alignment procedure.

We compute ����������� �	� , the LLR score for
words � and

�
, using the formula presented by

Moore (2004b), which we do not repeat here due
to lack of space. We then use these values to
compute two conditional probability distributions:��� ����� �	� , the probability that source word

�
trans-
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Figure 4: Translated fragments, according to the lexicon.

lates into target word � , and
��� ����� �	� , the proba-

bility that
�

does not translate into � . We obtain
the distributions by normalizing the LLR scores
for each source word.

The whole procedure follows:

� Word-align the parallel corpus. Following
Och and Ney (2003), we run GIZA++ in both
directions, and then symmetrize the align-
ments using the refined heuristic.

� Compute all LLR scores. There will be an
LLR score for each pair of words which are
linked at least once in the word-aligned cor-
pus

� Classify all ����������� �	� as either ����� � ��� � �	�
(positive association) if ������� �	� � ����� � ��� �	� ,
or ����� � ����� �	� (negative association) other-
wise.

� For each
�

, compute the normalizing factors��� ����� � ����� �	� and
��� ����� � ��� � �	� .

� Divide all ����� � ����� �	� terms by the cor-
responding normalizing factors to obtain� � ����� �	� .

� Divide all ����� � ����� �	� terms by the cor-
responding normalizing factors to obtain��� ����� �	� .

In order to compute the
� � � � � � distributions,

we reverse the source and target languages and re-
peat the procedure.

As we mentioned above, in GIZA-Lex the aver-
age number of possible translations for a source
word is 12. In LLR-Lex that average is 5, which is
a significant decrease.

2.3 Detecting Parallel Sub-Sentential
Fragments

Intuitively speaking, our method tries to distin-
guish between source fragments that have a trans-
lation on the target side, and fragments that do not.
In Figure 4 we show the sentence pair from Fig-
ure 2, in which we have underlined those words of

each sentence that have a translation in the other
sentence, according to our lexicon LLR-Lex. The
phrases “to focus on the past year’s achievements,
which,” and “sa se concentreze pe succesele an-
ului trecut, care,” are mostly underlined (the lexi-
con is unaware of the fact that “achievements” and
“succesele” are in fact translations of each other,
because “succesele” is a morphologically inflected
form which does not cooccur with “achievements”
in our initial parallel corpus). The rest of the
sentences are mostly not underlined, although we
do have occasional connections, some correct and
some wrong. The best we can do in this case is to
infer that these two phrases are parallel, and dis-
card the rest. Doing this gains us some new knowl-
edge: the lexicon entry (achievements, succesele).

We need to quantify more precisely the notions
of “mostly translated” and “mostly not translated”.
Our approach is to consider the target sentence as
a numeric signal, where translated words corre-
spond to positive values (coming from the

� �
dis-

tribution described in the previous Section), and
the others to negative ones (coming from the

���
distribution). We want to retain the parts of the
sentence where the signal is mostly positive. This
can be achieved by applying a smoothing filter to
the signal, and selecting those fragments of the
sentence for which the corresponding filtered val-
ues are positive.

The details of the procedure are presented be-
low, and also illustrated in Figure 5. Let the Ro-
manian sentence be the source sentence 	 , and the
English one be the target, 
 . We compute a word
alignment 	�� 
 by greedily linking each En-
glish word with its best translation candidate from
the Romanian sentence. For each of the linked tar-
get words, the corresponding signal value is the
probability of the link (there can be at most one
link for each target word). Thus, if target word �
is linked to source word

�
, the signal value cor-

responding to � is
� � ����� �	� (the distribution de-

scribed in Section 2.2), i.e. the probability that �
is the translation of

�
.

For the remaining target words, the signal value
should reflect the probability that they are not
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Figure 5: Our approach for detecting parallel fragments. The lower part of the figure shows the source
and target sentence together with their alignment. Above are displayed the initial signal and the filtered
signal. The circles indicate which fragments of the target sentence are selected by the procedure.

translated; for this, we employ the
� �

distribu-
tion. Thus, for each non-linked target word � , we
look for the source word least likely to be its non-
translation:

��� 
��������
	���
���� � � ����� �	� . If
���

ex-
ists, we set the signal value for � to � ��� ����� ��� � ;
otherwise, we set it to ��� . This is the initial sig-
nal. We obtain the filtered signal by applying an
averaging filter, which sets the value at each point
to be the average of several values surrounding it.
In our experiments, we use the surrounding 5 val-
ues, which produced good results on a develop-
ment set. We then simply retain the “positive frag-
ments” of 
 , i.e. those fragments for which the
corresponding filtered signal values are positive.

However, this approach will often produce short
“positive fragments” which are not, in fact, trans-
lated in the source sentence. An example of this
is the fragment “, reports” from Figure 5, which
although corresponds to positive values of the fil-
tered signal, has no translation in Romanian. In
an attempt to avoid such errors, we disregard frag-
ments with less than 3 words.

We repeat the procedure in the other direction
( 
 � 	 ) to obtain the fragments for

�
, and

consider the resulting two text chunks as parallel.

For the sentence pair from Figure 5, our system
will output the pair:
people to focus on the past year’s achievements, which, he says

sa se concentreze pe succesele anului trecut, care, printre

3 Experiments

In our experiments, we compare our fragment
extraction method (which we call FragmentEx-
tract) with the sentence extraction approach of
Munteanu and Marcu (2005) (SentenceExtract).
All extracted datasets are evaluated by using them
as additional MT training data and measuring their
impact on the performance of the MT system.

3.1 Corpora

We perform experiments in the context of Roma-
nian to English machine translation. We use two
initial parallel corpora. One is the training data
for the Romanian-English word alignment task
from the Workshop on Building and Using Par-
allel Corpora3 which has approximately 1M En-
glish words. The other contains additional data

3http://www.statmt.org/wpt05/
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Romanian English

Source # articles # tokens # articles # tokens

BBC 6k 2.5M 200k 118M
EZZ 183k 91M 14k 8.5M

Table 1: Sizes of our comparable corpora

from the Romanian translations of the European
Union’s acquis communautaire which we mined
from the Web, and has about 10M English words.

We downloaded comparable data from three on-
line news sites: the BBC, and the Romanian news-
papers “Evenimentul Zilei” and “Ziua”. The BBC
corpus is precisely the kind of corpus that our
method is designed to exploit. It is truly non-
parallel; as our example from Figure 1 shows, even
closely related documents have few or no parallel
sentence pairs. Therefore, we expect that our ex-
traction method should perform best on this cor-
pus.

The other two sources are fairly similar, both in
genre and in degree of parallelism, so we group
them together and refer to them as the EZZ cor-
pus. This corpus exhibits a higher degree of par-
allelism than the BBC one; in particular, it con-
tains many article pairs which are literal transla-
tions of each other. Therefore, although our sub-
sentence extraction method should produce useful
data from this corpus, we expect the sentence ex-
traction method to be more successful. Using this
second corpus should help highlight the strengths
and weaknesses of our approach.

Table 1 summarizes the relevant information
concerning these corpora.

3.2 Extraction Experiments

On each of our comparable corpora, and using
each of our initial parallel corpora, we apply
both the fragment extraction and the sentence ex-
traction method of Munteanu and Marcu (2005).
In order to evaluate the importance of the LLR-
Lex lexicon, we also performed fragment extrac-
tion experiments that do not use this lexicon, but
only GIZA-Lex. Thus, for each initial parallel
corpus and each comparable corpus, we extract
three datasets: FragmentExtract, SentenceExtract,
and Fragment-noLLR. The sizes of the extracted
datasets, measured in million English tokens, are
presented in Table 2.

Initial Source FragmentExtract SentenceExtract Fragment-noLLR

corpus

1M BBC 0.4M 0.3M 0.8M
1M EZZ 6M 4M 8.1M

10M BBC 1.3M 0.9M 2M
10M EZZ 10M 7.9M 14.3M

Table 2: Sizes of the extracted datasets.

3.3 SMT Performance Results

We evaluate our extracted corpora by measuring
their impact on the performance of an SMT sys-
tem. We use the initial parallel corpora to train
Baseline systems; and then train comparative sys-
tems using the initial corpora plus: the Frag-
mentExtract corpora; the SentenceExtract cor-
pora; and the FragmentExtract-noLLR corpora. In
order to verify whether the fragment and sentence
detection method complement each other, we also
train a Fragment+Sentence system, on the ini-
tial corpus plus FragmentExtract and SentenceEx-
tract.

All MT systems are trained using a variant
of the alignment template model of Och and
Ney (2004). All systems use the same 2 language
models: one trained on 800 million English to-
kens, and one trained on the English side of all
our parallel and comparable corpora. This ensures
that differences in performance are caused only by
differences in the parallel training data.

Our test data consists of news articles from the
Time Bank corpus, which were translated into
Romanian, and has 1000 sentences. Transla-
tion performance is measured using the automatic
BLEU (Papineni et al., 2002) metric, on one ref-
erence translation. We report BLEU% numbers,
i.e. we multiply the original scores by 100. The
95% confidence intervals of our scores, computed
by bootstrap resampling (Koehn, 2004), indicate
that a score increase of more than 1 BLEU% is
statistically significant.

The scores are presented in Figure 6. On the
BBC corpus, the fragment extraction method pro-
duces statistically significant improvements over
the baseline, while the sentence extraction method
does not. Training on both datasets together brings
further improvements. This indicates that this cor-
pus has few parallel sentences, and that by go-
ing to the sub-sentence level we make better use
of it. On the EZZ corpus, although our method
brings improvements in the BLEU score, the sen-
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Figure 6: SMT performance results

tence extraction method does better. Joining both
extracted datasets does not improve performance;
since most of the parallel data in this corpus exists
at sentence level, the extracted fragments cannot
bring much additional knowledge.

The Fragment-noLLR datasets bring no transla-
tion performance improvements; moreover, when
the initial corpus is small (1M words) and the com-
parable corpus is noisy (BBC), the data has a nega-
tive impact on the BLEU score. This indicates that
LLR-Lex is a higher-quality lexicon than GIZA-
Lex, and an important component of our method.

4 Previous Work

Much of the work involving comparable corpora
has focused on extracting word translations (Fung
and Yee, 1998; Rapp, 1999; Diab and Finch, 2000;
Koehn and Knight, 2000; Gaussier et al., 2004;
Shao and Ng, 2004; Shinyama and Sekine, 2004).
Another related research effort is that of Resnik
and Smith (2003), whose system is designed to
discover parallel document pairs on the Web.

Our work lies between these two directions; we
attempt to discover parallelism at the level of frag-
ments, which are longer than one word but shorter
than a document. Thus, the previous research most
relevant to this paper is that aimed at mining com-
parable corpora for parallel sentences.

The earliest efforts in this direction are those
of Zhao and Vogel (2002) and Utiyama and Isa-
hara (2003). Both methods extend algorithms de-
signed to perform sentence alignment of parallel
texts: they use dynamic programming to do sen-
tence alignment of documents hypothesized to be
similar. These approaches are only applicable to
corpora which are at most “noisy-parallel”, i.e.

contain documents which are fairly similar, both
in content and in sentence ordering.

Munteanu and Marcu (2005) analyze sentence
pairs in isolation from their context, and clas-
sify them as parallel or non-parallel. They match
each source document with several target ones,
and classify all possible sentence pairs from each
document pair. This enables them to find sen-
tences from fairly dissimilar documents, and to
handle any amount of reordering, which makes the
method applicable to truly comparable corpora.

The research reported by Fung and Che-
ung (2004a; 2004b), Cheung and Fung (2004) and
Wu and Fung (2005) is aimed explicitly at “very
non-parallel corpora”. They also pair each source
document with several target ones and examine all
possible sentence pairs; but the list of document
pairs is not fixed. After one round of sentence ex-
traction, the list is enriched with additional docu-
ments, and the system iterates. Thus, they include
in the search document pairs which are dissimilar.

One limitation of all these methods is that they
are designed to find only full sentences. Our
methodology is the first effort aimed at detecting
sub-sentential correspondences. This is a difficult
task, requiring the ability to recognize translation-
ally equivalent fragments even in non-parallel sen-
tence pairs.

The work of Deng et. al (2006) also deals with
sub-sentential fragments. However, they obtain
parallel fragments from parallel sentence pairs (by
chunking them and aligning the chunks appropri-
ately), while we obtain them from comparable or
non-parallel sentence pairs.

Since our approach can extract parallel data
from texts which contain few or no parallel sen-
tences, it greatly expands the range of corpora
which can be usefully exploited.

5 Conclusion

We have presented a simple and effective method
for extracting sub-sentential fragments from com-
parable corpora. We also presented a method for
computing a probabilistic lexicon based on the
LLR statistic, which produces a higher quality lex-
icon. We showed that using this lexicon helps im-
prove the precision of our extraction method.

Our approach can be improved in several
aspects. The signal filtering function is very
simple; more advanced filters might work better,
and eliminate the need of applying additional

87



heuristics (such as our requirement that the
extracted fragments have at least 3 words). The
fact that the source and target signal are filtered
separately is also a weakness; a joint analysis
should produce better results. Despite the better
lexicon, the greatest source of errors is still related
to false word correspondences, generally involv-
ing punctuation and very common, closed-class
words. Giving special attention to such cases
should help get rid of these errors, and improve
the precision of the method.
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Abstract

Instances of a word drawn from different
domains may have different sense priors
(the proportions of the different senses of
a word). This in turn affects the accuracy
of word sense disambiguation (WSD) sys-
tems trained and applied on different do-
mains. This paper presents a method to
estimate the sense priors of words drawn
from a new domain, and highlights the im-
portance of using well calibrated probabil-
ities when performing these estimations.
By using well calibrated probabilities, we
are able to estimate the sense priors effec-
tively to achieve significant improvements
in WSD accuracy.

1 Introduction

Many words have multiple meanings, and the pro-
cess of identifying the correct meaning, or sense
of a word in context, is known as word sense
disambiguation (WSD). Among the various ap-
proaches to WSD, corpus-based supervised ma-
chine learning methods have been the most suc-
cessful to date. With this approach, one would
need to obtain a corpus in which each ambiguous
word has been manually annotated with the correct
sense, to serve as training data.

However, supervised WSD systems faced an
important issue of domain dependence when using
such a corpus-based approach. To investigate this,
Escudero et al. (2000) conducted experiments
using the DSO corpus, which contains sentences
drawn from two different corpora, namely Brown
Corpus (BC) and Wall Street Journal (WSJ). They
found that training a WSD system on one part (BC
or WSJ) of the DSO corpus and applying it to the

other part can result in an accuracy drop of 12%
to 19%. One reason for this is the difference in
sense priors (i.e., the proportions of the different
senses of a word) between BC and WSJ. For in-
stance, the noun interest has these 6 senses in the
DSO corpus: sense 1, 2, 3, 4, 5, and 8. In the BC
part of the DSO corpus, these senses occur with
the proportions: 34%, 9%, 16%, 14%, 12%, and
15%. However, in the WSJ part of the DSO cor-
pus, the proportions are different: 13%, 4%, 3%,
56%, 22%, and 2%. When the authors assumed
they knew the sense priors of each word in BC and
WSJ, and adjusted these two datasets such that the
proportions of the different senses of each word
were the same between BC and WSJ, accuracy im-
proved by 9%. In another work, Agirre and Mar-
tinez (2004) trained a WSD system on data which
was automatically gathered from the Internet. The
authors reported a 14% improvement in accuracy
if they have an accurate estimate of the sense pri-
ors in the evaluation data and sampled their train-
ing data according to these sense priors. The work
of these researchers showed that when the domain
of the training data differs from the domain of the
data on which the system is applied, there will be
a decrease in WSD accuracy.

To build WSD systems that are portable across
different domains, estimation of the sense priors
(i.e., determining the proportions of the differ-
ent senses of a word) occurring in a text corpus
drawn from a domain is important. McCarthy et
al. (2004) provided a partial solution by describing
a method to predict the predominant sense, or the
most frequent sense, of a word in a corpus. Using
the noun interest as an example, their method will
try to predict that sense 1 is the predominant sense
in the BC part of the DSO corpus, while sense 4
is the predominant sense in the WSJ part of the
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corpus.
In our recent work (Chan and Ng, 2005b), we

directly addressed the problem by applying ma-
chine learning methods to automatically estimate
the sense priors in the target domain. For instance,
given the noun interest and the WSJ part of the
DSO corpus, we attempt to estimate the propor-
tion of each sense of interest occurring in WSJ and
showed that these estimates help to improve WSD
accuracy. In our work, we used naive Bayes as
the training algorithm to provide posterior proba-
bilities, or class membership estimates, for the in-
stances in the target domain. These probabilities
were then used by the machine learning methods
to estimate the sense priors of each word in the
target domain.

However, it is known that the posterior proba-
bilities assigned by naive Bayes are not reliable, or
not well calibrated (Domingos and Pazzani, 1996).
These probabilities are typically too extreme, of-
ten being very near 0 or 1. Since these probabil-
ities are used in estimating the sense priors, it is
important that they are well calibrated.

In this paper, we explore the estimation of sense
priors by first calibrating the probabilities from
naive Bayes. We also propose using probabilities
from another algorithm (logistic regression, which
already gives well calibrated probabilities) to esti-
mate the sense priors. We show that by using well
calibrated probabilities, we can estimate the sense
priors more effectively. Using these estimates im-
proves WSD accuracy and we achieve results that
are significantly better than using our earlier ap-
proach described in (Chan and Ng, 2005b).

In the following section, we describe the algo-
rithm to estimate the sense priors. Then, we de-
scribe the notion of being well calibrated and dis-
cuss why using well calibrated probabilities helps
in estimating the sense priors. Next, we describe
an algorithm to calibrate the probability estimates
from naive Bayes. Then, we discuss the corpora
and the set of words we use for our experiments
before presenting our experimental results. Next,
we propose using the well calibrated probabilities
of logistic regression to estimate the sense priors,
and perform significance tests to compare our var-
ious results before concluding.

2 Estimation of Priors

To estimate the sense priors, or a priori proba-
bilities of the different senses in a new dataset,

we used a confusion matrix algorithm (Vucetic
and Obradovic, 2001) and an EM based algorithm
(Saerens et al., 2002) in (Chan and Ng, 2005b).
Our results in (Chan and Ng, 2005b) indicate that
the EM based algorithm is effective in estimat-
ing the sense priors and achieves greater improve-
ments in WSD accuracy compared to the confu-
sion matrix algorithm. Hence, to estimate the
sense priors in our current work, we use the EM
based algorithm, which we describe in this sec-
tion.

2.1 EM Based Algorithm

Most of this section is based on (Saerens et al.,
2002). Assume we have a set of labeled data D �
with n classes and a set of N independent instances� � ���������	� � 
 �

from a new data set. The likelihood
of these N instances can be defined as:� � � �
��������� � 
 ��� 
�� � ��� � � � �� 
�� � � ����� � � � � � � ��� � ���� 
�� � � ����� � � � � � � � � � � � �!� � �"� (1)

Assuming the within-class densities � � � �#� � � � ,
i.e., the probabilities of observing

� � given the
class

� �
, do not change from the training set D �

to the new data set, we can define: � � � �$� � � �%�� � � � �#� � � � . To determine the a priori probability
estimates &� �'� � � of the new data set that will max-
imize the likelihood of (1) with respect to � �!� � � ,
we can apply the iterative procedure of the EM al-
gorithm. In effect, through maximizing the likeli-
hood of (1), we obtain the a priori probability es-
timates as a by-product.

Let us now define some notations. When we
apply a classifier trained on D � on an instance� � drawn from the new data set D ( , we get&� � �'� � � � � � , which we define as the probability of
instance

� � being classified as class
� �

by the clas-
sifier trained on D � . Further, let us define &� � �'� � �
as the a priori probabilities of class

� �
in D � . This

can be estimated by the class frequency of
� �

in
D � . We also define &� ) * + �'� � � and &� ) * + �'� � � � � � as es-
timates of the new a priori and a posteriori proba-
bilities at step s of the iterative EM procedure. As-
suming we initialize &� ) , + �'� � �-� &� � �'� � � , then for
each instance

� � in D ( and each class
� �

, the EM
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algorithm provides the following iterative steps:

&� ) * + �'� � � � � � � &� � �'� � � � � � &������� ) �
	 +&� � ) ��	 +
 ��	� � &� � �!� � � � � � &� ����� ) � � +&� � ) � � + (2)

&� ) *�� � + �'� � � � ��

�� � � &� ) * + �!� � � � � � (3)

where Equation (2) represents the expectation E-
step, Equation (3) represents the maximization M-
step, and N represents the number of instances in
D ( . Note that the probabilities &� � �'� � � � � � and&� � �'� � � in Equation (2) will stay the same through-
out the iterations for each particular instance

� �
and class

� �
. The new a posteriori probabilities&� ) * + �'� � � � � � at step s in Equation (2) are simply the

a posteriori probabilities in the conditions of the
labeled data, &� � �'� � � � � � , weighted by the ratio of
the new priors &� ) * + �'� � � to the old priors &� � �'� � � .
The denominator in Equation (2) is simply a nor-
malizing factor.

The a posteriori &� ) * + �!� � � � � � and a priori proba-
bilities &� ) * + �'� � � are re-estimated sequentially dur-
ing each iteration s for each new instance

� � and
each class

� �
, until the convergence of the esti-

mated probabilities &� ) * + �'� � � . This iterative proce-
dure will increase the likelihoodof (1) at each step.

2.2 Using A Priori Estimates

If a classifier estimates posterior class probabili-
ties &� � �!� � � � � � when presented with a new instance� � from D ( , it can be directly adjusted according
to estimated a priori probabilities &� �'� � � on D ( :

&��� � ��� *�� �!�
� � � � � � &� � �'� � � � � � &� ) ��	 +&� � ) ��	 +
 � &� � �'� � � � � � &� ) � � +&� � ) � � + (4)

where &� � �'� � � denotes the a priori probability of
class

� �
from D � and &��� � ��� *�� �'�

� � � � � denotes the
adjusted predictions.

3 Calibration of Probabilities

In our eariler work (Chan and Ng, 2005b), the
posterior probabilities assigned by a naive Bayes
classifier are used by the EM procedure described
in the previous section to estimate the sense pri-
ors &� �'� � � in a new dataset. However, it is known
that the posterior probabilities assigned by naive
Bayes are not well calibrated (Domingos and Paz-
zani, 1996).

It is important to use an algorithm which gives
well calibrated probabilities, if we are to use the
probabilities in estimating the sense priors. In
this section, we will first describe the notion of
being well calibrated before discussing why hav-
ing well calibrated probabilities helps in estimat-
ing the sense priors. Finally, we will introduce
a method used to calibrate the probabilities from
naive Bayes.

3.1 Well Calibrated Probabilities

Assume for each instance
�

, a classifier out-
puts a probability S ��	 � � � between 0 and 1, of�

belonging to class
� �

. The classifier is well-
calibrated if the empirical class membership prob-
ability � �'� � � S ��	 � � �-�����

converges to the proba-
bility value S �
	 � � � � � as the number of examples
classified goes to infinity (Zadrozny and Elkan,
2002). Intuitively, if we consider all the instances
to which the classifier assigns a probability S �
	 � � �
of say 0.6, then 60% of these instances should be
members of class

� �
.

3.2 Being Well Calibrated Helps Estimation

To see why using an algorithm which gives well
calibrated probabilities helps in estimating the
sense priors, let us rewrite Equation (3), the M-
step of the EM procedure, as the following:&� ) *!� � + �'� � � � �� �

� " # $ 	
�� " %'&)( # * 	 ) +-, + � �/. &� ) * + �'�

� � � � �
(5)

where S ��	 = 0 �	���������	�)�!1 2 denotes the set of poste-
rior probability values for class

� �
, and S ��	 � � & �denotes the posterior probability of class

� �
as-

signed by the classifier for instance
�
& .Based on

�����������	�'��1
, we can imagine that we

have 3 bins, where each bin is associated with a
specific

�
value. Now, distribute all the instances

in the new dataset D ( into the 3 bins according
to their posterior probabilities 4 ��	 � � � . Let B 5 , for6 � � � �����	� 3 , denote the set of instances in bin

6
.

Note that �B � � 798�8�8:7 � B 5 � 798:8�8�7 �B 1 � =
�

.
Now, let � 5 denote the proportion of instances with
true class label

� �
in B 5 . Given a well calibrated

algorithm, � 5 �;� 5 by definition and Equation (5)
can be rewritten as:&� ) *�� � + �'� � � � �� �<�	� �B � � 7 8�8�8=7 ��1 �B 1 � �� �� � � � �B � � 7>8:8�8=7 � 1 �B 1 � �� � ��	� (6)
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Input: training set � ��� � ��� � sorted in ascending order of ���
Initialize 	
� � ���
While � k such that 	 � ��
�
�
�� 	�� ����� 	�� ��
�
�
�� 	�� , where	 � � ����� � 	 � ��� and 	 � � ����� � 	 � ���������� !�

Set " �

$#%'&
(*) %
� � � + �

Replace 	 � ��
�
�
,� 	 � with m

Figure 1: PAV algorithm.

where
� �
	 denotes the number of instances in D (

with true class label
� �

. Therefore, &� ) *!� � + �'� � � re-
flects the proportion of instances in D ( with true
class label

� �
. Hence, using an algorithm which

gives well calibrated probabilities helps in the es-
timation of sense priors.

3.3 Isotonic Regression

Zadrozny and Elkan (2002) successfully used a
method based on isotonic regression (Robertson
et al., 1988) to calibrate the probability estimates
from naive Bayes. To compute the isotonic regres-
sion, they used the pair-adjacent violators (PAV)
(Ayer et al., 1955) algorithm, which we show in
Figure 1. Briefly, what PAV does is to initially
view each data value as a level set. While there
are two adjacent sets that are out of order (i.e., the
left level set is above the right one) then the sets
are combined and the mean of the data values be-
comes the value of the new level set.

PAV works on binary class problems. In
a binary class problem, we have a positive
class and a negative class. Now, let - �� � � � � � � � �/.102. � , where

� ���������	� � 

represent

N examples and � � is the probability of
� � belong-

ing to the positive class, as predicted by a classi-
fier. Further, let 3 � represent the true label of

� � .
For a binary class problem, we let 3 � � � if

� �
is a positive example and 3 � �54

if
� � is a neg-

ative example. The PAV algorithm takes in a set
of

� � � � 3 � � , sorted in ascending order of � � and re-
turns a series of increasing step-values, where each
step-value 6 ��7 5 (denoted by m in Figure 1) is associ-
ated with a lowest boundary value � � and a highest
boundary value � 5 . We performed 10-fold cross-
validation on the training data to assign values to� � . We then applied the PAV algorithm to obtain
values for 6 � . To obtain the calibrated probability
estimate for a test instance

�
, we find the bound-

ary values � � and � 5 where � � . S ��	 � � � . � 5 and
assign 6 ��7 5 as the calibrated probability estimate.

To apply PAV on a multiclass problem, we first
reduce the problem into a number of binary class

problems. For reducing a multiclass problem into
a set of binary class problems, experiments in
(Zadrozny and Elkan, 2002) suggest that the one-
against-all approach works well. In one-against-
all, a separate classifier is trained for each class

� �
,

where examples belonging to class
� �

are treated
as positive examples and all other examples are
treated as negative examples. A separate classifier
is then learnt for each binary class problem and the
probability estimates from each classifier are cali-
brated. Finally, the calibrated binary-class proba-
bility estimates are combined to obtain multiclass
probabilities, computed by a simple normalization
of the calibrated estimates from each binary clas-
sifier, as suggested by Zadrozny and Elkan (2002).

4 Selection of Dataset

In this section, we discuss the motivations in
choosing the particular corpora and the set of
words used in our experiments.

4.1 DSO Corpus

The DSO corpus (Ng and Lee, 1996) contains
192,800 annotated examples for 121 nouns and 70
verbs, drawn from BC and WSJ. BC was built as a
balanced corpus and contains texts in various cate-
gories such as religion, fiction, etc. In contrast, the
focus of the WSJ corpus is on financial and busi-
ness news. Escudero et al. (2000) exploited the
difference in coverage between these two corpora
to separate the DSO corpus into its BC and WSJ
parts for investigating the domain dependence of
several WSD algorithms. Following their setup,
we also use the DSO corpus in our experiments.

The widely used SEMCOR (SC) corpus (Miller
et al., 1994) is one of the few currently avail-
able manually sense-annotated corpora for WSD.
SEMCOR is a subset of BC. Since BC is a bal-
anced corpus, and training a classifier on a general
corpus before applying it to a more specific corpus
is a natural scenario, we will use examples from
BC as training data, and examples from WSJ as
evaluation data, or the target dataset.

4.2 Parallel Texts

Scalability is a problem faced by current super-
vised WSD systems, as they usually rely on man-
ually annotated data for training. To tackle this
problem, in one of our recent work (Ng et al.,
2003), we had gathered training data from paral-
lel texts and obtained encouraging results in our
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evaluation on the nouns of SENSEVAL-2 English
lexical sample task (Kilgarriff, 2001). In another
recent evaluation on the nouns of SENSEVAL-
2 English all-words task (Chan and Ng, 2005a),
promising results were also achieved using exam-
ples gathered from parallel texts. Due to the po-
tential of parallel texts in addressing the issue of
scalability, we also drew training data for our ear-
lier sense priors estimation experiments (Chan and
Ng, 2005b) from parallel texts. In addition, our
parallel texts training data represents a natural do-
main difference with the test data of SENSEVAL-
2 English lexical sample task, of which 91% is
drawn from the British National Corpus (BNC).

As part of our experiments, we followed the ex-
perimental setup of our earlier work (Chan and
Ng, 2005b), using the same 6 English-Chinese
parallel corpora (Hong Kong Hansards, Hong
Kong News, Hong Kong Laws, Sinorama, Xinhua
News, and English translation of Chinese Tree-
bank), available from Linguistic Data Consortium.
To gather training examples from these parallel
texts, we used the approach we described in (Ng
et al., 2003) and (Chan and Ng, 2005b). We
then evaluated our estimation of sense priors on
the nouns of SENSEVAL-2 English lexical sam-
ple task, similar to the evaluation we conducted
in (Chan and Ng, 2005b). Since the test data for
the nouns of SENSEVAL-3 English lexical sample
task (Mihalcea et al., 2004) were also drawn from
BNC and represented a difference in domain from
the parallel texts we used, we also expanded our
evaluation to these SENSEVAL-3 nouns.

4.3 Choice of Words

Research by (McCarthy et al., 2004) highlighted
that the sense priors of a word in a corpus depend
on the domain from which the corpus is drawn.
A change of predominant sense is often indicative
of a change in domain, as different corpora drawn
from different domains usually give different pre-
dominant senses. For example, the predominant
sense of the noun interest in the BC part of the
DSO corpus has the meaning “a sense of concern
with and curiosity about someone or something”.
In the WSJ part of the DSO corpus, the noun in-
terest has a different predominant sense with the
meaning “a fixed charge for borrowing money”,
reflecting the business and finance focus of the
WSJ corpus.

Estimation of sense priors is important when

there is a significant change in sense priors be-
tween the training and target dataset, such as when
there is a change in domain between the datasets.
Hence, in our experiments involving the DSO cor-
pus, we focused on the set of nouns and verbs
which had different predominant senses between
the BC and WSJ parts of the corpus. This gave
us a set of 37 nouns and 28 verbs. For experi-
ments involving the nouns of SENSEVAL-2 and
SENSEVAL-3 English lexical sample task, we
used the approach we described in (Chan and Ng,
2005b) of sampling training examples from the
parallel texts using the natural (empirical) distri-
bution of examples in the parallel texts. Then, we
focused on the set of nouns having different pre-
dominant senses between the examples gathered
from parallel texts and the evaluation data for the
two SENSEVAL tasks. This gave a set of 6 nouns
for SENSEVAL-2 and 9 nouns for SENSEVAL-
3. For each noun, we gathered a maximum of 500
parallel text examples as training data, similar to
what we had done in (Chan and Ng, 2005b).

5 Experimental Results

Similar to our previous work (Chan and Ng,
2005b), we used the supervised WSD approach
described in (Lee and Ng, 2002) for our exper-
iments, using the naive Bayes algorithm as our
classifier. Knowledge sources used include parts-
of-speech, surrounding words, and local colloca-
tions. This approach achieves state-of-the-art ac-
curacy. All accuracies reported in our experiments
are micro-averages over all test examples.

In (Chan and Ng, 2005b), we used a multiclass
naive Bayes classifier (denoted by NB) for each
word. Following this approach, we noted the WSD
accuracies achieved without any adjustment, in the
column L under NB in Table 1. The predictions&� � �'� � � � � � of these naive Bayes classifiers are then
used in Equation (2) and (3) to estimate the sense
priors &� �'� � � , before being adjusted by these esti-
mated sense priors based on Equation (4). The re-
sulting WSD accuracies after adjustment are listed
in the column EM


��
in Table 1, representing the

WSD accuracies achievable by following the ap-
proach we described in (Chan and Ng, 2005b).

Next, we used the one-against-all approach to
reduce each multiclass problem into a set of binary
class problems. We trained a naive Bayes classifier
for each binary problem and calibrated the prob-
abilities from these binary classifiers. The WSD
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Classifier NB NBcal
Method L EM ��� EM � � ) � L EM ��� ��� � EM � � ) �
DSO nouns 44.5 46.1 46.6 45.8 47.0 51.1
DSO verbs 46.7 48.3 48.7 46.9 49.5 50.8
SE2 nouns 61.7 62.4 63.0 62.3 63.2 63.5
SE3 nouns 53.9 54.9 55.7 55.4 58.8 58.4

Table 1: Micro-averaged WSD accuracies using the various methods. The different naive Bayes classifiers are: multiclass
naive Bayes (NB) and naive Bayes with calibrated probabilities (NBcal).

Dataset True � L EM ��� ��� � � L EM � � ) � � L
DSO nouns 11.6 1.2 (10.3%) 5.3 (45.7%)
DSO verbs 10.3 2.6 (25.2%) 3.9 (37.9%)
SE2 nouns 3.0 0.9 (30.0%) 1.2 (40.0%)
SE3 nouns 3.7 3.4 (91.9%) 3.0 (81.1%)

Table 2: Relative accuracy improvement based on cali-
brated probabilities.

accuracies of these calibrated naive Bayes classi-
fiers (denoted by NBcal) are given in the column L
under NBcal.1 The predictions of these classifiers
are then used to estimate the sense priors &� �'� � � ,
before being adjusted by these estimates based on
Equation (4). The resulting WSD accuracies after
adjustment are listed in column EM


��
	 � 5 in Table

1.

The results show that calibrating the proba-
bilities improves WSD accuracy. In particular,
EM


��
	 � 5 achieves the highest accuracy among the

methods described so far. To provide a basis for
comparison, we also adjusted the calibrated prob-
abilities by the true sense priors � �'� � � of the test
data. The increase in WSD accuracy thus ob-
tained is given in the column True 
 L in Table
2. Note that this represents the maximum possi-
ble increase in accuracy achievable provided we
know these true sense priors � �'� � � . In the col-
umn EM


��
	 � 5 
 �

in Table 2, we list the increase
in WSD accuracy when adjusted by the sense pri-
ors &� �!� � � which were automatically estimated us-
ing the EM procedure. The relative improvements
obtained with using &� �!� � � (compared against us-
ing � �'� � � ) are given as percentages in brackets.
As an example, according to Table 1 for the DSO
verbs, EM


��
	 � 5 gives an improvement of 49.5%


 46.9% = 2.6% in WSD accuracy, and the rela-
tive improvement compared to using the true sense
priors is 2.6/10.3 = 25.2%, as shown in Table 2.

Dataset EM ��� EM ��� ��� � EM � � ) �
DSO nouns 0.621 0.586 0.293
DSO verbs 0.651 0.602 0.307
SE2 nouns 0.371 0.307 0.214
SE3 nouns 0.693 0.632 0.408

Table 3: KL divergence between the true and estimated
sense distributions.

6 Discussion

The experimental results show that the sense
priors estimated using the calibrated probabilities
of naive Bayes are effective in increasing the WSD
accuracy. However, using a learning algorithm
which already gives well calibrated posterior prob-
abilities may be more effective in estimating the
sense priors. One possible algorithm is logis-
tic regression, which directly optimizes for get-
ting approximations of the posterior probabilities.
Hence, its probability estimates are already well
calibrated (Zhang and Yang, 2004; Niculescu-
Mizil and Caruana, 2005).

In the rest of this section, we first conduct ex-
periments to estimate sense priors using the pre-
dictions of logistic regression. Then, we perform
significance tests to compare the various methods.

6.1 Using Logistic Regression

We trained logistic regression classifiers and eval-
uated them on the 4 datasets. However, the WSD
accuracies of these unadjusted logistic regression
classifiers are on average about 4% lower than
those of the unadjusted naive Bayes classifiers.
One possible reason is that being a discriminative
learner, logistic regression requires more train-
ing examples for its performance to catch up to,
and possibly overtake the generative naive Bayes
learner (Ng and Jordan, 2001).

Although the accuracy of logistic regression as
a basic classifier is lower than that of naive Bayes,
its predictions may still be suitable for estimating

1Though not shown, we also calculated the accuracies of
these binary classifiers without calibration, and found them
to be similar to the accuracies of the multiclass naive Bayes
shown in the column L under NB in Table 1.

94



Method comparison DSO nouns DSO verbs SE2 nouns SE3 nouns
NB-EM � � ) � vs. NB-EM ���

� � � �
NBcal-EM � � ��� � vs. NB-EM ��� � � � �
NBcal-EM � � ��� � vs. NB-EM � � ) � � � � �
NBcal-EM � � ) � vs. NB-EM ���

� � � �
NBcal-EM � � ) � vs. NB-EM � � ) � � � � �
NBcal-EM � � ) � vs. NBcal-EM ��� ��� � � � � �

Table 4: Paired t-tests between the various methods for the 4 datasets.

sense priors. To gauge how well the sense pri-
ors are estimated, we measure the KL divergence
between the true sense priors and the sense pri-
ors estimated by using the predictions of (uncal-
ibrated) multiclass naive Bayes, calibrated naive
Bayes, and logistic regression. These results are
shown in Table 3 and the column EM � ��� � shows
that using the predictions of logistic regression to
estimate sense priors consistently gives the lowest
KL divergence.

Results of the KL divergence test motivate us to
use sense priors estimated by logistic regression
on the predictions of the naive Bayes classifiers.
To elaborate, we first use the probability estimates&� � �'� � � � � � of logistic regression in Equations (2)
and (3) to estimate the sense priors &� �'� � � . These
estimates &� �'� � � and the predictions &� � �'� � � � � � of
the calibrated naive Bayes classifier are then used
in Equation (4) to obtain the adjusted predictions.
The resulting WSD accuracy is shown in the col-
umn EM � ��� � under NBcal in Table 1. Corre-
sponding results when the predictions &� � �'� � � � � �
of the multiclass naive Bayes is used in Equation
(4), are given in the column EM � ��� � under NB.
The relative improvements against using the true
sense priors, based on the calibrated probabilities,
are given in the column EM � ��� � 
 L in Table 2.
The results show that the sense priors provided by
logistic regression are in general effective in fur-
ther improving the results. In the case of DSO
nouns, this improvement is especially significant.

6.2 Significance Test

Paired t-tests were conducted to see if one method
is significantly better than another. The t statistic
of the difference between each test instance pair is
computed, giving rise to a p value. The results of
significance tests for the various methods on the 4
datasets are given in Table 4, where the symbols
“ � ”, “ � ”, and “ 	 ” correspond to p-value � 0.05,
(0.01, 0.05], and . 0.01 respectively.

The methods in Table 4 are represented in the
form a1-a2, where a1 denotes adjusting the pre-

dictions of which classifier, and a2 denotes how
the sense priors are estimated. As an example,
NBcal-EM � ��� � specifies that the sense priors es-
timated by logistic regression is used to adjust the
predictions of the calibrated naive Bayes classifier,
and corresponds to accuracies in column EM � ��� �
under NBcal in Table 1. Based on the signifi-
cance tests, the adjusted accuracies of EM


��
and

EM

��

	 � 5 in Table 1 are significantly better than
their respective unadjusted L accuracies, indicat-
ing that estimating the sense priors of a new do-
main via the EM approach presented in this paper
significantly improves WSD accuracy compared
to just using the sense priors from the old domain.

NB-EM

��

represents our earlier approach in
(Chan and Ng, 2005b). The significance tests
show that our current approach of using calibrated
naive Bayes probabilities to estimate sense priors,
and then adjusting the calibrated probabilities by
these estimates (NBcal-EM


��
	 � 5 ) performs sig-

nificantly better than NB-EM

��

(refer to row 2
of Table 4). For DSO nouns, though the results
are similar, the p value is a relatively low 0.06.

Using sense priors estimated by logistic regres-
sion further improves performance. For example,
row 1 of Table 4 shows that adjusting the pre-
dictions of multiclass naive Bayes classifiers by
sense priors estimated by logistic regression (NB-
EM � ��� � ) performs significantly better than using
sense priors estimated by multiclass naive Bayes
(NB-EM


��
). Finally, using sense priors esti-

mated by logistic regression to adjust the predic-
tions of calibrated naive Bayes (NBcal-EM � ��� � )
in general performs significantly better than most
other methods, achieving the best overall perfor-
mance.

In addition, we implemented the unsupervised
method of (McCarthy et al., 2004), which calcu-
lates a prevalence score for each sense of a word
to predict the predominant sense. As in our earlier
work (Chan and Ng, 2005b), we normalized the
prevalence score of each sense to obtain estimated
sense priors for each word, which we then used
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to adjust the predictions of our naive Bayes classi-
fiers. We found that the WSD accuracies obtained
with the method of (McCarthy et al., 2004) are
on average 1.9% lower than our NBcal-EM � ��� �
method, and the difference is statistically signifi-
cant.

7 Conclusion

Differences in sense priors between training and
target domain datasets will result in a loss of WSD
accuracy. In this paper, we show that using well
calibrated probabilities to estimate sense priors is
important. By calibrating the probabilities of the
naive Bayes algorithm, and using the probabilities
given by logistic regression (which is already well
calibrated), we achieved significant improvements
in WSD accuracy over previous approaches.
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Abstract

Combination methods are an effective way
of improving system performance. This
paper examines the benefits of system
combination for unsupervised WSD. We
investigate several voting- and arbiter-
based combination strategies over a di-
verse pool of unsupervised WSD systems.
Our combination methods rely on predom-
inant senses which are derived automati-
cally from raw text. Experiments using the
SemCor and Senseval-3 data sets demon-
strate that our ensembles yield signifi-
cantly better results when compared with
state-of-the-art.

1 Introduction

Word sense disambiguation (WSD), the task of
identifying the intended meanings (senses) of
words in context, holds promise for many NLP
applications requiring broad-coverage language
understanding. Examples include summarization,
question answering, and text simplification. Re-
cent studies have also shown that WSD can ben-
efit machine translation (Vickrey et al., 2005) and
information retrieval (Stokoe, 2005).

Given the potential of WSD for many NLP
tasks, much work has focused on the computa-
tional treatment of sense ambiguity, primarily us-
ing data-driven methods. Most accurate WSD sys-
tems to date are supervised and rely on the avail-
ability of training data, i.e., corpus occurrences of
ambiguous words marked up with labels indicat-
ing the appropriate sense given the context (see
Mihalcea and Edmonds 2004 and the references
therein). A classifier automatically learns disam-
biguation cues from these hand-labeled examples.

Although supervised methods typically achieve
better performance than unsupervised alternatives,
their applicability is limited to those words for
which sense labeled data exists, and their accu-
racy is strongly correlated with the amount of la-
beled data available (Yarowsky and Florian, 2002).

Furthermore, obtaining manually labeled corpora
with word senses is costly and the task must be
repeated for new domains, languages, or sense in-
ventories. Ng (1997) estimates that a high accu-
racy domain independent system for WSD would
probably need a corpus of about 3.2 million sense
tagged words. At a throughput of one word per
minute (Edmonds, 2000), this would require about
27 person-years of human annotation effort.

This paper focuses on unsupervised methods
which we argue are useful for broad coverage
sense disambiguation. Unsupervised WSD algo-
rithms fall into two general classes: those that per-
form token-based WSD by exploiting the simi-
larity or relatedness between an ambiguous word
and its context (e.g., Lesk 1986); and those that
perform type-based WSD, simply by assigning
all instances of an ambiguous word its most fre-
quent (i.e., predominant) sense (e.g., McCarthy
et al. 2004; Galley and McKeown 2003). The pre-
dominant senses are automatically acquired from
raw text without recourse to manually annotated
data. The motivation for assigning all instances
of a word to its most prevalent sense stems from
the observation that current supervised approaches
rarely outperform the simple heuristic of choos-
ing the most common sense in the training data,
despite taking local context into account (Hoste
et al., 2002). Furthermore, the approach allows
sense inventories to be tailored to specific do-
mains.

The work presented here evaluates and com-
pares the performance of well-established unsu-
pervised WSD algorithms. We show that these
algorithms yield sufficiently diverse outputs, thus
motivating the use of combination methods for im-
proving WSD performance. While combination
approaches have been studied previously for su-
pervised WSD (Florian et al., 2002), their use
in an unsupervised setting is, to our knowledge,
novel. We examine several existing and novel
combination methods and demonstrate that our
combined systems consistently outperform the

97



state-of-the-art (e.g., McCarthy et al. 2004). Im-
portantly, our WSD algorithms and combination
methods do not make use of training material in
any way, nor do they use the first sense informa-
tion available in WordNet.

In the following section, we briefly describe the
unsupervised WSD algorithms considered in this
paper. Then, we present a detailed comparison of
their performance on SemCor (Miller et al., 1993).
Next, we introduce our system combination meth-
ods and report on our evaluation experiments. We
conclude the paper by discussing our results.

2 The Disambiguation Algorithms

In this section we briefly describe the unsuper-
vised WSD algorithms used in our experiments.
We selected methods that vary along the follow-
ing dimensions: (a) the type of WSD performed
(i.e., token-based vs. type-based), (b) the represen-
tation and size of the context surrounding an am-
biguous word (i.e., graph-based vs. word-based,
document vs. sentence), and (c) the number and
type of semantic relations considered for disam-
biguation. We base most of our discussion below
on the WordNet sense inventory; however, the ap-
proaches are not limited to this particular lexicon
but could be adapted for other resources with tra-
ditional dictionary-like sense definitions and alter-
native structure.
Extended Gloss Overlap Gloss Overlap was
originally introduced by Lesk (1986) for perform-
ing token-based WSD. The method assigns a sense
to a target word by comparing the dictionary defi-
nitions of each of its senses with those of the words
in the surrounding context. The sense whose defi-
nition has the highest overlap (i.e., words in com-
mon) with the context words is assumed to be the
correct one. Banerjee and Pedersen (2003) aug-
ment the dictionary definition (gloss) of each sense
with the glosses of related words and senses. The
extended glosses increase the information avail-
able in estimating the overlap between ambiguous
words and their surrounding context.

The range of relationships used to extend the
glosses is a parameter, and can be chosen from
any combination of WordNet relations. For every
sense sk of the target word we estimate:

SenseScore(sk) = ∑
Rel∈Relations

Overlap(context,Rel(sk))

where context is a simple (space separated) con-
catenation of all words wi for −n ≤ i ≤ n, i 6= 0 in
a context window of length ±n around the target
word w0. The overlap scoring mechanism is also

parametrized and can be adjusted to take the into
account gloss length or to ignore function words.
Distributional and WordNet Similarity
McCarthy et al. (2004) propose a method for
automatically ranking the senses of ambiguous
words from raw text. Key in their approach is the
observation that distributionally similar neighbors
often provide cues about a word’s senses. As-
suming that a set of neighbors is available, sense
ranking is equivalent to quantifying the degree
of similarity among the neighbors and the sense
descriptions of the polysemous word.

Let N(w) = {n1,n2, . . . ,nk} be the k most (dis-
tributionally) similar words to an ambiguous tar-
get word w and senses(w) = {s1,s2, . . .sn} the set
of senses for w. For each sense si and for each
neighbor n j, the algorithm selects the neighbor’s
sense which has the highest WordNet similarity
score (wnss) with regard to si. The ranking score
of sense si is then increased as a function of the
WordNet similarity score and the distributional
similarity score (dss) between the target word and
the neighbor:

RankScore(si) = ∑
n j∈Nw

dss(w,n j)
wnss(si,n j)

∑
s′i∈senses(w)

wnss(s′i,n j)

where wnss(si,n j) = max
nsx∈senses(n j)

wnss(si,nsx).

The predominant sense is simply the sense with
the highest ranking score (RankScore) and can be
consequently used to perform type-based disam-
biguation. The method presented above has four
parameters: (a) the semantic space model repre-
senting the distributional properties of the target
words (it is acquired from a large corpus repre-
sentative of the domain at hand and can be aug-
mented with syntactic relations such as subject or
object), (b) the measure of distributional similarity
for discovering neighbors (c) the number of neigh-
bors that the ranking score takes into account, and
(d) the measure of sense similarity.
Lexical Chains Lexical cohesion is often rep-
resented via lexical chains, i.e., sequences of re-
lated words spanning a topical text unit (Mor-
ris and Hirst, 1991). Algorithms for computing
lexical chains often perform WSD before infer-
ring which words are semantically related. Here
we describe one such disambiguation algorithm,
proposed by Galley and McKeown (2003), while
omitting the details of creating the lexical chains
themselves.

Galley and McKeown’s (2003) method consists
of two stages. First, a graph is built represent-
ing all possible interpretations of the target words
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in question. The text is processed sequentially,
comparing each word against all words previously
read. If a relation exists between the senses of the
current word and any possible sense of a previous
word, a connection is formed between the appro-
priate words and senses. The strength of the con-
nection is a function of the type of relationship and
of the distance between the words in the text (in
terms of words, sentences and paragraphs). Words
are represented as nodes in the graph and seman-
tic relations as weighted edges. Again, the set of
relations being considered is a parameter that can
be tuned experimentally.

In the disambiguation stage, all occurrences of a
given word are collected together. For each sense
of a target word, the strength of all connections
involving that sense are summed, giving that sense
a unified score. The sense with the highest unified
score is chosen as the correct sense for the target
word. In subsequent stages the actual connections
comprising the winning unified score are used as a
basis for computing the lexical chains.

The algorithm is based on the “one sense per
discourse” hypothesis and uses information from
every occurrence of the ambiguous target word in
order to decide its appropriate sense. It is there-
fore a type-based algorithm, since it tries to de-
termine the sense of the word in the entire doc-
ument/discourse at once, and not separately for
each instance.

Structural Semantic Interconnections In-
spired by lexical chains, Navigli and Velardi
(2005) developed Structural Semantic Intercon-
nections (SSI), a WSD algorithm which makes use
of an extensive lexical knowledge base. The latter
is primarily based on WordNet and its standard re-
lation set (i.e., hypernymy, meronymy, antonymy,
similarity, nominalization, pertainymy) but is also
enriched with collocation information represent-
ing semantic relatedness between sense pairs. Col-
locations are gathered from existing resources
(such as the Oxford Collocations, the Longman
Language Activator, and collocation web sites).
Each collocation is mapped to the WordNet sense
inventory in a semi-automatic manner (Navigli,
2005) and transformed into a relatedness edge.

Given a local word context C = {w1, ...,wn},
SSI builds a graph G = (V,E) such that V =

n
S

i=1
senses(wi) and (s,s′) ∈ E if there is at least

one interconnection j between s (a sense of the
word) and s′ (a sense of its context) in the lexical
knowledge base. The set of valid interconnections
is determined by a manually-created context-free

Method WSD Context Relations
LexChains types document first-order
Overlap tokens sentence first-order
Similarity types corpus higher-order
SSI tokens sentence higher-order

Table 1: Properties of the WSD algorithms

grammar consisting of a small number of rules.
Valid interconnections are computed in advance
on the lexical database, not at runtime.

Disambiguation is performed in an iterative
fashion. At each step, for each sense s of a word
in C (the set of senses of words yet to be disam-
biguated), SSI determines the degree of connectiv-
ity between s and the other senses in C :

SSIScore(s) =
∑

s′∈C\{s}
∑

j∈Interconn(s,s′)

1
length( j)

∑
s′∈C\{s}

|Interconn(s,s′)|

where Interconn(s,s′) is the set of interconnec-
tions between senses s and s′. The contribution of a
single interconnection is given by the reciprocal of
its length, calculated as the number of edges con-
necting its ends. The overall degree of connectiv-
ity is then normalized by the number of contribut-
ing interconnections. The highest ranking sense s
of word wi is chosen and the senses of wi are re-
moved from the context C . The procedure termi-
nates when either C is the empty set or there is no
sense such that its SSIScore exceeds a fixed thresh-
old.

Summary The properties of the different
WSD algorithms just described are summarized
in Table 1. The methods vary in the amount of
data they employ for disambiguation. SSI and Ex-
tended Gloss Overlap (Overlap) rely on sentence-
level information for disambiguation whereas Mc-
Carthy et al. (2004) (Similarity) and Galley and
McKeown (2003) (LexChains) utilize the entire
document or corpus. This enables the accumula-
tion of large amounts of data regarding the am-
biguous word, but does not allow separate consid-
eration of each individual occurrence of that word.
LexChains and Overlap take into account a re-
stricted set of semantic relations (paths of length
one) between any two words in the whole docu-
ment, whereas SSI and Similarity use a wider set
of relations.
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3 Experiment 1: Comparison of
Unsupervised Algorithms for WSD

3.1 Method
We evaluated the disambiguation algorithms out-
lined above on two tasks: predominant sense ac-
quisition and token-based WSD. As previously
explained, Overlap and SSI were not designed for
acquiring predominant senses (see Table 1), but
a token-based WSD algorithm can be trivially
modified to acquire predominant senses by dis-
ambiguating every occurrence of the target word
in context and selecting the sense which was cho-
sen most frequently. Type-based WSD algorithms
simply tag all occurrences of a target word with its
predominant sense, disregarding the surrounding
context.

Our first set of experiments was conducted on
the SemCor corpus, on the same 2,595 polyse-
mous nouns (53,674 tokens) used as a test set by
McCarthy et al. (2004). These nouns were attested
in SemCor with a frequency > 2 and occurred in
the British National Corpus (BNC) more than 10
times. We used the WordNet 1.7.1 sense inventory.

The following notation describes our evaluation
measures: W is the set of all noun types in the
SemCor corpus (|W | = 2,595), and W f is the set
of noun types with a dominant sense. senses(w)
is the set of senses for noun type w, while fs(w)
and fm(w) refer to w’s first sense according to the
SemCor gold standard and our algorithms, respec-
tively. Finally, T (w) is the set of tokens of w and
senses(t) denotes the sense assigned to token t ac-
cording to SemCor.

We first measure how well our algorithms can
identify the predominant sense, if one exists:

Accps =
|{w ∈W f | fs(w) = fm(w)}|

|Wf |

A baseline for this task can be easily defined for
each word type by selecting a sense at random
from its sense inventory and assuming that this is
the predominant sense:

Baselinesr =
1

|Wf |
∑

w ∈W f

1
|senses(w)|

We evaluate the algorithms’ disambiguation per-
formance by measuring the ratio of tokens for
which our models choose the right sense:

Accwsd =

∑
w∈W

|{t ∈ T (w)| fm(w) = senses(t)}|

∑
w∈W

|T (w)|

In the predominant sense detection task, in case of
ties in SemCor, any one of the predominant senses
was considered correct. Also, all algorithms were
designed to randomly choose from among the top
scoring options in case of a tie in the calculated
scores. This introduces a small amount of ran-
domness (less than 0.5%) in the accuracy calcu-
lation, and was done to avoid the pitfall of default-
ing to the first sense listed in WordNet, which is
usually the actual predominant sense (the order of
senses in WordNet is based primarily on the Sem-
Cor sense distribution).

3.2 Parameter Settings
We did not specifically tune the parameters of our
WSD algorithms on the SemCor corpus, as our
goal was to use hand labeled data solely for testing
purposes. We selected parameters that have been
considered “optimal” in the literature, although
admittedly some performance gains could be ex-
pected had parameter optimization taken place.

For Overlap, we used the semantic relations
proposed by Banerjee and Pedersen (2003),
namely hypernyms, hyponyms, meronyms,
holonyms, and troponym synsets. We also
adopted their overlap scoring mechanism which
treats each gloss as a bag of words and assigns an
n word overlap the score of n2. Function words
were not considered in the overlap computation.
For LexChains, we used the relations reported
in Galley and McKeown (2003). These are all
first-order WordNet relations, with the addition of
the siblings – two words are considered siblings
if they are both hyponyms of the same hypernym.
The relations have different weights, depending
on their type and the distance between the words
in the text. These weights were imported from
Galley and McKeown into our implementation
without modification.

Because the SemCor corpus is relatively small
(less than 700,00 words), it is not ideal for con-
structing a neighbor thesaurus appropriate for Mc-
Carthy et al.’s (2004) method. The latter requires
each word to participate in a large number of co-
occurring contexts in order to obtain reliable dis-
tributional information. To overcome this prob-
lem, we followed McCarthy et al. and extracted
the neighbor thesaurus from the entire BNC. We
also recreated their semantic space, using a RASP-
parsed (Briscoe and Carroll, 2002) version of the
BNC and their set of dependencies (i.e., Verb-
Object, Verb-Subject, Noun-Noun and Adjective-
Noun relations). Similarly to McCarthy et al., we
used Lin’s (1998) measure of distributional simi-
larity, and considered only the 50 highest ranked

100



Method Accps Accwsd/dir Accwsd/ps

Baseline 34.5 – 23.0
LexChains 48.3∗†$ – 40.7∗#†$

Overlap 49.4∗†$ 36.5$ 42.5∗†$

Similarity 54.9∗ – 46.5∗$

SSI 53.7∗ 42.7 47.9∗

UpperBnd 100 – 68.4

Table 2: Results of individual disambiguation al-
gorithms on SemCor nouns2 (∗: sig. diff. from
Baseline, †: sig. diff. from Similarity, $: sig diff.
from SSI, #: sig. diff. from Overlap, p < 0.01)

neighbors for a given target word. Sense similar-
ity was computed using the Lesk’s (Banerjee and
Pedersen, 2003) similarity measure1.

3.3 Results

The performance of the individual algorithms is
shown in Table 2. We also include the baseline
discussed in Section 3 and the upper bound of
defaulting to the first (i.e., most frequent) sense
provided by the manually annotated SemCor. We
report predominant sense accuracy (Accps), and
WSD accuracy when using the automatically ac-
quired predominant sense (Accwsd/ps). For token-
based algorithms, we also report their WSD per-
formance in context, i.e., without use of the pre-
dominant sense (Accwsd/dir).

As expected, the accuracy scores in the WSD
task are lower than the respective scores in the
predominant sense task, since detecting the pre-
dominant sense correctly only insures the correct
tagging of the instances of the word with that
first sense. All methods perform significantly bet-
ter than the baseline in the predominant sense de-
tection task (using a χ2-test, as indicated in Ta-
ble 2). LexChains and Overlap perform signif-
icantly worse than Similarity and SSI, whereas
LexChains is not significantly different from Over-
lap. Likewise, the difference in performance be-
tween SSI and Similarity is not significant. With
respect to WSD, all the differences in performance
are statistically significant.

1This measure is identical to the Extended gloss Overlap
from Section 2, but instead of searching for overlap between
an extended gloss and a word’s context, the comparison is
done between two extended glosses of two synsets.

2The LexChains results presented here are not directly
comparable to those reported by Galley and McKeown
(2003), since they tested on a subset of SemCor, and included
monosemous nouns. They also used the first sense in Sem-
Cor in case of ties. The results for the Similarity method are
slightly better than those reported by McCarthy et al. (2004)
due to minor improvements in implementation.

Overlap LexChains Similarity
LexChains 28.05
Similarity 35.87 33.10
SSI 30.48 31.67 37.14

Table 3: Algorithms’ pairwise agreement in de-
tecting the predominant sense (as % of all words)

Interestingly, using the predominant sense de-
tected by the Gloss Overlap and the SSI algo-
rithm to tag all instances is preferable to tagging
each instance individually (compare Accwsd/dir
and Accwsd/ps for Overlap and SSI in Table 2).
This means that a large part of the instances which
were not tagged individually with the predominant
sense were actually that sense.

A close examination of the performance of the
individual methods in the predominant-sense de-
tection task shows that while the accuracy of all
the methods is within a range of 7%, the actual
words for which each algorithm gives the cor-
rect predominant sense are very different. Table 3
shows the degree of overlap in assigning the ap-
propriate predominant sense among the four meth-
ods. As can be seen, the largest amount of over-
lap is between Similarity and SSI, and this cor-
responds approximately to 2

3 of the words they
correctly label. This means that each of these two
methods gets more than 350 words right which the
other labels incorrectly.

If we had an “oracle” which would tell us
which method to choose for each word, we would
achieve approximately 82.4% in the predominant
sense task, giving us 58% in the WSD task. We
see that there is a large amount of complementa-
tion between the algorithms, where the successes
of one make up for the failures of the others. This
suggests that the errors of the individual methods
are sufficiently uncorrelated, and that some advan-
tage can be gained by combining their predictions.

4 Combination Methods

An important finding in machine learning is that
a set of classifiers whose individual decisions are
combined in some way (an ensemble) can be more
accurate than any of its component classifiers, pro-
vided that the individual components are relatively
accurate and diverse (Dietterich, 1997). This sim-
ple idea has been applied to a variety of classi-
fication problems ranging from optical character
recognition to medical diagnosis, part-of-speech
tagging (see Dietterich 1997 and van Halteren
et al. 2001 for overviews), and notably supervised
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WSD (Florian et al., 2002).
Since our effort is focused exclusively on un-

supervised methods, we cannot use most ma-
chine learning approaches for creating an en-
semble (e.g., stacking, confidence-based combina-
tion), as they require a labeled training set. We
therefore examined several basic ensemble com-
bination approaches that do not require parameter
estimation from training data.

We define Score(Mi,s j) as the (normalized)
score which a method Mi gives to word sense s j.
The predominant sense calculated by method Mi

for word w is then determined by:

PS(Mi,w) = argmax
s j∈senses(w)

Score(Mi,s j)

All ensemble methods receive a set {Mi}
k
i=1 of in-

dividual methods to combine, so we denote each
ensemble method by MethodName({Mi}

k
i=1).

Direct Voting Each ensemble component has
one vote for the predominant sense, and the sense
with the most votes is chosen. The scoring func-
tion for the voting ensemble is defined as:

Score(Voting({Mi}
k
i=1),s)) =

k

∑
i=1

eq[s,PS(Mi,w)]

where eq[s,PS(Mi,w)] =

{

1 if s = PS(Mi,w)
0 otherwise

Probability Mixture Each method provides
a probability distribution over the senses. These
probabilities (normalized scores) are summed, and
the sense with the highest score is chosen:

Score(ProbMix({Mi}
k
i=1),s)) =

k

∑
i=1

Score(Mi,s)

Rank-Based Combination Each method
provides a ranking of the senses for a given target
word. For each sense, its placements according to
each of the methods are summed and the sense
with the lowest total placement (closest to first
place) wins.

Score(Ranking({Mi}
k
i=1),s)) =

k

∑
i=1

(−1)·Placei(s)

where Placei(s) is the number of distinct scores
that are larger or equal to Score(Mi,s).
Arbiter-based Combination One WSD
method can act as an arbiter for adjudicating dis-
agreements among component systems. It makes
sense for the adjudicator to have reasonable
performance on its own. We therefore selected

Method Accps Accwsd/ps

Similarity 54.9 46.5
SSI 53.5 47.9
Voting 57.3†$ 49.8†$

PrMixture 57.2†$ 50.4†$‡

Rank-based 58.1†$ 50.3†$‡

Arbiter-based 56.3†$ 48.7†$‡

UpperBnd 100 68.4

Table 4: Ensemble Combination Results (†: sig.
diff. from Similarity, $: sig. diff. from SSI, ‡: sig.
diff. from Voting, p < 0.01)

SSI as the arbiter since it had the best accuracy on
the WSD task (see Table 2). For each disagreed
word w, and for each sense s of w assigned by
any of the systems in the ensemble {Mi}

k
i=1, we

calculate the following score:

Score(Arbiter({Mi}
k
i=1),s) = SSIScore∗(s)

where SSIScore∗(s) is a modified version of the
score introduced in Section 2 which exploits as a
context for s the set of agreed senses and the re-
maining words of each sentence. We exclude from
the context used by SSI the senses of w which were
not chosen by any of the systems in the ensem-
ble . This effectively reduces the number of senses
considered by the arbiter and can positively influ-
ence the algorithm’s performance, since it elimi-
nates noise coming from senses which are likely
to be wrong.

5 Experiment 2: Ensembles for
Unsupervised WSD

5.1 Method and Parameter Settings
We assess the performance of the different en-
semble systems on the same set of SemCor nouns
on which the individual methods were tested. For
the best ensemble, we also report results on dis-
ambiguating all nouns in the Senseval-3 data set.
We focus exclusively on nouns to allow com-
parisons with the results obtained from SemCor.
We used the same parameters as in Experiment 1
for constructing the ensembles. As discussed ear-
lier, token-based methods can disambiguate target
words either in context or using the predominant
sense. SSI was employed in the predominant sense
setting in our arbiter experiment.

5.2 Results
Our results are summarized in Table 4. As can be
seen, all ensemble methods perform significantly
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Ensemble Accps Accwsd/ps

Rank-based 58.1 50.3
Overlap 57.6 (−0.5) 49.7 (−0.6)
LexChains 57.2 (−0.7) 50.2 (−0.1)
Similarity 56.3 (−1.8) 49.4 (−0.9)
SSI 56.3 (−1.8) 48.2 (−2.1)

Table 5: Decrease in accuracy as a result of re-
moval of each method from the rank-based ensem-
ble.

better than the best individual methods, i.e., Simi-
larity and SSI. On the WSD task, the voting, prob-
ability mixture, and rank-based ensembles signif-
icantly outperform the arbiter-based one. The per-
formances of the probability mixture, and rank-
based combinations do not differ significantly but
both ensembles are significantly better than vot-
ing. One of the factors contributing to the arbiter’s
worse performance (compared to the other ensem-
bles) is the fact that in many cases (almost 30%),
none of the senses suggested by the disagreeing
methods is correct. In these cases, there is no way
for the arbiter to select the correct sense. We also
examined the relative contribution of each compo-
nent to overall performance. Table 5 displays the
drop in performance by eliminating any particular
component from the rank-based ensemble (indi-
cated by −). The system that contributes the most
to the ensemble is SSI. Interestingly, Overlap and
Similarity yield similar improvements in WSD ac-
curacy (0.6 and 0.9, respectively) when added to
the ensemble.

Figure 1 shows the WSD accuracy of the best
single methods and the ensembles as a function of
the noun frequency in SemCor. We can see that
there is at least one ensemble outperforming any
single method in every frequency band and that
the rank-based ensemble consistently outperforms
Similarity and SSI in all bands. Although Similar-
ity has an advantage over SSI for low and medium
frequency words, it delivers worse performance
for high frequency words. This is possibly due to
the quality of neighbors obtained for very frequent
words, which are not semantically distinct enough
to reliably discriminate between different senses.

Table 6 lists the performance of the rank-based
ensemble on the Senseval-3 (noun) corpus. We
also report results for the best individual method,
namely SSI, and compare our results with the best
unsupervised system that participated in Senseval-
3. The latter was developed by Strapparava et al.
(2004) and performs domain driven disambigua-
tion (IRST-DDD). Specifically, the approach com-
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Figure 1: WSD accuracy as a function of noun fre-
quency in SemCor

Method Precision Recall Fscore
Baseline 36.8 36.8 36.8
SSI 62.5 62.5 62.5
IRST-DDD 63.3 62.2 61.2
Rank-based 63.9 63.9 63.9
UpperBnd 68.7 68.7 68.7

Table 6: Results of individual disambiguation al-
gorithms and rank-based ensemble on Senseval-3
nouns

pares the domain of the context surrounding the
target word with the domains of its senses and uses
a version of WordNet augmented with domain la-
bels (e.g., economy, geography). Our baseline se-
lects the first sense randomly and uses it to disam-
biguate all instances of a target word. Our upper
bound defaults to the first sense from SemCor. We
report precision, recall and Fscore. In cases where
precision and recall figures coincide, the algorithm
has 100% coverage.

As can be seen the rank-based, ensemble out-
performs both SSI and the IRST-DDD system.
This is an encouraging result, suggesting that there
may be advantages in developing diverse classes
of unsupervised WSD algorithms for system com-
bination. The results in Table 6 are higher than
those reported for SemCor (see Table 4). This is
expected since the Senseval-3 data set contains
monosemous nouns as well. Taking solely polyse-
mous nouns into account, SSI’s Fscore is 53.39%
and the ranked-based ensemble’s 55.0%. We fur-
ther note that not all of the components in our en-
semble are optimal. Predominant senses for Lesk
and LexChains were estimated from the Senseval-
3 data, however a larger corpus would probably
yield more reliable estimates.
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6 Conclusions and Discussion

In this paper we have presented an evaluation
study of four well-known approaches to unsuper-
vised WSD. Our comparison involved type- and
token-based disambiguation algorithms relying on
different kinds of WordNet relations and different
amounts of corpus data. Our experiments revealed
two important findings. First, type-based disam-
biguation yields results superior to a token-based
approach. Using predominant senses is preferable
to disambiguating instances individually, even for
token-based algorithms. Second, the outputs of
the different approaches examined here are suffi-
ciently diverse to motivate combination methods
for unsupervised WSD. We defined several ensem-
bles on the predominant sense outputs of individ-
ual methods and showed that combination systems
outperformed their best components both on the
SemCor and Senseval-3 data sets.

The work described here could be usefully em-
ployed in two tasks: (a) to create preliminary an-
notations, thus supporting the “annotate automati-
cally, correct manually” methodology used to pro-
vide high volume annotation in the Penn Treebank
project; and (b) in combination with supervised
WSD methods that take context into account; for
instance, such methods could default to an unsu-
pervised system for unseen words or words with
uninformative contexts.

In the future we plan to integrate more com-
ponents into our ensembles. These include not
only domain driven disambiguation algorithms
(Strapparava et al., 2004) but also graph theoretic
ones (Mihalcea, 2005) as well as algorithms that
quantify the degree of association between senses
and their co-occurring contexts (Mohammad and
Hirst, 2006). Increasing the number of compo-
nents would allow us to employ more sophisti-
cated combination methods such as unsupervised
rank aggregation algorithms (Tan and Jin, 2004).
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Abstract

Fine-grained sense distinctions are one of
the major obstacles to successful Word
Sense Disambiguation. In this paper,
we present a method for reducing the
granularity of the WordNet sense inven-
tory based on the mapping to a manually
crafted dictionary encoding sense hierar-
chies, namely the Oxford Dictionary of
English. We assess the quality of the map-
ping and the induced clustering, and eval-
uate the performance of coarse WSD sys-
tems in the Senseval-3 English all-words
task.

1 Introduction

Word Sense Disambiguation (WSD) is undoubt-
edly one of the hardest tasks in the field of Nat-
ural Language Processing. Even though some re-
cent studies report benefits in the use of WSD in
specific applications (e.g. Vickrey et al. (2005)
and Stokoe (2005)), the present performance of
the best ranking WSD systems does not provide a
sufficient degree of accuracy to enable real-world,
language-aware applications.

Most of the disambiguation approaches adopt
the WordNet dictionary (Fellbaum, 1998) as a
sense inventory, thanks to its free availability, wide
coverage, and existence of a number of standard
test sets based on it. Unfortunately, WordNet is a
fine-grained resource, encoding sense distinctions
that are often difficult to recognize even for human
annotators (Edmonds and Kilgariff, 1998).

Recent estimations of the inter-annotator agree-
ment when using the WordNet inventory report
figures of 72.5% agreement in the preparation of

the English all-words test set at Senseval-3 (Sny-
der and Palmer, 2004) and 67.3% on the Open
Mind Word Expert annotation exercise (Chklovski
and Mihalcea, 2002). These numbers lead us to
believe that a credible upper bound for unrestricted
fine-grained WSD is around 70%, a figure that
state-of-the-art automatic systems find it difficult
to outperform. Furthermore, even if a system were
able to exceed such an upper bound, it would be
unclear how to interpret such a result.

It seems therefore that the major obstacle to ef-
fective WSD is the fine granularity of the Word-
Net sense inventory, rather than the performance
of the best disambiguation systems. Interestingly,
Ng et al. (1999) show that, when a coarse-grained
sense inventory is adopted, the increase in inter-
annotator agreement is much higher than the re-
duction of the polysemy degree.

Following these observations, the main ques-
tion that we tackle in this paper is:can we pro-
duce and evaluate coarse-grained sense distinc-
tions and show that they help boost disambigua-
tion on standard test sets?We believe that this is
a crucial research topic in the field of WSD, that
could potentially benefit several application areas.

The contribution of this paper is two-fold. First,
we provide a wide-coverage method for clustering
WordNet senses via a mapping to a coarse-grained
sense inventory, namely the Oxford Dictionary of
English (Soanes and Stevenson, 2003) (Section 2).
We show that this method is well-founded and ac-
curate with respect to manually-made clusterings
(Section 3). Second, we evaluate the performance
of WSD systems when using coarse-grained sense
inventories (Section 4). We conclude the paper
with an account of related work (Section 5), and
some final remarks (Section 6).
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2 Producing a Coarse-Grained Sense
Inventory

In this section, we present an approach to the au-
tomatic construction of a coarse-grained sense in-
ventory based on the mapping of WordNet senses
to coarse senses in the Oxford Dictionary of Eng-
lish. In section 2.1, we introduce the two dictio-
naries, in Section 2.2 we illustrate the creation of
sense descriptions from both resources, while in
Section 2.3 we describe a lexical and a semantic
method for mapping sense descriptions of Word-
Net senses to ODE coarse entries.

2.1 The Dictionaries

WordNet (Fellbaum, 1998) is a computational lex-
icon of English which encodes concepts as syn-
onym sets (synsets), according to psycholinguistic
principles. For each word sense, WordNet pro-
vides a gloss (i.e. a textual definition) and a set
of relations such as hypernymy (e.g. applekind-of
edible fruit), meronymy (e.g. computerhas-part
CPU), etc.

The Oxford Dictionary of English (ODE)
(Soanes and Stevenson, 2003)1 provides a hierar-
chical structure of senses, distinguishing between
homonymy (i.e. completely distinct senses, like
race as a competition and race as a taxonomic
group) and polysemy (e.g. race as a channel and
as a current). Each polysemous sense is further di-
vided into acore senseand a set ofsubsenses. For
each sense (both core and subsenses), the ODE
provides a textual definition, and possibly hyper-
nyms and domain labels. Excluding monosemous
senses, the ODE has an average number of 2.56
senses per word compared to the average poly-
semy of 3.21 in WordNet on the same words (with
peaks for verbs of 2.73 and 3.75 senses, respec-
tively).

In Table 1 we show an excerpt of the sense in-
ventories of the nounrace as provided by both
dictionaries2. The ODE identifies 3 homonyms
and 3 polysemous senses for the first homonym,
while WordNet encodes a flat list of 6 senses,
some of which strongly related (e.g.race#1 and
race#3). Also, the ODE provides a sense (ginger

1The ODE was kindly made available by Ken Litkowski
(CL Research) in the context of a license agreement.

2In the following, we denote a WordNet sense with the
conventionw#p#iwherew is a word,p a part of speech andi
is a sense number; analogously, we denote an ODE sense with
the conventionw#p#h:k whereh is the homonym number
andk is thek-th polysemous entry under homonymh.

root) which is not taken into account in WordNet.
The structure of the ODE senses is clearly hier-

archical: if we were able to map with a high accu-
racy WordNet senses to ODE entries, then a sense
clustering could be trivially induced from the map-
ping. As a result, the granularity of the WordNet
inventory would be drastically reduced. Further-
more, disregarding errors, the clustering would be
well-founded, as the ODE sense groupings were
manually crafted by expert lexicographers. In the
next section we illustrate a general way of con-
structing sense descriptions that we use for deter-
mining a complete, automatic mapping between
the two dictionaries.

2.2 Constructing Sense Descriptions

For each wordw, and for each senseS of w in a
given dictionaryD 2 fWORDNET; ODEg, we con-
struct a sense descriptiondD(S) as a bag of words:

dD(S) = def D(S) [ hyperD(S) [ domainsD(S)

where:

† def D(S) is the set of words in the tex-
tual definition of S (excluding usage ex-
amples), automatically lemmatized and part-
of-speech tagged with the RASP statistical
parser (Briscoe and Carroll, 2002);

† hyperD(S) is the set of direct hypernyms of
S in the taxonomy hierarchy ofD (; if hy-
pernymy is not available);

† domainsD(S) includes the set of domain la-
bels possibly assigned to senseS (; when no
domain is assigned).

Specifically, in the case of WordNet, we
generate def WN(S) from the gloss of S,
hyperWN(S) from the noun and verb taxonomy,
anddomainsWN(S) from the subject field codes,
i.e. domain labels produced semi-automatically
by Magnini and Cavaglià (2000) for each Word-
Net synset (we exclude the general-purpose label,
calledFACTOTUM).

For example, for the first WordNet sense of
race#n we obtain the following description:

dWN(race#n#1) = fcompetition#ng [
fcontest#ng [ fPOLITICS#N; SPORT#Ng

In the case of the ODE,def ODE(S) is gener-
ated from the definitions of the core sense and
the subsenses of the entryS. Hypernymy (for
nouns only) and domain labels, when available,
are included in the respective setshyperODE(S)
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Table 1: The sense inventory ofrace#n in WordNet and ODE (definitions are abridged, bullets (†)
indicate a subsense in the ODE, arrows (!) indicate hypernymy,DOMAIN LABELS are in small caps).

race#n (WordNet)
#1 Any competition (! contest).
#2 People who are believed to be-

long to the same genetic stock
(! group).

#3 A contest of speed (! contest).
#4 The flow of air that is driven

backwards by an aircraft pro-
peller (! flow).

#5 A taxonomic group that is a
division of a species; usually
arises as a consequence of ge-
ographical isolation within a
species (! taxonomic group).

#6 A canal for a current of water
(! canal).

race#n (ODE)
#1.1 Core: SPORT A competition between runners, horses, vehicles, etc.

† RACING A series of such competitions for horses or dogs† A sit-
uation in which individuals or groups compete (! contest)† AS-

TRONOMY The course of the sun or moon through the heavens (!
trajectory).

#1.2 Core: NAUTICAL A strong or rapid current (! flow).
#1.3 Core: A groove, channel, or passage.

† MECHANICS A water channel† Smooth groove or guide for balls (!
indentation, conduit)† FARMING Fenced passageway in a stockyard
(! route)† TEXTILES The channel along which the shuttle moves.

#2.1 Core: ANTHROPOLOGYDivision of humankind (! ethnic group).
† The condition of belonging to a racial division or group† A group
of people sharing the same culture, history, language† BIOLOGY A
group of people descended from a common ancestor.

#3.1 Core: BOTANY, FOOD A ginger root (! plant part).

anddomainsODE(S). For example, the first ODE
sense ofrace#n is described as follows:

dODE(race#n#1:1) = fcompetition#n;

runner#n; horse#n; vehicle#n; : : : ;

heavens#ng [ fcontest#n; trajectory#ng [
fSPORT#N; RACING#N; ASTRONOMY#Ng

Notice that, for everyS, dD(S) is non-empty as
a definition is always provided by both dictionar-
ies. This approach to sense descriptions is gen-
eral enough to be applicable to any other dictio-
nary with similar characteristics (e.g. the Long-
man Dictionary of Contemporary English in place
of ODE).

2.3 Mapping Word Senses

In order to produce a coarse-grained version of the
WordNet inventory, we aim at defining an auto-
matic mapping between WordNet and ODE, i.e.
a function„ : SensesWN ! SensesODE [ f†g,
whereSensesD is the set of senses in the dictio-
nary D and† is a special element assigned when
no plausible option is available for mapping (e.g.
when the ODE encodes no entry corresponding to
a WordNet sense).

Given a WordNet senseS 2 SensesWN(w) we
definem̂(S), the best matching sense in the ODE,
as:

m̂(S) = arg max
S02SensesODE(w)

match(S; S0)

wherematch : SensesWN£SensesODE ! [0; 1]
is a function that measures the degree of matching
between the sense descriptions ofS andS0. We
define the mapping„ as:

„(S) =

(
m̂(S) if match(S; m̂(S)) ‚ µ

† otherwise

whereµ is a threshold below which a matching
between sense descriptions is considered unreli-
able. Finally, we define the clustering of senses
c(w) of a wordw as:

c(w) =
f„¡1(S0) : S0 2 SensesODE(w); „¡1(S0) 6= ;g

[ ffSg : S 2 SensesWN(w); „(S) = †g
where„¡1(S0) is the group of WordNet senses

mapped to the same senseS0 of the ODE, while
the second set includes singletons of WordNet
senses for which no mapping can be provided ac-
cording to the definition of„.

For example, an ideal mapping between entries
in Table 1 would be as follows:

„(race#n#1) = race#n#1.1,„(race#n#2) = race#n#2.1,
„(race#n#3) = race#n#1.1,„(race#n#5) = race#n#2.1,
„(race#n#4) = race#n#1.2,„(race#n#6) = race#n#1.3,

resulting in the following clustering:

c(race#n) = ffrace#n#1; race#n#3g;

frace#n#2; race#n#5g;

frace#n#4g; frace#n#6gg
In Sections 2.3.1 and 2.3.2 we describe two

different choices for thematch function, respec-
tively based on the use of lexical and semantic in-
formation.

2.3.1 Lexical matching

As a first approach, we adopted a purely lexi-
cal matching function based on the notion of lex-
ical overlap (Lesk, 1986). The function counts
the number of lemmas that two sense descriptions
of a word have in common (we neglect parts of
speech), and is normalized by the minimum of the
two description lengths:

matchLESK(S; S0) = jdWN(S)\dODE(S0)j
minfjdWN(S)j;jdODE(S0)jg
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where S 2 SensesWN(w) and S0 2
SensesODE(w). For instance:

matchLESK(race#n#1; race#n#1:1) =
3

minf4;20g = 3
4 = 0:75

matchLESK(race#n#2; race#n#1:1) =
1
8 = 0:125

Notice that unrelated senses can get a positive
score because of an overlap of the sense descrip-
tions. In the example,group#n, the hypernym
of race#n#2, is also present in the definition of
race#n#1:1.

2.3.2 Semantic matching

Unfortunately, the very same concept can be
defined with entirely different words. To match
definitions in a semantic manner we adopted
a knowledge-based Word Sense Disambiguation
algorithm, Structural Semantic Interconnections
(SSI, Navigli and Velardi (2004)).

SSI3 exploits an extensive lexical knowledge
base, built upon the WordNet lexicon and enriched
with collocation information representing seman-
tic relatedness between sense pairs. Collocations
are acquired from existing resources (like the Ox-
ford Collocations, the Longman Language Acti-
vator, collocation web sites, etc.). Each colloca-
tion is mapped to the WordNet sense inventory in
a semi-automatic manner and transformed into a
relatednessedge (Navigli and Velardi, 2005).

Given a word contextC = fw1; :::; wng, SSI
builds a graphG = (V; E) such thatV =
nS

i=1
SensesWN(wi) and (S; S0) 2 E if there is

at least one semantic interconnection betweenS

andS0 in the lexical knowledge base. Aseman-
tic interconnection patternis a relevant sequence
of edges selected according to a manually-created
context-free grammar, i.e. a path connecting a pair
of word senses, possibly including a number of in-
termediate concepts. The grammar consists of a
small number of rules, inspired by the notion of
lexical chains (Morris and Hirst, 1991).

SSI performs disambiguation in an iterative
fashion, by maintaining a setC of senses as a se-
mantic context. Initially,C = V (the entire set
of senses of words inC). At each step, for each
senseS in C, the algorithm calculates a score of
the degree of connectivity betweenS and the other
senses inC:

3Available online from: http://lcl.di.uniroma1.it/ssi

ScoreSSI(S; C) =

P
S02CnfSg

P
i2IC(S;S0)

1
length(i)

P
S02CnfSg

jIC(S;S0)j

whereIC(S; S0) is the set of interconnections be-
tween sensesS andS0. The contribution of a sin-
gle interconnection is given by the reciprocal of its
length, calculated as the number of edges connect-
ing its ends. The overall degree of connectivity is
then normalized by the number of contributing in-
terconnections. The highest ranking senseS of
wordw is chosen and the senses ofw are removed
from the semantic contextC. The algorithm termi-
nates when eitherC = ; or there is no sense such
that its score exceeds a fixed threshold.

Given a wordw, semantic matching is per-
formed in two steps. First, for each dictionary
D 2 fWORDNET; ODEg, and for each senseS 2
SensesD(w), the sense description ofS is dis-
ambiguated by applying SSI todD(S). As a re-
sult, we obtain a semantic description as a bag of
conceptsdsem

D (S). Notice that sense descriptions
from both dictionaries are disambiguated with re-
spect to the WordNet sense inventory.

Second, given a WordNet sense
S 2 SensesWN(w) and an ODE sense
S0 2 SensesODE(w), we definematchSSI(S; S0)
as a function of the direct relations connecting
senses indsem

WN (S) anddsem
ODE (S0):

matchSSI(S; S0) =
jc!c0:c2dsem

WN (S);c02dsem
ODE (S0)j

jdsem
WN (S)j¢jdsem

ODE (S0)j
wherec ! c0 denotes the existence of a relation
edge in the lexical knowledge base between a con-
ceptc in the description ofS and a conceptc0 in
the description ofS0. Edges include the WordNet
relation set (synonymy, hypernymy, meronymy,
antonymy, similarity, nominalization, etc.) and the
relatednessedge mentioned above (we adopt only
direct relations to maintain a high precision).

For example, some of the relations found
between concepts indsem

WN (race#n#3) and
dsem

ODE (race#n#1:1) are:

race#n#3 relation race#n#1:1

speed#n#1
related¡to¡! vehicle#n#1

race#n#3
related¡to¡! compete#v#1

racing#n#1
kind¡of¡! sport#n#1

race#n#3
kind¡of¡! contest#n#1

contributing to the final value of the function on
the two senses:

matchSSI(race#n#3; race#n#1:1) = 0:41

Due to the normalization factor in the denomi-
nator, these values are generally low, but unrelated
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Table 2: Performance of the lexical and semantic
mapping functions.

Func. Prec. Recall F1 Acc.
Lesk 84.74% 65.43% 73.84% 66.08%
SSI 86.87% 79.67% 83.11% 77.94%

senses have values much closer to 0. We chose
SSI for the semantic matching function as it has
the best performance among untrained systems on
unconstrained WSD (cf. Section 4.1).

3 Evaluating the Clustering

We evaluated the accuracy of the mapping pro-
duced with the lexical and semantic methods de-
scribed in Sections 2.3.1 and 2.3.2, respectively.
We produced a gold-standard data set by manually
mapping 5,077 WordNet senses of 763 randomly-
selected words to the respective ODE entries (dis-
tributed as follows: 466 nouns, 231 verbs, 50 ad-
jectives, 16 adverbs). The data set was created
by two annotators and included only polysemous
words. These words had 2,600 senses in the ODE.

Overall, 4,599 out of the 5,077 WordNet senses
had a corresponding sense in ODE (i.e. the ODE
covered90:58% of the WordNet senses in the data
set), while 2,053 out of the 2,600 ODE senses had
an analogous entry in WordNet (i.e. WordNet cov-
ered78:69% of the ODE senses). The WordNet
clustering induced by the manual mapping was
49.85% of the original size and the average degree
of polysemy decreased from6:65 to 3:32.

The reliability of our data set is substantiated by
a quantitative assessment: 548 WordNet senses of
60 words were mapped to ODE entries by both
annotators, with a pairwise mapping agreement
of 92:7%. The average Cohen’s• agreement be-
tween the two annotators was0:874.

In Table 2 we report the precision and recall of
the lexical and semantic functions in providing the
appropriate association for the set of senses having
a corresponding entry in ODE (i.e. excluding the
cases where a sense† was assigned by the manual
annotators, cf. Section 2.3). We also report in the
Table the accuracy of the two functions when we
view the problem as a classification task: an auto-
matic association is correct if it corresponds to the
manual association provided by the annotators or
if both assign no answer (equivalently, if both pro-
vide an† label). All the differences between Lesk
and SSI are statistically significant (p < 0:01).

As a second experiment, we used two
information-theoretic measures, namelyentropy
andpurity (Zhao and Karypis, 2004), to compare
an automatic clusteringc(w) (i.e. the sense groups
acquired for wordw) with a manual clustering
ĉ(w). The entropy quantifies the distribution of the
senses of a group over manually-defined groups,
while the purity measures the extent to which a
group contains senses primarily from one manual
group.

Given a wordw, and a sense groupG 2 c(w),
the entropy ofG is defined as:

H(G) = ¡ 1
log jĉ(w)j

P
Ĝ2ĉ(w)

jĜ\Gj
jĜj log( jĜ\Gj

jĜj )

i.e., the entropy4 of the distribution of senses of
groupG over the groups of the manual clustering
ĉ(w). The entropy of an entire clusteringc(w) is
defined as:

Entropy(c(w)) =
P

G2c(w)

jGj
jSensesWN(w)jH(G)

that is, the entropy of each group weighted by
its size. The purity of a sense groupG 2 c(w) is
defined as:

Pu(G) = 1
jGj max

Ĝ2ĉ(w)
jĜ \ Gj

i.e., the normalized size of the largest subset of
G contained in a single group̂G of the manual
clustering. The overall purity of a clustering is ob-
tained as a weighted sum of the individual cluster
purities:

P urity(c(w)) =
P

G2c(w)

jGj
jSensesWN(w)jPu(G)

We calculated the entropy and purity of the
clustering produced automatically with the lexical
and the semantic method, when compared to the
grouping induced by our manual mapping (ODE),
and to the grouping manually produced for the
English all-words task at Senseval-2 (3,499 senses
of 403 nouns). We excluded from both gold stan-
dards words having a single cluster. The figures
are shown in Table 3 (good entropy and purity val-
ues should be close to 0 and 1 respectively).

Table 3 shows that the quality of the cluster-
ing induced with a semantic function outperforms
both lexical overlap and a random baseline. The
baseline was computed averaging among 200 ran-
dom clustering solutions for each word. Random

4Notice that we are comparing clusterings against the
manual clustering (rather than viceversa), as otherwise a
completely unclustered solution would result in 1.0 entropy
and 0.0 purity.
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Table 3: Comparison with gold standards.

Gold standard Method Entropy Purity

ODE
Lesk 0.15 0.87
SSI 0.11 0.87

Baseline 0.28 0.67

Senseval
Lesk 0.17 0.71
SSI 0.16 0.69

Baseline 0.27 0.57

clusterings were the result of a random mapping
function between WordNet and ODE senses. As
expected, the automatic clusterings have a lower
purity when compared to the Senseval-2 noun
grouping as the granularity of the latter is much
finer than ODE (entropy is only partially affected
by this difference, indicating that we are producing
larger groups). Indeed, our gold standard (ODE),
when compared to the Senseval groupings, obtains
a low purity as well (0:75) and an entropy of0:13.

4 Evaluating Coarse-Grained WSD

The main reason for building a clustering of Word-
Net senses is to make Word Sense Disambigua-
tion a feasible task, thus overcoming the obstacles
that even humans encounter when annotating sen-
tences with excessively fine-grained word senses.

As the semantic method outperformed the lex-
ical overlap in the evaluations of previous Sec-
tion, we decided to acquire a clustering on the
entire WordNet sense inventory using this ap-
proach. As a result, we obtained a reduction of
33.54% in the number of entries (from 60,302 to
40,079 senses) and a decrease of the polysemy
degree from3:14 to 2:09. These figures exclude
monosemous senses and derivatives in WordNet.
As we are experimenting on an automatically-
acquired clustering, all the figures are affected by
the 22.06% error rate resulting from Table 2.

4.1 Experiments on Senseval-3

As a first experiment, we assessed the effect of
the automatic sense clustering on the English all-
words task at Senseval-3 (Snyder and Palmer,
2004). This task required WSD systems to pro-
vide a sense choice for 2,081 content words in a
set of 301 sentences from the fiction, news story,
and editorial domains.

We considered the three best-ranking WSD sys-
tems – GAMBL (Decadt et al., 2004), Sense-
Learner (Mihalcea and Faruque, 2004), and Koc

Table 4: Performance of WSD systems at
Senseval-3 on coarse-grained sense inventories.

System Prec. Rec. F1 F1flne

Gambl 0.779 0.779 0.779 0.652
SenseLearner 0.769 0.769 0.769 0.646
KOC Univ. 0.768 0.768 0.768 0.641
SSI 0.758 0.758 0.758 0.612
IRST-DDD 0.721 0.719 0.720 0.583

FS baseline 0.769 0.769 0.769 0.624
Random BL 0.497 0.497 0.497 0.340

University (Yuret, 2004) – and the best unsuper-
vised system, namely IRST-DDD (Strapparava et
al., 2004). We also included SSI as it outper-
forms all the untrained systems (Navigli and Ve-
lardi, 2005). To evaluate the performance of the
five systems on our coarse clustering, we consid-
ered a fine-grained answer to be correct if it be-
longs to the same cluster as that of the correct an-
swer. Table 4 reports the performance of the sys-
tems, together with the first sense and the random
baseline (in the last column we report the perfor-
mance on the original fine-grained test set).

The best system, Gambl, obtains almost 78%
precision and recall, an interesting figure com-
pared to 65% performance in the fine-grained
WSD task. An interesting aspect is that the rank-
ing across systems was maintained when mov-
ing from a fine-grained to a coarse-grained sense
inventory, although two systems (SSI and IRST-
DDD) show the best improvement.

In order to show that the general improvement
is the result of an appropriate clustering, we as-
sessed the performance of Gambl by averaging its
results when using 100 randomly-generated differ-
ent clusterings. We excluded monosemous clus-
ters from the test set (i.e. words with all the senses
mapped to the same ODE entry), so as to clar-
ify the real impact of properly grouped clusters.
As a result, the random setting obtained64:56%
average accuracy, while the performance when
adopting our automatic clustering was70:84%
(1,025/1,447 items).

To make it clear that the performance improve-
ment is not only due to polysemy reduction, we
considered a subset of the Senseval-3 test set in-
cluding only the incorrect answers given by the
fine-grained version of Gambl (623 items). In
other words, on this data set Gambl performs with
0% accuracy. We compared the performance of
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Table 5: Performance of SSI on coarse inventories
(SSI⁄ uses a coarse-grained knowledge base).

System Prec. Recall F1
SSI + baseline 0.758 0.758 0.758
SSI 0.717 0.576 0.639
SSI⁄ 0.748 0.674 0.709

Gambl when adopting our automatic clustering
with the accuracy of the random baseline. The re-
sults were respectively 34% and 15.32% accuracy.

These experiments prove that the performance
in Table 4 is not due to chance, but to an effec-
tive way of clustering word senses. Furthermore,
the systems in the Table are not taking advantage
of the information given by the clustering (trained
systems could be retrained on the coarse cluster-
ing). To assess this aspect, we performed a fur-
ther experiment. We modified the sense inventory
of the SSI lexical knowledge base by adopting the
coarse inventory acquired automatically. To this
end, we merged the semantic interconnections be-
longing to the same cluster. We also disabled the
first sense baseline heuristic, that most of the sys-
tems use as a back-off when they have no infor-
mation about the word at hand. We call this new
settingSSI⁄ (as opposed to SSI used in Table 4).

In Table 5 we report the results. The algorithm
obtains an improvement of 9.8% recall and 3.1%
precision (both statistically significant,p < 0:05).
The increase in recall is mostly due to the fact
that different senses belonging to the same clus-
ter now contribute together to the choice of that
cluster (rather than individually to the choice of a
fine-grained sense).

5 Related Work

Dolan (1994) describes a method for clustering
word senses with the use of information provided
in the electronic version of LDOCE (textual de-
finitions, semantic relations, domain labels, etc.).
Unfortunately, the approach is not described in de-
tail and no evaluation is provided.

Most of the approaches in the literature make
use of the WordNet structure to cluster its senses.
Peters et al. (1998) exploit specific patterns in the
WordNet hierarchy (e.g. sisters, autohyponymy,
twins, etc.) to group word senses. They study
semantic regularities or generalizations obtained
and analyze the effect of clustering on the com-
patibility of language-specific wordnets. Mihal-
cea and Moldovan (2001) study the structure of

WordNet for the identification of sense regular-
ities: to this end, they provide a set of seman-
tic and probabilistic rules. An evaluation of the
heuristics provided leads to a polysemy reduc-
tion of 39% and an error rate of 5.6%. A differ-
ent principle for clustering WordNet senses, based
on the Minimum Description Length, is described
by Tomuro (2001). The clustering is evaluated
against WordNet cousins and used for the study of
inter-annotator disagreement. Another approach
exploits the (dis)agreements of human annotators
to derive coarse-grained sense clusters (Chklovski
and Mihalcea, 2003), where sense similarity is
computed from confusion matrices.

Agirre and Lopez (2003) analyze a set of meth-
ods to cluster WordNet senses based on the use
of confusion matrices from the results of WSD
systems, translation equivalences, and topic sig-
natures (word co-occurrences extracted from the
web). They assess the acquired clusterings against
20 words from the Senseval-2 sense groupings.

Finally, McCarthy (2006) proposes the use
of ranked lists, based on distributionally nearest
neighbours, to relate word senses. This softer no-
tion of sense relatedness allows to adopt the most
appropriate granularity for a specific application.

Compared to our approach, most of these meth-
ods do not evaluate the clustering produced with
respect to a gold-standard clustering. Indeed,
such an evaluation would be difficult and time-
consuming without a coarse sense inventory like
that of ODE. A limited assessment of coarse WSD
is performed by Fellbaum et al. (2001), who ob-
tain a large improvement in the accuracy of a
maximum-entropy system on clustered verbs.

6 Conclusions

In this paper, we presented a study on the construc-
tion of a coarse sense inventory for the WordNet
lexicon and its effects on unrestricted WSD.

A key feature in our approach is the use of a
well-established dictionary encoding sense hierar-
chies. As remarked in Section 2.2, the method can
employ any dictionary with a sufficiently struc-
tured inventory of senses, and can thus be applied
to reduce the granularity of, e.g., wordnets of other
languages. One could argue that the adoption of
the ODE as a sense inventory for WSD would be a
better solution. While we are not against this pos-
sibility, there are problems that cannot be solved
at present: the ODE does not encode semantic re-
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lations and is not freely available. Also, most of
the present research and standard data sets focus
on WordNet.

The fine granularity of the WordNet sense in-
ventory is unsuitable for most applications, thus
constituting an obstacle that must be overcome.
We believe that the research topic analyzed in this
paper is a first step towards making WSD a fea-
sible task and enabling language-aware applica-
tions, like information retrieval, question answer-
ing, machine translation, etc. In a future work, we
plan to investigate the contribution of coarse dis-
ambiguation to such real-world applications. To
this end, we aim to set up an Open Mind-like ex-
periment for the validation of the entire mapping
from WordNet to ODE, so that only a minimal er-
ror rate would affect the experiments to come.

Finally, the method presented here could be use-
ful for lexicographers in the comparison of the
quality of dictionaries, and in the detection of
missing word senses.
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subject field codes into wordnet. InProc. of the2nd Con-
ference on Language Resources and Evaluation (LREC).
Athens, Greece.

Diana McCarthy. 2006. Relating wordnet senses for word
sense disambiguation. InProc. of ACL Workshop on Mak-
ing Sense of Sense. Trento, Italy.

Rada Mihalcea and Ehsanul Faruque. 2004. Senselearner:
Minimally supervised word sense disambiguation for all
words in open text. InProc. of ACL/SIGLEX Senseval-3.
Barcelona, Spain.

Rada Mihalcea and Dan Moldovan. 2001. Automatic
generation of a coarse grained wordnet. InProc. of
NAACL Workshop on WordNet and Other Lexical Re-
sources. Pittsburgh, PA.

Jane Morris and Graeme Hirst. 1991. Lexical cohesion com-
puted by thesaural relations as an indicator of the structure
of text. Computational Linguistics, 17(1).

Roberto Navigli and Paola Velardi. 2004. Learning domain
ontologies from document warehouses and dedicated web-
sites.Computational Linguistics, 30(2).

Roberto Navigli and Paola Velardi. 2005. Structural se-
mantic interconnections: a knowledge-based approach to
word sense disambiguation.IEEE Transactions on Pat-
tern Analysis and Machine Intelligence (PAMI), 27(7).

Hwee T. Ng, Chung Y. Lim, and Shou K. Foo. 1999. A case
study on the inter-annotator agreement for word sense dis-
ambiguation. InProc. of ACL Workshop: Standardizing
Lexical Resources. College Park, Maryland.

Wim Peters, Ivonne Peters, and Piek Vossen. 1998. Au-
tomatic sense clustering in eurowordnet. InProc. of the
1st Conference on Language Resources and Evaluation
(LREC). Granada, Spain.

Benjamin Snyder and Martha Palmer. 2004. The english
all-words task. InProc. of ACL 2004 SENSEVAL-3 Work-
shop. Barcelona, Spain.

Catherine Soanes and Angus Stevenson, editors. 2003.Ox-
ford Dictionary of English. Oxford University Press.

Christopher Stokoe. 2005. Differentiating homonymy and
polysemy in information retrieval. InProc. of the Confer-
ence on Empirical Methods in Natural Language Process-
ing. Vancouver, Canada.

Carlo Strapparava, Alfio Gliozzo, and Claudio Giuliano.
2004. Pattern abstraction and term similarity for word
sense disambiguation. InProc. of ACL/SIGLEX Senseval-
3. Barcelona, Spain.

Noriko Tomuro. 2001. Tree-cut and a lexicon based on sys-
tematic polysemy. InProc. of the Meeting of the NAACL.
Pittsburgh, USA.

David Vickrey, Luke Biewald, Marc Teyssier, and Daphne
Koller. 2005. Word sense disambiguation vs. statistical
machine translation. InProc. of Conference on Empiri-
cal Methods in Natural Language Processing. Vancouver,
Canada.

Deniz Yuret. 2004. Some experiments with a naive
bayes wsd system. InProc. of ACL/SIGLEX Senseval-3.
Barcelona, Spain.

Ying Zhao and George Karypis. 2004. Empirical and theo-
retical comparisons of selected criterion functions for doc-
ument clustering.Machine Learning, 55(3).

112



Proceedings of the 21st International Conference on Computational Linguistics and 44th Annual Meeting of the ACL, pages 113–120,
Sydney, July 2006.c©2006 Association for Computational Linguistics

Espresso: Leveraging Generic Patterns for  
Automatically Harvesting Semantic Relations 

 
Patrick Pantel 

Information Sciences Institute 
University of Southern California 

4676 Admiralty Way 
Marina del Rey, CA  90292 

pantel@isi.edu 

Marco Pennacchiotti 
ART Group - DISP 

University of Rome “Tor Vergata” 
Viale del Politecnico 1 

Rome, Italy 
pennacchiotti@info.uniroma2.it

  

Abstract 

In this paper, we present Espresso, a 
weakly-supervised, general-purpose, 
and accurate algorithm for harvesting 
semantic relations. The main contribu-
tions are: i) a method for exploiting ge-
neric patterns by filtering incorrect 
instances using the Web; and ii) a prin-
cipled measure of pattern and instance 
reliability enabling the filtering algo-
rithm. We present an empirical com-
parison of Espresso with various state of 
the art systems, on different size and 
genre corpora, on extracting various 
general and specific relations. Experi-
mental results show that our exploita-
tion of generic patterns substantially 
increases system recall with small effect 
on overall precision. 

1 Introduction 

Recent attention to knowledge-rich problems 
such as question answering (Pasca and Harabagiu 
2001) and textual entailment (Geffet and Dagan 
2005) has encouraged natural language process-
ing researchers to develop algorithms for auto-
matically harvesting shallow semantic resources. 
With seemingly endless amounts of textual data 
at our disposal, we have a tremendous opportu-
nity to automatically grow semantic term banks 
and ontological resources. 

To date, researchers have harvested, with 
varying success, several resources, including 
concept lists (Lin and Pantel 2002), topic signa-
tures (Lin and Hovy 2000), facts (Etzioni et al. 
2005), and word similarity lists (Hindle 1990). 
Many recent efforts have also focused on extract-
ing semantic relations between entities, such as 

entailments (Szpektor et al. 2004), is-a (Ravi-
chandran and Hovy 2002), part-of (Girju et al. 
2006), and other relations. 

The following desiderata outline the properties 
of an ideal relation harvesting algorithm: 
• Performance: it must generate both high preci-

sion and high recall relation instances; 
• Minimal supervision: it must require little or no 

human annotation; 
• Breadth: it must be applicable to varying cor-

pus sizes and domains; and 
• Generality: it must be applicable to a wide va-

riety of relations (i.e., not just is-a or part-of). 
To our knowledge, no previous harvesting algo-
rithm addresses all these properties concurrently. 

In this paper, we present Espresso, a general-
purpose, broad, and accurate corpus harvesting 
algorithm requiring minimal supervision. The 
main algorithmic contribution is a novel method 
for exploiting generic patterns, which are broad 
coverage noisy patterns – i.e., patterns with high 
recall and low precision. Insofar, difficulties in 
using these patterns have been a major impedi-
ment for minimally supervised algorithms result-
ing in either very low precision or recall. We 
propose a method to automatically detect generic 
patterns and to separate their correct and incor-
rect instances. The key intuition behind the algo-
rithm is that given a set of reliable (high 
precision) patterns on a corpus, correct instances 
of a generic pattern will fire more with reliable 
patterns on a very large corpus, like the Web, 
than incorrect ones. Below is a summary of the 
main contributions of this paper: 
• Algorithm for exploiting generic patterns: 

Unlike previous algorithms that require signifi-
cant manual work to make use of generic pat-
terns, we propose an unsupervised Web-
filtering method for using generic patterns; and 

• Principled reliability measure: We propose a 
new measure of pattern and instance reliability 
which enables the use of generic patterns. 
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Espresso addresses the desiderata as follows: 
• Performance: Espresso generates balanced 

precision and recall relation instances by ex-
ploiting generic patterns; 

• Minimal supervision: Espresso requires as in-
put only a small number of seed instances; 

• Breadth: Espresso works on both small and 
large corpora – it uses Web and syntactic ex-
pansions to compensate for lacks of redun-
dancy in small corpora; 

• Generality: Espresso is amenable to a wide 
variety of binary relations, from classical is-a 
and part-of to specific ones such as reaction 
and succession. 

Previous work like (Girju et al. 2006) that has 
made use of generic patterns through filtering has 
shown both high precision and high recall, at the 
expensive cost of much manual semantic annota-
tion. Minimally supervised algorithms, like 
(Hearst 1992; Pantel et al. 2004), typically ignore 
generic patterns since system precision dramati-
cally decreases from the introduced noise and 
bootstrapping quickly spins out of control. 

2 Relevant Work 

To date, most research on relation harvesting has 
focused on is-a and part-of. Approaches fall into 
two categories: pattern- and clustering-based. 

Most common are pattern-based approaches. 
Hearst (1992) pioneered using patterns to extract 
hyponym (is-a) relations. Manually building 
three lexico-syntactic patterns, Hearst sketched a 
bootstrapping algorithm to learn more patterns 
from instances, which has served as the model 
for most subsequent pattern-based algorithms. 

Berland and Charniak (1999) proposed a sys-
tem for part-of relation extraction, based on the 
(Hearst 1992) approach. Seed instances are used 
to infer linguistic patterns that are used to extract 
new instances. While this study introduces statis-
tical measures to evaluate instance quality, it re-
mains vulnerable to data sparseness and has the 
limitation of considering only one-word terms. 

Improving upon (Berland and Charniak 1999), 
Girju et al. (2006) employ machine learning al-
gorithms and WordNet (Fellbaum 1998) to dis-
ambiguate part-of generic patterns like “X’s Y” 
and “X of Y”. This study is the first extensive at-
tempt to make use of generic patterns. In order to 
discard incorrect instances, they learn WordNet-
based selectional restrictions, like “X(scene#4)’s 
Y(movie#1)”. While making huge grounds on 
improving precision/recall, heavy supervision is 
required through manual semantic annotations. 

Ravichandran and Hovy (2002) focus on scal-
ing relation extraction to the Web. A simple and 
effective algorithm is proposed to infer surface 
patterns from a small set of instance seeds by 
extracting substrings relating seeds in corpus sen-
tences. The approach gives good results on spe-
cific relations such as birthdates, however it has 
low precision on generic ones like is-a and part-
of. Pantel et al. (2004) proposed a similar, highly 
scalable approach, based on an edit-distance 
technique, to learn lexico-POS patterns, showing 
both good performance and efficiency. Espresso 
uses a similar approach to infer patterns, but we 
make use of generic patterns and apply refining 
techniques to deal with wide variety of relations. 

Other pattern-based algorithms include (Riloff 
and Shepherd 1997), who used a semi-automatic 
method for discovering similar words using a 
few seed examples, KnowItAll (Etzioni et al. 
2005) that performs large-scale extraction of 
facts from the Web, Mann (2002) who used part 
of speech patterns to extract a subset of is-a rela-
tions involving proper nouns, and (Downey et al. 
2005) who formalized the problem of relation 
extraction in a coherent and effective combinato-
rial model that is shown to outperform previous 
probabilistic frameworks. 

Clustering approaches have so far been ap-
plied only to is-a extraction. These methods use 
clustering algorithms to group words according 
to their meanings in text, label the clusters using 
its members’ lexical or syntactic dependencies, 
and then extract an is-a relation between each 
cluster member and the cluster label. Caraballo 
(1999) proposed the first attempt, which used 
conjunction and apposition features to build noun 
clusters. Recently, Pantel and Ravichandran 
(2004) extended this approach by making use of 
all syntactic dependency features for each noun. 
The advantage of clustering approaches is that 
they permit algorithms to identify is-a relations 
that do not explicitly appear in text, however 
they generally fail to produce coherent clusters 
from fewer than 100 million words; hence they 
are unreliable for small corpora. 

3 The Espresso Algorithm 

Espresso is based on the framework adopted in 
(Hearst 1992). It is a minimally supervised boot-
strapping algorithm that takes as input a few seed 
instances of a particular relation and iteratively 
learns surface patterns to extract more instances. 
The key to Espresso lies in its use of generic pat-
ters, i.e., those broad coverage noisy patterns that 
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extract both many correct and incorrect relation 
instances. For example, for part-of relations, the 
pattern “X of Y” extracts many correct relation 
instances like “wheel of the car” but also many 
incorrect ones like “house of representatives”. 

The key assumption behind Espresso is that in 
very large corpora, like the Web, correct in-
stances generated by a generic pattern will be 
instantiated by some reliable patterns, where 
reliable patterns are patterns that have high preci-
sion but often very low recall (e.g., “X consists of 
Y” for part-of relations). In this section, we de-
scribe the overall architecture of Espresso, pro-
pose a principled measure of reliability, and give 
an algorithm for exploiting generic patterns. 

3.1 System Architecture 

Espresso iterates between the following three 
phases: pattern induction, pattern rank-
ing/selection, and instance extraction. 

The algorithm begins with seed instances of a 
particular binary relation (e.g., is-a) and then it-
erates through the phases until it extracts τ1 pat-
terns or the average pattern score decreases by 
more than τ2 from the previous iteration. In our 
experiments, we set τ1 = 5 and τ2 = 50%. 

For our tokenization, in order to harvest multi-
word terms as relation instances, we adopt a 
slightly modified version of the term definition 
given in (Justeson 1995), as it is one of the most 
commonly used in the NLP literature: 
 ((Adj|Noun)+|((Adj|Noun)*(NounPrep)?)(Adj|Noun)*)Noun 

Pattern Induction 

In the pattern induction phase, Espresso infers a 
set of surface patterns P that connects as many of 
the seed instances as possible in a given corpus. 
Any pattern learning algorithm would do. We 
chose the state of the art algorithm described in 
(Ravichandran and Hovy 2002) with the follow-
ing slight modification. For each input instance 
{x, y}, we first retrieve all sentences containing 
the two terms x and y. The sentences are then 
generalized into a set of new sentences Sx,y by 
replacing all terminological expressions by a 
terminological label, TR. For example: 
 “Because/IN HF/NNP is/VBZ a/DT weak/JJ acid/NN 
  and/CC x is/VBZ a/DT y” 

is generalized as: 
 “Because/IN TR is/VBZ a/DT TR and/CC x is/VBZ a/DT y” 

Term generalization is useful for small corpora to 
ease data sparseness. Generalized patterns are 
naturally less precise, but this is ameliorated by 
our filtering step described in Section 3.3. 

As in the original algorithm, all substrings 
linking terms x and y are then extracted from Sx,y, 
and overall frequencies are computed to form P. 

Pattern Ranking/Selection 

In (Ravichandran and Hovy 2002), a frequency 
threshold on the patterns in P is set to select the 
final patterns. However, low frequency patterns 
may in fact be very good. In this paper, instead of 
frequency, we propose a novel measure of pat-
tern reliability, rπ, which is described in detail in 
Section 3.2. 

Espresso ranks all patterns in P according to 
reliability rπ and discards all but the top-k, where 
k is set to the number of patterns from the previ-
ous iteration plus one. In general, we expect that 
the set of patterns is formed by those of the pre-
vious iteration plus a new one. Yet, new statisti-
cal evidence can lead the algorithm to discard a 
pattern that was previously discovered. 

Instance Extraction 

In this phase, Espresso retrieves from the corpus 
the set of instances I that match any of the pat-
terns in P. In Section 3.2, we propose a princi-
pled measure of instance reliability, rι, for 
ranking instances. Next, Espresso filters incor-
rect instances using the algorithm proposed in 
Section 3.3 and then selects the highest scoring m 
instances, according to rι, as input for the subse-
quent iteration. We experimentally set m=200. 

In small corpora, the number of extracted in-
stances can be too low to guarantee sufficient 
statistical evidence for the pattern discovery 
phase of the next iteration. In such cases, the sys-
tem enters an expansion phase, where instances 
are expanded as follows: 

Web expansion: New instances of the patterns 
in P are retrieved from the Web, using the 
Google search engine. Specifically, for each in-
stance {x, y}∈ I, the system creates a set of que-
ries, using each pattern in P instantiated with y. 
For example, given the instance “Italy, country” 
and the pattern “Y such as X”, the resulting 
Google query will be “country such as *”. New 
instances are then created from the retrieved Web 
results (e.g. “Canada, country”) and added to I. 
The noise generated from this expansion is at-
tenuated by the filtering algorithm described in 
Section 3.3. 

Syntactic expansion: New instances are cre-
ated from each instance {x, y}∈ I by extracting 
sub-terminological expressions from x corre-
sponding to the syntactic head of terms. For ex-
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ample, the relation “new record of a criminal 
conviction part-of FBI report” expands to: “new 
record part-of FBI report”, and “record part-of 
FBI report”. 

3.2 Pattern and Instance Reliability 

Intuitively, a reliable pattern is one that is both 
highly precise and one that extracts many in-
stances. The recall of a pattern p can be approxi-
mated by the fraction of input instances that are 
extracted by p. Since it is non-trivial to estimate 
automatically the precision of a pattern, we are 
wary of keeping patterns that generate many in-
stances (i.e., patterns that generate high recall but 
potentially disastrous precision). Hence, we de-
sire patterns that are highly associated with the 
input instances. Pointwise mutual information 
(Cover and Thomas 1991) is a commonly used 
metric for measuring this strength of association 
between two events x and y: 
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We define the reliability of a pattern p, rπ(p), 

as its average strength of association across each 
input instance i in I, weighted by the reliability of 
each instance i: 
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where rι(i) is the reliability of instance i (defined 
below) and maxpmi is the maximum pointwise 
mutual information between all patterns and all 
instances. rπ(p) ranges from [0,1]. The reliability 
of the manually supplied seed instances are rι(i) 
= 1. The pointwise mutual information between 
instance i = {x, y} and pattern p is estimated us-
ing the following formula: 
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where |x, p, y| is the frequency of pattern p in-
stantiated with terms x and y and where the aster-
isk (*) represents a wildcard. A well-known 
problem is that pointwise mutual information is 
biased towards infrequent events. We thus multi-
ply pmi(i, p) with the discounting factor sug-
gested in (Pantel and Ravichandran 2004). 

Estimating the reliability of an instance is 
similar to estimating the reliability of a pattern. 
Intuitively, a reliable instance is one that is 
highly associated with as many reliable patterns 
as possible (i.e., we have more confidence in an 

instance when multiple reliable patterns instanti-
ate it.) Hence, analogous to our pattern reliability 
measure, we define the reliability of an instance 
i, rι(i), as: 
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where rπ(p) is the reliability of pattern p (defined 
earlier) and maxpmi is as before. Note that rι(i) 
and rπ(p) are recursively defined, where rι(i) = 1 
for the manually supplied seed instances. 

3.3 Exploiting Generic Patterns 

Generic patterns are high recall / low precision 
patterns (e.g, the pattern “X of Y” can ambigu-
ously refer to a part-of, is-a and possession rela-
tions). Using them blindly increases system 
recall while dramatically reducing precision. 
Minimally supervised algorithms have typically 
ignored them for this reason. Only heavily super-
vised approaches, like (Girju et al. 2006) have 
successfully exploited them. 

Espresso’s recall can be significantly in-
creased by automatically separating correct in-
stances extracted by generic patterns from 
incorrect ones. The challenge is to harness the 
expressive power of the generic patterns while 
remaining minimally supervised. 

The intuition behind our method is that in a 
very large corpus, like the Web, correct instances 
of a generic pattern will be instantiated by many 
of Espresso’s reliable patterns accepted in P. Re-
call that, by definition, Espresso’s reliable pat-
terns extract instances with high precision (yet 
often low recall). In a very large corpus, like the 
Web, we assume that a correct instance will oc-
cur in at least one of Espresso’s reliable pattern 
even though the patterns’ recall is low. Intui-
tively, our confidence in a correct instance in-
creases when, i) the instance is associated with 
many reliable patterns; and ii) its association 
with the reliable patterns is high. At a given Es-
presso iteration, where PR represents the set of 
previously selected reliable patterns, this intui-
tion is captured by the following measure of con-
fidence in an instance i = {x, y}: 

 ( ) ( ) ( )∑
∈
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where T is the sum of the reliability scores rπ(p) 
for each pattern p ∈ PR, and 
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where pointwise mutual information between 
instance i and pattern p is estimated with Google 
as follows: 

 ( )
pyx

ypx
iS p ××
≈

,,   

An instance i is rejected if S(i) is smaller than 
some threshold τ. 

Although this filtering may also be applied to 
reliable patterns, we found this to be detrimental 
in our experiments since most instances gener-
ated by reliable patterns are correct. In Espresso, 
we classify a pattern as generic when it generates 
more than 10 times the instances of previously 
accepted reliable patterns. 

4 Experimental Results 

In this section, we present an empirical compari-
son of Espresso with three state of the art sys-
tems on the task of extracting various semantic 
relations. 

4.1 Experimental Setup 

We perform our experiments using the following 
two datasets: 
• TREC: This dataset consists of a sample of 

articles from the Aquaint (TREC-9) newswire 
text collection. The sample consists of 
5,951,432 words extracted from the following 
data files: AP890101 – AP890131, AP890201 
– AP890228, and AP890310 – AP890319. 

• CHEM: This small dataset of 313,590 words 
consists of a college level textbook of introduc-
tory chemistry (Brown et al. 2003). 

Each corpus is pre-processed using the Alembic 
Workbench POS-tagger (Day et al. 1997). 

Below we describe the systems used in our 
empirical evaluation of Espresso. 
• RH02: The algorithm by Ravichandran and 

Hovy (2002) described in Section 2. 
• GI03: The algorithm by Girju et al. (2006) de-

scribed in Section 2. 

• PR04: The algorithm by Pantel and Ravi-
chandran (2004) described in Section 2. 

• ESP-: The Espresso algorithm using the pat-
tern and instance reliability measures, but 
without using generic patterns. 

• ESP+: The full Espresso algorithm described 
in this paper exploiting generic patterns. 

For ESP+, we experimentally set τ from Section 
3.3 to τ = 0.4 for TREC and τ = 0.3 for CHEM 
by manually inspecting a small set of instances. 

Espresso is designed to extract various seman-
tic relations exemplified by a given small set of 
seed instances. We consider the standard is-a and 
part-of relations as well as the following more 
specific relations: 
• succession: This relation indicates that a person 

succeeds another in a position or title. For ex-
ample, George Bush succeeded Bill Clinton 
and Pope Benedict XVI succeeded Pope John 
Paul II. We evaluate this relation on the 
TREC-9 corpus. 

• reaction: This relation occurs between chemi-
cal elements/molecules that can be combined 
in a chemical reaction. For example, hydrogen 
gas reacts-with oxygen gas and zinc reacts-with 
hydrochloric acid. We evaluate this relation on 
the CHEM corpus. 

• production: This relation occurs when a proc-
ess or element/object produces a result1. For 
example, ammonia produces nitric oxide. We 
evaluate this relation on the CHEM corpus. 

For each semantic relation, we manually ex-
tracted a small set of seed examples. The seeds 
were used for both Espresso as well as RH02. 
Table 1 lists a sample of the seeds as well as 
sample outputs from Espresso. 

4.2 Precision and Recall 

We implemented the systems outlined in Section 
4.1, except for GI03, and applied them to the 
                                                      

1 Production is an ambiguous relation; it is intended to be 
a causation relation in the context of chemical reactions. 

Table 1. Sample seeds used for each semantic relation and sample outputs from Espresso. The number 
in the parentheses for each relation denotes the total number of seeds used as input for the system. 

 Is-a (12) Part-Of (12) Succession (12) Reaction (13) Production (14) 

Seeds 

wheat :: crop 
George Wendt :: star 
nitrogen :: element 
diborane :: substance 

leader :: panel 
city :: region 
ion :: matter 
oxygen :: water 

Khrushchev :: Stalin 
Carla Hills :: Yeutter 
Bush :: Reagan 
Julio Barbosa :: Mendes 

magnesium :: oxygen 
hydrazine :: water 
aluminum metal :: oxygen 
lithium metal :: fluorine gas 

bright flame :: flares 
hydrogen :: metal hydrides 
ammonia :: nitric oxide 
copper :: brown gas 

Es-
presso 

Picasso :: artist 
tax :: charge 
protein :: biopolymer 
HCl :: strong acid 

trees :: land 
material :: FBI report 
oxygen :: air 
atom :: molecule 

Ford :: Nixon 
Setrakian :: John Griesemer 
Camero Cardiel :: Camacho
Susan Weiss :: editor 

hydrogen :: oxygen 
Ni :: HCl 
carbon dioxide :: methane 
boron :: fluorine 

electron :: ions 
glycerin :: nitroglycerin 
kidneys :: kidney stones 
ions :: charge 
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Table 8. System performance: CHEM/production.

SYSTEM INSTANCES PRECISION* REL RECALL† 

RH02 197 57.5% 0.80 
ESP- 196 72.5% 1.00 
ESP+ 1676 55.8% 6.58 
 

TREC and CHEM datasets. For each output set, 
per relation, we evaluate the precision of the sys-
tem by extracting a random sample of instances 
(50 for the TREC corpus and 20 for the CHEM 
corpus) and evaluating their quality manually 
using two human judges (a total of 680 instances 
were annotated per judge). For each instance, 
judges may assign a score of 1 for correct, 0 for 
incorrect, and ½ for partially correct. Example 
instances that were judged partially correct in-
clude “analyst is-a manager” and “pilot is-a 
teacher”. The kappa statistic (Siegel and Castel-
lan Jr. 1988) on this task was Κ = 0.692. The pre-
cision for a given set of instances is the sum of 
the judges’ scores divided by the total instances. 

Although knowing the total number of correct 
instances of a particular relation in any non-
trivial corpus is impossible, it is possible to com-
pute the recall of a system relative to another sys-
tem’s recall. Following (Pantel et al. 2004), we 
define the relative recall of system A given sys-
tem B, RA|B, as: 

 
BP
AP

C
C

R
R

R
B

A

B

A

C
C
C

C

B

A
BA B

A

×

×
====|

 

where RA is the recall of A, CA is the number of 
correct instances extracted by A, C is the (un-
known) total number of correct instances in the 
corpus, PA is A’s precision in our experiments, 

                                                      
2 The kappa statistic jumps to Κ = 0.79 if we treat partially 
correct classifications as correct. 

and |A| is the total number of instances discov-
ered by A. 

Tables 2 – 8 report the total number of in-
stances, precision, and relative recall of each sys-
tem on the TREC-9 and CHEM corpora 3 4 . The 
relative recall is always given in relation to the 
ESP- system. For example, in Table 2, RH02 has 
a relative recall of 5.31 with ESP-, which means 
that the RH02 system outputs 5.31 times more 
correct relations than ESP- (at a cost of much 
lower precision). Similarly, PR04 has a relative 
recall of 0.23 with ESP-, which means that PR04 
outputs 4.35 fewer correct relations than ESP- 
(also with a smaller precision). We did not in-
clude the results from GI03 in the tables since the 
system is only applicable to part-of relations and 
we did not reproduce it. However, the authors 
evaluated their system on a sample of the TREC-
9 dataset and reported 83% precision and 72% 
recall (this algorithm is heavily supervised.) 

                                                      
* Because of the small evaluation sets, we estimate the 
95% confidence intervals using bootstrap resampling to be 
in the order of ± 10-15% (absolute numbers). 
† Relative recall is given in relation to ESP-. 

Table 2. System performance: TREC/is-a. 

SYSTEM INSTANCES PRECISION* REL RECALL† 

RH02 57,525 28.0% 5.31 
PR04 1,504 47.0% 0.23 
ESP- 4,154 73.0% 1.00 
ESP+ 69,156 36.2% 8.26 

Table 4. System performance: TREC/part-of. 

SYSTEM INSTANCES PRECISION* REL RECALL† 

RH02 12,828 35.0% 42.52 
ESP- 132 80.0% 1.00 
ESP+ 87,203 69.9% 577.22 

Table 3. System performance: CHEM/is-a. 

SYSTEM INSTANCES PRECISION* REL RECALL† 

RH02 2556 25.0% 3.76 
PR04 108 40.0% 0.25 
ESP- 200 85.0% 1.00 
ESP+ 1490 76.0% 6.66 

Table 5. System performance: CHEM/part-of. 

SYSTEM INSTANCES PRECISION* REL RECALL† 

RH02 11,582 33.8% 58.78 
ESP- 111 60.0% 1.00 
ESP+ 5973 50.7% 45.47 

Table 7. System performance: CHEM/reaction. 

SYSTEM INSTANCES PRECISION* REL RECALL† 

RH02 6,083 30% 53.67 
ESP- 40 85% 1.00 
ESP+ 3102 91.4% 89.39 

Table 6. System performance: TREC/succession.

SYSTEM INSTANCES PRECISION* REL RECALL† 

RH02 49,798 2.0% 36.96 
ESP- 55 49.0% 1.00 
ESP+ 55 49.0% 1.00 
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In all tables, RH02 extracts many more rela-
tions than ESP-, but with a much lower precision, 
because it uses generic patterns without filtering. 
The high precision of ESP- is due to the effective 
reliability measures presented in Section 3.2. 

4.3 Effect of Generic Patterns 

Experimental results, for all relations and the two 
different corpus sizes, show that ESP- greatly 
outperforms the other methods on precision. 
However, without the use of generic patterns, the 
ESP- system shows lower recall in all but the 
production relation. 

As hypothesized, exploiting generic patterns 
using the algorithm from Section 3.3 substan-
tially improves recall without much deterioration 
in precision. ESP+ shows one to two orders of 
magnitude improvement on recall while losing 
on average below 10% precision. The succession 
relation in Table 6 was the only relation where 
Espresso found no generic pattern. For other re-
lations, Espresso found from one to five generic 
patterns. Table 4 shows the power of generic pat-
terns where system recall increases by 577 times 
with only a 10% drop in precision. In Table 7, we 
see a case where the combination of filtering 
with a large increase in retrieved instances re-
sulted in both higher precision and recall. 

In order to better analyze our use of generic 
patterns, we performed the following experiment. 

For each relation, we randomly sampled 100 in-
stances for each generic pattern and built a gold 
standard for them (by manually tagging each in-
stance as correct or incorrect). We then sorted the 
100 instances according to the scoring formula 
S(i) derived in Section 3.3 and computed the av-
erage precision, recall, and F-score of each top-K 
ranked instances for each pattern5. Due to lack of 
space, we only present the graphs for four of the 
22 generic patterns: “X is a Y” for the is-a rela-
tion of Table 2, “X in the Y” for the part-of rela-
tion of Table 4, “X in Y” for the part-of relation 
of Table 5, and “X and Y” for the reaction rela-
tion of Table 7. Figure 1 illustrates the results. 

In each figure, notice that recall climbs at a 
much faster rate than precision decreases. This 
indicates that the scoring function of Section 3.3 
effectively separates correct and incorrect in-
stances. In Figure 1a), there is a big initial drop 
in precision that accounts for the poor precision 
reported in Table 1. 

Recall that the cutoff points on S(i) were set to 
τ = 0.4 for TREC and τ = 0.3 for CHEM. The 
figures show that this cutoff is far from the 
maximum F-score. An interesting avenue of fu-
ture work would be to automatically determine 
the proper threshold for each individual generic 
pattern instead of setting a uniform threshold. 
                                                      

5 We can directly compute recall here since we built a 
gold standard for each set of 100 samples. 

Figure 1. Precision, recall and F-score curves of the Top-K% ranking instances of patterns “X is a Y” 
(TREC/is-a), “X in Y” (TREC/part-of), “X in the Y” (CHEM/part-of), and “X and Y” (CHEM/reaction). 
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5 Conclusions 

We proposed a weakly-supervised, general-
purpose, and accurate algorithm, called Espresso, 
for harvesting binary semantic relations from raw 
text. The main contributions are: i) a method for 
exploiting generic patterns by filtering incorrect 
instances using the Web; and ii) a principled 
measure of pattern and instance reliability ena-
bling the filtering algorithm. 

We have empirically compared Espresso’s 
precision and recall with other systems on both a 
small domain-specific textbook and on a larger 
corpus of general news, and have extracted sev-
eral standard and specific semantic relations: is-
a, part-of, succession, reaction, and production. 
Espresso achieves higher and more balanced per-
formance than other state of the art systems. By 
exploiting generic patterns, system recall sub-
stantially increases with little effect on precision. 

There are many avenues of future work both in 
improving system performance and making use 
of the relations in applications like question an-
swering. For the former, we plan to investigate 
the use of WordNet to automatically learn selec-
tional constraints on generic patterns, as pro-
posed by (Girju et al. 2006). We expect here that 
negative instances will play a key role in deter-
mining the selectional restrictions. 

Espresso is the first system, to our knowledge, 
to emphasize concurrently performance, minimal 
supervision, breadth, and generality. It remains 
to be seen whether one could enrich existing on-
tologies with relations harvested by Espresso, 
and it is our hope that these relations will benefit 
NLP applications. 
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Abstract 
This paper proposes a novel hierarchical learn-
ing strategy to deal with the data sparseness 
problem in relation extraction by modeling the 
commonality among related classes. For each 
class in the hierarchy either manually prede-
fined or automatically clustered, a linear dis-
criminative function is determined in a top-
down way using a perceptron algorithm with 
the lower-level weight vector derived from the 
upper-level weight vector. As the upper-level 
class normally has much more positive train-
ing examples than the lower-level class, the 
corresponding linear discriminative function 
can be determined more reliably. The upper-
level discriminative function then can effec-
tively guide the discriminative function learn-
ing in the lower-level, which otherwise might 
suffer from limited training data. Evaluation 
on the ACE RDC 2003 corpus shows that the 
hierarchical strategy much improves the per-
formance by 5.6 and 5.1 in F-measure on 
least- and medium- frequent relations respec-
tively. It also shows that our system outper-
forms the previous best-reported system by 2.7 
in F-measure on the 24 subtypes using the 
same feature set. 

1 Introduction 
With the dramatic increase in the amount of tex-
tual information available in digital archives and 
the WWW, there has been growing interest in 
techniques for automatically extracting informa-
tion from text. Information Extraction (IE) is 
such a technology that IE systems are expected 
to identify relevant information (usually of pre-
defined types) from text documents in a certain 
domain and put them in a structured format. 

According to the scope of the ACE program 
(ACE 2000-2005), current research in IE has 
three main objectives: Entity Detection and 
Tracking (EDT), Relation Detection and 
Characterization (RDC), and Event Detection 
and Characterization (EDC). This paper will 
focus on the ACE RDC task, which detects and 
classifies various semantic relations between two 

entities. For example, we want to determine 
whether a person is at a location, based on the 
evidence in the context. Extraction of semantic 
relationships between entities can be very useful 
for applications such as question answering, e.g. 
to answer the query “Who is the president of the 
United States?”.  

One major challenge in relation extraction is 
due to the data sparseness problem (Zhou et al 
2005). As the largest annotated corpus in relation 
extraction, the ACE RDC 2003 corpus shows 
that different subtypes/types of relations are 
much unevenly distributed and a few relation 
subtypes, such as the subtype “Founder” under 
the type “ROLE”, suffers from a small amount of 
annotated data. Further experimentation in this 
paper (please see Figure 2) shows that most rela-
tion subtypes suffer from the lack of the training 
data and fail to achieve steady performance given 
the current corpus size. Given the relative large 
size of this corpus, it will be time-consuming and 
very expensive to further expand the corpus with 
a reasonable gain in performance. Even if we can 
somehow expend the corpus and achieve steady 
performance on major relation subtypes, it will 
be still far beyond practice for those minor sub-
types given the much unevenly distribution 
among different relation subtypes. While various 
machine learning approaches, such as generative 
modeling (Miller et al 2000), maximum entropy 
(Kambhatla 2004) and support vector machines 
(Zhao and Grisman 2005; Zhou et al 2005), have 
been applied in the relation extraction task, no 
explicit learning strategy is proposed to deal with 
the inherent data sparseness problem caused by 
the much uneven distribution among different 
relations.  

This paper proposes a novel hierarchical 
learning strategy to deal with the data sparseness 
problem by modeling the commonality among 
related classes. Through organizing various 
classes hierarchically, a linear discriminative 
function is determined for each class in a top-
down way using a perceptron algorithm with the 
lower-level weight vector derived from the up-
per-level weight vector. Evaluation on the ACE 
RDC 2003 corpus shows that the hierarchical 
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strategy achieves much better performance than 
the flat strategy on least- and medium-frequent 
relations. It also shows that our system based on 
the hierarchical strategy outperforms the previ-
ous best-reported system. 

The rest of this paper is organized as follows. 
Section 2 presents related work. Section 3 
describes the hierarchical learning strategy using 
the perceptron algorithm. Finally, we present 
experimentation in Section 4 and conclude this 
paper in Section 5.  

2 Related Work 
The relation extraction task was formulated at 
MUC-7(1998). With the increasing popularity of 
ACE, this task is starting to attract more and 
more researchers within the natural language 
processing and machine learning communities. 
Typical works include Miller et al (2000), Ze-
lenko et al (2003), Culotta and Sorensen (2004), 
Bunescu and Mooney (2005a), Bunescu and 
Mooney  (2005b), Zhang et al (2005), Roth and 
Yih (2002), Kambhatla (2004), Zhao and Grisman  
(2005) and Zhou et al (2005). 

Miller et al (2000) augmented syntactic full 
parse trees with semantic information of entities 
and relations, and built generative models to in-
tegrate various tasks such as POS tagging, named 
entity recognition, template element extraction 
and relation extraction. The problem is that such 
integration may impose big challenges, e.g. the 
need of a large annotated corpus. To overcome 
the data sparseness problem, generative models 
typically applied some smoothing techniques to 
integrate different scales of contexts in parameter 
estimation, e.g. the back-off approach in Miller 
et al (2000).  

Zelenko et al (2003) proposed extracting re-
lations by computing kernel functions between 
parse trees. Culotta and Sorensen (2004) extended 
this work to estimate kernel functions between 
augmented dependency trees and achieved F-
measure of 45.8 on the 5 relation types in the 
ACE RDC 2003 corpus1. Bunescu and Mooney 
(2005a) proposed a shortest path dependency 
kernel. They argued that the information to 
model a relationship between two entities can be 
typically captured by the shortest path between 
them in the dependency graph. It achieved the F-
measure of 52.5 on the 5 relation types in the 
ACE RDC 2003 corpus. Bunescu and Mooney 
(2005b) proposed a subsequence kernel and ap-
                                                           
1 The ACE RDC 2003 corpus defines 5/24 relation 

types/subtypes between 4 entity types. 

plied it in protein interaction and ACE relation 
extraction tasks. Zhang et al (2005) adopted clus-
tering algorithms in unsupervised relation extrac-
tion using tree kernels. To overcome the data 
sparseness problem, various scales of sub-trees 
are applied in the tree kernel computation. Al-
though tree kernel-based approaches are able to 
explore the huge implicit feature space without 
much feature engineering, further research work 
is necessary to make them effective and efficient. 

Comparably, feature-based approaches 
achieved much success recently. Roth and Yih 
(2002) used the SNoW classifier to incorporate 
various features such as word, part-of-speech and 
semantic information from WordNet, and pro-
posed a probabilistic reasoning approach to inte-
grate named entity recognition and relation 
extraction. Kambhatla (2004) employed maxi-
mum entropy models with features derived from 
word, entity type, mention level, overlap, de-
pendency tree, parse tree and achieved F-
measure of 52.8 on the 24 relation subtypes in 
the ACE RDC 2003 corpus. Zhao and Grisman 
(2005) 2  combined various kinds of knowledge 
from tokenization, sentence parsing and deep 
dependency analysis through support vector ma-
chines and achieved F-measure of 70.1 on the 7 
relation types of the ACE RDC 2004 corpus3. 
Zhou et al (2005) further systematically explored 
diverse lexical, syntactic and semantic features 
through support vector machines and achieved F-
measure of 68.1 and 55.5 on the 5 relation types 
and the 24 relation subtypes in the ACE RDC 
2003 corpus respectively. To overcome the data 
sparseness problem, feature-based approaches 
normally incorporate various scales of contexts 
into the feature vector extensively. These ap-
proaches then depend on adopted learning algo-
rithms to weight and combine each feature 
effectively. For example, an exponential model 
and a linear model are applied in the maximum 
entropy models and support vector machines re-
spectively to combine each feature via the 
learned weight vector. 

In summary, although various approaches 
have been employed in relation extraction, they 
implicitly attack the data sparseness problem by 
using features of different contexts in feature-
based approaches or including different sub-

                                                           
2 Here, we classify this paper into feature-based ap-

proaches since the feature space in the kernels of 
Zhao and Grisman (2005) can be easily represented 
by an explicit feature vector. 

3 The ACE RDC 2004 corpus defines 7/27 relation 
types/subtypes between 7 entity types. 
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structures in kernel-based approaches. Until now, 
there are no explicit ways to capture the hierar-
chical topology in relation extraction. Currently, 
all the current approaches apply the flat learning 
strategy which equally treats training examples 
in different relations independently and ignore 
the commonality among different relations. This 
paper proposes a novel hierarchical learning 
strategy to resolve this problem by considering 
the relatedness among different relations and 
capturing the commonality among related rela-
tions. By doing so, the data sparseness problem 
can be well dealt with and much better perform-
ance can be achieved, especially for those rela-
tions with small amounts of annotated examples.  

3 Hierarchical Learning Strategy 
Traditional classifier learning approaches apply 
the flat learning strategy. That is, they equally 
treat training examples in different classes 
independently and ignore the commonality 
among related classes. The flat strategy will not 
cause any problem when there are a large amount 
of training examples for each class, since, in this 
case, a classifier learning approach can always 
learn a nearly optimal discriminative function for 
each class against the remaining classes. How-
ever, such flat strategy may cause big problems 
when there is only a small amount of training 
examples for some of the classes. In this case, a 
classifier learning approach may fail to learn a 
reliable (or nearly optimal) discriminative func-
tion for a class with a small amount of training 
examples, and, as a result, may significantly af-
fect the performance of the class or even the 
overall performance. 

To overcome the inherent problems in the 
flat strategy, this paper proposes a hierarchical 
learning strategy which explores the inherent 
commonality among related classes through a 
class hierarchy. In this way, the training exam-
ples of related classes can help in learning a reli-
able discriminative function for a class with only 
a small amount of training examples. To reduce 
computation time and memory requirements, we 
will only consider linear classifiers and apply the 
simple and widely-used perceptron algorithm for 
this purpose with more options open for future 
research. In the following, we will first introduce 
the perceptron algorithm in linear classifier 
learning, followed by the hierarchical learning 
strategy using the perceptron algorithm. Finally, 
we will consider several ways in building the 
class hierarchy. 

3.1 Perceptron Algorithm 
_______________________________________ 
Input:  the initial weight vector w , the training 

example sequence 
TtYXyx tt ...,2,1,),( =×∈ and the number of 

the maximal iterations N (e.g. 10 in this 
paper) of the training sequence4  

Output: the weight vector w  for the linear 
discriminative function  xwf ⋅=  

BEGIN 
    ww =1  
    REPEAT for t=1,2,…,T*N 

1. Receive the instance n
t Rx ∈  

2. Compute the output ttt xwo ⋅=  

3. Give the prediction )( tt osigny =
∧

 
4. Receive the desired label }1,1{ +−∈ty  
5. Update the hypothesis according to   

   ttttt xyww δ+=+1            (1) 
                where 0=tδ if the margin of tw  at the 

given example ),( tt yx  0>⋅ ttt xwy  
and 1=tδ  otherwise 

    END REPEAT 

    Return 5/
4

1*∑
−=

+=
N

Ni
iTww  

END BEGIN 
_______________________________________ 

Figure 1: the perceptron algorithm 
This section first deals with binary classification 
using linear classifiers. Assume an instance space 

nRX =  and a binary label space }1,1{ +−=Y . 
With any weight vector nRw∈  and a given 
instance nRx∈ , we associate a linear classifier 

wh  with a linear discriminative function 5 
xwxf ⋅=)(  by )()( xwsignxhw ⋅=  , where 

1)( −=⋅ xwsign  if 0<⋅ xw  and 1)( +=⋅ xwsign  
otherwise. Here, the margin of w  at ),( tt yx  is 
defined as tt xwy ⋅ . Then if the margin is positive, 
we have a correct prediction with tw yxh =)( , and 
if the margin is negative, we have an error with 

tw yxh ≠)( . Therefore, given a sequence of 
training examples TtYXyx tt ...,2,1,),( =×∈ , 
linear classifier learning attemps to find a weight 
vector w  that achieves a positive margin on as 
many examples as possible. 

                                                           
4 The training example sequence is feed N times for 

better performance. Moreover, this number can con-
trol the maximal affect a training example can pose. 
This is similar to the regulation parameter C in 
SVM, which affects the trade-off between complex-
ity and proportion of non-separable examples. As a 
result, it can be used to control over-fitting and 
robustness. 

5 )( xw ⋅  denotes the dot product of the weight vector 
nRw∈  and a given instance nRx∈ . 

123



The well-known perceptron algorithm, as 
shown in Figure 1, belongs to online learning of 
linear classifiers, where the learning algorithm 
represents its t -th hyposthesis by a weight vector 

n
t Rw ∈ . At trial t , an online algorithm receives 

an instance n
t Rx ∈ , makes its prediction 

)( ttt
xwsigny ⋅=

∧

 and receives the desired label 

}1,1{ +−∈ty . What distinguishes different online 
algorithms is how they update tw  into 1+tw  based 
on the example ),( tt yx  received at trial t . In 
particular, the perceptron algorithm updates the 
hypothesis by adding a scalar multiple of the 
instance, as shown in Equation 1 of Figure 1, 
when there is an error. Normally, the tradictional 
perceptron algorithm initializes the hypothesis as 
the zero vector 01 =w . This is usually the most 
natural choice, lacking any other preference. 
Smoothing 
In order to further improve the performance, we 
iteratively feed the training examples for a possi-
ble better discriminative function. In this paper, 
we have set the maximal iteration number to 10 
for both efficiency and stable performance and 
the final weight vector in the discriminative func-
tion is averaged over those of the discriminative 
functions in the last few iterations (e.g. 5 in this 
paper).  

Bagging 
One more problem with any online classifier 
learning algorithm, including the perceptron al-
gorithm, is that the learned discriminative func-
tion somewhat depends on the feeding order of 
the training examples. In order to eliminate such 
dependence and further improve the perform-
ance, an ensemble technique, called bagging 
(Breiman 1996), is applied in this paper. In bag-
ging, the bootstrap technique is first used to build 
M (e.g. 10 in this paper) replicate sample sets by 
randomly re-sampling with replacement from the 
given training set repeatedly. Then, each training 
sample set is used to train a certain discrimina-
tive function. Finally, the final weight vector in 
the discriminative function is averaged over 
those of the M discriminative functions in the 
ensemble. 

Multi-Class Classification 
Basically, the perceptron algorithm is only for 
binary classification. Therefore, we must extend 
the perceptron algorithms to multi-class 
classification, such as the ACE RDC task. For 
efficiency, we apply the one vs. others strategy, 

which builds K classifiers so as to separate one 
class from all others. However, the outputs for 
the perceptron algorithms of different classes 
may be not directly comparable since any 
positive scalar multiple of the weight vector will 
not affect the actual prediction of a perceptron 
algorithm. For comparability, we map the 
perceptron algorithm output into the probability 
by using an additional sigmoid model: 

)exp(1
1)|1(

BAf
fyp

++
==          (2) 

where xwf ⋅=  is the output of a perceptron 
algorithm and the coefficients A & B are to be 
trained using the model trust alorithm as 
described in Platt (1999). The final decision of an 
instance in multi-class classification is 
determined by the class which has the maximal 
probability from the corresponding perceptron 
algorithm.  

3.2 Hierarchical Learning Strategy using the 
Perceptron Algorithm 
Assume we have a class hierarchy for a task, e.g. 
the one in the ACE RDC 2003 corpus as shown 
in Table 1 of Section 4.1. The hierarchical learn-
ing strategy explores the inherent commonality 
among related classes in a top-down way. For 
each class in the hierarchy, a linear discrimina-
tive function is determined in a top-down way 
with the lower-level weight vector derived from 
the upper-level weight vector iteratively. This is 
done by initializing the weight vector in training 
the linear discriminative function for the lower-
level class as that of the upper-level class. That 
is, the lower-level discriminative function has the 
preference toward the discriminative function of 
its upper-level class. For an example, let’s look 
at the training of the “Located” relation subtype 
in the class hierarchy as shown in Table 1: 
1) Train the weight vector of the linear 

discriminative function for the “YES” 
relation vs. the “NON” relation with the 
weight vector initialized as the zero vector. 

2) Train the weight vector of the linear 
discriminative function for the “AT” relation 
type vs. all the remaining relation types 
(including the “NON” relation) with the 
weight vector initialized as the weight vector 
of the linear discriminative function for the 
“YES” relation vs. the “NON” relation. 

3) Train the weight vector of the linear 
discriminative function for the “Located” 
relation subtype vs. all the remaining relation 
subtypes under all the relation types 
(including the “NON” relation) with the 
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weight vector initialized as the weight vector 
of the linear discriminative function for the 
“AT” relation type vs. all the remaining 
relation types. 

4) Return the above trained weight vector as the 
discriminatie function for the “Located” 
relation subtype. 
In this way, the training examples in differ-

ent classes are not treated independently any 
more, and the commonality among related 
classes can be captured via the hierarchical learn-
ing strategy. The intuition behind this strategy is 
that the upper-level class normally has more 
positive training examples than the lower-level 
class so that the corresponding linear discrimina-
tive function can be determined more reliably. In 
this way, the training examples of related classes 
can help in learning a reliable discriminative 
function for a class with only a small amount of 
training examples in a top-down way and thus 
alleviate its data sparseness problem. 

3.3 Building the Class Hierarchy  
We have just described the hierarchical learning 
strategy using a given class hierarchy. Normally, 
a rough class hierarchy can be given manually 
according to human intuition, such as the one in 
the ACE RDC 2003 corpus. In order to explore 
more commonality among sibling classes, we 
make use of binary hierarchical clustering for 
sibling classes at both lowest and all levels. This 
can be done by first using the flat learning strat-
egy to learn the discriminative functions for indi-
vidual classes and then iteratively combining the 
two most related classes using the cosine similar-
ity function between their weight vectors in a 
bottom-up way. The intuition is that related 
classes should have similar hyper-planes to sepa-
rate from other classes and thus have similar 
weight vectors. 
• Lowest-level hybrid: Binary hierarchical 

clustering is only done at the lowest level 
while keeping the upper-level class hierar-
chy. That is, only sibling classes at the low-
est level are hierarchically clustered. 

• All-level hybrid: Binary hierarchical cluster-
ing is done at all levels in a bottom-up way. 
That is, sibling classes at the lowest level are 
hierarchically clustered first and then sibling 
classes at the upper-level. In this way, the bi-
nary class hierarchy can be built iteratively 
in a bottom-up way. 

 
 

4 Experimentation 
This paper uses the ACE RDC 2003 corpus pro-
vided by LDC to train and evaluate the hierarchi-
cal learning strategy. Same as Zhou et al (2005), 
we only model explicit relations and explicitly 
model the argument order of the two mentions 
involved.  

4.1 Experimental Setting 
Type Subtype Freq Bin Type 
AT Based-In 347 Medium 
 Located 2126 Large 
 Residence 308 Medium 
NEAR Relative-Location 201 Medium 
PART Part-Of 947 Large 
 Subsidiary 355 Medium 
 Other 6 Small 
ROLE Affiliate-Partner 204 Medium 
 Citizen-Of 328 Medium 
 Client 144 Small 
 Founder 26 Small 
 General-Staff 1331 Large 
 Management 1242 Large 
 Member 1091 Large 
 Owner 232 Medium 
 Other 158 Small 
SOCIAL Associate 91 Small 
 Grandparent 12 Small 
 Other-Personal 85 Small 
 Other-Professional 339 Medium 
 Other-Relative 78 Small 
 Parent 127 Small 
 Sibling 18 Small 
 Spouse 77 Small 
Table 1: Statistics of relation types and subtypes 
in the training data of the ACE RDC 2003 corpus 
(Note: According to frequency, all the subtypes 
are divided into three bins: large/ middle/ small, 
with 400 as the lower threshold for the large bin 
and 200 as the upper threshold for the small bin). 

The training data consists of 674 documents 
(~300k words) with 9683 relation examples 
while the held-out testing data consists of 97 
documents (~50k words) with 1386 relation ex-
amples. All the experiments are done five times 
on the 24 relation subtypes in the ACE corpus, 
except otherwise specified, with the final per-
formance averaged using the same re-sampling 
with replacement strategy as the one in the bag-
ging technique. Table 1 lists various types and 
subtypes of relations for the ACE RDC 2003 
corpus, along with their occurrence frequency in 
the training data. It shows that this corpus suffers 
from a small amount of annotated data for a few 
subtypes such as the subtype “Founder” under 
the type “ROLE”. 

For comparison, we also adopt the same fea-
ture set as Zhou et al (2005): word, entity type, 
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mention level, overlap, base phrase chunking, 
dependency tree, parse tree and semantic infor-
mation. 

4.2 Experimental Results 
Table 2 shows the performance of the hierarchi-
cal learning strategy using the existing class hier-
archy in the given ACE corpus and its 
comparison with the flat learning strategy, using 
the perceptron algorithm. It shows that the pure 
hierarchical strategy outperforms the pure flat 
strategy by 1.5 (56.9 vs. 55.4) in F-measure. It 
also shows that further smoothing and bagging 
improve the performance of the hierarchical and 
flat strategies by 0.6 and 0.9 in F-measure re-
spectively. As a result, the final hierarchical 
strategy achieves F-measure of 57.8 and outper-
forms the final flat strategy by 1.8 in F-measure. 
Strategies  P R F 
Flat 58.2 52.8 55.4 
Flat+Smoothing 58.9 53.1 55.9 
Flat+Bagging 59.0 53.1 55.9 
Flat+Both 59.1 53.2 56.0 
Hierarchical 61.9 52.6 56.9 
Hierarchical+Smoothing 62.7 53.1 57.5 
Hierarchical+Bagging 62.9 53.1 57.6 
Hierarchical+Both 63.0 53.4 57.8 
Table 2: Performance of the hierarchical learning 
strategy using the existing class hierarchy and its 

comparison with the flat learning strategy 

Class Hierarchies P R F 
Existing 63.0 53.4 57.8 
Entirely Automatic 63.4 53.1 57.8 
Lowest-level Hybrid 63.6 53.5 58.1 
All-level Hybrid 63.6 53.6 58.2 
Table 3: Performance of the hierarchical learning 

strategy using different class hierarchies 

Table 3 compares the performance of the hi-
erarchical learning strategy using different class 
hierarchies. It shows that, the lowest-level hybrid 
approach, which only automatically updates the 
existing class hierarchy at the lowest level, im-
proves the performance by 0.3 in F-measure 
while further updating the class hierarchy at up-
per levels in the all-level hybrid approach only 
has very slight effect. This is largely due to the 
fact that the major data sparseness problem oc-
curs at the lowest level, i.e. the relation subtype 
level in the ACE corpus. As a result, the final 
hierarchical learning strategy using the class hi-
erarchy built with the all-level hybrid approach 
achieves F-measure of 58.2 in F-measure, which 
outperforms the final flat strategy by 2.2 in F-
measure. In order to justify the usefulness of our 

hierarchical learning strategy when a rough class 
hierarchy is not available and difficult to deter-
mine manually, we also experiment using en-
tirely automatically built class hierarchy (using 
the traditional binary hierarchical clustering algo-
rithm and the cosine similarity measurement) 
without considering the existing class hierarchy. 
Table 3 shows that using automatically built 
class hierarchy performs comparably with using 
only the existing one. 

With the major goal of resolving the data 
sparseness problem for the classes with a small 
amount of training examples, Table 4 compares 
the best-performed hierarchical and flat learning 
strategies on the relation subtypes of different   
training data sizes. Here, we divide various rela-
tion subtypes into three bins: large/middle/small, 
according to their available training data sizes. 
For the ACE RDC 2003 corpus, we use 400 as 
the lower threshold for the large bin6 and 200 as 
the upper threshold for the small bin7. As a re-
sult, the large/medium/small bin includes 5/8/11 
relation subtypes, respectively. Please see Table 
1 for details. Table 4 shows that the hierarchical 
strategy outperforms the flat strategy by 
1.0/5.1/5.6 in F-measure on the 
large/middle/small bin respectively. This indi-
cates that the hierarchical strategy performs 
much better than the flat strategy for those 
classes with a small or medium amount of anno-
tated examples although the hierarchical strategy 
only performs slightly better by 1.0 and 2.2 in F-
measure than the flat strategy on those classes 
with a large size of annotated corpus and on all 
classes as a whole respectively. This suggests 
that the proposed hierarchical strategy can well 
deal with the data sparseness problem in the 
ACE RDC 2003 corpus.  

An interesting question is about the similar-
ity between the linear discriminative functions 
learned using the hierarchical and flat learning 
strategies.  Table 4 compares the cosine similari-
ties between the weight vectors of the linear dis-
criminative functions using the two strategies for 
different bins, weighted by the training data sizes 

                                                           
6 The reason to choose this threshold is that no rela-

tion subtype in the ACE RC 2003 corpus has train-
ing examples in between 400 and 900. 

7 A few minor relation subtypes only have very few 
examples in the testing set. The reason to choose 
this threshold is to guarantee a reasonable number of 
testing examples in the small bin. For the ACE RC 
2003 corpus, using 200 as the upper threshold will 
fill the small bin with about 100 testing examples 
while using 100 will include too few testing exam-
ples for reasonable performance evaluation. 
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of different relation subtypes. It shows that the 
linear discriminative functions learned using the 
two strategies are very similar (with the cosine 
similarity 0.98) for the relation subtypes belong-
ing to the large bin while the linear discrimina-
tive functions learned using the two strategies are 
not for the relation subtypes belonging to the 
medium/small bin with the cosine similarity 
0.92/0.81 respectively. This means that the use of 
the hierarchical strategy over the flat strategy 
only has very slight change on the linear dis-
criminative functions for those classes with a 
large amount of annotated examples while its 
effect on those with a small amount of annotated 
examples is obvious. This contributes to and ex-
plains (the degree of) the performance difference 
between the two strategies on the different train-
ing data sizes as shown in Table 4. 

Due to the difficulty of building a large an-
notated corpus, another interesting question is 
about the learning curve of the hierarchical learn-
ing strategy and its comparison with the flat 
learning strategy. Figure 2 shows the effect of 
different training data sizes for some major rela-
tion subtypes while keeping all the training ex-
amples of remaining relation subtypes. It shows 

that the hierarchical strategy performs much bet-
ter than the flat strategy when only a small 
amount of training examples is available. It also 
shows that the hierarchical strategy can achieve 
stable performance much faster than the flat 
strategy. Finally, it shows that the ACE RDC 
2003 task suffers from the lack of training exam-
ples. Among the three major relation subtypes, 
only the subtype “Located” achieves steady per-
formance. 

Finally, we also compare our system with the 
previous best-reported systems, such as Kamb-
hatla  (2004) and Zhou et al (2005). Table 5 
shows that our system outperforms the previous 
best-reported system by 2.7 (58.2 vs. 55.5) in F-
measure, largely due to the gain in recall. It indi-
cates that, although support vector machines and 
maximum entropy models always perform better 
than the simple perceptron algorithm in most (if 
not all) applications, the hierarchical learning 
strategy using the perceptron algorithm can eas-
ily overcome the difference and outperforms the 
flat learning strategy using the overwhelming 
support vector machines and maximum entropy 
models in relation extraction, at least on the ACE 
RDC 2003 corpus. 

Large Bin (0.98) Middle Bin (0.92) Small Bin (0.81) Bin Type(cosine similarity) 
P R F P R F P R F 

Flat Strategy 62.3 61.9 62.1 60.8 38.7 47.3 33.0 21.7 26.2 
Hierarchical Strategy 66.4 60.2 63.1 67.6 42.7 52.4 40.2 26.3 31.8 
Table 4: Comparison of the hierarchical and flat learning strategies on the relation subtypes of differ-
ent training data sizes. Notes: the figures in the parentheses indicate the cosine similarities between 

the weight vectors of the linear discriminative functions learned using the two strategies. 
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Figure 2: Learning curve of the hierarchical strategy and its comparison with the flat strategy for some 
major relation subtypes (Note: FS for the flat strategy and HS for the hierarchical strategy) 

Performance System 
P R F 

Our: Perceptron Algorithm + Hierarchical Strategy 63.6 53.6 58.2 
Zhou et al (2005): SVM + Flat Strategy 63.1 49.5 55.5 
Kambhatla (2004): Maximum Entropy + Flat Strategy 63.5 45.2 52.8 

Table 5: Comparison of our system with other best-reported systems 
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5 Conclusion 
This paper proposes a novel hierarchical learning 
strategy to deal with the data sparseness problem 
in relation extraction by modeling the common-
ality among related classes. For each class in a 
class hierarchy, a linear discriminative function 
is determined in a top-down way using the per-
ceptron algorithm with the lower-level weight 
vector derived from the upper-level weight vec-
tor. In this way, the upper-level discriminative 
function can effectively guide the lower-level 
discriminative function learning. Evaluation on 
the ACE RDC 2003 corpus shows that the hier-
archical strategy performs much better than the 
flat strategy in resolving the critical data sparse-
ness problem in relation extraction. 

In the future work, we will explore the hier-
archical learning strategy using other machine 
learning approaches besides online classifier 
learning approaches such as the simple percep-
tron algorithm applied in this paper. Moreover, 
just as indicated in Figure 2, most relation sub-
types in the ACE RDC 2003 corpus (arguably 
the largest annotated corpus in relation extrac-
tion) suffer from the lack of training examples. 
Therefore, a critical research in relation extrac-
tion is how to rely on semi-supervised learning 
approaches (e.g. bootstrap) to alleviate its de-
pendency on a large amount of annotated training 
examples and achieve better and steadier per-
formance. Finally, our current work is done when 
NER has been perfectly done. Therefore, it 
would be interesting to see how imperfect NER 
affects the performance in relation extraction. 
This will be done by integrating the relation ex-
traction system with our previously developed 
NER system as described in Zhou and Su (2002). 
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Abstract

Shortage of manually labeled data is an
obstacle to supervised relation extraction
methods. In this paper we investigate a
graph based semi-supervised learning al-
gorithm, a label propagation (LP) algo-
rithm, for relation extraction. It represents
labeled and unlabeled examples and their
distances as the nodes and the weights of
edges of a graph, and tries to obtain a la-
beling function to satisfy two constraints:
1) it should be fixed on the labeled nodes,
2) it should be smooth on the whole graph.
Experiment results on the ACE corpus
showed that this LP algorithm achieves
better performance than SVM when only
very few labeled examples are available,
and it also performs better than bootstrap-
ping for the relation extraction task.

1 Introduction

Relation extraction is the task of detecting and
classifying relationships between two entities from
text. Many machine learning methods have been
proposed to address this problem, e.g., supervised
learning algorithms (Miller et al., 2000; Zelenko et
al., 2002; Culotta and Soresen, 2004; Kambhatla,
2004; Zhou et al., 2005), semi-supervised learn-
ing algorithms (Brin, 1998; Agichtein and Gravano,
2000; Zhang, 2004), and unsupervised learning al-
gorithms (Hasegawa et al., 2004).

Supervised methods for relation extraction per-
form well on the ACE Data, but they require a large

amount of manually labeled relation instances. Un-
supervised methods do not need the definition of
relation types and manually labeled data, but they
cannot detect relations between entity pairs and its
result cannot be directly used in many NLP tasks
since there is no relation type label attached to
each instance in clustering result. Considering both
the availability of a large amount of untagged cor-
pora and direct usage of extracted relations, semi-
supervised learning methods has received great at-
tention.

DIPRE (Dual Iterative Pattern Relation Expan-
sion) (Brin, 1998) is a bootstrapping-based sys-
tem that used a pattern matching system as clas-
sifier to exploit the duality between sets of pat-
terns and relations. Snowball (Agichtein and Gra-
vano, 2000) is another system that used bootstrap-
ping techniques for extracting relations from un-
structured text. Snowball shares much in common
with DIPRE, including the employment of the boot-
strapping framework as well as the use of pattern
matching to extract new candidate relations. The
third system approaches relation classification prob-
lem with bootstrapping on top of SVM, proposed by
Zhang (2004). This system focuses on the ACE sub-
problem, RDC, and extracts various lexical and syn-
tactic features for the classification task. However,
Zhang (2004)’s method doesn’t actually “detect” re-
laitons but only performs relation classification be-
tween two entities given that they are known to be
related.

Bootstrapping works by iteratively classifying un-
labeled examples and adding confidently classified
examples into labeled data using a model learned
from augmented labeled data in previous iteration. It
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can be found that the affinity information among un-
labeled examples is not fully explored in this boot-
strapping process.

Recently a promising family of semi-supervised
learning algorithm is introduced, which can effec-
tively combine unlabeled data with labeled data in
learning process by exploiting manifold structure
(cluster structure) in data (Belkin and Niyogi, 2002;
Blum and Chawla, 2001; Blum et al., 2004; Zhu
and Ghahramani, 2002; Zhu et al., 2003). These
graph-based semi-supervised methods usually de-
fine a graph where the nodes represent labeled and
unlabeled examples in a dataset, and edges (may be
weighted) reflect the similarity of examples. Then
one wants a labeling function to satisfy two con-
straints at the same time: 1) it should be close to the
given labels on the labeled nodes, and 2) it should be
smooth on the whole graph. This can be expressed
in a regularization framework where the first term
is a loss function, and the second term is a regu-
larizer. These methods differ from traditional semi-
supervised learning methods in that they use graph
structure to smooth the labeling function.

To the best of our knowledge, no work has been
done on using graph based semi-supervised learning
algorithms for relation extraction. Here we inves-
tigate a label propagation algorithm (LP) (Zhu and
Ghahramani, 2002) for relation extraction task. This
algorithm works by representing labeled and unla-
beled examples as vertices in a connected graph,
then propagating the label information from any ver-
tex to nearby vertices through weighted edges itera-
tively, finally inferring the labels of unlabeled exam-
ples after the propagation process converges. In this
paper we focus on the ACE RDC task1.

The rest of this paper is organized as follows. Sec-
tion 2 presents related work. Section 3 formulates
relation extraction problem in the context of semi-
supervised learning and describes our proposed ap-
proach. Then we provide experimental results of our
proposed method and compare with a popular su-
pervised learning algorithm (SVM) and bootstrap-
ping algorithm in Section 4. Finally we conclude
our work in section 5.

1 http://www.ldc.upenn.edu/Projects/ACE/, Three tasks of
ACE program: Entity Detection and Tracking (EDT), Rela-
tion Detection and Characterization (RDC), and Event Detec-
tion and Characterization (EDC)

2 The Proposed Method

2.1 Problem Definition

The problem of relation extraction is to assign an ap-
propriate relation type to an occurrence of two entity
pairs in a given context. It can be represented as fol-
lows:

R → (Cpre, e1, Cmid, e2, Cpost) (1)

where e1 and e2 denote the entity mentions, and
Cpre,Cmid,and Cpost are the contexts before, be-
tween and after the entity mention pairs. In this pa-
per, we set the mid-context window as the words be-
tween the two entity mentions and the pre- and post-
context as up to two words before and after the cor-
responding entity mention.

Let X = {xi}n
i=1 be a set of contexts of occur-

rences of all the entity mention pairs, wherexi rep-
resents the contexts of thei-th occurrence, andn is
the total number of occurrences. The firstl exam-
ples (or contexts) are labeled asyg ( yg ∈ {rj}R

j=1,
rj denotes relation type andR is the total number of
relation types). The remainingu(u = n − l) exam-
ples are unlabeled.

Intuitively, if two occurrences of entity mention
pairs have the similarity context, they tend to hold
the same relation type. Based on the assumption, we
define a graph where the vertices represent the con-
texts of labeled and unlabeled occurrences of entity
mention pairs, and the edge between any two ver-
ticesxi andxj is weighted so that the closer the ver-
tices in some distance measure, the larger the weight
associated with this edge. Hence, the weights are de-
fined as follows:

Wij = exp(−s2
ij

α2
) (2)

wheresij is the similarity betweenxi andxj calcu-
lated by some similarity measures, e.g., cosine sim-
ilarity, and α is used to scale the weights. In this
paper, we setα as the average similarity between la-
beled examples from different classes.

2.2 A Label Propagation Algorithm

In the LP algorithm, the label information of any
vertex in a graph is propagated to nearby vertices
through weighted edges until a global stable stage is
achieved. Larger edge weights allow labels to travel
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through easier. Thus the closer the examples are, the
more likely they have similar labels.

We define soft label as a vector that is a proba-
bilistic distribution over all the classes. In the la-
bel propagation process, the soft label of each initial
labeled example is clamped in each iteration to re-
plenish label sources from these labeled data. Thus
the labeled data act like sources to push out labels
through unlabeled data. With this push from la-
beled examples, the class boundaries will be pushed
through edges with large weights and settle in gaps
along edges with small weights. Hopefully, the val-
ues ofWij across different classes would be as small
as possible and the values ofWij within the same
class would be as large as possible. This will make
label propagation to stay within the same class. This
label propagation process will make the labeling
function smooth on the graph.

Define ann× n probabilistic transition matrixT

Tij = P (j → i) =
wij∑n

k=1 wkj
(3)

whereTij is the probability to jump from vertexxj

to vertexxi. We define an × R label matrixY ,
whereYij representing the probabilities of vertexyi

to have the labelrj .
Then the label propagation algorithm consists the

following main steps:

Step1 : Initialization

• Set the iteration indext = 0;

• Let Y 0 be the initial soft labels attached to
each vertex, whereY 0

ij = 1 if yi is labelrj

and0 otherwise.

• Let Y 0
L be the topl rows of Y 0 and Y 0

U

be the remainingu rows.Y 0
L is consistent

with the labeling in labeled data and the
initialization ofY 0

U can be arbitrary.

Step 2 : Propagate the labels of any vertex to
nearby vertices byY t+1 = TY t , where
T is the row-normalized matrix ofT , i.e.
Tij = Tij/

∑
k Tik, which can maintain the

class probability interpretation.

Step 3 : Clamp the labeled data, that is, replace the
top l row of Y t+1 with Y 0

L .

Step 4 : Repeat from step 2 untilY converges.

Step 5 : Assignxh(l + 1 ≤ h ≤ n) with a label:
yh = argmaxjYhj .

The above algorithm can ensure that the labeled
dataYL never changes since it is clamped in Step 3.
Actually we are interested in onlyYU . This algo-
rithm has been shown to converge to a unique solu-
tion ŶU = limt→∞ Y t

U = (I − T̄uu)−1T̄ulY
0
L (Zhu

and Ghahramani, 2002). Here,T̄uu andT̄ul are ac-
quired by splitting matrixT̄ after thel-th row and
the l-th column into4 sub-matrices. AndI is u× u
identity matrix. We can see that the initialization of
Y 0

U in this solution is not important, sinceY 0
U does

not affect the estimation of̂YU .

3 Experiments and Results

3.1 Feature Set

Following (Zhang, 2004), we used lexical and syn-
tactic features in the contexts of entity pairs, which
are extracted and computed from the parse trees de-
rived from Charniak Parser (Charniak, 1999) and the
Chunklink script2 written by Sabine Buchholz from
Tilburg University.

Words: Surface tokens of the two entities and
words in the three contexts.

Entity Type: the entity type of both entity men-
tions, which can be PERSON, ORGANIZA-
TION, FACILITY, LOCATION and GPE.

POS features: Part-Of-Speech tags corresponding
to all tokens in the two entities and words in
the three contexts.

Chunking features: This category of features are
extracted from the chunklink representation,
which includes:

• Chunk tag information of the two enti-
ties and words in the three contexts. The
“0” tag means that the word is not in any
chunk. The “I-XP” tag means that this
word is inside an XP chunk. The “B-XP”
by default means that the word is at the
beginning of an XP chunk.

• Grammatical function of the two enti-
ties and words in the three contexts. The

2Software available at http://ilk.uvt.nl/∼sabine/chunklink/
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last word in each chunk is its head, and
the function of the head is the function of
the whole chunk. “NP-SBJ” means a NP
chunk as the subject of the sentence. The
other words in a chunk that are not the
head have “NOFUNC” as their function.

• IOB-chains of the heads of the two enti-
ties. So-called IOB-chain, noting the syn-
tactic categories of all the constituents on
the path from the root node to this leaf
node of tree.

The position information is also specified in the
description of each feature above. For example,
word features with position information include:

1) WE1 (WE2): all words ine1 (e2)
2) WHE1 (WHE2): head word ofe1 (e2)
3) WMNULL: no words inCmid

4) WMFL: the only word inCmid

5) WMF, WML, WM2, WM3, ...: first word, last
word, second word, third word, ...inCmid when at
least two words inCmid

6) WEL1, WEL2, ...: first word, second word, ...
beforee1

7) WER1, WER2, ...: first word, second word, ...
aftere2

We combine the above lexical and syntactic features
with their position information in the contexts to
form context vectors. Before that, we filter out low
frequency features which appeared only once in the
dataset.

3.2 Similarity Measures

The similaritysij between two occurrences of entity
pairs is important to the performance of the LP al-
gorithm. In this paper, we investigated two similar-
ity measures, cosine similarity measure and Jensen-
Shannon (JS) divergence (Lin, 1991). Cosine sim-
ilarity is commonly used semantic distance, which
measures the angle between two feature vectors. JS
divergence has ever been used as distance measure
for document clustering, which outperforms cosine
similarity based document clustering (Slonim et al.,
2002). JS divergence measures the distance between
two probability distributions if feature vector is con-
sidered as probability distribution over features. JS
divergence is defined as follows:

Table 1:Frequency of Relation SubTypes in the ACE training
and devtest corpus.

Type SubType Training Devtest
ROLE General-Staff 550 149

Management 677 122
Citizen-Of 127 24
Founder 11 5
Owner 146 15
Affiliate-Partner 111 15
Member 460 145
Client 67 13
Other 15 7

PART Part-Of 490 103
Subsidiary 85 19
Other 2 1

AT Located 975 192
Based-In 187 64
Residence 154 54

SOC Other-Professional 195 25
Other-Personal 60 10
Parent 68 24
Spouse 21 4
Associate 49 7
Other-Relative 23 10
Sibling 7 4
GrandParent 6 1

NEAR Relative-Location 88 32

JS(q, r) =
1

2
[DKL(q‖p̄) + DKL(r‖p̄)] (4)

DKL(q‖p̄) =
∑

y

q(y)(log
q(y)

p̄(y)
) (5)

DKL(r‖p̄) =
∑

y

r(y)(log
r(y)

p̄(y)
) (6)

wherep̄ = 1
2(q + r) andJS(q, r) represents JS

divergence between probability distribution q(y) and
r(y) (y is a random variable), which is defined in
terms of KL-divergence.

3.3 Experimental Evaluation

3.3.1 Experiment Setup

We evaluated this label propagation based rela-
tion extraction method for relation subtype detection
and characterization task on the official ACE 2003
corpus. It contains 519 files from sources including
broadcast, newswire, and newspaper. We dealt with
only intra-sentence explicit relations and assumed
that all entities have been detected beforehand in the
EDT sub-task of ACE. Table 1 lists the types and
subtypes of relations for the ACE Relation Detection
and Characterization (RDC) task, along with their
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Table 2:The Performance of SVM and LP algorithm with different sizes of labeled data for relation detection on relation subtypes.
The LP algorithm is run with two similarity measures: cosine similarity and JS divergence.

SVM LPCosine LPJS

Percentage P R F P R F P R F
1% 35.9 32.6 34.4 58.3 56.1 57.1 58.5 58.7 58.5

10% 51.3 41.5 45.9 64.5 57.5 60.7 64.6 62.0 63.2
25% 67.1 52.9 59.1 68.7 59.0 63.4 68.9 63.7 66.1
50% 74.0 57.8 64.9 69.9 61.8 65.6 70.1 64.1 66.9
75% 77.6 59.4 67.2 71.8 63.4 67.3 72.4 64.8 68.3

100% 79.8 62.9 70.3 73.9 66.9 70.2 74.2 68.2 71.1

Table 3:The performance of SVM and LP algorithm with different sizes of labeled data for relation detection and classification
on relation subtypes. The LP algorithm is run with two similarity measures: cosine similarity and JS divergence.

SVM LPCosine LPJS

Percentage P R F P R F P R F
1% 31.6 26.1 28.6 39.6 37.5 38.5 40.1 38.0 39.0

10% 39.1 32.7 35.6 45.9 39.6 42.5 46.2 41.6 43.7
25% 49.8 35.0 41.1 51.0 44.5 47.3 52.3 46.0 48.9
50% 52.5 41.3 46.2 54.1 48.6 51.2 54.9 50.8 52.7
75% 58.7 46.7 52.0 56.0 52.0 53.9 56.1 52.6 54.3

100% 60.8 48.9 54.2 56.2 52.3 54.1 56.3 52.9 54.6

frequency of occurrence in the ACE training set and
test set. We constructed labeled data by randomly
sampling some examples from ACE training data
and additionally sampling examples with the same
size from the pool of unrelated entity pairs for the
“NONE” class. We used the remaining examples in
the ACE training set and the whole ACE test set as
unlabeled data. The testing set was used for final
evaluation.

3.3.2 LP vs. SVM

Support Vector Machine (SVM) is a state of the
art technique for relation extraction task. In this ex-
periment, we use LIBSVM tool3 with linear kernel
function.

For comparison between SVM and LP, we ran
SVM and LP with different sizes of labeled data
and evaluate their performance on unlabeled data
using precision, recall and F-measure. Firstly, we
ran SVM or LP algorithm to detect possible rela-
tions from unlabeled data. If an entity mention pair
is classified not to the “NONE” class but to the other
24 subtype classes, then it has a relation. Then con-
struct labeled datasets with different sampling set
sizel, including1%×Ntrain, 10%×Ntrain, 25%×
Ntrain, 50%×Ntrain, 75%×Ntrain, 100%×Ntrain

(Ntrain is the number of examples in the ACE train-

3LIBSV M : a library for support vector machines. Soft-
ware available at http://www.csie.ntu.edu.tw/∼cjlin/libsvm.

ing set). If any relation subtype was absent from the
sampled labeled set, we redid the sampling. For each
size, we performed 20 trials and calculated average
scores on test set over these 20 random trials.

Table 2 reports the performance of SVM and LP
with different sizes of labled data for relation detec-
tion task. We used the same sampled labeled data in
LP as the training data for SVM model.

From Table 2, we see that both LPCosine and
LPJS achieve higherRecallthan SVM. Specifically,
with small labeled dataset (percentage of labeled
data≤ 25%), the performance improvement by LP
is significant. When the percentage of labeled data
increases from50% to 100%, LPCosine is still com-
parable to SVM inF-measurewhile LPJS achieves
slightly betterF-measurethan SVM. On the other
hand, LPJS consistently outperforms LPCosine.

Table 3 reports the performance of relation clas-
sification by using SVM and LP with different sizes
of labled data. And the performance describes the
average values ofPrecision, RecallandF-measure
over major relation subtypes.

From Table 3, we see that LPCosine and LPJS out-
perform SVM byF-measurein almost all settings
of labeled data, which is due to the increase ofRe-
call. With smaller labeled dataset (percentage of la-
beled data≤ 50%), the gap between LP and SVM
is larger. When the percentage of labeled data in-
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Figure 1: Comparison of the performance of SVM
and LP with different sizes of labeled data

creases from75% to 100%, the performance of LP
algorithm is still comparable to SVM. On the other
hand, the LP algorithm based on JS divergence con-
sistently outperforms the LP algorithm based on Co-
sine similarity. Figure 1 visualizes the accuracy of
three algorithms.

As shown in Figure 1, the gap between SVM
curve and LPJS curves is large when the percentage
of labeled data is relatively low.

3.3.3 An Example

In Figure 2, we selected 25 instances in train-
ing set and 15 instances in test set from the ACE
corpus,which covered five relation types. Using
Isomap tool 4, the 40 instances with 229 feature di-
mensions are visualized in a two-dimensional space
as the figure. We randomly sampled only one la-
beled example for each relation type from the 25
training examples as labeled data. Figure 2(a) and
2(b) show the initial state and ground truth result re-
spectively. Figure 2(c) reports the classification re-
sult on test set by SVM (accuracy = 4

15 = 26.7%),
and Figure 2(d) gives the classification result on both
training set and test set by LP (accuracy = 11

15 =
73.3%).

Comparing Figure 2(b) and Figure 2(c), we find
that many examples are misclassified from class¦
to other class symbols. This may be caused that
SVMs method ignores the intrinsic structure in data.
For Figure 2(d), the labels of unlabeled examples
are determined not only by nearby labeled examples,
but also by nearby unlabeled examples, so using LP

4The tool is available at http://isomap.stanford.edu/.
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Figure 2: An example: comparison of SVM and LP
algorithm on a data set from ACE corpus.◦ and
4 denote the unlabeled examples in training set and
test set respectively, and other symbols (¦,×, 2, +
and5) represent the labeled examples with respec-
tive relation type sampled from training set.

strategy achieves better performance than the local
consistency based SVM strategy when the size of
labeled data is quite small.

3.3.4 LP vs. Bootstrapping

In (Zhang, 2004), they perform relation classifi-
cation on ACE corpus with bootstrapping on top of
SVM. To compare with their proposed Bootstrapped
SVM algorithm, we use the same feature stream set-
ting and randomly selected 100 instances from the
training data as the size of initial labeled data.

Table 4 lists the performance of the bootstrapped
SVM method from (Zhang, 2004) and LP method
with 100 seed labeled examples for relation type
classification task. We can see that LP algorithm
outperforms the bootstrapped SVM algorithm on
four relation type classification tasks, and perform
comparably on the relation ”SOC” classification
task.

4 Discussion

In this paper,we have investigated a graph-based
semi-supervised learning approach for relation ex-
traction problem. Experimental results showed that
the LP algorithm performs better than SVM and
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Table 4: Comparison of the performance of the bootstrapped SVM method from (Zhang, 2004) and LP method with 100 seed
labeled examples for relation type classification task.

Bootstrapping LPJS

Relation type P R F P R F
ROLE 78.5 69.7 73.8 81.0 74.7 77.7
PART 65.6 34.1 44.9 70.1 41.6 52.2
AT 61.0 84.8 70.9 74.2 79.1 76.6
SOC 47.0 57.4 51.7 45.0 59.1 51.0
NEAR − − − 13.7 12.5 13.0

Table 5:Comparison of the performance of previous methods on ACE RDC task.
Relation Dectection Relation Detection and Classification

on Types on Subtypes
Method P R F P R F P R F

Culotta and Soresen (2004)Tree kernel based 81.2 51.8 63.2 67.1 35.0 45.8 - - -
Kambhatla (2004) Feature based, Maxi-

mum Entropy
- - - - - - 63.5 45.2 52.8

Zhou et al. (2005) Feature based,SVM 84.8 66.7 74.7 77.2 60.7 68.0 63.1 49.5 55.5

bootstrapping. We have some findings from these
results:

The LP based relation extraction method can use
the graph structure to smooth the labels of unlabeled
examples. Therefore, the labels of unlabeled exam-
ples are determined not only by the nearby labeled
examples, but also by nearby unlabeled examples.
For supervised methods, e.g., SVM, very few la-
beled examples are not enough to reveal the struc-
ture of each class. Therefore they can not perform
well, since the classification hyperplane was learned
only from few labeled data and the coherent struc-
ture in unlabeled data was not explored when in-
ferring class boundary. Hence, our LP-based semi-
supervised method achieves better performance on
both relation detection and classification when only
few labeled data is available. Bootstrapping

Currently most of works on the RDC task of
ACE focused on supervised learning methods Cu-
lotta and Soresen (2004; Kambhatla (2004; Zhou
et al. (2005). Table 5 lists a comparison on re-
lation detection and classification of these meth-
ods. Zhou et al. (2005) reported the best result as
63.1%/49.5%/55.5% inPrecision/Recall/F-measure
on the relation subtype classification using feature
based method, which outperforms tree kernel based
method by Culotta and Soresen (2004). Compared
with Zhou et al.’s method, the performance of LP al-
gorithm is slightly lower. It may be due to that we
used a much simpler feature set. Our work in this

paper focuses on the investigation of a graph based
semi-supervised learning algorithm for relation ex-
traction. In the future, we would like to use more ef-
fective feature sets Zhou et al. (2005) or kernel based
similarity measure with LP for relation extraction.

5 Conclusion and Future Work

This paper approaches the problem of semi-
supervised relation extraction using a label propaga-
tion algorithm. It represents labeled and unlabeled
examples and their distances as the nodes and the
weights of edges of a graph, and tries to obtain a
labeling function to satisfy two constraints: 1) it
should be fixed on the labeled nodes, 2) it should
be smooth on the whole graph. In the classifica-
tion process, the labels of unlabeled examples are
determined not only by nearby labeled examples,
but also by nearby unlabeled examples. Our exper-
imental results demonstrated that this graph based
algorithm can achieve better performance than SVM
when only very few labeled examples are available,
and also outperforms the bootstrapping method for
relation extraction task.

In the future, we would like to investigate more
effective feature set or use feature selection to im-
prove the performance of this graph-based semi-
supervised relation extraction method.
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Abstract 

This paper proposes a generic mathemati-
cal formalism for the combination of 
various structures: strings, trees, dags, 
graphs and products of them. The polari-
zation of the objects of the elementary 
structures controls the saturation of the 
final structure. This formalism is both 
elementary and powerful enough to 
strongly simulate many grammar formal-
isms, such as rewriting systems, depend-
ency grammars, TAG, HPSG and LFG. 

1 Introduction 

Our aim is to propose a generic formalism as 
simple as possible but powerful enough to write 
real grammars for natural language and to handle 
complex linguistic structures. The formalism we 
propose can strongly simulate most rule-based 
formalisms used in linguistics.1 

Language utterances are both strongly struc-
tured and compositional and the structure of a 
complex utterance can be obtained by combining 
elementary structures associated to the elemen-
tary units of language.2 The most simple way to 
                                                        
1 A formalism A strongly simulates a formalism B if A has a 
better strong generative capacity than B, that is, if A can 
generate the languages generated by B with the same struc-
tures associated to the utterances of these languages. 
2 Whether a natural language utterance contains one or 
several structures depends on our point of view. On the one 
hand it is clear that a sentence can receive various structures 
according to the semantic, syntactic, morphological or 
phonological point of view. On the other hand these differ-
ent structures are not independent from each other and even 
if they are not structures on the same objects (for instance 
the semantic units do not correspond one to one to the syn-
tactic units, that is the words) there are links between the 
different objects of these structures. In other words, consid-
ering separately the different simple structures of the sen-
tence does not take into account the whole structure of the 
sentence, because we lost the interrelation between struc-
tures of different levels.  

combine two structures A and B is unification, 
that is, to build a new structure C by partially 
superimposing A and B and identifying a part of 
the objects of A with those of B. This idea recalls 
an old idea, used by Jespersen (1924), Tesnière 
(1934) or Ajduckiewicz (1935): the sentence is 
like a molecule whose words are atoms, each 
word bearing a valence (a linguistic term explic-
itly borrowed from chemistry) that forces or al-
lows it to meet some other words. Nevertheless, 
unification grammars cannot directly take into 
account the fact that some linguistic units are 
unsaturated in a sense that they must absolutely 
combine with other structures to form a stable 
unit. Saturation is ensured by additional mecha-
nisms, such as the distinction of terminal and 
non-terminal symbols in rewriting systems or by 
requiring some features to have an empty list as a 
value in HPSG.  

This paper presents a new family of formal-
isms, Polarized Unification Grammars (PUGs). 
PUGs extend Unification Grammars with an 
explicit control of the saturation of structures by 
attributing a polarity to each object. Using polari-
ties allows integrating the treatment of saturation 
in the formalism of the rules. Thus the processing 
of saturation will pilot the combination of struc-
tures during the generation processing. Some 
polarities are neutral, others are not, but a final 
structure must be completely neutral. Two non-
neutral objects can unify (that is, identify) and 
form a neutral object (that is, neutralizing each 
other). Proper unification holds no equivalent. 

Polarization takes its source in categorial 
grammar and subsequent works on resource-
sensitive logic (see Lambek’s, Girard’s or van 
Benthem’s works). Nasr (1995) is among the first 
to introduce a rule-based formalism using an 
explicit polarization of structures. Duchier & 
Thater (1999) propose a formalism for tree de-
scription where they put forward the notion of 
polarity (and they uses the terms of polarity and 
neutralization). Perrier (2000) is probably the 
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first to develop a linguistic formalism entirely 
based on these ideas, the Interaction Grammar. 

PUG is both an elementary formalism (struc-
tures simply combine by identifying objects) and 
a powerful formalism, equivalent to Turing ma-
chines and capable of handling strings, trees, 
dags, n-graphs and products of such structures 
(such as ordered trees).3  But, above all, PUG is a 
well-adapted formalism for writing grammars 
and it is capable of strongly simulating many 
classic formalisms. 

Part 2 presents the general framework of PUG 
and its system of polarities. Part 3 proposes sev-
eral examples of PUG and the translation in PUG 
of rewriting grammars, TAG, HPSG and LFG. 
We hope that these translations shed light on 
some common features of these formalisms. 

2 Polarities and unification 
2.1 Polarized Unification Grammars 

Polarized Unification Grammars generate sets of 
finite structures. A structure is based on objects. 
For instance, for a (directed) graph, objects are 
nodes and edges. These two types of objects are 
linked, giving us the proper structure: if X is the 
set of nodes and U, the set of edges, the graph is 
defined by two maps π1 and π2 from U into X 
which associate an edge with its source and its 
target. 

Our structures are polarized, that is, objects 
are associated to polarities. The set P of polarities 
is provided with an operation noted “.” and called 
product. The product is commutative and gener-
ally associative; (P, . ) is called the system of 
polarities. A non-empty strict subset N of P con-
tains the neutral polarities. A polarized structure 
is neutral if all its polarities are neutral. 

Structures are defined on a collection of ob-
jects of various types (syntactic nodes, semantic 
nodes, syntactic edges …) and a collection of 
maps: structural maps linking objects to objects 
(such as source and target for edges), label maps 
linking objects to labels and polarity maps link-
ing objects to polarities. 

Structures combine by unification. The unifi-
cation of two structures A and B gives a new 
structure A⊕B obtained by “pasting” together 
these structures and identifying a part of the ob-
jects of the first structure with objects of the sec-
ond structure. When two polarized structures A 

                                                        
3 A dag is a directed acyclic graph. An n-graph is a graph 
whose nodes are edges of a (n-1)-graph and a 1-graph is a 
standard graph. 

and B are unified, the polarity of an object of 
A⊕B obtained by identifying two objects of A 
and B is the product of their polarities; if the two 
objects bear the same map, these maps must be 
identified and their values, unified. (For instance 
identifying two edges forces us to identify their 
sources and targets.) 

A Polarized Unification Grammar (PUG) is 
defined by a finite family T of types of objects, a 
set of maps attached to the objects of each type, a 
system (P,.) of polarities, a subset N of P of neu-
tral polarities, and a finite subset of elementary 
polarized structures, whose objects are described 
by T; one elementary structure is marked as the 
initial one and must be used exactly once. The 
structures generated by the grammar are the neu-
tral structures obtained by combining the initial 
structure and a finite number of elementary struc-
tures. In the derivation process, elementary struc-
tures combine successively, each new elementary 
structure combining with at least one object of 
the previous result; this ensures that the derived 
structure is continuous. Polarities are only neces-
sary to control the saturation and are not consid-
ered when the strong generative capacity of the 
grammar is estimated. Polarities belong to the 
declarative part of the grammar, but they rather 
play a role in the processing of the grammar. 

2.2 The system of polarities 

In this paper we will use the system of polarities 
P = {■,□,–,+,■} (which are called like this: ■ = 
black = saturated, + = positive, – = negative, □ = 
white = obligatory context and ■ = grey 
= absolutely neutral), with N = {■,■}, and a 
product defined by the following array (where ⊥ 
represents the impossibility to combine). Note 
that ■ is the neutral element of the product. The 
symbol – can be interpreted as a need and + as 
the corresponding resource. 

 . ■ □ – + ■ 
■ ■ □ – + ■ 
□ □ □ – + ■ 
– – – ⊥ ■ ⊥ 
+ + + ■ ⊥ ⊥ 
■ ■ ■ ⊥ ⊥ ⊥ 

The system {□,■} is used by Nasr (1995), 
while the system {■,■,–,+}, noted {=,↔,←,→}, 
is considered by Bonfante et al. (2004), who 
show advantages of negative and positive polari-
ties for prefiltration in parsing (a set of structures 
bearing negative and positive polarities can only 
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be reduced into a neutral structure if the sum of 
negative polarities of each object type is equal 
the sum of positive polarities). 

The system (P, . ) we have presented is 
commutative and associative. Commutativity 
implies that the combination of two structures is 
not procedurally oriented (and we can begin a 
derivation by any elementary structure, provided 
we use only once the initial structure). 
Associativity implies that the combination of 
structures is unordered: if an object B must 
combine with A and C, there is no precedence 
order between the combination of A and B and 
the one of B and C, that is, A⊕(B⊕C) = 
(A⊕B)⊕C. If we leave polarities aside, our formalism is 
trivially monotonic: the combination of two 
structures A and B by a PUG gives us a structure 
A⊕B that contains A and B as substructures. We 
can add a (partial) order on P in order to make 
the formalism monotonic.4 Let ≤ be this order. In 
order to give us a monotonic formalism, ≤ must 
verify the following monotonicity property: 
∀x,y∈P x.y ≥ x. This provides us with the follow-
ing order: ■ < □ < +/– < ■. A PUG built with an 
ordered system of polarities (P, . ,≤) verifying the 
monotonicity property is monotonic. Monotonic-
ity implies good computational properties; for 
instance it allows translating the parsing with 
PUG into a problem of constraint resolution 
(Duchier & Thater, 1999). 

3 Examples of PUGs 
3.1 Tree grammars 

The first tree grammars belonging to the para-
digm of PUGs was proposed by Nasr 1995. The 
following grammar G1 allows generating all fi-
nite trees (a tree is a connected directed graph 
such that every node except one is the target of at 
most one edge); objects are nodes and edges; the 
initial structure (the box on the left) is reduced to 
a black node; the grammar has only one other 
elementary structure, which is composed of a 
black edge linking a white node to a black node. 
Each white node must unify with a black node in 
order to be neutralized and each black node can 
unify with whatever number of white nodes. It 
can easily be verified that the structures gener-
ated by the grammar are trees, because every 
node has one and only one governor, except the 
node introduced by the initial structure, which is 
the root of the tree. 

 
                                                        
4 I was suggested this idea by Guy Perrier. 

 
 
 
 
 
G1           G2       

The grammar G1 does not control the number 
of dependents of nodes. A grammar like G2 al-
lows controlling the valence of each node, but it 
does not ensure that generated structures are 
trees, because two white nodes can unify and a 
node can have more than one governor.5 The 
grammar G3 solves the problem. In fact, G3 can 
be viewed as the superimposition of G1 and G2. 
Indeed, if P0 = {□,■}, P1 = P0×P0 = 
{(□,□),(□,■),(■,□),(■,■)} is equivalent to {□,+,–
,■}. The first polarity controls the tree structure 
as G1 does, while the second polarity controls the 
valence as G2 does. 

 
 
 

 

     G3 

With the same principles, one can build a de-
pendency grammar generating the syntactic de-
pendency trees of a fragment of natural language. 
Grammar G4, directly inspired from Nasr 1995, 
proposes a fragment of grammar for English 
generating the syntactic tree of Peter eats red 
beans. Nodes of this grammar are labeled by two 
label maps, /cat/ and /lex/.  Note  that  the  root of 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
G4 (Dependency grammar for English) 

                                                        
5 Nasr 1995 proposes such a grammar in order to generate 
trees. He uses an external requirement, which forces, when  
two structures are combined, the root of one to combine 
with a node of the other one. 

subj dobj 

cat: V 
lex: eat 

cat: V 

cat: N 

cat: Adj 
lex: red cat: N cat: N 

cat: N 
lex: Peter 

mod 

cat: N 
lex: beans 
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a b c 

the elementary structure of an adjective is a white 
node, allowing an unlimited number of such 
structures to adjoin to a noun. 

3.2 Rewriting systems and ordered trees 

PUG can simulate any rewriting system and have 
the weak generative capacity of Turing machines. 
We follow ideas developed by Burroni 1993 or 
Dymetman 1999, themselves following van 
Kampen 1933’s ideas. 

A sequence abc is represented by a string of 
labeled edges a, b and c: 

 
 

Intuitively, edges are intervals and nodes model 
their extremities. This is the simplest way to 
model linear order and precedence rules: X pre-
cedes Y iff the end of X is the beginning of Y. 

The initial category S of the grammar gives us 
the initial structure: 
 

A terminal symbol a corresponds to a positive 
edge: 
 

A rewriting rule ABC → DE gives us the ele-
mentary structure: 

 
 

 
 

 
This elementary structure is a “cell” whose 

upper frontier is a string of positive edges corre-
sponding to the left part of the rule, while the 
lower frontier is a string of negative edges corre-
sponding to the right part of the rule. Each posi-
tive edge must unify with a negative edge and 
vice versa, in order to give a black edge. Nodes 
are grey (= absolutely neutral) and their unifica-
tion is entirely driven by the unification of edges.  

Cells will unify with each other to give a final 
structure representing the derivation structure of 
a sequence, which is the lower edge of this struc-
ture. The next figure shows the derivation struc-
ture of the sequence Peter eats red beans with a 
standard phrase structure grammar, which can be 
reconstructed by the reader. In such a representa-
tion, edges represent phrases and correspond to 
intervals in the cutting of the sequence, while 
nodes are bounds of these intervals. 

 
 
 

 
 
 
 
 
 
 

 

For a context-free rewriting system, the gram-
mar generates the derivation tree, which can be 
represented in a more traditional way by adding 
the branches of the tree (giving us a 2-graph). 
 

 
 
 

 
Let us recall that a derivation tree for a context-
free grammar is an ordered tree. An ordered tree 
combines two structures on the same set of 
nodes: a structure of tree and a precedence rela-
tion on the node of the tree. Here the precedence 
relation is explicitly represented (a “node” of the 
tree precedes another “node” if the target of the 
first one is the source of the second one). It is not 
possible, with a PUG, to generate the derivation 
tree, including the precedence relation, in a sim-
pler way.6 Note that the usual representation of 
ordered trees (where the precedence relation is 
not explicit, but only deductible from the planar-
ity of the representation) is very misleading from 
the computational viewpoint. When they calcu-
late the precedence relation, parsers (of the CKY 
type for instance) in fact calculate a data structure 
like the one we present here, where beginnings 
and ends of phrase are explicitly considered as 
objects.  

3.3 TAG (Tree Adjoining Grammar) 

PUG has a clear kinship with TAG, which is the 
first formalism based on combination of struc-
tures to be studied at length. TAGs are generally 
presented as grammars combining (ordered) 
trees. In fact, as a tree grammar, TAG is not 
                                                        
6 The most natural idea would be to encode a rewriting rule 
with a tree of depth 1 and the precedence relation with edges 
from a node to its successor. The difficulty is then to propa-
gate the order relation to the descendants of two sister nodes 
when we apply a rewriting rule by substituting a tree of 
depth 1. The simplest solution is undeniably the one pre-
sented here, consisting to introduce objects representing the 
beginning and the end of phrases (our grey nodes) and to 
indicate the relation between a phrase, its beginning and its 
end by representing the phrase with an edge from the begin-
ning to the end. 
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monotonic and cannot be simulated with PUG. 
As shown by Vijay-Shanker 1992, to obtain a 
monotonic formalism, TAG must be viewed as a 
grammar combining quasi-trees. Intuitively, a 
quasi-tree is a tree whose nodes has been split in 
two parts and have each one an upper part and a 
lower part, between which another quasi-tree can 
be inserted (this is the famous adjoining opera-
tion of TAG). Formally, a quasi-tree is a tree 
whose branches have two types: dependency 
relations and dominance relations (respectively 
noted by plain lines and dotted lines). Two nodes 
linked by a negative dominance relation are po-
tentially the two parts of a same node; only the 
lower part can have dependents. 

The next figures give an α-tree (= to be sub-
stituted) and a β-tree (= to be adjoined) with the 
corresponding PUG structures.7 A substitution 
node (like D↓) gives a negative node, which will 
unify with the root of an α tree. A β-tree gives a 
white root node and a black foot node, which will 
unify with the upper and the lower part of a split 
node. This is why the root and the foot node are 
linked by a positive dominance link, which will 
unify with a negative dominance link connecting 
the two parts of a split node. 

 
 
 
 
 

 
 

 
 

 

 
An α tree and its PUG translation 

 

 

 

 

 

                                                        
7 For sake of simplicity, we leave aside the precedence 
relation on sister nodes. It might be encoded in the same 
way as context-free rewriting systems, by modeling semi-
nodes of TAG trees by edges. It does not pose any problem 
but would make the figures difficult to read. 

 

 

 

 

 

 

 

 
A β tree and its PUG translation 

 
At the end of the derivation, the structure 

must be a tree and all nodes must be recon-
structed: this is why we introduce the next rule, 
which presents a positive dominance link linking 
a node to itself and which will force two semi-
nodes to unify by neutralizing the dominance link 
between them. 

 
 
 
This last rule again shows the advantage of 

PUG: the reunification of nodes, which is proce-
durally ensured in Vijay-Shanker 1992 is given 
here as a declarative rule. 

3.4 HPSG (Head-driven Phrase Structure 
Grammar) 

There are two ways to translate feature structures 
(FSs) into PUG. Clearly atomic values must be 
labels and (embedded) feature structures must be 
nodes, but features can be translated by maps or 
by edges, that is, objects. Encoding features by 
maps ensures to identify them in PUG. Encoding 
them by edges allows us to polarize them and 
control the number of identifications.8 

For the sake of clarification of HSPG struc-
tures, we choose to translate structural features 
such as HDTR and NHDTR, which give the 
phrase structure and which never unify with other 
“features”, by edges and other features by maps 
(which will be represented by hashed arrows). In 
any case, the result looks like a dag whose 
“edges” (true edges and maps) represent features 
and whose nodes represent values (e.g. Kesper & 
Mönnich 2003). We exemplify the translation of 
HPSG in PUG with the schema of combination 

                                                        
8 Perrier 2000 uses a feature-structure based formalism 
where only features are polarized. Although more or less 
equivalent we prefer to polarize the FS themselves, i.e. the 
nodes. 
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of head phrase with a subcategorized sister 
phrase, namely the head-daughter-phrase:9 

HEAD:  1  
SUBCAT:  3 
HDTR: HEAD:  1 
  SUBCAT: 〈  2  〉 ⊕   3 
NHDTR: HEAD:  2 
  SUBCAT : elist 

This FS gives the following structure, where a 
list is represented recursively in two pieces: its 
head (value of H) and its queue (value of Q). 

 
 
 
 
 
 
 
 
 

 
A negative node of this FS can be neutralized 

by the combination with a similar FS represent-
ing a phrase or with a lexical entry. The next 
figure proposes a lexical entry for eat, indicating 
that eat is a V whose SUBCAT list contains two 
phrases headed by an N (for sake of simplicity 
we deal with the subject as a subcategorized 
phrase). 

 
 
 
 
 
 

 

The combination of two head-daughter-
phrases with the lexical entry of eat gives us the 
previous lexicalized rule, equivalent to the rule 
for eat of the dependency grammar G4 (/subj/ is 
the NHDTR of the maximal projection and /obj/ 

                                                        
9 Numbers in boxes are values shared by several features. 
The value of SUBCAT (= SC) is a list (the list of subcatego-
rized phrases). The non-head daughter phrase (NHDTR) has 
a saturated valence and so needs an empty SUBCAT list 
(elist). The subcat list of the head daughter phrase (HDTR) 
is the concatenation, noted ⊕, of two lists: a list with one 
element that is the description of the non-head daughter 
phrase and the SUBCAT list of the whole phrase. The rest 
of the description of this phrase (value of HEAD) is equal to 
the one of the head daughter phrase. 

the NHDTR of the intermediate projection of 
eat). 

 
 
 
 
 
 
 
 
 
 
 

 

Polarization of objects shows exactly what is 
constructed by each rule and what are the re-
quests filled by other rules. Moreover it allows us 
to force SUBCAT lists to be instantiated (and 
therefore allows us to control the saturation of the 
valence), which is ensured in the usual formalism 
of HPSG by a bottom-up procedural presentation. 

3.5 LFG (Lexical Functional Grammar) 
and synchronous grammars 

We propose a translation of LFG into PUG that 
makes LFG appear as a synchronous grammar 
approach (see Shieber & Schabes 1990). LFG 
synchronizes two structures (a phrase structure or 
c-structure and a dependency/functional structure 
or f-structure) and it can be viewed as the syn-
chronization of a phrase structure grammar and a 
dependency grammar.  

Let us consider a first LFG rule and its trans-
lation in PUG: 

[1]   S   → NP  VP 
  ↓ = ↑ SUBJ ↓ = ↑ 

 
 
 
 
 

 
Equations under phrases (in the right side of [1]) 
ensure the synchronization between the objects of 
the c-structure and the f-structure: each phrase is 
synchronized with a “functional” node. Symbols 
↓ and ↑ respectively designate the functional 
node synchronized with the current phrase and 
the one synchronized with the mother phrase 
(here S). Thus the equation ↓=↑ means that the 
current phrase (VP) and its mother (S) are syn-
chronized with the same functional node. The 
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expression ↑ SUBJ designates the functional node 
depending on ↑ by the relation SUBJ. 

In PUG we model the synchronization of the 
phrases and the functional nodes by synchroniza-
tion links (represented by dotted lines with dia-
mond-shaped polarities) (see Bresnan 2000 for 
non-formalized similar representations). The two 
synchronizations ensured by the two constraints 
↓=↑ SUBJ and ↓=↑ of [1], and therefore built by 
this rule, are polarized in black. 

A phrasal rule such as [1] introduces an f-
structure with a totally white polarization. It will 
be neutralized by lexical rules such as [2]: 

[2]   V   → wants 
  ↑ PRED = ‘want 〈SUBJ,VCOMP〉’ 
  ↑ SUBJ = ↑ VCOMP SUBJ 

 
 
 
 
 
 

The feature Pred is interpreted as the labeling of 
the functional node, while the valence 
〈SUBJ,VCOMP〉 gives us two black edges and two 
white nodes. The functional equation ↑SUBJ = 
↑ VCOMP SUBJ introduces a white edge SUBJ 
between the nodes ↑ SUBJ and ↑VCOMP (and is 
therefore to be interpreted very differently from 
the constraints of [1], which introduce black syn-
chronization links.) 

PUG allows to easily split up a rule into more 
elementary rules. For instance, the rule [1] can be 
split up into three rules: a phrase structure rules 
linearizing the daughter phrases and two rules of 
synchronization indicating the functional link 
between a phrase and one of its daughter phrases. 

 
 
 
 
 
 
 
 
 

 
Our decomposition shows that LFG articulated 
two different grammars: a classical phrase struc-
ture generating the c-structure and an interface 
grammar between c- and f-structures (and even a 
third grammar because the f-structure is really 

generated only by the lexical rules). With PUG it 
is easy to join two (or more) grammars: it suf-
fices to add on the objects by both grammars a 
white polarity that will be saturated in the other 
grammar (and vice versa) (Kahane & Lareau 
2005). 

Let us consider another problem, illustrated 
here by the rule for the topicalization of an ob-
ject. The unbounded dependency of the object 
with its functional governor is an undetermined 
path expressed by a regular expression (here 
VCOMP* OBJ; functional uncertainty, Kaplan & 
Zaenen 1989).  

[3]   S'   → NP   S 
  ↓ = ↑ VCOMP* OBJ ↓ = ↑ 

  ↓ = ↑ TOP 

 
 
 
 
 
 

 
The path VCOMP* (represented by a dashed ar-
row) is expanded by the following regular gram-
mar, with two rules, one for the propagation and 
one for the ending. 

 
 
 
 

 
Again the translation into PUG brings to the 

fore some fundamental components of the for-
malism (like synchronization links) and some 
non-explicit mechanisms such as the fact that the 
lexical equation ↑ PRED = ‘want 〈SUBJ,VCOMP〉’ 
introduces both resources (a node ‘want’) and 
needs (its valence). 

4 Conclusion 
The PUG formalism is extremely simple: it only 
imposes that combining two structures involves 
at least the unification of two objects. Forcing or 
forbidding more objects to combine is then en-
tirely controlled by polarization of objects. Po-
larization will thus guide the process of 
combination of elementary structures. In spite of 
its simplicity, the PUG formalism is powerful 
enough to elegantly simulate most of the rule-
based formalisms used in formal linguistics and 
NLP. This sheds new light on these formalisms 
and allows us to bring to the fore the exact nature 
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of the structures they handle and to extract some 
procedural mechanisms hidden by the formalism. 
But above all, the PUG formalism allows us to 
write separately several modules of the grammar 
handling various structures and to put them to-
gether in a same formalism by synchronization of 
the grammars, as we show with our translation of 
LFG. Thus PUGs extend unification grammars 
based on feature structures by allowing a greatest 
diversity of geometric structures and a best con-
trol of resources. Further investigations must 
concern the computational properties of PUGs, 
notably restrictions allowing polynomial time 
parsing. 
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Abstract

This work provides the essential founda-
tions for modular construction of (typed)
unification grammars for natural lan-
guages. Much of the information in such
grammars is encoded in the signature, and
hence the key is facilitating a modularized
development of type signatures. We intro-
duce a definition of signature modules and
show how two modules combine. Our def-
initions are motivated by the actual needs
of grammar developers obtained through a
careful examination of large scale gram-
mars. We show that our definitions meet
these needs by conforming to a detailed set
of desiderata.

1 Introduction

Development of large scale grammars for natural
languages is an active area of research in human
language technology. Such grammars are devel-
oped not only for purposes of theoretical linguis-
tic research, but also for natural language applica-
tions such as machine translation, speech genera-
tion, etc. Wide-coverage grammars are being de-
veloped for various languages (Oepen et al., 2002;
Hinrichs et al., 2004; Bender et al., 2005; King et
al., 2005) in several theoretical frameworks, e.g.,
LFG (Dalrymple, 2001) and HPSG (Pollard and
Sag, 1994).

Grammar development is a complex enterprise:
it is not unusual for a single grammar to be devel-
oped by a team including several linguists, com-
putational linguists and computer scientists. The
scale of grammars is overwhelming: for exam-
ple, the English resource grammar (Copestake
and Flickinger, 2000) includes thousands of types.
This raises problems reminiscent of those encoun-
tered in large-scale software development. Yet
while software engineering provides adequate so-

lutions for the programmer, no grammar develop-
ment environment supports even the most basic
needs, such as grammar modularization, combi-
nation of sub-grammars, separate compilation and
automatic linkage of grammars, information en-
capsulation, etc.

This work provides the essential foundations for
modular construction of signatures in typed unifi-
cation grammars. After a review of some basic
notions and a survey of related work we list a set
of desiderata in section 4, which leads to a defi-
nition of signature modules in section 5. In sec-
tion 6 we show how two modules are combined,
outlining the mathematical properties of the com-
bination (proofs are suppressed for lack of space).
Extending the resulting module to a stand-alone
type signature is the topic of section 7. We con-
clude with suggestions for future research.

2 Type signatures

We assume familiarity with theories of (typed)
unification grammars, as formulated by, e.g., Car-
penter (1992) and Penn (2000). The definitions
in this section set the notation and recall basic no-
tions. For a partial functionF , ‘F (x)↓’ means that
F is defined for the valuex.

Definition 1 Given a partially ordered set〈P,≤〉,
the set ofupper boundsof a subsetS ⊆ P is the
setSu = {y ∈ P | ∀x ∈ S x ≤ y}.

For a given partially ordered set〈P,≤〉, if S ⊆
P has a least element then it is unique.

Definition 2 A partially ordered set〈P,≤〉 is a
bounded complete partial order (BCPO) if for
everyS ⊆ P such thatSu 6= ∅, Su has a least
element, called aleast upper bound (lub).

Definition 3 A type signature is a structure
〈TYPE,⊑, FEAT, Approp〉, where:

1. 〈TYPE,⊑〉 is a finite bounded complete par-
tial order (thetype hierarchy)

145



2. FEAT is a finite set, disjoint fromTYPE.

3. Approp : TYPE×FEAT → TYPE (theappro-
priateness specification) is a partial function
such that for everyF ∈ FEAT:

(a) (Feature Introduction) there exists a
type Intro(F ) ∈ TYPE such that
Approp(Intro(F ), F )↓, and for every
t ∈ TYPE, if Approp(t, F ) ↓, then
Intro(F ) ⊑ t;

(b) (Upward Closure) if Approp(s, F ) ↓
and s ⊑ t, then Approp(t, F ) ↓ and
Approp(s, F ) ⊑ Approp(t, F ).

Notice that every signature has a least type,
since the subsetS = ∅ of TYPE has the non-empty
set of upper bounds,Su = TYPE, which must
have a least element due to bounded completeness.

Definition 4 Let 〈TYPE,⊑〉 be a type hierarchy
and letx, y ∈ TYPE. If x ⊑ y, thenx is a su-
pertype of y and y is a subtype of x. If x ⊑ y,
x 6= y and there is noz such thatx ⊑ z ⊑ y and
z 6= x, y thenx is an immediate supertypeof y
andy is an immediate subtypeof x.

3 Related Work

Several authors address the issue of grammar mod-
ularization in unification formalisms. Moshier
(1997) views HPSG , and in particular its signa-
ture, as a collection of constraints over maps be-
tween sets. This allows the grammar writer to
specify any partial information about the signa-
ture, and provides the needed mathematical and
computational capabilities to integrate the infor-
mation with the rest of the signature. However,
this work does not define modules or module in-
teraction. It does not address several basic issues
such as bounded completeness of the partial or-
der and the feature introduction and upward clo-
sure conditions of the appropriateness specifica-
tion. Furthermore, Moshier (1997) shows how sig-
natures are distributed into components, but not
the conditions they are required to obey in order
to assure the well-definedness of the combination.

Keselj (2001) presents a modular HPSG, where
each module is an ordinary type signature, but
each of the sets FEAT and TYPE is divided into
two disjoint sets of private and public elements. In
this solution, modules do not support specification
of partial information; module combination is not
associative; and the only channel of interaction be-
tween modules is the names of types.

Kaplan et al. (2002) introduce a system de-
signed for building a grammar by both extending
and restricting another grammar. An LFG gram-
mar is presented to the system in a priority-ordered
sequence of files where the grammar can include
only one definition of an item of a given type (e.g.,
rule) with a particular name. Items in a higher pri-
ority file override lower priority items of the same
type with the same name. The override convention
makes it possible to add, delete or modify rules.
However, a basis grammar is needed and when
modifying a rule, the entire rule has to be rewritten
even if the modifications are minor. The only in-
teraction among files in this approach is overriding
of information.

King et al. (2005) augment LFG with a
makeshift signature to allow modular development
of untypedunification grammars. In addition, they
suggest that any development team should agree in
advance on the feature space. This work empha-
sizes the observation that the modularization of the
signature is the key for modular development of
grammars. However, the proposed solution is ad-
hoc and cannot be taken seriously as a concept of
modularization. In particular, the suggestion for
an agreement on the feature space undermines the
essence of modular design.

Several works address the problem of modular-
ity in other, related, formalisms. Candito (1996)
introduces a description language for the trees of
LTAG. Combining two descriptions is done by
conjunction. To constrain undesired combina-
tions, Candito (1996) uses a finite set of names
where each node of a tree description is associ-
ated with a name. The only channel of interac-
tion between two descriptions is the names of the
nodes, which can be used only to allow identifi-
cation but not to prevent it. To overcome these
shortcomings, Crabbé and Duchier (2004) suggest
to replace node naming by colors. Then, when
unifying two trees, the colors can prevent or force
the identification of nodes. Adapting this solution
to type signatures would yield undesired order-
dependence (see below).

4 Desiderata

To better understand the needs of grammar devel-
opers we carefully explored two existing gram-
mars: the LINGO grammar matrix (Bender et al.,
2002), which is a basis grammar for the rapid de-
velopment of cross-linguistically consistent gram-
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mars; and a grammar of a fragment of Modern He-
brew, focusing on inverted constructions (Melnik,
2006). These grammars were chosen since they
are comprehensive enough to reflect the kind of
data large scale grammar encode, but are not too
large to encumber this process. Motivated by these
two grammars, we experimented with ways to di-
vide the signatures of grammars into modules and
with different methods of module interaction. This
process resulted in the following desiderata for a
beneficial solution for signature modularization:

1. The grammar designer should be provided
with as much flexibility as possible. Modules
should not be unnecessarily constrained.

2. Signature modules should provide means
for specifyingpartial information about the
components of a grammar.

3. A good solution should enable one module to
refer to types defined in another. Moreover,
it should enable the designer of moduleMi

to use a type defined inMj without specify-
ing the type explicitly. Rather, some of the
attributes of the type can be (partially) speci-
fied, e.g., its immediate subtypes or its appro-
priateness conditions.

4. While modules can specify partial informa-
tion, it must be possible to deterministically
extend a module (which can be the result of
the combination of several modules) into a
full type signature.

5. Signature combination must be associative
and commutative: the order in which mod-
ules are combined must not affect the result.

The solution we propose below satisfies these re-
quirements.1

5 Partially specified signatures

We definepartially specified signatures (PSSs),
also referred to asmodulesbelow, which are struc-
tures containing partial information about a sig-
nature: part of the subsumption relation and part
of the appropriateness specification. We assume
enumerable, disjoint sets TYPE of types and FEAT

of features, over which signatures are defined.
We begin, however, by definingpartially labeled
graphs, of which PSSs are a special case.

1The examples in the paper are inspired by actual gram-
mars but are obviously much simplified.

Definition 5 A partially labeled graph (PLG)
over TYPE and FEAT is a finite, directed labeled
graphS = 〈Q, T,�, Ap〉, where:

1. Q is a finite, nonempty set of nodes, disjoint
from TYPE andFEAT.

2. T : Q → TYPE is a partial function, marking
some of the nodes with types.

3. �⊆ Q ×Q is a relation specifying (immedi-
ate) subsumption.

4. Ap ⊆ Q× FEAT ×Q is a relation specifying
appropriateness.

Definition 6 A partially specified signa-
ture (PSS) over TYPE and FEAT is a PLG
S = 〈Q, T,�, Ap〉, where:

1. T is one to one.

2. ‘�’ is antireflexive; its reflexive-transitive

closure, denoted ‘
∗

�’, is antisymmetric.

3. (a) (Relaxed Upward Closure) for all
q1, q

′

1, q2 ∈ Q and F ∈ FEAT, if

(q1, F, q2) ∈ Ap andq1

∗

� q′1, then there

existsq′2 ∈ Q such thatq2

∗

� q′2 and
(q′1, F, q′2) ∈ Ap; and

(b) (Maximality) for allq1, q2 ∈ Q andF ∈
FEAT, if (q1, F, q2) ∈ Ap then for all

q′2 ∈ Q such thatq′2
∗

� q2 andq2 6= q′2,
(q1, F, q′2) /∈ Ap.

A PSS is a finite directed graph whose nodes
denote types and whose edges denote the sub-
sumption and appropriateness relations. Nodes
can bemarkedby types through the functionT ,
but can also beanonymous(unmarked). Anony-
mous nodes facilitate reference, in one module, to
types that are defined in another module.T is one-
to-one since we assume that two marked nodes de-
note different types.

The ‘�’ relation specifies an immediate sub-
sumption order over the nodes, with the intention
that this order hold later for the types denoted by

nodes. This is why ‘
∗

�’ is required to be a partial
order. The type hierarchy of a type signature is a
BCPO, but current approaches (Copestake, 2002)
relax this requirement to allow more flexibility in
grammar design. PSS subsumption is also a par-
tial order but not necessarily a bounded complete
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one. After all modules are combined, the resulting
subsumption relation will be extended to a BCPO
(see section 7), but any intermediate result can be a
general partial order. Relaxing the BCPO require-
ment also helps guaranteeing the associativity of
module combination.

Consider now the appropriateness relation. In
contrast to type signatures,Ap is not required
to be a function. Rather, it is a relation which
may specifyseveralappropriate nodes for the val-
ues of a featureF at a nodeq. The intention is
that the eventual value ofApprop(T (q), F ) be the
lub of the types of all those nodesq′ such that
Ap(q, F, q′). This relaxation allows more ways for
modules to interact. We do restrict theAp relation,
however. Condition 3a enforces a relaxed version
of upward closure. Condition 3b disallows redun-
dant appropriateness arcs: if two nodes are ap-
propriate for the same node and feature, then they
should not be related by subsumption. The feature
introduction condition of type signatures is not en-
forced by PSSs. This, again, results in more flex-
ibility for the grammar designer; the condition is
restored after all modules combine, see section 7.

Example 1 A simple PSSS1 is depicted in Fig-
ure 1, where solid arrows represent the ‘�’ (sub-
sumption) relation and dashed arrows, labeled by
features, theAp relation. S1 stipulates two sub-
types ofcat, n and v, with a common subtype,
gerund. The featureAGR is appropriate for all
three categories, with distinct (but anonymous)
values forApprop(n, AGR) andApprop(v, AGR).
Approp(gerund, AGR) will eventually be the lub
of Approp(n, AGR) and Approp(v, AGR), hence
the multiple outgoingAGR arcs fromgerund.

Observe that inS1, ‘�’ is not a BCPO,Ap is
not a function and the feature introduction condi-
tion does not hold.

gerund

n v

cat agr

AGR

AGR

AGR

AGR

Figure 1: A partially specified signature,S1

We impose an additional restriction on PSSs:
a PSS iswell-formedif any two different anony-
mous nodes aredistinguishable, i.e., if each node

is unique with respect to the information it en-
codes. If two nodes are indistinguishable then one
of them can be removed without affecting the in-
formation encoded by the PSS. The existence of
indistinguishable nodes in a PSS unnecessarily in-
creases its size, resulting in inefficient processing.

Given a PSSS, it can becompactedinto a PSS,
compact(S), by unifying all the indistinguishable
nodes inS. compact(S) encodes the same infor-
mation asS but does not include indistinguish-
able nodes. Two nodes, only one of which is
anonymous, can still be otherwise indistinguish-
able. Such nodes will, eventually, be coalesced,
but only after all modules are combined (to ensure
the associativity of module combination). The de-
tailed computation of the compacted PSS is sup-
pressed for lack of space.

Example 2 Let S2 be the PSS of Figure 2.S2 in-
cludes two pairs of indistinguishable nodes:q2, q4

andq6, q7. The compacted PSS ofS2 is depicted in
Figure 3. All nodes incompact(S2) are pairwise
distinguishable.

q6 q7

b

q8

q2 q3 q4 q5

q1

a

F F F
F

Figure 2: A partially specified signature with in-
distinguishable nodes,S2

b

a

F F
F

Figure 3: The compacted partially specified signa-
ture ofS2

Proposition 1 If S is a PSS thencompact(S) is a
well formed PSS.
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6 Module combination

We now describe how to combine modules, an op-
eration we callmergebellow. When two mod-
ules are combined, nodes that are marked by the
same type are coalesced along with their attributes.
Nodes that are marked by different types cannot
be coalesced and must denote different types. The
main complication is caused when twoanonymous
nodes are considered: such nodes are coalesced
only if they are indistinguishable.

The merge of two modules is performed in sev-
eral stages: First, the two graphs are unioned (this
is a simple pointwise union of the coordinates
of the graph, see definition 7). Then the result-
ing graph is compacted, coalescing nodes marked
by the same type as well as indistinguishable
anonymous nodes. However, the resulting graph
does not necessarily maintain the relaxed upward
closure and maximality conditions, and therefore
some modifications are needed. This is done by
Ap-Closure, see definition 8. Finally, the addi-
tion of appropriateness arcs may turn two anony-
mous distinguishable nodes into indistinguishable
ones and therefore another compactness operation
is needed (definition 9).

Definition 7 Let S1 = 〈Q1, T1,�1, Ap1〉, S2 =
〈Q2, T2,�2, Ap2〉 be two PLGssuch thatQ1 ∩
Q2 = ∅. Theunion of S1 andS2, denotedS1∪S2,
is the PLGS = 〈Q1 ∪ Q2, T1 ∪ T2,�1 ∪ �2,
Ap1 ∪Ap2〉.

Definition 8 Let S = 〈Q, T,�, Ap〉 be a PLG.
The Ap-Closure of S, denotedApCl(S), is the
PLG 〈Q, T,�, Ap′′〉 where:

• Ap′ = {(q1, F, q2) | q1, q2 ∈ Q and there

exists q′1 ∈ Q such that q′1
∗

� q1 and
(q′1, F, q2) ∈ Ap}

• Ap′′ = {(q1, F, q2) ∈ Ap′ | for all q′2 ∈ Q,

such thatq2

∗

� q′2 andq2 6= q′2, (q1, F, q′2) /∈
Ap′}

Ap-Closureadds to a PLG the arcs required for
it to maintain the relaxed upward closure and max-
imality conditions. First, arcs are added (Ap′) to
maintain upward closure (to create the relations
between elements separated between the two mod-
ules and related by mutual elements). Then, re-
dundant arcs are removed to maintain the maxi-
mality condition (the removed arcs may be added
by Ap′ but may also exist inAp). Notice that

Ap ⊆ Ap′ since for all (q1, F, q2) ∈ Ap, by

choosingq′1 = q1 it follows that q′1 = q1

∗

� q1

and (q′1, F, q2) = (q1, F, q2) ∈ Ap and hence
(q′1, F, q2) = (q1, F, q2) ∈ Ap′.

Two PSSs can be merged only if the result-
ing subsumption relation is indeed a partial order,
where the only obstacle can be the antisymme-
try of the resulting relation. The combination of
the appropriateness relations, in contrast, cannot
cause the merge operation to fail because any vi-
olation of the appropriateness conditions in PSSs
can be deterministically resolved.

Definition 9 Let S1 = 〈Q1, T1,�1, Ap1〉, S2 =
〈Q2, T2,�2, Ap2〉 be two PSSs such thatQ1 ∩
Q2 = ∅. S1, S2 are mergeableif there are no
q1, q2 ∈ Q1 and q3, q4 ∈ Q2 such that the fol-
lowing hold:

1. T1(q1)↓, T1(q2)↓, T2(q3)↓ andT2(q4)↓

2. T1(q1) = T2(q4) andT1(q2) = T2(q3)

3. q1

∗

�1 q2 andq3

∗

�2 q4

If S1 and S2 are mergeable, then theirmerge,
denotedS1⋒S2, iscompact(ApCl(compact(S1∪
S2))).

In the merged module, pairs of nodes marked
by the same type and pairs of indistinguishable
anonymous nodes are coalesced. An anonymous
node cannot be coalesced with a typed node, even
if they are otherwise indistinguishable, since that
will result in an unassociative combination oper-
ation. Anonymous nodes are assigned types only
after all modules combine, see section 7.1.

If a node has multiple outgoingAp-arcs labeled
with the same feature, these arcs are not replaced
by a single arc, even if thelub of the target nodes
exists in the resulting PSS. Again, this is done to
guarantee the associativity of the merge operation.

Example 3 Figure 4 depicts a näıve agreement
module, S5. Combined withS1 of Figure 1,
S1 ⋒ S5 = S5 ⋒ S1 = S6, whereS6 is depicted
in Figure 5. All dashed arrows are labeledAGR,
but these labels are suppressed for readability.

Example 4 Let S7 and S8 be the PSSs depicted
in Figures 6 and 7, respectively. ThenS7 ⋒ S8 =
S8⋒S7 = S9, whereS9 is depicted in Figure 8. By
standard convention,Ap arcs that can be inferred
by upward closure are not depicted.
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n nagr gerund vagr v

agr

Figure 4: Näıve agreement module,S5

gerund

n v vagr nagr

cat agr

Figure 5:S6 = S1 ⋒ S5

Proposition 2 Given two mergeable PSSsS1, S2,
S1 ⋒ S2 is a well formed PSS.

Proposition 3 PSS merge is commutative: for any
two PSSs,S1, S2, S1⋒S2 = S2⋒S1. In particular,
either both are defined or both are undefined.

Proposition 4 PSS merge is associative: for all
S1, S2, S3, (S1 ⋒ S2) ⋒ S3 = S1 ⋒ (S2 ⋒ S3).

7 Extending PSSs to type signatures

When developing large scale grammars, the sig-
nature can be distributed among several modules.
A PSS encodes only partial information and there-
fore is not required to conform with all the con-
straints imposed on ordinary signatures. After all
the modules are combined, however, the PSS must
be extended into a signature. This process is done
in 4 stages, each dealing with one property: 1.
Name resolution: assigning types to anonymous
nodes (section 7.1); 2. DeterminizingAp, convert-
ing it from a relation to a function (section 7.2); 3.
Extending ‘�’ to a BCPO. This is done using the
algorithm of Penn (2000); 4. ExtendingAp to a
full appropriateness specification by enforcing the
feature introduction condition: Again, we use the

person nvagr bool

vagr nagr

agr numNUM

PERSON DEF

Figure 6: An agreement module,S7

first second third + −

sg
person

pl
bool

num

Figure 7: A partially specified signature,S8

first second third + −

person bool

nvagr

vagr nagr sg pl

agr numNUM

DEF

P
E

R
S

O
N

Figure 8:S9 = S7 ⋒ S8

algorithm of Penn (2000).

7.1 Name resolution

By the definition of a well-formed PSS, each
anonymous node is unique with respect to the in-
formation it encodes among the anonymous nodes,
but there may exist amarkednode encoding the
same information. The goal of the name resolution
procedure is to assign a type to every anonymous
node, by coalescing it with a similar marked node,
if one exists. If no such node exists, or if there is
more than one such node, the anonymous node is
given an arbitrary type.

The name resolution algorithm iterates as long
as there are nodes to coalesce. In each iteration,
for each anonymous node the set of its similar
typed nodes is computed. Then, using this compu-
tation, anonymous nodes are coalesced with their
paired similar typed node, if such a node uniquely
exists. After coalescing all such pairs, the result-
ing PSS may be non well-formed and therefore the
PSS is compacted. Compactness can trigger more
pairs that need to be coalesced, and therefore the
above procedure is repeated. When no pairs that
need to be coalesced are left, the remaining anony-
mous nodes are assigned arbitrary names and the
algorithm halts. The detailed algorithm is sup-
pressed for lack of space.
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Example 5 Let S6 be the PSS depicted in Fig-
ure 5. Executing the name resolution algorithm
on this module results in the PSS of Figure 9
(AGR-labels are suppressed for readability.) The
two anonymous nodes inS6 are coalesced with
the nodes markednagr and vagr, as per their
attributes. Cf. Figure 1, in particular how two
anonymous nodes inS1 are assigned types from
S5 (Figure 4).

gerund

n v vagr nagr

cat agr

Figure 9: Name resolution result forS6

7.2 Appropriateness consolidation

For each nodeq, the set of outgoing appropriate-
ness arcs with the same labelF , {(q, F, q′)}, is
replaced by the single arc(q, F, ql), whereql is
marked by thelub of the types of allq′. If no lub
exists, a new node is added and is marked by the
lub. The result is that the appropriateness relation
is a function, and upward closure is preserved; fea-
ture introduction is dealt with separately.

The input to the following procedure is a PSS
whose typing function,T , is total; its output is a
PSS whose typing function,T , is total and whose
appropriateness relation is a function. LetS =
〈Q, T,�, Ap〉 be a PSS. For eachq ∈ Q andF ∈
FEAT, let

target(q, F ) = {q′ | (q, F, q′) ∈ Ap}
sup(q) = {q′ ∈ Q | q′ � q}
sub(q) = {q′ ∈ Q | q � q′}
out(q) = {(F, q′) | (q, F, q′) ∈ Ap

Algorithm 1 Appropriateness consolidation
(S = 〈Q, T,�, Ap〉)

1. Find a nodeq and a featureF for which
|target(q, F )| > 1 and for all q′ ∈ Q such

that q′
∗

� q, |target(q′, F )| ≤ 1. If no such
pair exists, halt.

2. If target(q, F ) has a lub,p, then:

(a) for all q′ ∈ target(q, F ), remove the arc
(q, F, q′) fromAp.

(b) add the arc(q, F, p) to Ap.

(c) for all q′ ∈ Q such thatq
∗

� q′, if
(q′, F, p) /∈ Ap then add(q′, F, p) to
Ap.

(d) go to (1).

3. (a) Add a new node,p, to Q with:

• sup(p) = target(q, F )

• sub(p) = (target(q, F ))u

• out(p) =
⋃

q′∈target(q,F ) out(q′)

(b) Markp with a fresh type fromNAMES.

(c) For all q′ ∈ Q such thatq
∗

� q′, add
(q′, F, p) to Ap.

(d) For all q′ ∈ target(q, F ), remove the
arc (q, F, q′) fromAp.

(e) Add(q, F, p) to Ap.

(f) go to (1).

The order in which nodes are selected in step 1
of the algorithm is from supertypes to subtypes.
This is done to preserve upward closure. In ad-
dition, when replacing a set of outgoing appropri-
ateness arcs with the same labelF , {(q, F, q′)},
by a single arc(q, F, ql), ql is added as an ap-
propriate value forF and all the subtypes ofq.
Again, this is done to preserve upward closure. If
a new node is added (stage 3), then its appropriate
features and values are inherited from its immedi-
ate supertypes. During the iterations of the algo-
rithm, condition 3b (maximality) of the definition
of a PSS may be violated but the resulting graph is
guaranteed to be a PSS.

Example 6 Consider the PSS depicted in Fig-
ure 9. Executing the appropriateness consolida-
tion algorithm on this module results in the module
depicted in Figure 10.AGR-labels are suppressed.

gerund new

n v vagr nagr

cat agr

Figure 10: Appropriateness consolidation result

8 Conclusions

We advocate the use of PSSs as the correct con-
cept of signature modules, supporting interaction
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among grammar modules. Unlike existing ap-
proaches, our solution is formally defined, mathe-
matically proven and can be easily and efficiently
implemented. Module combination is a commuta-
tive and associative operation which meets all the
desiderata listed in section 4.

There is an obvious trade-off between flexibility
and strong typedeness, and our definitions can be
finely tuned to fit various points along this spec-
trum. In this paper we prefer flexibility, follow-
ing Melnik (2005), but future work will investigate
other options.

There are various other directions for future re-
search. First, grammarrules can be distributed
among modules in addition to the signature. The
definition of modules can then be extended to in-
clude also parts of the grammar. Then, various
combination operators can be defined for grammar
modules (cf. Wintner (2002)). We are actively pur-
suing this line of research.

Finally, while this work is mainly theoretical,
it has important practical implications. We would
like to integrate our solutions in an existing envi-
ronment for grammar development. An environ-
ment that supports modular construction of large
scale grammars will greatly contribute to gram-
mar development and will have a significant im-
pact on practical implementations of grammatical
formalisms.
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Abstract

This paper investigates the use of sublexi-
cal units as a solution to handling the com-
plex morphology with productive deriva-
tional processes, in the development of
a lexical functional grammar for Turkish.
Such sublexical units make it possible to
expose the internal structure of words with
multiple derivations to the grammar rules
in a uniform manner. This in turn leads to
more succinct and manageable rules. Fur-
ther, the semantics of the derivations can
also be systematically reflected in a com-
positional way by constructing PRED val-
ues on the fly. We illustrate how we use
sublexical units for handling simple pro-
ductive derivational morphology and more
interesting cases such as causativization,
etc., which change verb valency. Our pri-
ority is to handle several linguistic phe-
nomena in order to observe the effects of
our approach on both the c-structure and
the f-structure representation, and gram-
mar writing, leaving the coverage and
evaluation issues aside for the moment.

1 Introduction

This paper presents highlights of a large scale lex-
ical functional grammar for Turkish that is being
developed in the context of the ParGram project1

In order to incorporate in a manageable way, the
complex morphology and the syntactic relations
mediated by morphological units, and to handle
lexical representations of very productive deriva-
tions, we have opted to develop the grammar using
sublexical units called inflectional groups.

Inflectional groups (IGs hereafter) represent the
inflectional properties of segments of a complex

1http://www2.parc.com/istl/groups/nltt/
pargram/

word structure separated by derivational bound-
aries. An IG is typically larger than a morpheme
but smaller than a word (except when the word has
no derivational morphology in which case the IG
corresponds to the word). It turns out that it is
the IGs that actually define syntactic relations be-
tween words. A grammar for Turkish that is based
on words as units would have to refer to informa-
tion encoded at arbitrary positions in words, mak-
ing the task of the grammar writer much harder.
On the other hand, treating morphemes as units in
the grammar level implies that the grammar will
have to know about morphotactics making either
the morphological analyzer redundant, or repeat-
ing the information in the morphological analyzer
at the grammar level which is not very desirable.
IGs bring a certain form of normalization to the
lexical representation of a language like Turkish,
so that units in which the grammar rules refer to
are simple enough to allow easy access to the in-
formation encoded in complex word structures.

That IGs delineate productive derivational pro-
cesses in words necessitates a mechanism that re-
flects the effect of the derivations to semantic rep-
resentations and valency changes. For instance,
English LFG (Kaplan and Bresnan, 1982) repre-
sents derivations as a part of the lexicon; both
happy and happiness are separately lexicalized.
Lexicalized representations of adjectives such as
easy and easier are related, so that both lexicalized
and phrasal comparatives would have the same
feature structure; easier would have the feature
structure

(1)
�
�����

PRED ‘easy’

ADJUNCT
�
PRED ‘more’

�

DEG-DIM pos
DEGREE comparative

�
�����

Encoding derivations in the lexicon could be ap-
plicable for languages with relatively unproduc-
tive derivational phenomena, but it certainly is not
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possible to represent in the grammar lexicon,2 all
derived forms as lexemes for an agglutinative lan-
guage like Turkish. Thus one needs to incorpo-
rate such derivational processes in a principled
way along with the computation of the effects on
derivations on the representation of the semantic
information.

Lexical functional grammar (LFG) (Kaplan and
Bresnan, 1982) is a theory representing the syn-
tax in two parallel levels: Constituent structures
(c-structures) have the form of context-free phrase
structure trees. Functional structures (f-structures)
are sets of pairs of attributes and values; attributes
may be features, such as tense and gender, or func-
tions, such as subject and object. C-structures de-
fine the syntactic representation and f-structures
define more semantic representation. Therefore
c-structures are more language specific whereas
f-structures of the same phrase for different lan-
guages are expected to be similar to each other.

The remainder of the paper is organized as fol-
lows: Section 2 reviews the related work both on
Turkish, and on issues similar to those addressed
in this paper. Section 3 motivates and presents IGs
while Section 4 explains how they are employed
in a LFG setting. Section 5 summarizes the ar-
chitecture and the current status of the our system.
Finally we give conclusions in Section 6.

2 Related Work

Güngördü and Oflazer (1995) describes a rather
extensive grammar for Turkish using the LFG
formalism. Although this grammar had a good
coverage and handled phenomena such as free-
constituent order, the underlying implementation
was based on pseudo-unification. But most cru-
cially, it employed a rather standard approach to
represent the lexical units: words with multiple
nested derivations were represented with complex
nested feature structures where linguistically rel-
evant information could be embedded at unpre-
dictable depths which made access to them in rules
extremely complex and unwieldy.

Bozşahin (2002) employed morphemes overtly
as lexical units in a CCG framework to account
for a variety of linguistic phenomena in a pro-
totype implementation. The drawback was that
morphotactics was explicitly raised to the level of
the sentence grammar, hence the categorial lexi-
con accounted for both constituent order and the
morpheme order with no distinction. Oflazer’s de-
pendency parser (2003) used IGs as units between
which dependency relations were established. An-
other parser based on IGs is Eryiğit and Oflazer’s

2We use this term to distinguish the lexicon used by the
morphological analyzer.

(2006) statistical dependency parser for Turkish.
Çakıcı (2005), used relations between IG-based
representations encoded within the Turkish Tree-
bank (Oflazer et al., 2003) to automatically induce
a CCG grammar lexicon for Turkish.

In a more general setting, Butt and King (2005)
have handled the morphological causative in Urdu
as a separate node in c-structure rules using LFG’s
restriction operator in semantic construction of
causatives. Their approach is quite similar to ours
yet differs in an important way: the rules explicitly
use morphemes as constituents so it is not clear if
this is just for this case, or all morphology is han-
dled at the syntax level.

3 Inflectional Groups as Sublexical Units

Turkish is an agglutinative language where a se-
quence of inflectional and derivational morphemes
get affixed to a root (Oflazer, 1994). At the syntax
level, the unmarked constituent order is SOV, but
constituent order may vary freely as demanded by
the discourse context. Essentially all constituent
orders are possible, especially at the main sen-
tence level, with very minimal formal constraints.
In written text however, the unmarked order is
dominant at both the main sentence and embedded
clause level.

Turkish morphotactics is quite complicated: a
given word form may involve multiple derivations
and the number of word forms one can generate
from a nominal or verbal root is theoretically in-
finite. Turkish words found in typical text aver-
age about 3-4 morphemes including the stem, with
an average of about 1.23 derivations per word,
but given that certain noninflecting function words
such as conjuctions, determiners, etc. are rather
frequent, this number is rather close to 2 for in-
flecting word classes. Statistics from the Turkish
Treebank indicate that for sentences ranging be-
tween 2 words to 40 words (with an average of
about 8 words), the number of IGs range from 2
to 55 IGs (with an average of 10 IGs per sentence)
(Eryiğit and Oflazer, 2006).

The morphological analysis of a word can be
represented as a sequence of tags corresponding
to the morphemes. In our morphological analyzer
output, the tag ˆDB denotes derivation boundaries
that we also use to define IGs. If we represent the
morphological information in Turkish in the fol-
lowing general form:

root+IG� � �DB+IG� � �DB+� � � � �DB+IG�.
then each IG� denotes the relevant sequence of in-
flectional features including the part-of-speech for
the root (in IG�) and for any of the derived forms.
A given word may have multiple such representa-
tions depending on any morphological ambiguity
brought about by alternative segmentations of the
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Figure 1: Modifier-head relations in the NP eski
kitaplarımdaki hikayeler

word, and by ambiguous interpretations of mor-
phemes.

For instance, the morphological analysis of
the derived modifier cezalandırılacak (lit-
erally, “(the one) that will be given punishment”)
would be :3

ceza(punishment)+Noun+A3sg+Pnon+Nom

ˆDB+Verb+Acquire

ˆDB+Verb+Caus

ˆDB+Verb+Pass+Pos

ˆDB+Adj+FutPart+Pnon

The five IGs in this word are:
1. +Noun+A3sg+Pnon+Nom
2. +Verb+Acquire
3. +Verb+Caus
4. +Verb+Pass+Pos
5. +Adj+FutPart+Pnon

The first IG indicates that the root is a singular
noun with nominative case marker and no posses-
sive marker. The second IG indicates a deriva-
tion into a verb whose semantics is “to acquire”
the preceding noun. The third IG indicates that a
causative verb (equivalent to “to punish” in En-
glish), is derived from the previous verb. The
fourth IG indicates the derivation of a passive verb
with positive polarity from the previous verb. Fi-
nally the last IG represents a derivation into future
participle which will function as a modifier in the
sentence.

The simple phrase eski kitaplarımdaki hikayeler
(the stories in my old books) in Figure 1 will help
clarify how IGs are involved in syntactic relations:
Here, eski (old) modifies kitap (book) and not
hikayeler (stories),4 and the locative phrase eski

3The morphological features other than the obvious part-
of-speech features are: +A3sg: 3sg number-person agree-
ment, +Pnon: no possesive agreement, +Nom: Nominative
case, +Acquire: acquire verb, +Caus: causative verb,
+Pass: passive verb, +FutPart: Derived future participle,
+Pos: Positive Polarity.

4Though looking at just the last POS of the words one
sees an +Adj +Adj +Noun sequence which may imply
that both adjectives modify the noun hikayeler

kitaplarımda (in my old books) modifies hikayeler
with the help of derivational suffix -ki. Morpheme
boundaries are represented by ’+’ sign and mor-
phemes in solid boxes actually define one IG. The
dashed box around solid boxes is for word bound-
ary. As the example indicates, IGs may consist of
one or more morphemes.

Example (2) shows the corresponding f-
structure for this NP. Supporting the dependency
representation in Figure 1, f-structure of adjective
eski is placed as the adjunct of kitaplarımda, at
the innermost level. The semantics of the relative
suffix -ki is shown as ’rel�� OBJ�’ where the f-
structure that represents the NP eski kitaplarımda
is the OBJ of the derived adjective. The new f-
structure with a PRED constructed on the fly, then
modifies the noun hikayeler. The derived adjective
behaves essentially like a lexical adjective. The ef-
fect of using IGs as the representative units can be
explicitly seen in c-structure where each IG cor-
responds to a separate node as in Example (3).5

Here, DS stands for derivational suffix.

(2) �
���������������

PRED ‘hikaye’

ADJUNCT

�
���������

PRED ‘rel�kitap�’

OBJ

�
����

PRED ‘kitap’

ADJUNCT

�
PRED ‘eski’
ATYPE attributive

�

CASE loc, NUM pl

�
����

ATYPE attributive

�
���������

CASE NOM, NUM PL

�
���������������

(3) NP
����

����
AP
����
����

NP
�
��

�
��

AP

A

eski

NP

N

kitaplarımda

DS

ki

NP

N

hikayeler

Figure 2 shows the modifier-head relations for
a more complex example given in Example (4)
where we observe a chain/hierarchy of relations
between IGs

(4) mavi
blue

renkli
color-WITH

elbiselideki
dress-WITH-LOC-REL

kitap
book

5Note that placing the sublexical units of a word in sepa-
rate nodes goes against the Lexical Integrity principle of LFG
(Dalrymple, 2001). The issue is currently being discussed
within the LFG community (T. H. King, personal communi-
cation).
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‘the book on the one with the blue colored
dress’

Figure 2: Syntactic Relations in the NP mavi ren-
kli elbiselideki kitap

Examples (5) and (6) show respectively the con-
stituent structure (c-structure) and the correspond-
ing feature structure (f-structure) for this noun
phrase. Within the tree representation, each IG
corresponds to a separate node. Thus, the LFG
grammar rules constructing the c-structures are
coded using IGs as units of parsing. If an IG con-
tains the root morpheme of a word, then the node
corresponding to that IG is named as one of the
syntactic category symbols. The rest of the IGs
are given the node name DS (to indicate deriva-
tional suffix), no matter what the content of the IG
is.

The semantic representation of derivational suf-
fixes plays an important role in f-structure con-
struction. In almost all cases, each derivation that
is induced by an overt or a covert affix gets a OBJ
feature which is then unified with the f-structure of
the preceding stem already constructed, to obtain
the feature structure of the derived form, with the
PRED of the derived form being constructed on
the fly. A PRED feature thus constructed however
is not meant to necessarily have a precise lexical
semantics. Most derivational suffixes have a con-
sistent (lexical) semantics6, but some don’t, that
is, the precise additional lexical semantics that the
derivational suffix brings in, depends on the stem
it is affixed to. Nevertheless, we represent both
cases in the same manner, leaving the determina-
tion of the precise lexical semantics aside.

If we consider Figure 2 in terms of dependency
relations, the adjective mavi (blue) modifies the
noun renk (color) and then the derivational suf-
fix -li (with) kicks in although the -li is attached
to renk only. Therefore, the semantics of the
phrase should be with(blue color), not blue

with(color). With the approach we take, this
difference can easily be represented in both the f-
structure as in the leftmost branch in Example (5)

6e.g., the “to acquire” example earlier

and the c-structure as in the middle ADJUNCT
f-structure in Example (6). Each DS in c-structure
gives rise to an OBJject in c-structure. More pre-
cisely, a derived phrase is always represented as
a binary tree where the right daughter is always
a DS. In f-structure DS unifies with the mother f-
structure and inserts PRED feature which subcat-
egorizes for a OBJ. The left daughter of the bi-
nary tree is the original form of the phrase that is
derived, and it unifies with the OBJ of the mother
f-structure.

(5)
NP
�
��

�
��

AP
�
��

�
��

NP
�
��

�
��

AP
�
��

�
��

NP
�
��

�
��

AP
�
��

�
��

NP
����

AP

A

mavi

NP

N

renk

DS

li

NP

N

elbise

DS

li

DS

de

DS

ki

NP

N

kitap

4 Inflectional Groups in Practice

We have already seen how the IGs are used to con-
struct on the fly PRED features that reflect the
lexical semantics of the derivation. In this section
we describe how we handle phenomena where the
derivational suffix in question does not explicitly
affect the semantic representation in PRED fea-
ture but determines the semantic role so as to unify
the derived form or its components with the appro-
priate external f-structure.

4.1 Sentential Complements and Adjuncts,
and Relative Clauses

In Turkish, sentential complements and adjuncts
are marked by productive verbal derivations into
nominals (infinitives, participles) or adverbials,
while relative clauses with subject and non-subject
(object or adjunct) gaps are formed by participles
which function as adjectivals modifying a head
noun.

Example (7) shows a simple sentence that will
be used in the following examples.
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(6) �
������������������������������������

PRED ‘kitap’

ADJUNCT

�
������������������������������

PRED ‘rel�zero-deriv�’

OBJ

�
�������������������������

PRED ‘zero-deriv�with�’

OBJ

�
�������������������

PRED ‘with�elbise�’

OBJ

�
��������������

PRED ‘elbise’

ADJUNCT

�
��������

PRED ‘with�renk�’

OBJ

�
���

PRED ‘renk’

ADJUNCT
�

PRED ‘mavi’
�

CASE nom, NUM sg, PERS 3

�
���

ATYPE attributive

�
��������

CASE nom, NUM sg, PERS 3

�
��������������

ATYPE attributive

�
�������������������

CASE loc, NUM sg, PERS 3

�
�������������������������

ATYPE attributive

�
������������������������������

CASE NOM, NUM SG, PERS 3

�
������������������������������������

(7) Kız
Girl-NOM

adamı
man-ACC

aradı.
call-PAST

‘The girl called the man’

In (8), we see a past-participle form heading a
sentential complement functioning as an object for
the verb söyledi (said).

(8) Manav
Grocer-NOM

kızın
girl-GEN

adamı
man-ACC

aradığını
call-PASTPART-ACC

söyledi.
say-PAST

‘The grocer said that the girl called the man’

Once the grammar encounters such a sentential
complement, everything up to the participle IG is
parsed, as a normal sentence and then the partici-
ple IG appends nominal features, e.g., CASE, to
the existing f-structure. The final f-structure is for
a noun phrase, which now is the object of the ma-
trix verb, as shown in Example (9). Since the par-
ticiple IG has the right set of syntactic features of
a noun, no new rules are needed to incorporate the
derived f-structure to the rest of the grammar, that
is, the derived phrase can be used as if it is a sim-
ple NP within the rules. The same mechanism is
used for all kinds of verbal derivations into infini-
tives, adverbial adjuncts, including those deriva-
tions encoded by lexical reduplications identified
by multi-word construct processors.

(9) �
������������������������������

PRED ‘söyle�manav, ara�’

SUBJ

�
PRED ‘manav’
CASE nom, NUM sg, PERS 3

�

OBJ

�
���������������

PRED ‘ara�k�z, adam�’

SUBJ
�

PRED ‘k�z’
CASE gen, NUM sg, PERS 3

�

OBJ
�

PRED ‘adam’
CASE acc, NUM sg, PERS 3

�

CHECK
�

PART pastpart
	

CASE acc, NUM sg, PERS 3, VTYPE main
CLAUSE-TYPE nom

�
���������������

TNS-ASP
�

TENSE past
	

NUM SG, PERS 3, VTYPE MAIN

�
������������������������������

Relative clauses also admit to a similar mech-
anism. Relative clauses in Turkish are gapped
sentences which function as modifiers of nominal
heads. Turkish relative clauses have been previ-
ously studied (Barker et al., 1990; Güngördü and
Engdahl, 1998) and found to pose interesting is-
sues for linguistic and computational modeling.
Our aim here is not to address this problem in its
generality but show with a simple example, how
our treatment of IGs encoding derived forms han-
dle the mechanics of generating f-structures for
such cases.

Kaplan and Zaenen (1988) have suggested a
general approach for handling long distance de-
pendencies. They have extended the LFG notation
and allowed regular expressions in place of sim-
ple attributes within f-structure constraints so that
phenomena requiring infinite disjunctive enumer-
ation can be described with a finite expression. We
basically follow this approach and once we derive
the participle phrase we unify it with the appro-
priate argument of the verb using rules based on
functional uncertainty. Example (10) shows a rel-
ative clause where a participle form is used as a
modifier of a head noun, adam in this case.

(10) Manavın
Grocer-GEN

kızın
girl-GEN

[]�
obj-gap

aradığını
call-PASTPART-ACC

söylediği
say-PASTPART

adam�

man-NOM

‘The man the grocer said the girl called’

This time, the sentence is parsed with a gap with
an appropriate functional uncertainty constraint,
and when the participle IG is encountered the sen-
tence f-structure is derived into an adjective and
the gap in the derived form, the object here, is
then unified with the head word as marked with
co-indexation in Example (11).

The example sentence (10) includes Example
(8) as a relative clause with the object extracted,
hence the similarity in the f-structures can be ob-
served easily. The ADJUNCT in Example (11)
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is almost the same as the whole f-structure of Ex-
ample (9), differing in TNS-ASP and ADJUNCT-
TYPE features. At the grammar level, both the rel-
ative clause and the complete sentence is parsed
with the same core sentence rule. To understand
whether the core sentence is a complete sentence
or not, the finite verb requirement is checked.
Since the requirement is met by the existence of
TENSE feature, Example (8) is parsed as a com-
plete sentence. Indeed the relative clause also in-
cludes temporal information as ‘pastpart’ value of
PART feature, of the ADJUNCT f-structure, de-
noting a past event.

(11) �
�������������������������������������

PRED ’adam’ �

ADJUNCT

�
�������������������������������

PRED ‘söyle�manav, ara�’

SUBJ
�

PRED ‘manav’
CASE gen, NUM sg, PERS 3

	

OBJ

�
��������������

PRED ‘ara�k�z, adam�’

SUBJ

�
PRED ‘k�z’
CASE gen, NUM sg, PERS 3

	

OBJ
�

PRED ‘adam’
�
�

CHECK
�

PART pastpart
�

CASE acc, NUM sg, PERS 3, VTYPE main
CLAUSE-TYPE nom

�
��������������

CHECK
�

PART pastpart
�

NUM sg, PERS 3, VTYPE main
ADJUNCT-TYPE relative

�
�������������������������������

CASE NOM, NUM SG, PERS 3

�
�������������������������������������

4.2 Causatives

Turkish verbal morphotactics allows the produc-
tion multiply causative forms for verbs.7 Such
verb formations are also treated as verbal deriva-
tions and hence define IGs. For instance, the mor-
phological analysis for the verb aradı (s/he called)
is

ara+Verb+Pos+Past+A3sg

and for its causative arattı (s/he made (someone
else) call) the analysis is

ara+VerbˆDB+Verb+Caus+Pos+Past+A3sg.
In Example (12) we see a sentence and its
causative form followed by respective f-structures
for these sentences in Examples (13) and (14). The
detailed morphological analyses of the verbs are
given to emphasize the morphosyntactic relation
between the bare and causatived versions of the
verb.

(12) a. Kız
Girl-NOM

adamı
man-ACC

aradı.
call-PAST

‘The girl called the man’
b. Manav

Grocer-NOM
kıza
girl-DAT

adamı
man-ACC

arattı.
call-CAUS-PAST

‘The grocer made the girl call the man’

7Passive, reflexive, reciprocal/collective verb formations
are also handled in morphology, though the latter two are not
productive due to semantic constraints. On the other hand
it is possible for a verb to have multiple causative markers,
though in practice 2-3 seem to be the maximum observed.

(13) �
�������������

PRED ‘ara�k�z, adam�’

SUBJ
�

PRED ‘k�z’
CASE nom, NUM sg, PERS 3

�

OBJ
�

PRED ‘adam’
CASE acc, NUM sg, PERS 3

�

TNS-ASP
�

TENSE past
	

NUM SG, PERS 3,VTYPE MAIN

�
�������������

(14) �
������������������������������

PRED ‘caus�manav, k�z, adam, ara�k�z , adam��’

SUBJ
�

PRED ‘manav’
	

OBJ
�

PRED ‘k�z’
	
�

OBJTH
�

PRED ‘adam’
	
�

XCOMP

�
���������

PRED ‘ara�k�z , adam�’

SUBJ
�

PRED ‘k�z’
CASE dat, NUM sg, PERS 3

�
�

OBJ
�

PRED ‘adam’
CASE acc, NUM sg, PERS 3

�
�

VTYPE main

�
���������

TNS-ASP
�

TENSE past
	

NUM SG, PERS 3,VTYPE MAIN

�
������������������������������

The end-result of processing an IG which has a
verb with a causative form is to create a larger f-
structure whose PRED feature has a SUBJect, an
OBJect and a XCOMPlement. The f-structure of
the first verb is the complement in the f-structure
of the causative form, that is, its whole structure is
embedded into the mother f-structure in an encap-
sulated way. The object of the causative (causee
- that who is caused by the causer – the sub-
ject of the causative verb) is unified with the sub-
ject the inner f-structure. If the original verb is
transitive, the object of the original verb is fur-
ther unified with the OBJTH of the causative
verb. All of grammatical functions in the inner
f-structure, namely XCOMP, are also represented
in the mother f-structure and are placed as argu-
ments of caus since the flat representation is re-
quired to enable free word order in sentence level.

Though not explicit in the sample f-structures,
the important part is unifying the object and for-
mer subject with appropriate case markers, since
the functions of the phrases in the sentence are de-
cided with the help of case markers due to free
word order. If the verb that is causativized sub-
categorizes for an direct object in accusative case,
after causative formation, the new object unified
with the subject of the causativized verb should
be in dative case (Example 15). But if the verb
in question subcategorizes for a dative or an abla-
tive oblique object, then this object will be trans-
formed into a direct object in accusative case after
causativization (Example 16). That is, the causati-
vation will select the case of the object of the
causative verb, so as not to “interfere” with the ob-
ject of the verb that is causativized. In causativized
intransitive verbs the causative object is always in
accusative case.
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(15) a. adam
man-NOM

kadını
woman-ACC

aradı.
call-PAST

‘the man called the woman’
b. adama

man-DAT
kadını
woman-ACC

arattı.
call-CAUS-PAST

‘(s/he) made the man call the woman’

(16) a. adam
man-NOM

kadına
woman-DAT

vurdu.
hit-PAST

‘the man hit the woman’
b. adamı

man-ACC
kadına
woman-DAT

vurdurdu.
hit-CAUS-PAST

‘(s/he) made the man hit the woman’

All other derivational phenomena can be solved in
a similar way by establishing the appropriate se-
mantic representation for the derived IG and its
effect on the semantic representation.

5 Current Implementation

The implementation of the Turkish LFG gram-
mar is based on the Xerox Linguistic Environ-
ment (XLE) (Maxwell III and Kaplan, 1996), a
grammar development platform that facilitates the
integration of various modules, such as tokeniz-
ers, finite-state morphological analyzers, and lex-
icons. We have integrated into XLE, a series of
finite state transducers for morphological analysis
and for multi-word processing for handling lexi-
calized, semi-lexicalized collocations and a lim-
ited form of non-lexicalized collocations.

The finite state modules provide the rele-
vant ambiguous morphological interpretations for
words and their split into IGs, but do not provide
syntactically relevant semantic and subcategoriza-
tion information for root words. Such information
is encoded in a lexicon of root words on the gram-
mar side.

The grammar developed so far addresses many
important aspects ranging from free constituent or-
der, subject and non-subject extractions, all kinds
of subordinate clauses mediated by derivational
morphology and has a very wide coverage NP sub-
grammar. As we have also emphasized earlier, the
actual grammar rules are oblivious to the source of
the IGs, so that the same rule handles an adjective
- noun phrase regardless of whether the adjective
is lexical or a derived one. So all such relations in
Figure 28 are handled with the same phrase struc-
ture rule.

The grammar is however lacking the treatment
of certain interesting features of Turkish such as
suspended affixation (Kabak, 2007) in which the
inflectional features of the last element in a co-
ordination have a phrasal scope, that is, all other

8Except the last one which requires some additional treat-
ment with respect to definiteness.

coordinated constituents have certain default fea-
tures which are then “overridden” by the features
of the last element in the coordination. A very sim-
ple case of such suspended affixation is exempli-
fied in (17a) and (17b). Note that although this is
not due to derivational morphology that we have
emphasized in the previous examples, it is due to
a more general nature of morphology in which af-
fixes may have phrasal scopes.

(17) a. kız
girl

adam
man-NOM

ve
and

kadını
woman-ACC

aradı.
call-PAST

‘the girl called the man and the woman’
b. kız

girl
[adam
[man

ve
and

kadın]-ı
woman]-ACC

aradı.
call-PAST

‘the girl called the man and the woman’

Suspended affixation is an example of a phe-
nomenon that IGs do not seem directly suitable
for. The unification of the coordinated IGs have to
be done in a way in which non-default features of
the final constituent is percolated to the upper node
in the tree as is usually done with phrase struc-
ture grammars but unlike coordination is handled
in such grammars.

6 Conclusions and Future Work

This paper has described the highlights of our
work on developing a LFG grammar for Turkish
employing sublexical constituents, that we have
called inflectional groups. Such a sublexical con-
stituent choice has enabled us to handle the very
productive derivational morphology in Turkish in
a rather principled way and has made the grammar
more or less oblivious to morphological complex-
ity.

Our current and future work involves extending
the coverage of the grammar and lexicon as we
have so far included in the grammar lexicon only
a small subset of the root lexicon of the morpho-
logical analyzer, annotated with the semantic and
subcategorization features relevant to the linguis-
tic phenomena that we have handled. We also in-
tend to use the Turkish Treebank (Oflazer et al.,
2003), as a resource to extract statistical informa-
tion along the lines of Frank et al. (2003) and
O’Donovan et al. (2005).
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Abstract

A grammatical method of combining two
kinds of speech repair cues is presented.
One cue, prosodic disjuncture, is detected
by a decision tree-based ensemble clas-
sifier that uses acoustic cues to identify
where normal prosody seems to be inter-
rupted (Lickley, 1996). The other cue,
syntactic parallelism, codifies the expec-
tation that repairs continue a syntactic
category that was left unfinished in the
reparandum (Levelt, 1983). The two cues
are combined in a Treebank PCFG whose
states are split using a few simple tree
transformations. Parsing performance on
the Switchboard and Fisher corpora sug-
gests that these two cues help to locate
speech repairs in a synergistic way.

1 Introduction

Speech repairs, as in example (1), are one kind
of disfluent element that complicates any sort
of syntax-sensitive processing of conversational
speech.

(1) and [ the first kind of invasion of] the first
type of privacy seemed invaded to me

The problem is that the bracketedreparan-
dumregion (following the terminology of Shriberg
(1994)) is approximately repeated as the speaker

The authors are very grateful for Eugene Charniak’s help
adapting his parser. We also thank the Center for Language
and Speech processing at Johns Hopkins for hosting the sum-
mer workshop where much of this work was done. This
material is based upon work supported by the National Sci-
ence Foundation (NSF) under Grant No. 0121285. Any opin-
ions, findings and conclusions or recommendations expressed
in this material are those of the authors and do not necessarily
reflect the views of the NSF.

“repairs” what he or she has already uttered.
This extra material renders the entire utterance
ungrammatical—the string would not be gener-
ated by a correct grammar of fluent English. In
particular, attractive tools for natural language
understanding systems, such as Treebank gram-
mars for written corpora, naturally lack appropri-
ate rules for analyzing these constructions.

One possible response to this mismatch be-
tween grammatical resources and the brute facts
of disfluent speech is to make one look more
like the other, for the purpose of parsing. In
this separate-processing approach, reparanda are
located through a variety of acoustic, lexical or
string-based techniques, then excised before sub-
mission to a parser (Stolcke and Shriberg, 1996;
Heeman and Allen, 1999; Spilker et al., 2000;
Johnson and Charniak, 2004). The resulting
parse tree then has the reparandum re-attached in
a standardized way (Charniak and Johnson, 2001).

An alternative strategy, adopted in this paper, is
to use the same grammar to model fluent speech,
disfluent speech, and their interleaving.

Such an integrated approach can use syntac-
tic properties of the reparandum itself. For in-
stance, in example (1) the reparandum is an
unfinished noun phrase, the repair afinished
noun phrase. This sort of phrasal correspon-
dence, while not absolute, is strong in conver-
sational speech, and cannot be exploited on the
separate-processing approach. Section 3 applies
metarules (Weischedel and Sondheimer, 1983;
McKelvie, 1998a; Core and Schubert, 1999) in
recognizing these correspondences using standard
context-free grammars.

At the same time as it defies parsing, con-
versational speech offers the possibility of lever-
aging prosodic cues to speech repairs. Sec-
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Figure 1: The pause between twoor s and the glottalization at the end of the first makes it easy for a
listener to identify the repair.

tion 2 describes a classifier that learns to label
prosodic breaks suggesting upcoming disfluency.
These marks can be propagated up into parse
trees and used in a probabilistic context-free gram-
mar (PCFG) whose states are systematically split
to encode the additional information.

Section 4 reports results on Switchboard (God-
frey et al., 1992) and Fisher EARS RT04F data,
suggesting these two features can bring about in-
dependent improvements in speech repair detec-
tion. Section 5 suggests underlying linguistic and
statistical reasons for these improvements. Sec-
tion 6 compares the proposed grammatical method
to other related work, including state of the art
separate-processing approaches. Section 7 con-
cludes by indicating a way that string- and tree-
based approaches to reparandum identification
could be combined.

2 Prosodic disjuncture

Everyday experience as well as acoustic anal-
ysis suggests that the syntactic interruption in
speech repairs is typically accompanied by a
change in prosody (Nakatani and Hirschberg,
1994; Shriberg, 1994). For instance, the spectro-
gram corresponding to example (2), shown in Fig-
ure 1,

(2) the jehovah’s witness or [ or ] mormons or
someone

reveals a noticeable pause between the occurrence
of the twoors, and an unexpected glottalization at
the end of the first one. Both kinds of cues have
been advanced as explanations for human listen-
ers’ ability to identify the reparandum even before
the repair occurs.

Retaining only the second explanation, Lickley
(1996) proposes that there is no “edit signal” per se
but that repair is cued by the absence of smooth

formant transitions and lack of normal juncture
phenomena.

One way to capture this notion in the syntax
is to enhance the input with a special disjunc-
ture symbol. This symbol can then be propa-
gated in the grammar, as illustrated in Figure 2.
This work uses a suffix+̃ to encode the percep-
tion of abnormal prosody after a word, along with
phrasal-BRK tags to decorate the path upwards to
reparandum constituents labeled EDITED. Such

NP

NP EDITED CC NP

NP NNP CC−BRK or NNPS

DT NNP POS witness

the jehovah ’s

or~+ mormons

Figure 2: PropagatingBRK, the evidence of dis-
fluent juncture, from acoustics to syntax.

disjuncture symbols are identified in the ToBI la-
beling scheme as break indices (Price et al., 1991;
Silverman et al., 1992).

The availability of a corpus annotated with
ToBI labels makes it possible to design a break
index classifier via supervised training. The cor-
pus is a subset of the Switchboard corpus, con-
sisting of sixty-four telephone conversations man-
ually annotated by an experienced linguist accord-
ing to a simplified ToBI labeling scheme (Osten-
dorf et al., 2001). In ToBI, degree of disjuncture
is indicated by integer values from0 to 4, where
a value of0 corresponds to clitic and4 to a major
phrase break. In addition, a suffixp denotes per-
ceptually disfluent events reflecting, for example,
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hesitation or planning. In conversational speech
the intermediate levels occur infrequently and the
break indices can be broadly categorized into three
groups, namely,1, 4 and p as in Wong et al.
(2005).

A classifier was developed to predict three
break indices at each word boundary based on
variations in pitch, duration and energy asso-
ciated with word, syllable or sub-syllabic con-
stituents (Shriberg et al., 2005; Sonmez et al.,
1998). To compute these features, phone-level
time-alignments were obtained from an automatic
speech recognition system. The duration of these
phonological constituents were derived from the
ASR alignment, while energy and pitch were com-
puted every 10ms withsnack, a public-domain
sound toolkit (Sjlander, 2001). The duration, en-
ergy, and pitch were post-processed according to
stylization procedures outlined in Sonmez et al.
(1998) and normalized to account for variability
across speakers.

Since the input vector can have missing val-
ues such as the absence of pitch during unvoiced
sound, only decision tree based classifiers were
investigated. Decision trees can handle missing
features gracefully. By choosing different com-
binations of splitting and stopping criteria, an
ensemble of decision trees was built using the
publicly-available IND package (Buntine, 1992).
These individual classifiers were then combined
into ensemble-based classifiers.

Several classifiers were investigated for detect-
ing break indices. On ten-fold cross-validation,
a bagging-based classifier (Breiman, 1996) pre-
dicted prosodic breaks with an accuracy of 83.12%
while chance was 67.66%. This compares favor-
ably with the performance of the supervised classi-
fiers on a similar task in Wong et al. (2005). Ran-
dom forests and hidden Markov models provide
marginal improvements at considerable computa-
tional cost (Harper et al., 2005).

For speech repair, the focus is on detecting dis-
fluent breaks. The precision and recall trade-off
on its detection can be adjusted using a thresh-
old on the posterior probability of predicting “p”,
as shown in Figure 3.

In essence, the large number of acoustic and
prosodic features related to disfluency are encoded
via the ToBI label ‘p’, and provided as additional
observations to the PCFG. This is unlike previous
work on incorporating prosodic information (Gre-
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Figure 3: DET curve for detecting disfluent breaks
from acoustics.

gory et al., 2004; Lease et al., 2005; Kahn et al.,
2005) as described further in Section 6.

3 Syntactic parallelism

The other striking property of speech repairs is
their parallel character: subsequent repair regions
‘line up’ with preceding reparandum regions. This
property can be harnessed to better estimate the
length of the reparandum by considering paral-
lelism from the perspective of syntax. For in-
stance, in Figure 4(a) the unfinished reparandum
noun phrase is repaired by another noun phrase –
the syntactic categories are parallel.

3.1 Levelt’s WFR and Conjunction

The idea that the reparandum is syntactically par-
allel to the repair can be traced back to Levelt
(1983). Examining a corpus of Dutch picture de-
scriptions, Levelt proposes a bi-conditional well-
formedness rule for repairs (WFR) that relates the
structure of repairs to the structure of conjunc-
tions. The WFR conceptualizes repairs as the con-
junction of an unfinished reparandum string (α)
with a properly finished repair (γ). Its original
formulation, repeated here, ignores optional inter-
regna like “er” or “I mean.”

Well-formedness rule for repairs (WFR) A re-
pair 〈αγ〉 is well-formed if and only if there
is a stringβ such that the string〈αβ and∗ γ〉
is well-formed, whereβ is a completion of
the constituent directly dominating the last
element ofα. (and is to be deleted if that
last element is itself a sentence connective)

In other words, the stringα is a prefix of a phrase
whose completion,β—if it were present—would
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render the whole phraseαβ grammatically con-
joinable with the repairγ. In example (1)α is the
string ‘the first kind of invasion of’,γ is ‘the first
type of privacy’ andβ is probably the single word
‘privacy.’

This kind of conjoinability typically requires
the syntactic categories of the conjuncts to be the
same (Chomsky, 1957, 36). That is, a rule schema
such as (2) where X is a syntactic category, is pre-
ferred over one where X is not constrained to be
the same on either side of the conjunction.

X → X Conj X (2)

If, as schema (2) suggests, conjunction does fa-
vor like-categories, and, as Levelt suggests, well-
formed repairs are conjoinable with finished ver-
sions of their reparanda, then the syntactic cate-
gories of repairs ought to match the syntactic cat-
egories of (finished versions of) reparanda.

3.2 A WFR for grammars

Levelt’s WFR imposes two requirements on a
grammar

• distinguishing a separate category of ‘unfin-
ished’ phrases

• identifying a syntactic category for reparanda

Both requirements can be met by adapting Tree-
bank grammars to mirror the analysis of McK-
elvie1 (1998a; 1998b). McKelvie derives phrase
structure rules for speech repairs from fluent rules
by adding a new feature calledabort that can
take values true and false. For a given gram-
mar rule of the form

A → B C

a metarule creates other rules of the form

A [abort = Q]→
B [abort = false] C [abort = Q]

whereQ is a propositional variable. These rules
say, in effect, that the constituent A is aborted just
in case the last daughter C is aborted. Rules that
don’t involve a constant value forQ ensure that the
same value appears on parents and children. The

1McKelvie’s metarule approach declaratively expresses
Hindle’s (1983) Stack Editor and Category Copy Editor rules.
This classic work effectively states the WFR as a program for
the Fidditch deterministic parser.

WFR is then implemented by rule schemas such
as (3)

X → X [abort = true] (AFF) X (3)

that permit the optional interregnum AFF to con-
join an unfinished X-phrase (the reparandum) with
a finished X-phrase (the repair) that comes after it.

3.3 A WFR for Treebanks

McKelvie’s formulation of Levelt’s WFR can be
applied to Treebanks by systematically recoding
the annotations to indicate which phrases are un-
finished and to distinguish matching from non-
matching repairs.

3.3.1 Unfinished phrases

Some Treebanks already mark unfinished
phrases. For instance, the Penn Treebank pol-
icy (Marcus et al., 1993; Marcus et al., 1994) is
to annotate the lowest node that is unfinished with
an-UNF tag as in Figure 4(a).

It is straightforward to propagate this mark up-
wards in the tree from wherever it is annotated to
the nearest enclosing EDITED node, just as-BRK
is propagated upwards from disjuncture marks on
individual words. This percolation simulates the
action of McKelvie’s [abort = true]. The re-
sulting PCFG is one in which distributions on
phrase structure rules with ‘missing’ daughters are
segregated from distributions on ‘complete’ rules.

3.4 Reparanda categories

The other key element of Levelt’s WFR is the
idea of conjunction of elements that are in some
sense the same. In the Penn Treebank annota-
tion scheme, reparanda always receive the label
EDITED. This means that the syntactic category
of the reparandum is hidden from any rule which
could favor matching it with that of the repair.
Adding an additional mark on this EDITED node
(a kind of daughter annotation) rectifies the situ-
ation, as depicted in Figure 4(b), which adds the
notation-childNP to a tree in which the unfin-
ished tags have been propagated upwards. This
allows a Treebank PCFG to represent the general-
ization that speech repairs tend to respect syntactic
category.

4 Results

Three kinds of experiments examined the effec-
tiveness of syntactic and prosodic indicators of

164



S

CC EDITED NP

and NP NP

NP PP

DT JJ NN IN NP

the first kind of NP PP−UNF
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(a) The lowest unfinished node is given.

S

CC EDITED−childNP NP

and NP−UNF NP

NP PP−UNF

DT JJ NN IN NP−UNF

the first kind of NP PP−UNF

NN IN

invasion of

DT JJ NN

the first type

(b) -UNF propagated, daughter-annotated Switchboard tree

Figure 4: Input (a) and output (b) of tree transformations.

speech repairs. The first two use the CYK algo-
rithm to find the most likely parse tree on a gram-
mar read-off from example trees annotated as in
Figures 2 and 4. The third experiment measures
the benefit from syntactic indicators alone in Char-
niak’s lexicalized parser (Charniak, 2000). The ta-
bles in subsections 4.1, 4.2, and 4.3 summarize
the accuracy of output parse trees on two mea-
sures. One is the standard Parseval F-measure,
which tracks the precision and recall for all labeled
constituents as compared to a gold-standard parse.
The other measure, EDIT-finding F, restricts con-
sideration to just constituents that are reparanda. It
measures the per-word performance identifying a
word as dominated by EDITED or not. As in pre-
vious studies, reference transcripts were used in all
cases. A check(

√
) indicates an experiment where

prosodic breaks where automatically inferred by
the classifier described in section 2, whereas in the
(×) rows no prosodic information was used.

4.1 CYK on Fisher

Table 1 summarizes the accuracy of a stan-
dard CYK parser on the newly-treebanked
Fisher corpus (LDC2005E15) of phone conver-
sations, collected as part of the DARPA EARS
program. The parser was trained on the entire
Switchboard corpus (ca. 107K utterances) then
tested on the 5368-utterance ‘dev2’ subset of the
Fisher data. This test set was tagged usingMX -

POST(Ratnaparkhi, 1996) which was itself trained
on Switchboard. Finally, as described in section 2
these tags were augmented with a special prosodic
break symbol if the decision tree rated the proba-
bility a ToBI ‘p’ symbol higher than the threshold
value of 0.75.
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none
× 66.54 22.9√

66.08 26.1

daughter annotation
× 66.41 29.4√

65.81 31.6

-UNF propagation
× 67.06 31.5√

66.45 34.8

both
× 69.21 40.2√

67.02 40.6

Table 1: Improvement on Fisher,MXPOSTed tags.

The Fisher results in Table 1 show that syntac-
tic and prosodic indicators provide different kinds
of benefits that combine in an additive way. Pre-
sumably because of state-splitting, improvement
in EDIT-finding comes at the cost of a small decre-
ment in overall parsing performance.

4.2 CYK on Switchboard

Table 2 presents the results of similar experi-
ments on the Switchboard corpus following the
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train/dev/test partition of Charniak and Johnson
(2001). In these experiments, the parser was given
correct part-of-speech tags as input.
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none
× 70.92 18.2√

69.98 22.5

daughter annotation
× 71.13 25.0√

70.06 25.5

-UNF propagation
× 71.71 31.1√

70.36 30.0

both
× 71.16 41.7√

71.05 36.2

Table 2: Improvement on Switchboard, gold tags.

The Switchboard results demonstrate independent
improvement from the syntactic annotations. The
prosodic annotation helps on its own and in com-
bination with the daughter annotation that imple-
ments Levelt’s WFR.

4.3 Lexicalized parser

Finally, Table 3 reports the performance of Char-
niak’s non-reranking, lexicalized parser on the
Switchboard corpus, using the same test/dev/train
partition.

Annotation Parseval F EDIT F

baseline 83.86 57.6
daughter annotation 80.85 67.2
-UNF propagation 81.68 64.7
both 80.16 70.0
flattened EDITED 82.13 64.4

Table 3: Charniak as an improved EDIT-finder.

Since Charniak’s parser does its own tagging,
this experiment did not examine the utility of
prosodic disjuncture marks. However, the com-
bination of daughter annotation and-UNF prop-
agation does lead to a better grammar-based
reparandum-finder than parsers trained on flat-
tened EDITED regions. More broadly, the re-
sults suggest that Levelt’s WFR is synergistic with
the kind of head-to-head lexical dependencies that
Charniak’s parser uses.

5 Discussion

The pattern of improvement in tables 1, 2, and
3 from noneor baselinerows where no syntac-

tic parallelism or break index information is used,
to subsequent rows where it is used, suggest why
these techniques work. Unfinished-category an-
notation improves performance by preventing the
grammar of unfinished constituents from being
polluted by the grammar of finished constituents.
Such purification is independent of the fact that
rules with daughters labeledEDITED-childXP
tend to also mention categories labeled XP fur-
ther to the right (or NP and VP, when XP starts
with S). This preference for syntactic parallelism
can be triggered either by externally-suggested
ToBI break indices or grammar rules annotated
with -UNF. The prediction of a disfluent break
could be further improved by POS features and N-
gram language model scores (Spilker et al., 2001;
Liu, 2004).

6 Related Work

There have been relatively few attempts to harness
prosodic cues in parsing. In a spoken language
system for VERBMOBIL task, Batliner and col-
leagues (2001) utilize prosodic cues to dramati-
cally reduce lexical analyses of disfluencies in a
end-to-end real-time system. They tackle speech
repair by a cascade of two stages – identification of
potential interruption points using prosodic cues
with 90% recall and many false alarms, and the
lexical analyses of their neighborhood. Their ap-
proach, however, does not exploit the synergy be-
tween prosodic and syntactic features in speech re-
pair. In Gregory et al. (2004), over 100 real-valued
acoustic and prosodic features were quantized into
a heuristically selected set of discrete symbols,
which were then treated as pseudo-punctuation in
a PCFG, assuming that prosodic cues function like
punctuation. The resulting grammar suffered from
data sparsity and failed to provide any benefits.
Maximum entropy based models have been more
successful in utilizing prosodic cues. For instance,
in Lease et al. (2005), interruption point probabil-
ities, predicted by prosodic classifiers, were quan-
tized and introduced as features into a speech re-
pair model along with a variety of TAG and PCFG
features. Towards a clearer picture of the inter-
action with syntax and prosody, this work uses
ToBI to capture prosodic cues. Such a method is
analogous to Kahn et al. (2005) but in a genera-
tive framework.

The TAG-based model of Johnson and Charniak
(2004) is a separate-processing approach that rep-
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resents the state of the art in reparandum-finding.
Johnson and Charniak explicitly model the

crossed dependencies between individual words
in the reparandum and repair regions, intersect-
ing this sequence model with a parser-derived lan-
guage model for fluent speech. This second step
improves on Stolcke and Shriberg (1996) and Hee-
man and Allen (1999) and outperforms the specific
grammar-based reparandum-finders tested in sec-
tion 4. However, because of separate-processing
the TAG channel model’s analyses do not reflect
the syntactic structure of the sentence being ana-
lyzed, and thus that particular TAG-based model
cannot make use of properties that depend on the
phrase structure of the reparandum region. This
includes the syntactic category parallelism dis-
cussed in section 3 but also predicate-argument
structure. If edit hypotheses were augmented to
mention particular tree nodes where the reparan-
dum should be attached, such syntactic paral-
lelism constraints could be exploited in the rerank-
ing framework of Johnson et al. (2004).

The approach in section 3 is more closely re-
lated to that of Core and Schubert (1999) who
also use metarules to allow a parser to switch from
speaker to speaker as users interrupt one another.
They describe their metarule facility as a modi-
fication of chart parsing that involves copying of
specific arcs just in case specific conditions arise.
That approach uses a combination of longest-first
heuristics and thresholds rather than a complete
probabilistic model such as a PCFG.

Section 3’s PCFG approach can also be viewed
as a declarative generalization of Roark’s (2004)
EDIT-CHILD function. This function helps an
incremental parser decide upon particular tree-
drawing actions in syntactically-parallel contexts
like speech repairs. Whereas Roark conditions the
expansion of the first constituent of the repair upon
the corresponding first constituent of the reparan-
dum, in the PCFG approach there exists a separate
rule (and thus a separate probability) for each al-
ternative sequence of reparandum constituents.

7 Conclusion

Conventional PCFGs can improve their detection
of speech repairs by incorporating Lickley’s hy-
pothesis about interrupted prosody and by im-
plementing Levelt’s well-formedness rule. These
benefits are additive.

The strengths of these simple tree-based tech-

niques should be combinable with sophisticated
string-based (Johnson and Charniak, 2004; Liu,
2004; Zhang and Weng, 2005) approaches by
applying the methods of Wieling et al. (2005)
for constraining parses by externally-suggested
brackets.
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Abstract

Spoken monologues feature greater sen-
tence length and structural complexity
than do spoken dialogues. To achieve high
parsing performance for spoken mono-
logues, it could prove effective to sim-
plify the structure by dividing a sentence
into suitable language units. This paper
proposes a method for dependency pars-
ing of Japanese monologues based on sen-
tence segmentation. In this method, the
dependency parsing is executed in two
stages: at the clause level and the sen-
tence level. First, the dependencies within
a clause are identified by dividing a sen-
tence into clauses and executing stochastic
dependency parsing for each clause. Next,
the dependencies over clause boundaries
are identified stochastically, and the de-
pendency structure of the entire sentence
is thus completed. An experiment using
a spoken monologue corpus shows this
method to be effective for efficient depen-
dency parsing of Japanese monologue sen-
tences.

1 Introduction

Recently, monologue data such as a lecture and
commentary by a professional have been consid-
ered as human valuable intellectual property and
have gathered attention. In applications, such as
automatic summarization, machine translation and
so on, for using these monologue data as intel-
lectual property effectively and efficiently, it is
necessary not only just to accumulate but also to
structure the monologue data. However, few at-
tempts have been made to parse spoken mono-

logues. Spontaneously spoken monologues in-
clude a lot of grammatically ill-formed linguistic
phenomena such as fillers, hesitations and self-
repairs. In order to robustly deal with their extra-
grammaticality, some techniques for parsing of di-
alogue sentences have been proposed (Core and
Schubert, 1999; Delmonte, 2003; Ohno et al.,
2005b). On the other hand, monologues also have
the characteristic feature that a sentence is gen-
erally longer and structurally more complicated
than a sentence in dialogues which have been dealt
with by the previous researches. Therefore, for
a monologue sentence the parsing time would in-
crease and the parsing accuracy would decrease. It
is thought that more effective, high-performance
spoken monologue parsing could be achieved by
dividing a sentence into suitable language units for
simplicity.

This paper proposes a method for dependency
parsing of monologue sentences based on sen-
tence segmentation. The method executes depen-
dency parsing in two stages: at the clause level
and at the sentence level. First, a dependency rela-
tion from onebunsetsu1 to another within a clause
is identified by dividing a sentence into clauses
based on clause boundary detection and then ex-
ecuting stochastic dependency parsing for each
clause. Next, the dependency structure of the en-
tire sentence is completed by identifying the de-
pendencies over clause boundaries stochastically.
An experiment on monologue dependency pars-
ing showed that the parsing time can be drasti-

1A bunsetsuis the linguistic unit in Japanese that roughly
corresponds to a basic phrase in English. A bunsetsu con-
sists of one independent word and more than zero ancillary
words. A dependencyis a modification relation in which a
dependent bunsetsudepends on ahead bunsetsu. That is, the
dependent bunsetsu and the head bunsetsu work as modifier
and modifyee, respectively.
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Figure 1: Relation between clause boundary and
dependency structure

cally shortened and the parsing accuracy can be
increased.

This paper is organized as follows: The next
section describes a parsing unit of Japanese mono-
logue. Section 3 presents dependency parsing
based on clause boundaries. The parsing experi-
ment and the discussion are reported in Sections
4 and 5, respectively. The related works are de-
scribed in Section 6.

2 Parsing Unit of Japanese Monologues

Our method achieves an efficient parsing by adopt-
ing a shorter unit than a sentence as a parsing unit.
Since the search range of a dependency relation
can be narrowed by dividing a long monologue
sentence into small units, we can expect the pars-
ing time to be shortened.

2.1 Clauses and Dependencies

In Japanese, a clause basically contains one verb
phrase. Therefore, a complex sentence or a com-
pound sentence contains one or more clauses.
Moreover, since a clause constitutes a syntacti-
cally sufficient and semantically meaningful lan-
guage unit, it can be used as an alternative parsing
unit to a sentence.

Our proposed method assumes that a sentence
is a sequence of one or more clauses, and every
bunsetsu in a clause, except the final bunsetsu,
depends on another bunsetsu in the same clause.
As an example, the dependency structure of the
Japanese sentence:

先日総理府が発表いたしました世論調査によ

りますと死刑を支持するという人が八十パーセ

ント近くになっております（The public opinion
poll that the Prime Minister’s Office announced
the other day indicates that the ratio of people
advocating capital punishment is nearly 80%)

is presented in Fig. 1. This sentence consists of
four clauses:

• 先日総理府が発表いたしました (that the
Prime Minister’s Office announced the other
day)

• 世論調査によりますと (The public opinion
poll indicates that)

• 死刑を支持するという (advocating capital
punishment)

• 人が八十パーセント近くになっております
(the ratio of people is nearly 80%)

Each clause forms a dependency structure (solid
arrows in Fig. 1), and a dependency relation from
the final bunsetsu links the clause with another
clause (dotted arrows in Fig. 1).

2.2 Clause Boundary Unit

In adopting a clause as an alternative parsing unit,
it is necessary to divide a monologue sentence
into clauses as the preprocessing for the follow-
ing dependency parsing. However, since some
kinds of clauses are embedded in main clauses,
it is fundamentally difficult to divide a mono-
logue into clauses in one dimension (Kashioka and
Maruyama, 2004).

Therefore, by using a clause boundary anno-
tation program (Maruyama et al., 2004), we ap-
proximately achieve the clause segmentation of
a monologue sentence. This program can iden-
tify units corresponding to clauses by detecting
the end boundaries of clauses. Furthermore, the
program can specify the positions and types of
clause boundaries simply from a local morpho-
logical analysis. That is, for a sentence mor-
phologically analyzed by ChaSen (Matsumoto et
al., 1999), the positions of clause boundaries are
identified and clause boundary labels are inserted
there. There exist 147 labels such as “compound
clause” and “adnominal clause.”2

In our research, we adopt the unit sandwiched
between two clause boundaries detected by clause
boundary analysis, were called theclause bound-
ary unit, as an alternative parsing unit. Here, we
regard the label name provided for the end bound-
ary of a clause boundary unit as that unit’s type.

2The labels include a few other constituents that do not
strictly represent clause boundaries but can be regarded as be-
ing syntactically independent elements, such as “topicalized
element,” “conjunctives,” “interjections,” and so on.
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Table 1: 200 sentences in “Asu-Wo-Yomu”
sentences 200
clause boundary units 951
bunsetsus 2,430
morphemes 6,017
dependencies over clause boundaries 94

2.3 Relation between Clause Boundary Units
and Dependency Structures

To clarify the relation between clause boundary
units and dependency structures, we investigated
the monologue corpus “Asu-Wo-Yomu3.” In the
investigation, we used 200 sentences for which
morphological analysis, bunsetsu segmentation,
clause boundary analysis, and dependency pars-
ing were automatically performed and then modi-
fied by hand. Here, the specification of the parts-
of-speech is in accordance with that of the IPA
parts-of-speech used in the ChaSen morphologi-
cal analyzer (Matsumoto et al., 1999), the rules
of the bunsetsu segmentation with those of CSJ
(Maekawa et al., 2000), the rules of the clause
boundary analysis with those of Maruyama et
al. (Maruyama et al., 2004), and the dependency
grammar with that of the Kyoto Corpus (Kuro-
hashi and Nagao, 1997).

Table 1 shows the results of analyzing the 200
sentences. Among the 1,479 bunsetsus in the dif-
ference set between all bunsetsus (2,430) and the
final bunsetsus (951) of clause boundary units,
only 94 bunsetsus depend on a bunsetsu located
outside the clause boundary unit. This result
means that 93.6% (1,385/1,479) of all dependency
relations are within a clause boundary unit. There-
fore, the results confirmed that the assumption
made by our research is valid to some extent.

3 Dependency Parsing Based on Clause
Boundaries

In accordance with the assumption described in
Section 2, in our method, the transcribed sentence
on which morphological analysis, clause bound-
ary detection, and bunsetsu segmentation are per-
formed is considered the input4. The dependency

3Asu-Wo-Yomu is a collection of transcriptions of a TV
commentary program of the Japan Broadcasting Corporation
(NHK). The commentator speaks on some current social is-
sue for 10 minutes.

4It is difficult to preliminarily divide a monologue into
sentences because there are no clear sentence breaks in mono-
logues. However, since some methods for detecting sentence
boundaries have already been proposed (Huang and Zweig,
2002; Shitaoka et al., 2004), we assume that they can be de-
tected automatically before dependency parsing.

parsing is executed based on the following proce-
dures:

1. Clause-level parsing: The internal depen-
dency relations of clause boundary units are
identified for every clause boundary unit in
one sentence.

2. Sentence-level parsing: The dependency
relations in which the dependent unit is the fi-
nal bunsetsu of the clause boundary units are
identified.

In this paper, we describe a sequence of clause
boundary units in a sentence asC1 · · ·Cm, a se-
quence of bunsetsus in a clause boundary unitCi

as bi
1 · · · bi

ni
, a dependency relation in which the

dependent bunsetsu is a bunsetsubi
k as dep(bi

k),
and a dependency structure of a sentence as
{dep(b1

1), · · · , dep(bm
nm−1)}.

First, our method parses the dependency struc-
ture{dep(bi

1), · · · , dep(bi
ni−1)} within the clause

boundary unit whenever a clause boundary unit
Ci is inputted. Then, it parses the dependency
structure{dep(b1

n1
), · · · , dep(bm−1

nm−1
)}, which is a

set of dependency relations whose dependent bun-
setsu is the final bunsetsu of each clause boundary
unit in the input sentence. In addition, in both of
the above procedures, our method assumes the fol-
lowing three syntactic constraints:

1. No dependency is directed from right to left.

2. Dependencies don’t cross each other.

3. Each bunsetsu, except the final one in a sen-
tence, depends on only one bunsetsu.

These constraints are usually used for Japanese de-
pendency parsing.

3.1 Clause-level Dependency Parsing

Dependency parsing within a clause boundary
unit, when the sequence of bunsetsus in an input
clause boundary unitCi is described asBi (=
bi
1 · · · bi

ni
), identifies the dependency structure

Si (= {dep(bi
1), · · · , dep(bi

ni−1)}), which max-
imizes the conditional probabilityP (Si|Bi). At
this level, the head bunsetsu of the final bunsetsu
bi
ni

of a clause boundary unit is not identified.
Assuming that each dependency is independent

of the others,P (Si|Bi) can be calculated as fol-
lows:

P (Si|Bi) =
ni−1∏

k=1

P (bi
k

rel→ bi
l|Bi), (1)
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whereP (bi
k

rel→ bi
l|Bi) is the probability that a bun-

setsubi
k depends on a bunsetsubi

l when the se-
quence of bunsetsusBi is provided. Unlike the
conventional stochastic sentence-by-sentence de-
pendency parsing method, in our method,Bi is
the sequence of bunsetsus that constitutes not a
sentence but a clause. The structureSi, which
maximizes the conditional probabilityP (Si|Bi),
is regarded as the dependency structure ofBi and
calculated by dynamic programming (DP).

Next, we explain the calculation ofP (bi
k

rel→
bi
l|Bi). First, the basic form of independent words

in a dependent bunsetsu is represented byhi
k, its

parts-of-speechtik, and type of dependencyri
k,

while the basic form of the independent word in
a head bunsetsu is represented byhi

l, and its parts-
of-speechtil. Furthermore, the distance between
bunsetsus is described asdii

kl. Here, if a dependent
bunsetsu has one or more ancillary words, the type
of dependency is the lexicon, part-of-speech and
conjugated form of the rightmost ancillary word,
and if not so, it is the part-of-speech and conju-
gated form of the rightmost morpheme. The type
of dependencyri

k is the same attribute used in
our stochastic method proposed for robust depen-
dency parsing of spoken language dialogue (Ohno
et al., 2005b). Thendii

kl takes 1 or more than 1,
that is, a binary value. Incidentally, the above
attributes are the same as those used by the con-
ventional stochastic dependency parsing methods
(Collins, 1996; Ratnaparkhi, 1997; Fujio and Mat-
sumoto, 1998; Uchimoto et al., 1999; Charniak,
2000; Kudo and Matsumoto, 2002).

Additionally, we prepared the attributeei
l to in-

dicate whetherbi
l is the final bunsetsu of a clause

boundary unit. Since we can consider a clause
boundary unit as a unit corresponding to a sim-
ple sentence, we can treat the final bunsetsu of a
clause boundary unit as a sentence-end bunsetsu.
The attribute that indicates whether a head bun-
setsu is a sentence-end bunsetsu has often been
used in conventional sentence-by-sentence parsing
methods (e.g. Uchimoto et al., 1999).

By using the above attributes, the conditional

probability P (bi
k

rel→ bi
l|Bi) is calculated as fol-

lows:

P (bi
k

rel→ bi
l|Bi) (2)

∼= P (bi
k

rel→ bi
l|hi

k, h
i
l, t

i
k, t

i
l, r

i
k, d

ii
kl, e

i
l)

=
F (bi

k
rel→ bi

l, h
i
k, h

i
l, t

i
k, t

i
l, r

i
k, d

ii
kl, e

i
l)

F (hi
k, h

i
l, t

i
k, t

i
l, r

i
k, d

ii
kl, e

i
l)

.

Note thatF is a co-occurrence frequency function.
In order to resolve the sparse data problems

caused by estimatingP (bi
k

rel→ bi
l|Bi) with formula

(2), we adopted the smoothing method described
by Fujio and Matsumoto (Fujio and Matsumoto,
1998): ifF (hi

k, h
i
l, t

i
k, t

i
l, r

i
k, d

ii
kl, e

i
l) in formula (2)

is 0, we estimateP (bi
k

rel→ bi
l|Bi) by using formula

(3).

P (bi
k

rel→ bi
l|Bi) (3)

∼= P (bi
k

rel→ bi
l|tik, til, ri

k, d
ii
kl, e

i
l)

=
F (bi

k
rel→ bi

l, t
i
k, t

i
l, r

i
k, d

ii
kl, e

i
l)

F (tik, t
i
l, r

i
k, d

ii
kl, e

i
l)

3.2 Sentence-level Dependency Parsing

Here, the head bunsetsu of the final bunsetsu
of a clause boundary unit is identified. Let
B (= B1 · · ·Bn) be the sequence of bunset-
sus of one sentence andSfin be a set of de-
pendency relations whose dependent bunsetsu is
the final bunsetsu of a clause boundary unit,
{dep(b1

n1
), · · · , dep(bm−1

nm−1
)}; then Sfin, which

makesP (Sfin|B) the maximum, is calculated by
DP. TheP (Sfin|B) can be calculated as follows:

P (Sfin|B) =
m−1∏

i=1

P (bi
ni

rel→ bj
l |B), (4)

whereP (bi
ni

rel→ bj
l |B) is the probability that a

bunsetsubi
ni

depends on a bunsetsubj
l when the

sequence of the sentence’s bunsetsus,B, is pro-
vided. Our method parses by giving consideration
to the dependency structures in each clause bound-
ary unit, which were previously parsed. That is,
the method does not consider all bunsetsus lo-
cated on the right-hand side as candidates for a
head bunsetsu but calculates only dependency re-
lations within each clause boundary unit that do
not cross any other relation in previously parsed
dependency structures. In the case of Fig. 1,
the method calculates by assuming that only three
bunsetsus “人が (the ratio of people),” or “なっ
ております (is)” can be the head bunsetsu of the
bunsetsu “指示するという (advocating).”

In addition,P (bi
ni

rel→ bj
l |B) is calculated as in

Eq. (5). Equation (5) uses all of the attributes used
in Eq. (2), in addition to the attributesj

l , which
indicates whether the head bunsetsu ofbj

l is the
final bunsetsu of a sentence. Here, we take into
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Table 2: Size of experimental data set (Asu-Wo-
Yomu)

test data learning data
programs 8 95
sentences 500 5,532
clause boundary units 2,237 26,318
bunsetsus 5,298 65,821
morphemes 13,342 165,129

Note that the commentator of each program is different.

Table 3: Experimental results on parsing time
our method conv. method

average time (msec) 10.9 51.9
programming language: LISP

computer used: Pentium4 2.4 GHz, Linux

account the analysis result that about 70% of the
final bunsetsus of clause boundary units depend on
the final bunsetsu of other clause boundary units5

and also use the attributeej
l at this phase.

P (bi
ni

rel→ bj
l |B) (5)

∼= P (bi
ni

rel→bj
l |hi

ni
, hj

l , t
i
ni

, tjl , r
i
ni

, dij
nil

, ej
l , s

j
l )

=
F (bi

ni

rel→bj
l , h

i
ni

, hj
l , t

i
ni

, tjl , r
i
ni

, dij
nil

, ej
l , s

j
l )

F (hi
ni

, hj
l , t

i
ni

, tjl , r
i
ni

, dij
nil

, ej
l , s

j
l )

4 Parsing Experiment

To evaluate the effectiveness of our method for
Japanese spoken monologue, we conducted an ex-
periment on dependency parsing.

4.1 Outline of Experiment

We used the spoken monologue corpus“ Asu-
Wo-Yomu,”annotated with information on mor-
phological analysis, clause boundary detection,
bunsetsu segmentation, and dependency analy-
sis6. Table 2 shows the data used for the ex-
periment. We used 500 sentences as the test
data. Although our method assumes that a depen-
dency relation does not cross clause boundaries,
there were 152 dependency relations that contra-
dicted this assumption. This means that the depen-
dency accuracy of our method is not over 96.8%
(4,646/4,798). On the other hand, we used 5,532
sentences as the learning data.

To carry out comparative evaluation of our
method’s effectiveness, we executed parsing for

5We analyzed the 200 sentences described in Section 2.3
and confirmed 70.6% (522/751) of the final bunsetsus of
clause boundary units depended on the final bunsetsu of other
clause boundary units.

6Here, the specifications of these annotations are in accor-
dance with those described in Section 2.3.
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Figure 2: Relation between sentence length and
parsing time

the above-mentioned data by the following two
methods and obtained, respectively, the parsing
time and parsing accuracy.

• Our method: First, our method provides
clause boundaries for a sequence of bunset-
sus of an input sentence and identifies all
clause boundary units in a sentence by per-
forming clause boundary analysis (CBAP)
(Maruyama et al., 2004). After that, our
method executes the dependency parsing de-
scribed in Section 3.

• Conventional method: This method parses
a sentence at one time without dividing it into
clause boundary units. Here, the probability
that a bunsetsu depends on another bunsetsu,
when the sequence of bunsetsus of a sentence
is provided, is calculated as in Eq. (5), where
the attributee was eliminated. This conven-
tional method has been implemented by us
based on the previous research (Fujio and
Matsumoto, 1998).

4.2 Experimental Results

The parsing times of both methods are shown in
Table 3. The parsing speed of our method im-
proves by about 5 times on average in comparison
with the conventional method. Here, the parsing
time of our method includes the time taken not
only for the dependency parsing but also for the
clause boundary analysis. The average time taken
for clause boundary analysis was about 1.2 mil-
lisecond per sentence. Therefore, the time cost of
performing clause boundary analysis as a prepro-
cessing of dependency parsing can be considered
small enough to disregard. Figure 2 shows the re-
lation between sentence length and parsing time
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Table 4: Experimental results on parsing accuracy
our method conv. method

bunsetsu within a clause boundary unit (except final bunsetsu)88.2% (2,701/3,061) 84.7% (2,592/3,061)
final bunsetsu of a clause boundary unit 65.6% (1,140/1,737) 63.3% (1,100/1,737)
total 80.1% (3,841/4,798) 76.9% (3,692/4,798)

Table 5: Experimental results on clause boundary
analysis (CBAP)

recall 95.7% (2,140/2,237)
precision 96.9% (2,140/2,209)

for both methods, and it is clear from this figure
that the parsing time of the conventional method
begins to rapidly increase when the length of a
sentence becomes 12 or more bunsetsus. In con-
trast, our method changes little in relation to pars-
ing time. Here, since the sentences used in the
experiment are composed of 11.8 bunsetsus on av-
erage, this result shows that our method is suitable
for improving the parsing time of a monologue
sentence whose length is longer than the average.

Table 4 shows the parsing accuracy of both
methods. The first line of Table 4 shows the
parsing accuracy for all bunsetsus within clause
boundary units except the final bunsetsus of the
clause boundary units. The second line shows
the parsing accuracy for the final bunsetsus of
all clause boundary units except the sentence-end
bunsetsus. We confirmed that our method could
analyze with a higher accuracy than the conven-
tional method. Here, Table 5 shows the accu-
racy of the clause boundary analysis executed by
CBAP. Since the precision and recall is high, we
can assume that the clause boundary analysis ex-
erts almost no harmful influence on the following
dependency parsing.

As mentioned above, it is clear that our method
is more effective than the conventional method in
shortening parsing time and increasing parsing ac-
curacy.

5 Discussions
Our method assumes that dependency relations
within a clause boundary unit do not cross clause
boundaries. Due to this assumption, the method
cannot correctly parse the dependency relations
over clause boundaries. However, the experi-
mental results indicated that the accuracy of our
method was higher than that of the conventional
method.

In this section, we first discuss the effect of our
method on parsing accuracy, separately for bun-

Table 6: Comparison of parsing accuracy between
conventional method and our method (for bunsetsu
within a clause boundary unit except final bun-
setsu)
``````````conv. method

our method
correct incorrect total

correct 2,499 93 2,592
incorrect 202 267 469
total 2,701 360 3,061

setsus within clause boundary units (except the fi-
nal bunsetsus) and the final bunsetsus of clause
boundary units. Next, we discuss the problem of
our method’s inability to parse dependency rela-
tions over clause boundaries.

5.1 Parsing Accuracy for Bunsetsu within a
Clause Boundary Unit (except final
bunsetsu)

Table 6 compares parsing accuracies for bunsetsus
within clause boundary units (except the final bun-
setsus) between the conventional method and our
method. There are 3,061 bunsetsus within clause
boundary units except the final bunsetsu, among
which 2,499 were correctly parsed by both meth-
ods. There were 202 dependency relations cor-
rectly parsed by our method but incorrectly parsed
by the conventional method. This means that our
method can narrow down the candidates for a head
bunsetsu.

In contrast, 93 dependency relations were cor-
rectly parsed solely by the conventional method.
Among these, 46 were dependency relations over
clause boundaries, which cannot in principle be
parsed by our method. This means that our method
can correctly parse almost all of the dependency
relations that the conventional method can cor-
rectly parse except for dependency relations over
clause boundaries.

5.2 Parsing Accuracy for Final Bunsetsu of a
Clause Boundary Unit

We can see from Table 4 that the parsing accuracy
for the final bunsetsus of clause boundary units by
both methods is much worse than that for bunset-
sus within the clause boundary units (except the
final bunsetsus). This means that it is difficult
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Table 7: Comparison of parsing accuracy between
conventional method and our method (for final
bunsetsu of a clause boundary unit)
``````````conv. method

our method
correct incorrect total

correct 1037 63 1,100
incorrect 103 534 637
total 1,140 597 1,737

Table 8: Parsing accuracy for dependency rela-
tions over clause boundaries

our method conv. method
recall 1.3% (2/152) 30.3% (46/152)
precision 11.8% (2/ 17) 25.3% (46/182)

to identify dependency relations whose dependent
bunsetsu is the final one of a clause boundary unit.

Table 7 compares how the two methods parse
the dependency relations when the dependent bun-
setsu is the final bunsetsu of a clause bound-
ary unit. There are 1,737 dependency relations
whose dependent bunsetsu is the final bunsetsu of
a clause boundary unit, among which 1,037 were
correctly parsed by both methods. The number
of dependency relations correctly parsed only by
our method was 103. This number is higher than
that of dependency relations correctly parsed by
only the conventional method. This result might
be attributed to our method’s effect; that is, our
method narrows down the candidates internally for
a head bunsetsu based on the first-parsed depen-
dency structure for clause boundary units.

5.3 Dependency Relations over Clause
Boundaries

Table 8 shows the accuracy of both methods for
parsing dependency relations over clause bound-
aries. Since our method parses based on the as-
sumption that those dependency relations do not
exist, it cannot correctly parse anything. Al-
though, from the experimental results, our method
could identify two dependency relations over
clause boundaries, these were identified only be-
cause dependency parsing for some sentences was
performed based on wrong clause boundaries that
were provided by clause boundary analysis. On
the other hand, the conventional method correctly
parsed 46 dependency relations among 152 that
crossed a clause boundary in the test data. Since
the conventional method could correctly parse
only 30.3% of those dependency relations, we can
see that it is in principle difficult to identify the
dependency relations.

6 Related Works

Since monologue sentences tend to be long and
have complex structures, it is important to con-
sider the features. Although there have been
very few studies on parsing monologue sentences,
some studies on parsing written language have
dealt with long-sentence parsing. To resolve the
syntactic ambiguity of a long sentence, some of
them have focused attention on the “clause.”

First, there are the studies that focused atten-
tion on compound clauses (Agarwal and Boggess,
1992; Kurohashi and Nagao, 1994). These tried
to improve the parsing accuracy of long sentences
by identifying the boundaries of coordinate struc-
tures. Next, other research efforts utilized the three
categories into which various types of subordinate
clauses are hierarchically classified based on the
“scope-embedding preference” of Japanese subor-
dinate clauses (Shirai et al., 1995; Utsuro et al.,
2000). Furthermore, Kim et al. (Kim and Lee,
2004) divided a sentence into “S(ubject)-clauses,”
which were defined as a group of words containing
several predicates and their common subject. The
above studies have attempted to reduce the pars-
ing ambiguity between specific types of clauses in
order to improve the parsing accuracy of an entire
sentence.

On the other hand, our method utilizes all types
of clauses without limiting them to specific types
of clauses. To improve the accuracy of long-
sentence parsing, we thought that it would be more
effective to cyclopaedically divide a sentence into
all types of clauses and then parse the local de-
pendency structure of each clause. Moreover,
since our method can perform dependency pars-
ing clause-by-clause, we can reasonably expect
our method to be applicable to incremental pars-
ing (Ohno et al., 2005a).

7 Conclusions

In this paper, we proposed a technique for de-
pendency parsing of monologue sentences based
on clause-boundary detection. The method can
achieve more effective, high-performance spoken
monologue parsing by dividing a sentence into
clauses, which are considered as suitable language
units for simplicity. To evaluate the effectiveness
of our method for Japanese spoken monologue, we
conducted an experiment on dependency parsing
of the spoken monologue sentences recorded in
the “Asu-Wo-Yomu.” From the experimental re-
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sults, we confirmed that our method shortened the
parsing time and increased the parsing accuracy
compared with the conventional method, which
parses a sentence without dividing it into clauses.

Future research will include making a thorough
investigation into the relation between dependency
type and the type of clause boundary unit. After
that, we plan to investigate techniques for identi-
fying the dependency relations over clause bound-
aries. Furthermore, as the experiment described in
this paper has shown the effectiveness of our tech-
nique for dependency parsing of long sentences
in spoken monologues, so our technique can be
expected to be effective in written language also.
Therefore, we want to examine the effectiveness
by conducting the parsing experiment of long sen-
tences in written language such as newspaper arti-
cles.
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Abstract

This paper describes a parser which gen-
erates parse trees with empty elements in
which traces and fillers are co-indexed.
The parser is an unlexicalized PCFG
parser which is guaranteed to return the
most probable parse. The grammar is
extracted from a version of the PENN
treebank which was automatically anno-
tated with features in the style of Klein
and Manning (2003). The annotation in-
cludes GPSG-style slash features which
link traces and fillers, and other features
which improve the general parsing accu-
racy. In an evaluation on the PENN tree-
bank (Marcus et al., 1993), the parser
outperformed other unlexicalized PCFG
parsers in terms of labeled bracketing f-
score. Its results for the empty cate-
gory prediction task and the trace-filler co-
indexation task exceed all previously re-
ported results with 84.1% and 77.4% f-
score, respectively.

1 Introduction

Empty categories (also called null elements) are
used in the annotation of the PENN treebank (Mar-
cus et al., 1993) in order to represent syntactic
phenomena like constituent movement (e.g. wh-
extraction), discontinuous constituents, and miss-
ing elements (PRO elements, empty complemen-
tizers and relative pronouns). Moved constituents
are co-indexed with a trace which is located at
the position where the moved constituent is to be
interpreted. Figure 1 shows an example of con-
stituent movement in a relative clause.

Empty categories provide important informa-
tion for the semantic interpretation, in particular
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IN
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WHNP

WDT
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NP-SBJ

PRP

they
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ADJP-PRD

JJ

unaware

PP

-NONE-

*T*-1

Figure 1: Co-indexation of traces and fillers

for determining the predicate-argument structure
of a sentence. However, most broad-coverage sta-
tistical parsers (Collins, 1997; Charniak, 2000,
and others) which are trained on the PENN tree-
bank generate parse trees without empty cate-
gories. In order to augment such parsers with
empty category prediction, three rather different
strategies have been proposed: (i) pre-processing
of the input sentence with a tagger which inserts
empty categories into the input string of the parser
(Dienes and Dubey, 2003b; Dienes and Dubey,
2003a). The parser treats the empty elements
like normal input tokens. (ii) post-processing
of the parse trees with a pattern matcher which
adds empty categories after parsing (Johnson,
2001; Campbell, 2004; Levy and Manning, 2004)
(iii) in-processing of the empty categories with a
slash percolation mechanism (Dienes and Dubey,
2003b; Dienes and Dubey, 2003a). The empty el-
ements are here generated by the grammar.

Good results have been obtained with all three
approaches, but (Dienes and Dubey, 2003b) re-
ported that in their experiments, the in-processing
of the empty categories only worked with lexi-
calized parsing. They explain that their unlex-
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icalized PCFG parser produced poor results be-
cause the beam search strategy applied there elim-
inated many correct constituents with empty ele-
ments. The scores of these constituents were too
low compared with the scores of constituents with-
out empty elements. They speculated that “doing
an exhaustive search might help” here.

In this paper, we confirm this hypothesis and
show that it is possible to accurately predict empty
categories with unlexicalized PCFG parsing and
slash features if the true Viterbi parse is com-
puted. In our experiments, we used the BitPar
parser (Schmid, 2004) and a PCFG which was ex-
tracted from a version of the PENN treebank that
was automatically annotated with features in the
style of (Klein and Manning, 2003).

2 Feature Annotation

A context-free grammar which generates empty
categories has to make sure that a filler exists for
each trace and vice versa. A well-known tech-
nique which enforces this constraint is the GPSG-
style percolation of a slash feature: All con-
stituents on the direct path from the trace to the
filler are annotated with a special feature which
represents the category of the filler as shown in fig-
ure 2. In order to restore the original treebank an-
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-NONE-/WHPP
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Figure 2: Slash features: The filler node of cate-
gory WHNP is linked to the trace node via perco-
lation of a slash feature. The trace node is labeled
with *T*.

notation with co-reference indices from the repre-
sentation with slash features, the parse tree has to
be traversed starting at a trace node and following
the nodes annotated with the respective filler cate-
gory until the filler node is encountered. Normally,
the filler node is a sister node of an ancestor node
of the trace, i.e. the filler c-commands the trace
node, but in case of clausal fillers it is also possi-

ble that the filler dominates the trace. An example
is the sentence “S-1 She had – he informed her *-
1 – kidney trouble” whose parse tree is shown in
figure 3.

Besides the slash features, we used other fea-
tures in order to improve the parsing accuracy of
the PCFG, inspired by the work of Klein and Man-
ning (2003). The most important ones of these
features1 will now be described in detail. Sec-
tion 4.3 shows the impact of these features on
labeled bracketing accuracy and empty category
prediction.

VP feature VPs were annotated with a feature
that distinguishes between finite, infinitive, to-
infinitive, gerund, past participle, and passive VPs.

S feature The S node feature distinguishes be-
tween imperatives, finite clauses, and several types
of small clauses.

Parent features Modifier categories like SBAR,
PP, ADVP, RB and NP-ADV were annotated with
a parent feature (cf. Johnson (1998)). The
parent features distinguish between verbal (VP),
adjectival (ADJP, WHADJP), adverbial (ADVP,
WHADVP), nominal (NP, WHNP, QP), preposi-
tional (PP) and other parents.

PENN tags The PENN treebank annotation uses
semantic tags to refine syntactic categories. Most
parsers ignore this information. We preserved
the tags ADV, CLR, DIR, EXT, IMP, LGS, LOC,
MNR, NOM, PRD, PRP, SBJ and TMP in combi-
nation with selected categories.

Auxiliary feature We added a feature to the
part-of-speech tags of verbs in order to distinguish
between be, do, have, and full verbs.

Agreement feature Finite VPs are marked with
3s (n3s) if they are headed by a verb with part-of-
speech VBZ (VBP).

Genitive feature NP nodes which dominate a
node of the category POS (possessive marker) are
marked with a genitive flag.

Base NPs NPs dominating a node of category
NN, NNS, NNP, NNPS, DT, CD, JJ, JJR, JJS, PRP,
RB, or EX are marked as base NPs.

1The complete annotation program is available
from the author’s home page at http://www.ims.uni-
stuttgart.de/ schmid
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Figure 3: Example of a filler which dominates its trace

IN feature The part-of-speech tags of the 45
most frequent prepositions were lexicalized by
adding the preposition as a feature. The new part-
of-speech tag of the preposition “by” is “IN/by”.

Irregular adverbs The part-of-speech tags of
the adverbs “as”, “so”, “about”, and “not” were
also lexicalized.

Currency feature NP and QP nodes are marked
with a currency flag if they dominate a node of
category $, #, or SYM.

Percent feature Nodes of the category NP or
QP are marked with a percent flag if they dominate
the subtree (NN %). Any node which immediately
dominates the token %, is marked, as well.

Punctuation feature Nodes which dominate
sentential punctuation (.?!) are marked.

DT feature Nodes of category DT are split into
indefinite articles (a, an), definite articles (the),
and demonstratives (this, that, those, these).

WH feature The wh-tags (WDT, WP, WRB,
WDT) of the words which, what, who, how, and
that are also lexicalized.

Colon feature The part-of-speech tag ’:’ was re-
placed with “;”, “–” or “...” if it dominated a cor-
responding token.

DomV feature Nodes of a non-verbal syntactic
category are marked with a feature if they domi-
nate a node of category VP, SINV, S, SQ, SBAR,
or SBARQ.

Gap feature S nodes dominating an empty NP
are marked with the feature gap.

Subcategorization feature The part-of-speech
tags of verbs are annotated with a feature which
encodes the sequence of arguments. The encod-
ing maps reflexive NPs to r, NP/NP-PRD/SBAR-
NOM to n, ADJP-PRD to j, ADVP-PRD to a,
PRT to t, PP/PP-DIR to p, SBAR/SBAR-CLR to
b, S/fin to sf, S/ppres/gap to sg, S/to/gap to st,
other S nodes to so, VP/ppres to vg, VP/ppast to
vn, VP/pas to vp, VP/inf to vi, and other VPs to
vo. A verb with an NP and a PP argument, for
instance, is annotated with the feature np.

Adjectives, adverbs, and nouns may also get a
subcat feature which encodes a single argument
using a less fine-grained encoding which maps PP
to p, NP to n, S to s, and SBAR to b. A node of
category NN or NNS e.g. is marked with a subcat
feature if it is followed by an argument category
unless the argument is a PP which is headed by
the preposition of.

RC feature In relative clauses with an empty
relative pronoun of category WHADVP, we mark
the SBAR node of the relative clause, the NP node
to which it is attached, and its head child of cate-
gory NN or NNS, if the head word is either way,
ways, reason, reasons, day, days, time, moment,
place, or position. This feature helps the parser
to correctly insert WHADVP rather than WHNP.
Figure 4 shows a sample tree.

TMP features Each node on the path between
an NP-TMP or PP-TMP node and its nominal head
is labeled with the feature tmp. This feature helps
the parser to identify temporal NPs and PPs.

MNR and EXT features Similarly, each node
on the path between an NP-EXT, NP-MNR or
ADVP-TMP node and its head is labeled with the
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Figure 4: Annotation of relative clauses with
empty relative pronoun of category WHADVP

feature ext or mnr.

ADJP features Nodes of category ADJP which
are dominated by an NP node are labeled with the
feature “post” if they are in final position and the
feature “attr” otherwise.

JJ feature Nodes of category JJ which are dom-
inated by an ADJP-PRD node are labeled with the
feature “prd”.

JJ-tmp feature JJ nodes which are dominated
by an NP-TMP node and which themselves dom-
inate one of the words “last”, “next”, “late”, “pre-
vious”, “early”, or “past” are labeled with tmp.

QP feature If some node dominates an NP node
followed by an NP-ADV node as in (NP (NP one
dollar) (NP-ADV a day)), the first child NP node
is labeled with the feature “qp”. If the parent is an
NP node, it is also labeled with “qp”.

NP-pp feature NP nodes which dominate a PP
node are labeled with the feature pp. If this PP
itself is headed by the preposition of, then it is an-
notated with the feature of.

MWL feature In adverbial phrases which nei-
ther dominate an adverb nor another adverbial
phrase, we lexicalize the part-of-speech tags of a
small set of words like “least” (at least), “kind”, or
“sort” which appear frequently in such adverbial
phrases.

Case feature Pronouns like he or him , but not
ambiguous pronouns like it are marked with nom
or acc, respectively.

Expletives If a subject NP dominates an NP
which consists of the pronoun it, and an S-trace in

sentences like It is important to..., the dominated
NP is marked with the feature expl.

LST feature The parent nodes of LST nodes2

are marked with the feature lst.

Complex conjunctions In SBAR constituents
starting with an IN and an NN child node (usu-
ally indicating one of the two complex conjunc-
tions “in order to” or “in case of”), we mark the
NN child with the feature sbar.

LGS feature The PENN treebank marks the
logical subject of passive clauses which are real-
ized by a by-PP with the semantic tag LGS. We
move this tag to the dominating PP.

OC feature Verbs are marked with an object
control feature if they have an NP argument which
dominates an NP filler and an S argument which
dominates an NP trace. An example is the sen-
tence She asked him to come.

Corrections The part-of-speech tags of the
PENN treebank are not always correct. Some of
the errors (like the tag NNS in VP-initial position)
can be identified and corrected automatically in
the training data. Correcting tags did not always
improve parsing accuracy, so it was done selec-
tively.

The gap and domV features described above
were also used by Klein and Manning (2003).

All features were automatically added to the
PENN treebank by means of an annotation pro-
gram. Figure 5 shows an example of an annotated
parse tree.

3 Parameter Smoothing

We extracted the grammar from sections 2–21 of
the annotated version of the PENN treebank. In
order to increase the coverage of the grammar,
we selectively applied markovization to the gram-
mar (cf. Klein and Manning (2003)) by replacing
long infrequent rules with a set of binary rules.
Markovization was only applied if none of the
non-terminals on the right hand side of the rule
had a slash feature in order to avoid negative ef-
fects on the slash feature percolation mechanism.

The probabilities of the grammar rules were
directly estimated with relative frequencies. No
smoothing was applied, here. The lexical prob-
abilities, on the other hand, were smoothed with

2LST annotates the list symbol in enumerations.
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Figure 5: An Annotated Parse Tree

the following technique which was adopted from
Klein and Manning (2003). Each word is assigned
to one of 216 word classes. The word classes
are defined with regular expressions. Examples
are the class [A-Za-z0-9-]+-oldwhich con-
tains the word 20-year-old, the class [a-z][a-
z]+ifies which contains clarifies, and a class
which contains a list of capitalized adjectives like
Advanced. The word classes are ordered. If a
string is matched by the regular expressions of
more than one word class, then it is assigned to the
first of these word classes. For each word class,
we compute part-of-speech probabilities with rel-
ative frequencies. The part-of-speech frequen-
cies

����������	
of a word

�
are smoothed by adding

the part-of-speech probability 
 ������
 ����	 of the word
class


 ���
according to equation 1 in order to ob-

tain the smoothed frequency �����������	 . The part-of-
speech probability of the word class is weighted
by a parameter � whose value was set to 4 after
testing on held-out data. The lexical probabilities
are finally estimated from the smoothed frequen-
cies according to equation 2.

�����������	�������������	�� ��
 ������
 ����	 (1)


 ����� ��	�� �� ��������	!#"%$ �� ����&'����	 (2)

4 Evaluation

In our experiments, we used the usual splitting of
the PENN treebank into training data (sections 2–
21), held-out data (section 22), and test data (sec-
tion 23).

The grammar extracted from the automatically
annotated version of the training corpus contained
52,297 rules with 3,453 different non-terminals.
Subtrees which dominated only empty categories
were collapsed into a single empty element sym-
bol. The parser skips over these symbols during

parsing, but adds them to the output parse. Over-
all, there were 308 different empty element sym-
bols in the grammar.

Parsing section 23 took 169 minutes on a Dual-
Opteron system with 2.2 GHz CPUs, which is
about 4.2 seconds per sentence.

precision recall f-score
this paper 86.9 86.3 86.6
Klein/Manning 86.3 85.1 85.7

Table 1: Labeled bracketing accuracy on sec-
tion 23

Table 1 shows the labeled bracketing accuracy
of the parser on the whole section 23 and com-
pares it to the results reported in Klein and Man-
ning (2003) for sentences with up to 100 words.

4.1 Empty Category Prediction

Table 2 reports the accuracy of the parser in the
empty category (EC) prediction task for ECs oc-
curring more than 6 times. Following Johnson
(2001), an empty category was considered cor-
rect if the treebank parse contained an empty node
of the same category at the same string position.
Empty SBAR nodes which dominate an empty S
node are treated as a single empty element and
listed as SBAR-S in table 2.

Frequent types of empty elements are recog-
nized quite reliably. Exceptions are the traces
of adverbial and prepositional phrases where the
recall was only 65% and 48%, respectively, and
empty relative pronouns of type WHNP and
WHADVP with f-scores around 60%. A couple of
empty relative pronouns of type WHADVP were
mis-analyzed as WHNP which explains why the
precision is higher than the recall for WHADVP,
but vice versa for WHNP.
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prec. recall f-sc. freq.
NP * 87.0 85.9 86.5 1607
NP *T* 84.9 87.6 86.2 508
0 95.2 89.7 92.3 416
*U* 95.3 93.8 94.5 388
ADVP *T* 80.3 64.7 71.7 170
S *T* 86.7 93.8 90.1 160
SBAR-S *T* 88.5 76.7 82.1 120
WHNP 0 57.6 63.6 60.4 107
WHADVP 0 75.0 50.0 60.0 36
PP *ICH* 11.1 3.4 5.3 29
PP *T* 73.7 48.3 58.3 29
SBAR *EXP* 28.6 12.5 17.4 16
VP *?* 33.3 40.0 36.4 15
S *ICH* 61.5 57.1 59.3 14
S *EXP* 66.7 71.4 69.0 14
SBAR *ICH* 60.0 25.0 35.3 12
NP *?* 50.0 9.1 15.4 11
ADJP *T* 100.0 77.8 87.5 9
SBAR-S *?* 66.7 25.0 36.4 8
VP *T* 100.0 37.5 54.5 8
overall 86.0 82.3 84.1 3716

Table 2: Accuracy of empty category prediction
on section 23. The first column shows the type of
the empty element and – except for empty comple-
mentizers and empty units – also the category. The
last column shows the frequency in the test data.

The accuracy of the pseudo attachment labels
*RNR*, *ICH*, *EXP*, and *PPA* was gener-
ally low with a precision of 41%, recall of 21%,
and f-score of 28%. Empty elements with a test
corpus frequency below 8 were almost never gen-
erated by the parser.

4.2 Co-Indexation

Table 3 shows the accuracy of the parser on the
co-indexation task. A co-indexation of a trace and
a filler is represented by a 5-tuple consisting of
the category and the string position of the trace,
as well as the category, start and end position of
the filler. A co-indexation is judged correct if the
treebank parse contains the same 5-tuple.

For NP3 and S4 traces of type ‘*T*’, the co-
indexation results are quite good with 85% and
92% f-score, respectively. For ‘*T*’-traces of

3NP traces of type *T* result from wh-extraction in ques-
tions and relative clauses and from fronting.

4S traces of type *T* occur in sentences with quoted
speech like the sentence “That’s true!”, he said *T*.

other categories and for NP traces of type ‘*’,5 the
parser shows high precision, but moderate recall.
The recall of infrequent types of empty elements
is again low, as in the recognition task.

prec. rec. f-sc. freq.
NP * 81.1 72.1 76.4 1140
WH NP *T* 83.7 86.8 85.2 507
S *T* 92.0 91.0 91.5 277
WH ADVP *T* 78.6 63.2 70.1 163
PP *ICH* 14.3 3.4 5.6 29
WH PP *T* 68.8 50.0 57.9 22
SBAR *EXP* 25.0 12.5 16.7 16
S *ICH* 57.1 53.3 55.2 15
S *EXP* 66.7 71.4 69.0 14
SBAR *ICH* 60.0 25.0 35.3 12
VP *T* 33.3 12.5 18.2 8
ADVP *T* 60.0 42.9 50.0 7
PP *T* 100.0 28.6 44.4 7
overall 81.7 73.5 77.4 2264

Table 3: Co-indexation accuracy on section 23.
The first column shows the category and type of
the trace. If the filler category of the filler is dif-
ferent from the category of the trace, it is added in
front. The filler category is abbreviated to “WH”
if the rest is identical to the trace category. The
last column shows the frequency in the test data.

In order to get an impression how often EC pre-
diction errors resulted from misplacement rather
than omission, we computed EC prediction accu-
racies without comparing the EC positions. We
observed the largest f-score increase for ADVP
*T* and PP *T*, where attachment ambiguities
are likely, and for VP *?* which is infrequent.

4.3 Feature Evaluation

We ran a series of evaluations on held-out data in
order to determine the impact of the different fea-
tures which we described in section 2 on the pars-
ing accuracy. In each run, we deleted one of the
features and measured how the accuracy changed
compared to the baseline system with all features.
The results are shown in table 4.

5The trace type ‘*’ combines two types of traces with
different linguistic properties, namely empty objects of pas-
sive constructions which are co-indexed with the subject, and
empty subjects of participial and infinitive clauses which are
co-indexed with an NP of the matrix clause.
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Feature LB EC CI
slash feature 0.43 – –
VP features 2.93 6.38 5.46
PENN tags 2.34 4.54 6.75
IN feature 2.02 2.57 5.63
S features 0.49 3.08 4.13
V subcat feature 0.68 3.17 2.94
punctuation feat. 0.82 1.11 1.86
all PENN tags 0.84 0.69 2.03
domV feature 1.76 0.15 0.00
gap feature 0.04 1.20 1.32
DT feature 0.57 0.44 0.99
RC feature 0.00 1.11 1.10
colon feature 0.41 0.84 0.44
ADV parent 0.50 0.04 0.93
auxiliary feat. 0.40 0.29 0.77
SBAR parent 0.45 0.24 0.71
agreement feat. 0.05 0.52 1.15
ADVP subcat feat. 0.33 0.32 0.55
genitive feat. 0.39 0.29 0.44
NP subcat feat. 0.33 0.08 0.76
no-tmp 0.14 0.90 0.16
base NP feat. 0.47 -0.24 0.55
tag correction 0.13 0.37 0.44
irr. adverb feat. 0.04 0.56 0.39
PP parent 0.08 0.04 0.82
ADJP features 0.14 0.41 0.33
currency feat. 0.06 0.82 0.00
qp feature 0.13 0.14 0.50
PP tmp feature -0.24 0.65 0.60
WH feature 0.11 0.25 0.27
percent feat. 0.34 -0.10 0.10
NP-ADV parent f. 0.07 0.14 0.39
MNR feature 0.08 0.35 0.11
JJ feature 0.08 0.18 0.27
case feature 0.05 0.14 0.27
Expletive feat. -0.01 0.16 0.27
LGS feature 0.17 0.07 0.00
ADJ subcat 0.00 0.00 0.33
OC feature 0.00 0.00 0.22
JJ-tmp feat. 0.09 0.00 0.00
refl. pronoun 0.02 -0.03 0.16
EXT feature -0.04 0.09 0.16
MWL feature 0.05 0.00 0.00
complex conj. f. 0.07 -0.07 0.00
LST feature 0.12 -0.12 -0.11
NP-pp feature 0.13 -0.57 -0.39

Table 4: Differences between the baseline f-scores
for labeled bracketing, EC prediction, and co-
indexation (CI) and the f-scores without the spec-
ified feature.

5 Comparison

Table 7 compares the empty category prediction
results of our parser with those reported in John-
son (2001), Dienes and Dubey (2003b) and Camp-
bell (2004). In terms of recall and f-score, our
parser outperforms the other parsers. In terms of
precision, the tagger of Dienes and Dubey is the
best, but its recall is the lowest of all systems.

prec. recall f-score
this paper 86.0 82.3 84.1
Campbell 85.2 81.7 83.4
Dienes & Dubey 86.5 72.9 79.1
Johnson 85 74 79

Table 5: Accuracy of empty category prediction
on section 23

The good performance of our parser on the
empty element recognition task is remarkable con-
sidering the fact that its performance on the la-
beled bracketing task is 3% lower than that of the
Charniak (2000) parser used by Campbell (2004).

prec. recall f-score
this paper 81.7 73.5 77.4
Campbell 78.3 75.1 76.7
Dienes & Dubey (b) 81.5 68.7 74.6
Dienes & Dubey (a) 80.5 66.0 72.6
Johnson 73 63 68

Table 6: Co-indexation accuracy on section 23

Table 6 compares our co-indexation results with
those reported in Johnson (2001), Dienes and
Dubey (2003b), Dienes and Dubey (2003a), and
Campbell (2004). Our parser achieves the highest
precision and f-score. Campbell (2004) reports a
higher recall, but lower precision.

Table 7 shows the trace prediction accuracies
of our parser, Johnson’s (2001) parser with parser
input and perfect input, and Campbell’s (2004)
parser with perfect input. The accuracy of John-
son’s parser is consistently lower than that of
the other parsers and it has particular difficulties
with ADVP traces, SBAR traces, and empty rela-
tive pronouns (WHNP 0). Campbell’s parser and
our parser cannot be directly compared, but when
we take the respective performance difference to
Johnson’s parser as evidence, we might conclude
that Campbell’s parser works particularly well on
NP *, *U*, and WHNP 0, whereas our system
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paper J1 J2 C
NP * 83.2 82 91 97.5
NP *T* 86.2 81 91 96.2
0 92.3 88 96 98.5
*U* 94.5 92 95 98.6
ADVP *T* 71.7 56 66 79.9
S *T* 90.1 88 90 92.7
SBAR-S *T* 82.1 70 74 84.4
WHNP 0 60.4 47 77 92.4
WHADVP 0 60.0 – – 73.3

Table 7: Comparison of the empty category pre-
diction accuracies for different categories in this
paper (paper), in (Johnson, 2001) with parser input
(J1), in (Johnson, 2001) with perfect input (J2),
and in (Campbell, 2004) with perfect input.

is slightly better on empty complementizers (0),
ADVP traces, and SBAR traces.

6 Summary

We presented an unlexicalized PCFG parser which
applies a slash feature percolation mechanism to
generate parse trees with empty elements and co-
indexation of traces and fillers. The grammar
was extracted from a version of the PENN tree-
bank which was annotated with slash features and
a set of other features that were added in order
to improve the general parsing accuracy. The
parser computes true Viterbi parses unlike most
other parsers for treebank grammars which are not
guaranteed to produce the most likely parse tree
because they apply pruning strategies like beam
search.

We evaluated the parser using the standard
PENN treebank training and test data. The labeled
bracketing f-score of 86.6% is – to our knowl-
edge – the best f-score reported for unlexical-
ized PCFGs, exceeding that of Klein and Man-
ning (2003) by almost 1%. On the empty cate-
gory prediction task, our parser outperforms the
best previously reported system (Campbell, 2004)
by 0.7% reaching an f-score of 84.1%, although
the general parsing accuracy of our unlexicalized
parser is 3% lower than that of the parser used by
Campbell (2004). Our parser also ranks highest
in terms of the co-indexation accuracy with 77.4%
f-score, again outperforming the system of Camp-
bell (2004) by 0.7%.
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Abstract

We explore the use of restricted dialogue
contexts in reinforcement learning (RL)
of effective dialogue strategies for infor-
mation seeking spoken dialogue systems
(e.g. COMMUNICATOR (Walker et al.,
2001)). The contexts we use are richer
than previous research in this area, e.g.
(Levin and Pieraccini, 1997; Scheffler and
Young, 2001; Singh et al., 2002; Pietquin,
2004), which use only slot-based infor-
mation, but are much less complex than
the full dialogue “Information States” ex-
plored in (Henderson et al., 2005), for
which tractabe learning is an issue. We
explore how incrementally adding richer
features allows learning of more effective
dialogue strategies. We use 2 user simu-
lations learned from COMMUNICATOR
data (Walker et al., 2001; Georgila et al.,
2005b) to explore the effects of differ-
ent features on learned dialogue strategies.
Our results show that adding the dialogue
moves of the last system and user turns
increases the average reward of the auto-
matically learned strategies by 65.9% over
the original (hand-coded) COMMUNI-
CATOR systems, and by 7.8% over a base-
line RL policy that uses only slot-status
features. We show that the learned strate-
gies exhibit an emergent “focus switch-
ing” strategy and effective use of the ‘give
help’ action.

1 Introduction

Reinforcement Learning (RL) applied to the prob-
lem of dialogue management attempts to find op-
timal mappings from dialogue contexts to sys-
tem actions. The idea of using Markov Deci-
sion Processes (MDPs) and reinforcement learn-
ing to design dialogue strategies for dialogue sys-

tems was first proposed by (Levin and Pierac-
cini, 1997). There, and in subsequent work such
as (Singh et al., 2002; Pietquin, 2004; Scheffler
and Young, 2001), only very limited state infor-
mation was used in strategy learning, based al-
ways on the number and status of filled informa-
tion slots in the application (e.g. departure-city is
filled, destination-city is unfilled). This we refer to
as low-level contextual information. Much prior
work (Singh et al., 2002) concentrated only on
specific strategy decisions (e.g. confirmation and
initiative strategies), rather than the full problem
of what system dialogue move to take next.

The simple strategies learned for low-level def-
initions of state cannot be sensitive to (sometimes
critical) aspects of the dialogue context, such as
the user’s last dialogue move (DM) (e.g. request-
help) unless that move directly affects the status of
an information slot (e.g. provide-info(destination-
city)). We refer to additional contextual infor-
mation such as the system and user’s last di-
alogue moves as high-level contextual informa-
tion. (Frampton and Lemon, 2005) learned full
strategies with limited ‘high-level’ information
(i.e. the dialogue move(s) of the last user utter-
ance) and only used a stochastic user simulation
whose probabilities were supplied via common-
sense and intuition, rather than learned from data.
This paper uses data-driven n-gram user simula-
tions (Georgila et al., 2005a) and a richer dialogue
context.

On the other hand, increasing the size of the
state space for RL has the danger of making
the learning problem intractable, and at the very
least means that data is more sparse and state ap-
proximation methods may need to be used (Hen-
derson et al., 2005). To date, the use of very
large state spaces relies on a “hybrid” super-
vised/reinforcement learning technique, where the
reinforcement learning element has not yet been
shown to significantly improve policies over the
purely supervised case (Henderson et al., 2005).
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The extended state spaces that we propose are
based on theories of dialogue such as (Clark, 1996;
Searle, 1969; Austin, 1962; Larsson and Traum,
2000), where which actions a dialogue participant
can or should take next are not based solely on
the task-state (i.e. in our domain, which slots are
filled), but also on wider contextual factors such
as a user’s dialogue moves or speech acts. In
future work we also intend to use feature selec-
tion techniques (e.g. correlation-based feature sub-
set (CFS) evaluation (Rieser and Lemon, 2006))
on the COMMUNICATOR data (Georgila et al.,
2005a; Walker et al., 2001) in order to identify ad-
ditional context features that it may be effective to
represent in the state.

1.1 Methodology

To explore these issues we have developed a Re-
inforcement Learning (RL) program to learn di-
alogue strategies while accurate simulated users
(Georgila et al., 2005a) converse with a dialogue
manager. See (Singh et al., 2002; Scheffler and
Young, 2001) and (Sutton and Barto, 1998) for a
detailed description of Markov Decision Processes
and the relevant RL algorithms.

In dialogue management we are faced with the
problem of deciding which dialogue actions it is
best to perform in different states. We use (RL) be-
cause it is a method of learning by delayed reward
using trial-and-error search. These two proper-
ties appear to make RL techniques a good fit with
the problem of automatically optimising dialogue
strategies, because in task-oriented dialogue of-
ten the “reward” of the dialogue (e.g. successfully
booking a flight) is not obtainable immediately,
and the large space of possible dialogues for any
task makes some degree of trial-and-error explo-
ration necessary.

We use both 4-gram and 5-gram user sim-
ulations for testing and for training (i.e. train
with 4-gram, test with 5-gram, and vice-versa).
These simulations also simulate ASR errors since
the probabilities are learned from recognition hy-
potheses and system behaviour logged in the
COMMUNICATOR data (Walker et al., 2001) fur-
ther annotated with speech acts and contexts by
(Georgila et al., 2005b). Here the task domain is
flight-booking, and the aim for the dialogue man-
ager is to obtain values for the user’s flight infor-
mation “slots” i.e. departure city, destination city,
departure date and departure time, before making
a database query. We add the dialogue moves of
the last user and system turns as context features
and use these in strategy learning. We compare
the learned strategies to 2 baselines: the original
COMMUNICATOR systems and an RL strategy
which uses only slot status features.

1.2 Outline

Section 2 contains a description of our basic ex-
perimental framework, and a detailed description
of the reinforcement learning component and user
simulations. Sections 3 and 4 describe the experi-
ments and analyse our results, and in section 5 we
conclude and suggest future work.

2 The Experimental Framework

Each experiment is executed using the DIPPER
Information State Update dialogue manager (Bos
et al., 2003) (which here is used to track and up-
date dialogue context rather than deciding which
actions to take), a Reinforcement Learning pro-
gram (which determines the next dialogue action
to take), and various user simulations. In sections
2.3 and 2.4 we give more details about the rein-
forcement learner and user simulations.

2.1 The action set for the learner

Below is a list of all the different actions that the
RL dialogue manager can take and must learn to
choose between based on the context:

1. An open question e.g. ‘How may I help you?’

2. Ask the value for any one of slots 1...n.

3. Explicitly confirm any one of slots 1...n.

4. Ask for the nth slot whilst implicitly confirm-
ing1 either slot value n− 1 e.g. ‘So you want
to fly from London to where?’, or slot value
n + 1

5. Give help.

6. Pass to human operator.

7. Database Query.

There are a couple of restrictions regarding
which actions can be taken in which states: an
open question is only available at the start of the
dialogue, and the dialogue manager can only try
to confirm non-empty slots.

2.2 The Reward Function

We employ an “all-or-nothing” reward function
which is as follows:

1. Database query, all slots confirmed: +100

2. Any other database query: −75

1Where n = 1 we implicitly confirm the final slot and
where n = 4 we implicitly confirm the first slot. This action
set does not include actions that ask the n

th slot whilst im-
plicitly confirming slot value n − 2. These will be added in
future experiments as we continue to increase the action and
state space.
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3. User simulation hangs-up: −100

4. DIPPER passes to a human operator: −50

5. Each system turn: −5

To maximise the chances of a slot value be-
ing correct, it must be confirmed rather than just
filled. The reward function reflects the fact that
a successful dialogue manager must maximise its
chances of getting the slots correct i.e. they must
all be confirmed. (Walker et al., 2000) showed
with the PARADISE evaluation that confirming
slots increases user satisfaction.

The maximum reward that can be obtained for
a single dialogue is 85, (the dialogue manager
prompts the user, the user replies by filling all four
of the slots in a single utterance, and the dialogue
manager then confirms all four slots and submits a
database query).

2.3 The Reinforcement Learner’s Parameters

When the reinforcement learner agent is initial-
ized, it is given a parameter string which includes
the following:

1. Step Parameter: α = decreasing

2. Discount Factor: γ = 1

3. Action Selection Type = softmax (alternative
is ε-greedy)

4. Action Selection Parameter: temperature =

15

5. Eligibility Trace Parameter: λ = 0.9

6. Eligibility Trace = replacing (alternative is
accumulating)

7. Initial Q-values = 25

The reinforcement learner updates its Q-values
using the Sarsa(λ) algorithm (see (Sutton and
Barto, 1998)). The first parameter is the step-
parameter α which may be a value between 0 and
1, or specified as decreasing. If it is decreasing, as
it is in our experiments, then for any given Q-value
update α is 1

k
where k is the number of times that

the state-action pair for which the update is be-
ing performed has been visited. This kind of step
parameter will ensure that given a sufficient num-
ber of training dialogues, each of the Q-values will
eventually converge. The second parameter (dis-
count factor) γ may take a value between 0 and 1.
For the dialogue management problem we set it to
1 so that future rewards are taken into account as
strongly as possible.

Apart from updating Q-values, the reinforce-
ment learner must also choose the next action
for the dialogue manager and the third parameter
specifies whether it does this by ε-greedy or soft-
max action selection (here we have used softmax).

The fifth parameter, the eligibility trace param-
eter λ, may take a value between 0 and 1, and the
sixth parameter specifies whether the eligibility
traces are replacing or accumulating. We used re-
placing traces because they produced faster learn-
ing for the slot-filling task. The seventh parameter
is for supplying the initial Q-values.

2.4 N-Gram User Simulations

Here user simulations, rather than real users, inter-
act with the dialogue system during learning. This
is because thousands of dialogues may be neces-
sary to train even a simple system (here we train
on up to 50000 dialogues), and for a proper explo-
ration of the state-action space the system should
sometimes take actions that are not optimal for the
current situation, making it a sadistic and time-
consuming procedure for any human training the
system. (Eckert et al., 1997) were the first to
use a user simulation for this purpose, but it was
not goal-directed and so could produce inconsis-
tent utterances. The later simulations of (Pietquin,
2004) and (Scheffler and Young, 2001) were to
some extent “goal-directed” and also incorporated
an ASR error simulation. The user simulations in-
teract with the system via intentions. Intentions
are preferred because they are easier to generate
than word sequences and because they allow er-
ror modelling of all parts of the system, for exam-
ple ASR error modelling and semantic errors. The
user and ASR simulations must be realistic if the
learned strategy is to be directly applicable in a
real system.

The n-gram user simulations used here (see
(Georgila et al., 2005a) for details and evaluation
results) treat a dialogue as a sequence of pairs of
speech acts and tasks. They take as input the n−1

most recent speech act-task pairs in the dialogue
history, and based on n-gram probabilities learned
from the COMMUNICATOR data (automatically
annotated with speech acts and Information States
(Georgila et al., 2005b)), they then output a user
utterance as a further speech-act task pair. These
user simulations incorporate the effects of ASR er-
rors since they are built from the user utterances
as they were recognized by the ASR components
of the original COMMUNICATOR systems. Note
that the user simulations do not provide instanti-
ated slot values e.g. a response to provide a des-
tination city is the speech-act task pair “[provide
info] [dest city]”. We cannot assume that two such
responses in the same dialogue refer to the same
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destination cities. Hence in the dialogue man-
ager’s Information State where we record whether
a slot is empty, filled, or confirmed, we only up-
date from filled to confirmed when the slot value
is implicitly or explicitly confirmed. An additional
function maps the user speech-act task pairs to a
form that can be interpreted by the dialogue man-
ager. Post-mapping user responses are made up of
one or more of the following types of utterance:
(1) Stay quiet, (2) Provide 1 or more slot values,
(3) Yes, (4) No, (5) Ask for help, (6) Hang-up, (7)
Null (out-of-domain or no ASR hypothesis).

The quality of the 4 and 5-gram user sim-
ulations has been established through a variety
of metrics and against the behaviour of the ac-
tual users of the COMMUNICATOR systems, see
(Georgila et al., 2005a).

2.4.1 Limitations of the user simulations

The user and ASR simulations are a fundamen-
tally important factor in determining the nature of
the learned strategies. For this reason we should
note the limitations of the n-gram simulations used
here. A first limitation is that we cannot be sure
that the COMMUNICATOR training data is suffi-
ciently complete, and a second is that the n-gram
simulations only use a window of n moves in
the dialogue history. This second limitation be-
comes a problem when the user simulation’s cur-
rent move ought to take into account something
that occurred at an earlier stage in the dialogue.
This might result in the user simulation repeating a
slot value unnecessarily, or the chance of an ASR
error for a particular word being independent of
whether the same word was previously recognised
correctly. The latter case means we cannot sim-
ulate for example, a particular slot value always
being liable to misrecognition. These limitations
will affect the nature of the learned strategies. Dif-
ferent state features may assume more or less im-
portance than they would if the simulations were
more realistic. This is a point that we will return to
in the analysis of the experimental results. In fu-
ture work we will use the more accurate user sim-
ulations recently developed following (Georgila et
al., 2005a) and we expect that these will improve
our results still further.

3 Experiments

First we learned strategies with the 4-gram user
simulation and tested with the 5-gram simula-
tion, and then did the reverse. We experimented
with different feature sets, exploring whether bet-
ter strategies could be learned by adding limited
context features. We used two baselines for com-
parison:

• The performance of the original COMMUNI-
CATOR systems in the data set (Walker et al.,
2001).

• An RL baseline dialogue manager learned
using only slot-status features i.e. for each
of slots 1− 4, is the slot empty, filled or con-
firmed?

We then learned two further strategies:

• Strategy 2 (UDM) was learned by adding the
user’s last dialogue move to the state.

• Strategy 3 (USDM) was learned by adding
both the user and system’s last dialogue
moves to the state.

The possible system and user dialogue moves
were those given in sections 2.1 and 2.4 respec-
tively, and the reward function was that described
in section 2.2.

3.1 The COMMUNICATOR data baseline

We computed the scores for the original hand-
coded COMMUNICATOR systems as was done
by (Henderson et al., 2005), and we call this the
“HLG05” score. This scoring function is based
on task completion and dialogue length rewards as
determined by the PARADISE evaluation (Walker
et al., 2000). This function gives 25 points for
each slot which is filled, another 25 for each that
is confirmed, and deducts 1 point for each sys-
tem action. In this case the maximum possible
score is 197 i.e. 200 minus 3 actions, (the sys-
tem prompts the user, the user replies by filling all
four of the slots in one turn, and the system then
confirms all four slots and offers the flight). The
average score for the 1242 dialogues in the COM-
MUNICATOR dataset where the aim was to fill
and confirm only the same four slots as we have
used here was 115.26. The other COMMUNICA-
TOR dialogues involved different slots relating to
return flights, hotel-bookings and car-rentals.

4 Results

Figure 1 tracks the improvement of the 3 learned
strategies for 50000 training dialogues with the 4-
gram user simulation, and figure 2 for 50000 train-
ing dialogues with the 5-gram simulation. They
show the average reward (according to the func-
tion of section 2.2) obtained by each strategy over
intervals of 1000 training dialogues.

Table 1 shows the results for testing the strate-
gies learned after 50000 training dialogues (the
baseline RL strategy, strategy 2 (UDM) and strat-
egy 3 (USDM)). The ‘a’ strategies were trained
with the 4-gram user simulation and tested with
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Features Av. Score HLG05 Filled Slots Conf. Slots Length
4 → 5 gram = (a)
RL Baseline (a) Slots status 51.67 190.32 100 100 −9.68

RL Strat 2, UDM (a) + Last User DM 53.65** 190.67 100 100 −9.33

RL Strat 3, USDM (a) + Last System DM 54.9** 190.98 100 100 −9.02

5 → 4 gram = (b)
RL Baseline (b) Slots status 51.4 190.28 100 100 −9.72

RL Strat 2, UDM (b) + Last User DM 54.46* 190.83 100 100 −9.17

RL Strat 3, USDM (b) + Last System DM 56.24** 191.25 100 100 −8.75

RL Baseline (av) Slots status 51.54 190.3 100 100 −9.7

RL Strat 2, UDM (av) + Last User DM 54.06** 190.75 100 100 −9.25

RL Strat 3, USDM (av) + Last System DM 55.57** 191.16 100 100 −8.84

COMM Systems 115.26 84.6 63.7 −33.1

Hybrid RL *** Information States 142.6 88.1 70.9 −16.4

Table 1: Testing the learned strategies after 50000 training dialogues, average reward achieved per dia-
logue over 1000 test dialogues. (a) = strategy trained using 4-gram and tested with 5-gram; (b) = strategy
trained with 5-gram and tested with 4-gram; (av) = average; * significance level p < 0.025; ** signifi-
cance level p < 0.005; *** Note: The Hybrid RL scores (here updated from (Henderson et al., 2005))
are not directly comparable since that system has a larger action set and fewer policy constraints.

the 5-gram, while the ‘b’ strategies were trained
with the 5-gram user simulation and tested with
the 4-gram. The table also shows average scores
for the strategies. Column 2 contains the average
reward obtained per dialogue by each strategy over
1000 test dialogues (computed using the function
of section 2.2).

The 1000 test dialogues for each strategy were
divided into 10 sets of 100. We carried out t-tests
and found that in both the ‘a’ and ‘b’ cases, strat-
egy 2 (UDM) performs significantly better than
the RL baseline (significance levels p < 0.005
and p < 0.025), and strategy 3 (USDM) performs
significantly better than strategy 2 (UDM) (signif-
icance level p < 0.005). With respect to average
performance, strategy 2 (UDM) improves over the
RL baseline by 4.9%, and strategy 3 (USDM) im-
proves by 7.8%. Although there seem to be only
negligible qualitative differences between strate-
gies 2(b) and 3(b) and their ‘a’ equivalents, the
former perform slightly better in testing. This sug-
gests that the 4-gram simulation used for testing
the ‘b’ strategies is a little more reliable in filling
and confirming slot values than the 5-gram.

The 3rd column “HLG05” shows the average
scores for the dialogues as computed by the re-
ward function of (Henderson et al., 2005). This is
done for comparison with that work but also with
the COMMUNICATOR data baseline. Using the
HLG05 reward function, strategy 3 (USDM) im-
proves over the original COMMUNICATOR sys-
tems baseline by 65.9%. The components making
up the reward are shown in the final 3 columns
of table 1. Here we see that all of the RL strate-

gies are able to fill and confirm all of the 4 slots
when conversing with the simulated COMMUNI-
CATOR users. The only variation is in the aver-
age length of dialogue required to confirm all four
slots. The COMMUNICATOR systems were of-
ten unable to confirm or fill all of the user slots,
and the dialogues were quite long on average. As
stated in section 2.4.1, the n-gram simulations do
not simulate the case of a particular user goal ut-
terance being unrecognisable for the system. This
was a problem that could be encountered by the
real COMMUNICATOR systems.

Nevertheless, the performance of all the learned
strategies compares very well to the COMMUNI-
CATOR data baseline. For example, in an average
dialogue, the RL strategies filled and confirmed all
four slots with around 9 actions not including of-
fering the flight, but the COMMUNICATOR sys-
tems took an average of around 33 actions per di-
alogue, and often failed to complete the task.

With respect to the hybrid RL result of (Hen-
derson et al., 2005), shown in the final row of the
table, Strategy 3 (USDM) shows a 34% improve-
ment, though these results are not directly compa-
rable because that system uses a larger action set
and has fewer constraints (e.g. it can ask “how may
I help you?” at any time, not just at the start of a
dialogue).

Finally, let us note that the performance of the
RL strategies is close to optimal, but that there is
some room for improvement. With respect to the
HLG05 metric, the optimal system score would be
197, but this would only be available in rare cases
where the simulated user supplies all 4 slots in the
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Figure 1: Training the dialogue strategies with the
4-gram user simulation

first utterance. With respect to the metric we have
used here (with a −5 per system turn penalty), the
optimal score is 85 (and we currently score an av-
erage of 55.57). Thus we expect that there are
still further improvments that can be made to more
fully exploit the dialogue context (see section 4.3).

4.1 Qualitative Analysis

Below are a list of general characteristics of the
learned strategies:

1. The reinforcement learner learns to query the
database only in states where all four slots
have been confirmed.

2. With sufficient exploration, the reinforce-
ment learner learns not to pass the call to a
human operator in any state.

3. The learned strategies employ implicit confir-
mations wherever possible. This allows them
to fill and confirm the slots in fewer turns than
if they simply asked the slot values and then
used explicit confirmation.

4. As a result of characteristic 3, which slots
can be asked and implicitly confirmed at the
same time influences the order in which the
learned strategies attempt to fill and confirm
each slot, e.g. if the status of the third slot is
‘filled’ and the others are ‘empty’, the learner
learns to ask for the second or fourth slot
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Figure 2: Training the dialogue strategies with the
5-gram user simulation

rather than the first, since it can implicitly
confirm the third while it asks for the second
or fourth slots, but it cannot implicitly con-
firm the third while it asks for the first slot.
This action is not available (see section 2.1).

4.2 Emergent behaviour

In testing the UDM strategy (2) filled and con-
firmed all of the slots in fewer turns on aver-
age than the RL baseline, and strategy 3 (USDM)
did this in fewer turns than strategy 2 (UDM).
What then were the qualitative differences be-
tween the three strategies? The behaviour of the
three strategies only seems to really deviate when
a user response fails to fill or confirm one or more
slots. Then the baseline strategy’s state has not
changed and so it will repeat its last dialogue
move, whereas the state for strategies 2 (UDM)
and 3 (USDM) has changed and as a result, these
may now try different actions. It is in such circum-
stances that the UDM strategy seems to be more
effective than the baseline, and strategy 3 (USDM)
more effective than the UDM strategy. In figure 3
we show illustrative state and learned action pairs
for the different strategies. They relate to a sit-
uation where the first user response(s) in the di-
alogue has/have failed to fill a single slot value.
NB: here ‘emp’ stands for ‘empty’ and ‘fill’ for
‘filled’ and they appear in the first four state vari-
ables, which stand for slot states. For strategy 2

(UDM), the fifth variable represents the user’s last
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dialogue move, and the for strategy 3 (USDM), the
fifth variable represents the system’s last dialogue
move, and the sixth, the user’s last dialogue move.

BASELINE STRATEGY
State:
[emp,emp,emp,emp]
Action: askSlot2

STRATEGY 2 (UDM)
State:
[emp,emp,emp,emp,user(quiet)]
Action: askSlot3

State:
[emp,emp,emp,emp,user(null)]
Action: askSlot1

STRATEGY 3 (USDM)
State:
[emp,emp,emp,emp,askSlot3,user(quiet)]
Action: askSlot3

State:
[emp,emp,emp,emp,askSlot3,user(null)]
Action: giveHelp

State:
[emp,emp,emp,emp,giveHelp,user(quiet)]
Action: askSlot3

State:
[emp,emp,emp,emp,giveHelp,user(null)]
Action: askSlot3

Figure 3: Examples of the different learned strate-
gies and emergent behaviours: focus switching
(for UDM) and giving help (for USDM)

Here we can see that should the user responses
continue to fail to provide a slot value, the base-
line’s state will be unchanged and so the strategy
will simply ask for slot 2 again. The state for strat-
egy 2 (UDM) does change however. This strategy
switches focus between slots 3 and 1 depending on
whether the user’s last dialogue move was ‘null’ or
‘quiet’ NB. As stated in section 2.4, ‘null’ means
out-of-domain or that there was no ASR hypothe-
sis. Strategy 3 (USDM) is different again. Knowl-
edge of the system’s last dialogue move as well
as the user’s last move has enabled the learner to
make effective use of the ‘give help’ action, rather
than to rely on switching focus. When the user’s
last dialogue move is ‘null’ in response to the sys-
tem move ‘askSlot3’, then the strategy uses the
‘give help’ action before returning to ask for slot 3

again. The example described here is not the only
example of strategy 2 (UDM) employing focus
switching while strategy 3 (USDM) prefers to use
the ‘give help’ action when a user response fails
to fill or confirm a slot. This kind of behaviour in
strategies 2 and 3 is emergent dialogue behaviour
that has been learned by the system rather than ex-

plicitly programmed.

4.3 Further possibilities for improvement
over the RL baseline

Further improvements over the RL baseline might
be possible with a wider set of system actions.
Strategies 2 and 3 may learn to make more ef-
fective use of additional actions than the baseline
e.g. additional actions that implicitly confirm one
slot whilst asking another may allow more of the
switching focus described in section 4.1. Other
possible additional actions include actions that ask
for or confirm two or more slots simultaneously.

In section 2.4.1, we highlighted the fact that the
n-gram user simulations are not completely real-
istic and that this will make certain state features
more or less important in learning a strategy. Thus
had we been able to use even more realistic user
simulations, including certain additional context
features in the state might have enabled a greater
improvement over the baseline. Dialogue length
is an example of a feature that could have made
a difference had the simulations been able to sim-
ulate the case of a particular goal utterance being
unrecognisable for the system. The reinforcement
learner may then be able to use the dialogue length
feature to learn when to give up asking for a par-
ticular slot value and make a partially complete
database query. This would of course require a
reward function that gave some reward to partially
complete database queries rather than the all-or-
nothing reward function used here.

5 Conclusion and Future Work

We have used user simulations that are n-gram
models learned from COMMUNICATOR data to
explore reinforcement learning of full dialogue
strategies with some “high-level” context infor-
mation (the user and and system’s last dialogue
moves). Almost all previous work (e.g. (Singh
et al., 2002; Pietquin, 2004; Scheffler and Young,
2001)) has included only low-level information
in state representations. In contrast, the explo-
ration of very large state spaces to date relies on a
“hybrid” supervised/reinforcement learning tech-
nique, where the reinforcement learning element
has not been shown to significantly improve poli-
cies over the purely supervised case (Henderson et
al., 2005).

We presented our experimental environment,
the reinforcement learner, the simulated users,
and our methodology. In testing with the sim-
ulated COMMUNICATOR users, the new strate-
gies learned with higher-level (i.e. dialogue move)
information in the state outperformed the low-
level RL baseline (only slot status information)
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by 7.8% and the original COMMUNICATOR sys-
tems by 65.9%. These strategies obtained more
reward than the RL baseline by filling and con-
firming all of the slots with fewer system turns on
average. Moreover, the learned strategies show
interesting emergent dialogue behaviour such as
making effective use of the ‘give help’ action and
switching focus to different subtasks when the cur-
rent subtask is proving problematic.

In future work, we plan to use even more realis-
tic user simulations, for example those developed
following (Georgila et al., 2005a), which incorpo-
rate elements of goal-directed user behaviour. We
will continue to investigate whether we can main-
tain tractability and learn superior strategies as we
add incrementally more high-level contextual in-
formation to the state. At some stage this may
necessitate using a generalisation method such as
linear function approximation (Henderson et al.,
2005). We also intend to use feature selection
techniques (e.g. CFS subset evaluation (Rieser and
Lemon, 2006)) on in order to determine which
contextual features this suggests are important.
We will also carry out a more direct comparison
with the hybrid strategies learned by (Henderson
et al., 2005). In the slightly longer term, we will
test our learned strategies on humans using a full
spoken dialogue system. We hypothesize that the
strategies which perform the best in terms of task
completion and user satisfaction scores (Walker et
al., 2000) will be those learned with high-level di-
alogue context information in the state.
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Abstract 

Speech recognition problems are a reality 
in current spoken dialogue systems. In 
order to better understand these phenom-
ena, we study dependencies between 
speech recognition problems and several 
higher level dialogue factors that define 
our notion of student state: frustra-
tion/anger, certainty and correctness. We 
apply Chi Square (χ2) analysis to a cor-
pus of speech-based computer tutoring 
dialogues to discover these dependencies 
both within and across turns. Significant 
dependencies are combined to produce 
interesting insights regarding speech rec-
ognition problems and to propose new 
strategies for handling these problems. 
We also find that tutoring, as a new do-
main for speech applications, exhibits in-
teresting tradeoffs and new factors to 
consider for spoken dialogue design. 

1 Introduction 

Designing a spoken dialogue system involves 
many non-trivial decisions. One factor that the 
designer has to take into account is the presence 
of speech recognition problems (SRP). Previous 
work (Walker et al., 2000) has shown that the 
number of SRP is negatively correlated with 
overall user satisfaction. Given the negative im-
pact of SRP, there has been a lot of work in try-
ing to understand this phenomenon and its impli-
cations for building dialogue systems. Most of 
the previous work has focused on lower level 
details of SRP: identifying components responsi-
ble for SRP (acoustic model, language model, 
search algorithm (Chase, 1997)) or prosodic 
characterization of SRP (Hirschberg et al., 2004). 

We extend previous work by analyzing the re-
lationship between SRP and higher level dia-
logue factors. Recent work has shown that dia-
logue design can benefit from several higher 
level dialogue factors: dialogue acts (Frampton 
and Lemon, 2005; Walker et al., 2001), prag-
matic plausibility (Gabsdil and Lemon, 2004). 
Also, it is widely believed that user emotions, as 
another example of higher level factor, interact 
with SRP but, currently, there is little hard evi-
dence to support this intuition. We perform our 
analysis on three high level dialogue factors: 
frustration/anger, certainty and correctness. Frus-
tration and anger have been observed as the most 
frequent emotional class in many dialogue sys-
tems (Ang et al., 2002) and are associated with a 
higher word error rate (Bulyko et al., 2005). For 
this reason, we use the presence of emotions like 
frustration and anger as our first dialogue factor. 

Our other two factors are inspired by another 
contribution of our study: looking at speech-
based computer tutoring dialogues instead of 
more commonly used information retrieval dia-
logues. Implementing spoken dialogue systems 
in a new domain has shown that many practices 
do not port well to the new domain (e.g. confir-
mation of long prompts (Kearns et al., 2002)). 
Tutoring, as a new domain for speech applica-
tions (Litman and Forbes-Riley, 2004; Pon-Barry 
et al., 2004), brings forward new factors that can 
be important for spoken dialogue design. Here 
we focus on certainty and correctness. Both fac-
tors have been shown to play an important role in 
the tutoring process (Forbes-Riley and Litman, 
2005; Liscombe et al., 2005). 

A common practice in previous work on emo-
tion prediction (Ang et al., 2002; Litman and 
Forbes-Riley, 2004) is to transform an initial 
finer level emotion annotation (five or more la-
bels) into a coarser level annotation (2-3 labels). 
We wanted to understand if this practice can im-
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pact the dependencies we observe from the data. 
To test this, we combine our two emotion1 fac-
tors (frustration/anger and certainty) into a binary 
emotional/non-emotional annotation. 

To understand the relationship between SRP 
and our three factors, we take a three-step ap-
proach. In the first step, dependencies between 
SRP and our three factors are discovered using 
the Chi Square (χ2) test. Similar analyses on hu-
man-human dialogues have yielded interesting 
insights about human-human conversations 
(Forbes-Riley and Litman, 2005; Skantze, 2005). 
In the second step, significant dependencies are 
combined to produce interesting insights regard-
ing SRP and to propose strategies for handling 
SRP. Validating these strategies is the purpose of 
the third step. In this paper, we focus on the first 
two steps; the third step is left as future work.  

Our analysis produces several interesting in-
sights and strategies which confirm the utility of 
the proposed approach. With respect to insights, 
we show that user emotions interact with SRP. 
We also find that incorrect/uncertain student 
turns have more SRP than expected. In addition, 
we find that the emotion annotation level affects 
the interactions we observe from the data, with 
finer-level emotions yielding more interactions 
and insights. 

In terms of strategies, our data suggests that 
favoring misrecognitions over rejections (by 
lowering the rejection threshold) might be more 
beneficial for our tutoring task – at least in terms 
of reducing the number of emotional student 
turns. Also, as a general design practice in the 
spoken tutoring applications, we find an interest-
ing tradeoff between the pedagogical value of 
asking difficult questions and the system’s ability 
to recognize the student answer. 

2 Corpus 

The corpus analyzed in this paper consists of 95 
experimentally obtained spoken tutoring dia-
logues between 20 students and our system 
ITSPOKE (Litman and Forbes-Riley, 2004), a 
speech-enabled version of the text-based WHY2 
conceptual physics tutoring system (VanLehn et 
al., 2002). When interacting with ITSPOKE, stu-
dents first type an essay answering a qualitative 
physics problem using a graphical user interface. 
ITSPOKE then engages the student in spoken dia-
logue (using speech-based input and output) to 
correct misconceptions and elicit more complete 
                                                 
1 We use the term “emotion” loosely to cover both affects 
and attitudes that can impact student learning. 

explanations, after which the student revises the 
essay, thereby ending the tutoring or causing an-
other round of tutoring/essay revision. For rec-
ognition, we use the Sphinx2 speech recognizer 
with stochastic language models. Because speech 
recognition is imperfect, after the data was col-
lected, each student utterance in our corpus was 
manually transcribed by a project staff member. 
An annotated excerpt from our corpus is shown 
in Figure 1 (punctuation added for clarity). The 
excerpts show both what the student said (the 
STD labels) and what ITSPOKE recognized (the 
ASR labels). The excerpt is also annotated with 
concepts that will be described next. 

2.1 Speech Recognition Problems (SRP) 

One form of SRP is the Rejection. Rejections 
occur when ITSPOKE is not confident enough in 
the recognition hypothesis and asks the student 
to repeat (Figure 1, STD3,4). For our χ2 analysis, 
we define the REJ variable with two values: Rej 
(a rejection occurred in the turn) and noRej (no 
rejection occurred in the turn). Not surprisingly, 
ITSPOKE also misrecognized some student turns. 
When ITSPOKE heard something different than 
what the student actually said but was confident 
in its hypothesis, we call this an ASR Misrecog-
nition (a binary version of the commonly used 
Word Error Rate) (Figure 1, STD1,2). Similarly, 
we define the ASR MIS variable with two val-
ues: AsrMis and noAsrMis. 

Semantic accuracy is more relevant for dia-
logue evaluation, as it does not penalize for word 
errors that are unimportant to overall utterance 
interpretation. In the case of form-based informa-
tion access spoken dialogue systems, computing 
semantic accuracy is straightforward (i.e. con-
cept accuracy = percentage of correctly recog-
nized concepts). In contrast, in the tutoring do-
main there are no clear forms with slots to be 
filled. We base our semantic accuracy on the 
“correctness” measure of the student turn. For 
each student turn, ITSPOKE interprets it and la-
bels its correctness with regard to whether the 
student correctly answered the tutor question (see 
the labels between square brackets in Figure 1). 
We define Semantic Misrecognition as cases 
where ITSPOKE was confident in its recognition 
hypothesis and the correctness interpretation of 
the recognition hypothesis is different from the 
correctness interpretation of the manual tran-
script (Figure 1, STD1). Similarly, we define the 
SEM MIS variable with two values: SemMis 
and noSemMis. The top part of Table 1 lists the 
distribution for our three SRP variables. 
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3 Student State Annotation 

Our definition of student state includes annota-
tion on three dimensions (our three dialogue fac-
tors): Frustration/Anger/Hyperarticulation, Cer-
tainty and Correctness (see Table 1). The first 
two dimensions capture the student emotions and 
the last one the student correctness. 

ITSPOKE: Good. Apply the same force to an object of 
mass M3, which is three times the mass of M1. 
What is the magnitude M3's acceleration in terms of 
A1 [acceleration of the object M1]? 

STD1: third of a one (CERT=Uncertain, CRCT=C) 
[correct] 

ASR1: they're it but a one (AsrMis, SemMis) [incorrect] 
ITSPOKE: The acceleration of M3 [...] would be one-

third the acceleration of M1. [...] In general for the 
same force what remains constant? 

STD2: weight (CRCT=I) [incorrect] 
ASR2: great (AsrMis) [incorrect] 
ITSPOKE: Well... The product of the mass of a body 

and its acceleration remains constant for a given 
force. What is the relationship between a force act-
ing on the box, the mass of the box, and its accel-
eration? 

STD3: newton's second law (CERT=Uncertain, 
CRCT=PC) 

ASR3: the cancel the fire (Rej) 
ITSPOKE: Could you please repeat that? 
STD4: newton's second law (FAH=FrAng, CRCT=PC) 
ASR4: newton second long (Rej) 

Figure 1: Human-Computer Dialogue Excerpt 
The Frustration/Anger/Hyperarticulation 

dimension captures the perceived negative stu-
dent emotional response to the interaction with 
the system. Three labels were used to annotate 
this dimension: frustration-anger, hyperarticula-
tion and neutral. Similar to (Ang et al., 2002), 
because frustration and anger can be difficult to 
distinguish reliably, they were collapsed into a 
single label: frustration-anger (Figure 1, STD4). 
Often, frustration and anger is prosodically 
marked and in many cases the prosody used is 
consistent with hyperarticulation (Ang et al., 
2002). For this reason we included in this dimen-
sion the hyperarticulation label (even though hy-
perarticulation is not an emotion but a state). We 
used the hyperarticulation label for turns where 
no frustration or anger was perceived but never-
theless were hyperarticulated. For our interaction 
experiments we define the FAH variable with 
three values: FrAng (frustration-anger), Hyp 
(hyperarticulation) and Neutral. 

The Certainty dimension captures the per-
ceived student reaction to the questions asked by 
our computer tutor and her overall reaction to the 
tutoring domain (Liscombe et al., 2005). 

(Forbes-Riley and Litman, 2005) show that stu-
dent certainty interacts with a human tutor’s dia-
logue decision process (i.e. the choice of feed-
back). Four labels were used for this dimension: 
certain, uncertain (e.g. Figure 1, STD1), mixed 
and neutral. In a small number of turns, both cer-
tainty and uncertainty were expressed and these 
turns were labeled as mixed (e.g. the student was 
certain about a concept, but uncertain about an-
other concept needed to answer the tutor’s ques-
tion). For our interaction experiments we define 
the CERT variable with four values: Certain, 
Uncertain, Mixed and Neutral. 

 Vari-
able Values Student turns 

(2334) 
Speech recognition problems 

 ASR 
MIS 

AsrMis 
noAsrMis 

25.4% 
74.6% 

 SEM 
MIS 

SemMis 
noSemMis 

5.7% 
94.3% 

 REJ Rej 
noRej 

7.0% 
93.0% 

Student state 

 FAH 
FrAng 
Hyp 
Neutral 

9.9% 
2.1% 

88.0% 

 CERT 

Certain 
Uncertain 
Mixed 
Neutral 

41.3% 
19.1% 
2.4% 

37.3% 

 CRCT 

C 
I 
PC 
UA 

63.3% 
23.3% 
6.2% 
7.1% 

 EnE Emotional 
Neutral 

64.8% 
35.2% 

Table 1: Variable distributions in our corpus. 
To test the impact of the emotion annotation 

level, we define the Emotional/Non-Emotional 
annotation based on our two emotional dimen-
sions: neutral turns on both the FAH and the 
CERT dimension are labeled as neutral2; all other 
turns were labeled as emotional. Consequently, 
we define the EnE variable with two values: 
Emotional and Neutral. 

Correctness is also an important factor of the 
student state. In addition to the correctness labels 
assigned by ITSPOKE (recall the definition of 
SEM MIS), each student turn was manually an-
notated by a project staff member in terms of 
their physics-related correctness. Our annotator 
used the human transcripts and his physics 
knowledge to label each student turn for various 
                                                 
2 To be consistent with our previous work, we label hyperar-
ticulated turns as emotional even though hyperarticulation is 
not an emotion. 
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degrees of correctness: correct, partially correct, 
incorrect and unable to answer. Our system can 
ask the student to provide multiple pieces of in-
formation in her answer (e.g. the question “Try 
to name the forces acting on the packet. Please, 
specify their directions.” asks for both the names 
of the forces and their direction). If the student 
answer is correct and contains all pieces of in-
formation, it was labeled as correct (e.g. “grav-
ity, down”). The partially correct label was used 
for turns where part of the answer was correct 
but the rest was either incorrect (e.g. “gravity, 
up”) or omitted some information from the ideal 
correct answer (e.g. “gravity”). Turns that were 
completely incorrect (e.g. “no forces”) were la-
beled as incorrect. Turns where the students did 
not answer the computer tutor’s question were 
labeled as “unable to answer”. In these turns the 
student used either variants of “I don’t know” or 
simply did not say anything. For our interaction 
experiments we defined the CRCT variable with 
four values: C (correct), I (incorrect), PC (par-
tially correct) and UA (unable to answer). 

Please note that our definition of student state 
is from the tutor’s perspective. As we mentioned 
before, our emotion annotation is for perceived 
emotions. Similarly, the notion of correctness is 
from the tutor’s perspective. For example, the 
student might think she is correct but, in reality, 
her answer is incorrect. This correctness should 
be contrasted with the correctness used to define 
SEM MIS. The SEM MIS correctness uses 
ITSPOKE’s language understanding module ap-
plied to recognition hypothesis or the manual 
transcript, while the student state’s correctness 
uses our annotator’s language understanding. 

All our student state annotations are at the turn 
level and were performed manually by the same 
annotator. While an inter-annotator agreement 
study is the best way to test the reliability of our 
two emotional annotations (FAH and CERT), 
our experience with annotating student emotions 
(Litman and Forbes-Riley, 2004) has shown that 
this type of annotation can be performed reliably. 
Given the general importance of the student’s 
uncertainty for tutoring, a second annotator has 
been commissioned to annotate our corpus for 
the presence or absence of uncertainty. This an-
notation can be directly compared with a binary 
version of CERT: Uncertain+Mixed versus Cer-
tain+Neutral. The comparison yields an agree-
ment of 90% with a Kappa of 0.68. Moreover, if 
we rerun our study on the second annotation, we 
find similar dependencies. We are currently 
planning to perform a second annotation of the 

FAH dimension to validate its reliability. 
We believe that our correctness annotation 

(CRCT) is reliable due to the simplicity of the 
task: the annotator uses his language understand-
ing to match the human transcript to a list of cor-
rect/incorrect answers. When we compared this 
annotation with the correctness assigned by 
ITSPOKE on the human transcript, we found an 
agreement of 90% with a Kappa of 0.79. 

4 Identifying dependencies using χ2 

To discover the dependencies between our vari-
ables, we apply the χ2 test. We illustrate our 
analysis method on the interaction between cer-
tainty (CERT) and rejection (REJ). The χ2 value 
assesses whether the differences between ob-
served and expected counts are large enough to 
conclude a statistically significant dependency 
between the two variables (Table 2, last column). 
For Table 2, which has 3 degrees of freedom ((4-
1)*(2-1)), the critical χ2 value at a p<0.05 is 7.81. 
We thus conclude that there is a statistically sig-
nificant dependency between the student cer-
tainty in a turn and the rejection of that turn. 
Combination  Obs. Exp. χ2

CERT – REJ    11.45 
Certain – Rej - 49 67 9.13 

Uncertain – Rej + 43 31 6.15 
Table 2: CERT – REJ interaction. 

If any of the two variables involved in a sig-
nificant dependency has more than 2 possible 
values, we can look more deeply into this overall 
interaction by investigating how particular values 
interact with each other. To do that, we compute 
a binary variable for each variable’s value in part 
and study dependencies between these variables. 
For example, for the value ‘Certain’ of variable 
CERT we create a binary variable with two val-
ues: ‘Certain’ and ‘Anything Else’ (in this case 
Uncertain, Mixed and Neutral). By studying the 
dependency between binary variables we can 
understand how the interaction works. 

Table 2 reports in rows 3 and 4 all significant 
interactions between the values of variables 
CERT and REJ. Each row shows: 1) the value 
for each original variable, 2) the sign of the de-
pendency, 3) the observed counts, 4) the ex-
pected counts and 5) the χ2 value. For example, 
in our data there are 49 rejected turns in which 
the student was certain. This value is smaller 
than the expected counts (67); the dependency 
between Certain and Rej is significant with a χ2 
value of 9.13. A comparison of the observed 
counts and expected counts reveals the direction 
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(sign) of the dependency. In our case we see that 
certain turns are rejected less than expected (row 
3), while uncertain turns are rejected more than 
expected (row 4). On the other hand, there is no 
interaction between neutral turns and rejections 
or between mixed turns and rejections. Thus, the 
CERT – REJ interaction is explained only by the 
interaction between Certain and Rej and the in-
teraction between Uncertain and Rej. 

5 Results - dependencies 

In this section we present all significant depend-
encies between SRP and student state both 
within and across turns. Within turn interactions 
analyze the contribution of the student state to 
the recognition of the turn. They were motivated 
by the widely believed intuition that emotion 
interacts with SRP. Across turn interactions look 
at the contribution of previous SRP to the current 
student state. Our previous work (Rotaru and 
Litman, 2005) had shown that certain SRP will 
correlate with emotional responses from the user. 
We also study the impact of the emotion annota-
tion level (EnE versus FAH/CERT) on the inter-
actions we observe. The implications of these 
dependencies will be discussed in Section 6. 

5.1 Within turn interactions 

For the FAH dimension, we find only one sig-
nificant interaction: the interaction between the 
FAH student state and the rejection of the current 
turn (Table 3). By studying values’ interactions, 
we find that turns where the student is frustrated 
or angry are rejected more than expected (34 in-
stead of 16; Figure 1, STD4 is one of them). 
Similarly, turns where the student response is 
hyperarticulated are also rejected more than ex-
pected (similar to observations in (Soltau and 
Waibel, 2000)). In contrast, neutral turns in the 
FAH dimension are rejected less than expected. 
Surprisingly, FrAng does not interact with 
AsrMis as observed in (Bulyko et al., 2005) but 
they use the full word error rate measure instead 
of the binary version used in this paper. 
Combination  Obs. Exp. χ2

FAH – REJ    77.92 
FrAng – Rej + 34 16 23.61 

Hyp – Rej + 16 3 50.76 
Neutral – Rej - 113 143 57.90 

Table 3: FAH – REJ interaction. 
Next we investigate how our second emotion 

annotation, CERT, interacts with SRP. All sig-
nificant dependencies are reported in Tables 2 
and 4. In contrast with the FAH dimension, here 

we see that the interaction direction depends on 
the valence. We find that ‘Certain’ turns have 
less SRP than expected (in terms of AsrMis and 
Rej). In contrast, ‘Uncertain’ turns have more 
SRP both in terms of AsrMis and Rej. ‘Mixed’ 
turns interact only with AsrMis, allowing us to 
conclude that the presence of uncertainty in the 
student turn (partial or overall) will result in ASR 
problems more than expected. Interestingly, on 
this dimension, neutral turns do not interact with 
any of our three SRP. 
Combination  Obs. Exp. χ2

CERT – ASRMIS    38.41 
Certain – AsrMis - 204 244 15.32 

Uncertain – AsrMis + 138 112 9.46 
Mixed – AsrMis + 29 13 22.27 
Table 4: CERT – ASRMIS interaction. 

Finally, we look at interactions between stu-
dent correctness and SRP. Here we find signifi-
cant dependencies with all types of SRP (see Ta-
ble 5). In general, correct student turns have 
fewer SRP while incorrect, partially correct or 
UA turns have more SRP than expected. Partially 
correct turns have more AsrMis and SemMis 
problems than expected, but are rejected less 
than expected. Interestingly, UA turns interact 
only with rejections: these turns are rejected 
more than expected. An analysis of our corpus 
reveals that in most rejected UA turns the student 
does not say anything; in these cases, the sys-
tem’s recognition module thought the student 
said something but the system correctly rejects 
the recognition hypothesis. 
Combination  Obs. Exp. χ2

CRCT – ASRMIS    65.17 
C – AsrMis - 295 374 62.03 
I – AsrMis + 198 137 45.95 

PC – AsrMis + 50 37 5.9 
CRCT – SEMMIS    20.44 

C – SemMis + 100 84 7.83 
I – SemMis - 14 31 13.09 

PC – SemMis + 15 8 5.62 
CRCT – REJ    99.48 

C – Rej - 53 102 70.14 
I – Rej + 84 37 79.61 

PC – Rej - 4 10 4.39 
UA – Rej + 21 11 9.19 

Table 5: Interactions between Correctness and SRP. 
The only exception to the rule is SEM MIS. 

We believe that SEM MIS behavior is explained 
by the “catch-all” implementation in our system. 
In ITSPOKE, for each tutor question there is a list 
of anticipated answers. All other answers are 
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treated as incorrect. Thus, it is less likely that a 
recognition problem in an incorrect turn will af-
fect the correctness interpretation (e.g. Figure 1, 
STD2: very unlikely to misrecognize the incor-
rect “weight” with the anticipated “the product of 
mass and acceleration”). In contrast, in correct 
turns recognition problems are more likely to 
screw up the correctness interpretation (e.g. mis-
recognizing “gravity down” as “gravity sound”). 

5.2 Across turn interactions 

Next we look at the contribution of previous SRP 
– variable name or value followed by (-1) – to the 
current student state. Please note that there are 
two factors involved here: the presence of the 
SRP and the SRP handling strategy. In 
ITSPOKE, whenever a student turn is rejected, 
unless this is the third rejection in a row, the stu-
dent is asked to repeat using variations of “Could 
you please repeat that?”. In all other cases, 
ITSPOKE makes use of the available informa-
tion ignoring any potential ASR errors. 
Combination  Obs. Exp. χ2

ASRMIS(-1) – FAH    7.64 
AsrMis(-1) – FrAng -t 46 58 3.73 

AsrMis(-1) – Hyp -t 7 12 3.52 
AsrMis(-1) – Neutral + 527 509 6.82 

REJ(-1) – FAH    409.31
Rej(-1) – FrAng + 36 16 28.95 

Rej(-1) – Hyp + 38 3 369.03
Rej(-1) – Neutral - 88 142 182.9 

REJ(-1) – CRCT    57.68 
Rej(-1) – C - 68 101 31.94 
Rej(-1) – I + 74 37 49.71 

Rej(-1) – PC - 3 10 6.25 
Table 6: Interactions across turns (t – trend, p<0.1). 
Here we find only 3 interactions (Table 6). We 

find that after a non-harmful SRP (AsrMis) the 
student is less frustrated and hyperarticulated 
than expected. This result is not surprising since 
an AsrMis does not have any effect on the nor-
mal dialogue flow. 

In contrast, after rejections we observe several 
negative events. We find a highly significant in-
teraction between a previous rejection and the 
student FAH state, with student being more frus-
trated and more hyperarticulated than expected 
(e.g. Figure 1, STD4). Not only does the system 
elicit an emotional reaction from the student after 
a rejection, but her subsequent response to the 
repetition request suffers in terms of the correct-
ness. We find that after rejections student an-
swers are correct or partially correct less than 
expected and incorrect more than expected. The 

REJ(-1) – CRCT interaction might be explained 
by the CRCT – REJ interaction (Table 5) if, in 
general, after a rejection the student repeats her 
previous turn. An annotation of responses to re-
jections as in (Swerts et al., 2000) (repeat, re-
phrase etc.) should  provide additional insights.  

We were surprised to see that a previous 
SemMis (more harmful than an AsrMis but less 
disruptive than a Rej) does not interact with the 
student state; also the student certainty does not 
interact with previous SRP. 

5.3 Emotion annotation level 

We also study the impact of the emotion annota-
tion level on the interactions we can observe 
from our corpus. In this section, we look at inter-
actions between SRP and our coarse-level emo-
tion annotation (EnE) both within and across 
turns. Our results are similar with the results of 
our previous work (Rotaru and Litman, 2005) on 
a smaller corpus and a similar annotation 
scheme. We find again only one significant in-
teraction: rejections are followed by more emo-
tional turns than expected (Table 7). The strength 
of the interaction is smaller than in previous 
work, though the results can not be compared 
directly. No other dependencies are present. 
Combination  Obs. Exp. χ2

REJ(-1) – EnE    6.19 
Rej(-1) – Emotional + 119 104 6.19 

Table 7: REJ(-1) – EnE interaction. 
We believe that the REJ(-1) – EnE interaction is 

explained mainly by the FAH dimension. Not 
only is there no interaction between REJ(-1) and 
CERT, but the inclusion of the CERT dimension 
in the EnE annotation decreases the strength of 
the interaction between REJ and FAH (the χ2 
value decreases from 409.31 for FAH to a mere 
6.19 for EnE). Collapsing emotional classes also 
prevents us from seeing any within turn interac-
tions. These observations suggest that what is 
being counted as an emotion for a binary emo-
tion annotation is critical its success. In our case, 
if we look at affect (FAH) or attitude (CERT) in 
isolation we find many interactions; in contrast, 
combining them offers little insight.  

6 Results – insights & strategies 

Our results put a spotlight on several interesting 
observations which we discuss below. 
Emotions interact with SRP 
The dependencies between FAH/CERT and 
various SRP (Tables 2-4) provide evidence that 
user’s emotions interact with the system’s ability 
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to recognize the current turn. This is a widely 
believed intuition with little empirical support so 
far. Thus, our notion of student state can be a 
useful higher level information source for SRP 
predictors. Similar to (Hirschberg et al., 2004), 
we believe that peculiarities in the acous-
tic/prosodic profile of specific student states are 
responsible for their SRP. Indeed, previous work 
has shown that the acoustic/prosodic information 
plays an important role in characterizing and 
predicting both FAH (Ang et al., 2002; Soltau 
and Waibel, 2000) and CERT (Liscombe et al., 
2005; Swerts and Krahmer, 2005). 
The impact of the emotion annotation level 
A comparison of the interactions yielded by 
various levels of emotion annotation shows the 
importance of the annotation level. When using a 
coarser level annotation (EnE) we find only one 
interaction. By using a finer level annotation, not 
only we can understand this interaction better but 
we also discover new interactions (five interac-
tions with FAH and CERT). Moreover, various 
state annotations interact differently with SRP. 
For example, non-neutral turns in the FAH di-
mension (FrAng and Hyp) will be always re-
jected more than expected (Table 3); in contrast, 
interactions between non-neutral turns in the 
CERT dimension and rejections depend on the 
valence (‘certain’ turns will be rejected less than 
expected while ‘uncertain’ will be rejected more 
than expected; recall Table 2). We also see that 
the neutral turns interact with SRP depending on 
the dimension that defines them: FAH neutral 
turns interact with SRP (Table 3) while CERT 
neutral turns do not (Tables 2 and 4). 

This insight suggests an interesting tradeoff 
between the practicality of collapsing emotional 
classes (Ang et al., 2002; Litman and Forbes-
Riley, 2004) and the ability to observe meaning-
ful interactions via finer level annotations. 
Rejections: impact and a handling strategy 
Our results indicate that rejections and 
ITSPOKE’s current rejection-handling strategy 
are problematic. We find that rejections are fol-
lowed by more emotional turns (Table 7). A 
similar effect was observed in our previous work 
(Rotaru and Litman, 2005). The fact that it gen-
eralizes across annotation scheme and corpus, 
emphasizes its importance. When a finer level 
annotation is used, we find that rejections are 
followed more than expected by a frustrated, an-
gry and hyperarticulated user (Table 6). More-
over, these subsequent turns can result in addi-
tional rejections (Table 3). Asking to repeat after 
a rejection does not also help in terms of correct-

ness: the subsequent student answer is actually 
incorrect more than expected (Table 6). 

These interactions suggest an interesting strat-
egy for our tutoring task: favoring misrecogni-
tions over rejections (by lowering the rejection 
threshold). First, since rejected turns are more 
than expected incorrect (Table 5), the actual rec-
ognized hypothesis for such turns turn is very 
likely to be interpreted as incorrect. Thus, ac-
cepting a rejected turn instead of rejecting it will 
have the same outcome in terms of correctness: 
an incorrect answer. In this way, instead of at-
tempting to acquire the actual student answer by 
asking to repeat, the system can skip these extra 
turn(s) and use the current hypothesis. Second, 
the other two SRP are less taxing in terms of 
eliciting FAH emotions (recall Table 6; note that 
a SemMis might activate an unwarranted and 
lengthy knowledge remediation subdialogue). 
This suggests that continuing the conversation 
will be more beneficial even if the system mis-
understood the student. A similar behavior was 
observed in human-human conversations through 
a noisy speech channel (Skantze, 2005). 
Correctness/certainty–SRP interactions 
We also find an interesting interaction between 
correctness/certainty and system’s ability to rec-
ognize that turn. In general correct/certain turns 
have less SRP while incorrect/uncertain turns 
have more SRP than expected. This observation 
suggests that the computer tutor should ask the 
right question (in terms of its difficulty) at the 
right time. Intuitively, asking a more complicated 
question when the student is not prepared to an-
swer it will increase the likelihood of an incor-
rect or uncertain answer. But our observations 
show that the computer tutor has more trouble 
recognizing correctly these types of answers. 
This suggests an interesting tradeoff between the 
tutor’s question difficulty and the system’s abil-
ity to recognize the student answer. This tradeoff 
is similar in spirit to the initiative-SRP tradeoff 
that is well known when designing information-
seeking systems (e.g. system initiative is often 
used instead of a more natural mixed initiative 
strategy, in order to minimize SRP). 

7 Conclusions 

In this paper we analyze the interactions between 
SRP and three higher level dialogue factors that 
define our notion of student state: frustra-
tion/anger/hyperarticulation, certainty and cor-
rectness. Our analysis produces several interest-
ing insights and strategies which confirm the 
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utility of the proposed approach. We show that 
user emotions interact with SRP and that the 
emotion annotation level affects the interactions 
we observe from the data, with finer-level emo-
tions yielding more interactions and insights. 

We also find that tutoring, as a new domain 
for speech applications, brings forward new im-
portant factors for spoken dialogue design: cer-
tainty and correctness. Both factors interact with 
SRP and these interactions highlight an interest-
ing design practice in the spoken tutoring appli-
cations: the tradeoff between the pedagogical 
value of asking difficult questions and the sys-
tem’s ability to recognize the student answer (at 
least in our system). The particularities of the 
tutoring domain also suggest favoring misrecog-
nitions over rejections to reduce the negative im-
pact of asking to repeat after rejections. 

In our future work, we plan to move to the 
third step of our approach: testing the strategies 
suggested by our results. For example, we will 
implement a new version of ITSPOKE that never 
rejects the student turn. Next, the current version 
and the new version will be compared with re-
spect to users’ emotional response. Similarly, to 
test the tradeoff hypothesis, we will implement a 
version of ITSPOKE that asks difficult questions 
first and then falls back to simpler questions. A 
comparison of the two versions in terms of the 
number of SRP can be used for validation. 

While our results might be dependent on the 
tutoring system used in this experiment, we be-
lieve that our findings can be of interest to practi-
tioners building similar voice-based applications. 
Moreover, our approach can be applied easily to 
studying other systems. 
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Abstract

Data-driven techniques have been used
for many computational linguistics tasks.
Models derived from data are generally
more robust than hand-crafted systems
since they better reflect the distribution
of the phenomena being modeled. With
the availability of large corpora of spo-
ken dialog, dialog management is now
reaping the benefits of data-driven tech-
niques. In this paper, we compare two ap-
proaches to modeling subtask structure in
dialog: a chunk-based model of subdialog
sequences, and a parse-based, or hierarchi-
cal, model. We evaluate these models us-
ing customer agent dialogs from a catalog
service domain.

1 Introduction

As large amounts of language data have become
available, approaches to sentence-level process-
ing tasks such as parsing, language modeling,
named-entity detection and machine translation
have become increasingly data-driven and empiri-
cal. Models for these tasks can be trained to cap-
ture the distributions of phenomena in the data
resulting in improved robustness and adaptabil-
ity. However, this trend has yet to significantly
impact approaches to dialog management in dia-
log systems. Dialog managers (both plan-based
and call-flow based, for example (Di Fabbrizio and
Lewis, 2004; Larsson et al., 1999)) have tradition-
ally been hand-crafted and consequently some-
what brittle and rigid. With the ability to record,
store and process large numbers of human-human
dialogs (e.g. from call centers), we anticipate
that data-driven methods will increasingly influ-
ence approaches to dialog management.

A successful dialog system relies on the syn-
ergistic working of several components: speech
recognition (ASR), spoken language understand-
ing (SLU), dialog management (DM), language
generation (LG) and text-to-speech synthesis
(TTS). While data-driven approaches to ASR and

SLU are prevalent, such approaches to DM, LG
and TTS are much less well-developed. In on-
going work, we are investigating data-driven ap-
proaches for building all components of spoken
dialog systems.

In this paper, we address one aspect of this prob-
lem – inferring predictive models to structure task-
oriented dialogs. We view this problem as a first
step in predicting the system state of a dialog man-
ager and in predicting the system utterance during
an incremental execution of a dialog. In particular,
we learn models for predicting dialog acts of ut-
terances, and models for predicting subtask struc-
tures of dialogs. We use three different dialog act
tag sets for three different human-human dialog
corpora. We compare a flat chunk-based model
to a hierarchical parse-based model as models for
predicting the task structure of dialogs.

The outline of this paper is as follows: In Sec-
tion 2, we review current approaches to building
dialog systems. In Section 3, we review related
work in data-driven dialog modeling. In Section 4,
we present our view of analyzing the structure of
task-oriented human-human dialogs. In Section 5,
we discuss the problem of segmenting and label-
ing dialog structure and building models for pre-
dicting these labels. In Section 6, we report ex-
perimental results on Maptask, Switchboard and a
dialog data collection from a catalog ordering ser-
vice domain.

2 Current Methodology for Building
Dialog systems

Current approaches to building dialog systems
involve several manual steps and careful craft-
ing of different modules for a particular domain
or application. The process starts with a small
scale “Wizard-of-Oz” data collection where sub-
jects talk to a machine driven by a human ‘behind
the curtains’. A user experience (UE) engineer an-
alyzes the collected dialogs, subject matter expert
interviews, user testimonials and other evidences
(e.g. customer care history records). This hetero-
geneous set of information helps the UE engineer
to design some system functionalities, mainly: the
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semantic scope (e.g. call-types in the case of call
routing systems), the LG model, and the DM strat-
egy. A larger automated data collection follows,
and the collected data is transcribed and labeled by
expert labelers following the UE engineer recom-
mendations. Finally, the transcribed and labeled
data is used to train both the ASR and the SLU.

This approach has proven itself in many com-
mercial dialog systems. However, the initial UE
requirements phase is an expensive and error-
prone process because it involves non-trivial de-
sign decisions that can only be evaluated after sys-
tem deployment. Moreover, scalability is compro-
mised by the time, cost and high level of UE know-
how needed to reach a consistent design.

The process of building speech-enabled auto-
mated contact center services has been formalized
and cast into a scalable commercial environment
in which dialog components developed for differ-
ent applications are reused and adapted (Gilbert
et al., 2005). However, we still believe that ex-
ploiting dialog data to train/adapt or complement
hand-crafted components will be vital for robust
and adaptable spoken dialog systems.

3 Related Work

In this paper, we discuss methods for automati-
cally creating models of dialog structure using di-
alog act and task/subtask information. Relevant
related work includes research on automatic dia-
log act tagging and stochastic dialog management,
and on building hierarchical models of plans using
task/subtask information.

There has been considerable research on statis-
tical dialog act tagging (Core, 1998; Jurafsky et
al., 1998; Poesio and Mikheev, 1998; Samuel et
al., 1998; Stolcke et al., 2000; Hastie et al., 2002).
Several disambiguation methods (n-gram models,
hidden Markov models, maximum entropy mod-
els) that include a variety of features (cue phrases,
speaker ID, word n-grams, prosodic features, syn-
tactic features, dialog history) have been used. In
this paper, we show that use of extended context
gives improved results for this task.

Approaches to dialog management include
AI-style plan recognition-based approaches (e.g.
(Sidner, 1985; Litman and Allen, 1987; Rich
and Sidner, 1997; Carberry, 2001; Bohus and
Rudnicky, 2003)) and information state-based ap-
proaches (e.g. (Larsson et al., 1999; Bos et al.,
2003; Lemon and Gruenstein, 2004)). In recent
years, there has been considerable research on
how to automatically learn models of both types
from data. Researchers who treat dialog as a se-
quence of information states have used reinforce-
ment learning and/or Markov decision processes
to build stochastic models for dialog management

that are evaluated by means of dialog simulations
(Levin and Pieraccini, 1997; Scheffler and Young,
2002; Singh et al., 2002; Williams et al., 2005;
Henderson et al., 2005; Frampton and Lemon,
2005). Most recently, Henderson et al. showed
that it is possible to automatically learn good dia-
log management strategies from automatically la-
beled data over a large potential space of dialog
states (Henderson et al., 2005); and Frampton and
Lemon showed that the use of context informa-
tion (the user’s last dialog act) can improve the
performance of learned strategies (Frampton and
Lemon, 2005). In this paper, we combine the use
of automatically labeled data and extended context
for automatic dialog modeling.

Other researchers have looked at probabilistic
models for plan recognition such as extensions of
Hidden Markov Models (Bui, 2003) and proba-
bilistic context-free grammars (Alexandersson and
Reithinger, 1997; Pynadath and Wellman, 2000).
In this paper, we compare hierarchical grammar-
style and flat chunking-style models of dialog.

In recent research, Hardy (2004) used a large
corpus of transcribed and annotated telephone
conversations to develop the Amities dialog sys-
tem. For their dialog manager, they trained sepa-
rate task and dialog act classifiers on this corpus.
For task identification they report an accuracy of
85% (true task is one of the top 2 results returned
by the classifier); for dialog act tagging they report
86% accuracy.

4 Structural Analysis of a Dialog

We consider a task-oriented dialog to be the re-
sult of incremental creation of a shared plan by
the participants (Lochbaum, 1998). The shared
plan is represented as a single tree that encap-
sulates the task structure (dominance and prece-
dence relations among tasks), dialog act structure
(sequences of dialog acts), and linguistic structure
of utterances (inter-clausal relations and predicate-
argument relations within a clause), as illustrated
in Figure 1. As the dialog proceeds, an utterance
from a participant is accommodated into the tree in
an incremental manner, much like an incremental
syntactic parser accommodates the next word into
a partial parse tree (Alexandersson and Reithinger,
1997). With this model, we can tightly couple
language understanding and dialog management
using a shared representation, which leads to im-
proved accuracy (Taylor et al., 1998).

In order to infer models for predicting the struc-
ture of task-oriented dialogs, we label human-
human dialogs with the hierarchical information
shown in Figure 1 in several stages: utterance
segmentation (Section 4.1), syntactic annotation
(Section 4.2), dialog act tagging (Section 4.3) and
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subtask labeling (Section 5).

Dialog

Task

Topic/SubtaskTopic/Subtask

Task Task

Clause

UtteranceUtteranceUtterance

Topic/Subtask

DialogAct,Pred−Args DialogAct,Pred−Args DialogAct,Pred−Args

Figure 1: Structural analysis of a dialog

4.1 Utterance Segmentation
The task of ”cleaning up” spoken language utter-
ances by detecting and removing speech repairs
and dysfluencies and identifying sentence bound-
aries has been a focus of spoken language parsing
research for several years (e.g. (Bear et al., 1992;
Seneff, 1992; Shriberg et al., 2000; Charniak and
Johnson, 2001)). We use a system that segments
the ASR output of a user’s utterance into clauses.
The system annotates an utterance for sentence
boundaries, restarts and repairs, and identifies
coordinating conjunctions, filled pauses and dis-
course markers. These annotations are done using
a cascade of classifiers, details of which are de-
scribed in (Bangalore and Gupta, 2004).

4.2 Syntactic Annotation
We automatically annotate a user’s utterance with
supertags (Bangalore and Joshi, 1999). Supertags
encapsulate predicate-argument information in a
local structure. They are composed with each
other using the substitution and adjunction oper-
ations of Tree-Adjoining Grammars (Joshi, 1987)
to derive a dependency analysis of an utterance
and its predicate-argument structure.

4.3 Dialog Act Tagging
We use a domain-specific dialog act tag-
ging scheme based on an adapted version of
DAMSL (Core, 1998). The DAMSL scheme is
quite comprehensive, but as others have also found
(Jurafsky et al., 1998), the multi-dimensionality
of the scheme makes the building of models from
DAMSL-tagged data complex. Furthermore, the
generality of the DAMSL tags reduces their util-
ity for natural language generation. Other tagging
schemes, such as the Maptask scheme (Carletta et
al., 1997), are also too general for our purposes.
We were particularly concerned with obtaining

sufficient discriminatory power between different
types of statement (for generation), and to include
an out-of-domain tag (for interpretation). We pro-
vide a sample list of our dialog act tags in Table 2.
Our experiments in automatic dialog act tagging
are described in Section 6.3.

5 Modeling Subtask Structure

Figure 2 shows the task structure for a sample di-
alog in our domain (catalog ordering). An order
placement task is typically composed of the se-
quence of subtasks opening, contact-information,
order-item, related-offers, summary. Subtasks can
be nested; the nesting structure can be as deep as
five levels. Most often the nesting is at the left or
right frontier of the subtask tree.

Opening

Order Placement

Contact Info

Delivery InfoShipping Info

ClosingSummaryPayment InfoOrder Item

Figure 2: A sample task structure in our applica-
tion domain.

Contact Info Order Item Payment Info Summary Closing

Shipping Info Delivery Info

Opening

Figure 3: An example output of the chunk model’s
task structure

The goal of subtask segmentation is to predict if
the current utterance in the dialog is part of the cur-
rent subtask or starts a new subtask. We compare
two models for recovering the subtask structure
– a chunk-based model and a parse-based model.
In the chunk-based model, we recover the prece-
dence relations (sequence) of the subtasks but not
dominance relations (subtask structure) among the
subtasks. Figure 3 shows a sample output from the
chunk model. In the parse model, we recover the
complete task structure from the sequence of ut-
terances as shown in Figure 2. Here, we describe
our two models. We present our experiments on
subtask segmentation and labeling in Section 6.4.

5.1 Chunk-based model
This model is similar to the second one described
in (Poesio and Mikheev, 1998), except that we
use tasks and subtasks rather than dialog games.
We model the prediction problem as a classifica-
tion task as follows: given a sequence of utter-
ances ��� in a dialog

��� ���	�
���
�	�	�	���
��� and a
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subtask label vocabulary ����� ��������� , we need
to predict the best subtask label sequence � �"! ���� �	� ��� �#�	�	�	��� ���%$ as shown in equation 1.&('*)�+-,/.10/23,/45	6 798 &:'�; <*= (1)

Each subtask has begin, middle (possibly ab-
sent) and end utterances. If we incorporate this
information, the refined vocabulary of subtask la-
bels is ���"> �@? ���BA� � ��� $� � �/�BC�ED ��� �-�F����G . In
our experiments, we use a classifier to assign to
each utterance a refined subtask label conditioned
on a vector of local contextual features ( H ). In
the interest of using an incremental left-to-right
decoder, we restrict the contextual features to be
from the preceding context only. Furthermore, the
search is limited to the label sequences that re-
spect precedence among the refined labels (beginI middle I end). This constraint is expressed
in a grammar G encoded as a regular expression
( JK�ML � �ON � ���/�BA� ����� $� � ! �/�BC� � ! ). However, in order

to cope with the prediction errors of the classifier,
we approximate J3�ML � with an P -gram language
model on sequences of the refined tag labels:

&:' )Q +R,/.S0/2K,�45	61T5	6ST1U	V
WYX[Z 798 &(' Q ; <*= (2)

\ ,/.S0/2K,�45	6 T5	6ST1U	V
WYX[Z
]^`_ 798baBc

_ ; d�=
(3)

In order to estimate the conditional distributione ����� � D H � we use the general technique of choos-
ing the maximum entropy (maxent) distribution
that properly estimates the average of each feature
over the training data (Berger et al., 1996). This
can be written as a Gibbs distribution parameter-
ized with weights f , where g is the size of the
label set. Thus,

798ba%c
_ ; d�=�+ h`i1jlkbmon pqsrtvuxw:y h i1jlk%n p (4)

We use the machine learning toolkit
LLAMA (Haffner, 2006) to estimate the con-
ditional distribution using maxent. LLAMA
encodes multiclass maxent as binary maxent, in
order to increase the speed of training and to scale
this method to large data sets. Each of the g
classes in the set �z�{> is encoded as a bit vector
such that, in the vector for class | , the |B}�~ bit is one
and all other bits are zero. Then, g one-vs-other
binary classifiers are used as follows.

798x� ; ��=�+���� 798��� ; ��=�+ h i1��n �h i � n �9� h i��� n � + �� � h	� iS�� n �
(5)

where f��� is the parameter vector for the anti-
label �� and f��� � f ��� f �� . In order to computee ����� � D H � , we use class independence assumption
and require that � � ���

and for all ���� | ��� � �
.

798ba%c
_ ; ��=�+ 798x�

_ ; ��= r^¡`¢w _ 798x� ¡ ; ��=
5.2 Parse-based Model
As seen in Figure 3, the chunk model does
not capture dominance relations among subtasks,
which are important for resolving anaphoric refer-
ences (Grosz and Sidner, 1986). Also, the chunk
model is representationally inadequate for center-
embedded nestings of subtasks, which do occur
in our domain, although less frequently than the
more prevalent “tail-recursive” structures.

In this model, we are interested in finding the
most likely plan tree (

e � ) given the sequence of
utterances:

7 ' ) +-,/.S0/2K,/4£ 6 798¤7 'z; <*= (6)

For real-time dialog management we use a top-
down incremental parser that incorporates bottom-
up information (Roark, 2001).

We rewrite equation (6) to exploit the subtask
sequence provided by the chunk model as shown
in Equation 7. For the purpose of this paper, we
approximate Equation 7 using one-best (or k-best)
chunk output.1

7 '*)¥+ ,/.S0/2K,�4£ 6 ¦ 5	6 798 &('�; <*= 798¤7 '�; &('�= (7)\ ,/.S0/2K,�4£ 6 798¤7 '�; &(' ) = (8)

where &(' ) +-,/.S0/2K,/45/6 798 &:'�; <*= (9)

6 Experiments and Results

In this section, we present the results of our exper-
iments for modeling subtask structure.

6.1 Data
As our primary data set, we used 915 telephone-
based customer-agent dialogs related to the task
of ordering products from a catalog. Each dia-
log was transcribed by hand; all numbers (tele-
phone, credit card, etc.) were removed for pri-
vacy reasons. The average dialog lasted for 3.71

1However, it is conceivable to parse the multiple hypothe-
ses of chunks (encoded as a weighted lattice) produced by the
chunk model.
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minutes and included 61.45 changes of speaker. A
single customer-service representative might par-
ticipate in several dialogs, but customers are rep-
resented by only one dialog each. Although the
majority of the dialogs were on-topic, some were
idiosyncratic, including: requests for order cor-
rections, transfers to customer service, incorrectly
dialed numbers, and long friendly out-of-domain
asides. Annotations applied to these dialogs in-
clude: utterance segmentation (Section 4.1), syn-
tactic annotation (Section 4.2), dialog act tag-
ging (Section 4.3) and subtask segmentation (Sec-
tion 5). The former two annotations are domain-
independent while the latter are domain-specific.

6.2 Features
Offline natural language processing systems, such
as part-of-speech taggers and chunkers, rely on
both static and dynamic features. Static features
are derived from the local context of the text be-
ing tagged. Dynamic features are computed based
on previous predictions. The use of dynamic fea-
tures usually requires a search for the globally op-
timal sequence, which is not possible when doing
incremental processing. For dialog act tagging and
subtask segmentation during dialog management,
we need to predict incrementally since it would
be unrealistic to wait for the entire dialog before
decoding. Thus, in order to train the dialog act
(DA) and subtask segmentation classifiers, we use
only static features from the current and left con-
text as shown in Table 1.2 This obviates the need
for constructing a search network and performing
a dynamic programming search during decoding.
In lieu of the dynamic context, we use larger static
context to compute features – word trigrams and
trigrams of words annotated with supertags com-
puted from up to three previous utterances.

Label Type Features
Dialog Speaker, word trigrams from
Acts current/previous utterance(s)

supertagged utterance
Subtask Speaker, word trigrams from current

utterance, previous utterance(s)/turn

Table 1: Features used for the classifiers.

6.3 Dialog Act Labeling
For dialog act labeling, we built models from
our corpus and from the Maptask (Carletta et al.,
1997) and Switchboard-DAMSL (Jurafsky et al.,
1998) corpora. From the files for the Maptask cor-
pus, we extracted the moves, words and speaker
information (follower/giver). Instead of using the

2We could use dynamic contexts as well and adopt a
greedy decoding algorithm instead of a viterbi search. We
have not explored this approach in this paper.

raw move information, we augmented each move
with speaker information, so that for example,
the instruct move was split into instruct-giver and
instruct-follower. For the Switchboard corpus, we
clustered the original labels, removing most of
the multidimensional tags and combining together
tags with minimum training data as described in
(Jurafsky et al., 1998). For all three corpora, non-
sentence elements (e.g., dysfluencies, discourse
markers, etc.) and restarts (with and without re-
pairs) were kept; non-verbal content (e.g., laughs,
background noise, etc.) was removed.

As mentioned in Section 4, we use a domain-
specific tag set containing 67 dialog act tags for
the catalog corpus. In Table 2, we give examples
of our tags. We manually annotated 1864 clauses
from 20 dialogs selected at random from our cor-
pus and used a ten-fold cross-validation scheme
for testing. In our annotation, a single utterance
may have multiple dialog act labels. For our ex-
periments with the Switchboard-DAMSL corpus,
we used 42 dialog act tags obtained by clustering
over the 375 unique tags in the data. This cor-
pus has 1155 dialogs and 218,898 utterances; 173
dialogs, selected at random, were used for testing.
The Maptask tagging scheme has 12 unique dialog
act tags; augmented with speaker information, we
get 24 tags. This corpus has 128 dialogs and 26181
utterances; ten-fold cross validation was used for
testing.

Type Subtype
Ask Info
Explain Catalog, CC Related, Discount, Order Info

Order Problem, Payment Rel, Product Info
Promotions, Related Offer, Shipping

Convers- Ack, Goodbye, Hello, Help, Hold,
-ational YoureWelcome, Thanks, Yes, No, Ack,

Repeat, Not(Information)
Request Code, Order Problem, Address, Catalog,

CC Related, Change Order, Conf, Credit,
Customer Info, Info, Make Order, Name,
Order Info, Order Status, Payment Rel,
Phone Number, Product Info, Promotions,
Shipping, Store Info

YNQ Address, Email, Info, Order Info,
Order Status,Promotions, Related Offer

Table 2: Sample set of dialog act labels

Table 3 shows the error rates for automatic dia-
log act labeling using word trigram features from
the current and previous utterance. We compare
error rates for our tag set to those of Switchboard-
DAMSL and Maptask using the same features and
the same classifier learner. The error rates for the
catalog and the Maptask corpus are an average
of ten-fold cross-validation. We suspect that the
larger error rate for our domain compared to Map-
task and Switchboard might be due to the small
size of our annotated corpus (about 2K utterances
for our domain as against about 20K utterances for
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Maptask and 200K utterances for DAMSL).
The error rates for the Switchboard-DAMSL

data are significantly better than previously pub-
lished results (28% error rate) (Jurafsky et al.,
1998) with the same tag set. This improvement
is attributable to the richer feature set we use and a
discriminative modeling framework that supports
a large number of features, in contrast to the gener-
ative model used in (Jurafsky et al., 1998). A sim-
ilar obeservation applies to the results on Maptask
dialog act tagging. Our model outperforms previ-
ously published results (42.8% error rate) (Poesio
and Mikheev, 1998).

In labeling the Switchboard data, long utter-
ances were split into slash units (Meteer et.al.,
1995). A speaker’s turn can be divided in one or
more slash units and a slash unit can extend over
multiple turns, for example:

sv B.64 utt3: C but, F uh –
b A.65 utt1: Uh-huh. /
+ B.66 utt1: – people want all of that /
sv B.66 utt2: C and not all of those are necessities. /
b A.67 utt1: Right . /

The labelers were instructed to label on the ba-
sis of the whole slash unit. This makes, for ex-
ample, the dysfluency turn B.64 a Statement opin-
ion (sv) rather than a non-verbal. For the pur-
pose of discriminative learning, this could intro-
duce noisy data since the context associated to the
labeling decision shows later in the dialog. To ad-
dress this issue, we compare 2 classifiers: the first
(non-merged), simply propagates the same label
to each continuation, cross turn slash unit; the sec-
ond (merged) combines the units in one single ut-
terance. Although the merged classifier breaks the
regular structure of the dialog, the results in Table
3 show better overall performance.

Tagset current + stagged + 3 previous
utterance utterance (stagged)

utterance
Catalog 46.3 46.1 42.2
Domain
DAMSL 24.7 23.8 19.1
(non-merged)
DAMSL 22.0 20.6 16.5
(merged)
Maptask 34.3 33.9 30.3

Table 3: Error rates in dialog act tagging

6.4 Subtask Segmentation and Labeling
For subtask labeling, we used a random partition
of 864 dialogs from our catalog domain as the
training set and 51 dialogs as the test set. All
the dialogs were annotated with subtask labels by
hand. We used a set of 18 labels grouped as shown
in Figure 4.

Type Subtask Labels
1 opening, closing
2 contact-information, delivery-information,

payment-information, shipping-address,summary
3 order-item, related-offer, order-problem

discount, order-change, check-availability
4 call-forward, out-of-domain, misc-other, sub-call

Table 4: Subtask label set

6.4.1 Chunk-based Model
Table 5 shows error rates on the test set when

predicting refined subtask labels using word P -
gram features computed on different dialog con-
texts. The well-formedness constraint on the re-
fined subtask labels significantly improves predic-
tion accuracy. Utterance context is also very help-
ful; just one utterance of left-hand context leads to
a 10% absolute reduction in error rate, with fur-
ther reductions for additional context. While the
use of trigram features helps, it is not as helpful as
other contextual information. We used the dialog
act tagger trained from Switchboard-DAMSL cor-
pus to automatically annotate the catalog domain
utterances. We included these tags as features for
the classifier, however, we did not see an improve-
ment in the error rates, probably due to the high
error rate of the dialog act tagger.

Feature Utterance Context
Context

Current +prev +three prev
utt/with DA utt/with DA utt/with DA

Unigram 42.9/42.4 33.6/34.1 30.0/30.3
(53.4/52.8) (43.0/43.0) (37.6/37.6)

Trigram 41.7/41.7 31.6/31.4 30.0/29.1
(52.5/52.0) (42.9/42.7) (37.6/37.4)

Table 5: Error rate for predicting the refined sub-
task labels. The error rates without the well-
formedness constraint is shown in parenthesis.
The error rates with dialog acts as features are sep-
arated by a slash.

6.4.2 Parsing-based Model
We retrained a top-down incremental

parser (Roark, 2001) on the plan trees in the
training dialogs. For the test dialogs, we used
the § -best (k=50) refined subtask labels for each
utterance as predicted by the chunk-based classi-
fier to create a lattice of subtask label sequences.
For each dialog we then created P -best sequences
(100-best for these experiments) of subtask labels;
these were parsed and (re-)ranked by the parser.3

We combine the weights of the subtask label
sequences assigned by the classifier with the parse
score assigned by the parser and select the top

3Ideally, we would have parsed the subtask label lattice
directly, however, the parser has to be reimplemented to parse
such lattice inputs.

206



Features Constraints
No Constraint Sequence Constraint Parser Constraint

Current Utt 54.4 42.0 41.5
+ DA 53.8 40.5 40.2

Current+Prev Utt 41.6 27.7 27.7
+DA 40.0 28.8 28.1

Current+3 Prev Utt 37.5 24.7 24.7
+DA 39.7 29.6 28.9

Table 6: Error rates for task structure prediction, with no constraints, sequence constraints and parser
constraints

scoring sequence from the list for each dialog.
The results are shown in Table 6. It can be seen
that using the parsing constraint does not help the
subtask label sequence prediction significantly.
The chunk-based model gives almost the same
accuracy, and is incremental and more efficient.

7 Discussion

The experiments reported in this section have been
performed on transcribed speech. The audio for
these dialogs, collected at a call center, were stored
in a compressed format, so the speech recognition
error rate is high. In future work, we will assess
the performance of dialog structure prediction on
recognized speech.

The research presented in this paper is but one
step, albeit a crucial one, towards achieving the
goal of inducing human-machine dialog systems
using human-human dialogs. Dialog structure in-
formation is necessary for language generation
(predicting the agents’ response) and dialog state
specific text-to-speech synthesis. However, there
are several challenging problems that remain to be
addressed.

The structuring of dialogs has another applica-
tion in call center analytics. It is routine practice to
monitor, analyze and mine call center data based
on indicators such as the average length of dialogs,
the task completion rate in order to estimate the ef-
ficiency of a call center. By incorporating structure
to the dialogs, as presented in this paper, the anal-
ysis of dialogs can be performed at a more fine-
grained (task and subtask) level.

8 Conclusions

In order to build a dialog manager using a data-
driven approach, the following are necessary: a
model for labeling/interpreting the user’s current
action; a model for identifying the current sub-
task/topic; and a model for predicting what the
system’s next action should be. Prior research in
plan identification and in dialog act labeling has
identified possible features for use in such models,
but has not looked at the performance of different
feature sets (reflecting different amounts of con-
text and different views of dialog) across different

domains (label sets). In this paper, we compared
the performance of a dialog act labeler/predictor
across three different tag sets: one using very de-
tailed, domain-specific dialog acts usable for inter-
pretation and generation; and two using general-
purpose dialog acts and corpora available to the
larger research community. We then compared
two models for subtask labeling: a flat, chunk-
based model and a hierarchical, parsing-based
model. Findings include that simpler chunk-based
models perform as well as hierarchical models for
subtask labeling and that a dialog act feature is not
helpful for subtask labeling.

In on-going work, we are using our best per-
forming models for both DM and LG components
(to predict the next dialog move(s), and to select
the next system utterance). In future work, we will
address the use of data-driven dialog management
to improve SLU.
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Abstract

We present a new semi-supervised training
procedure for conditional random fields
(CRFs) that can be used to train sequence
segmentors and labelers from a combina-
tion of labeled and unlabeled training data.
Our approach is based on extending the
minimum entropy regularization frame-
work to the structured prediction case,
yielding a training objective that combines
unlabeled conditional entropy with labeled
conditional likelihood. Although the train-
ing objective is no longer concave, it can
still be used to improve an initial model
(e.g. obtained from supervised training)
by iterative ascent. We apply our new
training algorithm to the problem of iden-
tifying gene and protein mentions in bio-
logical texts, and show that incorporating
unlabeled data improves the performance
of the supervised CRF in this case.

1 Introduction

Semi-supervised learning is often touted as one
of the most natural forms of training for language
processing tasks, since unlabeled data is so plen-
tiful whereas labeled data is usually quite limited
or expensive to obtain. The attractiveness of semi-
supervised learning for language tasks is further
heightened by the fact that the models learned are
large and complex, and generally even thousands
of labeled examples can only sparsely cover the
parameter space. Moreover, in complex structured
prediction tasks, such as parsing or sequence mod-
eling (part-of-speech tagging, word segmentation,
named entity recognition, and so on), it is con-
siderably more difficult to obtain labeled training
data than for classification tasks (such as docu-
ment classification), since hand-labeling individ-
ual words and word boundaries is much harder
than assigning text-level class labels.

Many approaches have been proposed for semi-
supervised learning in the past, including: genera-
tive models (Castelli and Cover 1996; Cohen and
Cozman 2006; Nigam et al. 2000), self-learning

(Celeux and Govaert 1992; Yarowsky 1995), co-
training (Blum and Mitchell 1998), information-
theoretic regularization (Corduneanu and Jaakkola
2006; Grandvalet and Bengio 2004), and graph-
based transductive methods (Zhou et al. 2004;
Zhou et al. 2005; Zhu et al. 2003). Unfortu-
nately, these techniques have been developed pri-
marily for single class label classification prob-
lems, or class label classification with a struc-
tured input (Zhou et al. 2004; Zhou et al. 2005;
Zhu et al. 2003). Although still highly desirable,
semi-supervised learning for structured classifica-
tion problems like sequence segmentation and la-
beling have not been as widely studied as in the
other semi-supervised settings mentioned above,
with the sole exception of generative models.

With generative models, it is natural to include
unlabeled data using an expectation-maximization
approach (Nigam et al. 2000). However, gener-
ative models generally do not achieve the same
accuracy as discriminatively trained models, and
therefore it is preferable to focus on discriminative
approaches. Unfortunately, it is far from obvious
how unlabeled training data can be naturally in-
corporated into a discriminative training criterion.
For example, unlabeled data simply cancels from
the objective if one attempts to use a traditional
conditional likelihood criterion. Nevertheless, re-
cent progress has been made on incorporating un-
labeled data in discriminative training procedures.
For example, dependencies can be introduced be-
tween the labels of nearby instances and thereby
have an effect on training (Zhu et al. 2003; Li and
McCallum 2005; Altun et al. 2005). These models
are trained to encourage nearby data points to have
the same class label, and they can obtain impres-
sive accuracy using a very small amount of labeled
data. However, since they model pairwise similar-
ities among data points, most of these approaches
require joint inference over the whole data set at
test time, which is not practical for large data sets.

In this paper, we propose a new semi-supervised
training method for conditional random fields
(CRFs) that incorporates both labeled and unla-
beled sequence data to estimate a discriminative
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structured predictor. CRFs are a flexible and pow-
erful model for structured predictors based on
undirected graphical models that have been glob-
ally conditioned on a set of input covariates (Laf-
ferty et al. 2001). CRFs have proved to be partic-
ularly useful for sequence segmentation and label-
ing tasks, since, as conditional models of the la-
bels given inputs, they relax the independence as-
sumptions made by traditional generative models
like hidden Markov models. As such, CRFs pro-
vide additional flexibility for using arbitrary over-
lapping features of the input sequence to define a
structured conditional model over the output se-
quence, while maintaining two advantages: first,
efficient dynamic program can be used for infer-
ence in both classification and training, and sec-
ond, the training objective is concave in the model
parameters, which permits global optimization.

To obtain a new semi-supervised training algo-
rithm for CRFs, we extend the minimum entropy
regularization framework of Grandvalet and Ben-
gio (2004) to structured predictors. The result-
ing objective combines the likelihood of the CRF
on labeled training data with its conditional en-
tropy on unlabeled training data. Unfortunately,
the maximization objective is no longer concave,
but we can still use it to effectively improve an
initial supervised model. To develop an effective
training procedure, we first show how the deriva-
tive of the new objective can be computed from
the covariance matrix of the features on the unla-
beled data (combined with the labeled conditional
likelihood). This relationship facilitates the devel-
opment of an efficient dynamic programming for
computing the gradient, and thereby allows us to
perform efficient iterative ascent for training. We
apply our new training technique to the problem of
sequence labeling and segmentation, and demon-
strate it specifically on the problem of identify-
ing gene and protein mentions in biological texts.
Our results show the advantage of semi-supervised
learning over the standard supervised algorithm.

2 Semi-supervised CRF training

In what follows, we use the same notation as (Laf-
ferty et al. 2001). Let

�
be a random variable over

data sequences to be labeled, and � be a random
variable over corresponding label sequences. All
components, ��� , of � are assumed to range over
a finite label alphabet � . For example,

�
might

range over sentences and � over part-of-speech

taggings of those sentences; hence � would be the
set of possible part-of-speech tags in this case.

Assume we have a set of labeled examples,���	��

����������������������� � � �!�"�����$#%�&���'�$#%�)(
, and unla-

beled examples,
��*+� 
 ���$#%,-����� � � �-�����$./� (

. We

would like to build a CRF model021 ���%3 �-�4� 56 1 ���-�87:9<; 
>=?@ A �CB
@EDF@ ���'���8� (

� 56 1 ���-� 7:9<; 
HG B �
D ���'���8��I (

over sequential input and output data
�'���

,
where B � � B � � � � �!� B = ��J

,

D ���'���8� �� D � ���'���8��� � � ��� D = ���'���8��� J
and6 1 ���-�K� ?ML 7:9<; 
HG B �

D ���'���8��I (
Our goal is to learn such a model from the com-
bined set of labeled and unlabeled examples,

� �FN�O*
.

The standard supervised CRF training proce-
dure is based upon maximizing the log conditional
likelihood of the labeled examples in

�+�
PRQ � B �K� #? S A �UTWVYX 021 ��� � S � 3 � � S � �8Z\[/� B � (1)

where
[�� B � is any standard regularizer on B , e.g.[/� B �]�_^ B ^&`MaFb . Regularization can be used to

limit over-fitting on rare features and avoid degen-
eracy in the case of correlated features. Obviously,
(1) ignores the unlabeled examples in

� *
.

To make full use of the available training data,
we propose a semi-supervised learning algorithm
that exploits a form of entropy regularization on
the unlabeled data. Specifically, for a semi-
supervised CRF, we propose to maximize the fol-
lowing objective

c Q � B �d� #? S A �UTWVYX 021 ��� � S � 3 � � S � �'Z\[�� B � (2)

e f .?S A #%,-� ?"L 021 ���%3 � � S � � TWVYX 021 ���%3 � � S � �
where the first term is the penalized log condi-
tional likelihood of the labeled data under the
CRF, (1), and the second line is the negative con-
ditional entropy of the CRF on the unlabeled data.
Here,

f
is a tradeoff parameter that controls the

influence of the unlabeled data.
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This approach resembles that taken by (Grand-
valet and Bengio 2004) for single variable classi-
fication, but here applied to structured CRF train-
ing. The motivation is that minimizing conditional
entropy over unlabeled data encourages the algo-
rithm to find putative labelings for the unlabeled
data that are mutually reinforcing with the super-
vised labels; that is, greater certainty on the pu-
tative labelings coincides with greater conditional
likelihood on the supervised labels, and vice versa.
For a single classification variable this criterion
has been shown to effectively partition unlabeled
data into clusters (Grandvalet and Bengio 2004;
Roberts et al. 2000).

To motivate the approach in more detail, con-
sider the overlap between the probability distribu-
tion over a label sequence � and the empirical dis-
tribution of �0 ���-� on the unlabeled data

�/*
. The

overlap can be measured by the Kullback-Leibler
divergence � � 0 1 ���%3 �-� �0 ���-�"^ �0 ���-��� . It is well
known that Kullback-Leibler divergence (Cover
and Thomas 1991) is positive and increases as the
overlap between the two distributions decreases.
In other words, maximizing Kullback-Leibler di-
vergence implies that the overlap between two dis-
tributions is minimized. The total overlap over all
possible label sequences can be defined as? L � � 021 ���%3 �-� �0 ���-�"^ �0 ���-���

� ?"L ?�����	� 021 ���%3 �-� �0 ���-� TWVYX 021 ���%3 �-� �0 ���-��0 ���-�� ?�����
� �0 ���-� ?"L 021 ���%3 �-� T VYX 021 ���%3 �-�
which motivates the negative entropy term in (2).

The combined training objective (2) exploits
unlabeled data to improve the CRF model, as
we will see. However, one drawback with this
approach is that the entropy regularization term
is not concave. To see why, note that the en-
tropy regularizer can be seen as a composition,� � B � � D �
� � B ��� , where

D ����� ����� � ,

D �
�<� �� L � L TWVYX � L and
� L ��� = � � ,

� L � B � ����� � � � 7:9<; 
 � =@ A � B
@FDF@ ���'���8� (

. For scalar B , the

second derivative of a composition,
� � D � � , is

given by (Boyd and Vandenberghe 2004)��� � � B � ��� � � B � J� /` D �
� � B ���!� � � B � e  
D �
� � B ��� J � � � � B �

Although

D
and

�#"
are concave here, since

D
is not

nondecreasing,
�

is not necessarily concave. So in
general there are local maxima in (2).

3 An efficient training procedure

As (2) is not concave, many of the standard global
maximization techniques do not apply. However,
one can still use unlabeled data to improve a su-
pervised CRF via iterative ascent. To derive an ef-
ficient iterative ascent procedure, we need to com-
pute gradient of (2) with respect to the parameters

B . Taking derivative of the objective function (2)
with respect to B yields Appendix A for the deriva-
tion)$$
B
c Q � B � (3)

� #? S A �
% D ��� � S � ��� � S � �8Z ? L 021 ���%3 � � S � � D ��� � S � ��� � S � �'&

Z $$
B
[/� B � e f .?S A # ,-��( V�)�* � � L � ��+-,/. ��0

D ��� � S � ���8�!1 B
The first three items on the right hand side are
just the standard gradient of the CRF objective,$ PRQ � B ��a

$
B (Lafferty et al. 2001), and the final

item is the gradient of the entropy regularizer (the
derivation of which is given in Appendix A.

Here, ( V�) * � � L � � +-,2. �43
D ����� S �����8�65

is the condi-
tional covariance matrix of the features,

D87 ���'���8�
,

given sample sequence
� � S �

. In particular, the�:9
�<; �
th element of this matrix is given by

( V�) * � � L � � � 0
D 7 ���'���8� DF@ ���'���8�!1

�>= * � � L � � � 
 D 7 ���'���8� DF@ ���'���8� (
Z?= * � � L � � � 
 D@7 ���'���8� (A= * � � L � � � 
 DF@ ���'���8� (

� ?ML 021 ���%3 �-� 
 D 7 ���'���8� DF@ ���'���8� (
(4)

Z 
 ?"L 021 ���%3 �-� D 7 ���'���8� ( 
 ?ML 0 1 ��� 3 �-� DF@ ���'����� (
To efficiently calculate the gradient, we need

to be able to efficiently compute the expectations
with respect to

�
in (3) and (4). However, this

can pose a challenge in general, because there are
exponentially many values for

�
. Techniques for

computing the linear feature expectations in (3)
are already well known if

�
is sufficiently struc-

tured (e.g.
�

forms a Markov chain) (Lafferty et
al. 2001). However, we now have to develop effi-
cient techniques for computing the quadratic fea-
ture expectations in (4).

For the quadratic feature expectations, first note
that the diagonal terms,

9 �CB
, are straightfor-

ward, since each feature is an indicator, we have
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that

D 7 ���'����� ` � D 7 ���'���8�
, and therefore the diag-

onal terms in the conditional covariance are just

linear feature expectations
= * � � L � � � 
 D 7 ���'���8� ` ( �= * � � L � � � 
 D 7 ���'���8� ( as before.

For the off diagonal terms,
9��� B

, however,
we need to develop a new algorithm. Fortunately,
for structured label sequences, � , one can devise
an efficient algorithm for calculating the quadratic
expectations based on nested dynamic program-
ming. To illustrate the idea, we assume that the
dependencies of � , conditioned on

�
, form a

Markov chain.
Define one feature for each state pair

� � � � � � ,
and one feature for each state-observation pair� � ���R� , which we express with indicator functions
D "���� " � G	� ��
 I����%3�� * � 
�� ���-� � �C��� * � � � ��� ����
H� � � and� "�� � �	
 ���%3 
 ���-� � � ��� 
 � � ���C��� 
 ���R� respectively.
Following (Lafferty et al. 2001), we also add spe-
cial start and stop states, ��� �

start and ��� ,-� �
stop. The conditional probability of a label se-
quence can now be expressed concisely in a ma-
trix form. For each position

9
in the observation

sequence
�

, define the
3 � 3�� 3 � 3

matrix random
variable � 7 ���-����� � 7 � � � � � 3 �-��� by� 7 � � � � � 3 �-� � 7:9<; �! 7 � � � � � 3 �-��� where 7 � � � � � 3 �-� � ? @#" @FDF@%$ & 7 ��� 3 '	( � � � � � � ������)

e ?Y@+* @ � @ $ 
 7 ���%3 
,( � � ��� )
Here & 7 is the edge with labels

� � 7 - � � � 7 � and

 7

is the vertex with label � 7 .
For each index

9O�/.<� � � �-��0 e 5 define the for-
ward vectors 1 7 ���-� with base case

1 � � � 3 �-���32 55476 � �/8�9;:=<�9. V 9;> 7 <;? 4 8 7
and recurrence1 7 ���-��� 1 7 - � ���-� � 7 ���-�
Similarly, the backward vectors @ 7 ���-� are given by

@ � ,-� � � 3 �-� � 2 55476 � �/8�9 V ;. V 9;> 7 <;? 4 8 7@ 7 ���-� � � 7 ,-� ���-� @ 7 ,-� ���-�
With these definitions, the expectation of

the product of each pair of feature func-
tions,

� D@7 ���'���8��� DF@ ���'���8���
,

� D 7 ���'���8��� � @ ���'���8���
,

and
�
� 7 ���'���8��� � @ ���'���8���

, for
9Y�<;K� 5 � � � �-�;A ,9B�� ;

, can be recursively calculated.
First define the summary matrix

�DC ,-� � E - � � � � � � 3 �-� � 
 E - �F� A C ,-� � � ���-� ( "�� "��
Then the quadratic feature expectations can be
computed by the following recursion, where the
two double sums in each expectation correspond
to the two cases depending on which feature oc-
curs first ( & C occuring before & E ).= * � � L � � � 
 D 7 ���'���8� DF@ ���'���8� (

� ?�����	� � ,-�?C � E A � � C�G E ? "��H� "
D 7I$ & C ���%3 'KJ � � � � � � ����� )?" � � � " � � � DF@ $ & E���� 3 'ML'� � � � � � � � � � ����� )

1NC - � � � � 3 �-� �OC � � � � � 3 �-� �OC ,-� � E - � � � � � � � 3 �-�� E � � � � � � � � � 3 �-� @ E � � � � � 3 �-��a 6 1 ���-�
e ?���8� � � ,-�?C � E A � � E GPC ? "���� "
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The computation of these expectations can be or-
ganized in a trellis, as illustrated in Figure 1.

Once we obtain the gradient of the objective
function (2), we use limited-memory L-BFGS, a
quasi-Newton optimization algorithm (McCallum
2002; Nocedal and Wright 2000), to find the local
maxima with the initial value being set to be the
optimal solution of the supervised CRF on labeled
data.

4 Time and space complexity

The time and space complexity of the semi-
supervised CRF training procedure is greater
than that of standard supervised CRF training,
but nevertheless remains a small degree poly-
nomial in the size of the training data. Let
� � = size of the labeled set
� * = size of the unlabeled set0 � = labeled sequence length0 * = unlabeled sequence length0�E

= test sequence length
� = number of states
� = number of training iterations.

Then the time required to classify a test sequence
is

� �	0�E � `M� , independent of training method, since
the Viterbi decoder needs to access each path.

For training, supervised CRF training requires� � ��� � 0 � � ` � time, whereas semi-supervised CRF
training requires

� � ��� � 0 � � ` e ��� * 0U`* ��� � time.
The additional cost for semi-supervised training
arises from the extra nested loop required to cal-
culated the quadratic feature expectations, which
introduces in an additional

0 * � factor.
However, the space requirements of the two

training methods are the same. That is, even
though the covariance matrix has size

� �!A ` �
,

there is never any need to store the entire matrix in
memory. Rather, since we only need to compute
the product of the covariance with B , the calcu-
lation can be performed iteratively without using
extra space beyond that already required by super-
vised CRF training.

start

0

1

2

stop

Figure 1: Trellis for computing the expectation of a feature
product over a pair of feature functions, �	�
� vs ���
� , where the
feature �	�
� occurs first. This leads to one double sum.

5 Identifying gene and protein mentions

We have developed our new semi-supervised
training procedure to address the problem of infor-
mation extraction from biomedical text, which has
received significant attention in the past few years.
We have specifically focused on the problem of
identifying explicit mentions of gene and protein
names (McDonald and Pereira 2005). Recently,
McDonald and Pereira (2005) have obtained inter-
esting results on this problem by using a standard
supervised CRF approach. However, our con-
tention is that stronger results could be obtained
in this domain by exploiting a large corpus of un-
annotated biomedical text to improve the quality
of the predictions, which we now show.

Given a biomedical text, the task of identify-
ing gene mentions can be interpreted as a tagging
task, where each word in the text can be labeled
with a tag that indicates whether it is the beginning
of gene mention (B), the continuation of a gene
mention (I), or outside of any gene mention (O).
To compare the performance of different taggers
learned by different mechanisms, one can measure
the precision, recall and F-measure, given by

precision = # correct predictions
# predicted gene mentions

recall = # correct predictions
# true gene mentions

F-measure =
`�� precision � recall
precision , recall

In our evaluation, we compared the proposed
semi-supervised learning approach to the state of
the art supervised CRF of McDonald and Pereira
(2005), and also to self-training (Celeux and Gov-
aert 1992; Yarowsky 1995), using the same fea-
ture set as (McDonald and Pereira 2005). The
CRF training procedures, supervised and semi-
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supervised, were run with the same regularization
function,

[/� B �'� ^ B ^�`"aFb , used in (McDonald and
Pereira 2005).

First we evaluated the performance of the semi-
supervised CRF in detail, by varying the ratio be-
tween the amount of labeled and unlabeled data,
and also varying the tradeoff parameter

f
. We

choose a labeled training set � consisting of 5448
words, and considered alternative unlabeled train-
ing sets, � (5210 words),

P
(10,208 words), and� (25,145 words), consisting of the same, 2 times

and 5 times as many sentences as � respectively.
All of these sets were disjoint and selected ran-
domly from the full corpus, the smaller one in
(McDonald et al. 2005), consisting of 184,903
words in total. To determine sensitivity to the pa-
rameter

f
we examined a range of discrete values.<�;.�� 5 �;.���� � 5 ��� � 5 . �&b=. ��� . .

In our first experiment, we train the CRF models
using labeled set � and unlabeled sets � ,

P
and� respectively. Then test the performance on the

sets � ,
P

and � respectively The results of our
evaluation are shown in Table 1. The performance
of the supervised CRF algorithm, trained only on
the labeled set � , is given on the first row in Table
1 (corresponding to

f � .
). By comparison, the

results obtained by the semi-supervised CRFs on
the held-out sets � ,

P
and � are given in Table 1

by increasing the value of
f

.

The results of this experiment demonstrate quite
clearly that in most cases the semi-supervised CRF
obtains higher precision, recall and F-measure
than the fully supervised CRF, yielding a 20% im-
provement in the best case.

In our second experiment, again we train the
CRF models using labeled set � and unlabeled
sets � ,

P
and � respectively with increasing val-

ues of
f

, but we test the performance on the held-
out set � which is the full corpus minus the la-
beled set � and unlabeled sets � ,

P
and � . The

results of our evaluation are shown in Table 2 and
Figure 2. The blue line in Figure 2 is the result
of the supervised CRF algorithm, trained only on
the labeled set � . In particular, by using the super-
vised CRF model, the system predicted 3334 out
of 7472 gene mentions, of which 2435 were cor-
rect, resulting in a precision of 0.73, recall of 0.33
and F-measure of 0.45. The other curves are those
of the semi-supervised CRFs.

The results of this experiment demonstrate quite
clearly that the semi-supervised CRFs simultane-
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Figure 2: Performance of the supervised and semi-
supervised CRFs. The sets � , 	 and 
 refer to the unlabeled
training set used by the semi-supervised algorithm.

ously increase both the number of predicted gene
mentions and the number of correct predictions,
thus the precision remains almost the same as the
supervised CRF, and the recall increases signifi-
cantly.

Both experiments as illustrated in Figure 2 and
Tables 1 and 2 show that clearly better results
are obtained by incorporating additional unlabeled
training data, even when evaluating on disjoint
testing data (Figure 2). The performance of the
semi-supervised CRF is not overly sensitive to the
tradeoff parameter

f
, except that

f
cannot be set

too large.

5.1 Comparison to self-training

For completeness, we also compared our results to
the self-learning algorithm, which has commonly
been referred to as bootstrapping in natural lan-
guage processing and originally popularized by
the work of Yarowsky in word sense disambigua-
tion (Abney 2004; Yarowsky 1995). In fact, sim-
ilar ideas have been developed in pattern recogni-
tion under the name of the decision-directed algo-
rithm (Duda and Hart 1973), and also traced back
to 1970s in the EM literature (Celeux and Govaert
1992). The basic algorithm works as follows:

1. Given
� �

and
� *

, begin with a seed set of
labeled examples,

� � � � , chosen from
�/�

.
2. For � � .<� 5 � � � �

(a) Train the supervised CRF on labeled ex-
amples

� ���%�
, obtaining B �
�%�

.

(b) For each sequence
��� S ��� �O*

, find� � S ���� � � :=< X � : 9 L 0 1 +�� . ���%3 ��� S ���
via

Viterbi decoding or other inference al-
gorithm, and add the pair

��� � S � ��� � S ���� � � to
the set of labeled examples (replacing
any previous label for

��� S �
if present).
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Table 1: Performance of the semi-supervised CRFs obtained on the held-out sets � ,
P

and �
Test Set B, Trained on A and B Test Set C, Trained on A and C Test Set D, Trained on A and D� Precision Recall F-Measure Precision Recall F-Measure Precision Recall F-Measure

0 0.80 0.36 0.50 0.77 0.29 0.43 0.74 0.30 0.43

0.1 0.82 0.4 0.54 0.79 0.32 0.46 0.74 0.31 0.44

0.5 0.82 0.4 0.54 0.79 0.33 0.46 0.74 0.31 0.44

1 0.82 0.4 0.54 0.77 0.34 0.47 0.73 0.33 0.45

5 0.84 0.45 0.59 0.78 0.38 0.51 0.72 0.36 0.48

10 0.78 0.46 0.58 0.66 0.38 0.48 0.66 0.38 0.47

Table 2: Performance of the semi-supervised CRFs trained by using unlabeled sets � ,
P

and �
Test Set E, Trained on A and B Test Set E, Trained on A and C Test Set E, Trained on A and D� # predicted # correct prediction # predicted # correct prediction # predicted # correct prediction

0.1 3345 2446 3376 2470 3366 2466

0.5 3413 2489 3450 2510 3376 2469

1 3446 2503 3588 2580 3607 2590

5 4089 2878 4206 2947 4165 2888

10 4450 2799 4762 2827 4778 2845

(c) If for each
��� S � � �O*

,
� � S ���� � � � � S ���� - ��� ,

stop; otherwise � � � e 5 , iterate.

We implemented this self training approach and
tried it in our experiments. Unfortunately, we
were not able to obtain any improvements over the
standard supervised CRF with self-learning, using
the sets

����� � �
and

�O* ��� � � P � ��� . The
semi-supervised CRF remains the best of the ap-
proaches we have tried on this problem.

6 Conclusions and further directions

We have presented a new semi-supervised training
algorithm for CRFs, based on extending minimum
conditional entropy regularization to the struc-
tured prediction case. Our approach is motivated
by the information-theoretic argument (Grand-
valet and Bengio 2004; Roberts et al. 2000) that
unlabeled examples can provide the most bene-
fit when classes have small overlap. An itera-
tive ascent optimization procedure was developed
for this new criterion, which exploits a nested dy-
namic programming approach to efficiently com-
pute the covariance matrix of the features.

We applied our new approach to the problem of
identifying gene name occurrences in biological
text, exploiting the availability of auxiliary unla-
beled data to improve the performance of the state
of the art supervised CRF approach in this do-
main. Our semi-supervised CRF approach shares
all of the benefits of the standard CRF training,
including the ability to exploit arbitrary features
of the inputs, while obtaining improved accuracy

through the use of unlabeled data. The main draw-
back is that training time is increased because of
the extra nested loop needed to calculate feature
covariances. Nevertheless, the algorithm is suf-
ficiently efficient to be trained on unlabeled data
sets that yield a notable improvement in classifi-
cation accuracy over standard supervised training.
To further accelerate the training process of our
semi-supervised CRFs, we may apply stochastic
gradient optimization method with adaptive gain
adjustment as proposed by Vishwanathan et al.
(2006).
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A Deriving the gradient of the entropy

We wish to show that

$$
B
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First, note that some simple calculation yields$
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In the vector form, this can be written as (5)
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Abstract

This paper proposes a framework for train-
ing Conditional Random Fields (CRFs)
to optimize multivariate evaluation mea-
sures, including non-linear measures such
as F-score. Our proposed framework is
derived from an error minimization ap-
proach that provides a simple solution for
directly optimizing any evaluation mea-
sure. Specifically focusing on sequential
segmentation tasks, i.e. text chunking and
named entity recognition, we introduce a
loss function that closely reflects the tar-
get evaluation measure for these tasks,
namely, segmentation F-score. Our ex-
periments show that our method performs
better than standard CRF training.

1 Introduction

Conditional random fields (CRFs) are a recently
introduced formalism (Lafferty et al., 2001) for
representing a conditional model p(y|x), where
both a set of inputs, x, and a set of outputs,
y, display non-trivial interdependency. CRFs are
basically defined as a discriminative model of
Markov random fields conditioned on inputs (ob-
servations) x. Unlike generative models, CRFs
model only the output y’s distribution over x. This
allows CRFs to use flexible features such as com-
plicated functions of multiple observations. The
modeling power of CRFs has been of great ben-
efit in several applications, such as shallow pars-
ing (Sha and Pereira, 2003) and information ex-
traction (McCallum and Li, 2003).

Since the introduction of CRFs, intensive re-
search has been undertaken to boost their effec-
tiveness. The first approach to estimating CRF pa-
rameters is the maximum likelihood (ML) criterion
over conditional probability p(y|x) itself (Laf-
ferty et al., 2001). The ML criterion, however,

is prone to over-fitting the training data, espe-
cially since CRFs are often trained with a very
large number of correlated features. The maximum
a posteriori (MAP) criterion over parameters, λ,
given x and y is the natural choice for reducing
over-fitting (Sha and Pereira, 2003). Moreover,
the Bayes approach, which optimizes both MAP
and the prior distribution of the parameters, has
also been proposed (Qi et al., 2005). Furthermore,
large margin criteria have been employed to op-
timize the model parameters (Taskar et al., 2004;
Tsochantaridis et al., 2005).

These training criteria have yielded excellent re-
sults for various tasks. However, real world tasks
are evaluated by task-specific evaluation mea-
sures, including non-linear measures such as F-
score, while all of the above criteria achieve op-
timization based on the linear combination of av-
erage accuracies, or error rates, rather than a given
task-specific evaluation measure. For example, se-
quential segmentation tasks (SSTs), such as text
chunking and named entity recognition, are gener-
ally evaluated with the segmentation F-score. This
inconsistency between the objective function dur-
ing training and the task evaluation measure might
produce a suboptimal result.

In fact, to overcome this inconsistency, an
SVM-based multivariate optimization method has
recently been proposed (Joachims, 2005). More-
over, an F-score optimization method for logis-
tic regression has also been proposed (Jansche,
2005). In the same spirit as the above studies, we
first propose a generalization framework for CRF
training that allows us to optimize directly not
only the error rate, but also any evaluation mea-
sure. In other words, our framework can incor-
porate any evaluation measure of interest into the
loss function and then optimize this loss function
as the training objective function. Our proposed
framework is fundamentally derived from an ap-
proach to (smoothed) error rate minimization well
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known in the speech and pattern recognition com-
munity, namely the Minimum Classification Er-
ror (MCE) framework (Juang and Katagiri, 1992).
The framework of MCE criterion training supports
the theoretical background of our method. The ap-
proach proposed here subsumes the conventional
ML/MAP criteria training of CRFs, as described
in the following.

After describing the new framework, as an ex-
ample of optimizing multivariate evaluation mea-
sures, we focus on SSTs and introduce a segmen-
tation F-score loss function for CRFs.

2 CRFs and Training Criteria

Given an input (observation) x∈X and parameter
vector λ = {λ1, . . . , λM}, CRFs define the con-
ditional probability p(y|x) of a particular output
y ∈ Y as being proportional to a product of po-
tential functions on the cliques of a graph, which
represents the interdependency of y and x. That
is:

p(y|x; λ) =
1

Zλ(x)

∏

c∈C(y,x)

Φc(y,x; λ)

where Φc(y,x; λ) is a non-negative real value po-
tential function on a clique c ∈ C(y,x). Zλ(x)=
∑

ỹ∈Y

∏

c∈C(ỹ,x) Φc(ỹ,x; λ) is a normalization
factor over all output values, Y .

Following the definitions of (Sha and Pereira,
2003), a log-linear combination of weighted fea-
tures, Φc(y,x; λ) = exp(λ · f c(y,x)), is used
as individual potential functions, where f c rep-
resents a feature vector obtained from the corre-
sponding clique c. That is,

∏

c∈C(y,x) Φc(y,x) =
exp(λ·F (y,x)), where F (y,x)=

∑

c f c(y,x) is
the CRF’s global feature vector for x and y.

The most probable output ŷ is given by ŷ =
arg maxy∈Y p(y|x; λ). However Zλ(x) never af-
fects the decision of ŷ since Zλ(x) does not de-
pend on y. Thus, we can obtain the following dis-
criminant function for CRFs:

ŷ = arg max
y∈Y

λ · F (y,x). (1)

The maximum (log-)likelihood (ML) of the
conditional probability p(y|x; λ) of training
data {(xk,y∗k)}Nk=1 w.r.t. parameters λ is
the most basic CRF training criterion, that is,
arg maxλ

∑

k log p(y∗k|xk; λ), where y∗k is the
correct output for the given xk. Maximizing
the conditional log-likelihood given by CRFs is
equivalent to minimizing the log-loss function,

∑

k− log p(y∗k|xk; λ). We minimize the follow-
ing loss function for the ML criterion training of
CRFs:

LML
λ =

∑

k

[

−λ · F (y∗k,xk) + logZλ(xk)
]

.

To reduce over-fitting, the Maximum a
Posteriori (MAP) criterion of parameters
λ, that is, arg maxλ

∑

k log p(λ|y∗k,xk) ∝
∑

k log p(y∗k|xk; λ)p(λ), is now the most widely
used CRF training criterion. Therefore, we
minimize the following loss function for the MAP
criterion training of CRFs:

LMAP
λ = LML

λ − log p(λ). (2)

There are several possible choices when selecting
a prior distribution p(λ). This paper only con-
siders Lφ-norm prior, p(λ) ∝ exp(−||λ||φ/φC),
which becomes a Gaussian prior when φ=2. The
essential difference between ML and MAP is sim-
ply that MAP has this prior term in the objective
function. This paper sometimes refers to the ML
and MAP criterion training of CRFs as ML/MAP.

In order to estimate the parameters λ, we seek a
zero of the gradient over the parameters λ:

∇LMAP
λ =−∇ log p(λ) +

∑

k

[

−F (y∗k,xk)

+
∑

y∈Yk

exp(λ·F (y,xk))

Zλ(xk)
·F (y,xk)

]

.
(3)

The gradient of ML is Eq. 3 without the gradient
term of the prior, −∇ log p(λ).

The details of actual optimization procedures
for linear chain CRFs, which are typical CRF ap-
plications, have already been reported (Sha and
Pereira, 2003).

3 MCE Criterion Training for CRFs

The Minimum Classification Error (MCE) frame-
work first arose out of a broader family of ap-
proaches to pattern classifier design known as
Generalized Probabilistic Descent (GPD) (Kata-
giri et al., 1991). The MCE criterion minimizes
an empirical loss corresponding to a smooth ap-
proximation of the classification error. This MCE
loss is itself defined in terms of a misclassifica-
tion measure derived from the discriminant func-
tions of a given task. Via the smoothing parame-
ters, the MCE loss function can be made arbitrarily
close to the binary classification error. An impor-
tant property of this framework is that it makes it
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possible in principle to achieve the optimal Bayes
error even under incorrect modeling assumptions.
It is easy to extend the MCE framework to use
evaluation measures other than the classification
error, namely the linear combination of error rates.
Thus, it is possible to optimize directly a variety of
(smoothed) evaluation measures. This is the ap-
proach proposed in this article.

We first introduce a framework for MCE crite-
rion training, focusing only on error rate optimiza-
tion. Sec. 4 then describes an example of mini-
mizing a different multivariate evaluation measure
using MCE criterion training.

3.1 Brief Overview of MCE

Let x ∈ X be an input, and y ∈ Y be an output.
The Bayes decision rule decides the most probable
output ŷ for x, by using the maximum a posteriori
probability, ŷ = arg maxy∈Y p(y|x; λ). In gen-
eral, p(y|x; λ) can be replaced by a more general
discriminant function, that is,

ŷ = arg max
y∈Y

g(y,x,λ). (4)

Using the discriminant functions for the possi-
ble output of the task, the misclassification mea-
sure d() is defined as follows:

d(y∗,x,λ)=−g(y∗,x,λ) + max
y∈Y\y∗

g(y,x,λ). (5)

where y∗ is the correct output for x. Here it can
be noted that, for a given x, d()≥0 indicates mis-
classification. By using d(), the minimization of
the error rate can be rewritten as the minimization
of the sum of 0-1 (step) losses of the given training
data. That is, arg minλ Lλ where

Lλ=
∑

k

δ(d(y∗k,xk,λ)). (6)

δ(r) is a step function returning 0 if r<0 and 1 oth-
erwise. That is, δ is 0 if the value of the discrimi-
nant function of the correct output g(y∗k,xk,λ) is
greater than that of the maximum incorrect output
g(yk,xk,λ), and δ is 1 otherwise.

Eq. 5 is not an appropriate function for op-
timization since it is a discontinuous function
w.r.t. the parameters λ. One choice of contin-
uous misclassification measure consists of sub-
stituting ‘max’ with ‘soft-max’, maxk rk ≈
log

∑

k exp(rk). As a result

d(y∗,x,λ)=−g∗+log

[

A
∑

y∈Y\y∗

exp(ψg)

]
1

ψ

, (7)

where g∗ = g(y∗,x,λ), g= g(y,x,λ), and A=
1

|Y|−1 . ψ is a positive constant that represents Lψ-
norm. When ψ approaches ∞, Eq. 7 converges to
Eq. 5. Note that we can design any misclassifi-
cation measure, including non-linear measures for
d(). Some examples are shown in the Appendices.

Of even greater concern is the fact that the step
function δ is discontinuous; minimization of Eq.
6 is therefore NP-complete. In the MCE formal-
ism, δ() is replaced with an approximated 0-1 loss
function, l(), which we refer to as a smoothing
function. A typical choice for l() is the sigmoid
function, lsig(), which is differentiable and pro-
vides a good approximation of the 0-1 loss when
the hyper-parameter α is large (see Eq. 8). An-
other choice is the (regularized) logistic function,
llog(), that gives the upper bound of the 0-1 loss.
Logistic loss is used as a conventional CRF loss
function and provides convexity while the sigmoid
function does not. These two smoothing functions
can be written as follows:

lsig = (1 + exp(−α · d(y∗,x,λ)− β))
−1

llog = α−1 · log(1 + exp(α · d(y∗,x,λ) + β)),
(8)

where α and β are the hyper-parameters of the
training.

We can introduce a regularization term to re-
duce over-fitting, which is derived using the same
sense as in MAP, Eq. 2. Finally, the objective func-
tion of the MCE criterion with the regularization
term can be rewritten in the following form:

LMCE
λ = Fl,d,g,λ

[

{(xk,y∗k)}Nk=1

]

+
||λ||φ

φC
. (9)

Then, the objective function of the MCE criterion
that minimizes the error rate is Eq. 9 and

FMCE
l,d,g,λ =

1

N

N
∑

k=1

l(d(y∗k,xk,λ)) (10)

is substituted for Fl,d,g,λ. Since N is constant, we
can eliminate the term 1/N in actual use.

3.2 Formalization

We simply substitute the discriminant function of
the CRFs into that of the MCE criterion:

g(y,x,λ) = log p(y|x; λ) ∝ λ · F (y,x) (11)

Basically, CRF training with the MCE criterion
optimizes Eq. 9 with Eq. 11 after the selection of
an appropriate misclassification measure, d(), and
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smoothing function, l(). Although there is no re-
striction on the choice of d() and l(), in this work
we select sigmoid or logistic functions for l() and
Eq. 7 for d().

The gradient of the loss function Eq. 9 can be
decomposed by the following chain rule:

∇LMCE
λ =

∂F()

∂l()
·
∂l()

∂d()
·
∂d()

∂λ
+
||λ||φ−1

C
.

The derivatives of l() w.r.t. d() given in Eq.
8 are written as: ∂lsig/∂d = α · lsig · (1− lsig) and
∂llog/∂d= lsig.

The derivative of d() of Eq. 7 w.r.t. parameters
λ is written in this form:

∂d()

∂λ
=−

Zλ(x, ψ)

Zλ(x, ψ)−exp(ψg∗)
·F (y∗,x)

+
∑

y∈Y

[

exp(ψg)

Zλ(x, ψ)−exp(ψg∗)
·F (y,x)

]

(12)

where g = λ ·F (y,x), g∗ = λ ·F (y∗,x), and
Zλ(x, ψ)=

∑

y∈Y exp(ψg).
Note that we can obtain exactly the same loss

function as ML/MAP with appropriate choices of
F(), l() and d(). The details are provided in the
Appendices. Therefore, ML/MAP can be seen as
one special case of the framework proposed here.
In other words, our method provides a generalized
framework of CRF training.

3.3 Optimization Procedure

With linear chain CRFs, we can calculate the ob-
jective function, Eq. 9 combined with Eq. 10,
and the gradient, Eq. 12, by using the variant of
the forward-backward and Viterbi algorithm de-
scribed in (Sha and Pereira, 2003). Moreover, for
the parameter optimization process, we can simply
exploit gradient descent or quasi-Newton methods
such as L-BFGS (Liu and Nocedal, 1989) as well
as ML/MAP optimization.

If we select ψ = ∞ for Eq. 7, we only need
to evaluate the correct and the maximum incor-
rect output. As we know, the maximum output
can be efficiently calculated with the Viterbi al-
gorithm, which is the same as calculating Eq. 1.
Therefore, we can find the maximum incorrect
output by using the A* algorithm (Hart et al.,
1968), if the maximum output is the correct out-
put, and by using the Viterbi algorithm otherwise.
It may be feared that since the objective func-
tion is not differentiable everywhere for ψ=∞,
problems for optimization would occur. How-
ever, it has been shown (Le Roux and McDer-

mott, 2005) that even simple gradient-based (first-
order) optimization methods such as GPD and (ap-
proximated) second-order methods such as Quick-
Prop (Fahlman, 1988) and BFGS-based methods
have yielded good experimental optimization re-
sults.

4 Multivariate Evaluation Measures

Thus far, we have discussed the error rate ver-
sion of MCE. Unlike ML/MAP, the framework of
MCE criterion training allows the embedding of
not only a linear combination of error rates, but
also any evaluation measure, including non-linear
measures.

Several non-linear objective functions, such as
F-score for text classification (Gao et al., 2003),
and BLEU-score and some other evaluation mea-
sures for statistical machine translation (Och,
2003), have been introduced with reference to the
framework of MCE criterion training.

4.1 Sequential Segmentation Tasks (SSTs)

Hereafter, we focus solely on CRFs in sequences,
namely the linear chain CRF. We assume that x

and y have the same length: x=(x1, . . . , xn) and
y=(y1, . . . , yn). In a linear chain CRF, yi depends
only on yi−1.

Sequential segmentation tasks (SSTs), such as
text chunking (Chunking) and named entity recog-
nition (NER), which constitute the shared tasks
of the Conference of Natural Language Learn-
ing (CoNLL) 2000, 2002 and 2003, are typical
CRF applications. These tasks require the extrac-
tion of pre-defined segments, referred to as tar-
get segments, from given texts. Fig. 1 shows typ-
ical examples of SSTs. These tasks are gener-
ally treated as sequential labeling problems incor-
porating the IOB tagging scheme (Ramshaw and
Marcus, 1995). The IOB tagging scheme, where
we only consider the IOB2 scheme, is also shown
in Fig. 1. B-X, I-X and O indicate that the word
in question is the beginning of the tag ‘X’, inside
the tag ‘X’, and outside any target segment, re-
spectively. Therefore, a segment is defined as a
sequence of a few outputs.

4.2 Segmentation F-score Loss for SSTs

The standard evaluation measure of SSTs is the
segmentation F-score (Sang and Buchholz, 2000):

Fγ =
(γ2 + 1) · TP

γ2 · FN + FP + (γ2 + 1) · TP
(13)
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He   reckons   the  current  account  deficit   will   narrow   to    only   #   1.8   billion  .

NP VP NP VP PP NP

B-NP B-VP B-NP I-NP I-NP I-NP B-VP I-VP B-PP B-NP I-NP I-NP I-NP O

x:
y:

Seg.:

United  Nation   official   Ekeus Smith   heads   for   Baghdad  . 

B-ORG I-ORG O OOB-PER I-PER B-LOC O

x:
y:

Seg.: ORG PER LOC

Text Chunking Named Entity Recognition

y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 y13 y14Dep.: y1 y2 y3 y4 y5 y6 y7 y8 y9Dep.:

Figure 1: Examples of sequential segmentation tasks (SSTs): text chunking (Chunking) and named entity
recognition (NER).

where TP , FP and FN represent true positive,
false positive and false negative counts, respec-
tively.

The individual evaluation units used to calcu-
late TP , FN and PN , are not individual outputs
yi or output sequences y, but rather segments. We
need to define a segment-wise loss, in contrast to
the standard CRF loss, which is sometimes re-
ferred to as an (entire) sequential loss (Kakade
et al., 2002; Altun et al., 2003). First, we con-
sider the point-wise decision w.r.t. Eq. 1, that is,
ŷi = arg maxyi∈Y1 g(y,x, i,λ). The point-wise
discriminant function can be written as follows:

g(y,x, i,λ) = max
y′∈Y|y|[yi]

λ · F (y′,x) (14)

where Yj represents a set of all y whose length
is j, and Y[yi] represents a set of all y that con-
tain yi in the i’th position. Note that the same
output ŷ can be obtained with Eqs. 1 and 14,
that is, ŷ = (ŷ1, . . . , ŷn). This point-wise dis-
criminant function is different from that described
in (Kakade et al., 2002; Altun et al., 2003), which
is calculated based on marginals.

Let ysj be an output sequence correspond-
ing to the j-th segment of y, where sj repre-
sents a sequence of indices of y, that is, sj =
(sj,1, . . . , sj,|sj |). An example of the Chunk-
ing data shown in Fig. 1, ys4 is (B-VP, I-VP)
where s4 = (7, 8). Let Y[ysj ] be a set of all
outputs whose positions from sj,1 to sj,|sj | are
ysj = (ysj,1 , . . . , ysj,|sj |). Then, we can define a
segment-wise discriminant function w.r.t. Eq. 1.
That is,

g(y,x, sj ,λ) = max
y′∈Y|y|[ysj

]
λ · F (y′,x). (15)

Note again that the same output ŷ can be obtained
using Eqs. 1 and 15, as with the piece-wise dis-
criminant function described above. This property
is needed for evaluating segments since we do not
know the correct segments of the test data; we can
maintain consistency even if we use Eq. 1 for test-
ing and Eq. 15 for training. Moreover, Eq. 15 ob-

viously reduces to Eq. 14 if the length of all seg-
ments is 1. Then, the segment-wise misclassifica-
tion measure d(y∗,x, sj ,λ) can be obtained sim-
ply by replacing the discriminant function of the
entire sequence g(y,x,λ) with that of segment-
wise g(y,x, sj ,λ) in Eq. 7.

Let s∗k be a segment sequence corresponding to
the correct output y∗k for a given xk, and S(xk)
be all possible segments for a given xk. Then, ap-
proximated evaluation functions of TP , FP and
FN can be defined as follows:

TPl =
∑

k

∑

s∗
j
∈s∗k

[

1−l(d(y∗k,xk, s∗j ,λ))
]

·δ(s∗j )

FPl =
∑

k

∑

s′
j
∈S(xk)\s∗k

l(d(y∗k,xk, s′j ,λ))·δ(s′j)

FNl =
∑

k

∑

s∗
j
∈s∗k

l(d(y∗k,xk, s∗j ,λ))·δ(s∗j )

where δ(sj) returns 1 if segment sj is a target seg-
ment, and returns 0 otherwise. For the NER data
shown in Fig. 1, ‘ORG’, ‘PER’ and ‘LOC’ are the
target segments, while segments that are labeled
‘O’ in y are not. Since TPl should not have a
value of less than zero, we select sigmoid loss as
the smoothing function l().

The second summation of TPl and FNl per-
forms a summation over correct segments s∗. In
contrast, the second summation in FPl takes all
possible segments into account, but excludes the
correct segments s∗. Although an efficient way to
evaluate all possible segments has been proposed
in the context of semi-Markov CRFs (Sarawagi
and Cohen, 2004), we introduce a simple alter-
native method. If we select ψ = ∞ for d() in
Eq. 7, we only need to evaluate the segments cor-
responding to the maximum incorrect output ỹ to
calculate FPl. That is, s′j ∈ S(xk)\s∗k can be

reduced to s′j ∈ s̃k, where s̃k represents segments
corresponding to the maximum incorrect output ỹ.
In practice, this reduces the calculation cost and so
we used this method for our experiments described
in the next section.

Maximizing the segmentation Fγ-score, Eq. 13,
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is equivalent to minimizing γ2·FN+FP
(γ2+1)·TP

, since Eq.

13 can also be written as Fγ = 1

1+ γ2·FN+FP

(γ2+1)·TP

. Thus,

an objective function closely reflecting the seg-
mentation Fγ-score based on the MCE criterion
can be written as Eq. 9 while replacing Fl,d,g,λ
with:

FMCE-F
l,d,g,λ =

γ2 · FNl + FPl
(γ2 + 1) · TPl

. (16)

The derivative of Eq. 16 w.r.t. l() is given by the
following equation:

∂FMCE-F
l,d,g,λ

∂l()
=

{

γ2

ZD
+ (γ2+1)·ZN

Z2

D

, if δ(s∗j ) = 1
1
ZD

, otherwise

whereZN andZD represent the numerator and de-
nominator of Eq. 16, respectively.

In the optimization process of the segmentation
F-score objective function, we can efficiently cal-
culate Eq. 15 by using the forward and backward
Viterbi algorithm, which is almost the same as
calculating Eq. 3 with a variant of the forward-
backward algorithm (Sha and Pereira, 2003). The
same numerical optimization methods described
in Sec. 3.3 can be employed for this optimization.

5 Experiments

We used the same Chunking and ‘English’ NER
task data used for the shared tasks of CoNLL-
2000 (Sang and Buchholz, 2000) and CoNLL-
2003 (Sang and De Meulder, 2003), respectively.

Chunking data was obtained from the Wall
Street Journal (WSJ) corpus: sections 15-18 as
training data (8,936 sentences and 211,727 to-
kens), and section 20 as test data (2,012 sentences
and 47,377 tokens), with 11 different chunk-tags,
such as NP and VP plus the ‘O’ tag, which repre-
sents the outside of any target chunk (segment).

The English NER data was taken from the
Reuters Corpus21. The data consists of 203,621,
51,362 and 46,435 tokens from 14,987, 3,466
and 3,684 sentences in training, development and
test data, respectively, with four named entity
tags, PERSON, LOCATION, ORGANIZATION
and MISC, plus the ‘O’ tag.

5.1 Comparison Methods and Parameters

For ML and MAP, we performed exactly the same
training procedure described in (Sha and Pereira,
2003) with L-BFGS optimization. For MCE, we

1http://trec.nist.gov/data/reuters/reuters.html

only considered d() with ψ = ∞ as described in
Sec. 4.2, and used QuickProp optimization2.

For MAP, MCE and MCE-F, we used the L2-
norm regularization. We selected a value of C
from 1.0× 10n where n takes a value from -5 to 5
in intervals 1 by development data3. The tuning of
smoothing function hyper-parameters is not con-
sidered in this paper; that is, α=1 and β=0 were
used for all the experiments.

We evaluated the performance by Eq. 13 with
γ = 1, which is the evaluation measure used in
CoNLL-2000 and 2003. Moreover, we evaluated
the performance by using the average sentence ac-
curacy, since the conventional ML/MAP objective
function reflects this sequential accuracy.

5.2 Features

As regards the basic feature set for Chunking, we
followed (Kudo and Matsumoto, 2001), which is
the same feature set that provided the best result
in CoNLL-2000. We expanded the basic features
by using bigram combinations of the same types
of features, such as words and part-of-speech tags,
within window size 5.

In contrast to the above, we used the original
feature set for NER. We used features derived only
from the data provided by CoNLL-2003 with the
addition of character-level regular expressions of
uppercases [A-Z], lowercases [a-z], digits [0-9] or
others, and prefixes and suffixes of one to four let-
ters. We also expanded the above basic features by
using bigram combinations within window size 5.
Note that we never used features derived from ex-
ternal information such as the Web, or a dictionary,
which have been used in many previous studies but
which are difficult to employ for validating the ex-
periments.

5.3 Results and Discussion

Our experiments were designed to investigate the
impact of eliminating the inconsistency between
objective functions and evaluation measures, that
is, to compare ML/MAP and MCE-F.

Table 1 shows the results of Chunking and NER.
The Fγ=1 and ‘Sent’ columns show the perfor-
mance evaluated using segmentation F-score and

2In order to realize faster convergence, we applied online
GPD optimization for the first ten iterations.

3Chunking has no common development set. We first
train the systems with all but the last 2000 sentences in the
training data as a development set to obtain C, and then re-
train them with all the training data.
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Table 1: Performance of text chunking and named
entity recognition data (CoNLL-2000 and 2003)

Chunking NER
l() n Fγ=1 Sent n Fγ=1 Sent

MCE-F (sig) 5 93.96 60.44 4 84.72 78.72
MCE (log) 3 93.92 60.19 3 84.30 78.02
MCE (sig) 3 93.85 60.14 3 83.82 77.52
MAP 0 93.71 59.15 0 83.79 77.39
ML - 93.19 56.26 - 82.39 75.71

sentence accuracy, respectively. MCE-F refers to
the results obtained from optimizing Eq. 9 based
on Eq. 16. In addition, we evaluated the error
rate version of MCE. MCE(log) and MCE(sig)
indicate that logistic and sigmoid functions are
selected for l(), respectively, when optimizing
Eq. 9 based on Eq. 10. Moreover, MCE(log) and
MCE(sig) used d() based on ψ=∞, and were op-
timized using QuickProp; these are the same con-
ditions as used for MCE-F. We found that MCE-F
exhibited the best results for both Chunking and
NER. There is a significant difference (p<0.01)
between MCE-F and ML/MAP with the McNemar
test, in terms of the correctness of both individual
outputs, yki , and sentences, yk.

NER data has 83.3% (170524/204567) and
82.6% (38554/46666) of ‘O’ tags in the training
and test data, respectively while the correspond-
ing values of the Chunking data are only 13.1%
(27902/211727) and 13.0% (6180/47377). In gen-
eral, such an imbalanced data set is unsuitable for
accuracy-based evaluation. This may be one rea-
son why MCE-F improved the NER results much
more than the Chunking results.

The only difference between MCE(sig) and
MCE-F is the objective function. The correspond-
ing results reveal the effectiveness of using an ob-
jective function that is consistent as the evalua-
tion measure for the target task. These results
show that minimizing the error rate is not opti-
mal for improving the segmentation F-score eval-
uation measure. Eliminating the inconsistency be-
tween the task evaluation measure and the objec-
tive function during the training can improve the
overall performance.

5.3.1 Influence of Initial Parameters

While ML/MAP and MCE(log) is convex w.r.t.
the parameters, neither the objective function of
MCE-F, nor that of MCE(sig), is convex. There-
fore, initial parameters can affect the optimization

Table 2: Performance when initial parameters are
derived from MAP

Chunking NER
l() n Fγ=1 Sent n Fγ=1 Sent

MCE-F (sig) 5 94.03 60.74 4 85.29 79.26
MCE (sig) 3 93.97 60.59 3 84.57 77.71

results, since QuickProp as well as L-BFGS can
only find local optima.

The previous experiments were only performed
with all parameters initialized at zero. In this ex-
periment, the parameters obtained by the MAP-
trained model were used as the initial values of
MCE-F and MCE(sig). This evaluation setting ap-
pears to be similar to reranking, although we used
exactly the same model and feature set.

Table 2 shows the results of Chunking and NER
obtained with this parameter initialization setting.
When we compare Tables 1 and 2, we find that
the initialization with the MAP parameter values
further improves performance.

6 Related Work

Various loss functions have been proposed for de-
signing CRFs (Kakade et al., 2002; Altun et al.,
2003). This work also takes the design of the loss
functions for CRFs into consideration. However,
we proposed a general framework for designing
these loss function that included non-linear loss
functions, which has not been considered in pre-
vious work.

With Chunking, (Kudo and Matsumoto, 2001)
reported the best F-score of 93.91 with the vot-
ing of several models trained by Support Vec-
tor Machine in the same experimental settings
and with the same feature set. MCE-F with the
MAP parameter initialization achieved an F-score
of 94.03, which surpasses the above result without
manual parameter tuning.

With NER, we cannot make a direct compari-
son with previous work in the same experimental
settings because of the different feature set, as de-
scribed in Sec. 5.2. However, MCE-F showed the
better performance of 85.29 compared with (Mc-
Callum and Li, 2003) of 84.04, which used the
MAP training of CRFs with a feature selection ar-
chitecture, yielding similar results to the MAP re-
sults described here.
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7 Conclusions

We proposed a framework for training CRFs based
on optimization criteria directly related to target
multivariate evaluation measures. We first pro-
vided a general framework of CRF training based
on MCE criterion. Then, specifically focusing
on SSTs, we introduced an approximate segmen-
tation F-score objective function. Experimental
results showed that eliminating the inconsistency
between the task evaluation measure and the ob-
jective function used during training improves the
overall performance in the target task without any
change in feature set or model.

Appendices

Misclassification measures

Another type of misclassification measure using
soft-max is (Katagiri et al., 1991):

d(y,x,λ) = −g∗ +

[

A
∑

y∈Y\y∗

gψ
]

1

ψ

.

Another d(), for g in the range [0,∞):

d(y,x,λ) =
[

A
∑

y∈Y\y∗
gψ

] 1

ψ

/g∗.

Comparison of ML/MAP and MCE

If we select llog() with α=1 and β=0, and use Eq.
7 with ψ= 1 and without the term A for d(). We
can obtain the same loss function as ML/MAP:

log (1 + exp(−g∗ + log(Zλ − exp(g∗))))

= log

(

exp(g∗) + (Zλ − exp(g∗))

exp(g∗)

)

=−g∗ + log(Zλ).
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Abstract 
Lasso is a regularization method for pa-
rameter estimation in linear models. It op-
timizes the model parameters with respect 
to a loss function subject to model com-
plexities. This paper explores the use of 
lasso for statistical language modeling for 
text input. Owing to the very large number 
of parameters, directly optimizing the pe-
nalized lasso loss function is impossible. 
Therefore, we investigate two approxima-
tion methods, the boosted lasso (BLasso) 
and the forward stagewise linear regres-
sion (FSLR). Both methods, when used 
with the exponential loss function, bear 
strong resemblance to the boosting algo-
rithm which has been used as a discrimi-
native training method for language mod-
eling. Evaluations on the task of Japanese 
text input show that BLasso is able to 
produce the best approximation to the 
lasso solution, and leads to a significant 
improvement, in terms of character error 
rate, over boosting and the traditional 
maximum likelihood estimation. 

1 Introduction 
Language modeling (LM) is fundamental to a 
wide range of applications. Recently, it has been 
shown that a linear model estimated using dis-
criminative training methods, such as the boost-
ing and perceptron algorithms, outperforms 
significantly a traditional word trigram model 
trained using maximum likelihood estimation 
(MLE) on several tasks such as speech recogni-
tion and Asian language text input (Bacchiani et 
al. 2004; Roark et al. 2004; Gao et al. 2005; Suzuki 
and Gao 2005). 

The success of discriminative training meth-
ods is largely due to fact that unlike the tradi-
tional approach (e.g., MLE) that maximizes the 
function (e.g., likelihood of training data) that is 
loosely associated with error rate, discriminative 
training methods aim to directly minimize the 
error rate on training data even if they reduce the 

likelihood. However, given a finite set of training 
samples, discriminative training methods could 
lead to an arbitrary complex model for the pur-
pose of achieving zero training error. It is 
well-known that complex models exhibit high 
variance and perform poorly on unseen data. 
Therefore some regularization methods have to 
be used to control the complexity of the model. 

Lasso is a regularization method for parame-
ter estimation in linear models. It optimizes the 
model parameters with respect to a loss function 
subject to model complexities. The basic idea of 
lasso is originally proposed by Tibshirani (1996). 
Recently, there have been several implementa-
tions and experiments of lasso on multi-class 
classification tasks where only a small number of 
features need to be handled and the lasso solu-
tion can be directly computed via numerical 
methods. To our knowledge, this paper presents 
the first empirical study of lasso for a realistic, 
large scale task: LM for Asian language text in-
put. Because the task utilizes millions of features 
and training samples, directly optimizing the 
penalized lasso loss function is impossible. 
Therefore, two approximation methods, the 
boosted lasso (BLasso, Zhao and Yu 2004) and 
the forward stagewise linear regression (FSLR, 
Hastie et al. 2001), are investigated. Both meth-
ods, when used with the exponential loss func-
tion, bear strong resemblance to the boosting 
algorithm which has been used as a discrimina-
tive training method for LM. Evaluations on the 
task of Japanese text input show that BLasso is 
able to produce the best approximation to the 
lasso solution, and leads to a significant im-
provement, in terms of character error rate, over 
the boosting algorithm and the traditional MLE. 

2 LM Task and Problem Definition 
This paper studies LM on the application of 
Asian language (e.g. Chinese or Japanese) text 
input, a standard method of inputting Chinese or 
Japanese text by converting the input phonetic 
symbols into the appropriate word string. In this 
paper we call the task IME, which stands for 
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input method editor, based on the name of the 
commonly used Windows-based application. 

Performance on IME is measured in terms of 
the character error rate (CER), which is the 
number of characters wrongly converted from 
the phonetic string divided by the number of 
characters in the correct transcript.  

Similar to speech recognition, IME is viewed 
as a Bayes decision problem. Let A be the input 
phonetic string. An IME system’s task is to 
choose the most likely word string W* among 
those candidates that could be converted from A: 

)|()(maxarg)|(maxarg
(A))(

* WAPWPAWPW
WAW GENGEN ∈∈

==  (1) 

where GEN(A) denotes the candidate set given A. 
Unlike speech recognition, however, there is no 
acoustic ambiguity as the phonetic string is in-
putted by users. Moreover, we can assume a 
unique mapping from W and A in IME as words 
have unique readings, i.e. P(A|W) = 1. So the 
decision of Equation (1) depends solely upon 
P(W), making IME an ideal evaluation test bed 
for LM.  

In this study, the LM task for IME is formu-
lated under the framework of linear models (e.g., 
Duda et al. 2001). We use the following notation, 
adapted from Collins and Koo (2005):  

• Training data is a set of example in-
put/output pairs. In LM for IME, training sam-
ples are represented as {Ai, WiR}, for i = 1…M, 
where each Ai is an input phonetic string and WiR 
is the reference transcript of Ai. 

• We assume some way of generating a set of 
candidate word strings given A, denoted by 
GEN(A).  In our experiments, GEN(A) consists of 
top n word strings converted from A using a 
baseline IME system that uses only a word tri-
gram model. 

• We assume a set of D+1 features fd(W), for d 
= 0…D. The features could be arbitrary functions 
that map W to real values. Using vector notation, 
we have f(W)∈ℜD+1, where f(W) = [f0(W), f1(W), 
…, fD(W)]T. f0(W) is called the base feature, and is 
defined in our case as the log probability that the 
word trigram model assigns to W. Other features 
(fd(W), for d = 1…D) are defined as the counts of 
word n-grams (n = 1 and 2 in our experiments) in 
W. 

• Finally, the parameters of the model form a 
vector of D+1 dimensions, each for one feature 
function, λ = [λ0, λ1, …, λD]. The score of a word 
string W can be written as 

)(),( WWScore λfλ = ∑
=

=
D

d
dd Wfλ

0
)( . (2)

The decision rule of Equation (1) is rewritten as 

),(maxarg),(
(A)

* λλ
GEN

WScoreAW
W∈

= . (3)

Equation (3) views IME as a ranking problem, 
where the model gives the ranking score, not 
probabilities. We therefore do not evaluate the 
model via perplexity. 

Now, assume that we can measure the num-
ber of conversion errors in W by comparing it 
with a reference transcript WR using an error 
function Er(WR,W), which is the string edit dis-
tance function in our case. We call the sum of 
error counts over the training samples sample risk. 
Our goal then is to search for the best parameter 
set λ which minimizes the sample risk, as in 
Equation (4):  

∑
=

=
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ii
R

i

def

MSR AWW
...1

* )),(,Er(minarg λλ
λ

. (4)

However, (4) cannot be optimized easily since 
Er(.) is a piecewise constant (or step) function of λ 
and its gradient is undefined. Therefore, dis-
criminative methods apply different approaches 
that optimize it approximately. The boosting 
algorithm described below is one of such ap-
proaches.  

3 Boosting 
This section gives a brief review of the boosting 
algorithm, following the description of some 
recent work (e.g., Schapire and Singer 1999; 
Collins and Koo 2005).  

The boosting algorithm uses an exponential 
loss function (ExpLoss) to approximate the sam-
ple risk in Equation (4). We define the margin of 
the pair (WR, W) with respect to the model λ as 

),(),(),( λλ WScoreWScoreWWM RR −=  (5)

Then, ExpLoss is defined as 

∑ ∑
= ∈
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ii
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)),(exp()ExpLoss(
GEN

λ  (6)

Notice that ExpLoss is convex so there is no 
problem with local minima when optimizing it. It 
is shown in Freund et al. (1998) and Collins and 
Koo (2005) that there exist gradient search pro-
cedures that converge to the right solution.  

Figure 1 summarizes the boosting algorithm 
we used. After initialization, Steps 2 and 3 are 

1 Set λ0 = argminλ0ExpLoss(λ); and λd = 0 for d=1…D 
2 Select a feature fk* which has largest estimated 

impact on reducing ExpLoss of Eq. (6) 
3 Update λk*   λk* + δ*, and return to Step 2 

Figure 1: The boosting algorithm 
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repeated N times; at each iteration, a feature is 
chosen and its weight is updated as follows.  

First, we define Upd(λ, k, δ) as an updated 
model, with the same parameter values as λ with 
the exception of λk, which is incremented by δ 

},...,,...,,{),,Upd( 10 Dkk λδλλλδ +=λ  

Then, Steps 2 and 3 in Figure 1 can be rewritten 
as Equations (7) and (8), respectively. 

)),,d(ExpLoss(Upminarg*)*,(
,

δδ
δ

kk
k

λ=  (7)

*)*,,Upd( 1 δktt −= λλ  (8)

The boosting algorithm can be too greedy: 
Each iteration usually reduces the ExpLoss(.) on 
training data, so for the number of iterations 
large enough this loss can be made arbitrarily 
small. However, fitting training data too well 
eventually leads to overfiting, which degrades 
the performance on unseen test data (even 
though in boosting overfitting can happen very 
slowly).  

Shrinkage is a simple approach to dealing 
with the overfitting problem. It scales the incre-
mental step δ by a small constant ν, ν ∈ (0, 1). 
Thus, the update of Equation (8) with shrinkage 
is 

*)*,,Upd( 1 νδktt −= λλ  (9)

Empirically, it has been found that smaller values 
of ν lead to smaller numbers of test errors. 

4 Lasso 
Lasso is a regularization method for estimation in 
linear models (Tibshirani 1996). It regularizes or 
shrinks a fitted model through an L1 penalty or 
constraint.  

Let T(λ) denote the L1 penalty of the model, 
i.e., T(λ) = ∑d = 0…D|λd|. We then optimize the 
model λ so as to minimize a regularized loss 
function on training data, called lasso loss defined 
as 

)()ExpLoss(),LassoLoss( λλλ Tαα +=  (10)

where T(λ) generally penalizes larger models (or 
complex models), and the parameter α controls 
the amount of regularization applied to the esti-
mate. Setting α = 0 reverses the LassoLoss to the 
unregularized ExpLoss; as α increases, the model 
coefficients all shrink, each ultimately becoming 
zero. In practice, α should be adaptively chosen 
to minimize an estimate of expected loss, e.g., α 
decreases with the increase of the number of 
iterations.  

Computation of the solution to the lasso prob-
lem has been studied for special loss functions. 

For least square regression, there is a fast algo-
rithm LARS to find the whole lasso path for dif-
ferent α’ s (Obsborn et al. 2000a; 2000b; Efron et 
al. 2004); for 1-norm SVM, it can be transformed 
into a linear programming problem with a fast 
algorithm similar to LARS (Zhu et al. 2003). 
However, the solution to the lasso problem for a 
general convex loss function and an adaptive α 
remains open. More importantly for our pur-
poses, directly minimizing lasso function of 
Equation (10) with respect to λ is not possible 
when a very large number of model parameters 
are employed, as in our task of LM for IME. 
Therefore we investigate below two methods that 
closely approximate the effect of the lasso, and 
are very similar to the boosting algorithm. 

It is also worth noting the difference between 
L1 and L2 penalty. The classical Ridge Regression 
setting uses an L2 penalty in Equation (10) i.e., 
T(λ) = ∑d = 0…D(λd)2, which is much easier to 
minimize (for least square loss but not for Ex-
pLoss). However, recent research (Donoho et al. 
1995) shows that the L1 penalty is better suited for 
sparse situations, where there are only a small 
number of features with nonzero weights among 
all candidate features. We find that our task is 
indeed a sparse situation: among 860,000 features, 
in the resulting linear model only around 5,000 
features have nonzero weights. We then focus on 
the L1 penalty. We leave the empirical compari-
son of the L1 and L2 penalty on the LM task to 
future work. 

4.1 Forward Stagewise Linear 
Regression (FSLR) 

The first approximation method we used is FSLR, 
described in (Algorithm 10.4, Hastie et al. 2001), 
where Steps 2 and 3 in Figure 1 are performed 
according to Equations (7) and (11), respectively. 

)),,d(ExpLoss(Upminarg*)*,(
,

δδ
δ

kk
k

λ=  (7) 

*))sign(*,,Upd( 1 δε ×= − ktt λλ  (11)

Notice that FSLR is very similar to the boosting 
algorithm with shrinkage in that at each step, the 
feature fk* that has largest estimated impact on 
reducing ExpLoss is selected. The only difference 
is that FSLR updates the weight of fk* by a small 
fixed step size ε. By taking such small steps, FSLR 
imposes some implicit regularization, and can 
closely approximate the effect of the lasso in a 
local sense (Hastie et al. 2001). Empirically, we 
find that the performance of the boosting algo-
rithm with shrinkage closely resembles that of 
FSLR, with the learning rate parameter ν corre-
sponding to ε. 
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4.2 Boosted Lasso (BLasso) 
The second method we used is a modified ver-
sion of the BLasso algorithm described in Zhao 
and Yu (2004). There are two major differences 
between BLasso and FSLR. At each iteration, 
BLasso can take either a forward step or a backward 
step. Similar to the boosting algorithm and FSLR, 
at each forward step, a feature is selected and its 
weight is updated according to Equations (12) 
and (13). 

)),,d(ExpLoss(Upminarg*)*,(
,

δδ
εδ

kk
k

λ
±=

=  (12)

*))sign(*,,Upd( 1 δε ×= − ktt λλ  (13)

However, there is an important difference be-
tween Equations (12) and (7). In the boosting 
algorithm with shrinkage and FSLR, as shown in 
Equation (7), a feature is selected by its impact on 
reducing the loss with its optimal update δ*. In 
contract, in BLasso, as shown in Equation (12), 
the optimization over δ is removed, and for each 
feature, its loss is calculated with an update of 
either +ε or -ε, i.e., the grid search is used for 
feature selection. We will show later that this 
seemingly trivial difference brings a significant 
improvement. 

The backward step is unique to BLasso. In 
each iteration, a feature is selected and its weight 
is updated backward if and only if it leads to a 
decrease of the lasso loss, as shown in Equations 
(14) and (15): 

))sign(,,d(ExpLoss(Upminarg*
0,

ελ
λ
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≠
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λ (14)
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where θ  is a tolerance parameter. 
Figure 2 summarizes the BLasso algorithm we 

used. After initialization, Steps 4 and 5 are re-
peated N times; at each iteration, a feature is 
chosen and its weight is updated either backward 
or forward by a fixed amount ε. Notice that the 
value of α is adaptively chosen according to the 
reduction of ExpLoss during training. The algo-
rithm starts with a large initial α, and then at each 
forward step the value of α decreases until the 
ExpLoss stops decreasing. This is intuitively 
desirable: It is expected that most highly effective 
features are selected in early stages of training, so 
the reduction of ExpLoss at each step in early 
stages are more substantial than in later stages. 
These early steps coincide with the boosting steps 
most of the time. In other words, the effect of 
backward steps is more visible at later stages. 

Our implementation of BLasso differs slightly 
from the original algorithm described in Zhao 
and Yu (2004). Firstly, because the value of the 
base feature f0 is the log probability (assigned by 
a word trigram model) and has a different range 
from that of other features as in Equation (2), λ0 is 
set to optimize ExpLoss in the initialization step 
(Step 1 in Figure 2) and remains fixed during 
training. As suggested by Collins and Koo (2005), 
this ensures that the contribution of the 
log-likelihood feature f0 is well-calibrated with 
respect to ExpLoss. Secondly, when updating a 
feature weight, if the size of the optimal update 
step (computed via Equation (7)) is smaller than 
ε, we use the optimal step to update the feature. 
Therefore, in our implementation BLasso does 
not always take a fixed step; it may take steps 
whose size is smaller than ε. In our initial ex-
periments we found that both changes (also used 
in our implementations of boosting and FSLR) 
were crucial to the performance of the methods.  
1 Initialize λ0: set λ0 = argminλ0ExpLoss(λ), and λd = 0 

for d=1…D. 
2 Take a forward step according to Eq. (12) and (13), 

and the updated model is denoted by λ1 
3 Initialize α = (ExpLoss(λ0)-ExpLoss(λ1))/ε 
4 Take a backward step if and only if it leads to a 

decrease of LassoLoss according to Eq. (14) and 
(15), where θ  = 0; otherwise 

5 Take a forward step according to Eq. (12) and (13); 
update α = min(α, (ExpLoss(λt-1)-ExpLoss(λt))/ε ); 
and return to Step 4. 

Figure 2: The BLasso algorithm 

(Zhao and Yu 2004) provides theoretical justi-
fications for BLasso. It has been proved that (1) it 
guarantees that it is safe for BLasso to start with 
an initial α which is the largest α that would 
allow an ε step away from 0 (i.e., larger α’s cor-
respond to T(λ)=0); (2) for each value of α, BLasso 
performs coordinate descent (i.e., reduces Ex-
pLoss by updating the weight of a feature) until 
there is no descent step; and (3) for each step 
where the value of α decreases, it guarantees that 
the lasso loss is reduced.  As a result, it can be 
proved that for a finite number of features and θ 
= 0, the BLasso algorithm shown in Figure 2 
converges to the lasso solution when ε  0. 

5 Evaluation 

5.1 Settings 
We evaluated the training methods described 
above in the so-called cross-domain language 
model  adaptation paradigm, where we adapt a 
model trained on one domain (which we call the 
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background domain) to a different domain (adap-
tation domain), for which only a small amount of 
training data is available. 

The data sets we used in our experiments 
came from five distinct sources of text. A 
36-million-word Nikkei Newspaper corpus was 
used as the background domain, on which the 
word trigram model was trained. We used four 
adaptation domains: Yomiuri (newspaper cor-
pus), TuneUp (balanced corpus containing 
newspapers and other sources of text), Encarta 
(encyclopedia) and Shincho (collection of novels). 
All corpora have been pre-word-segmented us-
ing a lexicon containing 167,107 entries. For each 
of the four domains, we created training data 
consisting of 72K sentences (0.9M~1.7M words) 
and test data of 5K sentences (65K~120K words) 
from each adaptation domain. The first 800 and 
8,000 sentences of each adaptation training data 
were also used to show how different sizes of 
training data affected the performances of vari-
ous adaptation methods. Another 5K-sentence 
subset was used as held-out data for each do-
main.  

We created the training samples for discrimi-
native learning as follows. For each phonetic 
string A in adaptation training data, we pro-
duced a lattice of candidate word strings W using 
the baseline system described in (Gao et al. 2002), 
which uses a word trigram model trained via 
MLE on the Nikkei Newspaper corpus. For effi-
ciency, we kept only the best 20 hypotheses in its 
candidate conversion set  GEN(A) for each 
training sample for discriminative training. The 
oracle best hypothesis, which gives the minimum 
number of errors, was used as the reference tran-
script of A.  

We used unigrams and bigrams that occurred 
more than once in the training set as features in 
the linear model of Equation (2). The total num-
ber of candidate features we used was around 
860,000.  

5.2 Main Results 
Table 1 summarizes the results of various model 
training (adaptation) methods in terms of CER 
(%) and CER reduction (in parentheses) over 
comparing models. In the first column, the 
numbers in parentheses next to the domain name 
indicates the number of training sentences used 
for adaptation. 

Baseline, with results shown in Column 3, is 
the word trigram model. As expected, the CER 
correlates very well the similarity between the 
background domain and the adaptation domain, 
where domain similarity is measured in terms of 

cross entropy (Yuan et al. 2005) as shown in Col-
umn 2.  

MAP (maximum a posteriori), with results 
shown in Column 4, is a traditional LM adapta-
tion method where the parameters of the back-
ground model are adjusted in such a way that 
maximizes the likelihood of the adaptation data. 
Our implementation takes the form of linear 
interpolation as described in Bacchiani et al. 
(2004): P(wi|h) = λPb(wi|h) + (1-λ)Pa(wi|h), where 
Pb is the probability of the background model, Pa 
is the probability trained on adaptation data 
using MLE and the history h corresponds to two 
preceding words (i.e. Pb and Pa are trigram 
probabilities). λ is the interpolation weight opti-
mized on held-out data.  

Boosting, with results shown in Column 5, is 
the algorithm described in Figure 1. In our im-
plementation, we use the shrinkage method 
suggested by Schapire and Singer (1999) and 
Collins and Koo (2005). At each iteration, we 
used the following update for the kth feature 

ZC
ZC

k

k
k ε

ε
δ

+
+

=
+

_log
2
1  (16)

where Ck+ is a value increasing exponentially 
with the sum of margins of (WR, W) pairs over the 
set where fk is seen in WR but not in W; Ck-  is the 
value related to the sum of margins over the set 
where fk is seen in W but not in WR. ε is a 
smoothing factor (whose value is optimized on 
held-out data) and Z is a normalization constant 
(whose value is the ExpLoss(.) of training data 
according to the current model). We see that εZ in 
Equation (16) plays the same role as ν in Equation 
(9).  

BLasso, with results shown in Column 6, is 
the algorithm described in Figure 2. We find that 
the performance of BLasso is not very sensitive to 
the selection of the step size ε across training sets 
of different domains and sizes. Although small ε 
is preferred in theory as discussed earlier, it 
would lead to a very slow convergence. There-
fore, in our experiments, we always use a large 
step (ε = 0.5) and use the so-called early stopping 
strategy, i.e., the number of iterations before 
stopping is optimized on held-out data. 

In the task of LM for IME, there are millions of 
features and training samples, forming an ex-
tremely large and sparse matrix. We therefore 
applied the techniques described in Collins and 
Koo (2005) to speed up the training procedure. 
The resulting algorithms run in around 15 and 30 
minutes respectively for Boosting and BLasso to 
converge on an XEON™ MP 1.90GHz machine 
when training on an 8K-sentnece training set. 
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The results in Table 1 give rise to several ob-
servations. First of all, both discriminative train-
ing methods (i.e., Boosting and BLasso) outper-
form MAP substantially. The improvement mar-
gins are larger when the background and adap-
tation domains are more similar. The phenome-
non is attributed to the underlying difference 
between the two adaptation methods: MAP aims 
to improve the likelihood of a distribution, so if 
the adaptation domain is very similar to the 
background domain, the difference between the 
two underlying distributions is so small that 
MAP cannot adjust the model effectively. Dis-
criminative methods, on the other hand, do not 
have this limitation for they aim to reduce errors 
directly. Secondly, BLasso outperforms Boosting 
significantly (p-value < 0.01) on all test sets. The 
improvement margins vary with the training sets 
of different domains and sizes. In general, in 
cases where the adaptation domain is less similar 
to the background domain and larger training set 
is used, the improvement of BLasso is more visi-
ble.    

Note that the CER results of FSLR are not in-
cluded in Table 1 because it achieves very similar 
results to the boosting algorithm with shrinkage 
if the controlling parameters of both algorithms 
are optimized via cross-validation. We shall dis-
cuss their difference in the next section. 

5.3 Dicussion 
This section investigates what components of 
BLasso bring the improvement over Boosting. 
Comparing the algorithms in Figures 1 and 2, we 
notice three differences between BLasso and 
Boosting: (i) the use of backward steps in BLasso; 
(ii) BLasso uses the grid search (fixed step size) 
for feature selection in Equation (12) while 
Boosting uses the continuous search (optimal 
step size) in Equation (7); and (iii) BLasso uses a 
fixed step size for feature update in Equation (13) 
while Boosting uses an optimal step size in 
Equation (8). We then investigate these differ-
ences in turn. 

To study the impact of backward steps, we 
compared BLasso with the boosting algorithm 
with a fixed step search and a fixed step update, 
henceforth referred to as F-Boosting. F-Boosting 
was implemented as Figure 2, by setting a large 
value to θ in Equation (15), i.e., θ = 103, to prohibit 
backward steps. We find that although the 
training error curves of BLasso and F-Boosting 
are almost identical, the T(λ) curves grow apart 
with iterations, as shown in Figure 3. The results 
show that with backward steps, BLasso achieves 
a better approximation to the true lasso solution: 

It leads to a model with similar training errors 
but less complex (in terms of L1 penalty). In our 
experiments we find that the benefit of using 
backward steps is only visible in later iterations 
when BLasso’s backward steps kick in. A typical 
example is shown in Figure 4. The early steps fit 
to highly effective features and in these steps 
BLasso and F-Boosting agree. For later steps, 
fine-tuning of features is required. BLasso with 
backward steps provides a better mechanism 
than F-Boosting to revise the previously chosen 
features to accommodate this fine level of tuning. 
Consequently we observe the superior perform-
ance of BLasso at later stages as shown in our 
experiments.  

As well-known in linear regression models, 
when there are many strongly correlated fea-
tures, model parameters can be poorly estimated 
and exhibit high variance. By imposing a model 
size constraint, as in lasso, this phenomenon is 
alleviated. Therefore, we speculate that a better 
approximation to lasso, as BLasso with backward 
steps, would be superior in eliminating the nega-
tive effect of strongly correlated features in 
model estimation. To verify our speculation, we 
performed the following experiments. For each 
training set, in addition to word unigram and 
bigram features, we introduced a new type of 
features called headword bigram.  

As described in Gao et al. (2002), headwords 
are defined as the content words of the sentence. 
Therefore, headword bigrams constitute a special 
type of skipping bigrams which can capture 
dependency between two words that may not be 
adjacent. In reality, a large portion of headword 
bigrams are identical to word bigrams, as two 
headwords can occur next to each other in text. In 
the adaptation test data we used, we find that 
headword bigram features are for the most part 
either completely overlapping with the word bi-
gram features (i.e., all instances of headword 
bigrams also count as word bigrams) or not over-
lapping at all (i.e., a headword bigram feature is 
not observed as a word bigram feature) – less 
than 20% of headword bigram features displayed 
a variable degree of overlap with word bigram 
features. In our data, the rate of completely 
overlapping features is 25% to 47% depending on 
the adaptation domain. From this, we can say 
that the headword bigram features show moder-
ate to high degree of correlation with the word 
bigram features.  

We then used BLasso and F-Boosting to train 
the linear language models including both word 
bigram and headword bigram features. We find 
that although the CER reduction by adding 
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headword features is overall very small, the dif-
ference between the two versions of BLasso is 
more visible in all four test sets. Comparing Fig-
ures 5 – 8 with Figure 4, it can be seen that BLasso 
with backward steps outperforms the one with-
out backward steps in much earlier stages of 
training with a larger margin. For example, on 
Encarta data sets, BLasso outperforms F-Boosting 
after around 18,000 iterations with headword 
features (Figure 7), as opposed to 25,000 itera-
tions without headword features (Figure 4). The 
results seem to corroborate our speculation that 
BLasso is more robust in the presence of highly 
correlated features. 

To investigate the impact of using the grid 
search (fixed step size) versus the continuous 
search (optimal step size) for feature selection, 
we compared F-Boosting with FSLR since they 
differs only in their search methods for feature 
selection. As shown in Figures 5 to 8, although 
FSLR is robust in that its test errors do not in-
crease after many iterations, F-Boosting can reach 
a much lower error rate on three out of four test 
sets. Therefore, in the task of LM for IME where 
CER is the most important metric, the grid search 
for feature selection is more desirable.  

To investigate the impact of using a fixed ver-
sus an optimal step size for feature update, we 
compared FSLR with Boosting. Although both 
algorithms achieve very similar CER results, the 
performance of FSLR is much less sensitive to the 
selected fixed step size. For example, we can 
select any value from 0.2 to 0.8, and in most set-
tings FSLR achieves the very similar lowest CER 
after 20,000 iterations, and will stay there for 
many iterations. In contrast, in Boosting, the 
optimal value of ε in Equation (16) varies with the 
sizes and domains of training data, and has to be 
tuned carefully. We thus conclude that in our 
task FSLR is more robust against different train-
ing settings and a fixed step size for feature up-
date is more preferred. 

6 Conclusion 
This paper investigates two approximation lasso 
methods for LM applied to a realistic task with a 
very large number of features with sparse feature 
space. Our results on Japanese text input are 
promising. BLasso outperforms the boosting 
algorithm significantly in terms of CER reduction 
on all experimental settings. 

We have shown that this superior perform-
ance is a consequence of BLasso’s backward step 
and its fixed step size in both feature selection 
and feature weight update.  Our experimental 

results in Section 5 show that the use of backward 
step is vital for model fine-tuning after major 
features are selected and for coping with strongly 
correlated features; the fixed step size of BLasso 
is responsible for the improvement of CER and 
the robustness of the results. Experiments on 
other data sets and theoretical analysis are 
needed to further support our findings in this 
paper. 
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Table 1. CER (%) and CER reduction (%) (Y=Yomiuri; T=TuneUp; E=Encarta; S=-Shincho) 

Domain Entropy vs.Nikkei Baseline MAP (over Baseline) Boosting (over MAP) BLasso (over MAP/Boosting) 
Y (800) 7.69 3.70 3.70 (+0.00) 3.13 (+15.41) 3.01 (+18.65/+3.83) 
Y (8K) 7.69 3.70 3.69 (+0.27) 2.88 (+21.95) 2.85 (+22.76/+1.04) 
Y (72K) 7.69 3.70 3.69 (+0.27) 2.78 (+24.66) 2.73 (+26.02/+1.80) 
T (800) 7.95 5.81 5.81 (+0.00) 5.69 (+2.07) 5.63 (+3.10/+1.05) 
T (8K) 7.95 5.81 5.70 (+1.89) 5.48 (+5.48) 5.33 (+6.49/+2.74) 
T (72K) 7.95 5.81 5.47 (+5.85) 5.33 (+2.56) 5.05 (+7.68/+5.25) 
E (800) 9.30 10.24 9.60 (+6.25) 9.82 (-2.29) 9.18 (+4.38/+6.52) 
E (8K) 9.30 10.24 8.64 (+15.63) 8.54 (+1.16) 8.04 (+6.94/+5.85) 
E (72K) 9.30 10.24 7.98 (+22.07) 7.53 (+5.64) 7.20 (+9.77/+4.38) 
S (800) 9.40 12.18 11.86 (+2.63) 11.91 (-0.42) 11.79 (+0.59/+1.01) 
S (8K) 9.40 12.18 11.15 (+8.46) 11.09 (+0.54) 10.73 (+3.77/+3.25) 
S (72K) 9.40 12.18 10.76 (+11.66) 10.25 (+4.74) 9.64 (+10.41/+5.95) 

 

  
 

Figure 3. L1 curves: models are trained 
on the E(8K) dataset. 

Figure 4. Test error curves: models are 
trained on the E(8K) dataset. 

Figure 5. Test error curves: models are 
trained on the Y(8K) dataset, including 
headword bigram features. 

   
Figure 6. Test error curves: models are 
trained on the T(8K) dataset, including 
headword bigram features. 

Figure 7. Test error curves: models are 
trained on the E(8K) dataset, including 
headword bigram features. 

Figure 8. Test error curves: models are 
trained on the S(8K) dataset, including 
headword bigram features. 
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Abstract

We have developed an automated Japanese
essay scoring system called Jess. The sys-
tem needs expert writings rather than ex-
pert raters to build the evaluation model.
By detecting statistical outliers of prede-
termined aimed essay features compared
with many professional writings for each
prompt, our system can evaluate essays.
The following three features are exam-
ined: (1) rhetoric — syntactic variety, or
the use of various structures in the arrange-
ment of phases, clauses, and sentences,
(2) organization — characteristics associ-
ated with the orderly presentation of ideas,
such as rhetorical features and linguistic
cues, and (3) content — vocabulary re-
lated to the topic, such as relevant infor-
mation and precise or specialized vocabu-
lary. The final evaluation score is calcu-
lated by deducting from a perfect score as-
signed by a learning process using editori-
als and columns from the Mainichi Daily
News newspaper. A diagnosis for the es-
say is also given.

1 Introduction

When giving an essay test, the examiner expects a
written essay to reflect the writing ability of the ex-
aminee. A variety of factors, however, can affect
scores in a complicated manner. Cooper (1984)
states that “various factors including the writer,
topic, mode, time limit, examination situation, and
rater can introduce error into the scoring of essays
used to measure writing ability.” Most of these
factors are present in giving tests, and the human
rater, in particular, is a major error factor in the
scoring of essays.

In fact, many other factors influence the scoring
of essay tests, as listed below, and much research
has been devoted.

� Handwriting skill (handwriting quality,
spelling) (Chase, 1979; Marshall and
Powers, 1969)

� Serial effects of rating (the order in which es-
say answers are rated) (Hughes et al., 1983)

� Topic selection (how should essays written
on different topics be rated?) (Meyer, 1939)

� Other error factors (writer’s gender, ethnic
group, etc.) (Chase, 1986)

In recent years, with the aim of removing these
error factors and establishing fairness, consider-
able research has been performed on computer-
based automated essay scoring (AES) systems
(Burstein et al., 1998; Foltz et al., 1999; Page et
al., 1997; Powers et al., 2000; Rudner and Liang,
2002).

The AES systems provide the users with prompt
feedback to improve their writings. Therefore,
many practical AES systems have been used. E-
rater (Burstein et al., 1998), developed by the Ed-
ucational Testing Service, began being used for
operational scoring of the Analytical Writing As-
sessment in the Graduate Management Admis-
sion Test (GMAT), an entrance examination for
business graduate schools, in February 1999, and
it has scored approximately 360,000 essays per
year. The system includes several independent
NLP-based modules for identifying features rel-
evant to the scoring guide from three categories:
syntax, discourse, and topic. Each of the feature-
recognition modules correlate the essay scores
with assigned by human readers. E-rater uses a
model-building module to select and weight pre-
dictive features for essay scoring. Project Essay
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Grade (PEG), which was the first automated es-
say scorer, uses a regression model like e-rater
(Page et al., 1997). IntelliMetric (Elliot, 2003)
was first commercially released by Vantage Learn-
ing in January 1998 and was the first AI-based
essay-scoring tool available to educational agen-
cies. The system internalizes the pooled wisdom
of many expert scorers. The Intelligent Essay As-
sessor (IEA) is a set of software tools for scor-
ing the quality of the conceptual content of es-
says based on latent semantic analysis (Foltz et al.,
1999). The Bayesian Essay Test Scoring sYstem
(BETSY) is a windows-based program that clas-
sifies text based on trained material. The features
include multi-nomial and Bernoulli Naive Bayes
models (Rudner and Liang, 2002).

Note that all above-mentioned systems are
based on the assumption that the true quality of
essays must be defined by human judges. How-
ever, Bennet and Bejar (1998) have criticized the
overreliance on human ratings as the sole criterion
for evaluating computer performance because rat-
ings are typically based as a constructed rubric that
may ultimately achieve acceptable reliability at the
cost of validity. In addition, Friedman, in research
during the 1980s, found that holistic ratings by hu-
man raters did not award particularly high marks
to professionally written essays mixed in with stu-
dent productions. This is a kind of negative halo
effect: create a bad impression, and you will be
scored low on everything. Thus, Bereiter (2003)
insists that another approach to doing better than
ordinary human raters would be to use expert writ-
ers rather than expert raters. Reputable profes-
sional writers produce sophisticated and easy-to-
read essays. The use of professional writings as
the criterion, whether the evaluation is based on
holistic or trait rating, has an advantage, described
below.

The methods based on expert rater evaluations
require much effort to set up the model for each
prompt. For example, e-rater and PEG use some
sort of regression approaches in setting up the sta-
tistical models. Depending on how many vari-
ables are involved, these models may require thou-
sands of cases to derive stable regression weights.
BETSY requires the Bayesian rules, and Intelli-
Metric, the AI-based rules. Thus, the methodol-
ogy limits the grader’s practical utility to large-
scale testing operations in which such data collec-
tion is feasible. On the other hand, a method based

on professional writings can overcome this; i.e.,
in our system, we need not set up a model simu-
lating a human rater because thousands of articles
by professional writers can easily be obtained via
various electronic media. By detecting a statistical
outlier to predetermined essay features compared
with many professional writings for each prompt,
our system can evaluate essays.

In Japan, it is possible to obtain complete ar-
ticles from the Mainichi Daily News newspaper
up to 2005 from Nichigai Associates, Inc. and
from the Nihon Keizai newspaper up to 2004
from Nikkei Books and Software, Inc. for pur-
poses of linguistic study. In short, it is rel-
atively easy to collect editorials and columns
(e.g., “Yoroku”) on some form of electronic me-
dia for use as essay models. Literary works
in the public domain can be accessed from
Aozora Bunko (http://www.aozora.gr.jp/). Fur-
thermore, with regard to morphological anal-
ysis, the basis of Japanese natural language
processing, a number of free Japanese mor-
phological analyzers are available. These
include JUMAN (http://www-lab25.kuee.kyoto-
u.ac.jp/nlresource/juman.html), developed by the
Language Media Laboratory of Kyoto University,
and ChaSen (http://chasen.aist-nara.ac.jp/, used in
this study) from the Matsumoto Laboratory of the
Nara Institute of Science and Technology.

Likewise, for syntactic analysis, free resources
are available such as KNP (http://www-lab25.
kuee.kyoto-u.ac.jp/nlresource/knp.html) from Ky-
oto University, SAX and BUP (http://cactus.aist-
nara.ac.jp/lab/nlt/

�
sax,bup � .html) from the Nara

Institute of Science and Technology, and the
MSLR parser (http://tanaka-www.cs.titech.ac.jp/
pub/mslr/index-j.html) from the Tanaka Tokunaga
Laboratory of the Tokyo Institute of Technol-
ogy. With resources such as these, we prepared
tools for computer processing of the articles and
columns that we collect as essay models.

In addition, for the scoring of essays, where it is
essential to evaluate whether content is suitable,
i.e., whether a written essay responds appropri-
ately to the essay prompt, it is becoming possi-
ble for us to use semantic search technologies not
based on pattern matching as used by search en-
gines on the Web. The methods for implement-
ing such technologies are explained in detail by
Ishioka and Kameda (1999) and elsewhere. We
believe that this statistical outlier detection ap-
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proach to using published professional essays and
columns as models makes it possible to develop a
system essentially superior to other AES systems.

We have named this automated Japanese essay
scoring system “Jess.” This system evaluates es-
says based on three features : (1) rhetoric, (2) or-
ganization, and (3) content, which are basically
the same as the structure, organization, and con-
tent used by e-rater. Jess also allows the user
to designate weights (allotted points) for each of
these essay features. If the user does not explic-
itly specify the point allotment, the default weights
are 5, 2, and 3 for structure, organization, and con-
tent, respectively, for a total of 10 points. (Inciden-
tally, a perfect score in e-rater is 6.) This default
point allotment in which “rhetoric” is weighted
higher than “organization” and “content” is based
on the work of Watanabe et al. (1988). In that
research, 15 criteria were given for scoring es-
says: (1) wrong/omitted characters, (2) strong vo-
cabulary, (3) character usage, (4) grammar, (5)
style, (6) topic relevance, (7) ideas, (8) sentence
structure, (9) power of expression, (10) knowl-
edge, (11) logic/consistency, (12) power of think-
ing/judgment, (13) complacency, (14) nuance, and
(15) affinity. Here, correlation coefficients were
given to reflect the evaluation value of each of
these criteria. For example, (3) character usage,
which is deeply related to “rhetoric,” turned out
to have the highest correlation coefficient at 0.58,
and (1) wrong/omitted characters was relatively
high at 0.36. In addition, (8) sentence structure
and (11) logic/consistency, which is deeply related
to “organization,” had correlation coefficients of
0.32 and 0.26, respectively, both lower than that
of “rhetoric,” and (6) topic relevance and (14) nu-
ance, which are though to be deeply related to
“content,” had correlation coefficients of 0.27 and
0.32, respectively.

Our system, Jess, is the first automated Japanese
essay scorer and has become most famous in
Japan, since it was introduced in February 2005
in a headline in the Asahi Daily News, which is
well known as the most reliable and most repre-
sentative newspaper of Japan.

The following sections describe the scoring cri-
teria of Jess in detail. Sections 2, 3, and 4 examine
rhetoric, organization, and content, respectively.
Section 5 presents an application example and as-
sociated operation times, and section 6 concludes
the paper.

2 Rhetoric

As metrics to portray rhetoric, Jess uses (1) ease of
reading, (2) diversity of vocabulary, (3) percentage
of big words (long, difficult words), and (4) per-
centage of passive sentences, in accordance with
Maekawa (1995) and Nagao (1996). These met-
rics are broken down further into various statisti-
cal quantities in the following sections. The dis-
tributions of these statistical quantities were ob-
tained from the editorials and columns stored on
the Mainichi Daily News CD-ROMs.

Though most of these distributions are asym-
metrical (skewed), they are each treated as a dis-
tribution of an ideal essay. In the event that a score
(obtained statistical quantity) turns out to be an
outlier value with respect to such an ideal distri-
bution, that score is judged to be “inappropriate”
for that metric. The points originally allotted to
the metric are then reduced, and a comment to
that effect is output. An “outlier” is an item of
data more than 1.5 times the interquartile range.
(In a box-and-whisker plot, whiskers are drawn up
to the maximum and minimum data points within
1.5 times the interquartile range.) In scoring, the
relative weights of the broken-down metrics are
equivalent with the exception of “diversity of vo-
cabulary,” which is given a weight twice that of the
others because we consider it an index contribut-
ing to not only “rhetoric” but to “content” as well.

2.1 Ease of reading

The following items are considered indexes of
“ease of reading.”

1. Median and maximum sentence length

Shorter sentences are generally assumed to
make for easier reading (Knuth et al., 1988).
Many books on writing in the Japanese
language, moreover, state that a sentence
should be no longer than 40 or 50 characters.
Median and maximum sentence length can
therefore be treated as an index. The reason
the median value is used as opposed to the av-
erage is that sentence-length distributions are
skewed in most cases. The relative weight
used in the evaluation of median and maxi-
mum sentence length is equivalent to that of
the indexes described below. Sentence length
is also known to be quite effective for deter-
mining style.

2. Median and maximum clause length
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In addition to periods (.), commas (,) can also
contribute to ease of reading. Here, text be-
tween commas is called a “clause.” The num-
ber of characters in a clause is also an evalu-
ation index.

3. Median and maximum number of phrases in
clauses

A human being cannot understand many
things at one time. The limit of human short-
term memory is said to be seven things in
general, and that is thought to limit the length
of clauses. Actually, on surveying the num-
ber of phrases in clauses from editorials in
the Mainichi Daily News, we found it to have
a median of four, which is highly compati-
ble with the short-term memory maximum of
seven things.

4. Kanji/kana ratio

To simplify text and make it easier to read,
a writer will generally reduce kanji (Chinese
characters) intentionally. In fact, an appropri-
ate range for the kanji/kana ratio in essays is
thought to exist, and this range is taken to be
an evaluation index. The kanji/kana ratio is
also thought to be one aspect of style.

5. Number of attributive declined or conjugated
words (embedded sentences)

The declined or conjugated forms of at-
tributive modifiers indicate the existence of
“embedded sentences,” and their quantity is
thought to affect ease of understanding.

6. Maximum number of consecutive infinitive-
form or conjunctive-particle clauses

Consecutive infinitive-form or conjunctive-
particle clauses, if many, are also thought to
affect ease of understanding. Note that not
this “average size” but “maximum number”
of consecutive infinitive-form or conjunctive-
particle clauses holds significant meaning as
an indicator of the depth of dependency af-
fecting ease of understanding.

2.2 Diversity of vocabulary

Yule (1944) used a variety of statistical quanti-
ties in his analysis of writing. The most famous
of these is an index of vocabulary concentration
called the � characteristic value. The value of �
is non-negative, increases as vocabulary becomes
more concentrated, and conversely, decreases as

vocabulary becomes more diversified. The me-
dian values of � for editorials and columns in
the Mainichi Daily News were found to be 87.3
and 101.3, respectively. Incidentally, other charac-
teristic values indicating vocabulary concentration
have been proposed. See Tweedie et al. (1998), for
example.

2.3 Percentage of big words

It is thought that the use of big words, to what-
ever extent, cannot help but impress the reader.
On investigating big words in Japanese, however,
care must be taken because simply measuring the
length of a word may lead to erroneous conclu-
sions. While “big word” in English is usually
synonymous with “long word,” a word expressed
in kanji becomes longer when expressed in kana
characters. That is to say, a “small word” in
Japanese may become a big word simply due to
notation. The number of characters in a word must
therefore be counted after converting it to kana
characters (i.e., to its “reading”) to judge whether
that word is big or small. In editorials from
the Mainichi Daily News, the median number of
characters in nouns after conversion to kana was
found to be 4, with 5 being the 3rd quartile (upper
25%). We therefore assumed for the time being
that nouns having readings of 6 or more charac-
ters were big words, and with this as a guideline,
we again measured the percentage of nouns in a
document that were big words. Since the number
of characters in a reading is an integer value, this
percentage would not necessarily be 25%, but a
distribution that takes a value near that percentage
on average can be obtained.

2.4 Percentage of passive sentences

It is generally felt that text should be written in ac-
tive voice as much as possible, and that text with
many passive sentences is poor writing (Knuth et
al., 1988). For this reason, the percentage of pas-
sive sentences is also used as an index of rhetoric.
Grammatically speaking, passive voice is distin-
guished from active voice in Japanese by the aux-
iliary verbs “reru” and “rareru”. In addition to pas-
sivity, however, these two auxiliary verbs can also
indicate respect, possibility, and spontaneity. In
fact, they may be used to indicate respect even in
the case of active voice. This distinction, however,
while necessary in analysis at the semantic level,
is not used in morphological analysis and syntactic
analysis. For example, in the case that the object
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of respect is “teacher” (sensei) or “your husband”
(goshujin), the use of “reru” and “rareru” auxiliary
verbs here would certainly indicate respect. This
meaning, however, belongs entirely to the world of
semantics. We can assume that such an indication
of respect would not be found in essays required
for tests, and consequently, that the use of “reru”
and “rareru” in itself would indicate the passive
voice in such an essay.

3 Organization

Comprehending the flow of a discussion is es-
sential to understanding the connection between
various assertions. To help the reader to catch
this flow, the frequent use of conjunctive expres-
sions is useful. In Japanese writing, however, the
use of conjunctive expressions tends to alienate
the reader, and such expressions, if used at all,
are preferably vague. At times, in fact, present-
ing multiple descriptions or posing several ques-
tions seeped in ambiguity can produce interest-
ing effects and result in a beautiful passage (Noya,
1997). In essays tests, however, examinees are not
asked to come up with “beautiful passages.” They
are required, rather, to write logically while mak-
ing a conscious effort to use conjunctive expres-
sions. We therefore attempt to determine the logi-
cal structure of a document by detecting the occur-
rence of conjunctive expressions. In this effort, we
use a method based on cue words as described in
Quirk et al. (1985) for measuring the organization
of a document. This method, which is also used in
e-rater, the basis of our system, looks for phrases
like “in summary” and “in conclusion” that in-
dicate summarization, and words like “perhaps”
and “possibly” that indicate conviction or thinking
when examining a matter in depth, for example.
Now, a conjunctive relationship can be broadly di-
vided into “forward connection” and “reverse con-
nection.” “Forward connection” has a rather broad
meaning indicating a general conjunctive structure
that leaves discussion flow unchanged. In con-
trast, “reverse connection” corresponds to a con-
junctive relationship that changes the flow of dis-
cussion. These logical structures can be classified
as follows according to Noya (1997). The “for-
ward connection” structure comes in the following
types.

Addition: A conjunctive relationship that adds
emphasis. A good example is “in addition,”
while other examples include “moreover”

and “rather.” Abbreviation of such words is
not infrequent.

Explanation: A conjunctive relationship typified
by words and phrases such as “namely,” “in
short,” “in other words,” and “in summary.” It
can be broken down further into “summariza-
tion” (summarizing and clarifying what was
just described), “elaboration” (in contrast to
“summarization,” begins with an overview
followed by a detailed description), and “sub-
stitution” (saying the same thing in another
way to aid in understanding or to make a
greater impression).

Demonstration: A structure indicating a reason-
consequence relation. Expressions indicat-
ing a reason include “because” and “the rea-
son is,” and those indicating a consequence
include “as a result,” “accordingly,” “there-
fore,” and “that is why.” Conjunctive particles
in Japanese like “node” (since) and “kara”
(because) also indicate a reason-consequence
relation.

Illustration: A conjunctive relationship most
typified by the phrase “for example” having a
structure that either explains or demonstrates
by example.

The “reverse connection” structure comes in the
following types.

Transition: A conjunctive relationship indicating
a change in emphasis from A to B expressed
by such structures as “A ..., but B...” and “A...;
however, B...).

Restriction: A conjunctive relationship indicat-
ing a continued emphasis on A. Also referred
to as a “proviso” structure typically expressed
by “though in fact” and “but then.”

Concession: A type of transition that takes on a
conversational structure in the case of con-
cession or compromise. Typical expressions
indicating this relationship are “certainly”
and “of course.”

Contrast: A conjunctive relationship typically
expressed by “at the same time,” “on the
other hand,” and “in contrast.”

We extracted all ��� �����	� phrases indicating
conjunctive relationships from editorials of the
Mainichi Daily News, and classified them into the
above four categories for forward connection and
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those for reverse connection for a total of eight ex-
clusive categories. In Jess, the system attaches la-
bels to conjunctive relationships and tallies them
to judge the strength of the discourse in the essay
being scored. As in the case of rhetoric, Jess learns
what an appropriate number of conjunctive rela-
tionships should be from editorials of the Mainichi
Daily News, and deducts from the initially allotted
points in the event of an outlier value in the model
distribution.

In the scoring, we also determined whether the
pattern in which these conjunctive relationships
appeared in the essay was singular compared to
that in the model editorials. This was accom-
plished by considering a trigram model (Jelinek,
1991) for the appearance patterns of forward and
reverse connections. In general, an � -gram model
can be represented by a stochastic finite automa-
ton, and in a trigram model, each state of an au-
tomaton is labeled by a symbol sequence of length
2. The set of symbols here is � � �����

forward-
connection, � �

reverse-connection � . Each state
transition is assigned a conditional output proba-
bility as shown in Table 1. The symbol � here
indicates no (prior) relationship. The initial state
is shown as ��� . For example, the expression	 � ��
 ��� � signifies the probability that “

�
�
for-

ward connection” will appear as the initial state.

Table 1: State transition probabilities on
�����

forward-connection, � �
reverse-connection ������������������ � !#"$����%&�'�(���)�*� � +-,.�������'��%'�/��� � 0-1����%&�'��%2����� � 13!4������� � �5�6�*� � 0#+7����%#� �����8��� � 1#+������� � %2�9��� � +-+:����%&� � %2�;�*� � !-!<������� %����8��� � ,3"����%#� %����.��� � =-,:�����>� %?%2�;�*� � 0#+@����%&� %�%'�A��� � 1#+�����>�'�B�C����� � !-!D����%&���E�C���*� � +31

In this way, the probability of occurrence of cer-
tain

���F�
forward-connection � and

� � �
reverse-

connection � patterns can be obtained by taking the
product of appropriate conditional probabilities
listed in Table 1. For example, the probability of
occurrence G of the pattern

���IH � HJ�KHJ� � turns out to
be LNMPOQOSRTLNM ���/R�LNM ����R�LNM �VU �WLNMXLVY�� . Furthermore,
given that the probability of

��� � appearing without
prior information is 0.47 and that of

� � � appearing
without prior information is 0.53, the probabilityZ that a forward connection occurs three times and
a reverse connection once under the condition of
no prior information would be LNMPO>[V\]R*LNM �QY �
LNMXL	��� . As shown by this example, an occurrence
probability that is greater for no prior informa-

tion would indicate that the forward-connection
and reverse-connection appearance pattern is sin-
gular, in which case the points initially allocated
to conjunctive relationships in a discussion would
be reduced. The trigram model may overcome the
restrictions that the essay should be written in a
pyramid structure or the reversal.

4 Content

A technique called latent semantic indexing can
be used to check whether the content of a written
essay responds appropriately to the essay prompt.
The usefulness of this technique has been stressed
at the Text REtrieval Conference (TREC) and else-
where. Latent semantic indexing begins after per-
forming singular value decomposition on ^8R�_
term-document matrix ` ( ^ �

number of words;
_ �

number of documents) indicating the frequency
of words appearing in a sufficiently large num-
ber of documents. Matrix ` is generally a huge
sparse matrix, and SVDPACK (Berry, 1992) is
known to be an effective software package for per-
forming singular value decomposition on a ma-
trix of this type. This package allows the use
of eight different algorithms, and Ishioka and
Kameda (1999) give a detailed comparison and
evaluation of these algorithms in terms of their ap-
plicability to Japanese documents. Matrix ` must
first be converted to the Harwell-Boeing sparse
matrix format (Duff et al., 1989) in order to use
SVDPACK. This format can store the data of a
sparse matrix in an efficient manner, thereby sav-
ing disk space and significantly decreasing data
read-in time.

5 Application

5.1 An E-rater Demonstration

An e-rater demonstration can be viewed at
www.ets.org, where by clicking “Products a e-
rater Home a Demo.” In this demonstration, seven
response patterns (seven essays) are evaluated.
The scoring breakdown, given a perfect score of
six, was one each for scores of 6, 5, 4, and 2 and
three for a score of 3.

We translated essays A-to-G on that Web site
into Japanese and then scored them using Jess, as
shown in Table 2.

The second and third columns show e-rater and
Jess scores, respectively, and the fourth column
shows the number of characters in each essay.
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Table 2: Comparison of scoring results
Essay E-rater Jess No. of Characters Time (s)

A 4 6.9 (4.1) 687 1.00
B 3 5.1 (3.0) 431 1.01
C 6 8.3 (5.0) 1,884 1.35
D 2 3.1 (1.9) 297 0.94
E 3 7.9 (4.7) 726 0.99
F 5 8.4 (5.0) 1,478 1.14
G 3 6.0 (3.6) 504 0.95

A perfect score in Jess is 10 with 5 points al-
located to rhetoric, 2 to organization, and 3 to
content as standard. For purposes of compari-
son, the Jess score converted to e-rater’s 6-point
system is shown in parentheses. As can be seen
here, essays given good scores by e-rater are also
given good scores by Jess, and the two sets of
scores show good agreement. However, e-rater
(and probably human raters) tends to give more
points to longer essays despite similar writing for-
mats. Here, a difference appears between e-rater
and Jess, which uses the point-deduction system
for scoring. Examining the scores for essay C,
for example, we see that e-rater gave a perfect
score of 6, while Jess gave only a score of 5 af-
ter converting to e-rater’s 6-point system. In other
words, the length of the essay could not compen-
sate for various weak points in the essay under
Jess’s point-deduction system. The fifth column
in Table 2 shows the processing time (CPU time)
for Jess. The computer used was Plat’Home Stan-
dard System 801S using an 800-MHz Intel Pen-
tium III running RedHat 7.2. The Jess program is
written in C shell script, jgawk, jsed, and C, and
comes to just under 10,000 lines. In addition to
the ChaSen morphological analysis system, Jess
also needs the kakasi kanji/kana converter pro-
gram (http://kakasi.namagu.org/) to operate. At
present, it runs only on UNIX. Jess can be exe-
cuted on the Web at http://coca.rd.dnc.ac.jp/jess/.

5.2 An Example of using a Web Entry Sheet

Four hundred eighty applicants who were eager
to be hired by a certain company entered their
essays using a Web form without a time restric-
tion, with the size of the text restricted implicitly
by the Web screen, to about 800 characters. The
theme of the essay was “What does working mean
in your life.” Table 3 summarizes the correlation
coefficients between the Jess score, average score
of expert raters, and score of the linguistic under-
standing test (LUT), developed by Recruit Man-
agement Solutions Co., Ltd. The LUT is designed

to measure the ability to grasp the correct meaning
of words that are the elements of a sentence, and to
understand the composition and the summary of a
text. Five expert raters reted the essays, and three
of these scored each essay independently.

Table 3: Correlation between Jess score, average
of expert raters, and linguistic understanding test

Jess Ave. of Experts
Ave. of Experts 0.57

LUT 0.08 0.13

We found that the correlation between the Jess
score and the average of the expert raters’ scores
is not small (0.57), and is larger than the correla-
tion coefficient between the expert raters’ scores
of 0.48. That means that Jess is superior to the
expert raters on average, and is substitutable for
them. Note that the restriction of the text size (800
characters in this case) caused the low correlation
owing to the difficulty in evaluating the organiza-
tion and the development of the arguments; the es-
say scores even in expert rater tend to be dispersed.

We also found that neither the expert raters
nor Jess, had much correlation with LUT, which
shows that LUT does not reflect features indicat-
ing writing ability. That is, LUT measures quite
different laterals from writing ability.

Another experiment using 143 university-
students’ essays collected at the National Institute
for Japanese Language shows a similar result: for
the essays on “smoking,” the correlation between
Jess and the expert raters was 0.83, which is higher
than the average correlation of expert raters (0.70);
for the essays on “festivals in Japan,” the former is
0.84, the latter, 0.73. Three of four raters graded
each essay independently.

6 Conclusion

An automated Japanese essay scoring system
called Jess has been created for scoring essays
in college-entrance exams. This system has been
shown to be valid for essays of 800 to 1,600 char-
acters. Jess, however, uses editorials and columns
taken from the Mainichi Daily News newspaper
as learning models, and such models are not suffi-
cient for learning terms used in scientific and tech-
nical fields such as computers. Consequently, we
found that Jess could return a low evaluation of
“content” even for an essay that responded well
to the essay prompt. When analyzing content, a
mechanism is needed for automatically selecting
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a term-document cooccurrence matrix in accor-
dance with the essay targeted for evaluation. This
enable the users to avoid reverse-engineering that
poor quality essays would produce perfect scores,
because thresholds for detecting the outliers on
rhetoric features may be varied.
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Abstract

This paper proposes a method for detect-
ing errors in article usage and singular plu-
ral usage based on the mass count distinc-
tion. First, it learns decision lists from
training data generated automatically to
distinguish mass and count nouns. Then,
in order to improve its performance, it is
augmented by feedback that is obtained
from the writing of learners. Finally, it de-
tects errors by applying rules to the mass
count distinction. Experiments show that
it achieves a recall of 0.71 and a preci-
sion of 0.72 and outperforms other meth-
ods used for comparison when augmented
by feedback.

1 Introduction

Although several researchers (Kawai et al., 1984;
McCoy et al., 1996; Schneider and McCoy, 1998;
Tschichold et al., 1997) have shown that rule-
based methods are effective to detecting gram-
matical errors in the writing of learners of En-
glish, it has been pointed out that it is hard to
write rules for detecting errors concerning the ar-
ticles and singular plural usage. To be precise, it
is hard to write rules for distinguishing mass and
count nouns which are particularly important in
detecting these errors (Kawai et al., 1984). The
major reason for this is that whether a noun is a
mass noun or a count noun greatly depends on its
meaning or its surrounding context (refer to Al-
lan (1980) and Bond (2005) for details of the mass
count distinction).

The above errors are very common among
Japanese learners of English (Kawai et al., 1984;
Izumi et al., 2003). This is perhaps because the

Japanese language does not have a mass count dis-
tinction system similar to that of English. Thus, it
is favorable for error detection systems aiming at
Japanese learners to be capable of detecting these
errors. In other words, such systems need to some-
how distinguish mass and count nouns.

This paper proposes a method for distinguishing
mass and count nouns in context to complement
the conventional rules for detecting grammatical
errors. In this method, first, training data, which
consist of instances of mass and count nouns, are
automatically generated from a corpus. Then,
decision lists for distinguishing mass and count
nouns are learned from the training data. Finally,
the decision lists are used with the conventional
rules to detect the target errors.

The proposed method requires a corpus to learn
decision lists for distinguishing mass and count
nouns. General corpora such as newspaper ar-
ticles can be used for the purpose. However,
a drawback to it is that there are differences in
character between general corpora and the writ-
ing of non-native learners of English (Granger,
1998; Chodorow and Leacock, 2000). For in-
stance, Chodorow and Leacock (2000) point out
that the word concentrate is usually used as a noun
in a general corpus whereas it is a verb 91% of
the time in essays written by non-native learners
of English. Consequently, the differences affect
the performance of the proposed method.

In order to reduce the drawback, the proposed
method is augmented by feedback; it takes as feed-
back learners’ essays whose errors are corrected
by a teacher of English (hereafter, referred to as
the feedback corpus). In essence, the feedback
corpus could be added to a general corpus to gen-
erate training data. Or, ideally training data could
be generated only from the feedback corpus just as
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from a general corpus. However, this causes a se-
rious problem in practice since the size of the feed-
back corpus is normally far smaller than that of a
general corpus. To make it practical, this paper
discusses the problem and explores its solution.

The rest of this paper is structured as follows.
Section 2 describes the method for detecting the
target errors based on the mass count distinction.
Section 3 explains how the method is augmented
by feedback. Section 4 discusses experiments con-
ducted to evaluate the proposed method.

2 Method for detecting the target errors

2.1 Generating training data

First, instances of the target noun that head their
noun phrase (NP) are collected from a corpus with
their surrounding words. This can be simply done
by an existing chunker or parser.

Then, the collected instances are tagged with
mass or count by the following tagging rules. For
example, the underlined chicken:

... are a lot of chickens in the roost ...

is tagged as

... are a lot of chickens/count in the roost ...

because it is in plural form.
We have made tagging rules based on linguistic

knowledge (Huddleston and Pullum, 2002). Fig-
ure 1 and Table 1 represent the tagging rules. Fig-
ure 1 shows the framework of the tagging rules.
Each node in Figure 1 represents a question ap-
plied to the instance in question. For example, the
root node reads “Is the instance in question plu-
ral?”. Each leaf represents a result of the classi-
fication. For example, if the answer is yes at the
root node, the instance in question is tagged with
count. Otherwise, the question at the lower node
is applied and so on. The tagging rules do not
classify instances as mass or count in some cases.
These unclassified instances are tagged with the
symbol “?”. Unfortunately, they cannot readily be
included in training data. For simplicity of imple-
mentation, they are excluded from training data1.

Note that the tagging rules can be used only for
generating training data. They cannot be used to
distinguish mass and count nouns in the writing
of learners of English for the purpose of detecting

1According to experiments we have conducted, approxi-
mately 30% of instances are tagged with “?” on average. It is
highly possible that performance of the proposed method will
improve if these instances are included in the training data.

the target errors since they are based on the articles
and the distinction between singular and plural.

Finally, the tagged instances are stored in a file
with their surrounding words. Each line of it con-
sists of one of the tagged instances and its sur-
rounding words as in the above chicken example.

2.2 Learning Decision Lists

In the proposed method, decision lists are used for
distinguishing mass and count nouns. One of the
reasons for the use of decision lists is that they
have been shown to be effective to the word sense
disambiguation task and the mass count distinc-
tion is highly related to word sense as we will see
in this section. Another reason is that rules for dis-
tinguishing mass and count nouns are observable
in decision lists, which helps understand and im-
prove the proposed method.

A decision list consists of a set of rules. Each
rule matches the template as follows:

If a condition is true, then a decision � (1)

To define the template in the proposed method,
let us have a look at the following two examples:

1. I read the paper.

2. The paper is made of hemp pulp.

The underlined papers in both sentences cannot
simply be classified as mass or count by the tag-
ging rules presented in Section 2.1 because both
are singular and modified by the definite article.
Nevertheless, we can tell that the former is a count
noun and the latter is a mass noun from the con-
texts. This suggests that the mass count distinc-
tion is often determined by words surrounding the
target noun. In example 1, we can tell that the pa-
per refers to something that can be read such as
a newspaper or a scientific paper from read, and
therefore it is a count noun. Likewise, in exam-
ple 2, we can tell that the paper refers to a certain
substance from made and pulp, and therefore it is
a mass noun.

Taking this observation into account, we define
the template based on words surrounding the tar-
get noun. To formalize the template, we will use
a random variable

���
that takes either �����	� or
��	
���� to denote that the target noun is a mass noun

or a count noun, respectively. We will also use� and
�

to denote a word and a certain context
around the target noun, respectively. We define
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modified by a little?

?

COUNT

MASS

? MASS

plural?

modified by one of the words
in Table 1(a)?

modified by one of the words
in Table 1(b)?

modified by one of the words
in Table 1(c)?

Figure 1: Framework of the tagging rules

Table 1: Words used in the tagging rules
(a) (b) (c)

the indefinite article much the definite article
another less demonstrative adjectives

one enough possessive adjectives
each sufficient interrogative adjectives

– – quantifiers
– – ’s genitives

three types of
�

: ��� , ��� , and ��� that denote the
contexts consisting of the noun phrase that the tar-
get noun heads, � words to the left of the noun
phrase, and � words to its right, respectively. Then
the template is formalized by:

If word � appears in context
�

of the target noun,

then it is distinguished as
��� �

Hereafter, to keep the notation simple, it will be
abbreviated to

����� ��� � (2)

Now rules that match the template can be ob-
tained from the training data. All we need to do
is to collect words in

�
from the training data.

Here, the words in Table 1 are excluded. Also,
function words (except prepositions), cardinal and
quasi-cardinal numerals, and the target noun are
excluded. All words are reduced to their mor-
phological stem and converted entirely to lower
case when collected. For example, the following
tagged instance:

She ate fried chicken/mass for dinner.

would give a set of rules that match the template:

 � �"!�#�� �����	�

$&%('*),+ � �����	�$ � %.- # � �����.�/10 ���2 %.- # � �����	�
for the target noun chicken when �4365 .

In addition, a default rule is defined. It is based
on the target noun itself and used when no other
applicable rules are found in the decision list for
the target noun. It is defined by

�7� �8�
major (3)

where � and
���

major denote the target noun and
the majority of

�8�
in the training data, respec-

tively. Equation (3) reads “If the target noun ap-
pears, then it is distinguished by the majority”.

The log-likelihood ratio (Yarowsky, 1995) de-
cides in which order rules are applied to the target
noun in novel context. It is defined by2

9 �.: �<; �8�>= � �<?�<; �8�>= � �<? (4)

where
�8�

is the exclusive event of
���

and�@; ���A= � �7? is the probability that the target noun
is used as

�8�
when � appears in the context

�
.

It is important to exercise some care in estimat-
ing �@; �8�>= ��� ? . In principle, we could simply

2For the default rule, the log-likelihood ratio is defined by
replacing B2C and DFE with G and DFE major, respectively.
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count the number of times that � appears in the
context

�
of the target noun used as

���
in the

training data. However, this estimate can be unre-
liable, when � does not appear often in the con-
text. To solve this problem, using a smoothing pa-
rameter H (Yarowsky, 1996), �<; �8�>= � �7? is esti-
mated by3

�<; �8�>= � �<? 3 $ ;I���KJ ��� ? �LH$ ;I� �<? �M�FH (5)

where
$ ;I� �7? and

$ ;I� � J ��� ? are occurrences of� appearing in
�

and those in
�

of the target noun
used as

�8�
, respectively. The constant � is the

number of possible classes, that is, �N3�O ( ���P�	�
or 
��	
���� ) in our case, and introduced to satisfy�@; ���A= � �7? � �@; ���A= � �Q? 3�R . In this paper, H is
set to 1.

Rules in a decision list are sorted in descending
order by the log-likelihood ratio. They are tested
on the target noun in novel context in this order.
Rules sorted below the default rule are discarded4

because they are never used as we will see in Sec-
tion 2.3.

Table 2 shows part of a decision list for the tar-
get noun chicken that was learned from a subset
of the BNC (British National Corpus) (Burnard,
1995). Note that the rules are divided into two
columns for the purpose of illustration in Table 2;
in practice, they are merged into one.

Table 2: Rules in a decision list
Mass Count� � LLR � � LLR� 0  S
T !�# 1.49 
��	
���� !�# 1.49$ 0 �.U !�# 1.28 �& V
 � - # 1.32/10 �	U !�# 1.23 � 0 : )�+ 1.23�.� 0 � - # 1.23

% 
�� !�# 1.23�  %	W  - # 1.18  �:X: ),+ 1.18
target noun: chicken, �43Y5

LLR (Log-Likelihood Ratio)

On one hand, we associate the words in the left
half with food or cooking. On the other hand,
we associate those in the right half with animals
or birds. From this observation, we can say that
chicken in the sense of an animal or a bird is a
count noun but a mass noun when referring to food

3The probability for the default rule is estimated just as
the log-likelihood ratio for the default rule above.

4It depends on the target noun how many rules are dis-
carded.

or cooking, which agrees with the knowledge pre-
sented in previous work (Ostler and Atkins, 1991).

2.3 Distinguishing mass and count nouns
To distinguish the target noun in novel context,
each rule in the decision list is tested on it in the
sorted order until the first applicable one is found.
It is distinguished according to the first applicable
one. Ties are broken by the rules below.

It should be noted that rules sorted below the
default rule are never used because the default rule
is always applicable to the target noun. This is the
reason why rules sorted below the default rule are
discarded as mentioned in Section 2.2.

2.4 Detecting the target errors
The target errors are detected by the following
three steps. Rules in each step are examined on
each target noun in the target text.

In the first step, any mass noun in plural form is
detected as an error5. If an error is detected in this
step, the rest of the steps are not applied.

In the second step, errors are detected by the
rules described in Table 3. The symbol “ Z ” in Ta-
ble 3 denotes that the combination of the corre-
sponding row and column is erroneous. For exam-
ple, the fifth row denotes that singular and plural
count nouns modified by much are erroneous. The
symbol “–” denotes that no error can be detected
by the table. If one of the rules in Table 3 is applied
to the target noun, the third step is not applied.

In the third step, errors are detected by the rules
described in Table 4. The symbols “ Z ” and “–”
are the same as in Table 3.

In addition, the indefinite article that modifies
other than the head noun is judged to be erroneous

Table 3: Detection rules (i)
Count Mass

Pattern Sing. Pl. Sing.[
another, each, one \ – Z Z[
all, enough, sufficient \ Z – –[
much \ Z Z –[
that, this \ – Z –[
few, many, several \ Z – Z[
these, those \ Z – Z[
various, numerous \ Z – Z

cardinal numbers exc. one Z – Z
5Mass nouns can be used in plural in some cases. How-

ever, they are rare especially in the writing of learners of En-
glish.
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Table 4: Detection rules (ii)

Singular Plural
a/an the ] a/an the ]

Mass Z – – Z Z Z
Count – – Z Z – –

(e.g., *an expensive). Likewise, the definite article
that modifies other than the head noun or adjective
is judged to be erroneous (e.g., *the them). Also,
we have made exceptions to the rules. The follow-
ing combinations are excluded from the detection
in the second and third steps: head nouns modified
by interrogative adjectives (e.g., what), possessive
adjectives (e.g., my), ’s genitives, “some”, “any”,
or “no”.

3 Feedback-augmented method

As mentioned in Section 1, the proposed method
takes the feedback corpus6 as feedback to improve
its performance. In essence, decision lists could be
learned from a corpus consisting of a general cor-
pus and the feedback corpus. However, since the
size of the feedback corpus is normally far smaller
than that of general corpora, so is the effect of the
feedback corpus on �@; ���A= �^� ? . This means that
the feedback corpus hardly has effect on the per-
formance.

Instead, �@; ���A= � �7? can be estimated by in-
terpolating the probabilities estimated from the
feedback corpus and the general corpus accord-
ing to confidences of their estimates. It is favor-
able that the interpolated probability approaches
to the probability estimated from the feedback cor-
pus as its confidence increases; the more confident
its estimate is, the more effect it has on the inter-
polated probability. Here, confidence 
 of ratio �
is measured by the reciprocal of variance of the
ratio (Tanaka, 1977). Variance is calculated by

�@; R_� � ?� (6)

where � denotes the number of samples used for
calculating the ratio. Therefore, confidence of the
estimate of the conditional probability used in the
proposed method is measured by


 3 $ ;I��� ?�@; �8�>= � �7? ; R_� �@; ���A= � �Q?`? � (7)

6The feedback corpus refers to learners’ essays whose er-
rors are corrected as mentioned in Section 1.

To formalize the interpolated probability, we
will use the symbols ��aSb , �dc , 
TaSb , and 
�c to de-
note the conditional probabilities estimated from
the feedback corpus and the general corpus, and
their confidences, respectively. Then, the interpo-
lated probability �&e is estimated by7

��e 3 f ��c ��gihkjgml ;n�&aTb � ��c ? J 
TaTb_op
qc�&aSbqJ 
TaTb_rp
 c � (8)

In Equation (8), the effect of �saTb on ��e becomes
large as its confidence increases. It should also be
noted that when its confidence exceeds that of � c ,
the general corpus is no longer used in the inter-
polated probability.

A problem that arises in Equation (8) is that �2aTb
hardly has effect on �&e when a much larger general
corpus is used than the feedback corpus even if �taTb
is estimated with a sufficient confidence. For ex-
ample, �&aSb estimated from 100 samples, which are
a relatively large number for estimating a proba-
bility, hardly has effect on �ue when � c is estimated
from 10000 samples; roughly, �saSb has a RVvPRTw*w ef-
fect of � c on ��e .

One way to prevent this is to limit the effect of
 c to some extent. It can be realized by taking the
log of 
,c in Equation (8). That is, the interpolated
probability is estimated by

��e 3 f � c �xgih`jy{z`| g l ;n�&aTb � � c.? J}
TaTb~o4���*��
 c�&aSbqJ}
TaTb~r4���*��
qc � (9)

It is arguable what base of the log should be used.
In this paper, it is set to 2 so that the effect of � c on
the interpolated probability becomes large when
the confidence of the estimate of the conditional
probability estimated from the feedback corpus is
small (that is, when there is little data in the feed-
back corpus for the estimate)8.

In summary, Equation (9) interpolates between
the conditional probabilities estimated from the
feedback corpus and the general corpus in the
feedback-augmented method. The interpolated
probability is then used to calculate the log-
likelihood ratio. Doing so, the proposed method
takes the feedback corpus as feedback to improve
its performance.

7In general, the interpolated probability needs to be nor-
malized to satisfy ���*�s��� . In our case, however, it is al-
ways satisfied without normalization since � h`j�� DFE�� B C��~�� h`j�� D�E�� B C�� ��� and � l � DFE�� B C��~� � l � D�E�� B C�� ���are satisfied.

8We tested several bases in the experiments and found
there were little difference in performance between them.
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4 Experiments

4.1 Experimental Conditions
A set of essays9 written by Japanese learners of
English was used as the target essays in the exper-
iments. It consisted of 47 essays (3180 words) on
the topic traveling. A native speaker of English
who was a professional rewriter of English recog-
nized 105 target errors in it.

The written part of the British National Corpus
(BNC) (Burnard, 1995) was used to learn deci-
sion lists. Sentences the OAK system10, which
was used to extract NPs from the corpus, failed
to analyze were excluded. After these operations,
the size of the corpus approximately amounted to
80 million words. Hereafter, the corpus will be
referred to as the BNC.

As another corpus, the English concept explica-
tion in the EDR English-Japanese Bilingual dic-
tionary and the EDR corpus (1993) were used; it
will be referred to as the EDR corpus, hereafter.
Its size amounted to about 3 million words.

Performance of the proposed method was eval-
uated by recall and precision. Recall is defined by

No. of target errors detected correctly
No. of target errors in the target essays

� (10)

Precision is defined by

No. of target errors detected correctly
No. of detected errors

� (11)

4.2 Experimental Procedures
First, decision lists for each target noun in the tar-
get essays were learned from the BNC11. To ex-
tract noun phrases and their head nouns, the OAK
system was used. An optimal value for � (window
size of context) was estimated as follows. For 25
nouns shown in (Huddleston and Pullum, 2002) as
examples of nouns used as both mass and count
nouns, accuracy on the BNC was calculated us-
ing ten-fold cross validation. As a result of set-
ting small ( �M3�5 ), medium ( �M3NRTw ), and large
( �M3��(w ) window sizes, it turned out that ��3�5
maximized the average accuracy. Following this
result, �A3Y5 was selected in the experiments.

Second, the target nouns were distinguished
whether they were mass or count by the learned

9http://www.eng.ritsumei.ac.jp/lcorpus/.
10OAK System Homepage: http://nlp.cs.nyu.edu/oak/.
11If no instance of the target noun is found in the gen-

eral corpora (and also in the feedback corpus in case of the
feedback-augmented method), the target noun is ignored in
the error detection procedure.

decision lists, and then the target errors were de-
tected by applying the detection rules to the mass
count distinction. As a preprocessing, spelling er-
rors were corrected using a spell checker. The re-
sults of the detection were compared to those done
by the native-speaker of English. From the com-
parison, recall and precision were calculated.

Then, the feedback-augmented method was
evaluated on the same target essays. Each target
essay in turn was left out, and all the remaining
target essays were used as a feedback corpus. The
target errors in the left-out essay were detected us-
ing the feedback-augmented method. The results
of all 47 detections were integrated into one to cal-
culate overall performance. This way of feedback
can be regarded as that one uses revised essays
previously written in a class to detect errors in es-
says on the same topic written in other classes.

Finally, the above two methods were compared
with their seven variants shown in Table 5. “DL”
in Table 5 refers to the nine decision list based
methods (the above two methods and their seven
variants). The words in brackets denote the cor-
pora used to learn decision lists; the symbol “+FB”
means that the feedback corpus was simply added
to the general corpus. The subscripts

$��*�
and$��,�

indicate that the feedback was done by using
Equation (8) and Equation (9), respectively.

In addition to the seven variants, two kinds of
earlier method were used for comparison. One
was one (Kawai et al., 1984) of the rule-based
methods. It judges singular head nouns with no
determiner to be erroneous since missing articles
are most common in the writing of Japanese learn-
ers of English. In the experiments, this was imple-
mented by treating all nouns as count nouns and
applying the same detection rules as in the pro-
posed method to the countability.

The other was a web-based method (Lapata and
Keller, 2005)12 for generating articles. It retrieves
web counts for queries consisting of two words
preceding the NP that the target noun head, one
of the articles (

[
a/an, the, ]�\ ), and the core NP

to generate articles. All queries are performed as
exact matches using quotation marks and submit-
ted to the Google search engine in lower case. For
example, in the case of “*She is good student.”, it
retrieves web counts for “she is a good student”,

12There are other statistical methods that can be used for
comparison including Lee (2004) and Minnen (2000). Lapata
and Keller (2005) report that the web-based method is the
best performing article generation method.
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“she is the good student”, and “she is good stu-
dent”. Then, it generates the article that maxi-
mizes the web counts. We extended it to make
it capable of detecting our target errors. First, the
singular/plural distinction was taken into account
in the queries (e.g., “she is a good students”, “she
is the good students”, and “she is good students”
in addition to the above three queries). The one(s)
that maximized the web counts was judged to be
correct; the rest were judged to be erroneous. Sec-
ond, if determiners other than the articles modify
head nouns, only the distinction between singu-
lar and plural was taken into account (e.g., “he
has some book” vs “he has some books”). In the
case of “much/many”, the target noun in singular
form modified by “much” and that in plural form
modified by “many” were compared (e.g., “he has
much furniture” vs “he has many furnitures). Fi-
nally, some rules were used to detect literal errors.
For example, plural head nouns modified by “this”
were judged to be erroneous.

4.3 Experimental Results and Discussion

Table 5 shows the experimental results. “Rule-
based” and “Web-based” in Table 5 refer to the
rule-based method and the web-based method, re-
spectively. The other symbols are as already ex-
plained in Section 4.2.

As we can see from Table 5, all the decision
list based methods outperform the earlier methods.
The rule-based method treated all nouns as count
nouns, and thus it did not work well at all on mass
nouns. This caused a lot of false-positives and
false-negatives. The web-based method suffered
a lot from other errors than the target errors since

Table 5: Experimental results

Method Recall Precision
DL (BNC) 0.66 0.65
DL (BNC+FB) 0.66 0.65
DL aTb � (BNC) 0.66 0.65
DL aTb � (BNC) 0.69 0.70
DL (EDR) 0.70 0.68
DL (EDR+FB) 0.71 0.69
DL aTb � (EDR) 0.71 0.70
DL aTb � (EDR) 0.71 0.72
DL (FB) 0.43 0.76
Rule-based 0.59 0.39
Web-based 0.49 0.53

it implicitly assumed that there were no errors ex-
cept the target errors. Contrary to this assumption,
not only did the target essays contain the target er-
rors but also other errors since they were written
by Japanese learners of English. This indicate that
the queries often contained the other errors when
web counts were retrieved. These errors made the
web counts useless, and thus it did not perform
well. By contrast, the decision list based meth-
ods did because they distinguished mass and count
nouns by one of the words around the target noun
that was most likely to be effective according to
the log-likelihood ratio13; the best performing de-
cision list based method (DL aTb � (EDR)) is sig-
nificantly superior to the best performing14 non-
decision list based method (Web-based) in both re-
call and precision at the 99% confidence level.

Table 5 also shows that the feedback-augmented
methods benefit from feedback. Only an exception
is “DL aTb � (BNC)”. The reason is that the size of
BNC is far larger than that of the feedback cor-
pus and thus it did not affect the performance.
This also explains that simply adding the feed-
back corpus to the general corpus achieved little
or no improvement as “DL (EDR+FB)” and “DL
(BNC+FB)” show. Unlike these, both “DL aTb �
(BNC)” and “DL aTb � (EDR)” benefit from feed-
back since the effect of the general corpus is lim-
ited to some extent by the log function in Equa-
tion (9). Because of this, both benefit from feed-
back despite the differences in size between the
feedback corpus and the general corpus.

Although the experimental results have shown
that the feedback-augmented method is effective
to detecting the target errors in the writing of
Japanese learners of English, even the best per-
forming method (DL aTb � (EDR)) made 30 false-
negatives and 29 false-positives. About 70% of
the false-negatives were errors that required other
sources of information than the mass count dis-
tinction to be detected. For example, extra def-
inite articles (e.g., *the traveling) cannot be de-
tected even if the correct mass count distinction is
given. Thus, only a little improvement is expected
in recall however much feedback corpus data be-
come available. On the other hand, most of the

13Indeed, words around the target noun were effective. The
default rules were used about 60% and 30% of the time in
“DL (EDR)” and “DL (BNC)”, respectively; when only the
default rules were used, “DL (EDR)” (“DL (BNC)”) achieved
0.66 (0.56) in recall and 0.58 (0.53) in precision.

14“Best performing” here means best performing in terms
of � -measure.
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false-positives were due to the decision lists them-
selves. Considering this, it is highly possible that
precision will improve as the size of the feedback
corpus increases.

5 Conclusions

This paper has proposed a feedback-augmented
method for distinguishing mass and count nouns
to complement the conventional rules for detect-
ing grammatical errors. The experiments have
shown that the proposed method detected 71% of
the target errors in the writing of Japanese learn-
ers of English with a precision of 72% when it
was augmented by feedback. From the results,
we conclude that the feedback-augmented method
is effective to detecting errors concerning the ar-
ticles and singular plural usage in the writing of
Japanese learners of English.

Although it is not taken into account in this pa-
per, the feedback corpus contains further useful in-
formation. For example, we can obtain training
data consisting of instances of errors by compar-
ing the feedback corpus with its original corpus.
Also, comparing it with the results of detection,
we can know performance of each rule used in
the detection, which make it possible to increase
or decrease their log-likelihood ratios according to
their performance. We will investigate how to ex-
ploit these sources of information in future work.
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Abstract 

This paper presents a pilot study of the 
use of phrasal Statistical Machine Trans-
lation (SMT) techniques to identify and 
correct writing errors made by learners of 
English as a Second Language (ESL). 
Using examples of mass noun errors 
found in the Chinese Learner Error Cor-
pus (CLEC) to guide creation of an engi-
neered training set, we show that applica-
tion of the SMT paradigm can capture er-
rors not well addressed by widely-used 
proofing tools designed for native speak-
ers. Our system was able to correct 
61.81% of mistakes in a set of naturally-
occurring examples of mass noun errors 
found on the World Wide Web, suggest-
ing that efforts to collect alignable cor-
pora of pre- and post-editing ESL writing 
samples offer can enable the develop-
ment of SMT-based writing assistance 
tools capable of repairing many of the 
complex syntactic and lexical problems 
found in the writing of ESL learners. 

1 Introduction 

Every day, in schools, universities and busi-
nesses around the world, in email and on blogs 
and websites, people create texts in languages 
that are not their own, most notably English. Yet, 
for writers of English as a Second Language 
(ESL), useful editorial assistance geared to their 
needs is surprisingly hard to come by. Grammar 
checkers such as that provided in Microsoft 
Word have been designed primarily with native 
speakers in mind. Moreover, despite growing 
demand for ESL proofing tools, there has been 
remarkably little progress in this area over the 
last decade. Research into computer feedback for 

ESL writers remains largely focused on small-
scale pedagogical systems implemented within 
the framework of CALL (Computer Aided Lan-
guage Learning) (Reuer 2003; Vanderventer 
Faltin, 2003), while commercial ESL grammar 
checkers remain brittle and difficult to customize 
to meet the needs of ESL writers of different 
first-language (L1) backgrounds and skill levels.  

  Some researchers have begun to apply statis-
tical techniques to identify learner errors in the 
context of essay evaluation (Chodorow & Lea-
cock, 2000; Lonsdale & Strong-Krause, 2003), to 
detect non-native text (Tomokiyo & Jones, 2001), 
and to support lexical selection by ESL learners 
through first-language translation (Liu et al., 
2000). However, none of this work appears to 
directly address the more general problem of 
how to robustly provide feedback to ESL writ-
ers—and for that matter non-native writers in 
any second language—in a way that is easily tai-
lored to different L1 backgrounds and second-
language (L2) skill levels.  

In this paper, we show that a noisy channel 
model instantiated within the paradigm of Statis-
tical Machine Translation (SMT) (Brown et al., 
1993) can successfully provide editorial assis-
tance for non-native writers. In particular, the 
SMT approach provides a natural mechanism for 
suggesting a correction, rather than simply 
stranding the user with a flag indicating that the 
text contains an error. Section 2 further motivates 
the approach and briefly describes our SMT sys-
tem. Section 3 discusses the data used in our ex-
periment, which is aimed at repairing a common 
type of ESL error that is not well-handled by cur-
rent grammar checking technology: mass/count 
noun confusions. Section 4 presents experimental 
results, along with an analysis of errors produced 
by the system. Finally we present discussion and 
some future directions for investigation.  
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2 Error Correction as SMT 

2.1 Beyond Grammar Checking 

A major difficulty for ESL proofing is that errors 
of grammar, lexical choice, idiomaticity, and 
style rarely occur in isolation. Instead, any given 
sentence produced by an ESL learner may in-
volve a complex combination of all these error 
types. It is difficult enough to design a proofing 
tool that can reliably correct individual errors; 
the simultaneous combination of multiple errors 
is beyond the capabilities of current proofing 
tools designed for native speakers. Consider the 
following example, written by a Korean speaker 
and found on the World Wide Web, which in-
volves the misapplication of countability to a 
mass noun:  

 
And I knew many informations 
about Christmas while I was 
preparing this article. 

 
The grammar and spelling checkers in Microsoft 
Word 2003 correctly suggest many Æ much 
and informations Æ information. 
Accepting these proposed changes, however, 
does not render the sentence entirely native-like. 
Substituting the word much for many leaves 
the sentence stilted in a way that is probably un-
detectable to an inexperienced non-native 
speaker, while the use of the word knew repre-
sents a lexical selection error that falls well out-
side the scope of conventional proofing tools. A 
better rewrite might be: 
 

And I learned a lot of in-
formation about Christmas 
while I was preparing this 
article. 
 

or, even more colloquially: 
 

And I learned a lot about 
Christmas while I was pre-
paring this article 
 

Repairing the error in the original sentence, 
then, is not a simple matter of fixing an agree-
ment marker or substituting one determiner for 
another. Instead, wholesale replacement of the 
phrase knew many informations with 
the phrase learned a lot is needed to pro-
duce idiomatic-sounding output. Seen in these 
terms, the process of mapping from a raw, ESL-
authored string to its colloquial equivalent looks 

remarkably like translation. Our goal is to show 
that providing editorial assistance for writers 
should be viewed as a special case of translation. 
Rather than learning how strings in one language 
map to strings in another, however, “translation” 
now involves learning how systematic patterns of 
errors in ESL learners’ English map to corre-
sponding patterns in native English    

2.2 A Noisy Channel Model of ESL Errors 

If ESL error correction is seen as a translation 
task, the task can be treated as an SMT problem 
using the noisy channel model of (Brown et al., 
1993): here the L2 sentence produced by the 
learner can be regarded as having been corrupted 
by noise in the form of interference from his or 
her L1 model and incomplete language models 
internalized during language learning. The task, 
then, is to reconstruct a corresponding valid sen-
tence of L2 (target). Accordingly, we can seek to 
probabilistically identify the optimal correct tar-
get sentence(s) T* of an ESL input sentence S by 
applying the familiar SMT formula: 
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T
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In the context of this model, editorial assis-
tance becomes a matter of identifying those seg-
ments of the optimal target sentence or sentences 
that differ from the writer’s original input and 
displaying them to the user. In practice, the pat-
terns of errors produced by ESL writers of spe-
cific L1 backgrounds can be captured in the 
channel model as an emergent property of train-
ing data consisting ESL sentences aligned with 
their corrected edited counterparts. The highest 
frequency errors and infelicities should emerge 
as targets for replacement, while lesser frequency 
or idiosyncratic problems will in general not sur-
face as false flags. 

2.3 Implementation 

In this paper, we explore the use of a large-scale 
production statistical machine translation system 
to correct a class of ESL errors. A detailed de-
scription of the system can be found in (Menezes 
& Quirk 2005) and (Quirk et al., 2005). In keep-
ing with current best practices in SMT, our sys-
tem is a phrasal machine translation system that 
attempts to learn mappings between “phrases” 
(which may not correspond to linguistic units) 
rather than individual words. What distinguishes 
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this system from other phrasal SMT systems is 
that rather than aligning simple sequences of 
words, it maps small phrasal “treelets” generated 
by a dependency parse to corresponding strings 
in the target. This “Tree-To-String” model holds 
promise in that it allows us to potentially benefit 
from being able to access a certain amount of 
structural information during translation, without 
necessarily being completely tied to the need for 
a fully-well-formed linguistic analysis of the in-
put—an important consideration when it is 
sought to handle ungrammatical or otherwise ill-
formed ESL input, but also simultaneously to 
capture relationships not involving contiguous 
strings, for example determiner-noun relations.  

In our pilot study, this system was em-
ployed without modification to the system archi-
tecture. The sole adjustment made was to have 
both Source (erroneous) and Target (correct) sen-
tences tokenized using an English language to-
kenizer. N-best results for phrasal alignment and 
ordering models in the decoder were optimized 
by lambda training via Maximum Bleu, along the 
lines described in (Och, 2003).  

3 Data Development 

3.1 Identifying Mass Nouns 

In this paper, we focus on countability errors as-
sociated with mass nouns. This class of errors 
(involving nouns that cannot be counted, such as 
information, pollution, and home-
work) is characteristically encountered in ESL 
writing by native speakers of several East Asian 
languages (Dalgish, 1983; Hua & Lee, 2004).1 
We began by identifying a list of English nouns 
that are frequently involved in mass/count errors 
in by writing by Chinese ESL learners, by taking 
the intersection of words which: 

• occurred in either the Longman Dictionary 
of Contemporary English or the American 
Heritage Dictionary with a mass sense 

• were involved in n ≥ 2 mass/count errors in 
the Chinese Learner English Corpus 
CLEC (Gui and Yang, 2003), either tagged 
as a mass noun error or else with an adja-
cent tag indicating an article error.2  

                                                 
1 These constructions are also problematic for hand-
crafted MT systems (Bond et al., 1994). 
2 CLEC tagging is not comprehensive; some common 
mass noun errors (e.g., make a good progress) 
are not tagged in this corpus. 

This procedure yielded a list of 14 words: 
knowledge, food, homework, fruit, 
news, color, nutrition, equipment, 
paper, advice, haste, information, 
lunch, and tea. 3   Countability errors in-
volving these words are scattered across 46 sen-
tences in the CLEC corpus.   

For a baseline representing the level of writing 
assistance currently available to the average ESL 
writer, we submitted these sentences to the 
proofing tools in Microsoft Word 2003. The 
spelling and grammar checkers correctly identi-
fied 21 of the 46 relevant errors, proposed one 
incorrect substitution (a few advice Æ a few 
advices), and failed to flag the remaining 25 
errors. With one exception, the proofing tools 
successfully detected as spelling errors incorrect 
plurals on lexical items that permit only mass 
noun interpretations (e.g., informations), 
but ignored plural forms like fruits and pa-
pers even when contextually inappropriate. The 
proofing tools in Word 2003 also detected singu-
lar determiner mismatches with obligatory plural 
forms (e.g. a news).  

3.2 Training Data 

The errors identified in these sentences provided 
an informal template for engineering the data in 
our training set, which was created by manipulat-
ing well-formed, edited English sentences. Raw 
data came from a corpus of ~484.6 million words 
of Reuters Limited newswire articles, released 
between 1995 and 1998, combined with a 
~7,175,000-word collection of articles from mul-
tiple news sources from 2004-2005. The result-
ing dataset was large enough to ensure that all 
targeted forms occurred with some frequency. 

From this dataset we culled about 346,000 
sentences containing examples of the 14 targeted 
words. We then used hand-constructed regular 
expressions to convert these sentences into 
mostly-ungrammatical strings that exhibited 
characteristics of the CLEC data, for example:  

• much Æ many: much advice Æ 
many advice  

• some Æ a/an: some advice Æ 
an advice  

• conversions to plurals: much good 
advice Æ many good advices  

                                                 
3 Terms that also had a function word sense, such as 
will, were eliminated for this experiment.  
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• deletion of counters: piece(s)/ 
item(s)/sheet(s) of)  

• insertion of determiners  

These were produced in multiple combinations 
for broad coverage, for example: 

 
I'm not trying to give you 
legal advice. Æ 

• I'm not trying to give you a 
legal advice. 

• I'm not trying to give you 
the legal advice. 

• I'm not trying to give you 
the legal advices. 

A total of 24128 sentences from the news data 
were “lesioned” in this manner to create a set of 
65826 sentence pairs. To create a balanced train-
ing set that would not introduce too many arti-
facts of the substitution (e.g., many should not 
always be recast as much just because that is the 
only mapping observed in the training data), we 
randomly created an equivalent number of iden-
tity-mapped pairs from the 346,000 examples, 
with each sentence mapping to itself. 

Training sets of various sizes up to 45,000 
pairs were then randomly extracted from the le-
sioned and non-lesioned pairs so that data from 
both sets occurred in roughly equal proportions.  
Thus the 45K data set contains approximately 
22,500 lesioned examples. An additional 1,000 
randomly selected lesioned sentences were set 
aside for lambda training the SMT system’s or-
dering and replacement models. 

4  Evaluation 

4.1 Test Data 

The amount of tagged data in CLEC is too small 
to yield both development and test sets from the 
same data. In order to create a test set, we had a 
third party collect 150 examples of the 14 words 
from English websites in China. After minor 

cleanup to eliminate sentences irrelevant to the 
task,4 we ended up with 123 example sentences 
to use as test set. The test examples vary widely 
in style, from the highly casual to more formal 
public announcements. Thirteen examples were 
determined to contain no errors relevant to our 
experiment, but were retained in the data.5  

4.2 Results 

Table 1 shows per-sentence results of translating 
the test set on systems built with training data 
sets of various sizes (given in thousands of sen-
tence pairs). Numbers for the proofing tools in 
Word 2003 are presented by way of comparison, 
with the caveat that these tools have been inten-
tionally implemented conservatively so as not to 
potentially irritate native users with false flags. 
For our purposes, a replacement string is viewed 
as correct if, in the view of a native speaker who 
might be helping an ESL writer, the replacement 
would appear more natural and hence potentially 
useful as a suggestion in the context of that sen-
tence taken in isolation. Number disagreement 
on subject and verb were ignored for the pur-
poses of this evaluation, since these errors were 
not modeled when we introduced lesions into the 
data. A correction counted as Whole if the sys-
tem produced a contextually plausible substitu-
tion meeting two criteria: 1) number and 2) de-
terminer/quantifier selection (e.g., many in-
formations Æ much information). 
Transformations involving bare singular targets 
(e.g., the fruits Æ fruit) also counted 
as Whole.  Partial corrections are those where 
only one of the two criteria was met and part of 
the desired correction was missing (e.g., an 

                                                 
4 In addition to eliminating cases that only involved 
subject-verb number agreement, we excluded a small 
amount of spam-like word salad, several instances of 
the word homework being misused to mean “work 
done out of the home”, and one misidentified quota-
tion from Scott’s Ivanhoe. 
5 This test set may be downloaded at 
http://research.microsoft.com/research/downloads 

Data Size Whole Partial Correctly Left New Error Missed Word Order  
Error 

45K 55.28  0.81  8.13  12.20  21.14  1.63  

30K 36.59  4.07  7.32  16.26  32.52  3.25  

15K 47.15  2.44  5.69  11.38  29.27  4.07  

cf. Word 29.27  0.81  10.57  1.63  57.72  N/A  
 

Table 1.  Replacement percentages (per sentence basis) using different training data sets  
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equipments Æ an equipment versus the 
targeted bare noun equipment). Incorrect sub-
stitutions and newly injected erroneous material 
anywhere in the sentence counted as New Errors, 
even if the proposed replacement were otherwise 
correct. However, changes in upper and lower 
case and punctuation were ignored.  

The 55.28% per-sentence score for Whole 
matches in the system trained on the 45K data set 
means that it correctly proposed full corrections 
in 61.8% of locations where corrections needed 
to be made. The percentage of Missed errors, i.e., 
targeted errors that were ignored by the system, 
is correspondingly low. On the 45K training data 
set, the system performs nearly on a par with 
Word in terms of not inducing corrections on 
forms that did not require replacement, as shown 
in the Correctly Left column.  The dip in accu-
racy in the 30K sentence pair training set is an 
artifact of our extraction methodology: the rela-
tively small lexical set that we are addressing 
here appears to be oversensitive to random varia-
tion in the engineered training data. This makes 
it difficult to set a meaningful lower bound on 
the amount of training data that might be needed 
for adequate coverage. Nonetheless, it is evident 
from the table, that given sufficient data, SMT 
techniques can successfully offer corrections for 
a significant percentage of cases of the phenom-
ena in question.  

Table 2 shows some sample inputs together 
with successful corrections made by the system. 
Table 3 illustrates a case where two valid correc-
tions are found in the 5-best ranked translations; 
intervening candidates were identical with the 
top-ranked candidate.   

4.3 Error Analysis 

Table 1 also indicates that errors associated with 
the SMT system itself are encouragingly few. A 
small number of errors in word order were found, 
one of which resulted in a severely garbled sen-
tence in the 45K data set. In general, the percent-
age of this type of error declines consistently 
with growth of the training data size. Linearity of 
the training data may play a role, since the sen-
tence pairs differ by only a few words. On the 
whole, however, we expect the system’s order 
model to benefit from more training data.  

The most frequent single class of newly intro-
duced error relates to sporadic substitution of the 
word their for determiners a/the. This is 
associated with three words, lunch, tea, and 
haste, and is the principal contributor to the 
lower percentages in the Correctly Left bin, as 
compared with Word. This overgeneralization 
error reflects our attempt to engineer the discon-
tinuous mapping the X of them Æ their 
X, motivated by examples like the following, 
encountered in the CLEC dataset: 

Input 
Shanghai residents can buy the fruits for a cheaper price 
than before.  

Replacement 
Shanghai residents can buy fruit for a cheaper price than 
before . 

Input Thank u for giving me so many advice. 

Replacement thank u for giving me so much advice . 

Input 
Acquiring the knowledge of information warfare is key to 
winning wars 

Replacement 
acquiring knowledge of information warfare is key to win-
ning wars 

Input Many knowledge about Li Bai can be gain through it. 

Replacement much knowledge about Li Bai can be gain through it . 

Input I especially like drinking the tea. 

Replacement i especially like drinking tea . 

Input 
Icons printed on a paper have been brought from Europe, 
and were pasted on boards on Taiwan. 

Replacement 
icons printed on paper have been brought from Europe , and 
were pasted on boards on Taiwan . 

 

Table 2.  Sample corrections, using 45K engineered training data 
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In this equal world, lots of 
people are still concerned 
on the colors of them … 

 
The inability of our translation system to handle 
such discontinuities in a unitary manner reflects 
the limited ability of current SMT modeling 
techniques to capture long-distance effects. Simi-
lar alternations are rife in bilingual data, e.g., 
ne…pas in French (Fox, 2002) and separable 
prefixes in German (Collins et al. 2005). As 
SMT models become more adept at modeling 
long-distance effects in a principled manner, 
monolingual proofing will benefit as well. 

The Missed category is heterogeneous. The 
SMT system has an inherent bias against deletion, 
with the result that unwanted determiners tended 
not to be deleted, especially in the smaller train-
ing sets.  

Other errors related to coverage in the devel-
opment data set. Several occurrences of green-
grocer’s apostrophes (tea’s, equipment’s) 
caused correction failures: these were not antici-
pated when engineering the training data. Like-
wise, the test data presented several malformed 
quantifiers and quantifier-like phrases (plenty 
tea Æ plenty of tea, a lot infor-
mation Æ a lot of information, 
few information Æ too little in-
formation) that had been unattested in the 
development set. Examples such as these high-
light the difficulty in obtaining complete cover-
age when using handcrafted techniques, whether 
to engineer errors, as in our case, or to handcraft 
targeted correction solutions.    

The system performed poorly on words that 
commonly present both mass and count noun 
senses in ways that are apt to confuse L2 writers. 
One problematic case was paper. The follow-
ing sentences, for example, remained uncor-
rected:  

  
He published many paper in 
provincial and national pub-
lication. 

He has published thirty-two 
pieces of papers. 
 

Large amounts of additional training data 
would doubtless be helpful in providing contex-
tual resolutions to the problems. Improved 
alignment models may also play a role here in 
capturing complex structures of the kind repre-
sented by constructions involving counters.     

5 Discussion 

The artificially-engineered training data that we 
relied on for our experiments proved surprisingly 
useful in modeling real errors made by non-
native speakers. However, this is obviously a less 
than ideal data source, since the errors introduced 
by regular expressions are homogenously dis-
tributed in a way that naturally-occurring errors 
are not, creating artifacts that undoubtedly impair 
our SMT models.  

Artificial data of this sort may be useful as 
proof of concept, but hand engineering such data 
plainly does not present a viable path to develop-
ing real world applications. In order to be able to 
handle the rich panoply of errors and error inter-
actions encountered in the text of second lan-
guage learners large quantities of naturally-
occurring “before” and “after” texts will need to 
be collected. By way of illustration, Table 4 
shows the output of results of “translating” our 
test data into more natural English by hand and 
dumping the pre- and post-editing pairs to the 
45K training set.6 Although we were unable to 
exactly recover the target sentences, inspection 
showed that 25 sentences had improved, some 
significantly, as Table 4 shows. Under the right 
conditions, the SMT system can capture contex-
tual morphological alternations (nutri-
tion/nutritious), together with complex 
mappings represented by the dependencies 
learn  knowledge  many (ESL) and 

                                                 
6 Since a single example of each pair was insufficient 
to override the system’s inherent bias towards uni-
gram mappings, 5 copies of each pair were appended 
to the training data. 

Input: And we can learn many knowledge or new information from TV 

Candidate 1: And we can learn much knowledge or new information from TV 

Candidate 5: 
And we can learn a lot of knowledge or new information from 
TV  

Table 3.  Multiple replacement candidates generated by 45K training set 
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gain  knowledge  a lot of (Eng-
lish). In a rule-based correction system, an im-
mense amount of hand-coding would be required 
to handle even a small subset of the potential 
range of such mismatches between learner and 
native-like English. This knowledge, we believe, 
is best acquired from data.  

5.1 The Need for Data Collection 

Given a sufficiently large corpus of aligned sen-
tences containing error patterns produced by ESL 
writers of the same L1 background and their cor-
rected counterparts we expect eventually to be 
able to capture the rich complexity of non-native 
error within a noisy-channel based SMT model.  

As a practical matter, however, parallel data of 
the kind needed is far from easy to come by. This 
does not mean, however, that such data does not 
exist. The void left by commercial grammar 
checkers is filled, largely unobserved, by a num-
ber of services that provide editorial assistance, 
ranging from foreign language teachers, to lan-
guage helpdesks in multinational corporations, to 
mentoring services for conferences. Translation 
bureaus frequently offer editing services for non-
native speakers. Yet, unlike translation, the “be-
fore” and “after” texts are rarely recycled in a 
form that can be used to build translation models. 
Although collecting this data will involve a large 
investment in time, effort, and infrastructure, a 
serious effort along these lines is likely to prove 
fruitful in terms of making it possible to apply 
the SMT paradigm to ESL error correction.  

5.2 Feedback to SMT 

One challenge faced by the SMT model is the 
extremely high quality that will need to be at-
tained before a system might be usable. Since it 
is highly undesirable that learners should be pre-
sented with inaccurate feedback that they may 
not have the experience or knowledge to assess, 
the quality bar imposed on error correction is far 
higher than is that tolerated in machine transla-
tion. Exploration of error correction and writing 
assistance using SMT models may thus prove an 
important venue for testing new SMT models. 

5.3 Advantages of the SMT Approach 

Statistical Machine Translation has provided a 
hugely successful research paradigm within the 
field of natural language processing over the last 
decade. One of the major advantages of using 
SMT in ESL writing assistance is that it can be 
expected to benefit automatically from any pro-
gress made in SMT itself. In fact, the approach 
presented here benefits from all the advantages 
of statistical machine translation. Since the archi-
tecture is not dependent on hard-to-maintain 
rules or regular expressions, little or no linguistic 
expertise will be required in developing and 
maintain applications. As with SMT, this exper-
tise is pushed into the data component, to be 
handled by instructors and editors, who do not 
need programming or scripting skills.  

We expect it to be possible, moreover, once 
parallel data becomes available, to quickly ramp 
up new systems to accommodate the needs of 

Input sentence And we can learn many knowledge or new information from 
TV. 

45K system output 
and we can learn much knowledge or new information from 
TV . 

45K + translation sys-
tem output 

we can gain a lot of knowledge or new information from 
TV . 

Input sentence The following is one of the homework for last week. 

45K system output the following is one of their homework for last week . 

45K + translation sys-
tem output 

the following is one of the homework assignments for 
last week . 

Input sentence i like mushroom,its very nutrition 

45K system output i like mushroom , its very nutrition 

45K + translation sys-
tem output 

i like mushroom , its very nutritious 

 

Table 4.  Contextual corrections before and after adding “translations” to 45K training data 
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learners with different first-language back-
grounds and different skill levels and to writing 
assistance for learners of L2s other than English. 
It is also likely that this architecture may have 
applications in pedagogical environments and as 
a tool to assist editors and instructors who deal 
regularly with ESL texts, much in the manner of 
either Human Assisted Machine Translation or 
Machine Assisted Human Translation. We also 
believe that this same architecture could be ex-
tended naturally to provide grammar and style 
tools for native writers.  

6 Conclusion and Future Directions 

In this pilot study we have shown that SMT tech-
niques have potential to provide error correction 
and stylistic writing assistance to L2 learners. 
The next step will be to obtain a large dataset of 
pre- and post-editing ESL text with which to 
train a model that does not rely on engineered 
data. A major purpose of the present study has 
been to determine whether our hypothesis is ro-
bust enough to warrant the cost and effort of a 
collection or data creation effort.  

Although we anticipate that it will take a sig-
nificant lead time to assemble the necessary 
aligned data, once a sufficiently large corpus is 
in hand, we expect to begin exploring ways to 
improve our SMT system by tailoring it more 
specifically to the demands of editorial assistance. 
In particular, we expect to be looking into alter-
native word alignment models and possibly en-
hancing our system’s decoder using some of the 
richer, more structured language models that are 
beginning to emerge. 
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Abstract

Transforming syntactic representations in
order to improve parsing accuracy has
been exploited successfully in statistical
parsing systems using constituency-based
representations. In this paper, we show
that similar transformations can give sub-
stantial improvements also in data-driven
dependency parsing. Experiments on the
Prague Dependency Treebank show that
systematic transformations of coordinate
structures and verb groups result in a
10% error reduction for a deterministic
data-driven dependency parser. Combin-
ing these transformations with previously
proposed techniques for recovering non-
projective dependencies leads to state-of-
the-art accuracy for the given data set.

1 Introduction

It has become increasingly clear that the choice
of suitable internal representations can be a very
important factor in data-driven approaches to syn-
tactic parsing, and that accuracy can often be im-
proved by internal transformations of a given kind
of representation. This is well illustrated by the
Collins parser (Collins, 1997; Collins, 1999), scru-
tinized by Bikel (2004), where several transforma-
tions are applied in order to improve the analy-
sis of noun phrases, coordination and punctuation.
Other examples can be found in the work of John-
son (1998) and Klein and Manning (2003), which
show that well-chosen transformations of syntac-
tic representations can greatly improve the parsing
accuracy obtained with probabilistic context-free
grammars.

In this paper, we apply essentially the same
techniques to data-driven dependency parsing,

specifically targeting the analysis ofcoordination
andverb groups, two very common constructions
that pose special problems for dependency-based
approaches. The basic idea is that we can facili-
tate learning by transforming the training data for
the parser and that we can subsequently recover
the original representations by applying an inverse
transformation to the parser’s output.

The data used in the experiments come from
the Prague Dependency Treebank (PDT) (Hajič,
1998; Hajǐc et al., 2001), the largest avail-
able dependency treebank, annotated according to
the theory of Functional Generative Description
(FGD) (Sgall et al., 1986). The parser used is
MaltParser (Nivre and Hall, 2005; Nivre et al.,
2006), a freely available system that combines a
deterministic parsing strategy with discriminative
classifiers for predicting the next parser action.

The paper is structured as follows. Section 2
provides the necessary background, including a
definition of dependency graphs, a discussion of
different approaches to the analysis of coordina-
tion and verb groups in dependency grammar, as
well as brief descriptions of PDT, MaltParser and
some related work. Section 3 introduces a set
of dependency graph transformations, specifically
defined to deal with the dependency annotation
found in PDT, which are experimentally evaluated
in section 4. While the experiments reported in
section 4.1 deal with pure treebank transforma-
tions, in order to establish an upper bound on what
can be achieved in parsing, the experiments pre-
sented in section 4.2 examine the effects of differ-
ent transformations on parsing accuracy. Finally,
in section 4.3, we combine these transformations
with previously proposed techniques in order to
optimize overall parsing accuracy. We conclude
in section 5.
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2 Background

2.1 Dependency Graphs

The basic idea in dependency parsing is that the
syntactic analysis consists in establishing typed,
binary relations, calleddependencies, between the
words of a sentence. This kind of analysis can be
represented by a labeled directed graph, defined as
follows:

• LetR = {r1, . . . , rm} be a set of dependency
types (arc labels).

• A dependency graph for a string of words
W = w1 . . . wn is a labeled directed graph
G = (W, A), where:

– W is the set of nodes, i.e. word tokens
in the input string, ordered by a linear
precedence relation<.

– A is a set of labeled arcs(wi, r, wj), wi,
wj ∈ W , r ∈ R.

• A dependency graphG = (W, A) is well-
formed iff it is acyclic and no node has an
in-degree greater than 1.

We will use the notationwi
r
→ wj to symbolize

that (wi, r, wj) ∈ A, wherewi is referred to as
the headandwj as thedependent. We say that
an arc isprojectiveiff, for every wordwj occur-
ring betweenwi and wk (i.e., wi < wj < wk

or wi > wj > wk), there is a path fromwi to
wj . A graph is projective iff all its arcs are pro-
jective. Figure 1 shows a well-formed (projective)
dependency graph for a sentence from the Prague
Dependency Treebank.

2.2 Coordination and Verb Groups

Dependency grammar assumes that syntactic
structure consists of lexical nodes linked by binary
dependencies. Dependency theories are thus best
suited for binary syntactic constructions, where
one element can clearly be distinguished as the
syntactic head. The analysis of coordination is
problematic in this respect, since it normally in-
volves at least one conjunction and two conjuncts.
The verb group, potentially consisting of a whole
chain of verb forms, is another type of construc-
tion where the syntactic relation between elements
is not clear-cut in dependency terms.

Several solutions have been proposed to the
problem of coordination. One alternative is
to avoid creating dependency relations between

the conjuncts, and instead let the conjuncts
have a direct dependency relation to the same
head (Tesnìere, 1959; Hudson, 1990). Another
approach is to make the conjunction the head and
let the conjuncts depend on the conjunction. This
analysis, which appears well motivated on seman-
tic grounds, is adopted in the FGD framework and
will therefore be called Prague style (PS). It is
exemplified in figure 1, where the conjunctiona
(and) is the head of the conjunctsbojovnost́ı and
tvrdost́ı. A different solution is to adopt a more
hierarchical analysis, where the conjunction de-
pends on the first conjunct, while the second con-
junct depends on the conjunction. In cases of
multiple coordination, this can be generalized to a
chain, where each element except the first depends
on the preceding one. This more syntactically
oriented approach has been advocated notably by
Mel’ čuk (1988) and will be called Mel’čuk style
(MS). It is illustrated in figure 2, which shows a
transformed version of the dependency graph in
figure 1, where the elements of the coordination
form a chain with the first conjunct (bojovnost́ı) as
the topmost head. Lombardo and Lesmo (1998)
conjecture that MS is more suitable than PS for
incremental dependency parsing.

The difference between the more semantically
oriented PS and the more syntactically oriented
MS is seen also in the analysis of verb groups,
where the former treats the main verb as the head,
since it is the bearer of valency, while the latter
treats the auxiliary verb as the head, since it is the
finite element of the clause. Without questioning
the theoretical validity of either approach, we can
again ask which analysis is best suited to achieve
high accuracy in parsing.

2.3 PDT

PDT (Hajǐc, 1998; Hajǐc et al., 2001) consists of
1.5M words of newspaper text, annotated in three
layers: morphological, analytical and tectogram-
matical. In this paper, we are only concerned
with the analytical layer, which contains a surface-
syntactic dependency analysis, involving a set of
28 dependency types, and not restricted to projec-
tive dependency graphs.1 The annotation follows
FGD, which means that it involves a PS analysis of
both coordination and verb groups. Whether better
parsing accuracy can be obtained by transforming

1About 2% of all dependencies are non-projective and
about 25% of all sentences have a non-projective dependency
graph (Nivre and Nilsson, 2005).
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(“The final of the tournament was distinguished by great fighting spirit and unexpected hardness”)
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Figure 1: Dependency graph for a Czech sentence from the Prague Dependency Treebank
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Figure 2: Transformed dependency graph for a Czech sentencefrom the Prague Dependency Treebank

this to MS is one of the hypotheses explored in the
experimental study below.

2.4 MaltParser

MaltParser (Nivre and Hall, 2005; Nivre et al.,
2006) is a data-driven parser-generator, which can
induce a dependency parser from a treebank, and
which supports several parsing algorithms and
learning algorithms. In the experiments below we
use the algorithm of Nivre (2003), which con-
structs a labeled dependency graph in one left-
to-right pass over the input. Classifiers that pre-
dict the next parser action are constructed through
memory-based learning (MBL), using the TIMBL
software package (Daelemans and Van den Bosch,
2005), and support vector machines (SVM), using
LIBSVM (Chang and Lin, 2005).

2.5 Related Work

Other ways of improving parsing accuracy with
respect to coordination include learning patterns
of morphological and semantical information for
the conjuncts (Park and Cho, 2000). More specifi-
cally for PDT, Collins et al. (1999) relabel coordi-
nated phrases after converting dependency struc-
tures to phrase structures, and Zeman (2004) uses
a kind of pattern matching, based on frequencies
of the parts-of-speech of conjuncts and conjunc-
tions. Zeman also mentions experiments to trans-

form the dependency structure for coordination
but does not present any results.

Graph transformations in dependency parsing
have also been used in order to recover non-
projective dependencies together with parsers that
are restricted to projective dependency graphs.
Thus, Nivre and Nilsson (2005) improve parsing
accuracy for MaltParser by projectivizing training
data and applying an inverse transformation to the
output of the parser, while Hall and Novák (2005)
apply post-processing to the output of Charniak’s
parser (Charniak, 2000). In the final experi-
ments below, we combine these techniques with
the transformations investigated in this paper.

3 Dependency Graph Transformations

In this section, we describe algorithms for trans-
forming dependency graphs in PDT from PS to
MS and back, starting with coordination and con-
tinuing with verb groups.

3.1 Coordination

The PS-to-MS transformation for coordination
will be designatedτc(∆), where∆ is a data set.
The transformation begins with the identification
of a base conjunction, based on its dependency
type (Coord) and/or its part-of-speech (Jˆ). For
example, the worda (and) in figure 1 is identified
as a base conjunction.
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Before the actual transformation, the base con-
junction and all its dependents need to be classi-
fied into three different categories. First, the base
conjunction is categorized as aseparator(S). If
the coordination consists of more than two con-
juncts, it normally has one or more commas sep-
arating conjuncts, in addition to the base conjunc-
tion. These are identified by looking at their de-
pendency type (mostlyAuxX) and are also catego-
rized asS. The coordination in figure 1 contains
no commas, so only the worda will belong toS.

The remaining dependents of the base conjunc-
tion need to be divided into conjuncts (C) and
other dependents (D). To make this distinction,
the algorithm again looks at the dependency type.
In principle, the dependency type of a conjunct
has the suffixCo, although special care has to be
taken for coordinated prepositional cases and em-
bedded clauses (B̈ohmov́a et al., 2003). The words
bojovnost́ı andtvrdost́ı in figure 1, both having the
dependency typeObj Co, belong to the category
C. Since there are no other dependents ofa, the
coordination contains no instances of the category
D.

Given this classification of the words involved
in a coordination, the transformationτc(∆) is
straightforward and basically connects all the arcs
in a chain. LetC1, . . . , Cn be the elements ofC,
ordered by linear precedence, and letS1i

, . . . , Smi

be the separators occurring betweenCi andCi+1.
Then everyCi becomes the head ofS1i

, . . . , Smi
,

Smi
becomes the head ofCi+1, andC1 becomes

the only dependent of the original head of the base
conjunction. The dependency types of the con-
juncts are truncated by removing the suffixCo.2

Also, each word inwd ∈ D becomes a dependent
of the conjunct closest to its left, and if such a word
does not exist,wd will depend on the leftmost con-
junct. After the transformationτc(∆), every coor-
dination forms a left-headed chain, as illustrated
in figure 2.

This new representation creates a problem,
however. It is no longer possible to distinguish the
dependents inD from other dependents of the con-
juncts. For example, the wordVelkouin figure 2
is not distinguishable from a possible dependent
in D, which is an obvious drawback when trans-
forming back to PS. One way of distinguishingD

elements is to extend the set of dependency types.

2Preliminary results indicated that this increases parsing
accuracy.

The dependency typer of eachwd ∈ D can be re-
placed by a completely new dependency typer+
(e.g.,Atr+), theoretically increasing the number
of dependency types to2 · |R|.

The inverse transformation,τ−1
c (∆), again

starts by identifying base conjunctions, using the
same conditions as before. For each identified
base conjunction, it calls a procedure that per-
forms the inverse transformation by traversing
the chain of conjuncts and separators “upwards”
(right-to-left), collecting conjuncts (C), separators
(S) andpotentialconjunction dependents (Dpot).
When this is done, the former head of the left-
most conjunct (C1) becomes the head of the right-
most (base) conjunction (Smn−1

). In figure 2,
the leftmost conjunct isbojovnost́ı, with the head
vyznǎcovalo, and the rightmost (and only) con-
junction isa, which will then havevyznǎcovaloas
its new head. All conjuncts in the chain become
dependents of the rightmost conjunction, which
means that the structure is converted back to the
one depicted in figure 1.

As mentioned above, the original structure in
figure 1 did not have any coordination dependents,
but Velkou∈ Dpot. The last step of the inverse
transformation is therefore to sort out conjunction
dependents from conjunct dependents, where the
former will attach to the base conjunction. Four
versions have been implemented, two of which
take into account the fact that the dependency
typesAuxG, AuxX, AuxY, andPred are the only
dependency types that are more frequent as con-
junction dependents (D) than as conjunct depen-
dents in the training data set:

• τc: Do not extend arc labels inτc. Leave all
words inDpot in place inτ−1

c .

• τc∗ : Do not extend arc labels inτc. Attach all
words with labelAuxG, AuxX, AuxYor Pred
to the base conjunction inτ−1

c .

• τc+: Extend arc labels fromr to r+ for D

elements inτc. Attach all words with label
r+ to the base conjunction (and change the
label tor) in τ−1

c .

• τc+∗ : Extend arc labels fromr to r+ for D

elements inτc, except for the labelsAuxG,
AuxX, AuxYandPred. Attach all words with
label r+, AuxG, AuxX, AuxY, or Pred to the
base conjunction (and change the label tor if
necessary) inτ−1

c .
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3.2 Verb Groups

To transform verb groups from PS to MS, the
transformation algorithm,τv(∆), starts by identi-
fying all auxiliary verbs in a sentence. These will
belong to the setA and are processed from left to

right. A word waux ∈ A iff wmain
AuxV
−→ waux,

wherewmain is the main verb. The transformation
into MS reverses the relation between the verbs,
i.e., waux

AuxV
−→ wmain, and the former head of

wmain becomes the new head ofwaux. The main
verb can be located on either side of the auxiliary
verb and can have other dependents (whereas aux-
iliary verbs never have dependents), which means
that dependency relations to other dependents of
wmain may become non-projective through the
transformation. To avoid this, all dependents to
the left of the rightmost verb will depend on the
leftmost verb, whereas the others will depend on
the rightmost verb.

Performing the inverse transformation for verb
groups,τ−1

v (∆), is quite simple and essentially
the same procedure inverted. Each sentence is tra-
versed from right to left looking for arcs of the

type waux
AuxV
−→ wmain. For every such arc, the

head ofwaux will be the new head ofwmain, and
wmain the new head ofwaux. Furthermore, since
waux does not have dependents in PS, all depen-
dents ofwaux in MS will become dependents of
wmain in PS.

4 Experiments

All experiments are based on PDT 1.0, which is
divided into three data sets, a training set (∆t), a
development test set (∆d), and an evaluation test
set (∆e). Table 1 shows the size of each data set, as
well as the relative frequency of the specific con-
structions that are in focus here. Only 1.3% of all
words in the training data are identified as auxil-
iary verbs (A), whereas coordination (S and C)
is more common in PDT. This implies that coor-
dination transformations are more likely to have
a greater impact on overall accuracy compared to
the verb group transformations.

In the parsing experiments reported in sections
4.1–4.2, we use∆t for training,∆d for tuning, and
∆e for the final evaluation. The part-of-speech
tagging used (both in training and testing) is the
HMM tagging distributed with the treebank, with
a tagging accuracy of 94.1%, and with the tagset
compressed to 61 tags as in Collins et al. (1999).

Data #S #W %S %C %A
∆t 73088 1256k 3.9 7.7 1.3
∆d 7319 126k 4.0 7.8 1.4
∆e 7507 126k 3.8 7.3 1.4

Table 1: PDT data sets; S = sentence, W = word;
S = separator, C = conjunct, A = auxiliary verb

T AS
τc 97.8
τc∗ 98.6
τc+ 99.6
τc+∗ 99.4
τv 100.0

Table 2: Transformations; T = transformation;
AS = attachment score (unlabeled) ofτ−1(τ(∆t))
compared to∆t

MaltParser is used with the parsing algorithm of
Nivre (2003) together with the feature model used
for parsing Czech by Nivre and Nilsson (2005).
In section 4.2 we use MBL, again with the same
settings as Nivre and Nilsson (2005),3 and in sec-
tion 4.2 we use SVM with a polynomial kernel of
degree 2.4 The metrics for evaluation are the at-
tachment score (AS) (labeled and unlabeled), i.e.,
the proportion of words that are assigned the cor-
rect head, and the exact match (EM) score (labeled
and unlabeled), i.e., the proportion of sentences
that are assigned a completely correct analysis.
All tokens, including punctuation, are included in
the evaluation scores. Statistical significance is as-
sessed using McNemar’s test.

4.1 Experiment 1: Transformations

The algorithms are fairly simple. In addition, there
will always be a small proportion of syntactic con-
structions that do not follow the expected pattern.
Hence, the transformation and inverse transforma-
tion will inevitably result in some distortion. In
order to estimate the expected reduction in pars-
ing accuracy due to this distortion, we first con-
sider a pure treebank transformation experiment,
where we compareτ−1(τ(∆t)) to ∆t, for all the
different transformationsτ defined in the previous
section. The results are shown in table 2.

We see that, even though coordination is more
frequent, verb groups are easier to handle.5 The

3TIMBL parameters: -k5 -mM -L3 -w0 -dID.
4LIBSVM parameters: -s0 -t1 -d2 -g0.12 -r0 -c1 -e0.1.
5The result is rounded to 100.0% but the transformed tree-
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coordination version with the least loss of infor-
mation (τc+) fails to recover the correct head for
0.4% of all words in∆t.

The difference betweenτc+ andτc is expected.
However, in the next section this will be contrasted
with the increased burden on the parser forτc+,
since it is also responsible for selecting the correct
dependency type for each arc among as many as
2 · |R| types instead of|R|.

4.2 Experiment 2: Parsing

Parsing experiments are carried out in four steps
(for a given transformationτ ):

1. Transform the training data set intoτ(∆t).

2. Train a parserp on τ(∆t).

3. Parse a test set∆ usingp with outputp(∆).

4. Transform the parser output intoτ−1(p(∆)).

Table 3 presents the results for a selection of trans-
formations using MaltParser with MBL, tested on
the evaluation test set∆e with the untransformed
data as baseline. Rows 2–5 show that transform-
ing coordinate structures to MS improves parsing
accuracy compared to the baseline, regardless of
which transformation and inverse transformation
are used. Moreover, the parser benefits from the
verb group transformation, as seen in row 6.

The final row shows the best combination of a
coordination transformation with the verb group
transformation, which amounts to an improvement
of roughly two percentage points, or a ten percent
overall error reduction, for unlabeled accuracy.

All improvements over the baseline are statis-
tically significant (McNemar’s test) with respect
to attachment score (labeled and unlabeled) and
unlabeled exact match, withp < 0.01 except for
the unlabeled exact match score of the verb group
transformation, where0.01 < p < 0.05. For the
labeled exact match, no differences are significant.

The experimental results indicate that MS is
more suitable than PS as the target representation
for deterministic data-driven dependency parsing.
A relevant question is of course why this is the
case. A partial explanation may be found in the
“short-dependency preference” exhibited by most
parsers (Eisner and Smith, 2005), with MaltParser
being no exception. The first row of table 4 shows
the accuracy of the parser for different arc lengths
under the baseline condition (i.e., with no trans-
formations). We see that it performs very well on

bank contains 19 erroneous heads.

AS EM
T U L U L

None 79.08 72.83 28.99 21.15
τc 80.55 74.06 30.08 21.27
τc∗ 80.90 74.41 30.56 21.42
τc+ 80.58 74.07 30.42 21.17
τc+∗ 80.87 74.36 30.89 21.38
τv 79.28 72.97 29.53 21.38
τv◦τc+∗ 81.01 74.51 31.02 21.57

Table 3: Parsing accuracy (MBL,∆e); T = trans-
formation; AS = attachment score, EM = exact
match; U = unlabeled, L = labeled

AS ∆e 90.1 83.6 70.5 59.5 45.9
Length: 1 2-3 4-6 7-10 11-
∆t 51.9 29.4 11.2 4.4 3.0
τc(∆t) 54.1 29.1 10.7 3.8 2.4
τv(∆t) 52.9 29.2 10.7 4.2 2.9

Table 4: Baseline labeled AS per arc length on∆e

(row 1); proportion of arcs per arc length in∆t

(rows 3–5)

short arcs, but that accuracy drops quite rapidly
as the arcs get longer. This can be related to the
mean arc length in∆t, which is 2.59 in the un-
transformed version, 2.40 inτc(∆t) and 2.54 in
τv(∆t). Rows 3-5 in table 4 show the distribution
of arcs for different arc lengths in different ver-
sions of the data set. Bothτc and τv make arcs
shorter on average, which may facilitate the task
for the parser.

Another possible explanation is that learning is
facilitated if similar constructions are represented
similarly. For instance, it is probable that learning
is made more difficult when a unit has different
heads depending on whether it is part of a coordi-
nation or not.

4.3 Experiment 3: Optimization

In this section we combine the best results from
the previous section with the graph transforma-
tions proposed by Nivre and Nilsson (2005) to re-
cover non-projective dependencies. We writeτp

for the projectivization of training data andτ−1
p for

the inverse transformation applied to the parser’s
output.6 In addition, we replace MBL with SVM,
a learning algorithm that tends to give higher accu-
racy in classifier-based parsing although it is more

6More precisely, we use the variant called PATH in Nivre
and Nilsson (2005).
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AS EM
T LA U L U L

None MBL 79.08 72.83 28.99 21.15
τp MBL 80.79 74.39 31.54 22.53
τp◦τv◦τc+∗ MBL 82.93 76.31 34.17 23.01
None SVM 81.09 75.68 32.24 25.02
τp SVM 82.93 77.28 35.99 27.05
τp◦τv◦τc+∗ SVM 84.55 78.82 37.63 27.69

Table 5: Optimized parsing results (SVM,∆e); T = transformation; LA = learning algorithm; AS =
attachment score, EM = exact match; U = unlabeled, L = labeled

T P:S R:S P:C R:C P:A R:A P:M R:M
None 52.63 72.35 55.15 67.03 82.17 82.21 69.95 69.07
τp◦τv◦τc+∗ 63.73 82.10 63.20 75.14 90.89 92.79 80.02 81.40

Table 6: Detailed results for SVM; T = transformation; P = unlabeled precision, R = unlabeled recall

costly to train (Sagae and Lavie, 2005).
Table 5 shows the results, for both MBL and

SVM, of the baseline, the pure pseudo-projective
parsing, and the combination of pseudo-projective
parsing with PS-to-MS transformations. We see
that pseudo-projective parsing brings a very con-
sistent increase in accuracy of at least 1.5 percent-
age points, which is more than that reported by
Nivre and Nilsson (2005), and that the addition
of the PS-to-MS transformations increases accu-
racy with about the same margin. We also see that
SVM outperforms MBL by about two percentage
points across the board, and that the positive effect
of the graph transformations is most pronounced
for the unlabeled exact match score, where the
improvement is more than five percentage points
overall for both MBL and SVM.

Table 6 gives a more detailed analysis of the
parsing results for SVM, comparing the optimal
parser to the baseline, and considering specifically
the (unlabeled) precision and recall of the cate-
gories involved in coordination (separatorsS and
conjunctsC) and verb groups (auxiliary verbsA
and main verbsM ). All figures indicate, with-
out exception, that the transformations result in
higher precision and recall for all directly involved
words. (All differences are significant beyond the
0.01 level.) It is worth noting that the error reduc-
tion is actually higher forA andM than forS and
C, although the former are less frequent.

With respect to unlabeled attachment score, the
results of the optimized parser are slightly below
the best published results for a single parser. Hall
and Nov́ak (2005) report a score of 85.1%, apply-

ing a corrective model to the output of Charniak’s
parser; McDonald and Pereira (2006) achieve a
score of 85.2% using a second-order spanning tree
algorithm. Using ensemble methods and a pool of
different parsers, Zeman anďZabokrtsḱy (2005)
attain a top score of 87.0%. For unlabeled exact
match, our results are better than any previously
reported results, including those of McDonald and
Pereira (2006). (For the labeled scores, we are not
aware of any comparable results in the literature.)

5 Conclusion

The results presented in this paper confirm that
choosing the right representation is important
in parsing. By systematically transforming the
representation of coordinate structures and verb
groups in PDT, we achieve a 10% error reduc-
tion for a data-driven dependency parser. Adding
graph transformations for non-projective depen-
dency parsing gives a total error reduction of
about 20% (even more for unlabeled exact match).
In this way, we achieve state-of-the-art accuracy
with a deterministic, classifier-based dependency
parser.
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help with the Czech data and to three anonymous
reviewers for helpful comments and suggestions.

263



References

Daniel M. Bikel. 2004. Intricacies of Collins’ parsing
model.Computational Linguistics, 30:479–511.
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Abstract

Spoken language generation for dialogue
systems requires a dictionary of mappings
between semantic representations of con-
cepts the system wants to express and re-
alizations of those concepts. Dictionary
creation is a costly process; it is currently
done by hand for each dialogue domain.
We propose a novel unsupervised method
for learning such mappings from user re-
views in the target domain, and test it on
restaurant reviews. We test the hypothesis
that user reviews that provide individual
ratings for distinguished attributes of the
domain entity make it possible to map re-
view sentences to their semantic represen-
tation with high precision. Experimental
analyses show that the mappings learned
cover most of the domain ontology, and
provide good linguistic variation. A sub-
jective user evaluation shows that the con-
sistency between the semantic representa-
tions and the learned realizations is high
and that the naturalness of the realizations
is higher than a hand-crafted baseline.

1 Introduction
One obstacle to the widespread deployment of
spoken dialogue systems is the cost involved
with hand-crafting the spoken language generation
module. Spoken language generation requires a
dictionary of mappings between semantic repre-
sentations of concepts the system wants to express
and realizations of those concepts. Dictionary cre-
ation is a costly process: an automatic method
for creating them would make dialogue technol-
ogy more scalable. A secondary benefit is that a
learned dictionary may produce more natural and
colloquial utterances.

We propose a novel method for mining user re-
views to automatically acquire a domain specific
generation dictionary for information presentation
in a dialogue system. Our hypothesis is that re-
views that provide individual ratings for various
distinguished attributes of review entities can be
used to map review sentences to a semantic rep-

An example user review (we8there.com)
Ratings Food=5, Service=5, Atmosphere=5,

Value=5, Overall=5
Review
comment

The best Spanish food in New York. I am
from Spain and I had my 28th birthday
there and we all had a great time. Salud!

↓
Review comment after named entity recognition

The best {NE=foodtype, string=Spanish} {NE=food,
string=food, rating=5} in {NE=location, string=New
York}. . . .

↓
Mapping between a semantic representation (a set of

relations) and a syntactic structure (DSyntS)
• Relations:

RESTAURANT has FOODTYPE
RESTAURANT has foodquality=5
RESTAURANT has LOCATION
([foodtype, food=5, location] for shorthand.)

• DSyntS:⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

lexeme : food
class : common noun
number : sg
article : def

ATTR
[

lexeme : best
class : adjective

]

ATTR

⎡
⎣

lexeme : FOODTYPE
class : common noun
number : sg
article : no-art

⎤
⎦

ATTR

⎡
⎢⎢⎢⎣

lexeme : in
class : preposition

II

⎡
⎣

lexeme : LOCATION
class : proper noun
number : sg
article : no-art

⎤
⎦

⎤
⎥⎥⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Figure 1: Example of procedure for acquiring a
generation dictionary mapping.

resentation. Figure 1 shows a user review in the
restaurant domain, where we hypothesize that the
user rating food=5 indicates that the semantic rep-
resentation for the sentence “The best Spanish
food in New York” includes the relation ‘RESTAU-
RANT has foodquality=5.’

We apply the method to extract 451 mappings
from restaurant reviews. Experimental analyses
show that the mappings learned cover most of the
domain ontology, and provide good linguistic vari-
ation. A subjective user evaluation indicates that
the consistency between the semantic representa-
tions and the learned realizations is high and that
the naturalness of the realizations is significantly
higher than a hand-crafted baseline.
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Section 2 provides a step-by-step description of
the method. Sections 3 and 4 present the evalua-
tion results. Section 5 covers related work. Sec-
tion 6 summarizes and discusses future work.

2 Learning a Generation Dictionary
Our automatically created generation dictionary
consists of triples (U ,R,S) representing a map-
ping between the original utterance U in the user
review, its semantic representation R(U), and its
syntactic structure S(U). Although templates are
widely used in many practical systems (Seneff and
Polifroni, 2000; Theune, 2003), we derive syn-
tactic structures to represent the potential realiza-
tions, in order to allow aggregation, and other
syntactic transformations of utterances, as well as
context specific prosody assignment (Walker et al.,
2003; Moore et al., 2004).

The method is outlined briefly in Fig. 1 and de-
scribed below. It comprises the following steps:

1. Collect user reviews on the web to create a
population of utterances U .

2. To derive semantic representations R(U):

• Identify distinguished attributes and
construct a domain ontology;

• Specify lexicalizations of attributes;
• Scrape webpages’ structured data for

named-entities;
• Tag named-entities.

3. Derive syntactic representations S(U).
4. Filter inappropriate mappings.
5. Add mappings (U ,R,S) to dictionary.

2.1 Creating the corpus
We created a corpus of restaurant reviews by
scraping 3,004 user reviews of 1,810 restau-
rants posted at we8there.com (http://www.we8-
there.com/), where each individual review in-
cludes a 1-to-5 Likert-scale rating of different
restaurant attributes. The corpus consists of
18,466 sentences.

2.2 Deriving semantic representations
The distinguished attributes are extracted from the
webpages for each restaurant entity. They in-
clude attributes that the users are asked to rate,
i.e. food, service, atmosphere, value, and over-
all, which have scalar values. In addition, other
attributes are extracted from the webpage, such
as the name, foodtype and location of the restau-
rant, which have categorical values. The name
attribute is assumed to correspond to the restau-
rant entity. Given the distinguished attributes, a

Dist. Attr. Lexicalization

food food, meal
service service, staff, waitstaff, wait staff, server,

waiter, waitress
atmosphere atmosphere, decor, ambience, decoration
value value, price, overprice, pricey, expensive,

inexpensive, cheap, affordable, afford
overall recommend, place, experience, establish-

ment

Table 1: Lexicalizations for distinguished at-
tributes.

simple domain ontology can be automatically de-
rived by assuming that a meronymy relation, rep-
resented by the predicate ‘has’, holds between the
entity type (RESTAURANT) and the distinguished
attributes. Thus, the domain ontology consists of
the relations:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

RESTAURANT has foodquality
RESTAURANT has servicequality
RESTAURANT has valuequality
RESTAURANT has atmospherequality
RESTAURANT has overallquality
RESTAURANT has foodtype
RESTAURANT has location

We assume that, although users may discuss
other attributes of the entity, at least some of the
utterances in the reviews realize the relations spec-
ified in the ontology. Our problem then is to iden-
tify these utterances. We test the hypothesis that,
if an utterance U contains named-entities corre-
sponding to the distinguished attributes, thatR for
that utterance includes the relation concerning that
attribute in the domain ontology.

We define named-entities for lexicalizations of
the distinguished attributes, starting with the seed
word for that attribute on the webpage (Table 1).1

For named-entity recognition, we use GATE (Cun-
ningham et al., 2002), augmented with named-
entity lists for locations, food types, restaurant
names, and food subtypes (e.g. pizza), scraped
from the we8there webpages.

We also hypothesize that the rating given for the
distinguished attribute specifies the scalar value
of the relation. For example, a sentence contain-
ing food or meal is assumed to realize the re-
lation ‘RESTAURANT has foodquality.’, and the
value of the foodquality attribute is assumed to be
the value specified in the user rating for that at-
tribute, e.g. ‘RESTAURANT has foodquality = 5’ in
Fig. 1. Similarly, the other relations in Fig. 1 are
assumed to be realized by the utterance “The best
Spanish food in New York” because it contains

1In future, we will investigate other techniques for boot-
strapping these lexicalizations from the seed word on the
webpage.
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filter filtered retained

No Relations Filter 7,947 10,519
Other Relations Filter 5,351 5,168
Contextual Filter 2,973 2,195
Unknown Words Filter 1,467 728
Parsing Filter 216 512

Table 2: Filtering statistics: the number of sen-
tences filtered and retained by each filter.

one FOODTYPE named-entity and one LOCATION

named-entity. Values of categorical attributes are
replaced by variables representing their type be-
fore the learned mappings are added to the dictio-
nary, as shown in Fig. 1.

2.3 Parsing and DSyntS conversion
We adopt Deep Syntactic Structures (DSyntSs) as
a format for syntactic structures because they can
be realized by the fast portable realizer RealPro
(Lavoie and Rambow, 1997). Since DSyntSs are a
type of dependency structure, we first process the
sentences with Minipar (Lin, 1998), and then con-
vert Minipar’s representation into DSyntS. Since
user reviews are different from the newspaper ar-
ticles on which Minipar was trained, the output
of Minipar can be inaccurate, leading to failure in
conversion. We check whether conversion is suc-
cessful in the filtering stage.

2.4 Filtering
The goal of filtering is to identify U that realize
the distinguished attributes and to guarantee high
precision for the learned mappings. Recall is less
important since systems need to convey requested
information as accurately as possible. Our proce-
dure for deriving semantic representations is based
on the hypothesis that if U contains named-entities
that realize the distinguished attributes, thatRwill
include the relevant relation in the domain ontol-
ogy. We also assume that if U contains named-
entities that are not covered by the domain ontol-
ogy, or words indicating that the meaning of U de-
pends on the surrounding context, that R will not
completely characterizes the meaning of U , and so
U should be eliminated. We also require an accu-
rate S for U . Therefore, the filters described be-
low eliminate U that (1) realize semantic relations
not in the ontology; (2) contain words indicating
that its meaning depends on the context; (3) con-
tain unknown words; or (4) cannot be parsed ac-
curately.

No Relations Filter: The sentence does not con-
tain any named-entities for the distinguished
attributes.

Other Relations Filter: The sentence contains
named-entities for food subtypes, person

Rating
Dist.Attr.

1 2 3 4 5 Total

food 5 8 6 18 57 94
service 15 3 6 17 56 97
atmosphere 0 3 3 8 31 45
value 0 0 1 8 12 21
overall 3 2 5 15 45 70

Total 23 15 21 64 201 327

Table 3: Domain coverage of single scalar-valued
relation mappings.

names, country names, dates (e.g., today, to-
morrow, Aug. 26th) or prices (e.g., 12 dol-
lars), or POS tag CD for numerals. These in-
dicate relations not in the ontology.

Contextual Filter: The sentence contains index-
icals such as I, you, that or cohesive markers
of rhetorical relations that connect it to some
part of the preceding text, which means that
the sentence cannot be interpreted out of con-
text. These include discourse markers, such
as list item markers with LS as the POS tag,
that signal the organization structure of the
text (Hirschberg and Litman, 1987), as well
as discourse connectives that signal semantic
and pragmatic relations of the sentence with
other parts of the text (Knott, 1996), such as
coordinating conjunctions at the beginning of
the utterance like and and but etc., and con-
junct adverbs such as however, also, then.

Unknown Words Filter: The sentence contains
words not in WordNet (Fellbaum, 1998)
(which includes typographical errors), or
POS tags contain NN (Noun), which may in-
dicate an unknown named-entity, or the sen-
tence has more than a fixed length of words,2

indicating that its meaning may not be esti-
mated solely by named entities.

Parsing Filter: The sentence fails the parsing to
DSyntS conversion. Failures are automati-
cally detected by comparing the original sen-
tence with the one realized by RealPro taking
the converted DSyntS as an input.

We apply the filters, in a cascading manner, to the
18,466 sentences with semantic representations.
As a result, we obtain 512 (2.8%) mappings of
(U ,R,S). After removing 61 duplicates, 451 dis-
tinct (2.4%) mappings remain. Table 2 shows the
number of sentences eliminated by each filter.

3 Objective Evaluation
We evaluate the learned expressions with respect
to domain coverage, linguistic variation and gen-
erativity.

2We used 20 as a threshold.
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# Combination of Dist. Attrs Count

1 food-service 39
2 food-value 21
3 atmosphere-food 14
4 atmosphere-service 10
5 atmosphere-food-service 7
6 food-foodtype 4
7 atmosphere-food-value 4
8 location-overall 3
9 food-foodtype-value 3

10 food-service-value 2
11 food-foodtype-location 2
12 food-overall 2
13 atmosphere-foodtype 2
14 atmosphere-overall 2
15 service-value 1
16 overall-service 1
17 overall-value 1
18 foodtype-overall 1
19 food-foodtype-location-overall 1
20 atmosphere-food-service-value 1
21 atmosphere-food-overall-

service-value
1

Total 122

Table 4: Counts for multi-relation mappings.

3.1 Domain Coverage
To be usable for a dialogue system, the mappings
must have good domain coverage. Table 3 shows
the distribution of the 327 mappings realizing a
single scalar-valued relation, categorized by the
associated rating score.3 For example, there are 57
mappings with R of ‘RESTAURANT has foodqual-
ity=5,’ and a large number of mappings for both
the foodquality and servicequality relations. Al-
though we could not obtain mappings for some re-
lations such as price={1,2}, coverage for express-
ing a single relation is fairly complete.

There are also mappings that express several re-
lations. Table 4 shows the counts of mappings
for multi-relation mappings, with those contain-
ing a food or service relation occurring more fre-
quently as in the single scalar-valued relation map-
pings. We found only 21 combinations of rela-
tions, which is surprising given the large poten-
tial number of combinations (There are 50 com-
binations if we treat relations with different scalar
values differently). We also find that most of the
mappings have two or three relations, perhaps sug-
gesting that system utterances should not express
too many relations in a single sentence.

3.2 Linguistic Variation
We also wish to assess whether the linguistic
variation of the learned mappings was greater
than what we could easily have generated with a
hand-crafted dictionary, or a hand-crafted dictio-
nary augmented with aggregation operators, as in

3There are two other single-relation but not scalar-valued
mappings that concern LOCATION in our mappings.

(Walker et al., 2003). Thus, we first categorized
the mappings by the patterns of the DSyntSs. Ta-
ble 5 shows the most common syntactic patterns
(more than 10 occurrences), indicating that 30%
of the learned patterns consist of the simple form
“X is ADJ” where ADJ is an adjective, or “X is RB

ADJ,” where RB is a degree modifier. Furthermore,
up to 55% of the learned mappings could be gen-
erated from these basic patterns by the application
of a combination operator that coordinates mul-
tiple adjectives, or coordinates predications over
distinct attributes. However, there are 137 syntac-
tic patterns in all, 97 with unique syntactic struc-
tures and 21 with two occurrences, accounting for
45% of the learned mappings. Table 6 shows ex-
amples of learned mappings with distinct syntactic
structures. It would be surprising to see this type
of variety in a hand-crafted generation dictionary.
In addition, the learned mappings contain 275 dis-
tinct lexemes, with a minimum of 2, maximum of
15, and mean of 4.63 lexemes per DSyntS, indi-
cating that the method extracts a wide variety of
expressions of varying lengths.

Another interesting aspect of the learned map-
pings is the wide variety of adjectival phrases
(APs) in the common patterns. Tables 7 and 8
show the APs in single scalar-valued relation map-
pings for food and service categorized by the as-
sociated ratings. Tables for atmosphere, value and
overall can be found in the Appendix. Moreover,
the meanings for some of the learned APs are very
specific to the particular attribute, e.g. cold and
burnt associated with foodquality of 1, attentive
and prompt for servicequality of 5, silly and inat-
tentive for servicequality of 1. and mellow for at-
mosphere of 5. In addition, our method places the
adjectival phrases (APs) in the common patterns
on a more fine-grained scale of 1 to 5, similar to
the strength classifications in (Wilson et al., 2004),
in contrast to other automatic methods that clas-
sify expressions into a binary positive or negative
polarity (e.g. (Turney, 2002)).

3.3 Generativity
Our motivation for deriving syntactic representa-
tions for the learned expressions was the possibil-
ity of using an off-the-shelf sentence planner to
derive new combinations of relations, and apply
aggregation and other syntactic transformations.
We examined how many of the learned DSyntSs
can be combined with each other, by taking ev-
ery pair of DSyntSs in the mappings and apply-
ing the built-in merge operation in the SPaRKy
generator (Walker et al., 2003). We found that
only 306 combinations out of a potential 81,318
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# syntactic pattern example utterance count ratio accum.

1 NN VB JJ The atmosphere is wonderful. 92 20.4% 20.4%
2 NN VB RB JJ The atmosphere was very nice. 52 11.5% 31.9%
3 JJ NN Bad service. 36 8.0% 39.9%
4 NN VB JJ CC JJ The food was flavorful but cold. 25 5.5% 45.5%
5 RB JJ NN Very trendy ambience. 22 4.9% 50.3%
6 NN VB JJ CC NN VB JJ The food is excellent and the atmosphere is great. 13 2.9% 53.2%
7 NN CC NN VB JJ The food and service were fantastic. 10 2.2% 55.4%

Table 5: Common syntactic patterns of DSyntSs, flattened to a POS sequence for readability. NN, VB,
JJ, RB, CC stand for noun, verb, adjective, adverb, and conjunction, respectively.

[overall=1, value=2] Very disappointing experience for
the money charged.
[food=5, value=5] The food is excellent and plentiful at a
reasonable price.
[food=5, service=5] The food is exquisite as well as the
service and setting.
[food=5, service=5] The food was spectacular and so was
the service.
[food=5, foodtype, value=5] Best FOODTYPE food with
a great value for money.
[food=5, foodtype, value=5] An absolutely outstanding
value with fantastic FOODTYPE food.
[food=5, foodtype, location, overall=5] This is the best
place to eat FOODTYPE food in LOCATION.
[food=5, foodtype] Simply amazing FOODTYPE food.
[food=5, foodtype] RESTAURANTNAME is the best of the
best for FOODTYPE food.
[food=5] The food is to die for.
[food=5] What incredible food.
[food=4] Very pleasantly surprised by the food.
[food=1] The food has gone downhill.
[atmosphere=5, overall=5] This is a quiet little place
with great atmosphere.
[atmosphere=5, food=5, overall=5, service=5, value=5]
The food, service and ambience of the place are all fabu-
lous and the prices are downright cheap.

Table 6: Acquired generation patterns (with short-
hand for relations in square brackets) whose syn-
tactic patterns occurred only once.

combinations (0.37%) were successful. This is
because the merge operation in SPaRKy requires
that the subjects and the verbs of the two DSyntSs
are identical, e.g. the subject is RESTAURANT and
verb is has, whereas the learned DSyntSs often
place the attribute in subject position as a definite
noun phrase. However, the learned DSyntS can
be incorporated into SPaRKy using the semantic
representations to substitute learned DSyntSs into
nodes in the sentence plan tree. Figure 2 shows
some example utterances generated by SPaRKy
with its original dictionary and example utterances
when the learned mappings are incorporated. The
resulting utterances seem more natural and collo-
quial; we examine whether this is true in the next
section.

4 Subjective Evaluation
We evaluate the obtained mappings in two re-
spects: the consistency between the automatically
derived semantic representation and the realiza-

food=1 awful, bad, burnt, cold, very ordinary
food=2 acceptable, bad, flavored, not enough, very

bland, very good
food=3 adequate, bland and mediocre, flavorful but

cold, pretty good, rather bland, very good
food=4 absolutely wonderful, awesome, decent, ex-

cellent, good, good and generous, great, out-
standing, rather good, really good, tradi-
tional, very fresh and tasty, very good, very
very good

food=5 absolutely delicious, absolutely fantastic, ab-
solutely great, absolutely terrific, ample, well
seasoned and hot, awesome, best, delectable
and plentiful, delicious, delicious but simple,
excellent, exquisite, fabulous, fancy but tasty,
fantastic, fresh, good, great, hot, incredible,
just fantastic, large and satisfying, outstand-
ing, plentiful and outstanding, plentiful and
tasty, quick and hot, simply great, so deli-
cious, so very tasty, superb, terrific, tremen-
dous, very good, wonderful

Table 7: Adjectival phrases (APs) in single scalar-
valued relation mappings for foodquality.

tion, and the naturalness of the realization.
For comparison, we used a baseline of hand-

crafted mappings from (Walker et al., 2003) ex-
cept that we changed the word decor to at-
mosphere and added five mappings for overall.
For scalar relations, this consists of the realiza-
tion “RESTAURANT has ADJ LEX” where ADJ is
mediocre, decent, good, very good, or excellent for
rating values 1-5, and LEX is food quality, service,
atmosphere, value, or overall depending on the re-
lation. RESTAURANT is filled with the name of
a restaurant at runtime. For example, ‘RESTAU-
RANT has foodquality=1’ is realized as “RESTAU-
RANT has mediocre food quality.” The location
and food type relations are mapped to “RESTAU-
RANT is located in LOCATION” and “RESTAU-
RANT is a FOODTYPE restaurant.”

The learned mappings include 23 distinct se-
mantic representations for a single-relation (22 for
scalar-valued relations and one for location) and
50 for multi-relations. Therefore, using the hand-
crafted mappings, we first created 23 utterances
for the single-relations. We then created three ut-
terances for each of 50 multi-relations using differ-
ent clause-combining operations from (Walker et
al., 2003). This gave a total of 173 baseline utter-
ances, which together with 451 learned mappings,
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service=1 awful, bad, great, horrendous, horrible,
inattentive, forgetful and slow, marginal,
really slow, silly and inattentive, still
marginal, terrible, young

service=2 overly slow, very slow and inattentive
service=3 bad, bland and mediocre, friendly and

knowledgeable, good, pleasant, prompt,
very friendly

service=4 all very warm and welcoming, attentive,
extremely friendly and good, extremely
pleasant, fantastic, friendly, friendly and
helpful, good, great, great and courteous,
prompt and friendly, really friendly, so
nice, swift and friendly, very friendly, very
friendly and accommodating

service=5 all courteous, excellent, excellent and
friendly, extremely friendly, fabulous,
fantastic, friendly, friendly and helpful,
friendly and very attentive, good, great,
great, prompt and courteous, happy and
friendly, impeccable, intrusive, legendary,
outstanding, pleasant, polite, attentive and
prompt, prompt and courteous, prompt
and pleasant, quick and cheerful, stupen-
dous, superb, the most attentive, unbeliev-
able, very attentive, very congenial, very
courteous, very friendly, very friendly and
helpful, very friendly and pleasant, very
friendly and totally personal, very friendly
and welcoming, very good, very helpful,
very timely, warm and friendly, wonderful

Table 8: Adjectival phrases (APs) in single scalar-
valued relation mappings for servicequality.

yielded 624 utterances for evaluation.
Ten subjects, all native English speakers, eval-

uated the mappings by reading them from a web-
page. For each system utterance, the subjects were
asked to express their degree of agreement, on a
scale of 1 (lowest) to 5 (highest), with the state-
ment (a) The meaning of the utterance is consis-
tent with the ratings expressing their semantics,
and with the statement (b) The style of the utter-
ance is very natural and colloquial. They were
asked not to correct their decisions and also to rate
each utterance on its own merit.

4.1 Results
Table 9 shows the means and standard deviations
of the scores for baseline vs. learned utterances for
consistency and naturalness. A t-test shows that
the consistency of the learned expression is signifi-
cantly lower than the baseline (df=4712, p < .001)
but that their naturalness is significantly higher
than the baseline (df=3107, p < .001). However,
consistency is still high. Only 14 of the learned
utterances (shown in Tab. 10) have a mean consis-
tency score lower than 3, which indicates that, by
and large, the human judges felt that the inferred
semantic representations were consistent with the
meaning of the learned expressions. The correla-
tion coefficient between consistency and natural-
ness scores is 0.42, which indicates that consis-

Original SPaRKy utterances
• Babbo has the best overall quality among the selected
restaurants with excellent decor, excellent service and
superb food quality.
• Babbo has excellent decor and superb food quality
with excellent service. It has the best overall quality
among the selected restaurants.

↓
Combination of SPaRKy and learned DSyntS

• Because the food is excellent, the wait staff is pro-
fessional and the decor is beautiful and very com-
fortable, Babbo has the best overall quality among the
selected restaurants.
• Babbo has the best overall quality among the selected
restaurants because atmosphere is exceptionally nice,
food is excellent and the service is superb.
• Babbo has superb food quality, the service is excep-
tional and the atmosphere is very creative. It has the
best overall quality among the selected restaurants.

Figure 2: Utterances incorporating learned
DSyntSs (Bold font) in SPaRKy.

baseline learned stat.
mean sd. mean sd. sig.

Consistency 4.714 0.588 4.459 0.890 +
Naturalness 4.227 0.852 4.613 0.844 +

Table 9: Consistency and naturalness scores aver-
aged over 10 subjects.

tency does not greatly relate to naturalness.
We also performed an ANOVA (ANalysis Of

VAriance) of the effect of each relation in R on
naturalness and consistency. There were no sig-
nificant effects except that mappings combining
food, service, and atmosphere were significantly
worse (df=1, F=7.79, p=0.005). However, there
is a trend for mappings to be rated higher for
the food attribute (df=1, F=3.14, p=0.08) and the
value attribute (df=1, F=3.55, p=0.06) for consis-
tency, suggesting that perhaps it is easier to learn
some mappings than others.

5 Related Work
Automatically finding sentences with the same
meaning has been extensively studied in the field
of automatic paraphrasing using parallel corpora
and corpora with multiple descriptions of the same
events (Barzilay and McKeown, 2001; Barzilay
and Lee, 2003). Other work finds predicates of
similar meanings by using the similarity of con-
texts around the predicates (Lin and Pantel, 2001).
However, these studies find a set of sentences with
the same meaning, but do not associate a specific
meaning with the sentences. One exception is
(Barzilay and Lee, 2002), which derives mappings
between semantic representations and realizations
using a parallel (but unaligned) corpus consisting
of both complex semantic input and correspond-
ing natural language verbalizations for mathemat-
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shorthand for relations and utterance score

[food=4] The food is delicious and beautifully
prepared.

2.9

[overall=4] A wonderful experience. 2.9
[service=3] The service is bland and mediocre. 2.8
[atmosphere=2] The atmosphere here is eclec-
tic.

2.6

[overall=3] Really fancy place. 2.6
[food=3, service=4] Wonderful service and
great food.

2.5

[service=4] The service is fantastic. 2.5
[overall=2] The RESTAURANTNAME is once a
great place to go and socialize.

2.2

[atmosphere=2] The atmosphere is unique and
pleasant.

2.0

[food=5, foodtype] FOODTYPE and FOODTYPE

food.
1.8

[service=3] Waitstaff is friendly and knowl-
edgeable.

1.7

[atmosphere=5, food=5, service=5] The atmo-
sphere, food and service.

1.6

[overall=3] Overall, a great experience. 1.4
[service=1] The waiter is great. 1.4

Table 10: The 14 utterances with consistency
scores below 3.

ical proofs. However, our technique does not re-
quire parallel corpora or previously existing se-
mantic transcripts or labeling, and user reviews are
widely available in many different domains (See
http://www.epinions.com/).

There is also significant previous work on min-
ing user reviews. For example, Hu and Liu (2005)
use reviews to find adjectives to describe products,
and Popescu and Etzioni (2005) automatically find
features of a product together with the polarity of
adjectives used to describe them. They both aim at
summarizing reviews so that users can make deci-
sions easily. Our method is also capable of finding
polarities of modifying expressions including ad-
jectives, but on a more fine-grained scale of 1 to
5. However, it might be possible to use their ap-
proach to create rating information for raw review
texts as in (Pang and Lee, 2005), so that we can
create mappings from reviews without ratings.

6 Summary and Future Work
We proposed automatically obtaining mappings
between semantic representations and realizations
from reviews with individual ratings. The results
show that: (1) the learned mappings provide good
coverage of the domain ontology and exhibit good
linguistic variation; (2) the consistency between
the semantic representations and realizations is
high; and (3) the naturalness of the realizations are
significantly higher than the baseline.

There are also limitations in our method. Even
though consistency is rated highly by human sub-
jects, this may actually be a judgement of whether
the polarity of the learned mapping is correctly

placed on the 1 to 5 rating scale. Thus, alter-
nate ways of expressing, for example foodqual-
ity=5, shown in Table 7, cannot be guaranteed to
be synonymous, which may be required for use in
spoken language generation. Rather, an examina-
tion of the adjectival phrases in Table 7 shows that
different aspects of the food are discussed. For
example ample and plentiful refer to the portion
size, fancy may refer to the presentation, and deli-
cious describes the flavors. This suggests that per-
haps the ontology would benefit from represent-
ing these sub-attributes of the food attribute, and
sub-attributes in general. Another problem with
consistency is that the same AP, e.g. very good
in Table 7 may appear with multiple ratings. For
example, very good is used for every foodquality
rating from 2 to 5. Thus some further automatic
or by-hand analysis is required to refine what is
learned before actual use in spoken language gen-
eration. Still, our method could reduce the amount
of time a system designer spends developing the
spoken language generator, and increase the natu-
ralness of spoken language generation.

Another issue is that the recall appears to be
quite low given that all of the sentences concern
the same domain: only 2.4% of the sentences
could be used to create the mappings. One way
to increase recall might be to automatically aug-
ment the list of distinguished attribute lexicaliza-
tions, using WordNet or work on automatic iden-
tification of synonyms, such as (Lin and Pantel,
2001). However, the method here has high pre-
cision, and automatic techniques may introduce
noise. A related issue is that the filters are in some
cases too strict. For example the contextual fil-
ter is based on POS-tags, so that sentences that do
not require the prior context for their interpreta-
tion are eliminated, such as sentences containing
subordinating conjunctions like because, when, if,
whose arguments are both given in the same sen-
tence (Prasad et al., 2005). In addition, recall is
affected by the domain ontology, and the automat-
ically constructed domain ontology from the re-
view webpages may not cover all of the domain.
In some review domains, the attributes that get
individual ratings are a limited subset of the do-
main ontology. Techniques for automatic feature
identification (Hu and Liu, 2005; Popescu and Et-
zioni, 2005) could possibly help here, although
these techniques currently have the limitation that
they do not automatically identify different lexi-
calizations of the same feature.

A different type of limitation is that dialogue
systems need to generate utterances for informa-
tion gathering whereas the mappings we obtained
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can only be used for information presentation.
Thus these would have to be constructed by hand,
as in current practice, or perhaps other types of
corpora or resources could be utilized. In addi-
tion, the utility of syntactic structures in the map-
pings should be further examined, especially given
the failures in DSyntS conversion. An alternative
would be to leave some sentences unparsed and
use them as templates with hybrid generation tech-
niques (White and Caldwell, 1998). Finally, while
we believe that this technique will apply across do-
mains, it would be useful to test it on domains such
as movie reviews or product reviews, which have
more complex domain ontologies.
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Appendix
Adjectival phrases (APs) in single scalar-valued
relation mappings for atmosphere, value, and
overall.

atmosphere=2 eclectic, unique and pleasant
atmosphere=3 busy, pleasant but extremely hot
atmosphere=4 fantastic, great, quite nice and simple,

typical, very casual, very trendy, wonder-
ful

atmosphere=5 beautiful, comfortable, excellent, great,
interior, lovely, mellow, nice, nice and
comfortable, phenomenal, pleasant, quite
pleasant, unbelievably beautiful, very
comfortable, very cozy, very friendly,
very intimate, very nice, very nice and
relaxing, very pleasant, very relaxing,
warm and contemporary, warm and very
comfortable, wonderful

value=3 very reasonable
value=4 great, pretty good, reasonable, very good
value=5 best, extremely reasonable, good, great,

reasonable, totally reasonable, very good,
very reasonable

overall=1 just bad, nice, thoroughly humiliating
overall=2 great, really bad
overall=3 bad, decent, great, interesting, really

fancy
overall=4 excellent, good, great, just great, never

busy, not very busy, outstanding, recom-
mended, wonderful

overall=5 amazing, awesome, capacious, delight-
ful, extremely pleasant, fantastic, good,
great, local, marvelous, neat, new, over-
all, overwhelmingly pleasant, pampering,
peaceful but idyllic, really cool, really
great, really neat, really nice, special,
tasty, truly great, ultimate, unique and en-
joyable, very enjoyable, very excellent,
very good, very nice, very wonderful,
warm and friendly, wonderful
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Abstract

This paper presents a method for build-
ing genetic language taxonomies based
on a new approach to comparing lexi-
cal forms. Instead of comparing forms
cross-linguistically, a matrix of language-
internal similarities between forms is cal-
culated. These matrices are then com-
pared to give distances between languages.
We argue that this coheres better with
current thinking in linguistics and psy-
cholinguistics. An implementation of this
approach, calledPHILOLOGICON, is de-
scribed, along with its application to Dyen
et al.’s (1992) ninety-five wordlists from
Indo-European languages.

1 Introduction

Recently, there has been burgeoning interest in
the computational construction of genetic lan-
guage taxonomies (Dyen et al., 1992; Nerbonne
and Heeringa, 1997; Kondrak, 2002; Ringe et
al., 2002; Benedetto et al., 2002; McMahon
and McMahon, 2003; Gray and Atkinson, 2003;
Nakleh et al., 2005).

One common approach to building language
taxonomies is to ascribe language-language dis-
tances, and then use a generic algorithm to con-
struct a tree which explains these distances as
much as possible. Two questions arise with this
approach. The first asks what aspects of lan-
guages are important in measuring inter-language
distance. The second asks how to measure dis-
tance given these aspects.

A more traditional approach to building lan-
guage taxonomies (Dyen et al., 1992) answers
these questions in terms ofcognates. A word in

language A is said to be cognate with word in lan-
guage B if the forms shared a common ancestor
in the parent language of A and B. In the cognate-
counting method, inter-language distance depends
on the lexical forms of the languages. The dis-
tance between two languages is a function of the
number or fraction of these forms which are cog-
nate between the two languages1. This approach
to building language taxonomies is hard to imple-
ment in toto because constructing ancestor forms
is not easily automatable.

More recent approaches, such as Kondrak’s
(2002) and Heggarty et al’s (2005) work on di-
alect comparison, take the synchronic word forms
themselves as the language aspect to be compared.
Variations on edit distance (see Kessler (2005) for
a survey) are then used to evaluate differences be-
tween languages for each word, and these differ-
ences are aggregated to give a distance between
languages or dialects as a whole. This approach
is largely automatable, although some methods do
require human intervention.

In this paper, we present novel answers to the
two questions. The features of language we will
compare are not sets of words or phonological
forms. Instead we compare the similarities be-
tween forms, expressed as confusion probabilities.
The distribution of confusion probabilities in one
language is called alexical metric. Section 2
presents the definition of lexical metrics and some
arguments for their being good language represen-
tatives for the purposes of comparison.

The distance between two languages is the di-
vergence their lexical metrics. In section 3, we
detail two methods for measuring this divergence:

1McMahon and McMahon (2003) for an account of tree-
inference from the cognate percentages in the Dyen et al.
(1992) data.
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Kullback-Liebler (herafter KL) divergence and
Rao distance. The subsequent section (4) de-
scribes the application of our approach to automat-
ically constructing a taxonomy of Indo-European
languages from Dyen et al. (1992) data.

Section 5 suggests how lexical metrics can help
identify cognates. The final section (6) presents
our conclusions, and discusses possible future di-
rections for this work.

Versions of the software and data files described
in the paper will be made available to coincide
with its publication.

2 Lexical Metric

The first question posed by the distance-based ap-
proach to genetic language taxonomy is: what
should we compare?

In some approaches (Kondrak, 2002; McMahon
et al., 2005; Heggarty et al., 2005; Nerbonne and
Heeringa, 1997), the answer to this question is that
we should compare the phonetic or phonological
realisations of a particular set of meanings across
the range of languages being studied. There are
a number of problems with using lexical forms in
this way.

Firstly, in order to compare forms from differ-
ent languages, we need to embed them in com-
mon phonetic space. This phonetic space provides
granularity, marking two phones as identical or
distinct, and where there is a graded measure of
phonetic distinction it measures this.

There is growing doubt in the field of phonol-
ogy and phonetics about the meaningfulness of as-
suming of a common phonetic space. Port and
Leary (2005) argue convincingly that this assump-
tion, while having played a fundamental role in
much recent linguistic theorising, is nevertheless
unfounded. The degree of difference between
sounds, and consequently, the degree of phonetic
difference between words can only be ascertained
within the context of a single language.

It may be argued that a common phonetic space
can be found in either acoustics or degrees of free-
dom in the speech articulators. Language-specific
categorisation of sound, however, often restruc-
tures this space, sometimes with distinct sounds
being treated as homophones. One example of
this is the realisation of orthographicrr in Euro-
pean Portuguese: it is indifferently realised with
an apical or a uvular trill, different sounds made at
distinct points of articulation.

If there is no language-independent, common
phonetic space with an equally common similar-
ity measure, there can be no principled approach
to comparing forms in one language with those of
another.

In contrast, language-specific word-similarity is
well-founded. A number of psycholinguistic mod-
els of spoken word recognition (Luce et al., 1990)
are based on the idea of lexical neighbourhoods.
When a word is accessed during processing, the
other words that are phonemically or orthograph-
ically similar are also activated. This effect can
be detected using experimental paradigms such as
priming.

Our approach, therefore, is to abandon the
cross-linguistic comparison of phonetic realisa-
tions, in favour of language-internal comparison
of forms. (See also work by Shillcock et al. (2001)
and Tamariz (2005)).

2.1 Confusion probabilities

One psychologically well-grounded way of de-
scribing the similarity of words is in terms of their
confusion probabilities. Two words have high
confusion probability if it is likely that one word
could be produced or understood when the other
was intended. This type of confusion can be mea-
sured experimentally by giving subjects words in
noisy environments and measuring what they ap-
prehend.

A less pathological way in which confusion
probability is realised is in coactivation. If a per-
son hears a word, then they more easily and more
quickly recognise similar words. This coactiva-
tion occurs because the phonological realisation
of words is not completely separate in the mind.
Instead, realisations are interdependent with reali-
sations of similar words.

We propose that confusion probabilities are
ideal information to constitute the lexical met-
ric. They are language-specific, psychologically
grounded, can be determined by experiment, and
integrate with existing psycholinguistic models of
word recognition.

2.2 NAM and beyond

Unfortunately, experimentally determined confu-
sion probabilities for a large number of languages
are not available. Fortunately, models of spoken
word recognition allow us to predict these proba-
bilities from easily-computable measures of word
similarity.
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For example, theneighbourhood activation
model (NAM) (Luce et al., 1990; Luce and Pisoni,
1998) predicts confusion probabilities from the
relative frequency of words in the neighbourhood
of the target. Words arein the neighbourhoodof
the target if their Levenstein (1965) edit distance
from the target is one. The more frequent the word
is, the greater its likelihood of replacing the target.

Bailey and Hahn (2001) argue, however, that the
all-or-nothing nature of the lexical neighbourhood
is insufficient. Instead word similarity is the com-
plex function of frequency and phonetic similarity
shown in equation (1). HereA,B,C andD are
constants of the model,u andv are words, andd
is a phonetic similarity model.

s = (AF (u)2 + BF (u) + C)e−D.d(u,v) (1)

We have adapted this model slightly, in line with
NAM, taking the similaritys to be the probabil-
ity of confusing stimulusv with form u. Also, as
our data usually offers no frequency information,
we have adopted the maximum entropy assump-
tion, namely, that all relative frequencies are equal.
Consequently, the probability of confusion of two
words depends solely on their similarity distance.
While this assumption degrades the psychological
reality of the model, it does not render it useless, as
the similarity measure continues to provide impor-
tant distinctions in neighbourhood confusability.

We also assume for simplicity, that the constant
D has the value1.

With these simplifications, equation (2) shows
the probability of apprehending wordw, out of
a setW of possible alternatives, given a stimulus
wordws.

P (w|ws) = e−d(w,ws)/N(ws) (2)

The normalising constantN(s) is the sum of the
non-normalised values fore−d(w,ws) for all words
w.

N(ws) =
∑

w∈W

e−d(u,v)

2.3 Scaled edit distances

Kidd and Watson (1992) have shown that discrim-
inability of frequency and of duration of tones in
a tone sequence depends on its length as a pro-
portion of the length of the sequence. Kapatsinski
(2006) uses this, with other evidence, to argue that

word recognition edit distances must be scaled by
word-length.

There are other reasons for coming to the same
conclusion. The simple Levenstein distance exag-
gerates the disparity between long words in com-
parison with short words. A word of consisting of
10 symbols, purely by virtue of its length, will on
average be marked as more different from other
words than a word of length two. For example,
Levenstein distance betweeninterested andrest is
six, the same as the distance betweenrest andby,
even though the latter two have nothing in com-
mon. As a consequence, close phonetic transcrip-
tions, which by their very nature are likely to in-
volve more symbols per word, will result in larger
edit distances than broad phonemic transcriptions
of the same data.

To alleviate this problem, we define a new edit
distance functiond2 which scales Levenstein dis-
tances by the average length of the words being
compared (see equation 3). Now the distance be-
tweeninterested andrest is 0.86, while that be-
tweenrest andby is 2.0, reflecting the greater rel-
ative difference in the second pair.

d2(w2, w1) =
2d(w2, w1)

|w1|+ |w2|
(3)

Note that by scaling the raw edit distance with
the average lengths of the words, we are preserv-
ing the symmetric property of the distance mea-
sure.

There are other methods of comparing strings,
for example string kernels (Shawe-Taylor and
Cristianini, 2004), but using Levenstein distance
keeps us coherent with the psycholinguistic ac-
counts of word similarity.

2.4 Lexical Metric

Bringing this all together, we can define the lexical
metric.

A lexicon L is a mapping from a set of mean-
ingsM , such as “DOG”, “TO RUN”, “GREEN”,
etc., onto a setF of forms such as /pies/, /biec/,
/zielony/.

The confusion probabilityP of m1 for m2 in
lexical L is the normalised negative exponential
of the scaled edit-distance of the corresponding
forms. It is worth noting that when frequencies
are assumed to follow the maximum entropy dis-
tribution, this connection between confusion prob-
abilities and distances (see equation 4) is the same
as that proposed by Shepard (1987).
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P (m1|m2;L) =
e−d2(L(m1),L(m2))

N(m2;L)
(4)

A lexical metric ofL is the mappingLM(L) :
M2 → [0, 1] which assigns to each pair of mean-
ings m1,m2 the probability of confusingm1 for
m2, scaled by the frequency ofm2.

LM(L)(m1,m2)

= P (L(m1)|L(m2))P (m2)

=
e−d2(L(m1),L(m2))

N(m2;L)|M |

whereN(m2;L) is the normalising function de-
fined in equation (5).

N(m2;L) =
∑

m∈M

e−d2(L(m),L(m2)) (5)

Table 1 shows a minimal lexicon consisting only
of the numbers one to five, and a corresponding
lexical metric. The values in the lexical metric are

one two three four five
one 0.102 0.027 0.023 0.024 0.024
two 0.028 0.107 0.024 0.026 0.015
three 0.024 0.024 0.107 0.023 0.023
four 0.025 0.025 0.022 0.104 0.023
five 0.026 0.015 0.023 0.025 0.111

Table 1: A lexical metric on a mini-lexicon con-
sisting of the numbers one to five.

inferred word confusion probabilities. The matrix
is normalised so that the sum of each row is0.2,
ie. one-fifth for each of the five words, so the total
of the matrix is one. Note that the diagonal values
vary because the off-diagonal values in each row
vary, and consequently, so does the normalisation
for the row.

3 Language-Language Distance

In the previous section, we introduced the lexi-
cal metric as the key measurable for comparing
languages. Since lexical metrics are probability
distributions, comparison of metrics means mea-
suring the difference between probability distri-
butions. To do this, we use two measures: the
symmetric Kullback-Liebler divergence (Jeffreys,
1946) and the Rao distance (Rao, 1949; Atkinson
and Mitchell, 1981; Micchelli and Noakes, 2005)
based on Fisher Information (Fisher, 1959). These
can be defined in terms thegeometric path from
one distribution to another.

3.1 Geometric paths

The geometric path between two distributionsP
andQ is a conditional distributionR with a con-
tinuous parameterα such that atα = 0, the distri-
bution isP , and atα = 1 it is Q. This conditional
distribution is called thegeometric because it con-
sists of normalised weighted geometric means of
the two defining distributions (equation 6).

R(w̄|α) = P (w̄)αQ(w̄)1−α/k(α;P,Q) (6)

The functionk(α;P,Q) is a normaliser for the
conditional distribution, being the sum of the
weighted geometric means of values fromP and
Q (equation 7). This value is known as the
Chernoff coefficient or Helliger path (Basseville,
1989). For brevity, theP,Q arguments tok will
be treated as implicit and not expressed in equa-
tions.

k(α) =
∑

w̄∈W 2

P (w̄)1−αQ(w̄)α (7)

3.2 Kullback-Liebler distance

The first-order (equation 8) differential of the nor-
maliser with regard toα is of particular interest.

k′(α) =
∑

w̄∈W 2

log
Q(w̄)

P (w̄)
P (w̄)1−αQ(w̄)α (8)

At α = 0, this value is the negative of the
Kullback-Liebler distanceKL(P |Q) of Q with re-
gard to P (Basseville, 1989). Atα = 1, it is the
Kullback-Liebler distanceKL(Q|P ) of P with re-
gard to Q. Jeffreys’ (1946) measure is a symmetri-
sation of KL distance, by averaging the commuta-
tions (equations 9,10).

KL(P,Q) =
KL(Q|P ) + KL(P |Q)

2
(9)

=
k′(1)− k′(0)

2
(10)

3.3 Rao distance

Rao distance depends on the second-order (equa-
tion 11) differential of the normaliser with regard
to α.

k′′(α) =
∑

w̄∈W 2

log2 Q(w̄)

P (w̄)
P (w̄)1−αQ(w̄)α

(11)
Fisher information is defined as in equation (12).

FI(P, x) = −

∫

∂2 log P (y|x)

∂x2
P (y|x)dy (12)
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Equation (13) expresses Fisher information along
the pathR from P to Q at pointα usingk and its
first two derivatives.

FI(R,α) =
k(α)k′′(α)− k′(α)2

k(α)2
(13)

The Rao distancer(P,Q) alongR can be approxi-
mated by the square root of the Fisher information
at the path’s midpointα = 0.5.

r(P,Q) =

√

k(0.5)k′′(0.5) − k′(0.5)2

k(0.5)2
(14)

3.4 The PHILOLOGICON algorithm

Bringing these pieces together, thePHILOLOGI-
CON algorithm for measuring the divergence be-
tween two languages has the following steps:

1. determine their joint confusion probability
matrices,P andQ,

2. substitute these into equation (7), equation
(8) and equation (11) to calculatek(0),
k(0.5), k(1), k′(0.5), andk′′(0.5),

3. and put these into equation (10) and equation
(14) to calculate the KL and Rao distances
between between the languages.

4 Indo-European

The ideal data for reconstructing Indo-European
would be an accurate phonemic transcription of
words used to express specifically defined mean-
ings. Sadly, this kind of data is not readily avail-
able. However, as a stop-gap measure, we can
adopt the data that Dyen et al. collected to con-
struct a Indo-European taxonomy using the cog-
nate method.

4.1 Dyen et al’s data

Dyen et al. (1992) collected 95 data sets, each pair-
ing a meaning from a Swadesh (1952)-like 200-
word list with its expression in the corresponding
language. The compilers annotated with data with
cognacy relations, as part of their own taxonomic
analysis of Indo-European.

There are problems with using Dyen’s data for
the purposes of the current paper. Firstly, the word
forms collected are not phonetic, phonological or
even full orthographic representations. As the au-
thors state, the forms are expressed in sufficient
detail to allow an interested reader acquainted with

the language in question to identify which word is
being expressed.

Secondly, many meanings offer alternative
forms, presumably corresponding to synonyms.
For a human analyst using the cognate approach,
this means that a language can participate in two
(or more) word-derivation systems. In preparing
this data for processing, we have consistently cho-
sen the first of any alternatives.

A further difficulty lies in the fact that many lan-
guages are not represented by the full 200 mean-
ings. Consequently, in comparing lexical metrics
from two data sets, we frequently need to restrict
the metrics to only those meanings expressed in
both the sets. This means that the KL divergence
or the Rao distance between two languages were
measured on lexical metrics cropped and rescaled
to the meanings common to both data-sets. In
most cases, this was still more than 190 words.

Despite these mismatches between Dyen et al.’s
data and our needs, it provides an testbed for the
PHILOLOGICON algorithm. Our reasoning being,
that if successful with this data, the method is rea-
sonably reliable. Data was extracted to language-
specific files, and preprocessed to clean up prob-
lems such as those described above. An additional
data-set was added with random data to act as an
outlier to root the tree.

4.2 Processing the data

PHILOLOGICON software was then used to calcu-
late the lexical metrics corresponding to the indi-
vidual data files and to measure KL divergences
and Rao distances between them. The program
NEIGHBOR from the PHYLIP2 package was used
to construct trees from the results.

4.3 The results

The tree based on Rao distances is shown in figure
1. The discussion follows this tree except in those
few cases mentioning differences in the KL tree.

The standard against which we measure the suc-
cess of our trees is the conservative traditional tax-
onomy to be found in the Ethnologue (Grimes
and Grimes, 2000). The fit with this taxonomy
was so good that we have labelled the major
branches with their traditional names: Celtic, Ger-
manic, etc. In fact, in most cases, the branch-
internal divisions — eg. Brythonic/Goidelic in
Celtic, Western/Eastern/Southern in Slavic, or

2Seehttp://evolution.genetics.washington.edu/phylip.html.

277



Western/Northern in Germanic — also accord.
Note thatPHILOLOGICON even groups Baltic and
Slavic together into a super-branch Balto-Slavic.

Where languages are clearly out of place in
comparison to the traditional taxonomy, these are
highlighted: visually in the tree, and verbally in
the following text. In almost every case, there are
obvious contact phenomena which explain the de-
viation from the standard taxonomy.

Armenian was grouped with the Indo-Iranian
languages. Interestingly, Armenian was at first
thought to be an Iranian language, as it shares
much vocabulary with these languages. The com-
mon vocabulary is now thought to be the result
of borrowing, rather than common genetic origin.
In the KL tree, Armenian is placed outside of the
Indo-Iranian languages, except for Gypsy. On the
other hand, in this tree, Ossetic is placed as an
outlier of the Indian group, while its traditional
classification (and the Rao distance tree) puts it
among the Iranian languages. Gypsy is an Indian
language, related to Hindi. It has, however, been
surrounded by European languages for some cen-
turies. The effects of this influence is the likely
cause for it being classified as an outlier in the
Indo-Iranian family. A similar situation exists for
Slavic: one of the two lists that Dyen et al. of-
fer for Slovenian is classed as an outlier in Slavic,
rather than classifying it with the Southern Slavic
languages. The other Slovenian list is classified
correctly with Serbocroatian. It is possible that
the significant impact of Italian on Slovenian has
made it an outlier. In Germanic, it is English that
is the outlier. This may be due to the impact of the
English creole, Takitaki, on the hierarchy. This
language is closest to English, but is very distinct
from the rest of the Germanic languages. Another
misclassification also is the result of contact phe-
nomena. According to the Ethnologue, Sardinian
is Southern Romance, a separate branch from Ital-
ian or from Spanish. However, its constant contact
with Italian has influenced the language such that
it is classified here with Italian. We can offer no
explanation for why Wakhi ends up an outlier to
all the groups.

In conclusion, despite the noisy state of Dyen et
al.’s data (for our purposes), thePHILOLOGICON

generates a taxonomy close to that constructed us-
ing the traditional methods of historical linguis-
tics. Where it deviates, the deviation usually
points to identifiable contact between languages.
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Wakhi
Greek D

Greek MD
Greek ML

Greek Mod
Greek K

Afghan
Waziri
Armenian List

Baluchi
Persian List
Tadzik

Ossetic
Bengali

Hindi
Lahnda
Panjabi ST

Gujarati
Marathi

Khaskura
Nepali List

Kashmiri
Singhalese

Gypsy Gk
ALBANIAN
Albanian G
Albanian C

Albanian K
Albanian Top

Albanian T
Bulgarian

BULGARIAN P
MACEDONIAN P

Macedonian
Serbocroatian
SERBOCROATIAN P

SLOVENIAN P
Byelorussian
BYELORUSSIAN P

Russian
RUSSIAN P
Ukrainian
UKRAINIAN P

Czech
CZECH P
Slovak
SLOVAK P

Czech E
Lusatian L
Lusatian U
Polish
POLISH P

Slovenian
Latvian

Lithuanian O
Lithuanian ST

Afrikaans
Dutch List
Flemish

Frisian
German ST
Penn Dutch

Danish
Riksmal

Swedish List
Swedish Up

Swedish VL
Faroese
Icelandic ST

English ST
Takitaki

Brazilian
Portuguese ST

Spanish
Catalan
Italian

Sardinian L
Sardinian N

Ladin
French
Walloon

Provencal
French Creole C
French Creole D

Rumanian List
Vlach

Breton List
Breton ST

Breton SE
Welsh C
Welsh N

Irish A
Irish B

Random

Armenian Mod

Sardinian C

Figure 1: Taxonomy of 95 Indo-European data
sets and artificial outlier usingPHILOLOGICON

andPHYLIP
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5 Reconstruction and Cognacy

Subsection 3.1 described the construction of geo-
metric paths from one lexical metric to another.
This section describes how the synthetic lexical
metric at the midpoint of the path can indicate
which words are cognate between the two lan-
guages.

The synthetic lexical metric (equation 15) ap-
plies the formula for the geometric path equation
(6) to the lexical metrics equation (5) of the lan-
guages being compared, at the midpointα = 0.5.

R 1

2

(m1,m2) =

√

P (m1|m2)Q(m1|m2)

|M |k(1
2 )

(15)

If the words form1 andm2 in both languages have
common origins in a parent language, then it is
reasonable to expect that their confusion probabil-
ities in both languages will be similar. Of course
different cognate pairsm1,m2 will have differing
values forR, but the confusion probabilities inP
andQ will be similar, and consequently, the rein-
force the variance.

If eitherm1 or m2, or both, is non-cognate, that
is, has been replaced by another arbitrary form
at some point in the history of either language,
then theP andQ for this pair will take indepen-
dently varying values. Consequently, the geomet-
ric mean of these values is likely to take a value
more closely bound to the average, than in the
purely cognate case.

Thus rows in the lexical metric with wider dy-
namic ranges are likely to correspond to cognate
words. Rows corresponding to non-cognates are
likely to have smaller dynamic ranges. The dy-
namic range can be measured by taking the Shan-
non information of the probabilities in the row.

Table 2 shows the most low- and high-
information rows from English and Swedish
(Dyen et al’s (1992) data). At the extremes of
low and high information, the words are invari-
ably cognate and non-cognate. Between these ex-
tremes, the division is not so clear cut, due to
chance effects in the data.

6 Conclusions and Future Directions

In this paper, we have presented a distance-
based method, calledPHILOLOGICON, that con-
structs genetic trees on the basis of lexica
from each language. The method only com-
pares words language-internally, where compari-
son seems both psychologically real and reliable,

English Swedish 104(h− h̄)
Low Information

we vi -1.30
here her -1.19
to sit sitta -1.14
to flow flyta -1.04
wide vid -0.97

:
scratch klosa 0.78
dirty smutsig 0.79
left (hand) vanster 0.84
because emedan 0.89

High Information

Table 2: Shannon information of confusion dis-
tributions in the reconstruction of English and
Swedish. Information levels are shown translated
so that the average is zero.

and never cross-linguistically, where comparison
is less well-founded. It uses measures founded
in information theory to compare the intra-lexical
differences.

The method successfully, if not perfectly, recre-
ated the phylogenetic tree of Indo-European lan-
guages on the basis of noisy data. In further work,
we plan to improve both the quantity and the qual-
ity of the data. Since most of the mis-placements
on the tree could be accounted for by contact phe-
nomena, it is possible that a network-drawing,
rather than tree-drawing, analysis would produce
better results.

Likewise, we plan to develop the method
for identifying cognates. The key improvement
needed is a way to distinguish indeterminate dis-
tances in reconstructed lexical metrics from deter-
minate but uniform ones. This may be achieved by
retaining information about the distribution of the
original values which were combined to form the
reconstructed metric.
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Abstract 

A good dictionary contains not only 
many entries and a lot of information 
concerning each one of them, but also 
adequate means to reveal the stored in-
formation. Information access depends 
crucially on the quality of the index. We 
will present here some ideas of how a 
dictionary could be enhanced to support a 
speaker/writer to find the word s/he is 
looking for. To this end we suggest to 
add to an existing electronic resource an 
index based on the notion of association. 
We will also present preliminary work of 
how a subset of such associations, for ex-
ample, topical associations, can be ac-
quired by filtering a network of lexical 
co-occurrences extracted from a corpus. 

1 Introduction 

A dictionary user typically pursues one of two 
goals (Humble, 2001): as a decoder (reading, 
listening), he may look for the definition or the 
translation of a specific target word, while as an 
encoder (speaker, writer) he may want to find a 
word that expresses well not only a given con-
cept, but is also appropriate in a given context.  

Obviously, readers and writers come to the 
dictionary with different mindsets, information 
and expectations concerning input and output. 
While the decoder can provide the word he wants 
additional information for, the encoder (language 
producer) provides the meaning of a word for 
which he lacks the corresponding form. In sum, 
users with different goals need access to different 
indexes, one that is based on form (decoding), 

 
1 In alphabetical order 

the other being based on meaning or meaning 
relations (encoding). 

Our concern here is more with the encoder, i.e. 
lexical access in language production, a feature 
largely neglected in lexicographical work. Yet, a 
good dictionary contains not only many entries 
and a lot of information concerning each one of 
them, but also efficient means to reveal the 
stored information. Because, what is a huge dic-
tionary good for, if one cannot access the infor-
mation it contains? 

2 Lexical access on the basis of what: 
concepts (i.e. meanings) or words?

Broadly speaking, there are two views concern-
ing lexicalization: the process is conceptually-
driven (meaning, or parts of it are the starting 
point) or lexically-driven2 : the target word is 
accessed via a source word. This is typically the 
case when we are looking for a synonym, anto-
nym, hypernym (paradigmatic associations), or 
any of its syntagmatic associates (red-rose, cof-
fee-black), the kind of association we will be 
concerned with here. 

Yet, besides conceptual knowledge, people 
seem also to know a lot of things concerning the 
lexical form (Brown and Mc Neill, 1966): num-
ber of syllables, beginning/ending of the target 
word, part of speech (noun, verb, adjective, etc.), 
origin (Greek or Latin), gender (Vigliocco et al., 
 
2 Of course, the input can also be hybrid, that is, it can be 
composed of a conceptual and a linguistic component. For 
example, in order to express the notion of intensity, MAGN in 
Mel’čuk’s theory (Mel’čuk et al., 1995), a speaker or writer 
has to use different words (very, seriously, high) depending 
on the form of the argument (ill, wounded, price), as he says 
very ill, seriously wounded, high price. In each case he ex-
presses the very same notion, but by using a different word. 
While he could use the adverb very for qualifying the state 
of somebody’s health (he is ill), he cannot do so when quali-
fying the words injury or price. Likewise, he cannot use this 
specific adverb to qualify the noun illness.
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1997). While in principle, all this information 
could be used to constrain the search space, we 
will deal here only with one aspect, the words’ 
relations to other concepts or words (associative 
knowledge). 
Suppose, you were looking for a word expressing 
the following ideas: domesticated animal, pro-
ducing milk suitable for making cheese. Suppose 
further that you knew that the target word was 
neither cow, buffalo nor sheep. While none of 
this information is sufficient to guarantee the 
access of the intended word goat, the information 
at hand (part of the definition) could certainly be 
used3. Besides this type of information, people 
often have other kinds of knowledge concerning 
the target word. In particular, they know how the 
latter relates to other words. For example, they 
know that goats and sheep are somehow con-
nected, sharing a great number of features, that 
both are animals (hypernym), that sheep are ap-
preciated for their wool and meat, that they tend 
to follow each other blindly, etc., while goats 
manage to survive, while hardly eating anything, 
etc. In sum, people have in their mind a huge 
lexico-conceptual network, with words 4 , con-
cepts or ideas being highly interconnected. 
Hence, any one of them can evoke the other. The 
likelihood for this to happen depends on such 
factors as frequency (associative strength), sali-
ency and distance (direct vs. indirect access). As 
one can see, associations are a very general and 
powerful mechanism. No matter what we hear, 
read or say, anything is likely to remind us of 
something else. This being so, we should make 
use of it. 

 
3 For some concrete proposals going in this direction, see 
dictionaries offering reverse lookup: http://www.ultralingua. 
net/ ,http://www.onelook.com/reverse-dictionary.shtml.
4 Of course, one can question the very fact that people store 
words in their mind. Rather than considering the human 
mind as a wordstore one might consider it as a wordfactory.
Indeed, by looking at some of the work done by psycholo-
gists who try to emulate the mental lexicon (Levelt et al., 
1999) one gets the impression that words are synthesized 
rather than located and call up. In this case one might con-
clude that rather than having words in our mind we have a 
set of highly distributed, more or less abstract information. 
By propagating energy rather than data —(as there is no 
message passing, transformation or cumulation of informa-
tion, there is only activation spreading, that is, changes of 
energy levels, call it weights, electronic impulses, or what-
ever),— that we propagate signals, activating ultimately 
certain peripherical organs (larynx, tongue, mouth, lips, 
hands) in such a way as to produce movements or sounds, 
that, not knowing better, we call words. 

3 Accessing the target word by navigat-
ing in a huge associative network 

If one agrees with what we have just said, one 
could view the mental lexicon as a huge semantic 
network composed of nodes (words and con-
cepts) and links (associations), with either being 
able to activate the other5. Finding a word in-
volves entering the network and following the 
links leading from the source node (the first 
word that comes to your mind) to the target word 
(the one you are looking for). Suppose you 
wanted to find the word nurse (target word), yet 
the only token coming to your mind is hospital.
In this case the system would generate internally 
a graph with the source word at the center and all 
the associated words at the periphery. Put differ-
ently, the system would build internally a seman-
tic network with hospital in the center and all its 
associated words as satellites (see Figure 1, next 
page). 

Obviously, the greater the number of associa-
tions, the more complex the graph. Given the 
diversity of situations in which a given object 
may occur we are likely to build many associa-
tions. In other words, lexical graphs tend to be-
come complex, too complex to be a good repre-
sentation to support navigation. Readability is 
hampered by at least two factors: high connec-
tivity (the great number of links or associations 
emanating from each word), and distribution:
conceptually related nodes, that is, nodes acti-
vated by the same kind of association are scat-
tered around, that is, they do not necessarily oc-
cur next to each other, which is quite confusing 
for the user. In order to solve this problem, we 
suggest to display by category (chunks) all the 
words linked by the same kind of association to 
the source word (see Figure 2). Hence, rather 
than displaying all the connected words as a flat 
list, we suggest to present them in chunks to al-
low for categorial search. Having chosen a cate-
gory, the user will be presented a list of words or 
categories from which he must choose. If the 
target word is in the category chosen by the user 
(suppose he looked for a hypernym, hence he 
checked the ISA-bag), search stops, otherwise it 
continues. The user could choose either another 
category (e.g. AKO or TIORA), or a word in the 
current list, which would then become the new 
starting point. 

 
5 While the links in our brain may only be weighted, they 
need to be labelled to become interpretable for human be-
ings using them for navigational purposes in a lexicon. 
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Figure 1: Search based on navigating in a network (internal representation) 

AKO: a kind of; ISA: subtype; TIORA: Typically Involved Object, Relation or Actor.
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link

link

link

link
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Abstract representation of the search graph
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TIORA
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inmateSYNONYM
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doctor, ...

patient

...

A concrete example

 
Figure 2: Proposed candidates, grouped by fam-

ily, i.e. according to the nature of the link 

As one can see, the fact that the links are labeled 
has some very important consequences:  

(a) While maintaining the power of a highly 
connected graph (possible cyclic navigation), 
it has at the interface level the simplicity of a 
tree: each node points only to data of the 

same type, i.e. to the same kind of associa-
tion.  
(b) With words being presented in clusters, 
navigation can be accomplished by clicking 
on the appropriate category.  

The assumption being that the user generally 
knows to which category the target word belongs 
(or at least, he can recognize within which of the 
listed categories it falls), and that categorical 
search is in principle faster than search in a huge 
list of unordered (or, alphabetically ordered) 
words6.

Obviously, in order to allow for this kind of 
access, the resource has to be built accordingly. 
This requires at least two things: (a) indexing 
words by the associations they evoke, (b) identi-

 
6 Even though very important, at this stage we shall not 
worry too much for the names given to the links. Indeed, 
one might question nearly all of them. What is important is 
the underlying rational: help users to navigate on the basis 
of symbolically qualified links. In reality a whole set of 
words (synonyms, of course, but not only) could amount to 
a link, i.e. be its conceptual equivalent. 
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fying and labelling the most frequent/useful as-
sociations. This is precisely our goal. Actually, 
we propose to build an associative network by 
enriching an existing electronic dictionary (es-
sentially) with (syntagmatic) associations coming 
from a corpus, representing the average citizen’s 
shared, basic knowledge of the world (encyclo-
paedia). While some associations are too com-
plex to be extracted automatically by machine, 
others are clearly within reach. We will illustrate 
in the next section how this can be achieved. 

4 Automatic extraction of topical rela-
tions 

4.1 Definition of the problem 

We have argued in the previous sections that dic-
tionaries must contain many kinds of relations on 
the syntagmatic and paradigmatic axis to allow 
for natural and flexible access of words. Synon-
ymy, hypernymy or meronymy fall clearly in this 
latter category, and well known resources like 
WordNet (Miller, 1995), EuroWordNet (Vossen, 
1998) or MindNet (Richardson et al., 1998) con-
tain them. However, as various researchers have 
pointed out (Harabagiu et al., 1999), these net-
works lack information, in particular with regard 
to syntagmatic associations, which are generally 
unsystematic. These latter, called TIORA (Zock 
and Bilac, 2004) or topical relations (Ferret, 
2002) account for the fact that two words refer to 
the same topic, or take part in the same situation 
or scenario. Word-pairs like doctor–hospital,
burglar–policeman or plane–airport, are exam-
ples in case. The lack of such topical relations in 
resources like WordNet has been dubbed as the 
tennis problem (Roger Chaffin, cited in Fell-
baum, 1998). Some of these links have been in-
troduced more recently in WordNet via the do-
main relation. Yet their number remains still very 
small. For instance, WordNet 2.1 does not con-
tain any of the three associations mentioned here 
above, despite their high frequency. 

The lack of systematicity of these topical rela-
tions makes their extraction and typing very dif-
ficult on a large scale. This is why some re-
searchers have proposed to use automatic learn-
ing techniques to extend lexical networks like 
WordNet. In (Harabagiu & Moldovan, 1998), 
this was done by extracting topical relations from 
the glosses associated to the synsets. Other re-
searchers used external sources: Mandala et al. 
(1999) integrated co-occurrences and a thesaurus 
to WordNet for query expansion; Agirre et al. 
(2001) built topic signatures from texts in rela-

tion to synsets; Magnini and Cavagliá (2000) 
annotated the synsets with Subject Field Codes. 
This last idea has been taken up and extended by 
(Avancini et al., 2003) who expanded the do-
mains built from this annotation. 

Despite the improvements, all these ap-
proaches are limited by the fact that they rely too 
heavily on WordNet and some of its more so-
phisticated features (such as the definitions asso-
ciated with the synsets). While often being ex-
ploited by acquisition methods, these features are 
generally lacking in similar lexico-semantic net-
works. Moreover, these methods attempt to learn 
topical knowledge from a lexical network rather 
than topical relations. Since our goal is different, 
we have chosen not to rely on any significant 
resource, all the more as we would like our 
method to be applicable to a wide array of lan-
guages. In consequence, we took an incremental 
approach (Ferret, 2006): starting from a network 
of lexical co-occurrences7 collected from a large 
corpus, we used these latter to select potential 
topical relations by using a topical analyzer. 

4.2 From a network of co-occurrences to a 
set of Topical Units 

We start by extracting lexical co-occurrences 
from a corpus to build a network. To this end we 
follow the method introduced by (Church and 
Hanks, 1990), i.e. by sliding a window of a given 
size over some texts. The parameters of this ex-
traction were set in such a way as to catch the 
most obvious topical relations: the window was 
fairly large (20-words wide), and while it took 
text boundaries into account, it ignored the order 
of the co-occurrences. Like (Church and Hanks, 
1990), we used mutual information to measure 
the cohesion between two words. The finite size 
of the corpus allows us to normalize this measure 
in line with the maximal mutual information 
relative to the corpus.  
This network is used by TOPICOLL (Ferret, 
2002), a topic analyzer, which performs simulta-
neously three tasks, relevant for this goal: 

• it segments texts into topically homogene-
ous segments;  

• it selects in each segment the most repre-
sentative words of its topic; 

 
7 Such a network is only another view of a set of co-
occurrences: its nodes are the co-occurrent words and its 
edges are the co-occurrence relations. 

284



• it proposes a restricted set of words from 
the co-occurrence network to expand the 
selected words of the segment. 

These three tasks rely on a common mecha-
nism: a window is moved over the text to be ana-
lyzed in order to limit the focus space of the 
analysis. This latter contains a lemmatized ver-
sion of the text’s plain words. For each position 
of this window, we select only words of the co-
occurrence network that are linked to at least 
three other words of the window (see Figure 3). 
This leads to select both words that are in the 
window (first order co-occurrents) and words 
coming from the network (second order co-
occurrents). The number of links between the 
selected words of the network, called expansion 
words, and those of the window is a good indica-
tor of the topical coherence of the window’s con-
tent. Hence, when their number is small, a seg-
ment boundary can be assumed. This is the basic 
principle underlying our topic analyzer. 

 

0.14

0.21 0.10

0.18 0.13

0.17

w5w4w3w2w1

0.48 = pw3x0.18+pw4x0.13
+pw5x0.17

selected word from the co-occurrence network (with its weight)

1.0

word from text (with p its weight in the window, equal to 

0.21 link in the co-occurrence network (with its cohesion value)

1.0 1.0 1.0 1.0 1.0

wi,

n1 n2

1.0 for all words of the window in this example)

0.48

Figure 3: Selection and weighting of words 
from the co-occurrence network 

The words selected for each position of the 
window are summed, to keep only those occur-
ring in 75% of the positions of the segment. This 
allows reducing the number of words selected 
from non-topical co-occurrences. Once a corpus 
has been processed by TOPICOLL, we obtain a 
set of segments and a set of expansion words for 
each one of them. The association of the selected 
words of a segment and its expansion words is 
called a Topical Unit. Since both sets of words 
are selected for reasons of topical homogeneity, 
their co-occurrence is more likely to be a topical 
relation than in our initial network. 

4.3 Filtering of Topical Units 

Before recording the co-occurrences in the Topi-
cal Units built in this way, the units are filtered 

twice. The first filter aims at discarding hetero-
geneous Topical Units, which can arise as a side 
effect of a document whose topics are so inter-
mingled that it is impossible to get a reliable lin-
ear segmentation of the text. We consider that 
this occurs when for a given text segment, no 
word can be selected as a representative of the 
topic of the segment. Moreover, we only keep 
the Topical Units that contain at least two words 
from their original segment. A topic is defined 
here as a configuration of words. Note that the 
identification of such a configuration cannot be 
based solely on a single word. 

 
Text words Expansion words 
surveillance 

(watch)
police_judiciaire 
(judiciary police)

téléphonique 
(telephone)

écrouer 
(to imprison)

juge 
(judge)

garde_à_vue 
(police custody)

policier 
(policeman)

écoute_téléphonique 
(phone tapping)

brigade 
(squad)

juge_d’instruction 
(examining judge)

enquête 
(investigation)

contrôle_judiciaire 
(judicial review)

placer 
(to put)

Table 1: Content of a filtered Topical Unit 

The second filter is applied to the expansion 
words of each Topical Unit to increase their topi-
cal homogeneity. The principle of the filtering of 
these words is the same as the principle of their 
selection described in Section 4.2: an expansion 
word is kept if it is linked in the co-occurrence 
network to at least three text words of the Topi-
cal Unit. Moreover, a selective threshold is ap-
plied to the frequency and the cohesion of the co-
occurrences supporting these links: only co-
occurrences whose frequency and cohesion are 
respectively higher or equal to 15 and 0.15 are 
used. For instance in Table 1, which shows an 
example of a Topical Unit after its filtering, 
écrouer (to imprison) is selected, because it is 
linked in the co-occurrence network to the fol-
lowing words of the text: 

juge (judge): 52 (frequency) – 0.17 (cohesion) 
policier (policeman): 56 – 0.17
enquête (investigation): 42 – 0.16
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word freq. word freq. word freq. word freq.

scène 
(stage) 884 théâtral 

(dramatic) 62 cynique
(cynical) 26 scénique 

(theatrical) 14

théâtre 
(theater) 679 scénariste 

(scriptwriter) 51 miss
(miss) 20 Chabol 

(Chabol) 13

réalisateur 
(director) 220 comique 

(comic) 51 parti_pris
(bias) 16 Tchekov 

(Tchekov) 13

cinéaste 
(film-marker) 135 oscar 

(oscar) 40 monologue 
(monolog) 15 allocataire

(beneficiary) 13

comédie 
(comedy) 104 film_américain 

(american film) 38 revisiter
(to revisit) 14 satirique

(satirical) 13

costumer 
(to dress up) 63 hollywoodien 

(Hollywood) 30 gros_plan 
(close-up) 14  

Table 2: Co-occurrents of the word acteur (actor) with a cohesion of 0.16  
(the co-occurrents removed by our filtering method are underlined) 

4.4 From Topical Units to a network of 
topical relations 

After the filtering, a Topical Unit gathers a set of 
words supposed to be strongly coherent from the 
topical point of view. Next, we record the co-
occurrences between these words for all the 
Topical Units remaining after filtering. Hence, 
we get a large set of topical co-occurrences, de-
spite the fact that a significant number of non-
topical co-occurrences remains, the filtering of 
Topical Units being an unsupervised process. 
The frequency of a co-occurrence in this case is 
given by the number of Topical Units containing 
both words simultaneously. No distinction con-
cerning the origin of the words of the Topical 
Units is made. 

The network of topical co-occurrences built 
from Topical Units is a subset of the initial net-
work. However, it also contains co-occurrences 
that are not part of it, i.e. co-occurrences that 
were not extracted from the corpus used for set-
ting the initial network or co-occurrences whose 
frequency in this corpus was too low. Only some 
of these “new” co-occurrences are topical. Since 
it is difficult to estimate globally which ones are 
interesting, we have decided to focus our atten-
tion only on the co-occurrences of the topical 
network already present in the initial network. 

Thus, we only use the network of topical co-
occurrences as a filter for the initial co-
occurrence network. Before doing so, we filter 
the topical network in order to discard co-
occurrences whose frequency is too low, that is, 
co-occurrences that are unstable and not repre-

sentative. From the use of the final network by 
TOPICOLL (see Section 4.5), we set the thresh-
old experimentally to 5. Finally, the initial net-
work is filtered by keeping only co-occurrences 
present in the topical network. Their frequency 
and cohesion are taken from the initial network. 
While the frequencies given by the topical net-
work are potentially interesting for their topical 
significance, we do not use them because the 
results of the filtering of Topical Units are too 
hard to evaluate. 

4.5 Results and evaluation 

We applied the method described here to an ini-
tial co-occurrence network extracted from a cor-
pus of 24 months of Le Monde, a major French 
newspaper. The size of the corpus was around 39 
million words. The initial network contained 
18,958 words and 341,549 relations. The first run 
produced 382,208 Topical Units. After filtering, 
we kept 59% of them. The network built from 
these Topical Units was made of 11,674 words 
and 2,864,473 co-occurrences. 70% of these co-
occurrences were new with regard to the initial 
network and were discarded. Finally, we got a 
filtered network of 7,160 words and 183,074 re-
lations, which represents a cut of 46% of the ini-
tial network. A qualitative study showed that 
most of the discarded relations are non-topical. 
This is illustrated by Table 2, which gives the co-
occurrents of the word acteur (actor) that are 
filtered by our method among its co-occurrents 
with a high cohesion (equal to 0.16). For in-
stance, the words cynique (cynical) or allocataire 
(beneficiary) are cohesive co-occurrents of the 
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word actor, even though they are not topically 
linked to it. These words are filtered out, while 
we keep words like gros_plan (close-up) or scé-
nique (theatrical), which topically cohere with 
acteur (actor) despite their lower frequency than 
the discarded words. 

 

Recall8 Precision F1-
measure

Error 
(Pk)9

initial (I) 0.85 0.79 0.82 0.20 

topical 
filtering 

(T) 
0.85 0.79 0.82 0.21 

frequency 
filtering 

(F) 
0.83 0.71 0.77 0.25 

Table 3: TOPICOLL’s results  
with different networks 

 
In order to evaluate more objectively our 

work, we compared the quantitative results of 
TOPICOLL with the initial network and its fil-
tered version. The evaluation showed that the 
performance of the segmenter remains stable, 
even if we use a topically filtered network (see 
Table 3). Moreover, it became obvious that a 
network filtered only by frequency and cohesion 
performs significantly less well, even with a 
comparable size. For testing the statistical sig-
nificance of these results, we applied to the Pk
values a one-side t-test with a null hypothesis of 
equal means. Levels lower or equal to 0.05 are 
considered as statistically significant: 

pval (I-T): 0.08 
pval (I-F): 0.02 
pval (T-F): 0.05 

These values confirm that the difference be-
tween the initial network (I) and the topically 
filtered one (T) is actually not significant, 
whereas the filtering based on co-occurrence fre-
quencies leads to significantly lower results, both 
compared to the initial network and the topically 
filtered one. Hence, one may conclude that our 

 
8 Precision is given by Nt / Nb and recall by Nt / D, with D
being the number of document breaks, Nb the number of 
boundaries found by TOPICOLL and Nt the number of 
boundaries that are document breaks (the boundary should 
not be farther than 9 plain words from the document break). 
9 Pk (Beeferman et al., 1999) evaluates the probability that a 
randomly chosen pair of words, separated by k words, is 
wrongly classified, i.e. they are found in the same segment 
by TOPICOLL, while they are actually in different ones (miss 
of a document break), or they are found in different seg-
ments, while they are actually in the same one (false alarm). 

method is an effective way of selecting topical 
relations by preference. 

5 Discussion and conclusion 

We have raised and partially answered the ques-
tion of how a dictionary should be indexed in 
order to support word access, a question initially 
addressed in (Zock, 2002) and (Zock and Bilac, 
2004). We were particularly concerned with the 
language producer, as his needs (and knowledge 
at the onset) are quite different from the ones of 
the language receiver (listener/reader). It seems 
that, in order to achieve our goal, we need to do 
two things: add to an existing electronic diction-
ary information that people tend to associate with 
a word, that is, build and enrich a semantic net-
work, and provide a tool to navigate in it. To this 
end we have suggested to label the links, as this 
would reduce the graph complexity and allow for 
type-based navigation. Actually our basic pro-
posal is to extend a resource like WordNet by 
adding certain links, in particular on the syntag-
matic axis. These links are associations, and their 
role consists in helping the encoder to find ideas 
(concepts/words) related to a given stimulus 
(brainstorming), or to find the word he is think-
ing of (word access). 

One problem that we are confronted with is to 
identify possible associations. Ideally we would 
need a complete list, but unfortunately, this does 
not exist. Yet, there is a lot of highly relevant 
information out there. For example, Mel’cuk’s 
lexical functions (Mel’cuk, 1995), Fillmore’s 
FRAMENET10, work on ontologies (CYC), thesau-
rus (Roget), WordNets (the original version from 
Princeton, various Euro-WordNets, BalkaNet), 
HowNet11, the work done by MICRA, the FACTO-
TUM project 12 , or the Wordsmyth diction-
ary/thesaurus13.

Since words are linked via associations, it is 
important to reveal these links. Once this is done, 
words can be accessed by following these links. 
We have presented here some preliminary work 
for extracting an important subset of such links 
from texts, topical associations, which are gener-
ally absent from dictionaries or resources like 
WordNet. An evaluation of the topic segmenta-
tion has shown that the relations extracted are 
sound from the topical point of view, and that 
they can be extracted automatically. However, 

 
10 http://www.icsi.berkeley.edu/~framenet/
11 http://www.keenage.com/html/e_index.html
12 http://humanities.uchicago.edu/homes/MICRA/
13 http://www.wordsmyth.com/
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they still contain too much noise to be directly 
exploitable by an end user for accessing a word 
in a dictionary. One way of reducing the noise of 
the extracted relations would be to build from 
each text a representation of its topics and to re-
cord the co-occurrences in these representations 
rather than in the segments delimited by a topic 
segmenter. This is a hypothesis we are currently 
exploring. While we have focused here only on 
word access on the basis of (other) words, one 
should not forget that most of the time speakers 
or writers start from meanings. Hence, we shall 
consider this point more carefully in our future 
work, by taking a serious look at the proposals 
made by Bilac et al. (2004); Durgar and Oflazer 
(2004), or Dutoit and Nugues (2002). 

References 
Eneko Agirre, Olatz Ansa, David Martinez and Edu-

ard Hovy. 2001. Enriching WordNet concepts with 
topic signatures. In NAACL’01 Workshop on 
WordNet and Other Lexical Resources: Applica-
tions, Extensions and Customizations.

Henri Avancini, Alberto Lavelli, Bernardo Magnini, 
Fabrizio Sebastiani and Roberto Zanoli. 2003. Ex-
panding Domain-Specific Lexicons by Term Cate-
gorization. In 18th ACM Symposium on Applied 
Computing (SAC-03).

Doug Beeferman, Adam Berger and Lafferty. 1999. 
Statistical Models for Text Segmentation. Machine 
Learning, 34(1): 177-210. 

Slaven Bilac, Wataru Watanabe, Taiichi Hashimoto, 
Takenobu Tokunaga and Hozumi Tanaka. 2004. 
Dictionary search based on the target word descrip-
tion. In Tenth Annual Meeting of The Association 
for Natural Language Processing (NLP2004),
pages 556-559. 

Roger Brown and David McNeill. 1996. The tip of the 
tongue phenomenon. Journal of Verbal Learning 
and Verbal Behaviour, 5: 325-337. 

Kenneth Church and Patrick Hanks. 1990. Word As-
sociation Norms, Mutual Information, And Lexi-
cography. Computational Linguistics, 16(1): 177-
210. 

Ilknur Durgar El-Kahlout and Kemal Oflazer. 2004. 
Use of Wordnet for Retrieving Words from Their 
Meanings, In 2nd Global WordNet Conference,
Brno 

Dominique Dutoit and Pierre Nugues. 2002. A lexical 
network and an algorithm to find words from defi-
nitions. In 15th European Conference on Artificial 
Intelligence (ECAI 2002), Lyon, pages 450-454, 
IOS Press. 

Christiane Fellbaum. 1998. WordNet - An Electronic 
Lexical Database, MIT Press. 

Olivier Ferret. 2006. Building a network of topical 
relations from a corpus. In LREC 2006.

Olivier Ferret. 2002. Using collocations for topic 
segmentation and link detection. In COLING 2002,
pages 260-266. 

Sanda M. Harabagiu, George A. Miller and Dan I. 
Moldovan. 1999. WordNet 2 - A Morphologically 
and Semantically Enhanced Resource. In ACL-
SIGLEX99: Standardizing Lexical Resources,
pages 1-8. 

Sanda M. Harabagiu and Dan I. Moldovan. 1998. 
Knowledge Processing on an Extended WordNet. 
In WordNet - An Electronic Lexical Database,
pages 379-405. 

Philip Humble. 2001. Dictionaries and Language 
Learners, Haag and Herchen. 

William Levelt, Ardi Roelofs and Antje Meyer. 1999. 
A theory of lexical access in speech production, 
Behavioral and Brain Sciences, 22: 1-75. 

Bernardo Magnini and Gabriela Cavagliá. 2000. Inte-
grating Subject Field Codes into WordNet. In 
LREC 2000.

Rila Mandala, Takenobu Tokunaga and Hozumi 
Tanaka. 1999. Complementing WordNet with Ro-
get’s and Corpus-based Thesauri for Information 
Retrieval. In EACL 99.

Igor Mel’čuk, Arno Clas and Alain Polguère. 1995. 
Introduction à la lexicologie explicative et combi-
natoire, Louvain, Duculot. 

George A. Miller. 1995. WordNet: A lexical Data-
base, Communications of the ACM. 38(11): 39-41. 

Stephen D. Richardson, William B. Dolan and Lucy 
Vanderwende. 1998. MindNet: Acquiring and 
Structuring Semantic Information from Text. In 
ACL-COLING’98, pages 1098-1102. 

Piek Vossen. 1998. EuroWordNet: A Multilingual 
Database with Lexical Semantic Networks. Kluwer 
Academic Publisher. 

Gabriella Vigliocco, Antonini, T., and Merryl Garrett. 
1997. Grammatical gender is on the tip of Italian 
tongues. Psychological Science, 8: 314-317. 

Michael Zock. 2002. Sorry, what was your name 
again, or how to overcome the tip-of-the tongue 
problem with the help of a computer? In SemaNet 
workshop, COLING 2002, Taipei. 
http://acl.ldc.upenn.edu /W/W02/W02-1118.pdf

Michael Zock and Slaven Bilac. 2004. Word lookup 
on the basis of associations: from an idea to a 
roadmap. In COLING 2004 workshop: Enhancing 
and using dictionaries, Geneva. 
http://acl.ldc.upenn.edu/ coling2004/W10/pdf/5.pdf

288



Proceedings of the 21st International Conference on Computational Linguistics and 44th Annual Meeting of the ACL, pages 289–296,
Sydney, July 2006.c©2006 Association for Computational Linguistics

Guiding a Constraint Dependency Parser with Supertags

Kilian Foth, Tomas By, and Wolfgang Menzel
Department für Informatik, Universität Hamburg, Germany
foth|by|menzel@informatik.uni-hamburg.de

Abstract

We investigate the utility of supertag infor-
mation for guiding an existing dependency
parser of German. Using weighted con-
straints to integrate the additionally avail-
able information, the decision process of
the parser is influenced by changing its
preferences, without excluding alternative
structural interpretations from being con-
sidered. The paper reports on a series of
experiments using varying models of su-
pertags that significantly increase the pars-
ing accuracy. In addition, an upper bound
on the accuracy that can be achieved with
perfect supertags is estimated.

1 Introduction

Supertagging is based on the combination of two
powerful and influential ideas of natural language
processing: On the one hand, parsing is (at least
partially) reduced to a decision on the optimal se-
quence of categories, a problem for which efficient
and easily trainable procedures exist. On the other
hand, supertagging exploits complex categories,
i.e. tree fragments which much better reflect the
mutual compatibility between neighbouring lexi-
cal items than say part-of-speech tags.

Bangalore and Joshi (1999) derived the notion
of supertag within the framework of Lexicalized
Tree-Adjoining Grammars (LTAG) (Schabes and
Joshi, 1991). They considered supertagging a pro-
cess of almost parsing, since all that needs to be
done after having a sufficiently reliable sequence
of supertags available is to decide on their combi-
nation into a spanning tree for the complete sen-
tence. Thus the approach lends itself easily to pre-
processing sentences or filtering parsing results
with the goal of guiding the parser or reducing its
output ambiguity.

Nasr and Rambow (2004) estimated that perfect
supertag information already provides for a pars-
ing accuracy of 98% if a correct supertag assign-
ment were available. Unfortunately, perfectly re-
liable supertag information cannot be expected;
usually this uncertainty is compensated by run-
ning the tagger in multi-tagging mode, expecting
that the reliability can be increased by not forcing
the tagger to take unreliable decisions but instead
offering a set of alternatives from which a subse-
quent processing component can choose.

A grammar formalism which seems particularly
well suited to decompose structural descriptions
into lexicalized tree fragments is dependency
grammar. It allows us to define supertags on differ-
ent levels of granularity (White, 2000; Wang and
Harper, 2002), thus facilitating a fine grained anal-
ysis of how the different aspects of supertag in-
formation influence the parsing behaviour. In the
following we will use this characteristic to study
in more detail the utility of different kinds of su-
pertag information for guiding the parsing process.

Usually supertags are combined with a parser in
a filtering mode, i.e. parsing hypotheses which
are not compatible with the supertag predic-
tions are simply discarded. Drawing on the abil-
ity of Weighted Constraint Dependency Grammar
(WCDG) (Schröder et al., 2000) to deal with de-
feasible constraints, here we try another option for
making available supertag information: Using a
scoreto estimate the general reliability of unique
supertag decisions, the information can be com-
bined with evidence derived from other constraints
of the grammar in a soft manner. It makes possi-
ble to rank parsing hypotheses according to their
plausibility and allows the parser to even override
potentially wrong supertag decisions.

Starting from a range of possible supertag mod-
els, Section 2 explores the reliability with which
dependency-based supertags can be determined on
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es mag sein , daß die Franzosen kein schlüssiges Konzept für eine echte Partnerschaft besitzen .

Figure 1: Dependency tree for sentence 19601 of the NEGRA corpus.

different levels of granularity. Then, Section 3 de-
scribes how supertags are integrated into the exist-
ing parser for German. The complex nature of su-
pertags as we define them makes it possible to sep-
arate the different structural predictions made by a
single supertag into components and study their
contributions independently (c.f. Section 4). We
can show that indeed the parser is robust enough to
tolerate supertag errors and that even with a fairly
low tagger performance it can profit from the ad-
ditional, though unreliable information.

2 Supertagging German text

In defining the nature of supertags for depen-
dency parsing, a trade-off has to be made between
expressiveness and accuracy. A simple definition
with very small number of supertags will not be
able to capture the full variety of syntactic con-
texts that actually occur, while an overly expres-
sive definition may lead to a tag set that is so large
that it cannot be accurately learnt from the train-
ing data. The local context of a word to be en-
coded in a supertag could include its edge label,
the attachment direction, the occurrence of obliga-
tory1 or of all dependents, whether each predicted
dependent occurs to the right or to the left of the
word, and the relative order among different de-
pendents. The simplest useful task that could be
asked of a supertagger would be to predict the de-
pendency relation that each word enters. In terms
of the WCDG formalism, this means associating
each word at least with one of the syntactic labels
that decorate dependency edges, such as SUBJ or
DET; in other words, the supertag set would be
identical to the label set. The example sentence

1The model of German used here considers the objects
of verbs, prepositions and conjunctions to be obligatory and
most other relations as optional. This corresponds closelyto
the set of needs roles of (Wang and Harper, 2002).

“Es mag sein, daß die Franzosen kein schlüssiges Konzept

für eine echte Partnerschaft besitzen.”

(Perhaps the French do not have a viable concept for a true

partnership.)

if analyzed as in Figure 1, would then be de-
scribed by a supertag sequence beginning with
EXPL S AUX ...

Following (Wang and Harper, 2002), we further
classify dependencies into Left (L), Right (R), and
No attachments (N), depending on whether a word
is attached to its left or right, or not at all. We
combine the label with the attachment direction
to obtain composite supertags. The sequence of
supertags describing the example sentence would
then begin withEXPL/R S/N AUX/L ...

Although this kind of supertag describes the role
of each word in a sentence, it still does not spec-
ify the entire local context; for instance, it asso-
ciates the information that a word functions as a
subject only with the subject and not with the verb
that takes the subject. In other words, it does not
predict the relationsunder a given word. Greater
expressivity is reached by also encoding the la-
bels of these relations into the supertag. For in-
stance, the word ‘mag’ in the example sentence
is modified by an expletive (EXPL) on its left
side and by an auxiliary (AUX) and a subject
clause (SUBJC) dependency on its right side. To
capture this extended local context, these labels
must be encoded into the supertag. We add the
local context of a word to the end of its su-
pertag, separated with the delimiter+. This yields
the expressionS/N+AUX,EXPL,SUBJC. If we
also want to express that the EXPL precedes the
word but the AUX follows it, we can instead
add two new fields to the left and to the right
of the supertag, which leads to the new supertag
EXPL+S/N+AUX,SUBJC.

Table 1 shows the annotation of the example us-
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Word Supertag model J
es +EXPL/R+
mag EXPL+S/N+AUX,SUBJC
sein +AUX/L+
, +/N+
daß +KONJ/R+
die +DET/R+
Franzosen DET+SUBJ/R+
kein +DET/R+
schlüssiges +ATTR/R+
Konzept ATTR,DET+OBJA/R+PP
für +PP/L+PN
eine +DET/R+
echte +ATTR/R+
Partnerschaft ATTR,DET+PN/L+
besitzen KONJ,OBJA,SUBJ+SUBJC/L+
. +/N+

Table 1: An annotation of the example sentence

ST Prediction of #tags Super- Com-
mo- label direc- depen- order tag ponent
del tion dents accuracyaccuracy
A yes no none no 35 84.1% 84.1%
B yes yes none no 73 78.9% 85.7%
C yes no oblig. no 914 81.1% 88.5%
D yes yes oblig. no 1336 76.9% 90.8%
E yes no oblig. yes 1465 80.6% 91.8%
F yes yes oblig. yes 2026 76.2% 90.9%
G yes no all no 6858 71.8% 81.3%
H yes yes all no 8684 67.9% 85.8%
I yes no all yes 10762 71.6% 84.3%
J yes yes all yes 12947 67.6% 84.5%

Table 2: Definition of all supertag models used.

ing the most sophisticated supertag model. Note
that the notation+EXPL/R+ explicitly represents
the fact that the word labelledEXPL has no de-
pendents of its own, while the simplerEXPL/R
made no assertion of this kind. The extended con-
text specification with two+ delimiters expresses
the complete set of dependents of a word and
whether they occur to its left or right. However, it
does not distinguish the order of the left or right
dependents among each other (we order the la-
bels on either side alphabetically for consistency).
Also, duplicate labels among the dependents on ei-
ther side are not represented. For instance, a verb
with two post-modifying prepositions would still
list PP only once in its right context. This ensures
that the set of possible supertags is finite. The full
set of different supertag models we used is given
in Table 2. Note that the more complicated mod-
els G, H, I and J predict all dependents of each
word, while the others predict obligatory depen-
dents only, which should be an easier task.

To obtain and evaluate supertag predictions, we
used the NEGRA and TIGER corpora (Brants et
al., 1997; Brants et al., 2002), automatically trans-

formed into dependency format with the freely
available tool DepSy (Daum et al., 2004). As
our test set we used sentences 18,602–19,601 of
the NEGRA corpus, for comparability to earlier
work. All other sentences (59,622 sentences with
1,032,091 words) were used as the training set. For
each word in the training set, the local context was
extracted and expressed in our supertag notation.
The word/supertag pairs were then used to train
the statistical part-of-speech tagger TnT (Brants,
2000), which performs trigram tagging efficiently
and allows easy retraining on different data. How-
ever, a few of TnT’s limitations had to be worked
around: since it cannot deal with words that have
more than 510 different possible tags, we system-
atically replaced the rarest tags in the training set
with a generic ‘OTHER’ tag until the limit was
met. Also, in tagging mode it can fail to process
sentences with many unknown words in close suc-
cession. In such cases, we simply ran it on shorter
fragments of the sentence until no error occurred.
Fewer than 0.5% of all sentences were affected by
this problem even with the largest tag set.

A more serious problem arises when using a
stochastic process to assign tags that partially pre-
dict structure: the tags emitted by the model may
contradict each other. Consider, for instance, the
following supertagger output for the previous ex-
ample sentence:
es: +EXPL/R+ mag: +S/N+AUX,SUBJC
sein: PRED+AUX/L+ ...
The supertagger correctly predicts that the first
three labels areEXPL, S, andAUX. It also pre-
dicts that the word ‘sein’ has a precedingPRED
complement, but this is impossible if the two pre-
ceding words are labelledEXPL andS. Such con-
tradictory information is not fatal in a robust sys-
tem, but it is likely to cause unnecessary work
for the parser when some rules demand the im-
possible. We therefore decided simply to ignore
context predictions when they contradict the ba-
sic label predictions made for the same sentence;
in other words, we pretend that the prediction
for the third word was just+AUX/L+ rather than
PRED+AUX/L+. Up to 13% of all predictions
were simplified in this way for the most complex
supertag model.

The last columns of Table 2 give the number of
different supertags in the training set and the per-
formance of the retrained TnT on the test set in
single-tagging mode. Although the number of oc-
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curring tags rises and the prediction accuracy falls
with the supertag complexity, the correlation is not
absolute: It seems markedly easier to predict su-
pertags with complements but no direction infor-
mation (C) than supertags with direction informa-
tion but no complements (B), although the tag set
is larger by an order of magnitude. In fact, the pre-
diction of attachment direction seems much more
difficult than that of undirected supertags in every
case, due to the semi-free word order of German.
The greater tag set size when predicting comple-
ments of each words is at least partly offset by
the contextual information available to then-gram
model, since it is much more likely that a word
will have, e.g., a ‘SUBJ’ complement when an ad-
jacent ‘SUBJ’ supertag is present.

For the simplest model A, all 35 possible su-
pertags actually occur, while in the most compli-
cated model J, only 12,947 different supertags are
observed in the training data (out of a theoretically
possible1024 for a set of 35 edge labels). Note that
this is still considerably larger than most other re-
ported supertag sets. The prediction quality falls to
rather low values with the more complicated mod-
els; however, our goal in this paper is not to opti-
mize the supertagger, but to estimate the effect that
an imperfect one has on an existing parser. Alto-
gether most results fall into a range of 70–80% of
accuracy; as we will see later, this is in fact enough
to provide a benefit to automatic parsing.

Although supertag accuracy is usually deter-
mined by simply counting matching and non-
matching predictions, a more accurate measure
should take into account how many of the indi-
vidual predictions that are combined into a su-
pertag are correct or wrong. For instance, a word
that is attached to its left as a subject, is pre-
ceded by a preposition and an attributive adjec-
tive, and followed by an apposition would bear
the supertagPP,ATTR+SUBJ/L+APP. Since the
prepositional attachment is notoriously difficult to
predict, a supertagger might miss it and emit the
slightly different tagATTR+SUBJ/L+APP. Al-
though this supertag is technically wrong, it is in
fact much more right than wrong: of the four pre-
dictions of label, direction, preceding and follow-
ing dependents, three are correct and only one is
wrong. We therefore define thecomponent accu-
racy for a given model as the ratio of correct pre-
dictions among the possible ones, which results
in a value of 0.75 rather than 0 for the exam-

ple prediction. The component accuracy of the su-
pertag model J e. g. is in fact 84.5% rather than
67.6%. We would expect the component accuracy
to match the effect on parsing more closely than
the supertag accuracy.

3 Using supertag information in WCDG

Weighted Constraint Dependency Grammar
(WCDG) is a formalism in which declarative
constraints can be formulated that describe
well-formed dependency trees in a particular
natural language. A grammar composed of such
constraints can be used for parsing by feeding it
to a constraint-solving component that searches
for structures that satisfy the constraints.

Each constraint carries a numeric score orpenalty
between 0 and 1 that indicates its importance. The
penalties of all instances of constraint violations
are multiplied to yield a score for an entire anal-
ysis; hence, an analysis that satisfies all rules of
the WCDG bears the score 1, while lower values
indicate small or large aberrations from the lan-
guage norm. A constraint penalty of 0, then, cor-
responds to a hard constraint, since every analysis
that violates such a constraint will always bear the
worst possible score of 0. This means that of two
constraints, the one with thelower penalty is more
important to the grammar.

Since constraints can be soft as well as hard, pars-
ing in the WCDG formalism amounts to multi-
dimensional optimization. Of two possible analy-
ses of an utterance, the one that satisfies more (or
more important) constraints is always preferred.
All knowledge about grammatical rules is encoded
in the constraints that (together with the lexicon)
constitute the grammar. Adding a constraint which
is sensitive to supertag predictions will therefore
change the objective function of the optimiza-
tion problem, hopefully leading to a higher share
of correct attachments. Details about the WDCG
parser can be found in (Foth and Menzel, 2006).

A grammar of German is available (Foth et al.,
2004) that achieves a good accuracy on written
German input. Despite its good results, it seems
probable that the information provided by a su-
pertag prediction component could improve the
accuracy further. First, because the optimization
problem that WCDG defines is infeasible to solve
exactly, the parser must usually use incomplete,
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heuristic algorithms to try to compute the opti-
mal analysis. This means that it sometimes fails
to find the correct analysis even if the language
model accurately defines it, because of search er-
rors during heuristic optimization. A component
that makes specific predictions about local struc-
ture could guide the process so that the correct
alternative is tried first in more cases, and help
prevent such search errors. Second, the existing
grammar rules deal mainly with structural compat-
ibility, while supertagging exploits patterns in the
sequence of words in its input, i. e. both models
contribute complementary information. Moreover,
the parser can be expected to profit from supertags
providing highly lexicalized pieces of information.

Supertag Component Parsing accuracy
Model accuracy accuracy unlabelled labelled
baseline – – 89.6% 87.9%
A 84.1% 84.1% 90.8% 89.4%
B 78.9% 85.7% 90.6% 89.2%
C 81.1% 88.5% 91.0% 89.6%
D 76.9% 90.8% 91.1% 89.8%
E 80.6% 91.8% 90.9% 89.6%
F 76.2% 90.9% 91.4% 90.0%
G 71.8% 81.3% 90.8% 89.4%
H 67.9% 85.8% 90.8% 89.4%
I 71.6% 84.3% 91.8% 90.4%
J 67.6% 84.5% 91.8% 90.5%

Table 3: Influence of supertag integration on pars-
ing accuracy.

Parsing accuracy
Constraint penalty unlabelled labelled

0.0 3.7% 3.7%
0.05 85.2% 83.5%
0.1 87.6% 85.7%
0.2 88.9% 87.3%
0.5 91.2% 89.5%
0.7 91.5% 90.1%
0.9 91.8% 90.5%
0.95 91.1% 89.8%
1.0 89.6% 87.9%

Table 4: Parsing accuracy depending on different
strength of supertag integration.

To make the information from the supertag se-
quence available to the parser, we treat the com-
plex supertags as a set of predictions and write
constraints to prefer those analyses that satisfy
them. The predictions of label and direction made
by models A and B are mapped onto two con-
straints which demand that each word in the anal-
ysis should exhibit the predicted label and direc-
tion. The more complicated supertag models con-
strain the local context of each word further. Effec-
tively, they predict that the specified dependents of

a word occur, and that no other dependents occur.
The former prediction equates to an existence con-
dition, so constraints are added which demand the
presence of the predicted relation types under that
word (one for left dependents and one for right de-
pendents). The latter prediction disallows all other
dependents; it is implemented by two constraints
that test the edge label of each word-to-word at-
tachment against the set of predicted dependents
of the regent (again, separately for left and right
dependents). Altogether six new constraints are
added to the grammar which refer to the output
of the supertagger on the current sentence.

Note that in contrast to most other approaches we
do not perform multi-supertagging; exactly one
supertag is assumed for each word. Alternatives
could be integrated by computing the logical dis-
junctions of the predictions made by each su-
pertag, and then adapting the new constraints ac-
cordingly.

4 Experiments

We tested the effect of supertag predictions on
a full parser by adding the new constraints to
the WCDG of German described in (Foth et al.,
2004) and re-parsing the same 1,000 sentences
from the NEGRA corpus. The quality of a de-
pendency parser such as this can be measured as
the ratio of correctly attached words to all words
(structural accuracy) or the ratio of the correctly
attached and correctly labelled words to all words
(labelled accuracy). Note that because the parser
always finds exactly one analysis with exactly one
subordination per word, there is no distinction be-
tween recall and precision. The structural accuracy
without any supertags is 89.6%.

To determine the best trade-off between complex-
ity and prediction quality, we tested all 10 supertag
models against the baseline case of no supertags at
all. The results are given in Table 3. Two observa-
tions can be made about the effect of the supertag
model on parsing. Firstly, all types of supertag pre-
diction, even the very basic model A which pre-
dicts only edge labels, improve the overall accu-
racy of parsing, although the baseline is already
quite high. Second, the richer models of supertags
appear to be more suitable for guiding the parser
than the simpler ones, even though their own ac-
curacy is markedly lower; almost one third of the
supertag predictions according to the most compli-
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cated definition J are wrong, but nevertheless their
inclusion reduces the remaining error rate of the
parser by over 20%.

This result confirms the assumption that if su-
pertags are integrated as individual constraints,
their component accuracy is more important than
the supertag accuracy. The decreasing accuracy of
more complex supertags is more than counterbal-
anced by the additional information that they con-
tribute to the analysis. Obviously, this trend can-
not continue indefinitely; a supertag definition that
predicted even larger parts of the dependency tree
would certainly lead to much lower accuracy by
even the most lenient measure, and a prediction
that is mostly wrong must ultimately degrade pars-
ing performance. Since the most complex model J
shows no parsing improvement over its succes-
sor I, this point might already have been reached.

The use of supertags in WCDG is comparable
to previous work which integrated POS tagging
and chunk parsing. (Foth and Hagenström, 2002;
Daum et al., 2003) showed that the correct bal-
ance between the new knowledge and the exist-
ing grammar is crucial for successful integration.
This is achieved by means of an additional pa-
rameter, modeling how trustworthy supertag pre-
dictions are considered. Its effect is shown in Ta-
ble 4. As expected, making supertag constraints
hard (with a value of 0.0) over-constrains most
parsing problems, so that hardly any analyses can
be computed. Other values near 0 avoid this prob-
lem but still lead to much worse overall perfor-
mance, as wrong or even impossible predictions
too often overrule the normal syntax constraints.
The previously used value of 0.9 actually yields
the best results with this particular grammar.

The fact that a statistical model can improve pars-
ing performance when superimposed on a sophis-
ticated hand-written grammar is of particular in-
terest because the statistical model we used is so
simple, and in fact not particularly accurate; it
certainly does not represent the state of the art
in supertagging. This gives rise to the hope that
as better supertaggers for German become avail-
able, parsing results will continue to see additional
improvements, i.e., future supertagging research
will directly benefit parsing. The obvious ques-
tion is how great this benefit might conceivably
become under optimal conditions. To obtain this
upper limit of the utility of supertags we repeated

Supertag Constraint penalty
model 0.9 0.0
A 92.7% / 92.2% 94.0% / 94.0%
B 94.3% / 93.7% 96.0% / 96.0%
C 92.8% / 92.4% 94.1% / 94.1%
D 94.3% / 93.8% 96.0% / 96.0%
E 93.1% / 92.6% 94.3% / 94.3%
F 94.6% / 94.1% 96.1% / 96.1%
G 94.2% / 93.7% 95.8% / 95.8%
H 95.2% / 94.7% 97.4% / 97.4%
I 97.1% / 96.8% 99.5% / 99.5%
J 97.1% / 96.8% 99.6% / 99.6%

Table 5: Unlabelled and labelled parsing accuracy
with a simulated perfect supertagger.

the process of translating each supertag into addi-
tional WCDG constraints, but this time using the
test set itself rather than TnT’s predictions.

Table 5 again gives the unlabelled and labelled
parsing accuracy for all 10 different supertag mod-
els with the integration strengths of 0 and 0.9.
(Note that since all our models predict the edge
label of each word, hard integration of perfect
predictions eliminates the difference between la-
belled und unlabelled accuracy.) As expected, an
improved accuracy of supertagging would lead
to improved parsing accuracy in each case. In
fact, knowing the correct supertag would solve the
parsing problem almost completely with the more
complex models. This confirms earlier findings for
English (Nasr and Rambow, 2004).

Since perfect supertaggers are not available, we
have to make do with the imperfect ones that do
exist. One method of avoiding some errors intro-
duced by supertagging would be to reject supertag
predictions that tend to be wrong. To this end, we
ran the supertagger on its training set and deter-
mined the average component accuracy of each
occurring supertag. The supertags whose average
precision fell below a variable threshold were not
considered during parsing as if the supertagger had
not made a prediction. This means that a threshold
of 100% corresponds to the baseline of not using
supertags at all, while a threshold of 0% prunes
nothing, so that these two cases duplicate the first
and last line from Table 2.

As Table 6 shows, pruning supertags that are
wrong more often than they are right results in
a further small improvement in parsing accu-
racy: unlabelled syntax accuracy rises up to 92.1%
against the 91.8% if all supertags of model J are
used. However, the effect is not very noticeable,
so that it would be almost certainly more useful to
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Parsing accuracy
Threshold unlabelled labelled

0% 91.8% 90.5%
20% 91.8% 90.4%
40% 91.9% 90.5%
50% 92.0% 90.7%
60% 92.1% 91.0%
80% 91.4% 90.0%

100% 89.6% 87.9%

Table 6: Parsing accuracy with empirically pruned
supertag predictions.

improve the supertagger itself rather than second-
guess its output.

5 Related work

Supertagging was originally suggested as a
method to reduce lexical ambiguity, and thereby
the amount of disambiguation work done by the
parser. Sakar et al. (2000) report that this increases
the speed of their LTAG parser by a factor of 26
(from 548k to 21k seconds) but at the price of only
being able to parse 59% of the sentences in their
test data (of 2250 sentences), because too often the
correct supertag is missing from the output of the
supertagger. Chen et al. (2002) investigate differ-
ent supertagging methods as pre-processors to a
Tree-Adjoining Grammar parser, and they claim a
1-best supertagging accuracy of 81.47%, and a 4-
best accuracy of 91.41%. With the latter they reach
the highest parser coverage, about three quarters of
the 1700 sentences in their test data.

Clark and Curran (2004a; 2004b) describe a com-
bination of supertagger and parser for parsing
Combinatory Categorial Grammar, where the tag-
ger is used to filter the parses produced by the
grammar, before the computation of the model pa-
rameters. The parser uses an incremental method:
the supertagger first assigns a small number of cat-
egories to each word, and the parser requests more
alternatives only if the analysis fails. They report
91.4% precision and 91.0% recall of unlabelled
dependencies and a speed of 1.6 minutes to parse
2401 sentences, and claim a parser speedup of a
factor of 77 thanks to supertagging.

The supertagging approach that is closest to ours
in terms of linguistic representations is probably
(Wang and Harper, 2002; Wang and Harper, 2004)
whose ‘Super Abstract Role Values’ are very sim-
ilar to our model F supertags (Table 2). It is in-
teresting to note that they only report between 328
and 791 SuperARVs for different corpora, whereas

we have 2026 category F supertags. Part of the dif-
ference is explained by our larger label set: 35,
the same as the number of model A supertags
in table 2 against their 24 (White, 2000, p. 50).
Also, we are not using the same corpus. In ad-
dition to determining the optimal SuperARV se-
quence in isolation, Wang and Harper (2002) also
combine the SuperARVn-gram probabilities with
a dependency assignment probability into a depen-
dency parser for English. A maximum tagging ac-
curacy of 96.3% (for sentences up to 100 words) is
achieved using a 4-gramn-best tagger producing
the 100 best SuperARV sequences for a sentence.
The tightly integrated model is able to determine
96.6% of SuperARVs correctly. The parser itself
reaches a labelled precision of 92.6% and a la-
belled recall of 92.2% (Wang and Harper, 2004).

In general, the effect of supertagging in the other
systems mentioned here is to reduce the ambi-
guity in the input to the parser and thereby in-
crease its speed, in some cases dramatically. For
us, supertagging decreases the speed slightly, be-
cause additional constraints means more work for
the parser, and because our supertagger-parser in-
tegration is not yet optimal. On the other hand
it gives us better parsing accuracy. Using a con-
straint penalty of 0.0 for the supertagger integra-
tion (c.f. Table 5) does speed up our parser several
times, but would only be practical with very high
tagging accuracy. An important point is that for
some other systems, like (Sarkar et al., 2000) and
(Chen et al., 2002), parsing is not actually feasible
without the supertagging speedup.

6 Conclusions and future work

We have shown that a statistical supertagging
component can significantly improve the parsing
accuracy of a general-purpose dependency parser
for German. The error rate among syntactic at-
tachments can be reduced by 24% over an al-
ready competitive baseline. After all, the integra-
tion of the supertagging results helped to reach a
quality level which compares favourably with the
state-of-the-art in probabilistic dependency pars-
ing for German as defined with 87.34%/90.38%
labelled/unlabelled attachment accuracy on this
years shared CoNLL task by (McDonald et al.,
2005) (see (Foth and Menzel, 2006) for a more de-
tailed comparison). Although the statistical model
used in our system is rather simple-minded, it
clearly captures at least some distributional char-
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acteristics of German text that the hand-written
rules do not.

A crucial factor for success is the defeasible in-
tegration of the supertagging predictions via soft
constraints. Rather than pursuing a strict filtering
approach where supertagging errors are partially
compensated by ann-best selection, we commit to
only one supertag per word, but reduce its influ-
ence. Treating supertag predictions as weak pref-
erences yields the best results. By measuring the
accuracy of the different types of predictions made
by complex supertags, different weights could also
be assigned to the six new constraints.

Of the investigated supertag models, the most
complex ones guide the parser best, although
their own accuracy is not the best one, even
when measured by the more pertinent component
accuracy. Since purely statistical parsing methods
do not reach comparable parsing accuracy on
the same data, we assume that this trend does
not continue indefinitely, but would stop at some
point, perhaps already reached.
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Abstract

We present a novel approach for discov-
ering word categories, sets of words shar-
ing a significant aspect of their mean-
ing. We utilize meta-patterns of high-
frequency words and content words in or-
der to discover pattern candidates. Sym-
metric patterns are then identified using
graph-based measures, and word cate-
gories are created based on graph clique
sets. Our method is the first pattern-based
method that requires no corpus annota-
tion or manually provided seed patterns
or words. We evaluate our algorithm on
very large corpora in two languages, us-
ing both human judgments and WordNet-
based evaluation. Our fully unsupervised
results are superior to previous work that
used a POS tagged corpus, and computa-
tion time for huge corpora are orders of
magnitude faster than previously reported.

1 Introduction

Lexical resources are crucial in most NLP tasks
and are extensively used by people. Manual com-
pilation of lexical resources is labor intensive, er-
ror prone, and susceptible to arbitrary human deci-
sions. Hence there is a need for automatic author-
ing that would be as unsupervised and language-
independent as possible.

An important type of lexical resource is that
given by grouping words into categories. In gen-
eral, the notion of a category is a fundamental one
in cognitive psychology (Matlin, 2005). A lexi-
cal category is a set of words that share a signif-
icant aspect of their meaning, e.g., sets of words
denoting vehicles, types of food, tool names, etc.

A word can obviously belong to more than a single
category. We will use ‘category’ instead of ‘lexi-
cal category’ for brevity1.

Grouping of words into categories is useful in it-
self (e.g., for the construction of thesauri), and can
serve as the starting point in many applications,
such as ontology construction and enhancement,
discovery of verb subcategorization frames, etc.

Our goal in this paper is a fully unsupervised
discovery of categories from large unannotated
text corpora. We aim for categories containing sin-
gle words (multi-word lexical items will be dealt
with in future papers.) Our approach is based on
patterns, and utilizes the following stages:

1. Discovery of a set of pattern candidates that
might be useful for induction of lexical re-
lationships. We do this in a fully unsuper-
vised manner, using meta-patterns comprised
of high frequency words and content words.

2. Identification of pattern candidates that give
rise to symmetric lexical relationships. This
is done using simple measures in a word re-
lationship graph.

3. Usage of a novel graph clique-set algorithm
in order to generate categories from informa-
tion on the co-occurrence of content words in
the symmetric patterns.

We performed a thorough evaluation on two En-
glish corpora (the BNC and a 68GB web corpus)
and on a 33GB Russian corpus, and a sanity-check
test on smaller Danish, Irish and Portuguese cor-
pora. Evaluations were done using both human

1Some people use the term ‘concept’. We adhere to the
cognitive psychology terminology, in which ‘concept’ refers
to the mental representation of a category (Matlin, 2005).
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judgments and WordNet in a setting quite simi-
lar to that done (for the BNC) in previous work.
Our unsupervised results are superior to previous
work that used a POS tagged corpus, are less lan-
guage dependent, and are very efficient computa-
tionally2 .

Patterns are a common approach in lexical ac-
quisition. Our approach is novel in several as-
pects: (1) we discover patterns in a fully unsu-
pervised manner, as opposed to using a manually
prepared pattern set, pattern seed or words seeds;
(2) our pattern discovery requires no annotation of
the input corpus, as opposed to requiring POS tag-
ging or partial or full parsing; (3) we discover gen-
eral symmetric patterns, as opposed to using a few
hard-coded ones such as ‘x and y’; (4) the clique-
set graph algorithm in stage 3 is novel. In addition,
we demonstrated the relatively language indepen-
dent nature of our approach by evaluating on very
large corpora in two languages3 .

Section 2 surveys previous work. Section 3 de-
scribes pattern discovery, and Section 4 describes
the formation of categories. Evaluation is pre-
sented in Section 5, and a discussion in Section 6.

2 Previous Work

Much work has been done on lexical acquisition
of all sorts. The three main distinguishing axes are
(1) the type of corpus annotation and other human
input used; (2) the type of lexical relationship tar-
geted; and (3) the basic algorithmic approach. The
two main approaches are pattern-based discovery
and clustering of context feature vectors.

Many of the papers cited below aim at the con-
struction of hyponym (is-a) hierarchies. Note that
they can also be viewed as algorithms for category
discovery, because a subtree in such a hierarchy
defines a lexical category.

A first major algorithmic approach is to repre-
sent word contexts as vectors in some space and
use similarity measures and automatic clustering
in that space (Curran and Moens, 2002). Pereira
(1993) and Lin (1998) use syntactic features in the
vector definition. (Pantel and Lin, 2002) improves
on the latter by clustering by committee. Cara-
ballo (1999) uses conjunction and appositive an-
notations in the vector representation.

2We did not compare against methods that use richer syn-
tactic information, both because they are supervised and be-
cause they are much more computationally demanding.

3We are not aware of any multilingual evaluation previ-
ously reported on the task.

The only previous works addressing our prob-
lem and not requiring any syntactic annotation are
those that decompose a lexically-defined matrix
(by SVD, PCA etc), e.g. (Schütze, 1998; Deer-
wester et al, 1990). Such matrix decomposition
is computationally heavy and has not been proven
to scale well when the number of words assigned
to categories grows.

Agglomerative clustering (e.g., (Brown et al,
1992; Li, 1996)) can produce hierarchical word
categories from an unannotated corpus. However,
we are not aware of work in this direction that has
been evaluated with good results on lexical cate-
gory acquisition. The technique is also quite de-
manding computationally.

The second main algorithmic approach is to
use lexico-syntactic patterns. Patterns have been
shown to produce more accurate results than fea-
ture vectors, at a lower computational cost on large
corpora (Pantel et al, 2004). Hearst (1992) uses a
manually prepared set of initial lexical patterns in
order to discover hierarchical categories, and uti-
lizes those categories in order to automatically dis-
cover additional patterns.

(Berland and Charniak, 1999) use hand crafted
patterns to discover part-of (meronymy) relation-
ships, and (Chklovski and Pantel, 2004) discover
various interesting relations between verbs. Both
use information obtained by parsing. (Pantel et al,
2004) reduce the depth of the linguistic data used
but still requires POS tagging.

Many papers directly target specific applica-
tions, and build lexical resources as a side effect.
Named Entity Recognition can be viewed as an in-
stance of our problem where the desired categories
contain words that are names of entities of a par-
ticular kind, as done in (Freitag, 2004) using co-
clustering. Many Information Extraction papers
discover relationships between words using syn-
tactic patterns (Riloff and Jones, 1999).

(Widdows and Dorow, 2002; Dorow et al, 2005)
discover categories using two hard-coded symmet-
ric patterns, and are thus the closest to us. They
also introduce an elegant graph representation that
we adopted. They report good results. However,
they require POS tagging of the corpus, use only
two hard-coded patterns (‘x and y’, ‘x or y’), deal
only with nouns, and require non-trivial computa-
tions on the graph.

A third, less common, approach uses set-
theoretic inference, for example (Cimiano et al,
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2005). Again, that paper uses syntactic informa-
tion.

In summary, no previous work has combined
the accuracy, scalability and performance advan-
tages of patterns with the fully unsupervised,
unannotated nature possible with clustering ap-
proaches. This severely limits the applicability
of previous work on the huge corpora available at
present.

3 Discovery of Patterns

Our first step is the discovery of patterns that are
useful for lexical category acquisition. We use two
main stages: discovery of pattern candidates, and
identification of the symmetric patterns among the
candidates.

3.1 Pattern Candidates

An examination of the patterns found useful in
previous work shows that they contain one or more
very frequent word, such as ‘and’, ‘is’, etc. Our
approach towards unsupervised pattern induction
is to find such words and utilize them.

We define a high frequency word (HFW) as a
word appearing more than TH times per million
words, and a content word (CW) as a word appear-
ing less than TC times per a million words4.

Now define a meta-pattern as any sequence of
HFWs and CWs. In this paper we require that
meta-patterns obey the following constraints: (1)
at most 4 words; (2) exactly two content words; (3)
no two consecutive CWs. The rationale is to see
what can be achieved using relatively short pat-
terns and where the discovered categories contain
single words only. We will relax these constraints
in future papers. Our meta-patterns here are thus
of four types: CHC, CHCH, CHHC, and HCHC.

In order to focus on patterns that are more likely
to provide high quality categories, we removed
patterns that appear in the corpus less than TP

times per million words. Since we can ensure that
the number of HFWs is bounded, the total number
of pattern candidates is bounded as well. Hence,
this stage can be computed in time linear in the
size of the corpus (assuming the corpus has been
already pre-processed to allow direct access to a
word by its index.)

4Considerations for the selection of thresholds are dis-
cussed in Section 5.

3.2 Symmetric Patterns

Many of the pattern candidates discovered in the
previous stage are not usable. In order to find a us-
able subset, we focus on the symmetric patterns.
Our rationale is that two content-bearing words
that appear in a symmetric pattern are likely to
be semantically similar in some sense. This sim-
ple observation turns out to be very powerful, as
shown by our results. We will eventually combine
data from several patterns and from different cor-
pus windows (Section 4.)

For identifying symmetric patterns, we use a
version of the graph representation of (Widdows
and Dorow, 2002). We first define the single-
pattern graph G(P ) as follows. Nodes corre-
spond to content words, and there is a directed arc
A(x, y) from node x to node y iff (1) the words x
and y both appear in an instance of the pattern P
as its two CWs; and (2) x precedes y in P . Denote
by Nodes(G), Arcs(G) the nodes and arcs in a
graph G, respectively.

We now compute three measures on G(P ) and
combine them for all pattern candidates to filter
asymmetric ones. The first measure (M1) counts
the proportion of words that can appear in both
slots of the pattern, out of the total number of
words. The reasoning here is that if a pattern al-
lows a large percentage of words to participate in
both slots, its chances of being a symmetric pat-
tern are greater:

M1 :=
|{x|∃yA(x, y) ∧ ∃zA(z, x)}|

|Nodes(G(P ))|

M1 filters well patterns that connect words hav-
ing different parts of speech. However, it may
fail to filter patterns that contain multiple levels
of asymmetric relationships. For example, in the
pattern ‘x belongs to y’, we may find a word B
on both sides (‘A belongs to B’, ‘B belongs to C’)
while the pattern is still asymmetric.

In order to detect symmetric relationships in a
finer manner, for the second and third measures
we define SymG(P ), the symmetric subgraph of
G(P ), containing only the bidirectional arcs and
nodes of G(P ):

SymG(P ) = {{x}, {(x, y)}|A(x, y) ∧A(y, x)}

The second and third measures count the pro-
portion of the number of symmetric nodes and
edges in G(P ), respectively:

M2 :=
|Nodes(SymG(P ))|

|Nodes(G(P ))|
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M3 :=
|Arcs(SymG(P ))|

|Arcs(G(P ))|

All three measures yield values in [0, 1], and
in all three a higher value indicates more symme-
try. M2 and M3 are obviously correlated, but they
capture different aspects of a pattern’s nature: M3

is informative for highly interconnected but small
word categories (e.g., month names), while M2 is
useful for larger categories that are more loosely
connected in the corpus.

We use the three measures as follows. For each
measure, we prepare a sorted list of all candidate
patterns. We remove patterns that are not in the
top ZT (we use 100, see Section 5) in any of the
three lists, and patterns that are in the bottom ZB

in at least one of the lists. The remaining patterns
constitute our final list of symmetric patterns.

We do not rank the final list, since the category
discovery algorithm of the next section does not
need such a ranking. Defining and utilizing such a
ranking is a subject for future work.

A sparse matrix representation of each graph
can be computed in time linear in the size of the in-
put corpus, since (1) the number of patterns |P | is
bounded, (2) vocabulary size |V | (the total number
of graph nodes) is much smaller than corpus size,
and (3) the average node degree is much smaller
than |V | (in practice, with the thresholds used, it
is a small constant.)

4 Discovery of Categories

After the end of the previous stage we have a set
of symmetric patterns. We now use them in order
to discover categories. In this section we describe
the graph clique-set method for generating initial
categories, and category pruning techniques for in-
creased quality.

4.1 The Clique-Set Method

Our approach to category discovery is based on
connectivity structures in the all-pattern word rela-
tionship graph G, resulting from merging all of the
single-pattern graphs into a single unified graph.
The graph G can be built in time O(|V | × |P | ×
AverageDegree(G(P ))) = O(|V |) (we use V
rather than Nodes(G) for brevity.)

When building G, no special treatment is done
when one pattern is contained within another. For
example, any pattern of the form CHC is contained
in a pattern of the form HCHC (‘x and y’, ‘both x
and y’.) The shared part yields exactly the same

subgraph. This policy could be changed for a dis-
covery of finer relationships.

The main observation on G is that words that
are highly interconnected are good candidates to
form a category. This is the same general obser-
vation exploited by (Widdows and Dorow, 2002),
who try to find graph regions that are more con-
nected internally than externally.

We use a different algorithm. We find all strong
n-cliques (subgraphs containing n nodes that are
all bidirectionally interconnected.) A clique Q de-
fines a category that contains the nodes in Q plus
all of the nodes that are (1) at least unidirectionally
connected to all nodes in Q, and (2) bidirectionally
connected to at least one node in Q.

In practice we use 2-cliques. The strongly con-
nected cliques are the bidirectional arcs in G and
their nodes. For each such arc A, a category is gen-
erated that contains the nodes of all triangles that
contain A and at least one additional bidirectional
arc. For example, suppose the corpus contains the
text fragments ‘book and newspaper’, ‘newspaper
and book’, ‘book and note’, ‘note and book’ and
‘note and newspaper’. In this case the three words
are assigned to a category.

Note that a pair of nodes connected by a sym-
metric arc can appear in more than a single cate-
gory. For example, suppose a graph G containing
five nodes and seven arcs that define exactly three
strongly connected triangles, ABC,ABD,ACE.
The arc (A,B) yields a category {A,B,C,D},
and the arc (A,C) yields a category {A,C,B,E}.
Nodes A and C appear in both categories. Cate-
gory merging is described below.

This stage requires an O(1) computation for
each bidirectional arc of each node, so its com-
plexity is O(|V | × AverageDegree(G)) =
O(|V |).

4.2 Enhancing Category Quality: Category
Merging and Corpus Windowing

In order to cover as many words as possible, we
use the smallest clique, a single symmetric arc.
This creates redundant categories. We enhance the
quality of the categories by merging them and by
windowing on the corpus.

We use two simple merge heuristics. First,
if two categories are identical we treat them as
one. Second, given two categories Q,R, we merge
them iff there’s more than a 50% overlap between
them: (|Q

⋂
R| > |Q|/2) ∧ (|Q

⋂
R| > |R|/2).
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This could be added to the clique-set stage, but the
phrasing above is simpler to explain and imple-
ment.

In order to increase category quality and re-
move categories that are too context-specific, we
use a simple corpus windowing technique. In-
stead of running the algorithm of this section on
the whole corpus, we divide the corpus into win-
dows of equal size (see Section 5 for size deter-
mination) and perform the category discovery al-
gorithm of this section on each window indepen-
dently. Merging is also performed in each win-
dow separately. We now have a set of categories
for each window. For the final set, we select only
those categories that appear in at least two of the
windows. This technique reduces noise at the po-
tential cost of lowering coverage. However, the
numbers of categories discovered and words they
contain is still very large (see Section 5), so win-
dowing achieves higher precision without hurting
coverage in practice.

The complexity of the merge stage is O(|V |)
times the average number of categories per word
times the average number of words per category.
The latter two are small in practice, so complexity
amounts to O(|V |).

5 Evaluation

Lexical acquisition algorithms are notoriously
hard to evaluate. We have attempted to be as
thorough as possible, using several languages and
both automatic and human evaluation. In the auto-
matic part, we followed as closely as possible the
methodology and data used in previous work, so
that meaningful comparisons could be made.

5.1 Languages and Corpora

We performed in-depth evaluation on two lan-
guages, English and Russian, using three cor-
pora, two for English and one for Russian. The
first English corpus is the BNC, containing about
100M words. The second English corpus, Dmoz
(Gabrilovich and Markovitch, 2005), is a web cor-
pus obtained by crawling and cleaning the URLs
in the Open Directory Project (dmoz.org), result-
ing in 68GB containing about 8.2G words from
50M web pages.

The Russian corpus was assembled from many
web sites and carefully filtered for duplicates, to
yield 33GB and 4G words. It is a varied corpus
comprising literature, technical texts, news, news-

groups, etc.
As a preliminary sanity-check test we also ap-

plied our method to smaller corpora in Danish,
Irish and Portuguese, and noted some substantial
similarities in the discovered patterns. For exam-
ple, in all 5 languages the pattern corresponding to
‘x and y’ was among the 50 selected.

5.2 Thresholds, Statistics and Examples

The thresholds TH , TC , TP , ZT , ZB , were deter-
mined by memory size considerations: we com-
puted thresholds that would give us the maximal
number of words, while enabling the pattern ac-
cess table to reside in main memory. The resulting
numbers are 100, 50, 20, 100, 100.

Corpus window size was determined by starting
from a very small window size, defining at ran-
dom a single window of that size, running the al-
gorithm, and iterating this process with increased
window sizes until reaching a desired vocabulary
category participation percentage (i.e., x% of the
different words in the corpus assigned into cate-
gories. We used 5%.) This process has only a
negligible effect on running times, because each
iteration is run only on a single window, not on
the whole corpus.

The table below gives some statistics. V is the
total number of different words in the corpus. W
is the number of words belonging to at least one
of our categories. C is the number of categories
(after merging and windowing.) AS is the aver-
age category size. Running times are in minutes
on a 2.53Ghz Pentium 4 XP machine with 1GB
memory. Note how small they are, when com-
pared to (Pantel et al, 2004), which took 4 days
for a smaller corpus using the same CPU.

V W C AS Time
Dmoz 16M 330K 142K 12.8 93m
BNC 337K 25K 9.6K 10.2 6.8m
Russian 10M 235K 115K 11.6 60m

Among the patterns discovered are the ubiqui-
tous ‘x and y’, ‘x or y’ and many patterns con-
taining them. Additional patterns include ‘from x
to y’, ‘x and/or y’ (punctuation is treated here as
white space), ‘x and a y’, and ‘neither x nor y’.

We discover categories of different parts of
speech. Among the noun ones, there are many
whose precision is 100%: 37 countries, 18 lan-
guages, 51 chemical elements, 62 animals, 28
types of meat, 19 fruits, 32 university names, etc.
A nice verb category example is {dive, snorkel,
swim, float, surf, sail, canoe, kayak, paddle, tube,
drift}. A nice adjective example is {amazing,
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awesome, fascinating, inspiring, inspirational, ex-
citing, fantastic, breathtaking, gorgeous.}

5.3 Human Judgment Evaluation

The purpose of the human evaluation was dual: to
assess the quality of the discovered categories in
terms of precision, and to compare with those ob-
tained by a baseline clustering algorithm.

For the baseline, we implemented k-means as
follows. We have removed stopwords from the
corpus, and then used as features the words which
appear before or after the target word. In the calcu-
lation of feature values and inter-vector distances,
and in the removal of less informative features, we
have strictly followed (Pantel and Lin, 2002). We
ran the algorithm 10 times using k = 500 with
randomly selected centroids, producing 5000 clus-
ters. We then merged the resulting clusters us-
ing the same 50% overlap criterion as in our algo-
rithm. The result included 3090, 2116, and 3206
clusters for Dmoz, BNC and Russian respectively.

We used 8 subjects for evaluation of the English
categories and 15 subjects for evaluation of the
Russian ones. In order to assess the subjects’ re-
liability, we also included random categories (see
below.)

The experiment contained two parts. In Part
I, subjects were given 40 triplets of words and
were asked to rank them using the following scale:
(1) the words definitely share a significant part
of their meaning; (2) the words have a shared
meaning but only in some context; (3) the words
have a shared meaning only under a very un-
usual context/situation; (4) the words do not share
any meaning; (5) I am not familiar enough with
some/all of the words.

The 40 triplets were obtained as follows. 20 of
our categories were selected at random from the
non-overlapping categories we have discovered,
and three words were selected from each of these
at random. 10 triplets were selected in the same
manner from the categories produced by k-means,
and 10 triplets were generated by random selec-
tion of content words from the same window in
the corpus.

In Part II, subjects were given the full categories
of the triplets that were graded as 1 or 2 in Part I
(that is, the full ‘good’ categories in terms of shar-
ing of meaning.) They were asked to grade the
categories from 1 (worst) to 10 (best) according to
how much the full category had met the expecta-

tions they had when seeing only the triplet.
Results are given in Table 1. The first line gives

the average percentage of triplets that were given
scores of 1 or 2 (that is, ‘significant shared mean-
ing’.) The 2nd line gives the average score of
a triplet (1 is best.) In these lines scores of 5
were not counted. The 3rd line gives the average
score given to a full category (10 is best.) Inter-
evaluator Kappa between scores 1,2 and 3,4 was
0.56, 0.67 and 0.72 for Dmoz, BNC and Russian
respectively.

Our algorithm clearly outperforms k-means,
which outperforms random. We believe that the
Russian results are better because the percentage
of native speakers among our subjects for Russian
was larger than that for English.

5.4 WordNet-Based Evaluation

The major guideline in this part of the evalua-
tion was to compare our results with previous
work having a similar goal (Widdows and Dorow,
2002). We have followed their methodology as
best as we could, using the same WordNet (WN)
categories and the same corpus (BNC) in addition
to the Dmoz and Russian corpora5 .

The evaluation method is as follows. We took
the exact 10 WN subsets referred to as ‘subjects’
in (Widdows and Dorow, 2002), and removed all
multi-word items. We now selected at random 10
pairs of words from each subject. For each pair,
we found the largest of our discovered categories
containing it (if there isn’t one, we pick another
pair. This is valid because our Recall is obviously
not even close to 100%, so if we did not pick an-
other pair we would seriously harm the validity of
the evaluation.) The various morphological forms
of the same word were treated as one during the
evaluation.

The only difference from the (Widdows and
Dorow, 2002) experiment is the usage of pairs
rather than single words. We did this in order to
disambiguate our categories. This was not needed
in (Widdows and Dorow, 2002) because they had
directly accessed the word graph, which may be
an advantage in some applications.

The Russian evaluation posed a bit of a prob-
lem because the Russian WordNet is not readily
available and its coverage is rather small. Fortu-
nately, the subject list is such that WordNet words

5(Widdows and Dorow, 2002) also reports results for an
LSA-based clustering algorithm that are vastly inferior to the
pattern-based ones.
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Dmoz BNC Russian
us k-means random us k-means random us k-means random

avg ‘shared meaning’ (%) 80.53 18.25 1.43 86.87 8.52 0.00 95.00 18.96 7.33
avg triplet score (1-4) 1.74 3.34 3.88 1.56 3.61 3.94 1.34 3.32 3.76
avg category score (1-10) 9.27 4.00 1.8 9.31 4.50 0.00 8.50 4.66 3.32

Table 1: Results of evaluation by human judgment of three data sets (ours, that obtained by k-means, and
random categories) on the three corpora. See text for detailed explanations.

could be translated unambiguously to Russian and
words in our discovered categories could be trans-
lated unambiguously into English. This was the
methodology taken.

For each found category C containing N words,
we computed the following (see Table 2): (1) Pre-
cision: the number of words present in both C and
WN divided by N ; (2) Precision*: the number of
correct words divided by N . Correct words are ei-
ther words that appear in the WN subtree, or words
whose entry in the American Heritage Dictionary
or the Britannica directly defines them as belong-
ing to the given class (e.g., ‘keyboard’ is defined
as ‘a piano’; ‘mitt’ is defined by ‘a type of glove’.)
This was done in order to overcome the relative
poorness of WordNet; (3) Recall: the number of
words present in both C and WN divided by the
number of (single) words in WN; (4) The num-
ber of correctly discovered words (New) that are
not in WN. The Table also shows the number of
WN words (:WN), in order to get a feeling by how
much WN could be improved here. For each sub-
ject, we show the average over the 10 randomly
selected pairs.

Table 2 also shows the average of each measure
over the subjects, and the two precision measures
when computed on the total set of WN words. The
(uncorrected) precision is the only metric given in
(Widdows and Dorow, 2002), who reported 82%
(for the BNC.) Our method gives 90.47% for this
metric on the same corpus.

5.5 Summary

Our human-evaluated and WordNet-based results
are better than the baseline and previous work re-
spectively. Both are also of good standalone qual-
ity. Clearly, evaluation methodology for lexical
acquisition tasks should be improved, which is an
interesting research direction in itself.

Examining our categories at random, we found
a nice example that shows how difficult it is to
evaluate the task and how useful automatic cate-
gory discovery can be, as opposed to manual def-
inition. Consider the following category, discov-

ered in the Dmoz corpus: {nightcrawlers, chicken,
shrimp, liver, leeches}. We did not know why
these words were grouped together; if asked in an
evaluation, we would give the category a very low
score. However, after some web search, we found
that this is a ‘fish bait’ category, especially suitable
for catfish.

6 Discussion

We have presented a novel method for pattern-
based discovery of lexical semantic categories.
It is the first pattern-based lexical acquisition
method that is fully unsupervised, requiring no
corpus annotation or manually provided patterns
or words. Pattern candidates are discovered us-
ing meta-patterns of high frequency and content
words, and symmetric patterns are discovered us-
ing simple graph-theoretic measures. Categories
are generated using a novel graph clique-set algo-
rithm. The only other fully unsupervised lexical
category acquisition approach is based on decom-
position of a matrix defined by context feature vec-
tors, and it has not been shown to scale well yet.
Our algorithm was evaluated using both human
judgment and automatic comparisons with Word-
Net, and results were superior to previous work
(although it used a POS tagged corpus) and more
efficient computationally. Our algorithm is also
easy to implement.

Computational efficiency and specifically lack
of annotation are important criteria, because they
allow usage of huge corpora, which are presently
becoming available and growing in size.

There are many directions to pursue in the fu-
ture: (1) support multi-word lexical items; (2) in-
crease category quality by improved merge algo-
rithms; (3) discover various relationships (e.g., hy-
ponymy) between the discovered categories; (4)
discover finer inter-word relationships, such as
verb selection preferences; (5) study various prop-
erties of discovered patterns in a detailed manner;
and (6) adapt the algorithm to morphologically
rich languages.
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Subject Prec. Prec.* Rec. New:WN
Dmoz

instruments 79.25 89.34 34.54 7.2:163
vehicles 80.17 86.84 18.35 6.3:407
academic 78.78 89.32 30.83 15.5:396
body parts 73.85 79.29 5.95 9.1:1491
foodstuff 83.94 90.51 28.41 26.3:1209
clothes 83.41 89.43 10.65 4.5:539
tools 83.99 89.91 21.69 4.3:219
places 76.96 84.45 25.82 6.3:232
crimes 76.32 86.99 31.86 4.7:102
diseases 81.33 88.99 19.58 6.8:332
set avg 79.80 87.51 22.77 9.1:509
all words 79.32 86.94

BNC
instruments 92.68 95.43 9.51 0.6:163
vehicles 94.16 95.23 3.81 0.2:407
academic 93.45 96.10 12.02 0.6:396
body parts 96.38 97.60 0.97 0.3:1491
foodstuff 93.76 94.36 3.60 0.6:1209
cloths 93.49 94.90 4.04 0.3:539
tools 96.84 97.24 6.67 0.1:219
places 87.88 97.25 6.42 1.5:232
crimes 83.79 91.99 19.61 2.6:102
diseases 95.16 97.14 5.54 0.5:332
set avg 92.76 95.72 7.22 0.73:509
all words 90.47 93.80

Russian
instruments 82.46 89.09 25.28 3.4:163
vehicles 83.16 89.58 16.31 5.1:407
academic 87.27 92.92 15.71 4.9:396
body parts 81.42 89.68 3.94 8.3:1491
foodstuff 80.34 89.23 13.41 24.3:1209
clothes 82.47 87.75 15.94 5.1:539
tools 79.69 86.98 21.14 3.7:219
places 82.25 90.20 33.66 8.5:232
crimes 84.77 93.26 34.22 3.3:102
diseases 80.11 87.70 20.69 7.7:332
set avg 82.39 89.64 20.03 7.43:509
all words 80.67 89.17

Table 2: WordNet evaluation. Note the BNC ‘all
words’ precision of 90.47%. This metric was re-
ported to be 82% in (Widdows and Dorow, 2002).

It should be noted that our algorithm can be
viewed as one for automatic discovery of word
senses, because it allows a word to participate in
more than a single category. When merged prop-
erly, the different categories containing a word can
be viewed as the set of its senses. We are planning
an evaluation according to this measure after im-
proving the merge stage.
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Abstract

We present BAYESUM (for “Bayesian
summarization”), a model for sentence ex-
traction in query-focused summarization.
BAYESUM leverages the common case in
which multiple documents are relevant to a
single query. Using these documents as re-
inforcement for query terms, BAYESUM is
not afflicted by the paucity of information
in short queries. We show that approxi-
mate inference in BAYESUM is possible
on large data sets and results in a state-
of-the-art summarization system. Further-
more, we show how BAYESUM can be
understood as a justified query expansion
technique in the language modeling for IR
framework.

1 Introduction

We describe BAYESUM, an algorithm for perform-
ing query-focused summarization in the common
case that there are many relevant documents for a
given query. Given a query and a collection of rel-
evant documents, our algorithm functions by ask-
ing itself the following question: what is it about
these relevant documents that differentiates them
from the non-relevant documents? BAYESUM can
be seen as providing a statistical formulation of
this exact question.

The key requirement of BAYESUM is that mul-
tiple relevant documents are known for the query
in question. This is not a severe limitation. In two
well-studied problems, it is the de-facto standard.
In standard multidocument summarization (with
or without a query), we have access to known rel-
evant documents for some user need. Similarly, in
the case of a web-search application, an underly-
ing IR engine will retrieve multiple (presumably)

relevant documents for a given query. For both of
these tasks, BAYESUM performs well, even when
the underlying retrieval model is noisy.

The idea of leveraging known relevant docu-
ments is known as query expansion in the informa-
tion retrieval community, where it has been shown
to be successful in ad hoc retrieval tasks. Viewed
from the perspective of IR, our work can be inter-
preted in two ways. First, it can be seen as an ap-
plication of query expansion to the summarization
task (or, in IR terminology, passage retrieval); see
(Liu and Croft, 2002; Murdock and Croft, 2005).
Second, and more importantly, it can be seen as a
method for query expansion in a non-ad-hoc man-
ner. That is, BAYESUM is a statistically justified
query expansion method in the language modeling
for IR framework (Ponte and Croft, 1998).

2 Bayesian Query-Focused
Summarization

In this section, we describe our Bayesian query-
focused summarization model (BAYESUM). This
task is very similar to the standard ad-hoc IR task,
with the important distinction that we are compar-
ing query models against sentence models, rather
than against document models. The shortness of
sentences means that one must do a good job of
creating the query models.

To maintain generality, so that our model is ap-
plicable to any problem for which multiple rele-
vant documents are known for a query, we formu-
late our model in terms of relevance judgments.
For a collection of D documents and Q queries,
we assume we have a D × Q binary matrix r,
where rdq = 1 if an only if document d is rele-
vant to query q. In multidocument summarization,
rdq will be 1 exactly when d is in the document set
corresponding to query q; in search-engine sum-
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marization, it will be 1 exactly when d is returned
by the search engine for query q.

2.1 Language Modeling for IR

BAYESUM is built on the concept of language
models for information retrieval. The idea behind
the language modeling techniques used in IR is
to represent either queries or documents (or both)
as probability distributions, and then use stan-
dard probabilistic techniques for comparing them.
These probability distributions are almost always
“bag of words” distributions that assign a proba-
bility to words from a fixed vocabulary V .

One approach is to build a probability distri-
bution for a given document, pd(·), and to look
at the probability of a query under that distribu-
tion: pd(q). Documents are ranked according to
how likely they make the query (Ponte and Croft,
1998). Other researchers have built probability
distributions over queries pq(·) and ranked doc-
uments according to how likely they look under
the query model: pq(d) (Lafferty and Zhai, 2001).
A third approach builds a probability distribution
pq(·) for the query, a probability distribution pd(·)
for the document and then measures the similarity
between these two distributions using KL diver-
gence (Lavrenko et al., 2002):

KL (pq || pd) =
∑

w∈V

pq(w) log
pq(w)

pd(w)
(1)

The KL divergence between two probability
distributions is zero when they are identical and
otherwise strictly positive. It implicitly assumes
that both distributions pq and pd have the same
support: they assign non-zero probability to ex-
actly the same subset of V; in order to account
for this, the distributions pq and pd are smoothed
against a background general English model. This
final mode—the KL model—is the one on which
BAYESUM is based.

2.2 Bayesian Statistical Model

In the language of information retrieval, the query-
focused sentence extraction task boils down to es-
timating a good query model, pq(·). Once we have
such a model, we could estimate sentence models
for each sentence in a relevant document, and rank
the sentences according to Eq (1).

The BAYESUM system is based on the follow-
ing model: we hypothesize that a sentence ap-
pears in a document because it is relevant to some

query, because it provides background informa-
tion about the document (but is not relevant to a
known query) or simply because it contains use-
less, general English filler. Similarly, we model
each word as appearing for one of those purposes.
More specifically, our model assumes that each
word can be assigned a discrete, exact source, such
as “this word is relevant to query q1” or “this word
is general English.” At the sentence level, how-
ever, sentences are assigned degrees: “this sen-
tence is 60% about query q1, 30% background
document information, and 10% general English.”

To model this, we define a general English
language model, pG(·) to capture the English
filler. Furthermore, for each document dk, we
define a background document language model,
pdk(·); similarly, for each query qj , we define
a query-specific language model pqj (·). Every
word in a document dk is modeled as being gen-
erated from a mixture of pG, pdk and {pqj :
query qj is relevant to document dk}. Supposing
there are J total queries and K total documents,
we say that the nth word from the sth sentence
in document d, wdsn, has a corresponding hidden
variable, zdsn that specifies exactly which of these
distributions is used to generate that one word. In
particular, zdsn is a vector of length 1 + J + K,
where exactly one element is 1 and the rest are 0.

At the sentence level, we introduce a second
layer of hidden variables. For the sth sentence in
document d, we let πds be a vector also of length
1 + J + K that represents our degree of belief
that this sentence came from any of the models.
The πdss lie in the J + K-dimensional simplex
∆J+K = {θ = 〈θ1, . . . , θJ+K+1〉 : (∀i) θi ≥
0,

∑

i θi = 1}. The interpretation of the π vari-
ables is that if the “general English” component of
π is 0.9, then 90% of the words in this sentence
will be general English. The π and z variables are
constrained so that a sentence cannot be generated
by a document language model other than its own
document and cannot be generated by a query lan-
guage model for a query to which it is not relevant.

Since the πs are unknown, and it is unlikely that
there is a “true” correct value, we place a corpus-
level prior on them. Since π is a multinomial dis-
tribution over its corresponding zs, it is natural to
use a Dirichlet distribution as a prior over π. A
Dirichlet distribution is parameterized by a vector
α of equal length to the corresponding multino-
mial parameter, again with the positivity restric-
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tion, but no longer required to sum to one. It
has continuous density over a variable θ1, . . . , θI

given by: Dir(θ | α) =
Γ(

∑

i αi)
∏

i Γ(αi)

∏

i θ
αi−1
i . The

first term is a normalization term that ensures that
∫

∆I dθ Dir(θ | α) = 1.

2.3 Generative Story

The generative story for our model defines a distri-
bution over a corpus of queries, {qj}1:J , and doc-
uments, {dk}1:K , as follows:

1. For each query j = 1 . . . J : Generate each
word qjn in qj by pqj (qjn)

2. For each document k = 1 . . .K and each
sentence s in document k:

(a) Select the current sentence degree πks

by Dir(πks | α)rk(πks)
(b) For each word wksn in sentence s:

• Select the word source zksn accord-
ing to Mult(z | πks)

• Generate the word wksn by






pG(wksn) if zksn = 0
pdk(wksn) if zksn = k + 1
pqj (wksn) if zksn = j + K + 1

We used r to denote relevance judgments:
rk(π) = 0 if any document component of π ex-
cept the one corresponding to k is non-zero, or if
any query component of π except those queries to
which document k is deemed relevant is non-zero
(this prevents a document using the “wrong” doc-
ument or query components). We have further as-
sumed that the z vector is laid out so that z0 cor-
responds to general English, zk+1 corresponds to
document dk for 0 ≤ j < J and that zj+K+1 cor-
responds to query qj for 0 ≤ k < K.

2.4 Graphical Model

The graphical model corresponding to this gener-
ative story is in Figure 1. This model depicts the
four known parameters in square boxes (α, pQ, pD

and pG) with the three observed random variables
in shaded circles (the queries q, the relevance judg-
ments r and the words w) and two unobserved ran-
dom variables in empty circles (the word-level in-
dicator variables z and the sentence level degrees
π). The rounded plates denote replication: there
are J queries and K documents, containing S sen-
tences in a given document and N words in a given
sentence. The joint probability over the observed
random variables is given in Eq (2):

w

z

rq

pQ

pG

pD

K

J

N

π

α

S

Figure 1: Graphical model for the Bayesian
Query-Focused Summarization Model.

p (q1:J , r, d1:K) =

[

∏

j

∏

n

pqj (qjn)

]

× (2)

[

∏

k

∏

s

∫

∆
dπks p (πks | α, r)

∏

n

∑

zksn

p (zksn | πks) p (wksn | zksn)

]

This expression computes the probability of the
data by integrating out the unknown variables. In
the case of the π variables, this is accomplished
by integrating over ∆, the multinomial simplex,
according to the prior distribution given by α. In
the case of the z variables, this is accomplished by
summing over all possible (discrete) values. The
final word probability is conditioned on the z value
by selecting the appropriate distribution from pG,
pD and pQ. Computing this expression and finding
optimal model parameters is intractable due to the
coupling of the variables under the integral.

3 Statistical Inference in BAYESUM

Bayesian inference problems often give rise to in-
tractable integrals, and a large variety of tech-
niques have been proposed to deal with this. The
most popular are Markov Chain Monte Carlo
(MCMC), the Laplace (or saddle-point) approxi-
mation and the variational approximation. A third,
less common, but very effective technique, espe-
cially for dealing with mixture models, is expec-
tation propagation (Minka, 2001). In this paper,
we will focus on expectation propagation; exper-
iments not reported here have shown variational
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EM to perform comparably but take roughly 50%
longer to converge.

Expectation propagation (EP) is an inference
technique introduced by Minka (2001) as a gener-
alization of both belief propagation and assumed
density filtering. In his thesis, Minka showed
that EP is very effective in mixture modeling
problems, and later demonstrated its superiority
to variational techniques in the Generative As-
pect Model (Minka and Lafferty, 2003). The key
idea is to compute an integral of a product of
terms by iteratively applying a sequence of “dele-
tion/inclusion” steps. Given an integral of the
form:

∫

∆ dπ p(π)
∏

n tn(π), EP approximates
each term tn by a simpler term t̃n, giving Eq (3).

∫

∆
dπ q(π) q(π) = p(π)

∏

n

t̃n(π) (3)

In each deletion/inclusion step, one of the ap-
proximate terms is deleted from q(·), leaving
q−n(·) = q(·)/t̃n(·). A new approximation for
tn(·) is computed so that tn(·)q−n(·) has the same
integral, mean and variance as t̃n(·)q−n(·). This
new approximation, t̃n(·) is then included back
into the full expression for q(·) and the process re-
peats. This algorithm always has a fixed point and
there are methods for ensuring that the approxi-
mation remains in a location where the integral is
well-defined. Unlike variational EM, the approx-
imation given by EP is global, and often leads to
much more reliable estimates of the true integral.

In the case of our model, we follow Minka and
Lafferty (2003), who adapts latent Dirichlet allo-
cation of Blei et al. (2003) to EP. Due to space
constraints, we omit the inference algorithms and
instead direct the interested reader to the descrip-
tion given by Minka and Lafferty (2003).

4 Search-Engine Experiments

The first experiments we run are for query-focused
single document summarization, where relevant
documents are returned from a search engine, and
a short summary is desired of each document.

4.1 Data

The data we use to train and test BAYESUM

is drawn from the Text REtrieval Conference
(TREC) competitions. This data set consists of
queries, documents and relevance judgments, ex-
actly as required by our model. The queries are

typically broken down into four fields of increas-
ing length: the title (3-4 words), the summary (1
sentence), the narrative (2-4 sentences) and the
concepts (a list of keywords). Obviously, one
would expect that the longer the query, the better
a model would be able to do, and this is borne out
experimentally (Section 4.5).

Of the TREC data, we have trained our model
on 350 queries (queries numbered 51-350 and
401-450) and all corresponding relevant docu-
ments. This amounts to roughly 43k documents,
2.1m sentences and 65.8m words. The mean
number of relevant documents per query is 137
and the median is 81 (the most prolific query has
968 relevant documents). On the other hand, each
document is relevant to, on average, 1.11 queries
(the median is 5.5 and the most generally relevant
document is relevant to 20 different queries). In all
cases, we apply stemming using the Porter stem-
mer; for all other models, we remove stop words.

In order to evaluate our model, we had
seven human judges manually perform the query-
focused sentence extraction task. The judges were
supplied with the full TREC query and a single
document relevant to that query, and were asked to
select up to four sentences from the document that
best met the needs given by the query. Each judge
annotated 25 queries with some overlap to allow
for an evaluation of inter-annotator agreement,
yielding annotations for a total of 166 unique
query/document pairs. On the doubly annotated
data, we computed the inter-annotator agreement
using the kappa measure. The kappa value found
was 0.58, which is low, but not abysmal (also,
keep in mind that this is computed over only 25
of the 166 examples).

4.2 Evaluation Criteria

Since there are differing numbers of sentences se-
lected per document by the human judges, one
cannot compute precision and recall; instead, we
opt for other standard IR performance measures.
We consider three related criteria: mean average
precision (MAP), mean reciprocal rank (MRR)
and precision at 2 (P@2). MAP is computed by
calculating precision at every sentence as ordered
by the system up until all relevant sentences are se-
lected and averaged. MRR is the reciprocal of the
rank of the first relevant sentence. P@2 is the pre-
cision computed at the first point that two relevant
sentences have been selected (in the rare case that
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humans selected only one sentence, we use P@1).

4.3 Baseline Models

As baselines, we consider four strawman models
and two state-of-the-art information retrieval mod-
els. The first strawman, RANDOM ranks sentences
randomly. The second strawman, POSITION,
ranks sentences according to their absolute posi-
tion (in the context of non-query-focused summa-
rization, this is an incredibly powerful baseline).
The third and fourth models are based on the vec-
tor space interpretation of IR. The third model,
JACCARD, uses standard Jaccard distance score
(intersection over union) between each sentence
and the query to rank sentences. The fourth, CO-
SINE, uses TF-IDF weighted cosine similarity.

The two state-of-the-art IR models used as com-
parative systems are based on the language mod-
eling framework described in Section 2.1. These
systems compute a language model for each query
and for each sentence in a document. Sentences
are then ranked according to the KL divergence
between the query model and the sentence model,
smoothed against a general model estimated from
the entire collection, as described in the case of
document retrieval by Lavrenko et al. (2002). This
is the first system we compare against, called KL.

The second true system, KL+REL is based on
augmenting the KL system with blind relevance
feedback (query expansion). Specifically, we first
run each query against the document set returned
by the relevance judgments and retrieve the top n
sentences. We then expand the query by interpo-
lating the original query model with a query model
estimated on these sentences. This serves as a
method of query expansion. We ran experiments
ranging n in {5, 10, 25, 50, 100} and the interpo-
lation parameter λ in {0.2, 0.4, 0.6, 0.8} and used
oracle selection (on MRR) to choose the values
that performed best (the results are thus overly op-
timistic). These values were n = 25 and λ = 0.4.

Of all the systems compared, only BAYESUM

and the KL+REL model use the relevance judg-
ments; however, they both have access to exactly
the same information. The other models only run
on the subset of the data used for evaluation (the
corpus language model for the KL system and the
IDF values for the COSINE model are computed
on the full data set). EP ran for 2.5 hours.

MAP MRR P@2
RANDOM 19.9 37.3 16.6
POSITION 24.8 41.6 19.9
JACCARD 17.9 29.3 16.7
COSINE 29.6 50.3 23.7
KL 36.6 64.1 27.6
KL+REL 36.3 62.9 29.2
BAYESUM 44.1 70.8 33.6

Table 1: Empirical results for the baseline models
as well as BAYESUM, when all query fields are
used.

4.4 Performance on all Query Fields

Our first evaluation compares results when all
query fields are used (title, summary, description
and concepts1). These results are shown in Ta-
ble 1. As we can see from these results, the JAC-
CARD system alone is not sufficient to beat the
position-based baseline. The COSINE does beat
the position baseline by a bit of a margin (5 points
better in MAP, 9 points in MRR and 4 points in
P@2), and is in turn beaten by the KL system
(which is 7 points, 14 points and 4 points better
in MAP, MRR and P@2, respectively). Blind rel-
evance feedback (parameters of which were cho-
sen by an oracle to maximize the P@2 metric) ac-
tually hurts MAP and MRR performance by 0.3
and 1.2, respectively, and increases P@2 by 1.5.
Over the best performing baseline system (either
KL or KL+REL), BAYESUM wins by a margin of
7.5 points in MAP, 6.7 for MRR and 4.4 for P@2.

4.5 Varying Query Fields

Our next experimental comparison has to do with
reducing the amount of information given in the
query. In Table 2, we show the performance
of the KL, KL-REL and BAYESUM systems, as
we use different query fields. There are several
things to notice in these results. First, the stan-
dard KL model without blind relevance feedback
performs worse than the position-based model
when only the 3-4 word title is available. Sec-
ond, BAYESUM using only the title outperform
the KL model with relevance feedback using all
fields. In fact, one can apply BAYESUM without
using any of the query fields; in this case, only the
relevance judgments are available to make sense

1A reviewer pointed out that concepts were later removed
from TREC because they were “too good.” Section 4.5 con-
siders the case without the concepts field.
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MAP MRR P@2
POSITION 24.8 41.6 19.9
Title KL 19.9 32.6 17.8

KL-Rel 31.9 53.8 26.1
BAYESUM 41.1 65.7 31.6

+Description KL 31.5 58.3 24.1
KL-Rel 32.6 55.0 26.2
BAYESUM 40.9 66.9 31.0

+Summary KL 31.6 56.9 23.8
KL-Rel 34.2 48.5 27.0
BAYESUM 42.0 67.8 31.8

+Concepts KL 36.7 64.2 27.6
KL-Rel 36.3 62.9 29.2
BAYESUM 44.1 70.8 33.6

No Query BAYESUM 39.4 64.7 30.4

Table 2: Empirical results for the position-based
model, the KL-based models and BAYESUM, with
different inputs.

of what the query might be. Even in this cir-
cumstance, BAYESUM achieves a MAP of 39.4,
an MRR of 64.7 and a P@2 of 30.4, still bet-
ter across the board than KL-REL with all query
fields. While initially this seems counterintuitive,
it is actually not so unreasonable: there is signifi-
cantly more information available in several hun-
dred positive relevance judgments than in a few
sentences. However, the simple blind relevance
feedback mechanism so popular in IR is unable to
adequately model this.

With the exception of the KL model without rel-
evance feedback, adding the description on top of
the title does not seem to make any difference for
any of the models (and, in fact, occasionally hurts
according to some metrics). Adding the summary
improves performance in most cases, but not sig-
nificantly. Adding concepts tends to improve re-
sults slightly more substantially than any other.

4.6 Noisy Relevance Judgments

Our model hinges on the assumption that, for a
given query, we have access to a collection of
known relevant documents. In most real-world
cases, this assumption is violated. Even in multi-
document summarization as run in the DUC com-
petitions, the assumption of access to a collection
of documents all relevant to a user need is unreal-
istic. In the real world, we will have to deal with
document collections that “accidentally” contain
irrelevant documents. The experiments in this sec-
tion show that BAYESUM is comparatively robust.

For this experiment, we use the IR engine that
performed best in the TREC 1 evaluation: In-
query (Callan et al., 1992). We used the offi-
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Figure 2: Performance with noisy relevance judg-
ments. The X-axis is the R-precision of the IR
engine and the Y-axis is the summarization per-
formance in MAP. Solid lines are BAYESUM, dot-
ted lines are KL-Rel. Blue/stars indicate title only,
red/circles indicated title+description+summary
and black/pluses indicate all fields.

cial TREC results of Inquery on the subset of
the TREC corpus we consider. The Inquery R-
precision on this task is 0.39 using title only, and
0.51 using all fields. In order to obtain curves
as the IR engine improves, we have linearly in-
terpolated the Inquery rankings with the true rel-
evance judgments. By tweaking the interpolation
parameter, we obtain an IR engine with improv-
ing performance, but with a reasonable bias. We
have run both BAYESUM and KL-Rel on the rel-
evance judgments obtained by this method for six
values of the interpolation parameter. The results
are shown in Figure 2.

As we can observe from the figure, the solid
lines (BAYESUM) are always above the dotted
lines (KL-Rel). Considering the KL-Rel results
alone, we can see that for a non-perfect IR engine,
it makes little difference what query fields we use
for the summarization task: they all obtain roughly
equal scores. This is because the performance in
KL-Rel is dominated by the performance of the IR
engine. Looking only at the BAYESUM results, we
can see a much stronger, and perhaps surprising
difference. For an imperfect IR system, it is better
to use only the title than to use the title, description
and summary for the summarization component.
We believe this is because the title is more on topic
than the other fields, which contain terms like “A
relevant document should describe . . . .” Never-
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theless, BAYESUM has a more upward trend than
KL-Rel, which indicates that improved IR will re-
sult in improved summarization for BAYESUM but
not for KL-Rel.

5 Multidocument Experiments

We present two results using BAYESUM in the
multidocument summarization settings, based on
the official results from the Multilingual Summa-
rization Evaluation (MSE) and Document Under-
standing Conference (DUC) competitions in 2005.

5.1 Performance at MSE 2005

We participated in the Multilingual Summariza-
tion Evaluation (MSE) workshop with a system
based on BAYESUM. The task for this competi-
tion was generic (no query) multidocument sum-
marization. Fortunately, not having a query is
not a hindrance to our model. To account for the
redundancy present in document collections, we
applied a greedy selection technique that selects
sentences central to the document cluster but far
from previously selected sentences (Daumé III and
Marcu, 2005a). In MSE, our system performed
very well. According to the human “pyramid”
evaluation, our system came first with a score of
0.529; the next best score was 0.489. In the au-
tomatic “Basic Element” evaluation, our system
scored 0.0704 (with a 95% confidence interval of
[0.0429, 0.1057]), which was the third best score
on a site basis (out of 10 sites), and was not statis-
tically significantly different from the best system,
which scored 0.0981.

5.2 Performance at DUC 2005

We also participated in the Document Understand-
ing Conference (DUC) competition. The chosen
task for DUC was query-focused multidocument
summarization. We entered a nearly identical sys-
tem to DUC as to MSE, with an additional rule-
based sentence compression component (Daumé
III and Marcu, 2005b). Human evaluators consid-
ered both responsiveness (how well did the sum-
mary answer the query) and linguistic quality. Our
system achieved the highest responsiveness score
in the competition. We scored more poorly on the
linguistic quality evaluation, which (only 5 out of
about 30 systems performed worse); this is likely
due to the sentence compression we performed on
top of BAYESUM. On the automatic Rouge-based
evaluations, our system performed between third

and sixth (depending on the Rouge parameters),
but was never statistically significantly worse than
the best performing systems.

6 Discussion and Future Work

In this paper we have described a model for au-
tomatically generating a query-focused summary,
when one has access to multiple relevance judg-
ments. Our Bayesian Query-Focused Summariza-
tion model (BAYESUM) consistently outperforms
contending, state of the art information retrieval
models, even when it is forced to work with sig-
nificantly less information (either in the complex-
ity of the query terms or the quality of relevance
judgments documents). When we applied our sys-
tem as a stand-alone summarization model in the
2005 MSE and DUC tasks, we achieved among
the highest scores in the evaluation metrics. The
primary weakness of the model is that it currently
only operates in a purely extractive setting.

One question that arises is: why does
BAYESUM so strongly outperform KL-Rel, given
that BAYESUM can be seen as Bayesian formalism
for relevance feedback (query expansion)? Both
models have access to exactly the same informa-
tion: the queries and the true relevance judgments.
This is especially interesting due to the fact that
the two relevance feedback parameters for KL-
Rel were chosen optimally in our experiments, yet
BAYESUM consistently won out. One explanation
for this performance win is that BAYESUM pro-
vides a separate weight for each word, for each
query. This gives it significantly more flexibility.
Doing something similar with ad-hoc query ex-
pansion techniques is difficult due to the enormous
number of parameters; see, for instance, (Buckley
and Salton, 1995).

One significant advantage of working in the
Bayesian statistical framework is that it gives us
a straightforward way to integrate other sources of
knowledge into our model in a coherent manner.
One could consider, for instance, to extend this
model to the multi-document setting, where one
would need to explicitly model redundancy across
documents. Alternatively, one could include user
models to account for novelty or user preferences
along the lines of Zhang et al. (2002).

Our model is similar in spirit to the random-
walk summarization model (Otterbacher et al.,
2005). However, our model has several advan-
tages over this technique. First, our model has
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no tunable parameters: the random-walk method
has many (graph connectivity, various thresholds,
choice of similarity metrics, etc.). Moreover, since
our model is properly Bayesian, it is straightfor-
ward to extend it to model other aspects of the
problem, or to related problems. Doing so in a non
ad-hoc manner in the random-walk model would
be nearly impossible.

Another interesting avenue of future work is to
relax the bag-of-words assumption. Recent work
has shown, in related models, how this can be done
for moving from bag-of-words models to bag-of-
ngram models (Wallach, 2006); more interesting
than moving to ngrams would be to move to de-
pendency parse trees, which could likely be ac-
counted for in a similar fashion. One could also
potentially relax the assumption that the relevance
judgments are known, and attempt to integrate
them out as well, essentially simultaneously per-
forming IR and summarization.
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Abstract 

We present an unsupervised learning al-
gorithm that mines large text corpora for 
patterns that express implicit semantic re-
lations. For a given input word pair 

YX :  with some unspecified semantic 
relations, the corresponding output list of 
patterns mPP ,,1�  is ranked according 
to how well each pattern iP  expresses the 
relations between X  and Y . For exam-
ple, given ostrich=X  and bird=Y , the 
two highest ranking output patterns are 
“X  is the largest Y”  and “Y  such as the 
X” . The output patterns are intended to 
be useful for finding further pairs with 
the same relations, to support the con-
struction of lexicons, ontologies, and se-
mantic networks. The patterns are sorted 
by pertinence, where the pertinence of a 
pattern iP  for a word pair YX :  is the 
expected relational similarity between the 
given pair and typical pairs for iP . The 
algorithm is empirically evaluated on two 
tasks, solving multiple-choice SAT word 
analogy questions and classifying seman-
tic relations in noun-modifier pairs. On 
both tasks, the algorithm achieves state-
of-the-art results, performing signifi-
cantly better than several alternative pat-
tern ranking algorithms, based on tf-idf.  

1 Introduction 

In a widely cited paper, Hearst (1992) showed 
that the lexico-syntactic pattern “Y  such as the 
X”  can be used to mine large text corpora for 
word pairs YX :  in which X is a hyponym (type) 
of Y. For example, if we search in a large corpus 
using the pattern “Y  such as the X”  and we find 
the string “bird such as the ostrich”, then we can 
infer that “ostrich” is a hyponym of “bird”. Ber-
land and Charniak (1999) demonstrated that the 
patterns “Y’ s X”  and “X  of the Y”  can be used to 

mine corpora for pairs YX :  in which X is a 
meronym (part) of Y (e.g., “wheel of the car”). 

Here we consider the inverse of this problem: 
Given a word pair YX :  with some unspecified 
semantic relations, can we mine a large text cor-
pus for lexico-syntactic patterns that express the 
implicit relations between X  and Y ? For exam-
ple, if we are given the pair ostrich:bird, can we 
discover the pattern “Y  such as the X” ? We are 
particularly interested in discovering high quality 
patterns that are reliable for mining further word 
pairs with the same semantic relations. 

In our experiments, we use a corpus of web 
pages containing about 10105×  English words 
(Terra and Clarke, 2003). From co-occurrences 
of the pair ostrich:bird in this corpus, we can 
generate 516 patterns of the form “X  ... Y”  and 
452 patterns of the form “Y  ... X” . Most of these 
patterns are not very useful for text mining. The 
main challenge is to find a way of ranking the 
patterns, so that patterns like “Y  such as the X”  
are highly ranked. Another challenge is to find a 
way to empirically evaluate the performance of 
any such pattern ranking algorithm. 

For a given input word pair YX :  with some 
unspecified semantic relations, we rank the cor-
responding output list of patterns mPP ,,1�  in 
order of decreasing pertinence. The pertinence of 
a pattern iP  for a word pair YX :  is the expected 
relational similarity between the given pair and 
typical pairs that fit iP . We define pertinence 
more precisely in Section 2.  

Hearst (1992) suggests that her work may be 
useful for building a thesaurus. Berland and 
Charniak (1999) suggest their work may be use-
ful for building a lexicon or ontology, like 
WordNet. Our algorithm is also applicable to 
these tasks. Other potential applications and re-
lated problems are discussed in Section 3. 

To calculate pertinence, we must be able to 
measure relational similarity. Our measure is 
based on Latent Relational Analysis (Turney, 
2005). The details are given in Section 4. 

Given a word pair YX : , we want our algo-
rithm to rank the corresponding list of patterns 
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mPP ,,1�  according to their value for mining 
text, in support of semantic network construction 
and similar tasks. Unfortunately, it is difficult to 
measure performance on such tasks. Therefore 
our experiments are based on two tasks that pro-
vide objective performance measures.  

In Section 5, ranking algorithms are compared 
by their performance on solving multiple-choice 
SAT word analogy questions. In Section 6, they 
are compared by their performance on classify-
ing semantic relations in noun-modifier pairs. 
The experiments demonstrate that ranking by 
pertinence is significantly better than several al-
ternative pattern ranking algorithms, based on 
tf-idf. The performance of pertinence on these 
two tasks is slightly below the best performance 
that has been reported so far (Turney, 2005), but 
the difference is not statistically significant. 

We discuss the results in Section 7 and con-
clude in Section 8.  

2 Pertinence 

The relational similarity between two pairs of 
words, 11 :YX  and 22 :YX , is the degree to 
which their semantic relations are analogous. For 
example, mason:stone and carpenter:wood have 
a high degree of relational similarity. Measuring 
relational similarity will be discussed in Sec-
tion 4. For now, assume that we have a measure 
of the relational similarity between pairs of 
words, ℜ∈):,:(sim 2211r YXYX .  

Let }:,,:{ 11 nn YXYXW �=  be a set of word 
pairs and let },,{ 1 mPPP �=  be a set of patterns. 
The pertinence of pattern iP  to a word pair 

jj YX :  is the expected relational similarity be-
tween a word pair kk YX : , randomly selected 
from W  according to the probability distribution 

):(p ikk PYX , and the word pair jj YX : : 
),:(pertinence ijj PYX  

�
=

⋅=
n

k
kkjjikk YXYXPYX

1
r ):,:(sim):(p  

The conditional probability ):(p ikk PYX  can be 
interpreted as the degree to which the pair 

kk YX :  is representative (i.e., typical) of pairs 
that fit the pattern iP . That is, iP  is pertinent to 

jj YX :  if highly typical word pairs kk YX :  for 
the pattern iP  tend to be relationally similar to 

jj YX : .  
Pertinence tends to be highest with patterns 

that are unambiguous. The maximum value of 
),:(pertinence ijj PYX  is attained when the pair 

jj YX :  belongs to a cluster of highly similar 
pairs and the conditional probability distribution 

):(p ikk PYX  is concentrated on the cluster. An 
ambiguous pattern, with its probability spread 
over multiple clusters, will have less pertinence. 

If a pattern with high pertinence is used for 
text mining, it will tend to produce word pairs 
that are very similar to the given word pair; this 
follows from the definition of pertinence. We 
believe this definition is the first formal measure 
of quality for text mining patterns. 

Let ikf ,  be the number of occurrences in a 
corpus of the word pair kk YX :  with the pattern 

iP . We could estimate ):(p ikk PYX  as follows: 

�
=

=
n

j
ijikikk ffPYX

1
,,):(p  

Instead, we first estimate ):(p kki YXP : 

�
=

=
m

j
jkikkki ffYXP

1
,,):(p  

Then we apply Bayes’ Theorem: 

�
=

⋅

⋅
=

n

j

jjijj

kkikk
ikk

YXPYX

YXPYX
PYX

1

):p():p(

):p():p(
):p(  

We assume nYX jj 1):p( =  for all pairs in W : 

�
=

=
n

j
jjikkiikk YXPYXPPYX

1

):p():p():p(  

The use of Bayes’ Theorem and the assumption 
that nYX jj 1):p( =  for all word pairs is a way 
of smoothing the probability ):(p ikk PYX , simi-
lar to Laplace smoothing. 

3 Related Work 

Hearst (1992) describes a method for finding 
patterns like “Y  such as the X” , but her method 
requires human judgement. Berland and 
Charniak (1999) use Hearst’s manual procedure.  

Riloff and Jones (1999) use a mutual boot-
strapping technique that can find patterns auto-
matically, but the bootstrapping requires an ini-
tial seed of manually chosen examples for each 
class of words. Miller et al. (2000) propose an 
approach to relation extraction that was evalu-
ated in the Seventh Message Understanding Con-
ference (MUC7). Their algorithm requires la-
beled examples of each relation. Similarly, Ze-
lenko et al. (2003) use a supervised kernel 
method that requires labeled training examples. 
Agichtein and Gravano (2000) also require train-
ing examples for each relation. Brin (1998) uses 
bootstrapping from seed examples of author:title 
pairs to discover patterns for mining further pairs. 

Yangarber et al. (2000) and Yangarber (2003) 
present an algorithm that can find patterns auto-
matically, but it requires an initial seed of manu-
ally designed patterns for each semantic relation. 
Stevenson (2004) uses WordNet to extract rela-
tions from text, but also requires initial seed pat-
terns for each relation.  
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Lapata (2002) examines the task of expressing 
the implicit relations in nominalizations, which 
are noun compounds whose head noun is derived 
from a verb and whose modifier can be inter-
preted as an argument of the verb. In contrast 
with this work, our algorithm is not restricted to 
nominalizations. Section 6 shows that our algo-
rithm works with arbitrary noun compounds and 
the SAT questions in Section 5 include all nine 
possible pairings of nouns, verbs, and adjectives. 

As far as we know, our algorithm is the first 
unsupervised learning algorithm that can find 
patterns for semantic relations, given only a large 
corpus (e.g., in our experiments, about 10105×  
words) and a moderately sized set of word pairs 
(e.g., 600 or more pairs in the experiments), such 
that the members of each pair appear together 
frequently in short phrases in the corpus. These 
word pairs are not seeds, since the algorithm 
does not require the pairs to be labeled or 
grouped; we do not assume they are homogenous.   

The word pairs that we need could be gener-
ated automatically, by searching for word pairs 
that co-occur frequently in the corpus. However, 
our evaluation methods (Sections 5 and 6) both 
involve a predetermined list of word pairs. If our 
algorithm were allowed to generate its own word 
pairs, the overlap with the predetermined lists 
would likely be small. This is a limitation of our 
evaluation methods rather than the algorithm. 

Since any two word pairs may have some rela-
tions in common and some that are not shared, 
our algorithm generates a unique list of patterns 
for each input word pair. For example, ma-
son:stone and carpenter:wood share the pattern 
“X  carves Y” , but the patterns “X  nails Y”  and 
“X  bends Y”  are unique to carpenter:wood. The 
ranked list of patterns for a word pair YX :  
gives the relations between X and Y in the corpus, 
sorted with the most pertinent (i.e., characteristic, 
distinctive, unambiguous) relations first. 

Turney (2005) gives an algorithm for measur-
ing the relational similarity between two pairs of 
words, called Latent Relational Analysis (LRA). 
This algorithm can be used to solve multiple-
choice word analogy questions and to classify 
noun-modifier pairs (Turney, 2005), but it does 
not attempt to express the implicit semantic rela-
tions. Turney (2005) maps each pair YX :  to a 
high-dimensional vector v� . The value of each 
element iv  in v�  is based on the frequency, for 
the pair YX : , of a corresponding pattern iP . 
The relational similarity between two pairs, 

11 :YX  and 22 :YX , is derived from the cosine of 
the angle between their two vectors. A limitation 
of this approach is that the semantic content of 
the vectors is difficult to interpret; the magnitude 
of an element iv  is not a good indicator of how 

well the corresponding pattern iP  expresses a 
relation of YX : . This claim is supported by the 
experiments in Sections 5 and 6. 

Pertinence (as defined in Section 2) builds on 
the measure of relational similarity in Turney 
(2005), but it has the advantage that the semantic 
content can be interpreted; we can point to spe-
cific patterns and say that they express the im-
plicit relations. Furthermore, we can use the pat-
terns to find other pairs with the same relations. 

Hearst (1992) processed her text with a part-
of-speech tagger and a unification-based con-
stituent analyzer. This makes it possible to use 
more general patterns. For example, instead of 
the literal string pattern “Y  such as the X” , where 
X and Y are words, Hearst (1992) used the more 
abstract pattern “ 0NP  such as 1NP ”, where iNP  
represents a noun phrase. For the sake of sim-
plicity, we have avoided part-of-speech tagging, 
which limits us to literal patterns. We plan to 
experiment with tagging in future work. 

4 The Algorithm 

The algorithm takes as input a set of word pairs 
}:,,:{ 11 nn YXYXW �=  and produces as output 

ranked lists of patterns mPP ,,1�  for each input 
pair. The following steps are similar to the algo-
rithm of Turney (2005), with several changes to 
support the calculation of pertinence. 
1. Find phrases: For each pair ii YX : , make a 
list of phrases in the corpus that contain the pair. 
We use the Waterloo MultiText System (Clarke 
et al., 1998) to search in a corpus of about 

10105×  English words (Terra and Clarke, 2003). 
Make one list of phrases that begin with iX  and 
end with iY  and a second list for the opposite 
order. Each phrase must have one to three inter-
vening words between iX  and iY . The first and 
last words in the phrase do not need to exactly 
match iX  and iY . The MultiText query language 
allows different suffixes. Veale (2004) has ob-
served that it is easier to identify semantic rela-
tions between nouns than between other parts of 
speech. Therefore we use WordNet 2.0 (Miller, 
1995) to guess whether iX  and iY  are likely to 
be nouns. When they are nouns, we are relatively 
strict about suffixes; we only allow variation in 
pluralization. For all other parts of speech, we 
are liberal about suffixes. For example, we allow 
an adjective such as “inflated” to match a noun 
such as “inflation”. With MultiText, the query 
“inflat*” matches both “inflated” and “inflation”. 
2. Generate patterns: For each list of phrases, 
generate a list of patterns, based on the phrases. 
Replace the first word in each phrase with the 
generic marker “X”  and replace the last word 
with “Y” . The intervening words in each phrase 
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may be either left as they are or replaced with the 
wildcard “*”. For example, the phrase “carpenter 
nails the wood” yields the patterns “X  nails the 
Y” , “X  nails * Y” , “X  * the Y” , and “X  * * Y” . 
Do not allow duplicate patterns in a list, but note 
the number of times a pattern is generated for 
each word pair ii YX :  in each order ( iX  first and 

iY  last or vice versa). We call this the pattern 
frequency. It is a local frequency count, analo-
gous to term frequency in information retrieval. 
3. Count pair frequency: The pair frequency 
for a pattern is the number of lists from the pre-
ceding step that contain the given pattern. It is a 
global frequency count, analogous to document 
frequency in information retrieval. Note that a 
pair ii YX :  yields two lists of phrases and hence 
two lists of patterns. A given pattern might ap-
pear in zero, one, or two of the lists for ii YX : . 
4. Map pairs to rows: In preparation for build-
ing a matrix X , create a mapping of word pairs 
to row numbers. For each pair ii YX : , create a 
row for ii YX :  and another row for ii XY : . If W 
does not already contain }:,,:{ 11 nn XYXY � , 
then we have effectively doubled the number of 
word pairs, which increases the sample size for 
calculating pertinence. 
5. Map patterns to columns: Create a mapping 
of patterns to column numbers. For each unique 
pattern of the form “X  ... Y”  from Step 2, create 
a column for the original pattern “X  ... Y”  and 
another column for the same pattern with X and 
Y swapped, “Y  ... X” . Step 2 can generate mil-
lions of distinct patterns. The experiment in Sec-
tion 5 results in 1,706,845 distinct patterns, 
yielding 3,413,690 columns. This is too many 
columns for matrix operations with today’s stan-
dard desktop computer. Most of the patterns have 
a very low pair frequency. For the experiment in 
Section 5, 1,371,702 of the patterns have a pair 
frequency of one. To keep the matrix X  man-
ageable, we drop all patterns with a pair fre-
quency less than ten. For Section 5, this leaves 
42,032 patterns, yielding 84,064 columns. Tur-
ney (2005) limited the matrix to 8,000 columns, 
but a larger pool of patterns is better for our pur-
poses, since it increases the likelihood of finding 
good patterns for expressing the semantic rela-
tions of a given word pair. 
6. Build a sparse matrix: Build a matrix X  in 
sparse matrix format. The value for the cell in 
row i and column j is the pattern frequency of the 
j-th pattern for the the i-th word pair.  
7. Calculate entropy: Apply log and entropy 
transformations to the sparse matrix X  (Lan-
dauer and Dumais, 1997). Each cell is replaced 
with its logarithm, multiplied by a weight based 
on the negative entropy of the corresponding 
column vector in the matrix. This gives more 

weight to patterns that vary substantially in fre-
quency for each pair. 
8. Apply SVD: After log and entropy transforms, 
apply the Singular Value Decomposition (SVD) 
to X  (Golub and Van Loan, 1996). SVD de-
composes X  into a product of three matrices 

TVUΣ , where U  and V  are in column or-
thonormal form (i.e., the columns are orthogonal 
and have unit length) and Σ  is a diagonal matrix 
of singular values (hence SVD). If X  is of rank 
r , then Σ  is also of rank r . Let kΣ , where 

rk < , be the diagonal matrix formed from the 
top k  singular values, and let kU  and kV  be the 
matrices produced by selecting the correspond-
ing columns from U  and V . The matrix 

T
kkk VU Σ  is the matrix of rank k  that best ap-

proximates the original matrix X , in the sense 
that it minimizes the approximation errors 
(Golub and Van Loan, 1996). Following Lan-
dauer and Dumais (1997), we use 300=k . We 
may think of this matrix T

kkk VU Σ  as a smoothed 
version of the original matrix. SVD is used to 
reduce noise and compensate for sparseness 
(Landauer and Dumais, 1997). 
9. Calculate cosines: The relational similarity 
between two pairs, ):,:(sim 2211r YXYX , is 
given by the cosine of the angle between their 
corresponding row vectors in the matrix 

T
kkk VU Σ  (Turney, 2005). To calculate perti-

nence, we will need the relational similarity be-
tween all possible pairs of pairs. All of the co-
sines can be efficiently derived from the matrix 

T
kkkk )( ΣΣ UU  (Landauer and Dumais, 1997). 

10. Calculate conditional probabilities: Using 
Bayes’ Theorem (see Section 2) and the raw fre-
quency data in the matrix X  from Step 6, before 
log and entropy transforms, calculate the condi-
tional probability ):(p jii PYX  for every row 
(word pair) and every column (pattern). 
11. Calculate pertinence: With the cosines from 
Step 9 and the conditional probabilities from 
Step 10, calculate ),:(pertinence jii PYX  for 
every row ii YX :  and every column jP  for 
which 0):(p >jii PYX . When 0):(p =jii PYX , 
it is possible that 0),:(pertinence >jii PYX , but 
we avoid calculating pertinence in these cases for 
two reasons. First, it speeds computation, be-
cause X  is sparse, so 0):(p =jii PYX  for most 
rows and columns. Second, 0):(p =jii PYX  im-
plies that the pattern jP  does not actually appear 
with the word pair ii YX :  in the corpus; we are 
only guessing that the pattern is appropriate for 
the word pair, and we could be wrong. Therefore 
we prefer to limit ourselves to patterns and word 
pairs that have actually been observed in the cor-
pus. For each pair ii YX :  in W, output two sepa-
rate ranked lists, one for patterns of the form 
“X  … Y”  and another for patterns of the form 
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“Y  … X” , where the patterns in both lists are 
sorted in order of decreasing pertinence to ii YX : . 
Ranking serves as a kind of normalization. We 
have found that the relative rank of a pattern is 
more reliable as an indicator of its importance 
than the absolute pertinence. This is analogous to 
information retrieval, where documents are 
ranked in order of their relevance to a query. The 
relative rank of a document is more important 
than its actual numerical score (which is usually 
hidden from the user of a search engine). Having 
two separate ranked lists helps to avoid bias. For 
example, ostrich:bird generates 516 patterns of 
the form “X  ... Y”  and 452 patterns of the form 
“Y  ... X” . Since there are more patterns of the 
form “X  ... Y” , there is a slight bias towards 
these patterns. If the two lists were merged, the 
“Y  ... X”  patterns would be at a disadvantage. 

5 Experiments with Word Analogies 

In these experiments, we evaluate pertinence us-
ing 374 college-level multiple-choice word 
analogies, taken from the SAT test. For each 
question, there is a target word pair, called the 
stem pair, and five choice pairs. The task is to 
find the choice that is most analogous (i.e., has 
the highest relational similarity) to the stem. This 
choice pair is called the solution and the other 
choices are distractors. Since there are six word 
pairs per question (the stem and the five choices), 
there are 22446374 =×  pairs in the input set W. 
In Step 4 of the algorithm, we double the pairs, 
but we also drop some pairs because they do not 
co-occur in the corpus. This leaves us with 4194 
rows in the matrix. As mentioned in Step 5, the 
matrix has 84,064 columns (patterns). The sparse 
matrix density is 0.91%. 

To answer a SAT question, we generate 
ranked lists of patterns for each of the six word 
pairs. Each choice is evaluated by taking the in-
tersection of its patterns with the stem’s patterns. 
The shared patterns are scored by the average of 
their rank in the stem’s lists and the choice’s lists. 
Since the lists are sorted in order of decreasing 
pertinence, a low score means a high pertinence. 
Our guess is the choice with the lowest scoring 
shared pattern. 

Table 1 shows three examples, two questions 
that are answered correctly followed by one that 
is answered incorrectly. The correct answers are 
in bold font. For the first question, the stem is 
ostrich:bird and the best choice is (a) lion:cat. 
The highest ranking pattern that is shared by both 
of these pairs is “Y  such as the X” . The third 
question illustrates that, even when the answer is 
incorrect, the best shared pattern (“Y  powered * 
* X” ) may be plausible. 

 Word pair Best shared pattern Score 
1. ostrich:bird   
(a) lion:cat “Y  such as the X”  1.0 
(b) goose:flock “X  * * breeding Y”  43.5 
(c) ewe:sheep “X  are the only Y”  13.5 
(d) cub:bear “Y  are called X”  29.0 
(e) primate:monkey “Y  is the * X”  80.0 
2. traffic:street   
(a) ship:gangplank “X  * down the Y”  53.0 
(b) crop:harvest “X  * adjacent * Y”  248.0 
(c) car:garage “X  * a residential Y”  63.0 
(d) pedestrians:feet “Y  * accommodate X”  23.0 
(e) water:riverbed “Y  that carry X”  17.0 
3. locomotive:train   
(a) horse:saddle “X  carrying * Y”  82.0 
(b) tractor:plow “X  pulled * Y”  7.0 
(c) rudder:rowboat “Y  * X”  319.0 
(d) camel:desert “Y  with two X”  43.0 
(e) gasoline:automobile “Y  powered * * X”  5.0 
Table 1. Three examples of SAT questions. 

Table 2 shows the four highest ranking pat-
terns for the stem and solution for the first exam-
ple. The pattern “X  lion Y”  is anomalous, but the 
other patterns seem reasonable. The shared pat-
tern “Y  such as the X”  is ranked 1 for both pairs, 
hence the average score for this pattern is 1.0, as 
shown in Table 1. Note that the “ostrich is the 
largest bird” and “lions are large cats”, but the 
largest cat is the Siberian tiger. 

Word pair “X ... Y” “Y ... X” 
ostrich:bird “X  is the largest Y”  “Y  such as the X”  
 “X  is * largest Y”  “Y  such * the X”  
lion:cat “X  lion Y”  “Y  such as the X”  
 “X  are large Y”  “Y  and mountain X”  
Table 2. The highest ranking patterns. 

Table 3 lists the top five pairs in W that match 
the pattern “Y  such as the X” . The pairs are 
sorted by ):(p PYX . The pattern “Y  such as the 
X”  is one of 146 patterns that are shared by os-
trich:bird and lion:cat. Most of these shared pat-
terns are not very informative. 

Word pair Conditional probability 
heart:organ 0.49342 
dodo:bird 0.08888 
elbow:joint 0.06385 
ostrich:bird 0.05774 
semaphore:signal 0.03741 

Table 3. The top five pairs for “Y  such as the X” . 

In Table 4, we compare ranking patterns by 
pertinence to ranking by various other measures, 
mostly based on varieties of tf-idf (term fre-
quency times inverse document frequency, a 
common way to rank documents in information 
retrieval). The tf-idf measures are taken from 
Salton and Buckley (1988). For comparison, we 
also include three algorithms that do not rank 
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patterns (the bottom three rows in the table). 
These three algorithms can answer the SAT 
questions, but they do not provide any kind of 
explanation for their answers. 

 Algorithm Prec. Rec. F 
1 pertinence (Step 11) 55.7 53.5 54.6 
2 log and entropy matrix  

(Step 7) 
43.5 41.7 42.6 

3 TF = f, IDF = log((N-n)/n) 43.2 41.4 42.3 
4 TF = log(f+1), IDF = log(N/n) 42.9 41.2 42.0 
5 TF = f, IDF = log(N/n) 42.9 41.2 42.0 
6 TF = log(f+1), 

IDF = log((N-n)/n) 
42.3 40.6 41.4 

7 TF = 1.0, IDF = 1/n 41.5 39.8 40.6 
8 TF = f, IDF = 1/n 41.5 39.8 40.6 
9 TF = 0.5 + 0.5 * (f/F), 

IDF = log(N/n) 
41.5 39.8 40.6 

10 TF = log(f+1), IDF = 1/n 41.2 39.6 40.4 
11 p(X:Y|P) (Step 10) 39.8 38.2 39.0 
12 SVD matrix (Step 8) 35.9 34.5 35.2 
13 random 27.0 25.9 26.4 
14 TF = 1/f, IDF = 1.0 26.7 25.7 26.2 
15 TF = f, IDF = 1.0 (Step 6) 18.1 17.4 17.7 
16 Turney (2005) 56.8 56.1 56.4 
17 Turney and Littman (2005) 47.7 47.1 47.4 
18 Veale (2004) 42.8 42.8 42.8 
Table 4. Performance of various algorithms on SAT. 

All of the pattern ranking algorithms are given 
exactly the same sets of patterns to rank. Any 
differences in performance are due to the ranking 
method alone. The algorithms may skip ques-
tions when the word pairs do not co-occur in the 
corpus. All of the ranking algorithms skip the 
same set of 15 of the 374 SAT questions. Preci-
sion is defined as the percentage of correct an-
swers out of the questions that were answered 
(not skipped). Recall is the percentage of correct 
answers out of the maximum possible number 
correct (374). The F measure is the harmonic 
mean of precision and recall. 

For the tf-idf methods in Table 4, f is the pat-
tern frequency, n is the pair frequency, F is the 
maximum f for all patterns for the given word 
pair, and N is the total number of word pairs. By 
“TF = f, IDF = n/1 ”, for example (row 8), we 
mean that f plays a role that is analogous to term 
frequency and n/1  plays a role that is analogous 
to inverse document frequency. That is, in row 8, 
the patterns are ranked in decreasing order of 
pattern frequency divided by pair frequency. 

Table 4 also shows some ranking methods 
based on intermediate calculations in the algo-
rithm in Section 4. For example, row 2 in Table 4 
gives the results when patterns are ranked in or-
der of decreasing values in the corresponding 
cells of the matrix X  from Step 7.  

Row 12 in Table 4 shows the results we would 
get using Latent Relational Analysis (Turney, 

2005) to rank patterns. The results in row 12 
support the claim made in Section 3, that LRA is 
not suitable for ranking patterns, although it 
works well for answering the SAT questions (as 
we see in row 16). The vectors in LRA yield a 
good measure of relational similarity, but the 
magnitude of the value of a specific element in a 
vector is not a good indicator of the quality of the 
corresponding pattern.  

The best method for ranking patterns is perti-
nence (row 1 in Table 4). As a point of compari-
son, the performance of the average senior 
highschool student on the SAT analogies is about 
57% (Turney and Littman, 2005). The second 
best method is to use the values in the matrix X  
after the log and entropy transformations in 
Step 7 (row 2). The difference between these two 
methods is statistically significant with 95% con-
fidence. Pertinence (row 1) performs slightly 
below Latent Relational Analysis (row 16; Tur-
ney, 2005), but the difference is not significant.  

Randomly guessing answers should yield an F 
of 20% (1 out of 5 choices), but ranking patterns 
randomly (row 13) results in an F of 26.4%. This 
is because the stem pair tends to share more pat-
terns with the solution pair than with the distrac-
tors. The minimum of a large set of random 
numbers is likely to be lower than the minimum 
of a small set of random numbers. 

6 Experiments with Noun-Modifiers 

In these experiments, we evaluate pertinence on 
the task of classifying noun-modifier pairs. The 
problem is to classify a noun-modifier pair, such 
as “flu virus”, according to the semantic relation 
between the head noun (virus) and the modifier 
(flu). For example, “flu virus” is classified as a 
causality relation (the flu is caused by a virus). 
For these experiments, we use a set of 600 
manually labeled noun-modifier pairs (Nastase 
and Szpakowicz, 2003). There are five general 
classes of labels with thirty subclasses. We pre-
sent here the results with five classes; the results 
with thirty subclasses follow the same trends 
(that is, pertinence performs significantly better 
than the other ranking methods). The five classes 
are causality (storm cloud), temporality (daily 
exercise), spatial (desert storm), participant 
(student protest), and quality (expensive book).  

The input set W consists of the 600 noun-
modifier pairs. This set is doubled in Step 4, but 
we drop some pairs because they do not co-occur 
in the corpus, leaving us with 1184 rows in the 
matrix. There are 16,849 distinct patterns with a 
pair frequency of ten or more, resulting in 33,698 
columns. The matrix density is 2.57%. 
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To classify a noun-modifier pair, we use a sin-
gle nearest neighbour algorithm with leave-one-
out cross-validation. We split the set 600 times. 
Each pair gets a turn as the single testing exam-
ple, while the other 599 pairs serve as training 
examples. The testing example is classified ac-
cording to the label of its nearest neighbour in 
the training set. The distance between two noun-
modifier pairs is measured by the average rank of 
their best shared pattern. Table 5 shows the re-
sulting precision, recall, and F, when ranking 
patterns by pertinence. 

Class name Prec. Rec. F Class size 
causality 37.3 36.0 36.7 86 
participant 61.1 64.4 62.7 260 
quality 49.3 50.7 50.0 146 
spatial 43.9 32.7 37.5 56 
temporality 64.7 63.5 64.1 52 
all 51.3 49.5 50.2 600 

Table 5. Performance on noun-modifiers. 

To gain some insight into the algorithm, we 
examined the 600 best shared patterns for each 
pair and its single nearest neighbour. For each of 
the five classes, Table 6 lists the most frequent 
pattern among the best shared patterns for the 
given class. All of these patterns seem appropri-
ate for their respective classes. 

Class Most frequent pattern Example pair 
causality “Y  * causes X”  “cold virus” 
participant “Y  of his X”  “dream analysis” 
quality “Y  made of X”  “copper coin” 
spatial “X  * * terrestrial Y”  “aquatic mammal” 
temporality “Y  in * early X”  “morning frost” 
Table 6. Most frequent of the best shared patterns. 

Table 7 gives the performance of pertinence 
on the noun-modifier problem, compared to 
various other pattern ranking methods. The bot-
tom two rows are included for comparison; they 
are not pattern ranking algorithms. The best 
method for ranking patterns is pertinence (row 1 
in Table 7). The difference between pertinence 
and the second best ranking method (row 2) is 
statistically significant with 95% confidence. 
Latent Relational Analysis (row 16) performs 
slightly better than pertinence (row 1), but the 
difference is not statistically significant. 

Row 6 in Table 7 shows the results we would 
get using Latent Relational Analysis (Turney, 
2005) to rank patterns. Again, the results support 
the claim in Section 3, that LRA is not suitable 
for ranking patterns. LRA can classify the noun-
modifiers (as we see in row 16), but it cannot 
express the implicit semantic relations that make 
an unlabeled noun-modifier in the testing set 
similar to its nearest neighbour in the training set. 

 Algorithm Prec. Rec. F 
1 pertinence (Step 11) 51.3 49.5 50.2 
2 TF = log(f+1), IDF = 1/n 37.4 36.5 36.9 
3 TF = log(f+1), IDF = log(N/n) 36.5 36.0 36.2 
4 TF = log(f+1),  

IDF = log((N-n)/n) 
36.0 35.4 35.7 

5 TF = f, IDF = log((N-n)/n) 36.0 35.3 35.6 
6 SVD matrix (Step 8) 43.9 33.4 34.8 
7 TF = f, IDF = 1/n 35.4 33.6 34.3 
8 log and entropy matrix  

(Step 7) 
35.6 33.3 34.1 

9 TF = f, IDF = log(N/n) 34.1 31.4 32.2 
10 TF = 0.5 + 0.5 * (f/F),  

IDF = log(N/n) 
31.9 31.7 31.6 

11 p(X:Y|P) (Step 10) 31.8 30.8 31.2 
12 TF = 1.0, IDF = 1/n 29.2 28.8 28.7 
13 random 19.4 19.3 19.2 
14 TF = 1/f, IDF = 1.0 20.3 20.7 19.2 
15 TF = f, IDF = 1.0 (Step 6) 12.8 19.7 8.0 
16 Turney (2005) 55.9 53.6 54.6 
17 Turney and Littman (2005) 43.4 43.1 43.2 
Table 7. Performance on noun-modifiers. 

7 Discussion 

Computing pertinence took about 18 hours for 
the experiments in Section 5 and 9 hours for Sec-
tion 6. In both cases, the majority of the time was 
spent in Step 1, using MultiText (Clarke et al., 
1998) to search through the corpus of 10105×  
words. MultiText was running on a Beowulf 
cluster with sixteen 2.4 GHz Intel Xeon CPUs. 
The corpus and the search index require about 
one terabyte of disk space. This may seem com-
putationally demanding by today’s standards, but 
progress in hardware will soon allow an average 
desktop computer to handle corpora of this size. 

Although the performance on the SAT anal-
ogy questions (54.6%) is near the level of the 
average senior highschool student (57%), there is 
room for improvement. For applications such as 
building a thesaurus, lexicon, or ontology, this 
level of performance suggests that our algorithm 
could assist, but not replace, a human expert. 

One possible improvement would be to add 
part-of-speech tagging or parsing. We have done 
some preliminary experiments with parsing and 
plan to explore tagging as well. A difficulty is 
that much of the text in our corpus does not con-
sist of properly formed sentences, since the text 
comes from web pages. This poses problems for 
most part-of-speech taggers and parsers. 

8 Conclusion 

Latent Relational Analysis (Turney, 2005) pro-
vides a way to measure the relational similarity 
between two word pairs, but it gives us little in-
sight into how the two pairs are similar. In effect, 
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LRA is a black box. The main contribution of 
this paper is the idea of pertinence, which allows 
us to take an opaque measure of relational simi-
larity and use it to find patterns that express the 
implicit semantic relations between two words. 

The experiments in Sections 5 and 6 show that 
ranking patterns by pertinence is superior to 
ranking them by a variety of tf-idf methods. On 
the word analogy and noun-modifier tasks, perti-
nence performs as well as the state-of-the-art, 
LRA, but pertinence goes beyond LRA by mak-
ing relations explicit.  
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Abstract

In this paper we investigate the benefit
of stochastic predictor components for the
parsing quality which can be obtained with
a rule-based dependency grammar. By in-
cluding a chunker, a supertagger, a PP at-
tacher, and a fast probabilistic parser we
were able to improve upon the baseline by
3.2%, bringing the overall labelled accu-
racy to 91.1% on the German NEGRA cor-
pus. We attribute the successful integra-
tion to the ability of the underlying gram-
mar model to combine uncertain evidence
in a soft manner, thus avoiding the prob-
lem of error propagation.

1 Introduction

There seems to be an upper limit for the level
of quality that can be achieved by a parser if it
is confined to information drawn from a single
source. Stochastic parsers for English trained on
the Penn Treebank have peaked their performance
around 90% (Charniak, 2000). Parsing of German
seems to be even harder and parsers trained on the
NEGRA corpus or an enriched version of it still
perform considerably worse. On the other hand,
a great number of shallow components like tag-
gers, chunkers, supertaggers, as well as general or
specialized attachment predictors have been devel-
oped that might provide additional information to
further improve the quality of a parser’s output, as
long as their contributions are in some sense com-
plementory. Despite these prospects, such possi-
bilities have rarely been investigated so far.

To estimate the degree to which the desired syn-
ergy between heterogeneous knowledge sources
can be achieved, we have established an exper-
imental framework for syntactic analysis which

allows us to plug in a wide variety of external
predictor components, and to integrate their con-
tributions as additional evidence in the general
decision-making on the optimal structural inter-
pretation. We refer to this approach as hybrid pars-
ing because it combines different kinds of linguis-
tic models, which have been acquired in totally
different ways, ranging from manually compiled
rule sets to statistically trained components.

In this paper we investigate the benefit of ex-
ternal predictor components for the parsing qual-
ity which can be obtained with a rule-based gram-
mar. For that purpose we trained a range of predic-
tor components and integrated their output into the
parser by means of soft constraints. Accordingly,
the goal of our research was not to extensively op-
timize the predictor components themselves, but
to quantify their contribution to the overall pars-
ing quality. The results of these experiments not
only lead to a better understanding of the utility
of the different knowledge sources, but also allow
us to derive empirically based priorities for fur-
ther improving them. We are able to show that
the potential of WCDG for information fusion is
strong enough to accomodate even rather unreli-
able information from a wide range of predictor
components. Using this potential we were able to
reach a quality level for dependency parsing Ger-
man which is unprecendented so far.

2 Hybrid Parsing

A hybridization seems advantageous even among
purely stochastic models. Depending on their
degree of sophistication, they can and must be
trained on quite different kinds of data collections,
which due to the necessary annotation effort are
available in vastly different amounts: While train-
ing a probabilistic parser or a supertagger usually
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requires a fully developed tree bank, in the case
of taggers or chunkers a much more shallow and
less expensive annotation suffices. Using a set of
rather simple heuristics, a PP-attacher can even be
trained on huge amounts of plain text.

Another reason for considering hybrid ap-
proaches is the influence that contextual factors
might exert on the process of determining the most
plausible sentence interpretation. Since this influ-
ence is dynamically changing with the environ-
ment, it can hardly be captured from available cor-
pus data at all. To gain a benefit from such con-
textual cues, e.g. in a dialogue system, requires to
integrate yet another kind of external information.

Unfortunately, stochastic predictor components
are usually not perfect, at best producing prefer-
ences and guiding hints instead of reliable certain-
ties. Integrating a number of them into a single
systems poses the problem of error propagation.
Whenever one component decides on the input
of another, the subsequent one will most proba-
bly fail whenever the decision was wrong; if not,
the erroneous information was not crucial anyhow.
Dubey (2005) reported how serious this problem
can be when he coupled a tagger with a subsequent
parser, and noted that tagging errors are by far the
most important source of parsing errors.

As soon as more than two components are in-
volved, the combination of different error sources
migth easily lead to a substantial decrease of the
overall quality instead of achieving the desired
synergy. Moreover, the likelihood of conflicting
contributions will rise tremendously the more pre-
dictor components are involved. Therefore, it is
far from obvious that additional information al-
ways helps. Certainly, a processing regime is
needed which can deal with conflicting informa-
tion by taking its reliability (or relative strength)
into account. Such a preference-based decision
procedure would then allow stronger valued evi-
dence to override weaker one.

3 WCDG

An architecture which fulfills this requirement
is Weighted Constraint Dependency Grammar,
which was based on a model originally proposed
by Maruyama (1990) and later extended with
weights (Schröder, 2002). A WCDG models nat-
ural language aslabelled dependency treeson
words, with no intermediate constituents assumed.
It is entirely declarative: it only contains rules

(called constraints) that explicitly describe the
properties of well-formed trees, but no derivation
rules. For instance, a constraint can state that de-
terminers must precede their regents, or that there
cannot be two determiners for the same regent,
or that a determiner and its regent must agree in
number, or that a countable noun must have a de-
terminer. Further details can be found in (Foth,
2004). There is only a trivial generator compo-
nent which enumerates all possible combinations
of labelled word-to-word subordinations; among
these any combination that satisfies the constraints
is considered a correct analysis.

Constraints on trees can behard or soft. Of
the examples above, the first two should proba-
bly be considered hard, but the last two could be
made defeasible, particularly if a robust coverage
of potentially faulty input is desired. When two
alternative analyses of the same input violate dif-
ferent constraints, the one that satisfies the more
important constraint should be preferred. WCDG
ensures this by assigning every analysis a score
that is the product of the weights of all instances
of constraint failures. Parsing tries to retrieve the
analysis with the highest score.

The weight of a constraint is usually determined
by the grammar writer as it is formulated. Rules
whose violation would produce nonsensical struc-
tures are usually made hard, while rules that en-
force preferred but not required properties receive
less weight. Obviously this classification depends
on the purpose of a parsing system; a prescrip-
tive language definition would enforce grammat-
ical principles such as agreement with hard con-
straints, while a robust grammar must allow vio-
lations but disprefer them via soft constraints. In
practice, the precise weight of a constraint is not
particularly important as long as the relative im-
portance of two rules is clearly reflected in their
weights (for instance, a misinflected determiner is
a language error, but probably a less severe one
than duplicate determiners). There have been at-
tempts to compute the weights of a WCDG au-
tomatically by observing which weight vectors
perform best on a given corpus (Schröder et al.,
2001), but weights computed completely automat-
ically failed to improve on the original, hand-
scored grammar.

Weighted constraints provide an ideal interface
to integrate arbitrary predictor components in a
soft manner. Thus, external predictions are treated
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the same way as grammar-internal preferences,
e.g. on word order or distance. In contrast to a
filtering approach such a strong integration does
not blindly rely on the available predictions but is
able to question them as long as there is strong
enough combined evidence from the grammar and
the other predictor components.

For our investigations, we used the ref-
erence implementation of WCDG available
from http://nats-www.informatik.
uni-hamburg.de/download, which allows
constraints to express any formalizable property
of a dependency tree. This great expressiveness
has the disadvantage that the parsing problem
becomesNP-complete and cannot be solved
efficiently. However, good success has been
achieved with transformation-based solution
methods that start out with an educated guess
about the optimal tree and use constraint failures
as cues where to change labels, subordinations,
or lexical readings. As an example we show
intermediate and final analyses of a sentence from
our test set (negra-s18959): ‘Hier kletterte die
Marke von 420 auf 570 Mark.’ (Here the figure
rose from 420 to 570 DM).

SUBJ

PN

PP

PN

PP
OBJA

DET

S

ADV

hier kletterte die Marke von 420 auf 570 Mark .

In the first analysis, subject and object relations
are analysed wrongly, and the noun phrase ‘570
Mark’ has not been recognized. The analysis is
imperfect because the common noun ‘Mark’ lacks
a Determiner.

PN

ATTR

PP

PN

PP
SUBJ

DET

S

ADV

hier kletterte die Marke von 420 auf 570 Mark .

The final analysis correctly takes ‘570 Mark’ as
the kernel of the last preposition, and ‘Marke’ as
the subject. Altogether, three dependency edges
had to be changed to arrive at this solution.

Figure 1 shows the pseudocode of the best solu-
tion algorithm for WCDG described so far (Foth et
al., 2000). Although it cannot guarantee to find the
best solution to the constraint satisfaction prob-
lem, it requires only limited space and can be in-
terrupted at any time and still returns a solution.
If not interrupted, the algorithm terminates when

A := the set of levels of analysis
W:= the set of all lexical readings of words in the sentence
L := the set of defined dependency labels
E := A × W × W × L = the base set of dependency edges
D := A× W = the set of domainsda,w of all constraint variables
B := ∅ = the best analysis found
C := ∅ = the current analysis

{ Create the search space.}
for e ∈ E

if eval(e) > 0
then da,w := da,w ∪ {e}

{ Build initial analysis.}
for da,w ∈ D

e0 = arg max
e∈da,w

score(C ∪ {e})

C := C ∪ {e0}
B := C
T := ∅ = tabu set of conflicts removed so far.
U := ∅ = set of unremovable conflicts.
i := the penalty threshold above which conflicts are ignored.
n := 0

{ Remove conflicts.}
while ∃ c ∈ eval(C) \ U : penalty(c) > i

and no interruption occurred

{ Determine which conflict to resolve.}
cn := arg max

c∈eval(C)\U

penalty(c)

T := T ∪ {c}

{ Find the best resolution set.}
Rn := arg max

R ∈×domains(cn)

score(replace(C, R))

where replace(C, R) does not cause anyc ∈ T
and |R \ C| <= 2

if noRn can be found

{ Considerc0 unremovable.}
n := 0, C := B, T := ∅, U := U ∪ {c0}

else

{ Take a step.}
n := n + 1, C := replace(C,Rn)
if score(C) > score(B)

n := 0, B := C, T := ∅, U := U ∩ eval(C)

return B

Figure 1: Basic algorithm for heuristic transfor-
mational search.

no constraints with a weight less than a prede-
fined threshold are violated. In contrast, a com-
plete search usually requires more time and space
than available, and often fails to return a usable re-
sult at all. All experiments described in this paper
were conducted with the transformational search.

For our investigation we use a comprehensive
grammar of German expressed in about 1,000
constraints (Foth et al., 2005). It is intended to
cover modern German completely and to be ro-
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bust against many kinds of language error. A large
WCDG such as this that is written entirely by hand
can describe natural language with great precision,
but at the price of very great effort for the grammar
writer. Also, because many incorrect analyses are
allowed, the space of possible trees becomes even
larger than it would be for a prescriptive grammar.

4 Predictor components

Many rules of a language have the character of
general preferences so weak that they are eas-
ily overlooked even by a language expert; for in-
stance, the ordering of elements in the German
mittelfeld is subject to several types of preference
rules. Other regularities depend crucially on the
lexical identity of the words concerned; modelling
these fully would require the writing of a spe-
cific constraint for each word, which is all but in-
feasible. Empirically obtained information about
the behaviour of a language would be welcome
in such cases where manual constraints are not
obvious or would require too much effort. This
has already been demonstrated for the case of
part-of-speech tagging: because contextual cues
are very effective in determining the categories of
ambiguous words, purely stochastical models can
achieve a high accuracy. (Hagenström and Foth,
2002) show that the TnT tagger (Brants, 2000)
can be profitably integrated into WCDG parsing:
A constraint that prefers analyses which conform
to TnT’s category predictions can greatly reduce
the number of spurious readings of lexically am-
biguous words. Due to the soft integration of the
tagger, though, the parser is not forced to accept its
predictions unchallenged, but can override them if
the wider syntactic context suggests this. In our
experiments (line 1 in Table 1) this happens 75
times; 52 of these cases were actual errors com-
mitted by the tagger. These advantages taken to-
gether made the tagger the by far most valuable in-
formation source, whithout which the analysis of
arbitrary input would not be feasible at all. There-
fore, we use this component (POS) in all subse-
quent experiments.

Starting from this observation, we extended the
idea to integrate several other external compo-
nents that predict particular aspects of syntax anal-
yses. Where possible, we re-used publicly avail-
able components to make the predictions rather
than construct the best predictors possible; it is
likely that better predictors could be found, but

components ‘off the shelf’ or written in the sim-
plest workable way proved enough to demonstrate
a positive benefit of the technique in each case.

For the task of predicting the boundaries of
major constituents in a sentence (chunk parsing,
CP), we used the decision tree model TreeTag-
ger (Schmid, 1994), which was trained on arti-
cles from Stuttgarter Zeitung. The noun, verb
and prepositional chunk boundaries that it predicts
are fed into a constraint which requires all chunk
heads to be attached outside the current chunk, and
all other words within it. Obviously such informa-
tion can greatly reduce the number of structural al-
ternatives that have to be considered during pars-
ing. On our test set, the TreeTagger achieves a
precision of 88.0% and a recall of 89.5%.

Models for category disambiguation can easily
be extended to predict not only the syntactic cate-
gory, but also the local syntactic environment of
each word (supertagging). Supertags have been
successfully applied to guide parsing in symbolic
frameworks such as Lexicalised Tree-Adjoning
grammar (Bangalore and Joshi, 1999). To obtain
and evaluate supertag predictions, we re-trained
the TnT Tagger on the combined NEGRA and
TIGER treebanks (1997; 2002). Putting aside the
standard NEGRA test set, this amounts to 59,622
sentences with 1,032,091 words as training data.
For each word in the training set, the local context
was extracted and encoded into a linear represen-
tation. The output of the retrained TnT then pre-
dicts the label of each word, whether it follows or
precedes its regent, and what other types of rela-
tions are found below it. Each of these predictions
is fed into a constraint which weakly prefers de-
pendencies that do not violate the respective pre-
diction (ST). Due to the high number of 12947 su-
pertags in the maximally detailed model, the ac-
curacy of the supertagger for complete supertags
is as low as 67.6%. Considering that a detailed su-
pertag corresponds to several distinct predictions
(about label, direction etc.), it might be more ap-
propriate to measure the average accuracy of these
distinct predictions; by this measure, the individ-
ual predictions of the supertagger are 84.5% accu-
rate; see (Foth et al., 2006) for details.

As with many parsers, the attachment of prepo-
sitions poses a particular problem for the base
WCDG of German, because it is depends largely
upon lexicalized information that is not widely
used in its constraints. However, such information
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Reannotated Transformed
Predictors Dependencies Dependencies
1: POS only 89.7%/87.9% 88.3%/85.6%
2: POS+CP 90.2%/88.4% 88.7%/86.0%
3: POS+PP 90.9%/89.1% 89.6%/86.8%
4: POS+ST 92.1%/90.7% 90.7%/88.5%
5: POS+SR 91.4%/90.0% 90.0%/87.7%
6: POS+PP+SR 91.6%/90.2% 90.1%/87.8%
7: POS+ST+SR 92.3%/90.9% 90.8%/88.8%
8: POS+ST+PP 92.1%/90.7% 90.7%/88.5%
9: all five 92.5%/91.1% 91.0%/89.0%

Table 1: Structural/labelled parsing accuracy with
various predictor components.

can be automatically extracted from large corpora
of trees or even raw text: prepositions that tend
to occur in the vicinity of specific nouns or verbs
more often than chance would suggest can be as-
sumed to modify those words preferentially (Volk,
2002).

A simple probabilistic model of PP attachment
(PP) was used that counts only the occurrences of
prepositions and potential attachment words (ig-
noring the information in the kernel noun of the
PP). It was trained on both the available tree banks
and on 295,000,000 words of raw text drawn from
thetaz corpus of German newspaper text. When
used to predict the probability of the possible
regents of each preposition in each sentence, it
achieved an accuracy of 79.4% and 78.3%, respec-
tively (see (Foth and Menzel, 2006) for details).
The predictions were integrated into the grammar
by another constraint which disprefers all possible
regents to the corresponding degree (except for the
predicted regent, which is not penalized at all).

Finally, we used a full dependency parser in or-
der to obtain structural predictions forall words,
and not merely for chunk heads or prepositions.
We constructed a probabilistic shift-reduce parser
(SR) for labelled dependency trees using the
model described by (Nivre, 2003): from all avail-
able dependency trees, we reconstructed the se-
ries of parse actions (shift, reduce and attach)
that would have constructed the tree, and then
trained a simple maximum-likelihood model that
predicts parse actions based on features of the cur-
rent state such as the categories of the current
and following words, the environment of the top
stack word constructed so far, and the distance be-
tween the top word and the next word. This oracle
parser achieves a structural and labelled accuracy

of 84.8%/80.5% on the test set but can only predict
projective dependency trees, which causes prob-
lems with about 1% of the edges in the 125,000
dependency trees used for training; in the inter-
est of simplicity we did not address this issue spe-
cially, instead relying on the ability of the WCDG
parser to robustly integrate even predictions which
are wrong by definition.

5 Evaluation

Since the WCDG parser never fails on typical tree-
bank sentences, and always delivers an analysis
that contains exactly one subordination for each
word, the common measures of precision, recall
and f-score all coincide; all three are summarized
asaccuracyhere. We measure thestructural (i.e.
unlabelled) accuracy as the ratio of correctly at-
tached words to all words; thelabelled accuracy
counts only those words that have the correct re-
gent and also bear the correct label. For compar-
ison with previous work, we used the next-to-last
1,000 sentences of the NEGRA corpus as our test
set. Table 1 shows the accuracy obtained.1

The gold standard used for evaluation was de-
rived from the annotations of the NEGRA tree-
bank (version 2.0) in a semi-automatic procedure.
First, the NEGRA phrase structures were auto-
matically transformed to dependency trees with
the DEPSY tool (Daum et al., 2004). However,
before the parsing experiments, the results were
manually corrected to (1) take care of system-
atic inconsistencies between the NEGRA annota-
tions and the WCDG annotations (e.g. for non-
projectivities, which in our case are used only if
necessary for an ambiguity free attachment of ver-
bal arguments, relative clauses and coordinations,
but not for other types of adjuncts) and (2) to re-
move inconsistencies with NEGRAs own annota-
tion guidelines (e.g. with regard to elliptical and
co-ordinated structures, adverbs and subordinated
main clauses.) To illustrate the consequences of
these corrections we report in Table 1 both kinds
of results: those obtained on our WCDG-conform
annotations (reannotated) and the others on the
raw output of the automatic conversion (trans-

1Note that the POS model employed by TnT was trained
on the entire NEGRA corpus, so that there is an overlap be-
tween the training set of TnT and the test set of the parser.
However, control experiments showed that a POS model
trained on the NEGRA and TIGER treebanks minus the test
set results in the same parsing accuracy, and in fact slightly
better POS accuracy. All other statistical predictors were
trained on data disjunct from the test set.
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formed), although the latter ones introduce a sys-
tematic mismatch between the gold standard and
the design principles of the grammar.

The experiments 2–5 show the effect of adding
the POS tagger and one of the other predictor com-
ponents to the parser. The chunk parser yields
only a slight improvement of about 0.5% accu-
racy; this is most probably because the baseline
parser (line 1) does not make very many mistakes
at this level anyway. For instance, the relation type
with the highest error rate is prepositional attach-
ment, about which the chunk parser makes no pre-
dictions at all. In fact, the benefit of the PP com-
ponent alone (line 3) is much larger even though
it predictsonly the regents of prepositions. The
two other components make predictions about all
types of relations, and yield even bigger benefits.

When more than one other predictor is added to
the grammar, the beneft is generally higher than
that of either alone, but smaller than the sum of
both. An exception is seen in line 8, where the
combination of POS tagging, supertagging and PP
prediction fails to better the results of just POS
tagging and supertagging (line 4). Individual in-
spection of the results suggests that the lexicalized
information of the PP attacher is often counter-
acted by the less informed predictions of the su-
pertagger (this was confirmed in preliminary ex-
periments by a gain in accuracy when prepositions
were exempted from the supertag constraint). Fi-
nally, combining all five predictors results in the
highest accuracy of all, improving over the first
experiment by 2.8% and 3.2% for structural and
labelled accuracy respectively.

We see that the introduction of stochastical in-
formation into the handwritten language model is
generally helpful, although the different predictors
contribute different types of information. The POS
tagger and PP attacher capture lexicalized regular-
ities which are genuinely new to the grammar: in
effect, they refine the language model of the gram-
mar in places that would be tedious to describe
through individual rules. In contrast, the more
global components tend to make the same predic-
tions as the WCDG itself, only explicitly. This
guides the parser so that it tends to check the cor-
rect alternative first more often, and has a greater
chance of finding the global optimum. This ex-
plains why their addition increases parsing accu-
racy even when their own accuracy is markedly
lower than even the baseline (line 1).

6 Related work

The idea of integrating knowledge sources of dif-
ferent origin is not particularly new. It has been
successfully used in areas like speech recognition
or statistical machine translation where acoustic
models or bilingual mappings have to be com-
bined with (monolingual) language models. A
similar architecture has been adopted by (Wang
and Harper, 2004) who train an n-best supertag-
ger and an attachment predictor on the Penn Tree-
bank and obtain an labelled F-score of 92.4%,
thus slightly outperforming the results of (Collins,
1999) who obtained 92.0% on the same sentences,
but evaluating on transformed phrase structure
trees instead on directly computed dependency re-
lations.

Similar to our approach, the result of (Wang
and Harper, 2004) was achieved by integrating
the evidence of two (stochastic) components into
a single decision procedure on the optimal inter-
pretation. Both, however, have been trained on
the very same data set. Combining more than
two different knowledge sources into a system
for syntactic parsing to our knowledge has never
been attempted so far. The possible synergy be-
tween different knowledge sources is often as-
sumed but viable alternatives to filtering or selec-
tion in a pipelined architecture have not yet been
been demonstrated successfully. Therefore, exter-
nal evidence is either used to restrict the space of
possibilities for a subsequent component (Clark
and Curran, 2004) or to choose among the alter-
native results which a traditional rule-based parser
usually delivers (Malouf and van Noord, 2004). In
contrast to these approaches, our system directly
integrates the available evidence into the decision
procedure of the rule-based parser by modifying
the objective function in a way that helps guiding
the parsing process towards the desired interpre-
tation. This seems to be crucial for being able to
extend the approach to multiple predictors.

An extensive evaluation of probabilistic de-
pendency parsers has recently been carried out
within the framework of the 2006 CoNLL
shared task (seehttp://nextens.uvt.nl/
∼conll). Most successful for many of the 13 dif-
ferent languages has been the system described in
(McDonald et al., 2005). This approach is based
on a procedure for online large margin learning
and considers a huge number of locally available
features to predict dependency attachments with-
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out being restricted to projective structures. For
German it achieves 87.34% labelled and 90.38%
unlabelled attachment accuracy. These results are
particularly impressive, since due to the strictly lo-
cal evaluation of attachment hypotheses the run-
time complexity of the parser is onlyO(n2).

Although a similar source of text has been used
for this evaluation (newspaper), the numbers can-
not be directly compared to our results since both
the test set and the annotation guidelines differ
from those used in our experiments. Moreover, the
different methodologies adopted for system devel-
opment clearly favour a manual grammar develop-
ment, where more lexical resources are available
and because of human involvement a perfect iso-
lation between test and training data can only be
guaranteed for the probabilistic components. On
the other hand CoNLL restricted itself to the eas-
ier attachment task and therefore provided the gold
standard POS tag as part of the input data, whereas
in our case pure word form sequences are anal-
ysed and POS disambiguation is part of the task
to be solved. Finally, punctuation has been ig-
nored in the CoNLL evaluation, while we included
it in the attachment scores. To compensate for the
last two effects we re-evaluated our parser without
considering punctuation but providing it with per-
fect POS tags. Thus, under similar conditions as
used for the CoNLL evaluation we achieved a la-
belled accuracy of 90.4% and an unlabelled one of
91.9%.

Less obvious, though, is a comparison with re-
sults which have been obtained for phrase struc-
ture trees. Here the state of the art for German is
defined by a system which applies treebank trans-
formations to the original NEGRA treebank and
extends a Collins-style parser with a suffix analy-
sis (Dubey, 2005). Using the same test set as the
one described above, but restricting the maximum
sentence length to 40 and providing the correct
POS tag, the system achieved a labelled bracket
F-score of 76.3%.

7 Conclusions

We have presented an architecture for the fusion of
information contributed from a variety of compo-
nents which are either based on expert knowledge
or have been trained on quite different data col-
lections. The results of the experiments show that
there is a high degree of synergy between these
different contributions, even if they themselves are

fairly unreliable. Integrating all the available pre-
dictors we were able to improve the overall la-
belled accuracy on a standard test set for German
to 91.1%, a level which is as least as good as the
results reported for alternative approaches to pars-
ing German.

The result we obtained also challenges the com-
mon perception that rule-based parsers are neces-
sarily inferior to stochastic ones. Supplied with
appropriate helper components, the WCDG parser
not only reached a surprisingly high level of out-
put quality but in addition appears to be fairly sta-
ble against changes in the text type it is applied to
(Foth et al., 2005).

We attribute the successful integration of dif-
ferent information sources primarily to the funda-
mental ability of the WCDG grammar to combine
evidence in a soft manner. If unreliable informa-
tion needs to be integrated, this possibility is cer-
tainly an undispensible prerequisite for prevent-
ing local errors from accumulating and leading to
an unacceptably low degree of reliability for the
whole system eventually. By integrating the dif-
ferent predictors into the WCDG parsers’s general
mechanism for evidence arbitration, we not only
avoided the adverse effect of individual error rates
multiplying out, but instead were able to even raise
the degree of output quality substantially.

From the fact that the combination of all pre-
dictor components achieved the best results, even
if the individual predictions are fairly unreliable,
we can also conclude that diversity in the selec-
tion of predictor components is more important
than the reliability of their contributions. Among
the available predictor components which could
be integrated into the parser additionally, the ap-
proach of (McDonald et al., 2005) certainly looks
most promising. Compared to the shift-reduce
parser which has been used as one of the pre-
dictor components for our experiments, it seems
particularly attractive because it is able to predict
non-projective structures without any additional
provision, thus avoiding the misfit between our
(non-projective) gold standard annotations and the
restriction to projective structures that our shift-
reduce parser suffers from.

Another interesting goal of future work might
be to even consider dynamic predictors, which
can change their behaviour according to text type
and perhaps even to text structure. This, however,
would also require extending and adapting the cur-

327



rently dominating standard scenario of parser eval-
uation substantially.
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Abstract

We introduce an error mining technique
for automatically detecting errors in re-
sources that are used in parsing systems.
We applied this technique on parsing re-
sults produced on several million words by
two distinct parsing systems, which share
the syntactic lexicon and the pre-parsing
processing chain. We were thus able to
identify missing and erroneous informa-
tion in these resources.

1 Introduction

Natural language parsing is a hard task, partly be-
cause of the complexity and the volume of infor-
mation that have to be taken into account about
words and syntactic constructions. However, it
is necessary to have access to such information,
stored in resources such as lexica and grammars,
and to try and minimize the amount of missing
and erroneous information in these resources. To
achieve this, the use of these resources at a large-
scale in parsers is a very promising approach (van
Noord, 2004), and in particular the analysis of sit-
uations that lead to a parsing failure: one can learn
from one’s own mistakes.

We introduce a probabilistic model that allows
to identify forms and form bigrams that may be
the source of errors, thanks to a corpus of parsed
sentences. In order to facilitate the exploitation of
forms and form bigrams detected by the model,
and in particular to identify causes of errors, we
have developed a visualization environment. The
whole system has been tested on parsing results
produced for several multi-million-word corpora
and with two different parsers for French, namely
SXLFG andFRMG.

However, the error mining technique which
is the topic of this paper is fully system- and
language-independent. It could be applied with-
out any change on parsing results produced by any
system working on any language. The only infor-
mation that is needed is a boolean value for each
sentence which indicates if it has been success-
fully parsed or not.

2 Principles

2.1 General idea

The idea we implemented is inspired from (van
Noord, 2004). In order to identify missing and er-
roneous information in a parsing system, one can
analyze a large corpus and study with statistical
tools what differentiates sentences for which pars-
ing succeeded from sentences for which it failed.

The simplest application of this idea is to look
for forms, calledsuspicious forms, that are found
more frequently in sentences that could not be
parsed. This is what van Noord (2004) does, with-
out trying to identify a suspicious form in any sen-
tence whose parsing failed, and thus without tak-
ing into account the fact that there is (at least)
one cause of error in each unparsable sentence.1

On the contrary, we will look, in each sentence
on which parsing failed, for the form that has
the highest probability of being the cause of this
failure: it is the main suspectof the sentence.
This form may be incorrectly or only partially de-
scribed in the lexicon, it may take part in construc-
tions that are not described in the grammar, or it
may exemplify imperfections of the pre-syntactic
processing chain. This idea can be easily extended
to sequences of forms, which is what we do by tak-

1Indeed, he defines the suspicion rate of a formf as the
rate of unparsable sentences among sentences that containf .
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ing form bigrams into account, but also to lemmas
(or sequences of lemmas).

2.2 Form-level probabilistic model

We suppose that the corpus is split in sentences,
sentences being segmented in forms. We denote
by si the i-th sentence. We denote byoi,j, (1 ≤
j ≤ |si|) the occurrences of forms that constitute
si, and byF (oi,j) the corresponding forms. Fi-
nally, we callerror the function that associates to
each sentencesi either1, if si’s parsing failed, and
0 if it succeeded.

Let Of be the set of the occurrences of a form
f in the corpus:Of = {oi,j|F (oi,j) = f}. The
number of occurrences off in the corpus is there-
fore |Of |.

Let us define at first themean global suspicion
rateS, that is the mean probability that a given oc-
currence of a form be the cause of a parsing fail-
ure. We make the assumption that the failure of
the parsing of a sentence has a unique cause (here,
a unique form. . . ). This assumption, which is not
necessarily exactly verified, simplifies the model
and leads to good results. If we callocctotal the
total amount of forms in the corpus, we have then:

S =
Σierror(si)

occtotal

Let f be a form, that occurs as thej-th form of
sentencesi, which means thatF (oi,j) = f . Let us
assume thatsi’s parsing failed:error(si) = 1. We
call suspicion rateof thej-th formoi,j of sentence
si the probability, denoted bySi,j, that the occur-
renceoi,j of form form f be the cause of thesi’s
parsing failure. If, on the contrary,si’s parsing
succeeded, its occurrences have a suspicion rate
that is equal to zero.

We then define themean suspicion rateSf of
a form f as the mean of all suspicion rates of its
occurrences:

Sf =
1

|Of |
·

∑

oi,j∈Of

Si,j

To compute these rates, we use a fix-point al-
gorithm by iterating a certain amount of times the
following computations. Let us assume that we
just completed then-th iteration: we know, for
each sentencesi, and for each occurrenceoi,j of
this sentence, the estimation of its suspicion rate
Si,j as computed by then-th iteration, estimation

that is denoted byS(n)
i,j . From this estimation, we

compute then + 1-th estimation of the mean sus-
picion rate of each formf , denoted byS(n+1)

f :

S
(n+1)
f =

1

|Of |
·

∑

oi,j∈Of

S
(n)
i,j

This rate2 allows us to compute a new estima-
tion of the suspicion rate of all occurrences, by
giving to each occurrence if a sentencesi a sus-
picion rateS

(n+1)
i,j that is exactly the estimation

S
(n+1)
f of the mean suspicion rate ofSf of the cor-

responding form, and then to perform a sentence-
level normalization. Thus:

S
(n+1)
i,j = error(si) ·

S
(n+1)
F (oi,j)

∑
1≤j≤|si| S

(n+1)
F (oi,j)

At this point, then+1-th iteration is completed,
and we can resume again these computations, un-
til convergence on a fix-point. To begin the whole
process, we just say, for an occurrenceoi,j of sen-

tencesi, thatS(0)
i,j = error(si)/|si|. This means

that for a non-parsable sentence, we start from a
baseline where all of its occurrences have an equal
probability of being the cause of the failure.

After a few dozens of iterations, we get stabi-
lized estimations of the mean suspicion rate each
form, which allows:

• to identify the forms that most probably cause
errors,

• for each formf , to identify non-parsable sen-
tencessi where an occurrenceoi,j ∈ Of of f
is a main suspect and whereoi,j has a very

2We also performed experiment in whichSf was esti-
mated by an other estimator, namely thesmoothed mean sus-
picion rate, denoted bỹS(n)

f , that takes into account the num-
ber of occurrences off . Indeed, the confidence we can have
in the estimationS(n)

f is lower if the number of occurrences

of f is lower. Hence the idea to smoothS(n)
f by replacing it

with a weighted meañS(n)
f betweenS(n)

f andS, where the

weightsλ and1 − λ depend on|Of |: if |Of | is high, S̃(n)
f

will be close fromS
(n)
f ; if it is low, it will be closer fromS:

S̃
(n)
f = λ(|Of |) · S

(n)
f + (1 − λ(|Of |)) · S.

In these experiments, we used the smoothing function
λ(|Of |) = 1 − e−β|Of | with β = 0.1. But this model,
used with the ranking according toMf = Sf · ln |Of | (see
below), leads results that are very similar to those obtained
without smoothing. Therefore, we describe the smoothing-
less model, which has the advantage not to use an empirically
chosen smoothing function.
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high suspicion rate among all occurrences of
form f .

We implemented this algorithm as aperl script,
with strong optimizations of data structures so as
to reduce memory and time usage. In particu-
lar, form-level structures are shared between sen-
tences.

2.3 Extensions of the model

This model gives already very good results, as we
shall see in section 4. However, it can be extended
in different ways, some of which we already im-
plemented.

First of all, it is possible not to stick to forms.
Indeed, we do not only work on forms, but on cou-
ples made out of a form (a lexical entry) and one
or several token(s) that correspond to this form in
the raw text (a token is a portion of text delimited
by spaces or punctuation tokens).

Moreover, one can look for the cause of the fail-
ure of the parsing of a sentence not only in the
presence of a form in this sentence, but also in the
presence of a bigram3 of forms. To perform this,
one just needs to extend the notions ofform and
occurrence, by saying that a (generalized) form is
a unigram or a bigram of forms, and that a (gen-
eralized) occurrence is an occurrence of a gener-
alized form, i.e., an occurrence of a unigram or a
bigram of forms. The results we present in sec-
tion 4 includes this extension, as well as the previ-
ous one.

Another possible generalization would be to
take into account facts about the sentence that are
not simultaneous (such as form unigrams and form
bigrams) but mutually exclusive, and that must
therefore be probabilized as well. We have not yet
implemented such a mechanism, but it would be
very interesting, because it would allow to go be-
yond forms orn-grams of forms, and to manipu-
late also lemmas (since a given form has usually
several possible lemmas).

3 Experiments

In order to validate our approach, we applied
these principles to look for error causes in pars-
ing results given by two deep parsing systems for
French,FRMG and SXLFG, on large corpora.

3One could generalize this ton-grams, but asn gets
higher the number of occurrences ofn-grams gets lower,
hence leading to non-significant statistics.

3.1 Parsers

Both parsing systems we used are based on deep
non-probabilistic parsers. They share:

• the Lefff 2 syntactic lexicon for French
(Sagot et al., 2005), that contains 500,000 en-
tries (representing 400,000 different forms) ;
each lexical entry contains morphological in-
formation, sub-categorization frames (when
relevant), and complementary syntactic infor-
mation, in particular for verbal forms (con-
trols, attributives, impersonals,. . . ),

• the SXPipe pre-syntactic processing chain
(Sagot and Boullier, 2005), that converts a
raw text in a sequence of DAGs of forms that
are present in the Lefff ; SXPipe contains,
among other modules, a sentence-level seg-
menter, a tokenization and spelling-error cor-
rection module, named-entities recognizers,
and a non-deterministic multi-word identifier.

But FRMG and SXLFG use completely different
parsers, that rely on different formalisms, on dif-
ferent grammars and on different parser builder.
Therefore, the comparison of error mining results
on the output of these two systems makes it possi-
ble to distinguish errors coming from the Lefff or
from SXPipe from those coming to one grammar
or the other. Let us describe in more details the
characteristics of these two parsers.

The FRMG parser (Thomasset and Villemonte
de la Clergerie, 2005) is based on a compact TAG
for French that is automatically generated from
a meta-grammar. The compilation and execution
of the parser is performed in the framework of
the DYAL OG system (Villemonte de la Clergerie,
2005).

The SXLFG parser (Boullier and Sagot, 2005b;
Boullier and Sagot, 2005a) is an efficient and ro-
bust LFG parser. Parsing is performed in two
steps. First, an Earley-like parser builds a shared
forest that represents all constituent structures that
satisfy the context-free skeleton of the grammar.
Then functional structures are built, in one or more
bottom-up passes. Parsing efficiency is achieved
thanks to several techniques such as compact data
representation, systematic use of structure and
computation sharing, lazy evaluation and heuristic
and almost non-destructive pruning during pars-
ing.

Both parsers implement also advanced error re-
covery and tolerance techniques, but they were
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corpus #sentences #success (%) #forms #occ S (%) Date
MD/FRMG 330,938 136,885 (41.30%) 255,616 10,422,926 1.86% Jul. 05
MD/SXLFG 567,039 343,988 (60.66%) 327,785 14,482,059 1.54% Mar. 05
EASy/FRMG 39,872 16,477 (41.32%) 61,135 878,156 2.66% Dec. 05
EASy/SXLFG 39,872 21,067 (52.84%) 61,135 878,156 2.15% Dec. 05

Table 1: General information on corpora and parsing results

useless for the experiments described here, since
we want only to distinguish sentences that receive
a full parse (without any recovery technique) from
those that do not.

3.2 Corpora

We parsed with these two systems the following
corpora:

MD corpus : This corpus is made out of 14.5
million words (570,000 sentences) of general
journalistic corpus that are articles from the
Monde diplomatique.

EASy corpus : This is the 40,000-sentence cor-
pus that has been built for the EASy parsing
evaluation campaign for French (Paroubek et
al., 2005). We only used the raw corpus
(without taking into account the fact that a
manual parse is available for 10% of all sen-
tences). The EASy corpus contains several
sub-corpora of varied style: journalistic, lit-
eracy, legal, medical, transcription of oral, e-
mail, questions, etc.

Both corpora are raw in the sense that no clean-
ing whatsoever has been performed so as to elimi-
nate some sequences of characters that can not re-
ally be considered as sentences.

Table 1 gives some general information on these
corpora as well as the results we got with both
parsing systems. It shall be noticed that both
parsers did not parse exactly the same set and the
same number of sentences for the MD corpus, and
that they do not define in the exactly same way the
notion of sentence.

3.3 Results visualization environment

We developed a visualization tool for the results of
the error mining, that allows to examine and an-
notate them. It has the form of an HTML page
that uses dynamic generation methods, in particu-
lar javascript. An example is shown on Figure 1.

To achieve this, suspicious forms are ranked ac-
cording to a measureMf that models, for a given

form f , the benefit there is to try and correct the
(potential) corresponding error in the resources. A
user who wants to concentrate on almost certain
errors rather than on most frequent ones can visu-
alize suspicious forms ranked according toMf =
Sf . On the contrary, a user who wants to concen-
trate on most frequent potential errors, rather than
on the confidence that the algorithm has given to
errors, can visualize suspicious forms ranked ac-
cording to4 Mf = Sf |Of |. The default choice,
which is adopted to produce all tables shown in
this paper, is a balance between these two possi-
bilities, and ranks suspicious forms according to
Mf = Sf · ln |Of |.

The visualization environment allows to browse
through (ranked) suspicious forms in a scrolling
list on the left part of the page (A). When the suspi-
cious form is associated to a token that is the same
as the form, only the form is shown. Otherwise,
the token is separated from the form by the sym-
bol “ / ”. The right part of the page shows various
pieces of information about the currently selected
form. After having given its rank according to the
ranking measureMf that has been chosen (B), a
field is available to add or edit an annotation as-
sociated with the suspicious form (D). These an-
notations, aimed to ease the analysis of the error
mining results by linguists and by the developers
of parsers and resources (lexica, grammars), are
saved in a database (SQLITE). Statistical informa-
tion is also given aboutf (E), including its number
of occurrencesoccf , the number of occurrences of
f in non-parsable sentences, the final estimation
of its mean suspicion rateSf and the rateerr(f)
of non-parsable sentences among those wheref
appears. This indications are complemented by a
brief summary of the iterative process that shows
the convergence of the successive estimations of
Sf . The lower part of the page gives a mean to
identify the cause off -related errors by showing

4Letf be a form. The suspicion rateSf can be considered
as the probability for a particular occurrence off to cause
a parsing error. Therefore,Sf |Of | models the number of
occurrences off that do cause a parsing error.
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Figure 1: Error mining results visualization environment (results are shown for MD/FRMG).

f ’s entries in the Lefff lexicon (G) as well as non-
parsable sentences wheref is the main suspect
and where one of its occurrences has a particularly
high suspicion rate5 (H).

The whole page (with annotations) can be sent
by e-mail, for example to the developer of the lex-
icon or to the developer of one parser or the other
(C).

4 Results

In this section, we mostly focus on the results of
our error mining algorithm on the parsing results
provided by SXLFG on the MD corpus. We first
present results when only forms are taken into ac-
count, and then give an insight on results when
both forms and form bigrams are considered.

5Such an information, which is extremely valuable for the
developers of the resources, can not be obtained by global
(form-level and not occurrence-level) approaches such as the
err(f)-based approach of (van Noord, 2004). Indeed, enu-
merating all sentences which include a given formf , and
which did not receive a full parse, is not precise enough:
it would show at the same time sentences wich fail be-
cause off (e.g., because its lexical entry lacks a given sub-
categorization frame) and sentences which fail for an other
independent reason.

4.1 Finding suspicious forms

The execution of our error mining script on
MD/SXLFG, with imax = 50 iterations and when
only (isolated) forms are taken into account, takes
less than one hour on a 3.2 GHz PC running
Linux with a 1.5 Go RAM. It outputs 18,334rele-
vantsuspicious forms (out of the 327,785 possible
ones), where a relevant suspicious form is defined
as a formf that satisfies the following arbitrary
constraints:6 S

(imax)
f > 1, 5 · S and|Of | > 5.

We still can not prove theoretically the conver-
gence of the algorithm.7 But among the 1000 best-
ranked forms, the last iteration induces a mean
variation of the suspicion rate that is less than
0.01%.

On a smaller corpus like the EASy corpus, 200
iterations take 260s. The algorithm outputs less
than 3,000 relevant suspicious forms (out of the
61,125 possible ones). Convergence information

6These constraints filter results, but all forms are taken
into account during all iterations of the algorithm.

7However, the algorithms shares many common points
with iterative algorithm that are known to converge and that
have been proposed to find maximum entropy probability dis-
tributions under a set of constraints (Berger et al., 1996).
Such an algorithm is compared to ours later on in this paper.
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is the same as what has been said above for the
MD corpus.

Table 2 gives an idea of the repartition of sus-
picious forms w.r.t. their frequency (forFRMG on
MD), showing that rare forms have a greater prob-
ability to be suspicious. The most frequent suspi-
cious form is the double-quote, with (only)Sf =
9%, partly because of segmentation problems.

4.2 Analyzing results

Table 3 gives an insight on the output of our algo-
rithm on parsing results obtained by SXLFG on the
MD corpus. For each formf (in fact, for each cou-
ple of the form(token,form)), this table displays its
suspicion rate and its number of occurrences, as
well as the rateerr(f) of non-parsable sentences
among those wheref appears and a short manual
analysis of the underlying error.

In fact, a more in-depth manual analysis of the
results shows that they are very good: errors are
correctly identified, that can be associated with
four error sources: (1) the Lefff lexicon, (2) the
SXPipe pre-syntactic processing chain, (3) imper-
fections of the grammar, but also (4) problems re-
lated to the corpus itself (and to the fact that it
is a raw corpus, with meta-data and typographic
noise).

On the EASy corpus, results are also relevant,
but sometimes more difficult to interpret, because
of the relative small size of the corpus and because
of its heterogeneity. In particular, it contains e-
mail and oral transcriptions sub-corpora that in-
troduce a lot of noise. Segmentation problems
(caused both by SXPipe and by the corpus itself,
which is already segmented) play an especially
important role.

4.3 Comparing results with results of other
algorithms

In order to validate our approach, we compared
our results with results given by two other relevant
algorithms:

• van Noord’s (van Noord, 2004) (form-level
and non-iterative) evaluation oferr(f) (the
rate of non-parsable sentences among sen-
tences containing the formf ),

• a standard (occurrence-level and iterative)
maximum entropy evaluation of each form’s
contribution to the success or the failure of
a sentence (we used the MEGAM package
(Daumé III, 2004)).

As done for our algorithm, we do not rank forms
directly according to the suspicion rateSf com-
puted by these algorithms. Instead, we use theMf

measure presented above (Mf = Sf ·ln |Of |). Us-
ing directly van Noord’s measure selects as most
suspicious words very rare words, which shows
the importance of a good balance between suspi-
cion rate and frequency (as noted by (van Noord,
2004) in the discussion of his results). This remark
applies to the maximum entropy measure as well.

Table 4 shows for all algorithms the 10 best-
ranked suspicious forms, complemented by a man-
ual evaluation of their relevance. One clearly sees
that our approach leads to the best results. Van
Noord’s technique has been initially designed to
find errors in resources that already ensured a very
high coverage. On our systems, whose develop-
ment is less advanced, this technique ranks as most
suspicious forms those which are simply the most
frequent ones. It seems to be the case for the stan-
dard maximum entropy algorithm, thus showing
the importance to take into account the fact that
there is at least one cause of error in any sentence
whose parsing failed, not only to identify a main
suspicious form in each sentence, but also to get
relevant global results.

4.4 Comparing results for both parsers

We complemented the separated study of error
mining results on the output of both parsers by
an analysis of merged results. We computed for
each form the harmonic mean of both measures
Mf = Sf · ln |Of | obtained for each parsing sys-
tem. Results (not shown here) are very interest-
ing, because they identify errors that come mostly
from resources that are shared by both systems
(the Lefff lexicon and the pre-syntactic processing
chain SXPipe). Although some errors come from
common lacks of coverage in both grammars, it
is nevertheless a very efficient mean to get a first
repartition between error sources.

4.5 Introducing form bigrams

As said before, we also performed experiments
where not only forms but also form bigrams are
treated as potential causes of errors. This approach
allows to identify situations where a form is not in
itself a relevant cause of error, but leads often to
a parse failure when immediately followed or pre-
ceded by an other form.

Table 5 shows best-ranked form bigrams (forms
that are ranked in-between are not shown, to em-
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#occ > 100 000 > 10 000 > 1000 > 100 > 10

#forms 13 84 947 8345 40 393
#suspicious forms (%) 1 (7.6%) 13 (15.5%) 177 (18.7%) 1919 (23%) 12 022 (29.8%)

Table 2: Suspicious forms repartition for MD/FRMG

Rank Token(s)/form S
(50)
f |Of | err(f) Mf Error cause

1 _____/_UNDERSCORE 100% 6399 100% 8.76 corpus: typographic noise
2 (...) 46% 2168 67% 2.82 SXPipe: should be treated as skippable words
3 2_]/_NUMBER 76% 30 93% 2.58 SXPipe: bad treatment of list constructs
4 privées 39% 589 87% 2.53 Lefff : misses as an adjective
5 Haaretz/_Uw 51% 149 70% 2.53 SXPipe: needs local grammars for references
6 contesté 52% 122 90% 2.52 Lefff : misses as an adjective
7 occupés 38% 601 86% 2.42 Lefff : misses as an adjective
8 privée 35% 834 82% 2.38 Lefff : misses as an adjective
9 [...] 44% 193 71% 2.33 SXPipe: should be treated as skippable words
10 faudrait 36% 603 85% 2.32 Lefff : can have a nominal object

Table 3: Analysis of the 10 best-ranked forms (ranked according toMf = Sf · ln |Of |)

this paper global maxent
Rank Token(s)/form Eval Token(s)/form Eval Token(s)/form Eval

1 _____/_UNDERSCORE ++ * + pour -
2 (...) ++ , - ) -
3 2_]/_NUMBER ++ livre - à -
4 privées ++ . - qu’il/qu’ -
5 Haaretz/_Uw ++ de - sont -
6 contesté ++ ; - le -
7 occupés ++ : - qu’un/qu’ +
8 privée ++ la - qu’un/un +
9 [...] ++ é́trangères - que -
10 faudrait ++ lecteurs - pourrait -

Table 4: The 10 best-ranked suspicious forms, according thetheMf measure, as computed by different
algorithms: ours (this paper), a standard maximum entropy algorithm (maxent) and van Noord’s rate
err(f) (global).

Rank Tokens and forms Mf Error cause
4 Toutes/toutes les 2.73 grammar: badly treated pre-determiner adjective
6 y en 2,34 grammar: problem with the constructionil y en a. . .
7 in “ 1.81 Lefff : in misses as a preposition, which happends before book titles (hence the “)
10 donne à 1.44 Lefff : donnershould sub-categorize à-vcomps (donner à voir. . .)
11 de demain 1.19 Lefff : demainmisses as common noun (standard adv are not preceded by prep)
16 ( 22/_NUMBER 0.86 grammar: footnote references not treated
16 22/_NUMBER ) 0.86 as above

Table 5: Best ranked form bigrams (forms ranked inbetween are not shown; ranked according toMf =
Sf · ln |Of |). These results have been computed on a subset of the MD corpus (60,000 sentences).
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phasize bigram results), with the same data as in
table 3.

5 Conclusions and perspectives

As we have shown, parsing large corpora allows
to set up error mining techniques, so as to identify
missing and erroneous information in the differ-
ent resources that are used by full-featured pars-
ing systems. The technique described in this pa-
per and its implementation on forms and form bi-
grams has already allowed us to detect many errors
and omissions in the Lefff lexicon, to point out in-
appropriate behaviors of the SXPipe pre-syntactic
processing chain, and to reveal the lack of cover-
age of the grammars for certain phenomena.

We intend to carry on and extend this work.
First of all, the visualization environment can be
enhanced, as is the case for the implementation of
the algorithm itself.

We would also like to integrate to the model
the possibility that facts taken into account (to-
day, forms and form bigrams) are not necessar-
ily certain, because some of them could be the
consequence of an ambiguity. For example, for
a given form, several lemmas are often possible.
The probabilization of these lemmas would thus
allow to look for most suspicious lemmas.

We are already working on a module that will
allow not only to detect errors, for example in
the lexicon, but also to propose a correction. To
achieve this, we want to parse anew all non-
parsable sentences, after having replaced their
main suspects by a special form that receives
under-specified lexical information. These infor-
mation can be either very general, or can be com-
puted by appropriate generalization patterns ap-
plied on the information associated by the lexicon
with the original form. A statistical study of the
new parsing results will make it possible to pro-
pose corrections concerning the involved forms.
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Abstract

Statistical parsers trained and tested on the
Penn Wall Street Journal (WSJ) treebank
have shown vast improvements over the
last 10 years. Much of this improvement,
however, is based upon an ever-increasing
number of features to be trained on (typi-
cally) theWSJ treebank data. This has led
to concern that such parsers may be too
finely tuned to this corpus at the expense
of portability to other genres. Such wor-
ries have merit. The standard “Charniak
parser” checks in at a labeled precision-
recall f -measure of 89.7% on the Penn
WSJ test set, but only 82.9% on the test set
from the Brown treebank corpus.

This paper should allay these fears. In par-
ticular, we show that the reranking parser
described in Charniak and Johnson (2005)
improves performance of the parser on
Brown to 85.2%. Furthermore, use of the
self-training techniques described in (Mc-
Closky et al., 2006) raise this to 87.8%
(an error reduction of 28%) again with-
out any use of labeled Brown data. This
is remarkable since training the parser and
reranker on labeled Brown data achieves
only 88.4%.

1 Introduction

Modern statistical parsers require treebanks to
train their parameters, but their performance de-
clines when one parses genres more distant from
the training data’s domain. Furthermore, the tree-
banks required to train said parsers are expensive
and difficult to produce.

Naturally, one of the goals of statistical parsing
is to produce a broad-coverage parser which is rel-
atively insensitive to textual domain. But the lack
of corpora has led to a situation where much of
the current work on parsing is performed on a sin-
gle domain using training data from that domain
— the Wall Street Journal (WSJ) section of the
Penn Treebank (Marcus et al., 1993). Given the
aforementioned costs, it is unlikely that many sig-
nificant treebanks will be created for new genres.
Thus,parser adaptationattempts to leverage ex-
isting labeled data from one domain and create a
parser capable of parsing a different domain.

Unfortunately, the state of the art in parser
portability (i.e. using a parser trained on one do-
main to parse a different domain) is not good. The
“Charniak parser” has a labeled precision-recall
f -measure of 89.7% onWSJ but a lowly 82.9%
on the test set from the Brown corpus treebank.
Furthermore, the treebanked Brown data is mostly
general non-fiction and much closer toWSJ than,
e.g., medical corpora would be. Thus, most work
on parser adaptation resorts to using some labeled
in-domain data to fortify the larger quantity of out-
of-domain data.

In this paper, we present some encouraging re-
sults on parser adaptation without any in-domain
data. (Though we also present results with in-
domain data as a reference point.) In particular we
note the effects of two comparatively recent tech-
niques for parser improvement.

The first of these,parse-reranking (Collins,
2000; Charniak and Johnson, 2005) starts with a
“standard” generative parser, but uses it to gener-
ate then-best parses rather than a single parse.
Then a reranking phase uses more detailed fea-
tures, features which would (mostly) be impossi-
ble to incorporate in the initial phase, to reorder
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the list and pick a possibly different best parse.
At first blush one might think that gathering even
more fine-grained features from aWSJ treebank
would not help adaptation. However, we find that
reranking improves the parsers performance from
82.9% to 85.2%.

The second technique isself-training — pars-
ing unlabeled data and adding it to the training
corpus. Recent work, (McClosky et al., 2006),
has shown that adding many millions of words
of machine parsed and reranked LA Times arti-
cles does, in fact, improve performance of the
parser on the closely relatedWSJ data. Here we
show that it also helps the father-afield Brown
data. Adding it improves performance yet-again,
this time from 85.2% to 87.8%, for a net error re-
duction of 28%. It is interesting to compare this to
our results for a completely Brown trained system
(i.e. one in which the first-phase parser is trained
on just Brown training data, and the second-phase
reranker is trained on Brown 50-best lists). This
system performs at a 88.4% level — only slightly
higher than that achieved by our system with only
WSJdata.

2 Related Work

Work in parser adaptation is premised on the as-
sumption that one wants a single parser that can
handle a wide variety of domains. While this is the
goal of the majority of parsing researchers, it is not
quite universal. Sekine (1997) observes that for
parsing a specific domain, data from that domain
is most beneficial, followed by data from the same
class, data from a different class, and data from
a different domain. He also notes that different
domains have very different structures by looking
at frequent grammar productions. For these rea-
sons he takes the position that we should, instead,
simply create treebanks for a large number of do-
mains. While this is a coherent position, it is far
from the majority view.

There are many different approaches to parser
adaptation. Steedman et al. (2003) apply co-
training to parser adaptation and find that co-
training can work across domains. The need to
parse biomedical literature inspires (Clegg and
Shepherd, 2005; Lease and Charniak, 2005).
Clegg and Shepherd (2005) provide an extensive
side-by-side performance analysis of several mod-
ern statistical parsers when faced with such data.
They find that techniques which combine differ-

Training Testing
f -measure

Gildea Bacchiani

WSJ WSJ 86.4 87.0
WSJ Brown 80.6 81.1

Brown Brown 84.0 84.7
WSJ+Brown Brown 84.3 85.6

Table 1: Gildea and Bacchiani results onWSJ and
Brown test corpora using differentWSJand Brown
training sets. Gildea evaluates on sentences of
length≤ 40, Bacchiani on all sentences.

ent parsers such as voting schemes and parse se-
lection can improve performance on biomedical
data. Lease and Charniak (2005) use the Charniak
parser for biomedical data and find that the use of
out-of-domain trees and in-domain vocabulary in-
formation can considerably improve performance.

However, the work which is most directly com-
parable to ours is that of (Ratnaparkhi, 1999; Hwa,
1999; Gildea, 2001; Bacchiani et al., 2006). All
of these papers look at what happens to mod-
ern WSJ-trained statistical parsers (Ratnaparkhi’s,
Collins’, Gildea’s and Roark’s, respectively) as
training data varies in size or usefulness (because
we are testing on something other thanWSJ). We
concentrate particularly on the work of (Gildea,
2001; Bacchiani et al., 2006) as they provide re-
sults which are directly comparable to those pre-
sented in this paper.

Looking at Table 1, the first line shows us
the standard training and testing onWSJ — both
parsers perform in the 86-87% range. The next
line shows what happens when parsing Brown us-
ing a WSJ-trained parser. As with the Charniak
parser, both parsers take an approximately 6% hit.

It is at this point that our work deviates from
these two papers. Lacking alternatives, both
(Gildea, 2001) and (Bacchiani et al., 2006) give
up on adapting a pureWSJ trained system, instead
looking at the issue of how much of an improve-
ment one gets over a pure Brown system by adding
WSJdata (as seen in the last two lines of Table 1).
Both systems use a “model-merging” (Bacchiani
et al., 2006) approach. The different corpora are,
in effect, concatenated together. However, (Bac-
chiani et al., 2006) achieve a larger gain by weight-
ing the in-domain (Brown) data more heavily than
the out-of-domainWSJdata. One can imagine, for
instance, five copies of the Brown data concate-
nated with just one copy ofWSJdata.
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3 Corpora

We primarily use three corpora in this paper. Self-
training requires labeled and unlabeled data. We
assume that these sets of data must be in similar
domains (e.g. news articles) though the effective-
ness of self-training across domains is currently an
open question. Thus, we have labeled (WSJ) and
unlabeled (NANC) out-of-domain data and labeled
in-domain data (BROWN). Unfortunately, lacking
a corresponding corpus toNANC for BROWN, we
cannot perform the opposite scenario and adapt
BROWN to WSJ.

3.1 Brown

The BROWN corpus (Francis and Kučera, 1979)
consists of many different genres of text, intended
to approximate a “balanced” corpus. While the
full corpus consists of fiction and nonfiction do-
mains, the sections that have been annotated in
Treebank II bracketing are primarily those con-
taining fiction. Examples of the sections annotated
include science fiction, humor, romance, mystery,
adventure, and “popular lore.” We use the same
divisions as Bacchiani et al. (2006), who base
their divisions on Gildea (2001). Each division of
the corpus consists of sentences from all available
genres. The training division consists of approx-
imately 80% of the data, while held-out develop-
ment and testing divisions each make up 10% of
the data. The treebanked sections contain approx-
imately 25,000 sentences (458,000 words).

3.2 Wall Street Journal

Our out-of-domain data is the Wall Street Journal
(WSJ) portion of the Penn Treebank (Marcus et al.,
1993) which consists of about 40,000 sentences
(one million words) annotated with syntactic in-
formation. We use the standard divisions: Sec-
tions 2 through 21 are used for training, section 24
for held-out development, and section 23 for final
testing.

3.3 North American News Corpus

In addition to labeled news data, we make use
of a large quantity of unlabeled news data. The
unlabeled data is the North American News Cor-
pus,NANC (Graff, 1995), which is approximately
24 million unlabeled sentences from various news
sources.NANC contains no syntactic information
and sentence boundaries are induced by a simple
discriminative model. We also perform some basic

cleanups onNANC to ease parsing.NANC contains
news articles from various news sources including
the Wall Street Journal, though for this paper, we
only use articles from the LA Times portion.

To use the data fromNANC, we useself-training
(McClosky et al., 2006). First, we take aWSJ

trained reranking parser (i.e. both the parser and
reranker are built fromWSJ training data) and
parse the sentences fromNANC with the 50-best
(Charniak and Johnson, 2005) parser. Next, the
50-best parses are reordered by the reranker. Fi-
nally, the 1-best parses after reranking are com-
bined with theWSJ training set to retrain the first-
stage parser.1 McClosky et al. (2006) find that the
self-trained models help considerably when pars-
ing WSJ.

4 Experiments

We use the Charniak and Johnson (2005) rerank-
ing parser in our experiments. Unless mentioned
otherwise, we use theWSJ-trained reranker (as op-
posed to a BROWN-trained reranker). To evaluate,
we report bracketingf -scores.2 Parserf -scores
reported are for sentences up to 100 words long,
while reranking parserf -scores are over all sen-
tences. For simplicity and ease of comparison,
most of our evaluations are performed on the de-
velopment section of BROWN.

4.1 Adapting self-training

Our first experiment examines the performance
of the self-trained parsers. While the parsers are
created entirely from labeledWSJ data and unla-
beledNANC data, they perform extremely well on
BROWN development (Table 2). The trends are the
same as in (McClosky et al., 2006): AddingNANC

data improves parsing performance on BROWN

development considerably, improving thef -score
from 83.9% to 86.4%. As moreNANC data is
added, thef -score appears to approach an asymp-
tote. TheNANC data appears to help reduce data
sparsity and fill in some of the gaps in theWSJ

model. Additionally, the reranker provides fur-
ther benefit and adds an absolute 1-2% to thef -
score. The improvements appear to be orthogonal,
as our best performance is reached when we use
the reranker and add 2,500k self-trained sentences
from NANC.

1We trained a new reranker from this data as well, but it
does not seem to get significantly different performance.

2The harmonic mean of labeled precision (P) and labeled
recall (R), i.e.f =

2×P×R

P+R
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Sentences added Parser Reranking Parser

Baseline BROWN 86.4 87.4
BaselineWSJ 83.9 85.8
WSJ+50k 84.8 86.6
WSJ+250k 85.7 87.2
WSJ+500k 86.0 87.3
WSJ+750k 86.1 87.5
WSJ+1,000k 86.2 87.3
WSJ+1,500k 86.2 87.6
WSJ+2,000k 86.1 87.7
WSJ+2,500k 86.4 87.7

Table 2: Effects of addingNANC sentences toWSJ

training data on parsing performance.f -scores
for the parser with and without theWSJ reranker
are shown when evaluating on BROWN develop-
ment. For this experiment, we use theWSJ-trained
reranker.

The results are even more surprising when we
compare against a parser3 trained on the labeled
training section of the BROWN corpus, with pa-
rameters tuned against its held-out section. De-
spite seeing no in-domain data, theWSJ based
parser is able to match the BROWN based parser.

For the remainder of this paper, we will refer
to the model trained onWSJ+2,500k sentences of
NANC as our “bestWSJ+NANC” model. We also
note that this “best” parser is different from the
“best” parser for parsingWSJ, which was trained
on WSJ with a relative weight4 of 5 and 1,750k
sentences fromNANC. For parsing BROWN, the
difference between these two parsers is not large,
though.

Increasing the relative weight ofWSJ sentences
versusNANC sentences when testing on BROWN

development does not appear to have a significant
effect. While (McClosky et al., 2006) showed that
this technique was effective when testing onWSJ,
the true distribution was closer toWSJ so it made
sense to emphasize it.

4.2 Incorporating In-Domain Data

Up to this point, we have only considered the sit-
uation where we have no in-domain data. We now

3In this case, only the parser is trained on BROWN. In sec-
tion 4.3, we compare against a fully BROWN-trained rerank-
ing parser as well.

4A relative weight ofn is equivalent to usingn copies of
the corpus, i.e. an event that occurredx times in the corpus
would occurx×n times in the weighted corpus. Thus, larger
corpora will tend to dominate smaller corpora of the same
relative weight in terms of event counts.

explore different ways of making use of labeled
and unlabeled in-domain data.

Bacchiani et al. (2006) applies self-training to
parser adaptation to utilize unlabeled in-domain
data. The authors find that it helps quite a bit when
adapting from BROWN to WSJ. They use a parser
trained from the BROWN train set to parseWSJand
add the parsedWSJ sentences to their training set.
We perform a similar experiment, using ourWSJ-
trained reranking parser to parse BROWN train and
testing on BROWN development. We achieved a
boost from 84.8% to 85.6% when we added the
parsed BROWN sentences to our training. Adding
in 1,000k sentences fromNANC as well, we saw a
further increase to 86.3%. However, the technique
does not seem as effective in our case. While the
self-trained BROWN data helps the parser, it ad-
versely affects the performance of the reranking
parser. When self-trained BROWN data is added to
WSJ training, the reranking parser’s performance
drops from 86.6% to 86.1%. We see a similar
degradation asNANC data is added to the train-
ing set as well. We are not yet able to explain this
unusual behavior.

We now turn to the scenario where we have
some labeled in-domain data. The most obvious
way to incorporate labeled in-domain data is to
combine it with the labeled out-of-domain data.
We have already seen the results (Gildea, 2001)
and (Bacchiani et al., 2006) achieve in Table 1.

We explore various combinations of BROWN,
WSJ, and NANC corpora. Because we are
mainly interested in exploring techniques with
self-trained models rather than optimizing perfor-
mance, we only consider weighting each corpus
with a relative weight of one for this paper. The
models generated are tuned on section 24 from
WSJ. The results are summarized in Table 3.

While both WSJ and BROWN models bene-
fit from a small amount ofNANC data, adding
more than 250kNANC sentences to the BROWN

or combined models causes their performance to
drop. This is not surprising, though, since adding
“too much” NANC overwhelms the more accurate
BROWN or WSJ counts. By weighting the counts
from each corpus appropriately, this problem can
be avoided.

Another way to incorporate labeled data is to
tune the parser back-off parameters on it. Bac-
chiani et al. (2006) report that tuning on held-out
BROWN data gives a large improvement over tun-
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ing on WSJ data. The improvement is mostly (but
not entirely) in precision. We do not see the same
improvement (Figure 1) but this is likely due to
differences in the parsers. However, we do see
a similar improvement for parsing accuracy once
NANC data has been added. The reranking parser
generally sees an improvement, but it does not ap-
pear to be significant.

4.3 Reranker Portability

We have shown that theWSJ-trained reranker is
actually quite portable to the BROWN fiction do-
main. This is surprising given the large number
of features (over a million in the case of theWSJ

reranker) tuned to adjust for errors made in the 50-
best lists by the first-stage parser. It would seem
the corrections memorized by the reranker are not
as domain-specific as we might expect.

As further evidence, we present the results of
applying theWSJ model to the Switchboard cor-
pus — a domain much less similar toWSJ than
BROWN. In Table 4, we see that while the parser’s
performance is low, self-training and reranking
provide orthogonal benefits. The improvements
represent a 12% error reduction with no additional
in-domain data. Naturally, in-domain data and
speech-specific handling (e.g. disfluency model-
ing) would probably help dramatically as well.

Finally, to compare against a model fully
trained on BROWN data, we created a BROWN

reranker. We parsed the BROWN training set with
20-fold cross-validation, selected features that oc-
curred 5 times or more in the training set, and
fed the 50-best lists from the parser to a numeri-
cal optimizer to estimate feature weights. The re-
sulting reranker model had approximately 700,000
features, which is about half as many as theWSJ

trained reranker. This may be due to the smaller
size of the BROWN training set or because the
feature schemas for the reranker were developed
on WSJ data. As seen in Table 5, the BROWN

reranker is not a significant improvement over the
WSJ reranker for parsing BROWN data.

5 Analysis

We perform several types of analysis to measure
some of the differences and similarities between
the BROWN-trained andWSJ-trained reranking
parsers. While the two parsers agree on a large
number of parse brackets (Section 5.2), there are
categorical differences between them (as seen in

Parser model Parserf -score Rerankerf -score

WSJ 74.0 75.9
WSJ+NANC 75.6 77.0

Table 4: Parser and reranking parser performance
on the SWITCHBOARD development corpus. In
this case,WSJ+NANC is a model created fromWSJ

and 1,750k sentences fromNANC.

Model 1-best 10-best 25-best 50-best

WSJ 82.6 88.9 90.7 91.9
WSJ+NANC 86.4 92.1 93.5 94.3

BROWN 86.3 92.0 93.3 94.2

Table 6: Oraclef -scores of topn parses pro-
duced by baselineWSJparser, a combinedWSJand
NANC parser, and a baseline BROWN parser.

Section 5.3).

5.1 Oracle Scores

Table 6 shows thef -scores of an “oracle reranker”
— i.e. one which would always choose the parse
with the highestf -score in then-best list. While
theWSJparser has relatively lowf -scores, adding
NANC data results in a parser with comparable ora-
cle scores as the parser trained from BROWN train-
ing. Thus, theWSJ+NANC model has better oracle
rates than theWSJ model (McClosky et al., 2006)
for both theWSJand BROWN domains.

5.2 Parser Agreement

In this section, we compare the output of the
WSJ+NANC-trained and BROWN-trained rerank-
ing parsers. We useevalb to calculate how sim-
ilar the two sets of output are on a bracket level.
Table 7 shows various statistics. The two parsers
achieved an 88.0%f -score between them. Ad-
ditionally, the two parsers agreed on all brackets
almost half the time. The part of speech tagging
agreement is fairly high as well. Considering they
were created from different corpora, this seems
like a high level of agreement.

5.3 Statistical Analysis

We conducted randomization tests for the signifi-
cance of the difference in corpusf -score, based on
the randomization version of the paired samplet-
test described by Cohen (1995). The null hypoth-
esis is that the two parsers being compared are in
fact behaving identically, so permuting or swap-
ping the parse trees produced by the parsers for
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Figure 1: Precision and recallf -scores when testing on BROWN development as a function of the number
of NANC sentences added under four test conditions. “BROWN tuned” indicates that BROWN training data
was used to tune the parameters (since the normal held-out section was being used for testing). For “WSJ

tuned,” we tuned the parameters from section 24 ofWSJ. Tuning on BROWN helps the parser, but not for
the reranking parser.

Parser model Parser alone Reranking parser

WSJalone 83.9 85.8
WSJ+2,500kNANC 86.4 87.7
BROWN alone 86.3 87.4
BROWN+50k NANC 86.8 88.0
BROWN+250kNANC 86.8 88.1
BROWN+500kNANC 86.7 87.8
WSJ+BROWN 86.5 88.1
WSJ+BROWN+50k NANC 86.8 88.1
WSJ+BROWN+250k NANC 86.8 88.1
WSJ+BROWN+500k NANC 86.6 87.7

Table 3:f -scores from various combinations ofWSJ, NANC, and BROWN corpora on BROWN develop-
ment. The reranking parser used theWSJ-trained reranker model. The BROWN parsing model is naturally
better than theWSJmodel for this task, but combining the two training corpora results in a better model
(as in Gildea (2001)). Adding small amounts ofNANC further improves the models.

Parser model Parser alone WSJ-reranker BROWN-reranker

WSJ 82.9 85.2 85.2
WSJ+NANC 87.1 87.8 87.9

BROWN 86.7 88.2 88.4

Table 5: Performance of various combinations of parser and reranker models when evaluated on BROWN

test. TheWSJ+NANC parser with theWSJ reranker comes close to the BROWN-trained reranking parser.
The BROWN reranker provides only a small improvement over itsWSJcounterpart, which is not statisti-
cally significant.
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Bracketing agreementf -score 88.03%
Complete match 44.92%
Average crossing brackets 0.94
POS Tagging agreement 94.85%

Table 7: Agreement between theWSJ+NANC

parser with theWSJ reranker and the BROWN

parser with the BROWN reranker. Complete match
is how often the two reranking parsers returned the
exact same parse.

the same test sentence should not affect the cor-
pusf -scores. By estimating the proportion of per-
mutations that result in an absolute difference in
corpusf -scores at least as great as that observed
in the actual output, we obtain a distribution-
free estimate of significance that is robust against
parser and evaluator failures. The results of this
test are shown in Table 8. The table shows that
the BROWN reranker is not significantly different
from theWSJ reranker.

In order to better understand the difference be-
tween the reranking parser trained on Brown and
theWSJ+NANC/WSJ reranking parser (a reranking
parser with the first-stage trained onWSJ+NANC

and the second-stage trained onWSJ) on Brown
data, we constructed a logistic regression model
of the difference between the two parsers’f -
scores on the development data using the R sta-
tistical package5. Of the 2,078 sentences in the
development data, 29 sentences were discarded
becauseevalb failed to evaluate at least one of
the parses.6 A Wilcoxon signed rank test on the
remaining 2,049 paired sentence levelf -scores
was significant atp = 0.0003. Of these 2,049
sentences, there were 983 parse pairs with the
same sentence-levelf -score. Of the 1,066 sen-
tences for which the parsers produced parses with
different f -scores, there were 580 sentences for
which the BROWN/BROWN parser produced a
parse with a higher sentence-levelf -score and 486
sentences for which theWSJ+NANC/WSJ parser
produce a parse with a higherf -score. We
constructed a generalized linear model with a
binomial link with BROWN/BROWN f -score >
WSJ+NANC/WSJf -score as the predicted variable,
and sentence length, the number of prepositions
(IN), the number of conjunctions (CC) and Brown

5http://www.r-project.org
6This occurs when an apostrophe is analyzed as a posses-

sive marker in the gold tree and a punctuation symbol in the
parse tree, or vice versa.

Feature Estimate z-value Pr(> |z|)

(Intercept) 0.054 0.3 0.77
IN -0.134 -4.4 8.4e-06 ***
ID=G 0.584 2.5 0.011 *
ID=K 0.697 2.9 0.003 **
ID=L 0.552 2.3 0.021 *
ID=M 0.376 0.9 0.33
ID=N 0.642 2.7 0.0055 **
ID=P 0.624 2.7 0.0069 **
ID=R 0.040 0.1 0.90

Table 9: The logistic model of BROWN/BROWN

f -score> WSJ+NANC/WSJ f -score identified by
model selection. The feature IN is the num-
ber prepositions in the sentence, while ID identi-
fies the Brown subcorpus that the sentence comes
from. Stars indicate significance level.

subcorpus ID as explanatory variables. Model
selection (using the “step” procedure) discarded
all but the IN and Brown ID explanatory vari-
ables. The final estimated model is shown in Ta-
ble 9. It shows that theWSJ+NANC/WSJ parser
becomes more likely to have a higherf -score
than the BROWN/BROWN parser as the number
of prepositions in the sentence increases, and that
the BROWN/BROWN parser is more likely to have
a higherf -score on Brown sections K, N, P, G
and L (these are the general fiction, adventure and
western fiction, romance and love story, letters and
memories, and mystery sections of the Brown cor-
pus, respectively). The three sections of BROWN

not in this list are F, M, and R (popular lore, sci-
ence fiction, and humor).

6 Conclusions and Future Work

We have demonstrated that rerankers and self-
trained models can work well across domains.
Models self-trained onWSJ appear to be better
parsing models in general, the benefits of which
are not limited to theWSJ domain. TheWSJ-
trained reranker using out-of-domain LA Times
parses (produced by theWSJ-trained reranker)
achieves a labeled precision-recallf -measure of
87.8% on Brown data, nearly equal to the per-
formance one achieves by using a purely Brown
trained parser-reranker. The 87.8%f -score on
Brown represents a 24% error reduction on the
corpus.

Of course, as corpora differences go, Brown is
relatively close toWSJ. While we also find that our
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WSJ+NANC/WSJ BROWN/WSJ BROWN/BROWN

WSJ/WSJ 0.025 (0) 0.030 (0) 0.031 (0)
WSJ+NANC/WSJ 0.004 (0.1) 0.006 (0.025)

BROWN/WSJ 0.002 (0.27)

Table 8: The difference in corpusf -score between the various reranking parsers, and the significance of
the difference in parentheses as estimated by a randomization test with106 samples. “x/y” indicates that
the first-stage parser was trained on data setx and the second-stage reranker was trained on data sety.

“best” WSJ-parser-reranker improves performance
on the Switchboard corpus, it starts from a much
lower base (74.0%), and achieves a much less sig-
nificant improvement (3% absolute, 11% error re-
duction). Bridging these larger gaps is still for the
future.

One intriguing idea is what we call “self-trained
bridging-corpora.” We have not yet experimented
with medical text but we expect that the “best”
WSJ+NANC parser will not perform very well.
However, suppose one does self-training on a bi-
ology textbook instead of the LA Times. One
might hope that such a text will split the differ-
ence between more “normal” newspaper articles
and the specialized medical text. Thus, a self-
trained parser based upon such text might do much
better than our standard “best.” This is, of course,
highly speculative.

Acknowledgments

This work was supported by NSF grants LIS9720368, and

IIS0095940, and DARPA GALE contract HR0011-06-2-

0001. We would like to thank the BLLIP team for their com-

ments.

References

Michiel Bacchiani, Michael Riley, Brian Roark, and
Richard Sproat. 2006. MAP adaptation of stochas-
tic grammars. Computer Speech and Language,
20(1):41–68.

Eugene Charniak and Mark Johnson. 2005. Coarse-
to-fine n-best parsing and MaxEnt discriminative
reranking. InProc. of the 2005 Meeting of the
Assoc. for Computational Linguistics (ACL), pages
173–180.

Andrew B. Clegg and Adrian Shepherd. 2005. Evalu-
ating and integrating treebank parsers on a biomedi-
cal corpus. InProceedings of the ACL Workshop on
Software.

Paul R. Cohen. 1995.Empirical Methods for Artifi-
cial Intelligence. The MIT Press, Cambridge, Mas-
sachusetts.

Michael Collins. 2000. Discriminative reranking
for natural language parsing. InMachine Learn-
ing: Proceedings of the Seventeenth International
Conference (ICML 2000), pages 175–182, Stanford,
California.

W. Nelson Francis and Henry Kučera. 1979.Manual
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Abstract

Lexical classes, when tailored to the appli-
cation and domain in question, can provide
an effective means to deal with a num-
ber of natural language processing (NLP)
tasks. While manual construction of such
classes is difficult, recent research shows
that it is possible to automatically induce
verb classes from cross-domain corpora
with promising accuracy. We report a
novel experiment where similar technol-
ogy is applied to the important, challeng-
ing domain of biomedicine. We show that
the resulting classification, acquired from
a corpus of biomedical journal articles,
is highly accurate and strongly domain-
specific. It can be used to aidBIO-NLP

directly or as useful material for investi-
gating the syntax and semantics of verbs
in biomedical texts.

1 Introduction

Lexical classes which capture the close relation
between the syntax and semantics of verbs have
attracted considerable interest inNLP (Jackendoff,
1990; Levin, 1993; Dorr, 1997; Prescher et al.,
2000). Such classes are useful for their ability to
capture generalizations about a range of linguis-
tic properties. For example, verbs which share the
meaning of ‘manner of motion’ (such astravel,
run, walk), behave similarly also in terms of
subcategorization (I traveled/ran/walked, I trav-
eled/ran/walked to London, I traveled/ran/walked
five miles). Although the correspondence between
the syntax and semantics of words is not perfect
and the classes do not provide means for full se-
mantic inferencing, their predictive power is nev-
ertheless considerable.

NLP systems can benefit from lexical classes
in many ways. Such classes define the mapping
from surface realization of arguments to predicate-
argument structure, and are therefore an impor-
tant component of any system which needs the
latter. As the classes can capture higher level
abstractions they can be used as a means to ab-
stract away from individual words when required.
They are also helpful in many operational contexts
where lexical information must be acquired from
small application-specific corpora. Their predic-
tive power can help compensate for lack of data
fully exemplifying the behavior of relevant words.

Lexical verb classes have been used to sup-
port various (multilingual) tasks, such as compu-
tational lexicography, language generation, ma-
chine translation, word sense disambiguation, se-
mantic role labeling, and subcategorization acqui-
sition (Dorr, 1997; Prescher et al., 2000; Korho-
nen, 2002). However, large-scale exploitation of
the classes in real-world or domain-sensitive tasks
has not been possible because the existing classi-
fications, e.g. (Levin, 1993), are incomprehensive
and unsuitable for specific domains.

While manual classification of large numbers of
words has proved difficult and time-consuming,
recent research shows that it is possible to auto-
matically induce lexical classes from corpus data
with promising accuracy (Merlo and Stevenson,
2001; Brew and Schulte im Walde, 2002; Ko-
rhonen et al., 2003). A number ofML methods
have been applied to classify words using features
pertaining to mainly syntactic structure (e.g. sta-
tistical distributions of subcategorization frames
(SCFs) or general patterns of syntactic behaviour,
e.g. transitivity, passivisability) which have been
extracted from corpora using e.g. part-of-speech
tagging or robust statistical parsing techniques.
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This research has been encouraging but it has
so far concentrated on general language. Domain-
specific lexical classification remains unexplored,
although it is arguably important: existing clas-
sifications are unsuitable for domain-specific ap-
plications and these often challenging applications
might benefit from improved performance by uti-
lizing lexical classes the most.

In this paper, we extend an existing approach
to lexical classification (Korhonen et al., 2003)
and apply it (without any domain specific tun-
ing) to the domain of biomedicine. We focus on
biomedicine for several reasons: (i)NLP is criti-
cally needed to assist the processing, mining and
extraction of knowledge from the rapidly growing
literature in this area, (ii) the domain lexical re-
sources (e.g.UMLS metathesaurus and lexicon1)
do not provide sufficient information about verbs
and (iii) being linguistically challenging, the do-
main provides a good test case for examining the
potential of automatic classification.

We report an experiment where a classifica-
tion is induced for 192 relatively frequent verbs
from a corpus of 2230 biomedical journal articles.
The results, evaluated with domain experts, show
that the approach is capable of acquiring classes
with accuracy higher than that reported in previous
work on general language. We discuss reasons for
this and show that the resulting classes differ sub-
stantially from those in extant lexical resources.
They constitute the first syntactic-semantic verb
classification for the biomedical domain and could
be readily applied to supportBIO-NLP.

We discuss the domain-specific issues related to
our task in section 2. The approach to automatic
classification is presented in section 3. Details of
the experimental evaluation are supplied in sec-
tion 4. Section 5 provides discussion and section
6 concludes with directions for future work.

2 The Biomedical Domain and Our Task

Recent years have seen a massive growth in the
scientific literature in the domain of biomedicine.
For example, theMEDLINE database2 which cur-
rently contains around 16M references to journal
articles, expands with 0.5M new references each
year. Because future research in the biomedical
sciences depends on making use of all this existing
knowledge, there is a strong need for the develop-

1http://www.nlm.nih.gov/research/umls
2http://www.ncbi.nlm.nih.gov/PubMed/

ment ofNLP tools which can be used to automat-
ically locate, organize and manage facts related to
published experimental results.

In recent years, major progress has been made
on information retrieval and on the extraction of
specific relations e.g. between proteins and cell
types from biomedical texts (Hirschman et al.,
2002). Other tasks, such as the extraction of fac-
tual information, remain a bigger challenge. This
is partly due to the challenging nature of biomedi-
cal texts. They are complex both in terms of syn-
tax and semantics, containing complex nominals,
modal subordination, anaphoric links, etc.

Researchers have recently began to use deeper
NLP techniques (e.g. statistical parsing) in the do-
main because they are not challenged by the com-
plex structures to the same extent than shallow
techniques (e.g. regular expression patterns) are
(Lease and Charniak, 2005). However, deeper
techniques require richer domain-specific lexical
information for optimal performance than is pro-
vided by existing lexicons (e.g.UMLS). This is
particularly important for verbs, which are central
to the structure and meaning of sentences.

Where the lexical information is absent, lexical
classes can compensate for it or aid in obtaining
it in the ways described in section 1. Consider
e.g. theINDICATE and ACTIVATE verb classes in
Figure 1. They capture the fact that their members
are similar in terms of syntax and semantics: they
have similarSCFs and selectional preferences, and
they can be used to make similar statements which
describe similar events. Such information can be
used to build a richer lexicon capable of support-
ing key tasks such as parsing, predicate-argument
identification, event extraction and the identifica-
tion of biomedical (e.g. interaction) relations.

While an abundance of work has been con-
ducted on semantic classification of biomedical
terms and nouns, less work has been done on the
(manual or automatic) semantic classification of
verbs in the biomedical domain (Friedman et al.,
2002; Hatzivassiloglou and Weng, 2002; Spasic et
al., 2005). No previous work exists in this domain
on the type oflexical(i.e. syntactic-semantic) verb
classification this paper focuses on.

To get an initial idea about the differences be-
tween our target classification and a general lan-
guage classification, we examined the extent to
which individual verbs and their frequencies dif-
fer in biomedical and general language texts. We
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PROTEINS: p53


p53

Tp53

Dmp53

...


ACTIVATE


suggests

demonstrates

indicates

implies...


GENES: WAF1


WAF1

CIP1

p21

...


It


INDICATE


that


activates

up-regulates

induces

stimulates...


...


Figure 1: Sample lexical classes

BIO BNC
show do
suggest say
use make
indicate go
contain see
describe take
express get
bind know
require come
observe give
find think
determine use
demonstrate find
perform look
induce want

Table 1: The 15 most frequent verbs in the
biomedical data and in the BNC

created a corpus of 2230 biomedical journal arti-
cles (see section 4.1 for details) and compared the
distribution of verbs in this corpus with that in the
British National Corpus (BNC) (Leech, 1992). We
calculated the Spearman rank correlation between
the 1165 verbs which occurred in both corpora.
The result was only a weak correlation: 0.37±
0.03. When the scope was restricted to the 100
most frequent verbs in the biomedical data, the
correlation was 0.12± 0.10 which is only1.2σ
away from zero. The dissimilarity between the
distributions is further indicated by the Kullback-
Leibler distance of 0.97. Table 1 illustrates some
of these big differences by showing the list of 15
most frequent verbs in the two corpora.

3 Approach

We extended the system of Korhonen et al. (2003)
with additional clustering techniques (introduced
in sections 3.2.2 and 3.2.4) and used it to ob-
tain the classification for the biomedical domain.
The system (i) extracts features from corpus data
and (ii) clusters them using five different methods.
These steps are described in the following two sec-
tions, respectively.

3.1 Feature Extraction

We employ as features distributions ofSCFs spe-
cific to given verbs. We extract them from cor-

pus data using the comprehensive subcategoriza-
tion acquisition system of Briscoe and Carroll
(1997) (Korhonen, 2002). The system incorpo-
ratesRASP, a domain-independent robust statis-
tical parser (Briscoe and Carroll, 2002), which
tags, lemmatizes and parses data yielding com-
plete though shallow parses and aSCF classifier
which incorporates an extensive inventory of 163
verbal SCFs3. The SCFs abstract over specific
lexically-governed particles and prepositions and
specific predicate selectional preferences. In our
work, we parameterized two high frequencySCFs
for prepositions (PPandNP + PP SCFs). No filter-
ing of potentially noisySCFs was done to provide
clustering with as much information as possible.

3.2 Classification

The SCF frequency distributions constitute the in-
put data to automatic classification. We experi-
ment with five clustering methods: the simple hard
nearest neighbours method and four probabilis-
tic methods – two variants of Probabilistic Latent
Semantic Analysis and two information theoretic
methods (the Information Bottleneck and the In-
formation Distortion).

3.2.1 Nearest Neighbours

The first method collects the nearest neighbours
(NN) of each verb. It (i) calculates the Jensen-
Shannon divergence (JS) between theSCF distri-
butions of each pair of verbs, (ii) connects each
verb with the most similar other verb, and finally
(iii) finds all the connected components. TheNN

method is very simple. It outputs only one clus-
tering configuration and therefore does not allow
examining different cluster granularities.

3.2.2 Probabilistic Latent Semantic Analysis

The Probabilistic Latent Semantic Analysis
(PLSA, Hoffman (2001)) assumes a generative
model for the data, defined by selecting (i) a verb
verbi, (ii) a semantic classclassk from the dis-
tribution p(Classes | verbi), and (iii) a SCF scfj

from the distributionp(SCFs | classk). PLSA uses
Expectation Maximization (EM) to find the dis-
tribution p̃(SCFs |Clusters, V erbs) which max-
imises the likelihood of the observed counts. It
does this by minimising the cost function

F = −β log Likelihood(p̃ | data) + H(p̃) .

3See http://www.cl.cam.ac.uk/users/alk23/subcat/subcat.html
for further detail.
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Forβ = 1 minimisingF is equivalent to the stan-
dard EM procedure while forβ < 1 the distri-
bution p̃ tends to be more evenly spread. We use
β = 1 (PLSA/EM) andβ = 0.75 (PLSAβ=0.75).
We currently “harden” the output and assign each
verb to the most probable cluster only4.

3.2.3 Information Bottleneck

The Information Bottleneck (Tishby et al.,
1999) (IB) is an information-theoretic method
which controls the balance between: (i) the
loss of information by representing verbs as
clusters (I(Clusters; V erbs)), which has to be
minimal, and (ii) the relevanceof the output
clusters for representing theSCF distribution
(I(Clusters; SCFs)) which has to be maximal.
The balance between these two quantities ensures
optimal compression of data through clusters. The
trade-off between the two constraints is realized
through minimising the cost function:

LIB = I(Clusters; V erbs)

− βI(Clusters; SCFs) ,

where β is a parameter that balances the con-
straints. IB takes three inputs: (i)SCF-verb dis-
tributions, (ii) the desired number of clustersK,
and (iii) the initial value ofβ. It then looks for
the minimalβ that decreasesLIB compared to its
value with the initialβ, using the givenK. IB de-
livers as output the probabilitiesp(K|V ). It gives
an indication for the most informative number of
output configurations: the ones for which the rele-
vance information increases more sharply between
K − 1 andK clusters than betweenK andK + 1.

3.2.4 Information Distortion

The Information Distortion method (Dimitrov
and Miller, 2001) (ID) is otherwise similar toIB
butLID differs fromLIB by an additional term that
adds a bias towards clusters of similar size:

LID = −H(Clusters |V erbs)

− βI(Clusters; SCFs)

= LIB −H(Clusters) .

ID yields more evenly divided clusters thanIB.

4 Experimental Evaluation

4.1 Data

We downloaded the data for our experiment from
the MEDLINE database, from three of the 10 lead-

4The same approach was used with the information theo-
retic methods. It made sense in this initial work on biomedi-
cal classification. In the future we could use soft clustering a
means to investigate polysemy.

ing journals in biomedicine: 1)Genes & Devel-
opment(molecular biology, molecular genetics),
2) Journal of Biological Chemistry(biochemistry
and molecular biology) and 3)Journal of Cell Bi-
ology (cellular structure and function). 2230 full-
text articles from years 2003-2004 were used. The
data included 11.5M words and 323,307 sentences
in total. 192 medium to high frequency verbs (with
the minimum of 300 occurrences in the data) were
selected for experimentation5. This test set was
big enough to produce a useful classification but
small enough to enable thorough evaluation in this
first attempt to classify verbs in the biomedical do-
main.

4.2 Processing the Data

The data was first processed using the feature ex-
traction module. 233 (preposition-specific)SCF

types appeared in the resulting lexicon, 36 per verb
on average.6 The classification module was then
applied. NN producedKnn = 42 clusters. From
the other methods we requestedK = 2 to 60 clus-
ters. We chose for evaluation the outputs corre-
sponding to the most informative values ofK: 20,
33, 53 forIB, and 17, 33, 53 forID.

4.3 Gold Standard

Because no target lexical classification was avail-
able for the biomedical domain, human experts (4
domain experts and 2 linguists) were used to cre-
ate the gold standard. They were asked to examine
whether the test verbs similar in terms of their syn-
tactic properties (i.e. verbs with similarSCFdistri-
butions) are similar also in terms of semantics (i.e.
they share a common meaning). Where this was
the case, a verb class was identified and named.

The domain experts examined the 116 verbs
whose analysis required domain knowledge
(e.g. activate, solubilize, harvest), while the lin-
guists analysed the remaining 76 general or scien-
tific text verbs (e.g.demonstrate, hypothesize, ap-
pear). The linguists used Levin (1993) classes as
gold standard classes whenever possible and cre-
ated novel ones when needed. The domain ex-
perts used two purely semantic classifications of
biomedical verbs (Friedman et al., 2002; Spasic et
al., 2005)7 as a starting point where this was pos-

5230 verbs were employed initially but 38 were dropped
later so that each (coarse-grained) class would have the min-
imum of 2 members in the gold standard.

6This number is high because no filtering of potentially
noisySCFs was done.

7See http://www.cbr-masterclass.org.
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1 Have an effect on activity (BIO/29) 8 Physical Relation
1.1 Activate / Inactivate Between Molecules (BIO/20)
1.1.1 Change activity:activate, inhibit 8.1 Binding: bind, attach
1.1.2 Suppress:suppress, repress 8.2 Translocate and Segregate
1.1.3 Stimulate:stimulate 8.2.1 Translocate:shift, switch
1.1.4 Inactivate:delay, diminish 8.2.2 Segregate:segregate, export
1.2 Affect 8.3 Transmit
1.2.1 Modulate:stabilize, modulate 8.3.1 Transport:deliver, transmit
1.2.2 Regulate:control, support 8.3.2 Link:connect, map
1.3 Increase / decrease:increase, decrease 9 Report (GEN/30)
1.4 Modify: modify, catalyze 9.1 Investigate
2 Biochemical events (BIO/12) 9.1.1 Examine:evaluate, analyze
2.1 Express:express, overexpress 9.1.2 Establish:test, investigate
2.2 Modification 9.1.3 Confirm:verify, determine
2.2.1 Biochemical modification: 9.2 Suggest

dephosphorylate, phosphorylate 9.2.1 Presentational:
2.2.2 Cleave:cleave hypothesize, conclude
2.3 Interact: react, interfere 9.2.2 Cognitive:
3 Removal (BIO/6) consider, believe
3.1 Omit: displace, deplete 9.3 Indicate: demonstrate, imply
3.2 Subtract: draw, dissect 10 Perform (GEN/10)
4 Experimental Procedures (BIO/30) 10.1 Quantify
4.1 Prepare 10.1.1 Quantitate:quantify, measure
4.1.1 Wash:wash, rinse 10.1.2 Calculate:calculate, record
4.1.2 Mix: mix 10.1.3 Conduct:perform, conduct
4.1.3 Label:stain, immunoblot 10.2 Score:score, count
4.1.4 Incubate:preincubate, incubate 11 Release (BIO/4):detach, dissociate
4.1.5 Elute:elute 12 Use (GEN/4):utilize, employ
4.2 Precipitate: coprecipitate 13 Include (GEN/11)

coimmunoprecipitate 13.1 Encompass:encompass, span
4.3 Solubilize:solubilize,lyse 13.2 Include: contain, carry
4.4 Dissolve:homogenize, dissolve 14 Call (GEN/3):name, designate
4.5 Place:load, mount 15 Move (GEN/12)
5 Process (BIO/5):linearize, overlap 15.1 Proceed:
6 Transfect (BIO/4):inject, microinject progress, proceed
7 Collect (BIO/6) 15.2 Emerge:
7.1 Collect: harvest, select arise, emerge
7.2 Process:centrifuge, recover 16 Appear (GEN/6):appear, occur

Table 2: The gold standard classification with a
few example verbs per class

sible (i.e. where they included our test verbs and
also captured their relevant senses)8.

The experts created a 3-level gold standard
which includes both broad and finer-grained
classes. Only those classes / memberships were
included which all the experts (in the two teams)
agreed on.9 The resulting gold standard includ-
ing 16, 34 and 50 classes is illustrated in table 2
with 1-2 example verbs per class. The table in-
dicates which classes were created by domain ex-
perts (BIO) and which by linguists (GEN). Each
class was associated with 1-30 member verbs10.
The total number of verbs is indicated in the table
(e.g. 10 forPERFORMclass).

4.4 Measures

The clusters were evaluated against the gold stan-
dard using measures which are applicable to all the

8Purely semantic classes tend to be finer-grained than lex-
ical classes and not necessarily syntactic in nature. Only these
two classifications were found to be similar enough to our tar-
get classification to provide a useful starting point. Section 5
includes a summary of the similarities/differences between
our gold standard and these other classifications.

9Experts were allowed to discuss the problematic cases
to obtain maximal accuracy - hence no inter-annotator agree-
ment is reported.

10The minimum of 2 member verbs were required at the
coarser-grained levels of 16 and 34 classes.

classification methods and which deliver a numer-
ical value easy to interpret.

The first measure, theadjusted pairwise preci-
sion, evaluates clusters in terms of verb pairs:

APP= 1
K

K∑
i=1

num. of correct pairs inki

num. of pairs inki
· |ki|−1
|ki|+1

APP is the average proportion of all within-
cluster pairs that are correctly co-assigned. Multi-
plied by a factor that increases with cluster size it
compensates for a bias towards small clusters.

The second measure ismodified purity, a global
measure which evaluates the mean precision of
clusters. Each cluster is associated with its preva-
lent class. The number of verbs in a clusterK that
take this class is denoted bynprevalent(K). Verbs
that do not take it are considered as errors. Clus-
ters wherenprevalent(K) = 1 are disregarded as
not to introduce a bias towards singletons:

mPUR =

∑
nprevalent(ki)≥2

nprevalent(ki)

number of verbs

The third measure is theweighted class accu-
racy, the proportion of members of dominant clus-
tersDOM-CLUSTi within all classesci.

ACC =

C∑
i=1

verbs inDOM-CLUSTi

number of verbs

mPUR can be seen to measure the precision of
clusters andACC the recall. We define anF mea-
sure as the harmonic mean ofmPUR andACC:

F =
2 ·mPUR · ACC

mPUR + ACC

The statistical significance of the results is mea-
sured by randomisation tests where verbs are
swapped between the clusters and the resulting
clusters are evaluated. The swapping is repeated
100 times for each output and the averageavswaps

and the standard deviationσswaps is measured.
The significance is the scaled differencesignif =
(result− avswaps)/σswaps .

4.5 Results from Quantitative Evaluation

Table 3 shows the performance of the five clus-
tering methods forK = 42 clusters (as produced
by the NN method) at the 3 levels of gold stan-
dard classification. Although the twoPLSA vari-
ants (particularlyPLSAβ=0.75) produce a fairly ac-
curate coarse grained classification, they perform
worse than all the other methods at the finer-
grained levels of gold standard, particularly ac-
cording to the global measures. Being based on
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16 Classes 34 Classes 50 Classes
APP mPUR ACC F APP mPUR ACC F APP mPUR ACC F

NN 81 86 39 53 64 74 62 67 54 67 73 69
IB 74 88 47 61 61 76 74 75 55 69 87 76
ID 79 89 37 52 63 78 65 70 53 70 77 73

PLSA/EM 55 72 49 58 43 53 61 57 35 47 66 55
PLSAβ=0.75 65 71 68 70 53 48 76 58 41 34 77 47

Table 3: The performance of theNN, PLSA, IB andID methods withKnn = 42 clusters

16 Classes 34 Classes 50 Classes
K APP mPUR ACC F APP mPUR ACC F APP mPUR ACC F
20 IB 74 77 66 71 60 56 86 67 54 48 93 63
17 ID 67 76 60 67 43 56 81 66 34 46 91 61
33 IB 78 87 52 65 69 75 81 77 61 67 93 77

ID 81 88 43 57 65 75 70 72 54 67 82 73
53 IB 71 87 41 55 61 78 66 71 54 72 79 75

ID 79 89 33 48 66 79 55 64 53 72 68 69

Table 4: The performance ofIB andID for the 3 levels of class hierarchy for informative values ofK

pairwise similarities,NN shows mostly better per-
formance thanIB and ID on the pairwise measure
APPbut the global measures are better forIB and
ID. The differences are smaller inmPUR (yet sig-
nificant: 2σ betweenNN and IB and3σ between
NN and ID) but more notable inACC (which is
e.g. 8 − 12% better for IB than for NN). Also
theF results suggest that the two information the-
oretic methods are better overall than the simple
NN method.

IB andID also have the advantage (overNN) that
they can be used to produce a hierarchical verb
classification. Table 4 shows the results forIB and
ID for the informative values ofK. The bold font
indicates the results when the match between the
values ofK and the number of classes at the par-
ticular level of the gold standard is the closest.

IB is clearly better thanID at all levels of gold
standard. It yields its best results at the medium
level (34 classes) withK = 33: F = 77 andAPP
= 69 (the results forID areF = 72 andAPP =
65). At the most fine-grained level (50 classes),
IB is equally good according toF with K = 33,
but APP is 8% lower. AlthoughID is occasion-
ally better thanIB according toAPP andmPUR

(see e.g. the results for 16 classes withK = 53)
this never happens in the case where the corre-
spondence between the number of gold standard
classes and the values ofK is the closest. In other
words, the informative values ofK prove really
informative for IB. The lower performance ofID
seems to be due to its tendency to create evenly
sized clusters.

All the methods perform significantly better

than our random baseline. The significance of the
results with respect to two swaps was at the2σ
level, corresponding to a 97% confidence that the
results are above random.

4.6 Qualitative Evaluation

We performed further, qualitative analysis of clus-
ters produced by the best performing methodIB.
Consider the following clusters:

A: inject, transfect, microinfect, contransfect(6)

B: harvest, select, collect(7.1)
centrifuge, process, recover(7.2)

C: wash, rinse(4.1.1)
immunoblot(4.1.3)
overlap(5)

D: activate(1.1.1)

When looking at coarse-grained outputs, in-
terestingly, K as low as 8 learned the broad
distinction between biomedical and general lan-
guage verbs (the two verb types appeared only
rarely in the same clusters) and produced large se-
mantically meaningful groups of classes (e.g. the
coarse-grained classesEXPERIMENTAL PROCE-
DURES, TRANSFECTandCOLLECT were mapped
together). K = 12 was sufficient to iden-
tify several classes with very particular syntax
One of them wasTRANSFECT (see A above)
whose members were distinguished easily be-
cause of their typicalSCFs (e.g. inject /trans-
fect/microinfect/contransfectX with/intoY).

On the other hand, evenK = 53 could not iden-
tify classes with very similar (yet un-identical)
syntax. These included many semantically similar
sub-classes (e.g. the two sub-classes ofCOLLECT
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shown inB whose members take similarNP and
PP SCFs). However, also a few semantically dif-
ferent verbs clustered wrongly because of this rea-
son, such as the ones exemplified inC. In C, im-
munoblot(from theLABEL class) is still somewhat
related towashandrinse(theWASH class) because
they all belong to the largerEXPERIMENTAL PRO-
CEDURES class, butoverlap (from the PROCESS

class) shows up in the cluster merely because of
syntactic idiosyncracy.

While parser errors caused by the challeng-
ing biomedical texts were visible in someSCFs
(e.g. looking at a sample ofSCFs, some adjunct
instances were listed in the argument slots of the
frames), the cases where this resulted in incorrect
classification were not numerous11.

One representative singleton resulting from
these errors is exemplified inD. Activate ap-
pears in relatively complicated sentence struc-
tures, which gives rise to incorrectSCFs. For ex-
ample, MECs cultured on 2D planar substrates
transiently activate MAP kinase in response to
EGF, whereas...gets incorrectly analysed asSCF

NP-NP, while The effect of the constitutivelyac-
tivated ARF6-Q67L mutant was investigated...re-
ceives the incorrectSCFanalysisNP-SCOMP. Most
parser errors are caused by unknown domain-
specific words and phrases.

5 Discussion

Due to differences in the task and experimental
setup, direct comparison of our results with pre-
viously published ones is impossible. The clos-
est possible comparison point is (Korhonen et al.,
2003) which reported 50-59%mPUR and 15-19%
APP on usingIB to assign 110 polysemous (gen-
eral language) verbs into 34 classes. Our results
are substantially better, although we made no ef-
fort to restrict our scope to monosemous verbs12

and although we focussed on a linguistically chal-
lenging domain.

It seems that our better result is largely due
to the higher uniformity of verb senses in the
biomedical domain. We could not investigate this
effect systematically because no manually sense

11This is partly because the mistakes of the parser are
somewhat consistent (similar for similar verbs) and partly be-
cause theSCFs gather data from hundreds of corpus instances,
many of which are analysed correctly.

12Most of our test verbs are polysemous according to
WordNet (WN) (Miller, 1990), but this is not a fully reliable
indication becauseWN is not specific to this domain.

annotated data (or a comprehensive list of verb
senses) exists for the domain. However, exami-
nation of a number of corpus instances suggests
that the use of verbs is fairly conventionalized in
our data13. Where verbs show less sense varia-
tion, they show lessSCF variation, which aids the
discovery of verb classes. Korhonen et al. (2003)
observed the opposite with general language data.

We examined, class by class, to what extent our
domain-specific gold standard differs from the re-
lated general (Levin, 1993) and domain classifica-
tions (Spasic et al., 2005; Friedman et al., 2002)
(recall that the latter were purely semantic clas-
sifications as no lexical ones were available for
biomedicine):

33 (of the 50) classes in the gold standard are
biomedical. Only 6 of these correspond (fully or
mostly) to the semantic classes in the domain clas-
sifications. 17 are unrelated to any of the classes in
Levin (1993) while 16 bear vague resemblance to
them (e.g. ourTRANSPORT verbs are also listed
under Levin’sSEND verbs) but are too different
(semantically and syntactically) to be combined.

17 (of the 50) classes are general (scientific)
classes. 4 of these are absent in Levin (e.g.QUAN-
TITATE). 13 are included in Levin, but 8 of them
have a more restricted sense (and fewer members)
than the corresponding Levin class. Only the re-
maining 5 classes are identical (in terms of mem-
bers and their properties) to Levin classes.

These results highlight the importance of build-
ing or tuning lexical resources specific to different
domains, and demonstrate the usefulness of auto-
matic lexical acquisition for this work.

6 Conclusion

This paper has shown that current domain-
independentNLP andML technology can be used
to automatically induce a relatively high accu-
racy verb classification from a linguistically chal-
lenging corpus of biomedical texts. The lexical
classification resulting from our work is strongly
domain-specific (it differs substantially from pre-
vious ones) and it can be readily used to aidBIO-
NLP. It can provide useful material for investigat-
ing the syntax and semantics of verbs in biomed-
ical data or for supplementing existing domain
lexical resources with additional information (e.g.

13The different sub-domains of the biomedical domain
may, of course, be even more conventionalized (Friedman et
al., 2002).
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semantic classifications with additional member
verbs). Lexical resources enriched with verb class
information can, in turn, better benefit practical
tasks such as parsing, predicate-argument identifi-
cation, event extraction, identification of biomedi-
cal relation patterns, among others.

In the future, we plan to improve the accu-
racy of automatic classification by seeding it with
domain-specific information (e.g. using named en-
tity recognition and anaphoric linking techniques
similar to those of Vlachos et al. (2006)). We also
plan to conduct a bigger experiment with a larger
number of verbs and demonstrate the usefulness of
the bigger classification for practicalBIO-NLP ap-
plication tasks. In addition, we plan to apply sim-
ilar technology to other interesting domains (e.g.
tourism, law, astronomy). This will not only en-
able us to experiment with cross-domain lexical
class variation but also help to determine whether
automatic acquisition techniques benefit, in gen-
eral, from domain-specific tuning.
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Abstract

Various methods have been proposed for
automatic synonym acquisition, as syn-
onyms are one of the most fundamen-
tal lexical knowledge. Whereas many
methods are based on contextual clues
of words, little attention has been paid
to what kind of categories of contex-
tual information are useful for the pur-
pose. This study has experimentally inves-
tigated the impact of contextual informa-
tion selection, by extracting three kinds of
word relationships from corpora: depen-
dency, sentence co-occurrence, and prox-
imity. The evaluation result shows that
while dependency and proximity perform
relatively well by themselves, combina-
tion of two or more kinds of contextual in-
formation gives more stable performance.
We’ve further investigated useful selection
of dependency relations and modification
categories, and it is found that modifi-
cation has the greatest contribution, even
greater than the widely adopted subject-
object combination.

1 Introduction

Lexical knowledge is one of the most important re-
sources in natural language applications, making it
almost indispensable for higher levels of syntacti-
cal and semantic processing. Among many kinds
of lexical relations, synonyms are especially use-
ful ones, having broad range of applications such
as query expansion technique in information re-
trieval and automatic thesaurus construction.

Various methods (Hindle, 1990; Lin, 1998;
Hagiwara et al., 2005) have been proposed for syn-

onym acquisition. Most of the acquisition meth-
ods are based on distributional hypothesis (Har-
ris, 1985), which states that semantically similar
words share similar contexts, and it has been ex-
perimentally shown considerably plausible.

However, whereas many methods which adopt
the hypothesis are based on contextual clues con-
cerning words, and there has been much consid-
eration on the language models such as Latent
Semantic Indexing (Deerwester et al., 1990) and
Probabilistic LSI (Hofmann, 1999) and synonym
acquisition method, almost no attention has been
paid to what kind of categories of contextual infor-
mation, or their combinations, are useful for word
featuring in terms of synonym acquisition.

For example, Hindle (1990) used co-
occurrences between verbs and their subjects
and objects, and proposed a similarity metric
based on mutual information, but no exploration
concerning the effectiveness of other kinds of
word relationship is provided, although it is
extendable to any kinds of contextual information.
Lin (1998) also proposed an information theory-
based similarity metric, using a broad-coverage
parser and extracting wider range of grammatical
relationship including modifications, but he didn’t
further investigate what kind of relationships
actually had important contributions to acquisi-
tion, either. The selection of useful contextual
information is considered to have a critical impact
on the performance of synonym acquisition. This
is an independent problem from the choice of
language model or acquisition method, and should
therefore be examined by itself.

The purpose of this study is to experimen-
tally investigate the impact of contextual infor-
mation selection for automatic synonym acqui-
sition. Because nouns are the main target of
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synonym acquisition, here we limit the target of
acquisition to nouns, and firstly extract the co-
occurrences between nouns and three categories of
contextual information — dependency, sentence
co-occurrence, and proximity — from each of
three different corpora, and the performance of
individual categories and their combinations are
evaluated. Since dependency and modification re-
lations are considered to have greater contribu-
tions in contextual information and in the depen-
dency category, respectively, these categories are
then broken down into smaller categories to ex-
amine the individual significance.

Because the consideration on the language
model and acquisition methods is not the scope of
the current study, widely used vector space model
(VSM), tf·idf weighting scheme, and cosine mea-
sure are adopted for similarity calculation. The re-
sult is evaluated using two automatic evaluation
methods we proposed and implemented: discrimi-
nation rate and correlation coefficient based on the
existing thesaurus WordNet.

This paper is organized as follows: in Section
2, three kinds of contextual information we use
are described, and the following Section 3 explains
the synonym acquisition method. In Section 4 the
evaluation method we employed is detailed, which
consists of the calculation methods of reference
similarity, discrimination rate, and correlation co-
efficient. Section 5 provides the experimental con-
ditions and results of contextual information se-
lection, followed by dependency and modification
selection. Section 6 concludes this paper.

2 Contextual Information

In this study, we focused on three kinds of con-
textual information: dependency between words,
sentence co-occurrence, and proximity, that is, co-
occurrence with other words in a window, details
of which are provided the following sections.

2.1 Dependency

The first category of the contextual information we
employed is the dependency between words in a
sentence, which we suppose is most commonly
used for synonym acquisition as the context of
words. The dependency here includes predicate-
argument structure such as subjects and objects
of verbs, and modifications of nouns. As the ex-
traction of accurate and comprehensive grammat-
ical relations is in itself a difficult task, the so-

dependent

mod

ncmod xmod cmod detmod

arg_mod arg aux conj

subj_or_dobj

subj

ncsubj xsubj csubj

comp

obj clausal

obj2dobj iobj
xcomp ccomp

mod

subj

obj

Figure 1: Hierarchy of grammatical relations and
groups

phisticated parser RASP Toolkit (Briscoe and Car-
roll, 2002) was utilized to extract this kind of
word relations. RASP analyzes input sentences
and provides wide variety of grammatical infor-
mation such as POS tags, dependency structure,
and parsed trees as output, among which we paid
attention to dependency structure called grammat-
ical relations (GRs) (Briscoe et al., 2002).

GRs represent relationship among two or more
words and are specified by the labels, which con-
struct the hierarchy shown in Figure 1. In this hier-
archy, the upper levels correspond to more general
relations whereas the lower levels to more specific
ones. Although the most general relationship in
GRs is “dependent”, more specific labels are as-
signed whenever possible. The representation of
the contextual information using GRs is as fol-
lows. Take the following sentence for example:

Shipments have been relatively level
since January, the Commerce Depart-
ment noted.

RASP outputs the extracted GRs asn-ary rela-
tions as follows:
(ncsubj note Department obj)
(ncsubj be Shipment _)
(xcomp _ be level)
(mod _ level relatively)
(aux _ be have)
(ncmod since be January)
(mod _ Department note)
(ncmod _ Department Commerce)
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(detmod _ Department the)
(ncmod _ be Department)

While most of GRs extracted by RASP are bi-
nary relations of head and dependent, there are
some relations that contain additional slot or ex-
tra information regarding the relations, as shown
“ncsubj” and “ncmod” in the above example. To
obtain the final representation that we require for
synonym acquisition, that is, the co-occurrence
between words and their contexts, these relation-
ships must be converted to binary relations, i.e.,
co-occurrence. We consider the concatenation of
all the rest of the target word as context:

Department ncsubj:note:*:obj
shipment ncsubj:be:*:_
January ncmod:since:be:*
Department mod:_:*:note
Department ncmod:_:*:Commerce
Commerce ncmod:_:Department:*
Department detmod:_:*:the
Department ncmod:_:be:*

The slot for the target word is replaced by “*” in
the context. Note that only the contexts for nouns
are extracted because our purpose here is the auto-
matic extraction of synonymous nouns.

2.2 Sentence Co-occurrence

As the second category of contextual information,
we used the sentence co-occurrence, i.e., which
sentence words appear in. Using this context is,
in other words, essentially the same as featuring
words with the sentences in which they occur.
Treating single sentences as documents, this fea-
turing corresponds to exploiting transposed term-
document matrix in the information retrieval con-
text, and the underlying assumption is that words
that commonly appear in the similar documents or
sentences are considered semantically similar.

2.3 Proximity

The third category of contextual information,
proximity, utilizes tokens that appear in the vicin-
ity of the target word in a sentence. The basic as-
sumption here is that the more similar the distri-
bution of proceeding and succeeding words of the
target words are, the more similar meaning these
two words possess, and its effectiveness has been
previously shown (Macro Baroni and Sabrina Bisi,
2004). To capture the word proximity, we consider
a window with a certain radius, and treat the la-
bel of the word and its position within the window
as context. The contexts for the previous example
sentence, when the window radius is 3, are then:

shipment R1:have
shipment R2:be
shipment R3:relatively
January L1:since
January L2:level
January L3:relatively
January R1:,
January R2:the
January R3:Commerce
Commerce L1:the
Commerce L2:,
Commerce L3:January
Commerce R1:Department
...

Note that the proximity includes tokens such as
punctuation marks as context, because we suppose
they offer useful contextual information as well.

3 Synonym Acquisition Method

The purpose of the current study is to investigate
the impact of the contextual information selection,
not the language model itself, we employed one
of the most commonly used method: vector space
model (VSM) and tf·idf weighting scheme. In this
framework, each word is represented as a vector
in a vector space, whose dimensions correspond
to contexts. The elements of the vectors given by
tf·idf are the co-occurrence frequencies of words
and contexts, weighted by normalized idf. That
is, denoting the number of distinct words and con-
texts asN andM , respectively,

wi = t[tf(wi, c1) · idf(c1) ... tf(wi, cM ) · idf(cM )],
(1)

where tf(wi, cj) is the co-occurrence frequency of
wordwi and contextcj . idf(cj) is given by

idf(cj) =
log(N/df(cj))

maxk log(N/df(vk))
, (2)

where df(cj) is the number of distinct words that
co-occur with contextcj .

Although VSM and tf·idf are naive and simple
compared to other language models like LSI and
PLSI, they have been shown effective enough for
the purpose (Hagiwara et al., 2005). The similar-
ity between two words are then calculated as the
cosine value of two corresponding vectors.

4 Evaluation

This section describes the evaluation methods we
employed for automatic synonym acquisition. The
evaluation is to measure how similar the obtained
similarities are to the “true” similarities. We firstly
prepared the reference similarities from the exist-
ing thesaurus WordNet as described in Section 4.1,
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and by comparing the reference and obtained sim-
ilarities, two evaluation measures, discrimination
rate and correlation coefficient, are calculated au-
tomatically as described in Sections 4.2 and 4.3.

4.1 Reference similarity calculation using
WordNet

As the basis for automatic evaluation methods, the
reference similarity, which is the answer value that
similarity of a certain pair of words “should take,”
is required. We obtained the reference similarity
using the calculation based on thesaurus tree struc-
ture (Nagao, 1996). This calculation method re-
quires no other resources such as corpus, thus it is
simple to implement and widely used.

The similarity between word sensewi and word
sensevj is obtained using tree structure as follows.
Let the depth1 of nodewi bedi, the depth of node
vj bedj , and the maximum depth of the common
ancestors of both nodes beddca. The similarity
betweenwi andvj is then calculated as

sim(wi, vj) =
2 · ddca

di + dj
, (3)

which takes the value between 0.0 and 1.0.
Figure 2 shows the example of calculating the

similarity between the word senses “hill” and
“coast.” The number on the side of each word
sense represents the word’s depth. From this tree
structure, the similarity is obtained:

sim(“hill” , “coast”) =
2 · 3
5 + 5

= 0.6. (4)

The similarity between wordw with senses
w1, ..., wn and wordv with sensesv1, ..., vm is de-
fined as the maximum similarity between all the
pairs of word senses:

sim(w, v) = max
i,j

sim(wi, vj), (5)

whose idea came from Lin’s method (Lin, 1998).

4.2 Discrimination Rate

The following two sections describe two evalua-
tion measures based on the reference similarity.
The first one is discrimination rate (DR). DR, orig-
inally proposed by Kojima et al. (2004), is the rate

1To be precise, the structure of WordNet, where some
word senses have more than one parent, isn’t a tree but a
DAG. The depth of a node is, therefore, defined here as the
“maximum distance” from the root node.

entity     0

inanimate-object     1

natural-object     2

geological-formation     3

4 natural-elevation

5 hill

shore     4

coast     5

Figure 2: Example of automatic similarity calcu-
lation based on tree structure

(answer, reply)
(phone, telephone)
(sign, signal)
(concern, worry)

(animal, coffee)
(him, technology)
(track, vote)
(path, youth)

… …

highly related unrelated

Figure 3: Test-sets for discrimination rate calcula-
tion.

(percentage) of pairs(w1, w2) whose degree of as-
sociation between two wordsw1, w2 is success-
fully discriminated by the similarity derived by
the method under evaluation. Kojima et al. dealt
with three-level discrimination of a pair of words,
that is, highly related (synonyms or nearly syn-
onymous), moderately related (a certain degree of
association), and unrelated (irrelevant). However,
we omitted the moderately related level and lim-
ited the discrimination to two-level: high or none,
because of the difficulty of preparing a test set that
consists of moderately related pairs.

The calculation of DR follows these steps: first,
two test sets, one of which consists of highly re-
lated word pairs and the other of unrelated ones,
are prepared, as shown in Figure 3. The similar-
ity betweenw1 andw2 is then calculated for each
pair (w1, w2) in both test sets via the method un-
der evaluation, and the pair is labeled highly re-
lated when similarity exceeds a given thresholdt
and unrelated when the similarity is lower thant.
The number of pairs labeled highly related in the
highly related test set and unrelated in the unre-
lated test set are denotedna andnb, respectively.
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DR is then given by:

1
2

(
na

Na
+

nb

Nb

)
, (6)

where Na and Nb are the numbers of pairs in
highly related and unrelated test sets, respectively.
Since DR changes depending on thresholdt, max-
imum value is adopted by varyingt.

We used the reference similarity to create these
two test sets. Firstly,Np = 100, 000 pairs of
words are randomly created using the target vo-
cabulary set for synonym acquisition. Proper
nouns are omitted from the choice here because
of their high ambiguity. The two testsets are then
created extractingn = 2, 000 most related (with
high reference similarity) and unrelated (with low
reference similarity) pairs.

4.3 Correlation coefficient

The second evaluation measure is correlation co-
efficient (CC) between the obtained similarity and
the reference similarity. The higher CC value is,
the more similar the obtained similarities are to
WordNet, thus more accurate the synonym acqui-
sition result is.

The value of CC is calculated as follows. Let
the set of the sample pairs bePs, the sequence of
the reference similarities calculated for the pairs
in Ps be r = (r1, r2, ..., rn), the corresponding
sequence of the target similarity to be evaluated
be r = (s1, s2, ..., sn), respectively. Correlation
coefficientρ is then defined by:

ρ =
1
n

∑n
i=1(ri − r̄)(si − s̄)

σrσs
, (7)

wherer̄, s̄, σr, andσs represent the average ofr
ands and the standard deviation ofr ands, re-
spectively. The set of the sample pairsPs is cre-
ated in a similar way to the preparation of highly
related test set used in DR calculation, except that
we employedNp = 4, 000, n = 2, 000 to avoid
extreme nonuniformity.

5 Experiments

Now we desribe the experimental conditions and
results of contextual information selection.

5.1 Condition

We used the following three corpora for the ex-
periment: (1) Wall Street Journal (WSJ) corpus
(approx. 68,000 sentences, 1.4 million tokens),

(2) Brown Corpus (BROWN) (approx. 60,000
sentences, 1.3 million tokens), both of which are
contained in Treebank 3 (Marcus, 1994), and (3)
written sentences in WordBank (WB) (approx.
190,000 sentences, 3.5 million words) (Hyper-
Collins, 2002). No additional annotation such as
POS tags provided for Treebank was used, which
means that we gave the plain texts stripped off any
additional information to RASP as input.

To distinguish nouns, using POS tags annotated
by RASP, any words with POS tags APP, ND, NN,
NP, PN, PP were labeled as nouns. The window
radius for proximity is set to 3. We also set a
thresholdtf on occurrence frequency in order to
filter out any words or contexts with low frequency
and to reduce computational cost. More specifi-
cally, any wordsw such that

∑
c tf(w, c) < tf and

any contextsc such that
∑

w tf(w, c) < tf were
removed from the co-occurrence data.tf was set
to tf = 5 for WSJ and BROWN, andtf = 10 for
WB in Sections 5.2 and 5.3, andtf = 2 for WSJ
and BROWN andtf = 5 for WB in Section 5.4.

5.2 Contextual Information Selection

In this section, we experimented to discover what
kind of contextual information extracted in Sec-
tion 2 is useful for synonym extraction. The per-
formances, i.e. DR and CC are evaluated for each
of the three categories and their combinations.

The evaluation result for three corpora is shown
in Figure 4. Notice that the range and scale of the
vertical axes of the graphs vary according to cor-
pus. The result shows that dependency and prox-
imity perform relatively well alone, while sen-
tence co-occurrence has almost no contributions
to performance. However, when combined with
other kinds of context information, every category,
even sentence co-occurrence, serves to “stabilize”
the overall performance, although in some cases
combination itself decreases individual measures
slightly. It is no surprise that the combination of all
categories achieves the best performance. There-
fore, in choosing combination of different kinds of
context information, one should take into consid-
eration the economical efficiency and trade-off be-
tween computational complexity and overall per-
formance stability.

5.3 Dependency Selection

We then focused on the contribution of individual
categories of dependency relation, i.e. groups of
grammatical relations. The following four groups
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Figure 4: Contextual information selection perfor-
mances

Discrimination rate (DR) and correlation coefficient (CC)

for (1) Wall Street Journal corpus, (2) Brown Corpus, and

(3) WordBank.

of GRs are considered for comparison conve-
nience: (1) subj group (“subj”, “ncsubj”, “xsubj”,
and “csubj”), (2) obj group (“obj”, “dobj”, “obj2”,
and “iobj”), (3) mod group (“mod”, “ncmod”,
“xmod”, “cmod”, and “detmod”), and (4) etc
group (others), as shown in the circles in Figure
1. This is because distinction between relations
in a group is sometimes unclear, and is consid-
ered to strongly depend on the parser implemen-
tation. The final target is seven kinds of combina-
tions of the above four groups: subj, obj, mod, etc,
subj+obj, subj+obj+mod, and all.

The two evaluation measures are similarly cal-
culated for each group and combination, and
shown in Figure 5. Although subjects, objects,
and their combination are widely used contextual
information, the performances for subj and obj
categories, as well as their combination subj+obj,
were relatively poor. On the contrary, the re-
sult clearly shows the importance of modification,
which alone is even better than widely adopted
subj+obj. The “stabilization effect” of combina-
tions observed in the previous experiment is also
confirmed here as well.

Because the size of the co-occurrence data
varies from one category to another, we conducted
another experiment to verify that the superiority
of the modification category is simply due to the
difference in the quality (content) of the group,
not the quantity (size). We randomly extracted
100,000 pairs from each of mod and subj+obj cat-
egories to cancel out the quantity difference and
compared the performance by calculating aver-
aged DR and CC of ten trials. The result showed
that, while the overall performances substantially
decreased due to the size reduction, the relation
between groups was preserved before and after the
extraction throughout all of the three corpora, al-
though the detailed result is not shown due to the
space limitation. This means that what essentially
contributes to the performance is not the size of
the modification category but its content.

5.4 Modification Selection

As the previous experiment shows that modifica-
tions have the biggest significance of all the depen-
dency relationship, we further investigated what
kind of modifications is useful for the purpose. To
do this, we broke down the mod group into these
five categories according to modifying word’s cat-
egory: (1) detmod, when the GR label is “det-
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Figure 5: Dependency selection performances
Discrimination rate (DR) and correlation coefficient (CC)

for (1) Wall Street Journal corpus, (2) Brown Corpus, and

(3) WordBank.
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Figure 6: Modification selection performances
Discrimination rate (DR) and correlation coefficient (CC)

for (1) Wall Street Journal corpus, (2) Brown Corpus, and

(3) WordBank.
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mod”, i.e., the modifying word is a determiner, (2)
ncmod-n, when the GR label is “ncmod” and the
modifying word is a noun, (3) ncmod-j, when the
GR label is “ncmod” and the modifying word is an
adjective or number, (4) ncmod-p, when the GR
label is “ncmod” and the modification is through a
preposition (e.g. “state” and “affairs” in “state of
affairs”), and (5) etc (others).

The performances for each modification cate-
gory are evaluated and shown in Figure 6. Al-
though some individual modification categories
such as detmod and ncmod-j outperform other cat-
egories in some cases, the overall observation is
that all the modification categories contribute to
synonym acquisition to some extent, and the ef-
fect of individual categories are accumulative. We
therefore conclude that the main contributing fac-
tor on utilizing modification relationship in syn-
onym acquisition isn’t the type of modification,
but the diversity of the relations.

6 Conclusion

In this study, we experimentally investigated the
impact of contextual information selection, by ex-
tracting three kinds of contextual information —
dependency, sentence co-occurrence, and proxim-
ity — from three different corpora. The acqui-
sition result was evaluated using two evaluation
measures, DR and CC using the existing thesaurus
WordNet. We showed that while dependency and
proximity perform relatively well by themselves,
combination of two or more kinds of contextual
information, even with the poorly performing sen-
tence co-occurrence, gives more stable result. The
selection should be chosen considering the trade-
off between computational complexity and overall
performance stability. We also showed that modi-
fication has the greatest contribution to the acqui-
sition of all the dependency relations, even greater
than the widely adopted subject-object combina-
tion. It is also shown that all the modification cate-
gories contribute to the acquisition to some extent.

Because we limited the target to nouns, the re-
sult might be specific to nouns, but the same exper-
imental framework is applicable to any other cate-
gories of words. Although the result also shows
the possibility that the bigger the corpus is, the
better the performance will be, the contents and
size of the corpora we used are diverse, so their
relationship, including the effect of the window ra-
dius, should be examined as the future work.
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Abstract

Accurately representing synonymy using
distributional similarity requires large vol-
umes of data to reliably represent infre-
quent words. However, the naı̈ve nearest-
neighbour approach to comparing context
vectors extracted from large corpora scales
poorly (O(n2) in the vocabulary size).

In this paper, we compare several existing
approaches to approximating the nearest-
neighbour search for distributional simi-
larity. We investigate the trade-off be-
tween efficiency and accuracy, and find
that SASH (Houle and Sakuma, 2005) pro-
vides the best balance.

1 Introduction

It is a general property of Machine Learning that
increasing the volume of training data increases
the accuracy of results. This is no more evident
than in Natural Language Processing (NLP), where
massive quantities of text are required to model
rare language events. Despite the rapid increase in
computational power available for NLP systems,
the volume of raw data available still outweighs
our ability to process it. Unsupervised learning,
which does not require the expensive and time-
consuming human annotation of data, offers an
opportunity to use this wealth of data. Curran
and Moens (2002) show that synonymy extraction
for lexical semantic resources using distributional
similarity produces continuing gains in accuracy
as the volume of input data increases.

Extracting synonymy relations using distribu-
tional similarity is based on the distributional hy-
pothesis that similar words appear in similar con-
texts. Terms are described by collating informa-

tion about their occurrence in a corpus into vec-
tors. These context vectors are then compared for
similarity. Existing approaches differ primarily in
their definition of “context”, e.g. the surrounding
words or the entire document, and their choice of
distance metric for calculating similarity between
the context vectors representing each term.

Manual creation of lexical semantic resources
is open to the problems of bias, inconsistency and
limited coverage. It is difficult to account for the
needs of the many domains in which NLP tech-
niques are now being applied and for the rapid
change in language use. The assisted or auto-
matic creation and maintenance of these resources
would be of great advantage.

Finding synonyms using distributional similar-
ity requires a nearest-neighbour search over the
context vectors of each term. This is computation-
ally intensive, scaling to O(n2m) for the number
of terms n and the size of their context vectors m.
Increasing the volume of input data will increase
the size of both n and m, decreasing the efficiency
of a naı̈ve nearest-neighbour approach.

Many approaches to reduce this complexity
have been suggested. In this paper we evaluate
state-of-the-art techniques proposed to solve this
problem. We find that the Spatial Approximation
Sample Hierarchy (Houle and Sakuma, 2005) pro-
vides the best accuracy/efficiency trade-off.

2 Distributional Similarity

Measuring distributional similarity first requires
the extraction of context information for each of
the vocabulary terms from raw text. These terms
are then compared for similarity using a nearest-
neighbour search or clustering based on distance
calculations between the statistical descriptions of
their contexts.
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2.1 Extraction

A context relation is defined as a tuple (w, r, w′)
where w is a term, which occurs in some grammat-
ical relation r with another word w′ in some sen-
tence. We refer to the tuple (r, w′) as an attribute
of w. For example, (dog, direct-obj, walk) indicates
that dog was the direct object of walk in a sentence.

In our experiments context extraction begins
with a Maximum Entropy POS tagger and chun-
ker. The SEXTANT relation extractor (Grefen-
stette, 1994) produces context relations that are
then lemmatised. The relations for each term are
collected together and counted, producing a vector
of attributes and their frequencies in the corpus.

2.2 Measures and Weights

Both nearest-neighbour and cluster analysis meth-
ods require a distance measure to calculate the
similarity between context vectors. Curran (2004)
decomposes this into measure and weight func-
tions. The measure calculates the similarity
between two weighted context vectors and the
weight calculates the informativeness of each con-
text relation from the raw frequencies.

For these experiments we use the Jaccard (1)
measure and the TTest (2) weight functions, found
by Curran (2004) to have the best performance.

∑

(r,w′) min(w(wm, r, w′), w(wn, r, w′))
∑

(r,w′) max(w(wm, r, w′), w(wn, r, w′))
(1)

p(w, r, w′) − p(∗, r, w′)p(w, ∗, ∗)
√

p(∗, r, w′)p(w, ∗, ∗)
(2)

2.3 Nearest-neighbour Search

The simplest algorithm for finding synonyms is
a k-nearest-neighbour (k-NN) search, which in-
volves pair-wise vector comparison of the target
term with every term in the vocabulary. Given an
n term vocabulary and up to m attributes for each
term, the asymptotic time complexity of nearest-
neighbour search is O(n2m). This is very expen-
sive, with even a moderate vocabulary making the
use of huge datasets infeasible. Our largest exper-
iments used a vocabulary of over 184,000 words.

3 Dimensionality Reduction

Using a cut-off to remove low frequency terms
can significantly reduce the value of n. Unfortu-
nately, reducing m by eliminating low frequency
contexts has a significant impact on the quality of

the results. There are many techniques to reduce
dimensionality while avoiding this problem. The
simplest methods use feature selection techniques,
such as information gain, to remove the attributes
that are less informative. Other techniques smooth
the data while reducing dimensionality.

Latent Semantic Analysis (LSA, Landauer and
Dumais, 1997) is a smoothing and dimensional-
ity reduction technique based on the intuition that
the true dimensionality of data is latent in the sur-
face dimensionality. Landauer and Dumais admit
that, from a pragmatic perspective, the same effect
as LSA can be generated by using large volumes
of data with very long attribute vectors. Experi-
ments with LSA typically use attribute vectors of a
dimensionality of around 1000. Our experiments
have a dimensionality of 500,000 to 1,500,000.
Decompositions on data this size are computation-
ally difficult. Dimensionality reduction is often
used before using LSA to improve its scalability.

3.1 Heuristics

Another technique is to use an initial heuristic
comparison to reduce the number of full O(m)
vector comparisons that are performed. If the
heuristic comparison is sufficiently fast and a suffi-
cient number of full comparisons are avoided, the
cost of an additional check will be easily absorbed
by the savings made.

Curran and Moens (2002) introduces a vector of
canonical attributes (of bounded length k � m),
selected from the full vector, to represent the term.
These attributes are the most strongly weighted
verb attributes, chosen because they constrain the
semantics of the term more and partake in fewer
idiomatic collocations. If a pair of terms share at
least one canonical attribute then a full similarity
comparison is performed, otherwise the terms are
not compared. They show an 89% reduction in
search time, with only a 3.9% loss in accuracy.

There is a significant improvement in the com-
putational complexity. If a maximum of p posi-
tive results are returned, our complexity becomes
O(n2k + npm). When p � n, the system will
be faster as many fewer full comparisons will be
made, but at the cost of accuracy as more possibly
near results will be discarded out of hand.

4 Randomised Techniques

Conventional dimensionality reduction techniques
can be computationally expensive: a more scal-
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able solution is required to handle the volumes of
data we propose to use. Randomised techniques
provide a possible solution to this.

We present two techniques that have been used
recently for distributional similarity: Random In-
dexing (Kanerva et al., 2000) and Locality Sensi-
tive Hashing (LSH, Broder, 1997).

4.1 Random Indexing

Random Indexing (RI) is a hashing technique
based on Sparse Distributed Memory (Kanerva,
1993). Karlgren and Sahlgren (2001) showed RI

produces results similar to LSA using the Test of
English as a Foreign Language (TOEFL) evalua-
tion. Sahlgren and Karlgren (2005) showed the
technique to be successful in generating bilingual
lexicons from parallel corpora.

In RI, we first allocate a d length index vec-
tor to each unique attribute. The vectors con-
sist of a large number of 0s and small number
(ε) number of randomly distributed ±1s. Context
vectors, identifying terms, are generated by sum-
ming the index vectors of the attributes for each
non-unique context in which a term appears. The
context vector for a term t appearing in contexts
c1 = [1, 0, 0,−1] and c2 = [0, 1, 0,−1] would be
[1, 1, 0,−2]. The distance between these context
vectors is then measured using the cosine measure:

cos(θ(u, v)) =
~u · ~v

|~u| |~v|
(3)

This technique allows for incremental sampling,
where the index vector for an attribute is only gen-
erated when the attribute is encountered. Con-
struction complexity is O(nmd) and search com-
plexity is O(n2d).

4.2 Locality Sensitive Hashing

LSH is a probabilistic technique that allows the
approximation of a similarity function. Broder
(1997) proposed an approximation of the Jaccard
similarity function using min-wise independent
functions. Charikar (2002) proposed an approx-
imation of the cosine measure using random hy-
perplanes Ravichandran et al. (2005) used this co-
sine variant and showed it to produce over 70%
accuracy in extracting synonyms when compared
against Pantel and Lin (2002).

Given we have n terms in an m′ dimensional
space, we create d � m′ unit random vectors also
of m′ dimensions, labelled {~r1, ~r2, ..., ~rd}. Each

vector is created by sampling a Gaussian function
m′ times, with a mean of 0 and a variance of 1.

For each term w we construct its bit signature
using the function

h~r(~w) =

{

1 : ~r. ~w ≥ 0

0 : ~r. ~w < 0

where ~r is a spherically symmetric random vector
of length d. The signature, w̄, is the d length bit
vector:

w̄ = {h~r1
(~w), h ~r2

(~w), . . . , h ~rd
(~w)}

The cost to build all n signatures is O(nm′d).
For terms u and v, Goemans and Williamson

(1995) approximate the angular similarity by

p(h~r(~u) = h~r(~v)) = 1 −
θ(~u, ~u)

π
(4)

where θ(~u, ~u) is the angle between ~u and ~u. The
angular similarity gives the cosine by

cos(θ(~u, ~u)) =
cos((1 − p(h~r(~u) = h~r(~v)))π)

(5)

The probability can be derived from the Hamming
distance:

p(hr(u) = hr(v)) = 1 −
H(ū, v̄)

d
(6)

By combining equations 5 and 6 we get the fol-
lowing approximation of the cosine distance:

cos(θ(~u, ~u)) = cos

((

H(ū, v̄)

d

)

π

)

(7)

That is, the cosine of two context vectors is ap-
proximated by the cosine of the Hamming distance
between their two signatures normalised by the
size of the signatures. Search is performed using
Equation 7 and scales to O(n2d).

5 Data Structures

The methods presented above fail to address the
n2 component of the search complexity. Many
data structures have been proposed that can be
used to address this problem in similarity search-
ing. We present three data structures: the vantage
point tree (VPT, Yianilos, 1993), which indexes
points in a metric space, Point Location in Equal
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Balls (PLEB, Indyk and Motwani, 1998), a proba-
bilistic structure that uses the bit signatures gener-
ated by LSH, and the Spatial Approximation Sam-
ple Hierarchy (SASH, Houle and Sakuma, 2005),
which approximates a k-NN search.

Another option inspired by IR is attribute index-
ing (INDEX). In this technique, in addition to each
term having a reference to its attributes, each at-
tribute has a reference to the terms referencing it.
Each term is then only compared with the terms
with which it shares attributes. We will give a the-
oretically comparison against other techniques.

5.1 Vantage Point Tree

Metric space data structures provide a solution to
near-neighbour searches in very high dimensions.
These rely solely on the existence of a compari-
son function that satisfies the conditions of metri-
cality: non-negativity, equality, symmetry and the
triangle inequality.

VPT is typical of these structures and has been
used successfully in many applications. The VPT

is a binary tree designed for range searches. These
are searches limited to some distance from the tar-
get term but can be modified for k-NN search.

VPT is constructed recursively. Beginning with
a set of U terms, we take any term to be our van-
tage point p. This becomes our root. We now find
the median distance mp of all other terms to p:
mp = median{dist(p, u)|u ∈ U}. Those terms
u such that dist(p, u) ≤ mp are inserted into the
left sub-tree, and the remainder into the right sub-
tree. Each sub-tree is then constructed as a new
VPT, choosing a new vantage point from within its
terms, until all terms are exhausted.

Searching a VPT is also recursive. Given a term
q and radius r, we begin by measuring the distance
to the root term p. If dist(q, p) ≤ r we enter p into
our list of near terms. If dist(q, p) − r ≤ mp we
enter the left sub-tree and if dist(q, p) + r > mp

we enter the right sub-tree. Both sub-trees may be
entered. The process is repeated for each entered
subtree, taking the vantage point of the sub-tree to
be the new root term.

To perform a k-NN search we use a back-
tracking decreasing radius search (Burkhard and
Keller, 1973). The search begins with r = ∞,
and terms are added to a list of the closest k terms.
When the kth closest term is found, the radius is
set to the distance between this term and the tar-
get. Each time a new, closer element is added to

the list, the radius is updated to the distance from
the target to the new kth closest term.

Construction complexity is O(n log n). Search
complexity is claimed to be O(log n) for small ra-
dius searches. This does not hold for our decreas-
ing radius search, whose worst case complexity is
O(n).

5.2 Point Location in Equal Balls

PLEB is a randomised structure that uses the bit
signatures generated by LSH. It was used by
Ravichandran et al. (2005) to improve the effi-
ciency of distributional similarity calculations.

Having generated our d length bit signatures for
each of our n terms, we take these signatures and
randomly permute the bits. Each vector has the
same permutation applied. This is equivalent to a
column reordering in a matrix where the rows are
the terms and the columns the bits. After applying
the permutation, the list of terms is sorted lexico-
graphically based on the bit signatures. The list is
scanned sequentially, and each term is compared
to its B nearest neighbours in the list. The choice
of B will effect the accuracy/efficiency trade-off,
and need not be related to the choice of k. This is
performed q times, using a different random per-
mutation function each time. After each iteration,
the current closest k terms are stored.

For a fixed d, the complexity for the permuta-
tion step is O(qn), the sorting O(qn log n) and the
search O(qBn).

5.3 Spatial Approximation Sample Hierarchy

SASH approximates a k-NN search by precomput-
ing some near neighbours for each node (terms in
our case). This produces multiple paths between
terms, allowing SASH to shape itself to the data
set (Houle, 2003). The following description is
adapted from Houle and Sakuma (2005).

The SASH is a directed, edge-weighted graph
with the following properties (see Figure 1):

• Each term corresponds to a unique node.

• The nodes are arranged into a hierarchy of
levels, with the bottom level containing n

2
nodes and the top containing a single root
node. Each level, except the top, will contain
half as many nodes as the level below.

• Edges between nodes are linked to consecu-
tive levels. Each node will have at most p

parent nodes in the level above, and c child
nodes in the level below.
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Figure 1: A SASH, where p = 2, c = 3 and k = 2

• Every node must have at least one parent so
that all nodes are reachable from the root.

Construction begins with the nodes being ran-
domly distributed between the levels. SASH is
then constructed iteratively by each node finding
its closest p parents in the level above. The par-
ent will keep the closest c of these children, form-
ing edges in the graph, and reject the rest. Any
nodes without parents after being rejected are then
assigned as children of the nearest node in the pre-
vious level with fewer than c children.

Searching is performed by finding the k nearest
nodes at each level, which are added to a set of
near nodes. To limit the search, only those nodes
whose parents were found to be nearest at the pre-
vious level are searched. The k closest nodes from
the set of near nodes are then returned. The search
complexity is O(ck log n).

In Figure 1, the filled nodes demonstrate a
search for the near-neighbours of some node q, us-
ing k = 2. Our search begins with the root node
A. As we are using k = 2, we must find the two
nearest children of A using our similarity measure.
In this case, C and D are closer than B. We now
find the closest two children of C and D. E is not
checked as it is only a child of B. All other nodes
are checked, including F and G, which are shared
as children by B and C . From this level we chose
G and H . The final levels are considered similarly.

At this point we now have the list of near nodes
A, C , D, G, H , I , J , K and L. From this we
chose the two nodes nearest q, H and I marked in
black, which are then returned.

k can be varied at each level to force a larger
number of elements to be tested at the base of the
SASH using, for instance, the equation:

ki = max{ k
1− h−i

log n ,
1

2
pc } (8)

This changes our search complexity to:

k
1+ 1

log n

k
1

log n
−1

+
pc2

2
log n (9)

We use this geometric function in our experiments.
Gorman and Curran (2005a; 2005b) found the

performance of SASH for distributional similarity
could be improved by replacing the initial random
ordering with a frequency based ordering. In ac-
cordance with Zipf’s law, the majority of terms
have low frequencies. Comparisons made with
these low frequency terms are unreliable (Curran
and Moens, 2002). Creating SASH with high fre-
quency terms near the root produces more reliable
initial paths, but comparisons against these terms
are more expensive.

The best accuracy/efficiency trade-off was
found when using more reliable initial paths rather
than the most reliable. This is done by folding the
data around some mean number of relations. For
each term, if its number of relations mi is greater
than some chosen number of relations M, it is
given a new ranking based on the score M2

mi
. Oth-

erwise its ranking based on its number of relations.
This has the effect of pushing very high and very
low frequency terms away from the root.

6 Evaluation Measures

The simplest method for evaluation is the direct
comparison of extracted synonyms with a manu-
ally created gold standard (Grefenstette, 1994). To
reduce the problem of limited coverage, our evalu-
ation combines three electronic thesauri: the Mac-
quarie, Roget’s and Moby thesauri.

We follow Curran (2004) and use two perfor-
mance measures: direct matches (DIRECT) and
inverse rank (INVR). DIRECT is the percentage
of returned synonyms found in the gold standard.
INVR is the sum of the inverse rank of each match-
ing synonym, e.g. matches at ranks 3, 5 and 28
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CORPUS CUT-OFF TERMS AVERAGE
RELATIONS

PER TERM

BNC 0 246,067 43
5 88,926 116

100 14,862 617
LARGE 0 541,722 97

5 184,494 281
100 35,618 1,400

Table 1: Extracted Context Information

give an inverse rank score of 1
3 + 1

5 + 1
28 . With

at most 100 matching synonyms, the maximum
INVR is 5.187. This more fine grained as it in-
corporates the both the number of matches and
their ranking. The same 300 single word nouns
were used for evaluation as used by Curran (2004)
for his large scale evaluation. These were chosen
randomly from WordNet such that they covered
a range over the following properties: frequency,
number of senses, specificity and concreteness.
For each of these terms, the closest 100 terms and
their similarity scores were extracted.

7 Experiments

We use two corpora in our experiments: the
smaller is the non-speech portion of the British
National Corpus (BNC), 90 million words covering
a wide range of domains and formats; the larger
consists of the BNC, the Reuters Corpus Volume 1
and most of the English news holdings of the LDC
in 2003, representing over 2 billion words of text
(LARGE, Curran, 2004).

The semantic similarity system implemented by
Curran (2004) provides our baseline. This per-
forms a brute-force k-NN search (NAIVE). We
present results for the canonical attribute heuristic
(HEURISTIC), RI, LSH, PLEB, VPT and SASH.

We take the optimal canonical attribute vector
length of 30 for HEURISTIC from Curran (2004).
For SASH we take optimal values of p = 4 and c =
16 and use the folded ordering taking M = 1000
from Gorman and Curran (2005b).

For RI, LSH and PLEB we found optimal values
experimentally using the BNC. For LSH we chose
d = 3, 000 (LSH3,000) and 10, 000 (LSH10,000),
showing the effect of changing the dimensionality.
The frequency statistics were weighted using mu-
tual information, as in Ravichandran et al. (2005):

log(
p(w, r, w′)

p(w, ∗, ∗)p(∗, r, w′)
) (10)

PLEB used the values q = 500 and B = 100.

CUT-OFF
5 100

NAIVE 1.72 1.71
HEURISTIC 1.65 1.66
RI 0.80 0.93
LSH10,000 1.26 1.31
SASH 1.73 1.71

Table 2: INVR vs frequency cut-off

The initial experiments on RI produced quite
poor results. The intuition was that this was
caused by the lack of smoothing in the algo-
rithm. Experiments were performed using the
weights given in Curran (2004). Of these, mu-
tual information (10), evaluated with an extra
log2(f(w, r, w′) + 1) factor and limited to posi-
tive values, produced the best results (RIMI). The
values d = 1000 and ε = 5 were found to produce
the best results.

All experiments were performed on 3.2GHz
Xeon P4 machines with 4GB of RAM.

8 Results

As the accuracy of comparisons between terms in-
creases with frequency (Curran, 2004), applying a
frequency cut-off will both reduce the size of the
vocabulary (n) and increase the average accuracy
of comparisons. Table 1 shows the reduction in
vocabulary and increase in average context rela-
tions per term as cut-off increases. For LARGE,
the initial 541,722 word vocabulary is reduced by
66% when a cut-off of 5 is applied and by 86%
when the cut-off is increased to 100. The average
number of relations increases from 97 to 1400.

The work by Curran (2004) largely uses a fre-
quency cut-off of 5. When this cut-off was used
with the randomised techniques RI and LSH, it pro-
duced quite poor results. When the cut-off was
increased to 100, as used by Ravichandran et al.
(2005), the results improved significantly. Table 2
shows the INVR scores for our various techniques
using the BNC with cut-offs of 5 and 100.

Table 3 shows the results of a full thesaurus ex-
traction using the BNC and LARGE corpora using
a cut-off of 100. The average DIRECT score and
INVR are from the 300 test words. The total exe-
cution time is extrapolated from the average search
time of these test words and includes the setup
time. For LARGE, extraction using NAIVE takes
444 hours: over 18 days. If the 184,494 word vo-
cabulary were used, it would take over 7000 hours,
or nearly 300 days. This gives some indication of
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BNC LARGE
DIRECT INVR Time DIRECT INVR Time

NAIVE 5.23 1.71 38.0hr 5.70 1.93 444.3hr
HEURISTIC 4.94 1.66 2.0hr 5.51 1.93 30.2hr
RI 2.97 0.93 0.4hr 2.42 0.85 1.9hr
RIMI 3.49 1.41 0.4hr 4.58 1.75 1.9hr
LSH3,000 2.00 0.76 0.7hr 2.92 1.07 3.6hr
LSH10,000 3.68 1.31 2.3hr 3.77 1.40 8.4hr
PLEB3,000 2.00 0.76 1.2hr 2.85 1.07 4.1hr
PLEB10,000 3.66 1.30 3.9hr 3.63 1.37 11.8hr
VPT 5.23 1.71 15.9hr 5.70 1.93 336.1hr
SASH 5.17 1.71 2.0hr 5.29 1.89 23.7hr

Table 3: Full thesaurus extraction

the scale of the problem.
The only technique to become less accurate

when the corpus size is increased is RI; it is likely
that RI is sensitive to high frequency, low informa-
tion contexts that are more prevalent in LARGE.
Weighting reduces this effect, improving accuracy.

The importance of the choice of d can be seen in
the results for LSH. While much slower, LSH10,000

is also much more accurate than LSH3,000, while
still being much faster than NAIVE. Introducing
the PLEB data structure does not improve the ef-
ficiency while incurring a small cost on accuracy.
We are not using large enough datasets to show the
improved time complexity using PLEB.

VPT is only slightly faster slightly faster than
NAIVE. This is not surprising in light of the origi-
nal design of the data structure: decreasing radius
search does not guarantee search efficiency.

A significant influence in the speed of the ran-
domised techniques, RI and LSH, is the fixed di-
mensionality. The randomised techniques use a
fixed length vector which is not influenced by the
size of m. The drawback of this is that the size of
the vector needs to be tuned to the dataset.

It would seem at first glance that HEURIS-
TIC and SASH provide very similar results, with
HEURISTIC slightly slower, but more accurate.
This misses the difference in time complexity be-
tween the methods: HEURISTIC is n2 and SASH

n log n. The improvement in execution time over
NAIVE decreases as corpus size increases and this
would be expected to continue. Further tuning of
SASH parameters may improve its accuracy.

RIMI produces similar result using LARGE to
SASH using BNC. This does not include the cost
of extracting context relations from the raw text, so
the true comparison is much worse. SASH allows
the free use of weight and measure functions, but
RI is constrained by having to transform any con-
text space into a RI space. This is important when

LARGE
CUT-OFF 0 5 100
NAIVE 541,721 184,493 35,617
SASH 10,599 8,796 6,231
INDEX 5,844 13,187 32,663

Table 4: Average number of comparisons per term

considering that different tasks may require differ-
ent weights and measures (Weeds and Weir, 2005).
RI also suffers n2 complexity, where as SASH is
n log n. Taking these into account, and that the im-
provements are barely significant, SASH is a better
choice.

The results for LSH are disappointing. It per-
forms consistently worse than the other methods
except VPT. This could be improved by using
larger bit vectors, but there is a limit to the size of
these as they represent a significant memory over-
head, particularly as the vocabulary increases.

Table 4 presents the theoretical analysis of at-
tribute indexing. The average number of com-
parisons made for various cut-offs of LARGE are
shown. NAIVE and INDEX are the actual values
for those techniques. The values for SASH are
worst case, where the maximum number of terms
are compared at each level. The actual number
of comparisons made will be much less. The ef-
ficiency of INDEX is sensitive to the density of
attributes and increasing the cut-off increases the
density. This is seen in the dramatic drop in per-
formance as the cut-off increases. This problem of
density will increase as volume of raw input data
increases, further reducing its effectiveness. SASH

is only dependent on the number of terms, not the
density.

Where the need for computationally efficiency
out-weighs the need for accuracy, RIMI provides
better results. SASH is the most balanced of the
techniques tested and provides the most scalable,
high quality results.
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9 Conclusion

We have evaluated several state-of-the-art tech-
niques for improving the efficiency of distribu-
tional similarity measurements. We found that,
in terms of raw efficiency, Random Indexing (RI)
was significantly faster than any other technique,
but at the cost of accuracy. Even after our mod-
ifications to the RI algorithm to significantly im-
prove its accuracy, SASH still provides a better ac-
curacy/efficiency trade-off. This is more evident
when considering the time to extract context in-
formation from the raw text. SASH, unlike RI, also
allows us to choose both the weight and the mea-
sure used. LSH and PLEB could not match either
the efficiency of RI or the accuracy of SASH.

We intend to use this knowledge to process even
larger corpora to produce more accurate results.

Having set out to improve the efficiency of dis-
tributional similarity searches while limiting any
loss in accuracy, we are producing full nearest-
neighbour searches 18 times faster, with only a 2%
loss in accuracy.
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Abstract 

Event-based summarization attempts to 
select and organize the sentences in a 
summary with respect to the events or 
the sub-events that the sentences de-
scribe. Each event has its own internal 
structure, and meanwhile often relates to 
other events semantically, temporally, 
spatially, causally or conditionally. In 
this paper, we define an event as one or 
more event terms along with the named 
entities associated, and present a novel 
approach to derive intra- and inter- event 
relevance using the information of inter-
nal association, semantic relatedness, 
distributional similarity and named en-
tity clustering. We then apply PageRank 
ranking algorithm to estimate the sig-
nificance of an event for inclusion in a 
summary from the event relevance de-
rived. Experiments on the DUC 2001 
test data shows that the relevance of the 
named entities involved in events 
achieves better result when their rele-
vance is derived from the event terms 
they associate. It also reveals that the 
topic-specific relevance from documents 
themselves outperforms the semantic 
relevance from a general purpose 
knowledge base like Word-Net. 

 
 

1. Introduction 

Extractive summarization selects sentences 
which contain the most salient concepts in 
documents. Two important issues with it are 
how the concepts are defined and what criteria 
should be used to judge the salience of the con-
cepts. Existing work has typically been based on 

techniques that extract key textual elements, 
such as keywords (also known as significant 
terms) as weighed by their tf*idf score, or con-
cepts (such as events or entities) with linguistic 
and/or statistical analysis. Then, sentences are 
selected according to either the important textual 
units they contain or certain types of inter-
sentence relations they hold.  

Event-based summarization which has e-
merged recently attempts to select and organize 
sentences in a summary with respect to events or 
sub-events that the sentences describe. With re-
gard to the concept of events, people do not 
have the same definition when introducing it in 
different domains. While traditional linguistics 
work on semantic theory of events and the se-
mantic structures of verbs, studies in 
information retrieval (IR) within topic detection 
and tracking framework look at events as 
narrowly defined topics which can be 
categorized or clustered as a set of related 
documents (TDT). IR events are broader (or to 
say complex) events in the sense that they may 
include happenings and their causes, 
consequences or even more extended effects. In 
the information extraction (IE) community, 
events are defined as the pre-specified and struc-
tured templates that relate an action to its 
participants, times, locations and other entities 
involved (MUC-7). IE defines what people call 
atomic events. Regardless of their distinct perspectives, peo-
ple all agree that events are collections of activi-
ties together with associated entities. To apply 
the concept of events in the context of text sum-
marization, we believe it is more appropriate to 
consider events at the sentence level, rather than 
at the document level. To avoid the complexity 
of deep semantic and syntactic processing, we 
complement the advantages of statistical 
techniques from the IR community and struc-
tured information provided by the IE community. 
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We propose to extract semi-structured events 
with shallow natural language processing (NLP) 
techniques and estimate their importance for 
inclusion in a summary with IR techniques. 

Though it is most likely that documents nar-
rate more than one similar or related event, most 
event-based summarization techniques reported 
so far explore the importance of the events inde-
pendently. Motivated by this observation, this 
paper addresses the task of event-relevance 
based summarization and explores what sorts of 
relevance make a contribution. To this end, we 
investigate intra-event relevance, that is action-
entity relevance, and inter-event relevance, that 
is event-event relevance. While intra-event rele-
vance is measured with frequencies of the asso-
ciated events and entities directly, inter-event 
relevance is derived indirectly from a general 
WordNet similarity utility, distributional simi-
larity in the documents to be summarized, 
named entity clustering and so on. Pagerank 
ranking algorithm is then applied to estimate the 
event importance for inclusion in a summary 
using the aforesaid relevance.  

The remainder of this paper is organized as 
follows. Section 2 introduces related work. Sec-
tions 3 introduces our proposed event-based 
summarization approaches which make use of 
intra- and inter- event relevance. Section 4 pre-
sents experiments and evaluates different ap-
proaches. Finally, Section 5 concludes the paper. 

2. Related Work 

Event-based summarization has been investi-
gated in recent research. It was first presented in 
(Daniel, Radev and Allison, 2003), who treated 
a news topic in multi-document summarization 
as a series of sub-events according to human 
understanding of the topic. They determined the 
degree of sentence relevance to each sub-event 
through human judgment and evaluated six ex-
tractive approaches. Their paper concluded that 
recognizing the sub-events that comprise a sin-
gle news event is essential for producing better 
summaries. However, it is difficult to automati-
cally break a news topic into sub-events.  

Later, atomic events were defined as the rela-
tionships between the important named entities 
(Filatova and Hatzivassiloglou, 2004), such as 
participants, locations and times (which are 
called relations) through the verbs or action 
nouns labeling the events themselves (which are 
called connectors). They evaluated sentences 

based on co-occurrence statistics of the named 
entity relations and the event connectors in-
volved. The proposed approach claimed to out-
perform conventional tf*idf approach. Appar-
ently, named entities are key elements in their 
model. However, the constraints defining events 
seemed quite stringent.  

The application of dependency parsing, 
anaphora and co-reference resolution in recog-
nizing events were presented involving NLP and 
IE techniques more or less (Yoshioka and Hara-
guchi, 2004), (Vanderwende, Banko and Mene-
zes, 2004) and (Leskovec, Grobelnik and Fral-
ing, 2004). Rather than pre-specifying events, 
these efforts extracted (verb)-(dependent rela-
tion)-(noun) triples as events and took the triples 
to form a graph merged by relations.  

As a matter of fact, events in documents are 
related in some ways. Judging whether the sen-
tences are salient or not and organizing them in 
a coherent summary can take advantage from 
event relevance. Unfortunately, this was ne-
glected in most previous work. Barzilay and La-
pata (2005) exploited the use of the distribu-
tional and referential information of discourse 
entities to improve summary coherence. While 
they captured text relatedness with entity transi-
tion sequences, i.e. entity-based summarization, 
we are particularly interested in relevance be-
tween events in event-based summarization. 

Extractive summarization requires ranking 
sentences with respect to their importance. 
Successfully used in Web-link analysis and 
more recently in text summarization, Google’s 
PageRank (Brin and Page, 1998) is one of the 
most popular ranking algorithms. It is a kind of 
graph-based ranking algorithm deciding on the 
importance of a node within a graph by taking 
into account the global information recursively 
computed from the entire graph, rather than re-
lying on only the local node-specific infor-
mation. A graph can be constructed by adding a 
node for each sentence, phrase or word. Edges 
between nodes are established using inter-
sentence similarity relations as a function of 
content overlap or grammatically relations be-
tween words or phrases.  

The application of PageRank in sentence ex-
traction was first reported in (Erkan and Radev, 
2004). The similarity between two sentence 
nodes according to their term vectors was used 
to generate links and define link strength. The 
same idea was followed and investigated exten-
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sively (Mihalcea, 2005). Yoshioka and Haragu-
chi (2004) went one step further toward event-
based summarization. Two sentences were 
linked if they shared similar events. When tested 
on TSC-3, the approach favoured longer sum-
maries. In contrast, the importance of the verbs 
and nouns constructing events was evaluated 
with PageRank as individual nodes aligned by 
their dependence relations (Vanderwende, 2004; 
Leskovec, 2004).  

Although we agree that the fabric of event 
constitutions constructed by their syntactic rela-
tions can help dig out the important events, we 
have two comments. First, not all verbs denote 
event happenings. Second, semantic similarity 
or relatedness between action words should be 
taken into account. 

3. Event-based Summarization 
3.1. Event Definition and Event Map 

Events can be broadly defined as “Who did 
What to Whom When and Where”. Both lin-
guistic and empirical studies acknowledge that 
event arguments help characterize the effects of 
a verb’s event structure even though verbs or 
other words denoting event determine the se-
mantics of an event. In this paper, we choose 
verbs (such as “elect”) and action nouns (such as 
“supervision”) as event terms that can character-
ize or partially characterize actions or incident 

occurrences. They roughly relate to “did What”. 
One or more associated named entities are con-
sidered as what are denoted by linguists as event 
arguments. Four types of named entities are cur-
rently under the consideration. These are <Per-
son>, <Organization>, <Location> and <Date>. 
They convey the information of “Who”, 
“Whom”, “When” and “Where”. A verb or an 
action noun is deemed as an event term only 
when it presents itself at least once between two 
named entities. 

Events are commonly related with one an-
other semantically, temporally, spatially, caus-
ally or conditionally, especially when the docu-
ments to be summarized are about the same or 
very similar topics. Therefore, all event terms 
and named entities involved can be explicitly 
connected or implicitly related and weave a 
document or a set of documents into an event 
fabric, i.e. an event graphical representation (see 
Figure 1). The nodes in the graph are of two 
types. Event terms (ET) are indicated by rectan-
gles and named entities (NE) are indicated by 
ellipses. They represent concepts rather than 
instances. Words in either their original form or 
morphological variations are represented with a 
single node in the graph regardless of how many 
times they appear in documents. We call this 
representation an event map, from which the 
most important concepts can be pick out in the 
summary. 

 

 

 
Figure 1 Sample sentences and their graphical representation 

 
 

The advantage of representing with separated 
action and entity nodes over simply combining 
them into one event or sentence node is to pro-
vide a convenient way for analyzing the rele-
vance among event terms and named entities 
either by their semantic or distributional similar-
ity. More importantly, this favors extraction of 
concepts and brings the conceptual compression 
available. 

We then integrate the strength of the connec-
tions between nodes into this graphical model in 
terms of the relevance defined from different 
perspectives. The relevance is indicated by 

),( ji nodenoder , where inode  and jnode  repre-
sent two nodes, and are either event terms ( iet ) 
or named entities ( jne ). Then, the significance 
of each node, indicated by )( inodew , is calcu-

<Organization> America Online </Organization> was to buy <Organization> 
Netscape </Organization> and forge a partnership with <Organization> Sun 
</Organization>, benefiting all three and giving technological independence 
from <Organization> Microsoft </Organization>. 
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lated with PageRank ranking algorithm. Sec-
tions 3.2 and 3.3 address the issues of deriving 

),( ji nodenoder  according to intra- or/and inter- 
event relevance and calculating )( inodew  in de-
tail. 

3.2 Intra- and Inter- Event Relevance 

We consider both intra-event and inter-event 
relevance for summarization. Intra-event rele-
vance measures how an action itself is associ-
ated with its associated arguments. It is indi-
cated as ),( NEETR  and ),( ETNER  in Table 1 
below. This is a kind of direct relevance as the 
connections between actions and arguments are 
established from the text surface directly. No 
inference or background knowledge is required. 
We consider that when the connection between 
an event term iet  and a named entity jne  is 

symmetry, then TNEETRETNER ),(),( = . Events 
are related as explained in Section 2. By means 
of inter-event relevance, we consider how an 
event term (or a named entity involved in an 
event) associate to another event term (or an-
other named entity involved in the same or dif-
ferent events) syntactically, semantically and 
distributionally. It is indicated by ),( ETETR or 

),( NENER in Table 1 and measures an indirect 
connection which is not explicit in the event 
map needing to be derived from the external 
resource or overall event distribution. 

 Event Term 
(ET) 

Named En-
tity (NE) 

Event Term (ET) ),( ETETR  ),( NEETR  
Named Entity (NE) ),( ETNER  ),( NENER

Table 1 Relevance Matrix 

The complete relevance matrix is: 

⎥
⎦

⎤
⎢
⎣

⎡
=

),(),(
),(),(

NENERETNER
NEETRETETR

R  

The intra-event relevance ),( NEETR can be 
simply established by counting how many times 

iet  and jne  are associated, i.e.  

),(),( jijiDocument neetfreqneetr =  (E1) 

One way to measure the term relevance is to 
make use of a general language knowledge base, 
such as WordNet (Fellbaum 1998). Word-
Net::Similarity is a freely available software 
package that makes it possible to measure the 
semantic relatedness between a pair of concepts, 

or in our case event terms, based on WordNet 
(Pedersen, Patwardhan and Michelizzi, 2004). It 
supports three measures. The one we choose is 
the function lesk. 

),(),(),( jijijiWordNet etetlesketetsimilarityetetr ==

      (E2) 

Alternatively, term relevance can be meas-
ured according to their distributions in the speci-
fied documents. We believe that if two events 
are concerned with the same participants, occur 
at same location, or at the same time, these two 
events are interrelated with each other in some 
ways. This observation motivates us to try deriv-
ing event term relevance from the number of 
name entities they share. 

|)()(|),( jijiDocument etNEetNEetetr ∩=  (E3) 

Where )( ietNE is the set of named entities iet  
associate. | | indicates the number of the ele-
ments in the set. The relevance of named entities 
can be derived in a similar way. 

|)()(|),( jijiDocument neETneETnener ∩=  (E4) 

The relevance derived with (E3) and (E4) are 
indirect relevance. In previous work, a cluster-
ing algorithm, shown in Figure 2, has been pro-
posed (Xu et al, 2006) to merge the named en-
tity that refer to the same person (such as 
Ranariddh, Prince Norodom Ranariddh and Presi-
dent Prince Norodom Ranariddh). It is used for 
co-reference resolution and aims at joining the 
same concept into a single node in the event 
map. The experimental result suggests that 
merging named entity improves performance in 
some extend but not evidently. When applying 
the same algorithm for clustering all four types 
of name entities in DUC data, we observe that 
the name entities in the same cluster do not al-
ways refer to the same objects, even when they 
are indeed related in some way. For example, 
“Mississippi” is a state in the southeast United 
States, while “Mississippi River” is the second-
longest rever in the United States and flows 
through “Mississippi”. 

Step1: Each name entity is represented by 
ikiii wwwne ...21= , where iw  is the ith 

word in it. The cluster it belongs to, in-
dicated by )( ineC , is initialled by 

ikii www ...21 itself.  
Step2: For each name entity  
           ikiii wwwne ...21=  

For each name entity 
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jljjj wwwne ...21= , if )( ineC  is a 
sub-string of )( jneC , then 

)()( ji neCneC = . 
Continue Step 2 until no change occurs. 
Figure 2 The algorithm proposed to merge the 

named entities 

Location Person Date Organization
Mississippi 

 
Professor Sir 

Richard 
Southwood 

first six 
months of 
last year 

Long Beach 
City Council 

Sir Richard 
Southwood 

San Jose City 
Council 

Mississippi 
River 

Richard 
Southwood 

last year 

City Council 

Table 2 Some results of the named entity 
merged 

It therefore provides a second way to measure 
named entity relevance based on the clusters 
found. It is actually a kind of measure of lexical 
similarity. 

⎩
⎨
⎧

=
otherwise      ,0

cluster same in the are ,      ,1
),( ji

jiCluster
nene

nener

     (E5) 

In addition, the relevance of the named enti-
ties can be sometimes revealed by sentence con-
text. Take the following most frequently used 
sentence patterns as examples: 

 
Figure 3 The example patterns  

Considering that two neighbouring name enti-
ties in a sentence are usually relevant, the fol-
lowing window-based relevance is also experi-
mented with. 

⎩
⎨
⎧

=
otherwise      ,0

size  windowspecified-pre a within are ,      1,

),(

ji

jiPattern

nene

nener

     (E6) 

3.3 Significance of Concepts 

The significance score, i.e. the weight 
)( inodew  of each inode , is then estimated recur-

sively with PageRank ranking algorithm which 
assigns the significance score to each node ac-
cording to the number of nodes connecting to it 
as well as the strength of their connections. The 

equation calculating )( inodew using PageRank 
of a certain inode  is shown as follows. 

)
),(

)(
...

),(
)(

...
),(

)(()1()(
1

1

ti

t

ji

j

i
i

nodenoder
nodew

nodenoder
nodew

nodenoder
nodewddnodew

+++

++−=

 (E7) 

In (E7), jnode ( tj ,...2,1= , ij ≠ ) are the 
nodes linking to inode . d is the factor used to 
avoid the limitation of loop in the map structure. 
It is set to 0.85 experimentally. The significance 
of each sentence to be included in the summary 
is then obtained from the significance of the 
events it contains. The sentences with higher 
significance are picked up into the summary as 
long as they are not exactly the same sentences. 
We are aware of the important roles of informa-
tion fusion and sentence compression in sum-
mary generation. However, the focus of this pa-
per is to evaluate event-based approaches in ex-
tracting the most important sentences. Concep-
tual extraction based on event relevance is our 
future direction. 

4. Experiments and Discussions 

To evaluate the event based summarization ap-
proaches proposed, we conduct a set of experi-
ments on 30 English document sets provide by 
the DUC 2001 multi-document summarization 
task. The documents are pre-processed with 
GATE to recognize the previously mentioned 
four types of name entities. On average, each set 
contains 10.3 documents, 602 sentences, 216 
event terms and 148.5 name entities. 

To evaluate the quality of the generated 
summaries, we choose an automatic summary 
evaluation metric ROUGE, which has been used 
in DUCs. ROUGE is a recall-based metric for 
fixed length summaries. It bases on N-gram co-
occurrence and compares the system generated 
summaries to human judges (Lin and Hovy, 
2003). For each DUC document set, the system 
creates a summary of 200 word length and pre-
sent three of the ROUGE metrics: ROUGE-1 
(unigram-based), ROUGE-2 (bigram-based), 
and ROUGE-W (based on longest common sub-
sequence weighed by the length) in the follow-
ing experiments and evaluations.  

We first evaluate the summaries generated 
based on ),( NEETR  itself. In the pre-evaluation 
experiments, we have observed that some fre-

<Person>, a-position-name of <Organization>, 
does something. 
<Person> and another <Person> do something. 
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quently occurring nouns, such as “doctors” and 
“hospitals”, by themselves are not marked by 
general NE taggers. But they indicate persons, 
organizations or locations. We compare the 
ROUGE scores of adding frequent nouns or not 
to the set of named entities in Table 3. A noun is 
considered as a frequent noun when its fre-
quency is larger than 10. Roughly 5% improve-
ment is achieved when high frequent nouns are 
taken into the consideration. Hereafter, when we 
mention NE in latter experiments, the high fre-
quent nouns are included. 

),( NEETR  NE Without High 
Frequency Nouns 

NE With High 
Frequency Nouns

ROUGE-1 0.33320 0.34859 
ROUGE-2 0.06260 0.07157 
ROUGE-W 0.12965 0.13471 
Table 3 ROUGE scores using ),( NEETR  itself 

Table 4 below then presents the summariza-
tion results by using ),( ETETR  itself. It com-
pares two relevance derivation approaches, 

WordNetR  and DocumentR . The topic-specific rele-
vance derived from the documents to be summa-
rized outperforms the general purpose Word-Net 
relevance by about 4%. This result is reasonable 
as WordNet may introduce the word relatedness 
which is not necessary in the topic-specific 
documents. When we examine the relevance 
matrix from the event term pairs with the high-
est relevant, we find that the pairs, like “abort” 
and “confirm”, “vote” and confirm”, do reflect 
semantics (antonymous) and associated (causal) 
relations to some degree.  

),( ETETR  Semantic Rele-
vance from 
Word-Net 

Topic-Specific 
Relevance from 

Documents 
ROUGE-1 0.32917 0.34178 
ROUGE-2 0.05737 0.06852 
ROUGE-W 0.11959 0.13262 

Table 4 ROUGE scores using ),( ETETR  itself 

Surprisingly, the best individual result is from 
document distributional similarity DocumentR  

),( NENE  in Table 5. Looking more closely, we 
conclude that compared to event terms, named 
entities are more representative of the docu-
ments in which they are included. In other words, 
event terms are more likely to be distributed 
around all the document sets, whereas named 
entities are more topic-specific and therefore 
cluster in a particular document set more. Ex-
amples of high related named entities in rele-
vance matrix are “Andrew” and “Florida”, 

“Louisiana” and “Florida”. Although their rele-
vance is not as explicit as the same of event 
terms (their relevance is more contextual than 
semantic), we can still deduce that some events 
may happen in both Louisiana and Florida, or 
about Andrew in Florida. In addition, it also 
shows that the relevance we would have ex-
pected to be derived from patterns and clustering 
can also be discovered by ),( NENERDocument . 
The window size is set to 5 experimentally in 
window-based practice.  

),( NENER Relevance 
from 

Documents

Relevance 
from 

Clustering 

Relevance 
from Window-
based Context

ROUGE-1 0.35212 0.33561 0.34466 
ROUGE-2 0.07107 0.07286 0.07508 
ROUGE-W 0.13603 0.13109 0.13523 

Table 5 ROUGE scores using ),( NENER  itself 

Next, we evaluate the integration of 
),( NEETR , ),( ETETR  and ),( NENER . As 

DUC 2001 provides 4 different summary sizes 
for evaluation, it satisfies our desire to test the 
sensibility of the proposed event-based summa-
rization techniques to the length of summaries. 
While the previously presented results are 
evaluated on 200 word summaries, now we 
move to check the results in four different sizes, 
i.e. 50, 100, 200 and 400 words. The experi-
ments results show that the event-based ap-
proaches indeed prefer longer summaries. This 
is coincident with what we have hypothesized. 
For this set of experiments, we choose to inte-
grate the best method from each individual 
evaluation presented previously. It appears that 
using the named entities relevance which is de-
rived from the event terms gives the best 
ROUGE scores in almost all the summery sizes. 
Compared with the results provided in (Filatova 
and Hatzivassiloglou, 2004) whose average 
ROUGE-1 score is below 0.3 on the same data 
set, the significant improvement is revealed. Of 
course, we need to test on more data in the fu-
ture. 

),( NENER 50 100 200 400 
ROUGE-1 0.22383 0.28584 0.35212 0.41612
ROUGE-2 0.03376 0.05489 0.07107 0.10275
ROUGE-W 0.10203 0.11610 0.13603 0.13877

),( NEETR 50 100 200 400 
ROUGE-1 0.22224 0.27947 0.34859 0.41644
ROUGE-2 0.03310 0.05073 0.07157 0.10369
ROUGE-W 0.10229 0.11497 0.13471 0.13850

),( ETETR 50 100 200 400 
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ROUGE-1 0.20616 0.26923 0.34178 0.41201
ROUGE-2 0.02347 0.04575 0.06852 0.10263
ROUGE-W 0.09212 0.11081 0.13262 0.13742

),( NEETR + 
),( ETETR + 
),( NENER  

 
50 

 
100 

 
200 

 
400 

ROUGE-1 0.21311 0.27939 0.34630 0.41639
ROUGE-2 0.03068 0.05127 0.07057 0.10579
ROUGE-W 0.09532 0.11371 0.13416 0.13913

Table 6 ROUGE scores using complete R matrix 
and with different summary lengths 

As discussed in Section 3.2, the named enti-
ties in the same cluster may often be relevant but 
not always be co-referred. In the following last 
set of experiments, we evaluate the two ways to 
use the clustering results. One is to consider 
them as related as if they are in the same cluster 
and derive the NE-NE relevance with (E5). The 
other is to merge the entities in one cluster as 
one reprehensive named entity and then use it in 
ET-NE with (E1). The rationality of the former 
approach is validated. 

 Clustering is 
used to derive 

NE-NE 

Clustering is used to 
merge entities and 

then to derive ET-NE
ROUGE-1 0.34072 0.33006 
ROUGE-2 0.06727 0.06154 
ROUGE-W 0.13229 0.12845 

Table 7 ROUGE scores with regard to how to 
use the clustering information 

5. Conclusion 

In this paper, we propose to integrate event-
based approaches to extractive summarization. 
Both inter-event and intra-event relevance are 
investigated and PageRank algorithm is used to 
evaluate the significance of each concept (in-
cluding both event terms and named entities). 
The sentences containing more concepts and 
highest significance scores are chosen in the 
summary as long as they are not the same sen-
tences.  

To derive event relevance, we consider the 
associations at the syntactic, semantic and con-
textual levels. An important finding on the DUC 
2001 data set is that making use of named entity 
relevance derived from the event terms they as-
sociate with achieves the best result. The result 
of 0.35212 significantly outperforms the one 
reported in the closely related work whose aver-
age is below 0.3. We are interested in the issue 
of how to improve an event representation in 

order to build a more powerful event-based 
summarization system. This would be one of our 
future directions. We also want to see how con-
cepts rather than sentences are selected into the 
summary in order to develop a more flexible 
compression technique and to know what char-
acteristics of a document set is appropriate for 
applying event-based summarization techniques.  

 

Acknowledgements 
The work presented in this paper is supported 

partially by Research Grants Council on Hong 
Kong (reference number CERG PolyU5181/03E) 
and partially by National Natural Science Foun-
dation of China (reference number: NSFC 
60573186). 

 

References 

Chin-Yew Lin and Eduard Hovy. 2003. Automatic 
Evaluation of Summaries using N-gram Co-
occurrence Statistics. In Proceedings of HLT-
NAACL 2003, pp71-78. 

Christiane Fellbaum. 1998, WordNet: An Electronic 
Lexical Database. MIT Press. 

Elena Filatova and Vasileios Hatzivassiloglou. 2004. 
Event-based Extractive summarization. In Pro-
ceedings of ACL 2004 Workshop on Summariza-
tion, pp104-111.  

Gunes Erkan and Dragomir Radev. 2004. LexRank: 
Graph-based Centrality as Salience in Text Sum-
marization. Journal of Artificial Intelligence Re-
search. 

Jure Leskovec, Marko Grobelnik and Natasa Milic-
Frayling. 2004. Learning Sub-structures of Docu-
ment Semantic Graphs for Document Summariza-
tion. In LinkKDD 2004.  

Lucy Vanderwende, Michele Banko and Arul Mene-
zes. 2004. Event-Centric Summary Generation. In 
Working Notes of DUC 2004. 

Masaharu Yoshioka and Makoto Haraguchi. 2004. 
Multiple News Articles Summarization based on 
Event Reference Information. In Working Notes 
of NTCIR-4, Tokyo. 

MUC-7. http://www-nlpir.nist.gov/related_projects/ 
muc/proceeings/ muc_7_toc.html 

Naomi Daniel, Dragomir Radev and Timothy Allison. 
2003. Sub-event based Multi-document Summari-
zation. In Proceedings of the HLT-NAACL 2003 
Workshop on Text Summarization, pp9-16. 

375



 

Page Lawrence, Brin Sergey, Motwani Rajeev and 
Winograd Terry. 1998. The PageRank Citation 
Ranking: Bring Order to the Web. Technical Re-
port, Stanford University. 

Rada Mihalcea. 2005. Language Independent Extrac-
tive Summarization. ACL 2005 poster. 

Regina Barzilay and Michael Elhadad. 2005. Model-
ling Local Coherence: An Entity-based Approach. 
In Proceedings of ACL, pp141-148. 

TDT. http://projects.ldc.upenn.edu/TDT. 

Ted Pedersen, Siddharth Patwardhan and Jason 
Michelizzi. 2004. WordNet::Similarity – Measur-
ing the Relatedness of Concepts. In Proceedings of 
AAAI, pp25-29. 

Wei Xu, Wenjie Li, Mingli Wu, Wei Li and Chunfa 
Yuan. 2006. Deriving Event Relevance from the 
Ontology Constructed with Formal Concept 
Analysis, in Proceedings of CiCling’06, pp480-
489. 

 

376



Proceedings of the 21st International Conference on Computational Linguistics and 44th Annual Meeting of the ACL, pages 377–384,
Sydney, July 2006.c©2006 Association for Computational Linguistics

Models for Sentence Compression: A Comparison across Domains,
Training Requirements and Evaluation Measures

James Clarke and Mirella Lapata
School of Informatics, University of Edinburgh
2 Bucclecuch Place, Edinburgh EH8 9LW, UK
jclarke@ed.ac.uk, mlap@inf.ed.ac.uk

Abstract

Sentence compression is the task of pro-
ducing a summary at the sentence level.
This paper focuses on three aspects of
this task which have not received de-
tailed treatment in the literature: train-
ing requirements, scalability, and auto-
matic evaluation. We provide a novel com-
parison between a supervised constituent-
based and an weakly supervised word-
based compression algorithm and exam-
ine how these models port to different do-
mains (written vs. spoken text). To achieve
this, a human-authored compression cor-
pus has been created and our study high-
lights potential problems with the auto-
matically gathered compression corpora
currently used. Finally, we assess whether
automatic evaluation measures can be
used to determine compression quality.

1 Introduction

Automatic sentence compression has recently at-
tracted much attention, in part because of its affin-
ity with summarisation. The task can be viewed
as producing a summary of a single sentence that
retains the most important information while re-
maining grammatically correct. An ideal compres-
sion algorithm will involve complex text rewriting
operations such as word reordering, paraphrasing,
substitution, deletion, and insertion. In default of
a more sophisticated compression algorithm, cur-
rent approaches have simplified the problem to a
single rewriting operation, namely word deletion.
More formally, given an input sentence of words
W = w1,w2, . . . ,wn, a compression is formed by
dropping any subset of these words. Viewing the
task as word removal reduces the number of pos-
sible compressions to 2n; naturally, many of these
compressions will not be reasonable or grammati-
cal (Knight and Marcu 2002).

Sentence compression could be usefully em-
ployed in wide range of applications. For exam-
ple, to automatically generate subtitles for televi-
sion programs; the transcripts cannot usually be
used verbatim due to the rate of speech being too
high (Vandeghinste and Pan 2004). Other applica-
tions include compressing text to be displayed on
small screens (Corston-Oliver 2001) such as mo-
bile phones or PDAs, and producing audio scan-
ning devices for the blind (Grefenstette 1998).

Algorithms for sentence compression fall into
two broad classes depending on their training re-
quirements. Many algorithms exploit parallel cor-
pora (Jing 2000; Knight and Marcu 2002; Riezler
et al. 2003; Nguyen et al. 2004a; Turner and Char-
niak 2005; McDonald 2006) to learn the corre-
spondences between long and short sentences in
a supervised manner, typically using a rich feature
space induced from parse trees. The learnt rules
effectively describe which constituents should be
deleted in a given context. Approaches that do
not employ parallel corpora require minimal or
no supervision. They operationalise compression
in terms of word deletion without learning spe-
cific rules and can therefore rely on little linguistic
knowledge such as part-of-speech tags or merely
the lexical items alone (Hori and Furui 2004). Al-
ternatively, the rules of compression are approxi-
mated from a non-parallel corpus (e.g., the Penn
Treebank) by considering context-free grammar
derivations with matching expansions (Turner and
Charniak 2005).

Previous approaches have been developed and
tested almost exclusively on written text, a no-
table exception being Hori and Furui (2004) who
focus on spoken language. While parallel cor-
pora of original-compressed sentences are not nat-
urally available in the way multilingual corpora
are, researchers have obtained such corpora auto-
matically by exploiting documents accompanied
by abstracts. Automatic corpus creation affords
the opportunity to study compression mechanisms
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cheaply, yet these mechanisms may not be repre-
sentative of human performance. It is unlikely that
authors routinely carry out sentence compression
while creating abstracts for their articles. Collect-
ing human judgements is the method of choice for
evaluating sentence compression models. How-
ever, human evaluations tend to be expensive and
cannot be repeated frequently; furthermore, com-
parisons across different studies can be difficult,
particularly if subjects employ different scales, or
are given different instructions.

In this paper we examine some aspects of the
sentence compression task that have received lit-
tle attention in the literature. First, we provide a
novel comparison of supervised and weakly su-
pervised approaches. Specifically, we study how
constituent-based and word-based methods port to
different domains and show that the latter tend to
be more robust. Second, we create a corpus of
human-authored compressions, and discuss some
potential problems with currently used compres-
sion corpora. Finally, we present automatic evalu-
ation measures for sentence compression and ex-
amine whether they correlate reliably with be-
havioural data.

2 Algorithms for Sentence Compression

In this section we give a brief overview of the algo-
rithms we employed in our comparative study. We
focus on two representative methods, Knight and
Marcu’s (2002) decision-based model and Hori
and Furui’s (2004) word-based model.

The decision-tree model operates over parallel
corpora and offers an intuitive formulation of sen-
tence compression in terms of tree rewriting. It
has inspired many discriminative approaches to
the compression task (Riezler et al. 2003; Nguyen
et al. 2004b; McDonald 2006) and has been
extended to languages other than English (see
Nguyen et al. 2004a). We opted for the decision-
tree model instead of the also well-known noisy-
channel model (Knight and Marcu 2002; Turner
and Charniak 2005). Although both models yield
comparable performance, Turner and Charniak
(2005) show that the latter is not an appropriate
compression model since it favours uncompressed
sentences over compressed ones.1

Hori and Furui’s (2004) model was originally
developed for Japanese with spoken text in mind,

1The noisy-channel model uses a source model trained
on uncompressed sentences. This means that the most likely
compressed sentence will be identical to the original sen-
tence as the likelihood of a constituent deletion is typically
far lower than that of leaving it in.

SHIFT transfers the first word from the input list onto
the stack.
REDUCE pops the syntactic trees located at the top
of the stack, combines them into a new tree and then
pushes the new tree onto the top of the stack.
DROP deletes from the input list subsequences of words
that correspond to a syntactic constituent.
ASSIGNTYPE changes the label of the trees at the top
of the stack (i.e., the POS tag of words).

Table 1: Stack rewriting operations

it requires minimal supervision, and little linguis-
tic knowledge. It therefor holds promise for lan-
guages and domains for which text processing
tools (e.g., taggers, parsers) are not readily avail-
able. Furthermore, to our knowledge, its perfor-
mance on written text has not been assessed.

2.1 Decision-based Sentence Compression
In the decision-based model, sentence compres-
sion is treated as a deterministic rewriting process
of converting a long parse tree, l, into a shorter
parse tree s. The rewriting process is decomposed
into a sequence of shift-reduce-drop actions that
follow an extended shift-reduce parsing paradigm.

The compression process starts with an empty
stack and an input list that is built from the orig-
inal sentence’s parse tree. Words in the input list
are labelled with the name of all the syntactic con-
stituents in the original sentence that start with it.
Each stage of the rewriting process is an operation
that aims to reconstruct the compressed tree. There
are four types of operations that can be performed
on the stack, they are illustrated in Table 1.

Learning cases are automatically generated
from a parallel corpus. Each learning case is ex-
pressed by a set of features and represents one of
the four possible operations for a given stack and
input list. Using the C4.5 program (Quinlan 1993)
a decision-tree model is automatically learnt. The
model is applied to a parsed original sentence in
a deterministic fashion. Features for the current
state of the input list and stack are extracted and
the classifier is queried for the next operation to
perform. This is repeated until the input list is
empty and the stack contains only one item (this
corresponds to the parse for the compressed tree).
The compressed sentence is recovered by travers-
ing the leaves of the tree in order.

2.2 Word-based Sentence Compression
The decision-based method relies exclusively on
parallel corpora; the caveat here is that appropri-
ate training data may be scarce when porting this
model to different text domains (where abstracts
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are not available for automatic corpus creation) or
languages. To alleviate the problems inherent with
using a parallel corpus, we have modified a weakly
supervised algorithm originally proposed by Hori
and Furui (2004). Their method is based on word
deletion; given a prespecified compression length,
a compression is formed by preserving the words
which maximise a scoring function.

To make Hori and Furui’s (2004) algorithm
more comparable to the decision-based model, we
have eliminated the compression length parameter.
Instead, we search over all lengths to find the com-
pression that gives the maximum score. This pro-
cess yields more natural compressions with vary-
ing lengths. The original score measures the sig-
nificance of each word (I) in the compression and
the linguistic likelihood (L) of the resulting word
combinations.2 We add some linguistic knowledge
to this formulation through a function (SOV ) that
captures information about subjects, objects and
verbs. The compression score is given in Equa-
tion (1). The lambdas (λI , λSOV , λL) weight the
contribution of the individual scores:

S(V ) =
M

∑
i=1

λII(vi)+λsovSOV (vi)

+λLL(vi|vi−1,vi−2) (1)

The sentence V = v1,v2, . . . ,vm (of M words)
that maximises the score S(V ) is the best com-
pression for an original sentence consisting of N
words (M < N). The best compression can be
found using dynamic programming. The λ’s in
Equation (1) can be either optimised using a small
amount of training data or set manually (e.g., if
short compressions are preferred to longer ones,
then the language model should be given a higher
weight). Alternatively, weighting could be dis-
pensed with by including a normalising factor in
the language model. Here, we follow Hori and Fu-
rui’s (2004) original formulation and leave the nor-
malisation to future work. We next introduce each
measure individually.
Word significance score The word signifi-
cance score I measures the relative importance of
a word in a document. It is similar to tf-idf, a term
weighting score commonly used in information re-
trieval:

I(wi) = fi log FA

Fi
(2)

2Hori and Furui (2004) also have a confidence score based
upon how reliable the output of an automatic speech recog-
nition system is. However, we need not consider this score
when working with written text and manual transcripts.

Where wi is the topic word of interest (topic words
are either nouns or verbs), fi is the frequency of wi

in the document, Fi is the corpus frequency of wi

and FA is the sum of all topic word occurrences in
the corpus (∑i Fi).

Linguistic score The linguistic score’s
L(vi|vi−1,vi−2) responsibility is to select some
function words, thus ensuring that compressions
remain grammatical. It also controls which topic
words can be placed together. The score mea-
sures the n-gram probability of the compressed
sentence.

SOV Score The SOV score is based on the in-
tuition that subjects, objects and verbs should not
be dropped while words in other syntactic roles
can be considered for removal. This score is based
solely on the contents of the sentence considered
for compression without taking into account the
distribution of subjects, objects or verbs, across
documents. It is defined in (3) where fi is the doc-
ument frequency of a verb, or word bearing the
subject/object role and λdefault is a constant weight
assigned to all other words.

SOV (wi) =







fi if wi in subject, object
or verb role

λdefault otherwise
(3)

The SOV score is only applied to the head word of
subjects and objects.

3 Corpora

Our intent was to assess the performance of the
two models just described on written and spo-
ken text. The appeal of written text is understand-
able since most summarisation work today fo-
cuses on this domain. Speech data not only pro-
vides a natural test-bed for compression applica-
tions (e.g., subtitle generation) but also poses ad-
ditional challenges. Spoken utterances can be un-
grammatical, incomplete, and often contain arte-
facts such as false starts, interjections, hesitations,
and disfluencies. Rather than focusing on sponta-
neous speech which is abundant in these artefacts,
we conduct our study on the less ambitious do-
main of broadcast news transcripts. This lies in-
between the extremes of written text and sponta-
neous speech as it has been scripted beforehand
and is usually read off an autocue.

One stumbling block to performing a compara-
tive study between written data and speech data
is that there are no naturally occurring parallel
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speech corpora for studying compression. Auto-
matic corpus creation is not a viable option ei-
ther, speakers do not normally create summaries
of their own utterances. We thus gathered our own
corpus by asking humans to generate compres-
sions for speech transcripts.

In what follows we describe how the manual
compressions were performed. We also briefly
present the written corpus we used for our exper-
iments. The latter was automatically constructed
and offers an interesting point of comparison with
our manually created corpus.
Broadcast News Corpus Three annotators
were asked to compress 50 broadcast news sto-
ries (1,370 sentences) taken from the HUB-4
1996 English Broadcast News corpus provided by
the LDC. The HUB-4 corpus contains broadcast
news from a variety of networks (CNN, ABC,
CSPAN and NPR) which have been manually tran-
scribed and split at the story and sentence level.
Each document contains 27 sentences on average
and the whole corpus consists of 26,151 tokens.3
The Robust Accurate Statistical Parsing (RASP)
toolkit (Briscoe and Carroll 2002) was used to au-
tomatically tokenise the corpus.

Each annotator was asked to perform sentence
compression by removing tokens from the original
transcript. Annotators were asked to remove words
while: (a) preserving the most important infor-
mation in the original sentence, and (b) ensuring
the compressed sentence remained grammatical. If
they wished they could leave a sentence uncom-
pressed by marking it as inappropriate for com-
pression. They were not allowed to delete whole
sentences even if they believed they contained no
information content with respect to the story as
this would blur the task with abstracting.
Ziff-Davis Corpus Most previous work (Jing
2000; Knight and Marcu 2002; Riezler et al. 2003;
Nguyen et al. 2004a; Turner and Charniak 2005;
McDonald 2006) has relied on automatically con-
structed parallel corpora for training and evalua-
tion purposes. The most popular compression cor-
pus originates from the Ziff-Davis corpus — a col-
lection of news articles on computer products. The
corpus was created by matching sentences that oc-
cur in an article with sentences that occur in an
abstract (Knight and Marcu 2002). The abstract
sentences had to contain a subset of the original
sentence’s words and the word order had to remain
the same.

3The compression corpus is available at http://
homepages.inf.ed.ac.uk/s0460084/data/.

A1 A2 A3 Av. Ziff-Davis
Comp% 88.0 79.0 87.0 84.4 97.0
CompR 73.1 79.0 70.0 73.0 47.0

Table 2: Compression Rates (Comp% measures
the percentage of sentences compressed; CompR
is the mean compression rate of all sentences)
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Figure 1: Distribution of span of words dropped

Comparisons Following the classification
scheme adopted in the British National Corpus
(Burnard 2000), we assume throughout this paper
that Broadcast News and Ziff-Davis belong to dif-
ferent domains (spoken vs. written text) whereas
they represent the same genre (i.e., news). Table 2
shows the percentage of sentences which were
compressed (Comp%) and the mean compression
rate (CompR) for the two corpora. The annota-
tors compress the Broadcast News corpus to a
similar degree. In contrast, the Ziff-Davis corpus
is compressed much more aggressively with a
compression rate of 47%, compared to 73% for
Broadcast News. This suggests that the Ziff-Davis
corpus may not be a true reflection of human
compression performance and that humans tend
to compress sentences more conservatively than
the compressions found in abstracts.

We also examined whether the two corpora dif-
fer with regard to the length of word spans be-
ing removed. Figure 1 shows how frequently word
spans of varying lengths are being dropped. As can
be seen, a higher percentage of long spans (five
or more words) are dropped in the Ziff-Davis cor-
pus. This suggests that the annotators are remov-
ing words rather than syntactic constituents, which
provides support for a model that can act on the
word level. There is no statistically significant dif-
ference between the length of spans dropped be-
tween the annotators, whereas there is a signif-
icant difference (p < 0.01) between the annota-
tors’ spans and the Ziff-Davis’ spans (using the
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Wilcoxon Test).
The compressions produced for the Broadcast

News corpus may differ slightly to the Ziff-Davis
corpus. Our annotators were asked to perform
sentence compression explicitly as an isolated
task rather than indirectly (and possibly subcon-
sciously) as part of the broader task of abstracting,
which we can assume is the case with the Ziff-
Davis corpus.

4 Automatic Evaluation Measures

Previous studies relied almost exclusively on
human judgements for assessing the well-
formedness of automatically derived com-
pressions. Although human evaluations of
compression systems are not as large-scale as in
other fields (e.g., machine translation), they are
typically performed once, at the end of the de-
velopment cycle. Automatic evaluation measures
would allow more extensive parameter tuning
and crucially experimentation with larger data
sets. Most human studies to date are conducted
on a small compression sample, the test portion
of the Ziff-Davis corpus (32 sentences). Larger
sample sizes would expectedly render human
evaluations time consuming and generally more
difficult to conduct frequently. Here, we review
two automatic evaluation measures that hold
promise for the compression task.

Simple String Accuracy (SSA, Bangalore et al.
2000) has been proposed as a baseline evaluation
metric for natural language generation. It is based
on the string edit distance between the generated
output and a gold standard. It is a measure of the
number of insertion (I), deletion (D) and substi-
tution (S) errors between two strings. It is defined
in (4) where R is the length of the gold standard
string.

Simple String Accuracy = (1− I +D+S
R

) (4)

The SSA score will assess whether appropriate
words have been included in the compression.

Another stricter automatic evaluation method
is to compare the grammatical relations found in
the system compressions against those found in a
gold standard. This allows us “to measure the se-
mantic aspects of summarisation quality in terms
of grammatical-functional information” (Riezler
et al. 2003). The standard metrics of precision,
recall and F-score can then be used to measure
the quality of a system against a gold standard.
Our implementation of the F-score measure used

the grammatical relations annotations provided by
RASP (Briscoe and Carroll 2002). This parser is
particularly appropriate for the compression task
since it provides parses for both full sentences
and sentence fragments and is generally robust
enough to analyse semi-grammatical compres-
sions. We calculated F-score over all the relations
provided by RASP (e.g., subject, direct/indirect
object, modifier; 15 in total).

Correlation with human judgements is an im-
portant prerequisite for the wider use of automatic
evaluation measures. In the following section we
describe an evaluation study examining whether
the measures just presented indeed correlate with
human ratings of compression quality.

5 Experimental Set-up

In this section we present our experimental set-
up for assessing the performance of the two al-
gorithms discussed above. We explain how differ-
ent model parameters were estimated. We also de-
scribe a judgement elicitation study on automatic
and human-authored compressions.
Parameter Estimation We created two vari-
ants of the decision-tree model, one trained on
the Ziff-Davis corpus and one on the Broadcast
News corpus. We used 1,035 sentences from the
Ziff-Davis corpus for training; the same sentences
were previously used in related work (Knight and
Marcu 2002). The second variant was trained on
1,237 sentences from the Broadcast News corpus.
The training data for both models was parsed us-
ing Charniak’s (2000) parser. Learning cases were
automatically generated using a set of 90 features
similar to Knight and Marcu (2002).

For the word-based method, we randomly
selected 50 sentences from each training set
to optimise the lambda weighting parame-
ters4. Optimisation was performed using Pow-
ell’s method (Press et al. 1992). Recall from Sec-
tion 2.2 that the compression score has three
main parameters: the significance, linguistic, and
SOV scores. The significance score was calcu-
lated using 25 million tokens from the Broadcast
News corpus (spoken variant) and 25 million to-
kens from the North American News Text Cor-
pus (written variant). The linguistic score was es-
timated using a trigram language model. The lan-
guage model was trained on the North Ameri-

4To treat both models on an equal footing, we attempted
to train the decision-tree model solely on 50 sentences. How-
ever, it was unable to produce any reasonable compressions,
presumably due to insufficient learning instances.
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can corpus (25 million tokens) using the CMU-
Cambridge Language Modeling Toolkit (Clarkson
and Rosenfeld 1997) with a vocabulary size of
50,000 tokens and Good-Turing discounting. Sub-
jects, objects, and verbs for the SOV score were
obtained from RASP (Briscoe and Carroll 2002).

All our experiments were conducted on sen-
tences for which we obtained syntactic analyses.
RASP failed on 17 sentences from the Broadcast
news corpus and 33 from the Ziff-Davis corpus;
Charniak’s (2000) parser successfully parsed the
Broadcast News corpus but failed on three sen-
tences from the Ziff-Davis corpus.
Evaluation Data We randomly selected
40 sentences for evaluation purposes, 20 from
the testing portion of the Ziff-Davis corpus (32
sentences) and 20 sentences from the Broadcast
News corpus (133 sentences were set aside for
testing). This is comparable to previous studies
which have used the 32 test sentences from the
Ziff-Davis corpus. None of the 20 Broadcast
News sentences were used for optimisation. We
ran the decision-tree system and the word-based
system on these 40 sentences. One annotator was
randomly selected to act as the gold standard for
the Broadcast News corpus; the gold standard
for the Ziff-Davis corpus was the sentence that
occurred in the abstract. For each original sen-
tence we had three compressions; two generated
automatically by our systems and a human au-
thored gold standard. Thus, the total number of
compressions was 120 (3x40).
Human Evaluation The 120 compressions
were rated by human subjects. Their judgements
were also used to examine whether the automatic
evaluation measures discussed in Section 4 corre-
late reliably with behavioural data. Sixty unpaid
volunteers participated in our elicitation study, all
were self reported native English speakers. The
study was conducted remotely over the Internet.
Participants were presented with a set of instruc-
tions that explained the task and defined sentence
compression with the aid of examples. They first
read the original sentence with the compression
hidden. Then the compression was revealed by
pressing a button. Each participant saw 40 com-
pressions. A Latin square design prevented sub-
jects from seeing two different compressions of
the same sentence. The order of the sentences was
randomised. Participants were asked to rate each
compression they saw on a five point scale taking
into account the information retained by the com-
pression and its grammaticality. They were told all

o: Apparently Fergie very much wants to have a career in
television.

d: A career in television.
w: Fergie wants to have a career in television.
g: Fergie wants a career in television.
o: Many debugging features, including user-defined break

points and variable-watching and message-watching
windows, have been added.

d: Many debugging features.
w: Debugging features, and windows, have been added.
g: Many debugging features have been added.
o: As you said, the president has just left for a busy three

days of speeches and fundraising in Nevada, California
and New Mexico.

d: As you said, the president has just left for a busy three
days.

w: You said, the president has left for three days of
speeches and fundraising in Nevada, California and
New Mexico.

g: The president left for three days of speeches and
fundraising in Nevada, California and New Mexico.

Table 3: Compression examples (o: original sen-
tence, d: decision-tree compression, w: word-
based compression, g: gold standard)

compressions were automatically generated. Ex-
amples of the compressions our participants saw
are given in Table 3.

6 Results

Our experiments were designed to answer three
questions: (1) Is there a significant difference
between the compressions produced by super-
vised (constituent-based) and weakly unsuper-
vised (word-based) approaches? (2) How well
do the two models port across domains (written
vs. spoken text) and corpora types (human vs. au-
tomatically created)? (3) Do automatic evaluation
measures correlate with human judgements?

One of our first findings is that the the decision-
tree model is rather sensitive to the style of training
data. The model cannot capture and generalise sin-
gle word drops as effectively as constituent drops.
When the decision-tree is trained on the Broadcast
News corpus, it is unable to create suitable com-
pressions. On the evaluation data set, 75% of the
compressions produced are the original sentence
or the original sentence with one word removed.
It is possible that the Broadcast News compres-
sion corpus contains more varied compressions
than those of the Ziff-Davis and therefore a larger
amount of training data would be required to learn
a reliable decision-tree model. We thus used the
Ziff-Davis trained decision-tree model to obtain
compressions for both corpora.

Our results are summarised in Tables 4 and 5.
Table 4 lists the average compression rates for
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Broadcast News CompR SSA F-score
Decision-tree 0.55 0.34 0.40
Word-based 0.72 0.51 0.54
gold standard 0.71 – –

Ziff-Davis CompR SSA F-score
Decision-tree 0.58 0.20 0.34
Word-based 0.60 0.19 0.39
gold standard 0.54 – –

Table 4: Results using automatic evaluation mea-
sures

Compression Broadcast News Ziff-Davis
Decision-tree 2.04 2.34
Word-based 2.78 2.43
gold standard 3.87 3.53

Table 5: Mean ratings from human evaluation

each model as well as the models’ performance ac-
cording to the two automatic evaluation measures
discussed in Section 4. The row ‘gold standard’
displays human-produced compression rates. Ta-
ble 5 shows the results of our judgement elicitation
study.

The compression rates (CompR, Table 4) indi-
cate that the decision-tree model compresses more
aggressively than the word-based model. This is
due to the fact that it mostly removes entire con-
stituents rather than individual words. The word-
based model is closer to the human compres-
sion rate. According to our automatic evaluation
measures, the decision-tree model is significantly
worse than the word-based model (using the Stu-
dent t test, SSA p < 0.05, F-score p < 0.05) on
the Broadcast News corpus. Both models are sig-
nificantly worse than humans (SSA p < 0.05, F-
score p < 0.01). There is no significant difference
between the two systems using the Ziff-Davis cor-
pus on both simple string accuracy and relation
F-score, whereas humans significantly outperform
the two systems.

We have performed an Analysis of Variance
(ANOVA) to examine whether similar results are
obtained when using human judgements. Statisti-
cal tests were done using the mean of the ratings
(see Table 5). The ANOVA revealed a reliable ef-
fect of compression type by subjects and by items
(p < 0.01). Post-hoc Tukey tests confirmed that
the word-based model outperforms the decision-
tree model (α < 0.05) on the Broadcast news cor-
pus; however, the two models are not significantly

Measure Ziff-Davis Broadcast News
SSA 0.171 0.348*
F-score 0.575** 0.532**

*p < 0.05 **p < 0.01

Table 6: Correlation (Pearson’s r) between evalu-
ation measures and human ratings. Stars indicate
level of statistical significance.

different when using the Ziff-Davis corpus. Both
systems perform significantly worse than the gold
standard (α < 0.05).

We next examine the degree to which the auto-
matic evaluation measures correlate with human
ratings. Table 6 shows the results of correlating
the simple string accuracy (SSA) and relation F-
score against compression judgements. The SSA
does not correlate on both corpora with human
judgements; it thus seems to be an unreliable mea-
sure of compression performance. However, the F-
score correlates significantly with human ratings,
yielding a correlation coefficient of r = 0.575 on
the Ziff-Davis corpus and r = 0.532 on the Broad-
cast news. To get a feeling for the difficulty of
the task, we assessed how well our participants
agreed in their ratings using leave-one-out resam-
pling (Weiss and Kulikowski 1991). The technique
correlates the ratings of each participant with the
mean ratings of all the other participants. The aver-
age agreement is r = 0.679 on the Ziff-Davis cor-
pus and r = 0.746 on the Broadcast News corpus.
This result indicates that F-score’s agreement with
the human data is not far from the human upper
bound.

7 Conclusions and Future Work

In this paper we have provided a comparison be-
tween a supervised (constituent-based) and a min-
imally supervised (word-based) approach to sen-
tence compression. Our results demonstrate that
the word-based model performs equally well on
spoken and written text. Since it does not rely
heavily on training data, it can be easily extended
to languages or domains for which parallel com-
pression corpora are scarce. When no parallel cor-
pora are available the parameters can be manu-
ally tuned to produce compressions. In contrast,
the supervised decision-tree model is not partic-
ularly robust on spoken text, it is sensitive to the
nature of the training data, and did not produce ad-
equate compressions when trained on the human-
authored Broadcast News corpus. A comparison
of the automatically gathered Ziff-Davis corpus
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with the Broadcast News corpus revealed impor-
tant differences between the two corpora and thus
suggests that automatically created corpora may
not reflect human compression performance.

We have also assessed whether automatic eval-
uation measures can be used for the compression
task. Our results show that grammatical relations-
based F-score (Riezler et al. 2003) correlates re-
liably with human judgements and could thus be
used to measure compression performance auto-
matically. For example, it could be used to assess
progress during system development or for com-
paring across different systems and system config-
urations with much larger test sets than currently
employed.

In its current formulation, the only function
driving compression in the word-based model
is the language model. The word significance
and SOV scores are designed to single out im-
portant words that the model should not drop. We
have not yet considered any functions that encour-
age compression. Ideally these functions should be
inspired from the underlying compression process.
Finding such a mechanism is an avenue of future
work. We would also like to enhance the word-
based model with more linguistic knowledge; we
plan to experiment with syntax-based language
models and more richly annotated corpora.

Another important future direction lies in apply-
ing the unsupervised model presented here to lan-
guages with more flexible word order and richer
morphology than English (e.g., German, Czech).
We suspect that these languages will prove chal-
lenging for creating grammatically acceptable
compressions. Finally, our automatic evaluation
experiments motivate the use of relations-based F-
score as a means of directly optimising compres-
sion quality, much in the same way MT systems
optimise model parameters using BLEU as a mea-
sure of translation quality.
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Abstract

Ordering information is a difficult but
important task for applications generat-
ing natural-language text. We present
a bottom-up approach to arranging sen-
tences extracted for multi-document sum-
marization. To capture the association and
order of two textual segments (eg, sen-
tences), we define four criteria,chronol-
ogy, topical-closeness, precedence, and
succession. These criteria are integrated
into a criterion by a supervised learning
approach. We repeatedly concatenate two
textual segments into one segment based
on the criterion until we obtain the overall
segment with all sentences arranged. Our
experimental results show a significant im-
provement over existing sentence ordering
strategies.

1 Introduction

Multi-document summarization (MDS) (Radev
and McKeown, 1999) tackles the information
overload problem by providing a condensed ver-
sion of a set of documents. Among a number
of sub-tasks involved in MDS, eg, sentence ex-
traction, topic detection, sentence ordering, infor-
mation extraction, sentence generation, etc., most
MDS systems have been based on an extraction
method, which identifies important textual seg-
ments (eg, sentences or paragraphs) in source doc-
uments. It is important for such MDS systems
to determine a coherent arrangement of the tex-
tual segments extracted from multi-documents in
order to reconstruct the text structure for summa-
rization. Ordering information is also essential for

∗Research Fellow of the Japan Society for the Promotion
of Science (JSPS)

other text-generation applications such as Ques-
tion Answering.

A summary with improperly ordered sen-
tences confuses the reader and degrades the qual-
ity/reliability of the summary itself. Barzi-
lay (2002) has provided empirical evidence that
proper order of extracted sentences improves their
readability significantly. However, ordering a
set of sentences into a coherent text is a non-
trivial task. For example, identifying rhetorical
relations (Mann and Thompson, 1988) in an or-
dered text has been a difficult task for computers,
whereas our task is even more complicated: to
reconstruct such relations from unordered sets of
sentences. Source documents for a summary may
have been written by different authors, by different
writing styles, on different dates, and based on dif-
ferent background knowledge. We cannot expect
that a set of extracted sentences from such diverse
documents will be coherent on their own.

Several strategies to determine sentence order-
ing have been proposed as described in section 2.
However, the appropriate way to combine these
strategies to achieve more coherent summaries re-
mains unsolved. In this paper, we propose four
criteria to capture the association of sentences in
the context of multi-document summarization for
newspaper articles. These criteria are integrated
into one criterion by a supervised learning ap-
proach. We also propose a bottom-up approach
in arranging sentences, which repeatedly concate-
nates textual segments until the overall segment
with all sentences arranged, is achieved.

2 Related Work

Existing methods for sentence ordering are di-
vided into two approaches: making use of chrono-
logical information (McKeown et al., 1999; Lin
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and Hovy, 2001; Barzilay et al., 2002; Okazaki
et al., 2004); and learning the natural order of sen-
tences from large corpora not necessarily based on
chronological information (Lapata, 2003; Barzi-
lay and Lee, 2004). A newspaper usually dissem-
inates descriptions of novel events that have oc-
curred since the last publication. For this reason,
ordering sentences according to their publication
date is an effective heuristic for multidocument
summarization (Lin and Hovy, 2001; McKeown
et al., 1999). Barzilay et al. (2002) have proposed
an improved version of chronological ordering by
first grouping sentences into sub-topics discussed
in the source documents and then arranging the
sentences in each group chronologically.

Okazaki et al. (2004) have proposed an algo-
rithm to improve chronological ordering by re-
solving the presuppositional information of ex-
tracted sentences. They assume that each sen-
tence in newspaper articles is written on the basis
that presuppositional information should be trans-
ferred to the reader before the sentence is inter-
preted. The proposed algorithm first arranges sen-
tences in a chronological order and then estimates
the presuppositional information for each sentence
by using the content of the sentences placed before
each sentence in its original article. The evaluation
results show that the proposed algorithm improves
the chronological ordering significantly.

Lapata (2003) has suggested a probabilistic
model of text structuring and its application to the
sentence ordering. Her method calculates the tran-
sition probability from one sentence to the next
from a corpus based on the Cartesian product be-
tween two sentences defined using the following
features: verbs (precedent relationships of verbs
in the corpus); nouns (entity-based coherence by
keeping track of the nouns); and dependencies
(structure of sentences). Although she has not
compared her method with chronological order-
ing, it could be applied to generic domains, not re-
lying on the chronological clue provided by news-
paper articles.

Barzilay and Lee (2004) have proposedcon-
tent modelsto deal with topic transition in do-
main specific text. The content models are formal-
ized by Hidden Markov Models (HMMs) in which
the hidden state corresponds to a topic in the do-
main of interest (eg, earthquake magnitude or pre-
vious earthquake occurrences), and the state tran-
sitions capture possible information-presentation

orderings. The evaluation results showed that
their method outperformed Lapata’s approach by a
wide margin. They did not compare their method
with chronological ordering as an application of
multi-document summarization.

As described above, several good strate-
gies/heuristics to deal with the sentence ordering
problem have been proposed. In order to integrate
multiple strategies/heuristics, we have formalized
them in a machine learning framework and have
considered an algorithm to arrange sentences us-
ing the integrated strategy.

3 Method

We define notationa Â b to represent that sen-
tencea precedes sentenceb. We use the termseg-
mentto describe a sequence of ordered sentences.
When segmentA consists of sentencesa1, a2, ...,
am in this order, we denote as:

A = (a1 Â a2 Â ... Â am). (1)

The two segmentsA andB can be ordered either
B after A or A after B. We define the notation
A Â B to show that segmentA precedes segment
B.

Let us consider a bottom-up approach in arrang-
ing sentences. Starting with a set of segments ini-
tialized with a sentence for each, we concatenate
two segments, with the strongest association (dis-
cussed later) of all possible segment pairs, into
one segment. Repeating the concatenating will
eventually yield a segment with all sentences ar-
ranged. The algorithm is considered as a variation
of agglomerative hierarchical clustering with the
ordering information retained at each concatenat-
ing process.

The underlying idea of the algorithm, a bottom-
up approach to text planning, was proposed by
Marcu (1997). Assuming that the semantic units
(sentences) and their rhetorical relations (eg, sen-
tencea is anelaborationof sentenced) are given,
he transcribed a text structuring task into the prob-
lem of finding the best discourse tree that satisfied
the set of rhetorical relations. He stated that global
coherence could be achieved by satisfying local
coherence constraints in ordering and clustering,
thereby ensuring that the resultant discourse tree
was well-formed.

Unfortunately, identifying the rhetorical rela-
tion between two sentences has been a difficult
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Figure 1: Arranging four sentencesA, B, C, and
D with a bottom-up approach.

task for computers. However, the bottom-up algo-
rithm for arranging sentences can still be applied
only if the direction and strength of the associa-
tion of the two segments (sentences) are defined.
Hence, we introduce a functionf(A Â B) to rep-
resent the direction and strength of the association
of two segmentsA andB,

f(A Â B) =
{

p (if A precedesB)
0 (if B precedesA)

, (2)

wherep (0 ≤ p ≤ 1) denotes the association
strength of the segmentsA andB. The associa-
tion strengths of the two segments with different
directions, eg,f(A Â B) andf(B Â A), are not
always identical in our definition,

f(A Â B) 6= f(B Â A). (3)

Figure 1 shows the process of arranging four
sentencesa, b, c, andd. Firstly, we initialize four
segments with a sentence for each,

A = (a), B = (b), C = (c), D = (d). (4)

Suppose thatf(B Â A) has the highest value of
all possible pairs, eg,f(A Â B), f(C Â D), etc,
we concatenateB andA to obtain a new segment,

E = (b Â a). (5)

Then we search for the segment pair with the
strongest association. Supposing thatf(C Â D)
has the highest value, we concatenateC andD to
obtain a new segment,

F = (c Â d). (6)

Finally, comparingf(E Â F ) andf(F Â E), we
obtain the global sentence ordering,

G = (b Â a Â c Â d). (7)

In the above description, we have not defined
the association of the two segments. The previ-
ous work described in Section 2 has addressed the
association of textual segments (sentences) to ob-
tain coherent orderings. We define four criteria to
capture the association of two segments:chronol-
ogy; topical-closeness; precedence; and succes-
sion. These criteria are integrated into a function
f(A Â B) by using a machine learning approach.
The rest of this section explains the four criteria
and an integration method with a Support Vector
Machine (SVM) (Vapnik, 1998) classifier.

3.1 Chronology criterion

Chronology criterionreflects the chronological or-
dering (Lin and Hovy, 2001; McKeown et al.,
1999), which arranges sentences in a chronologi-
cal order of the publication date. We define the as-
sociation strength of arranging segmentsB afterA
measured by a chronology criterionfchro(A Â B)
in the following formula,

fchro(A Â B)

=





1 T(am) < T(b1)
1 [D(am) = D(b1)] ∧ [N(am) < N(b1)]
0.5 [T(am) = T(b1)] ∧ [D(am) 6= D(b1)]
0 otherwise

.

(8)

Here,am represents the last sentence in segment
A; b1 represents the first sentence in segmentB;
T (s) is the publication date of the sentences;
D(s) is the unique identifier of the document to
which sentences belongs: andN(s) denotes the
line number of sentences in the original docu-
ment. The chronological order of arranging seg-
mentB afterA is determined by the comparison
between the last sentence in the segmentA and the
first sentence in the segmentB.

The chronology criterion assesses the appropri-
ateness of arranging segmentB after A if: sen-
tenceam is published earlier thanb1; or sentence
am appears beforeb1 in the same article. If sen-
tenceam andb1 are published on the same day but
appear in different articles, the criterion assumes
the order to be undefined. If none of the above
conditions are satisfied, the criterion estimates that
segmentB will precedeA.

3.2 Topical-closeness criterion

The topical-closeness criterion deals with the as-
sociation, based on the topical similarity, of two
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Figure 2: Precedence criterion

segments. The criterion reflects the ordering strat-
egy proposed by Barzilay et al (2002), which
groups sentences referring to the same topic. To
measure the topical closeness of two sentences, we
represent each sentence with a vector whose ele-
ments correspond to the occurrence1 of the nouns
and verbs in the sentence. We define the topical
closeness of two segmentsA andB as follows,

ftopic(A Â B) =
1
|B|

∑

b∈B

max
a∈A

sim(a, b). (9)

Here,sim(a, b) denotes the similarity of sentences
a andb, which is calculated by the cosine similar-
ity of two vectors corresponding to the sentences.
For sentenceb ∈ B, maxa∈A sim(a, b) chooses
the sentencea ∈ A most similar to sentenceb and
yields the similarity. The topical-closeness crite-
rion ftopic(A Â B) assigns a higher value when
the topic referred by segmentB is the same as seg-
mentA.

3.3 Precedence criterion

Let us think of the case where we arrange seg-
mentA beforeB. Each sentence in segmentB
has the presuppositional information that should
be conveyed to a reader in advance. Given sen-
tenceb ∈ B, such presuppositional information
may be presented by the sentences appearing be-
fore the sentenceb in the original article. How-
ever, we cannot guarantee whether a sentence-
extraction method for multi-document summa-
rization chooses any sentences beforeb for a sum-
mary because the extraction method usually deter-

1The vector values are represented by boolean values, i.e.,
1 if the sentence contains a word, otherwise 0.
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Figure 3: Succession criterion

mines a set of sentences, within the constraint of
summary length, that maximizes information cov-
erage and excludes redundant information.Prece-
dence criterionmeasures the substitutability of the
presuppositional information of segmentB (eg,
the sentences appearing before sentenceb) as seg-
mentA. This criterion is a formalization of the
sentence-ordering algorithm proposed by Okazaki
et al, (2004).

We define the precedence criterion in the fol-
lowing formula,

fpre(A Â B) =
1
|B|

∑

b∈B

max
a∈A,p∈Pb

sim(a, p).

(10)
Here,Pb is a set of sentences appearing before sen-
tenceb in the original article; andsim(a, b) de-
notes the cosine similarity of sentencesa and b
(defined as in the topical-closeness criterion). Fig-
ure 2 shows an example of calculating the prece-
dence criterion for arranging segmentB after A.
We approximate the presuppositional information
for sentenceb by sentencesPb, ie, sentences ap-
pearing before the sentenceb in the original arti-
cle. Calculating the similarity among sentences in
Pb andA by the maximum similarity of the pos-
sible sentence combinations, Formula 10 is inter-
preted as the average similarity of the precedent
sentences∀Pb(b ∈ B) to the segmentA.

3.4 Succession criterion

The idea ofsuccession criterionis the exact op-
posite of the precedence criterion. The succession
criterion assesses the coverage of the succedent in-
formation for segmentA by arranging segmentB
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Figure 4: Partitioning a human-ordered extract
into pairs of segments

afterA:

fsucc(A Â B) =
1
|A|

∑

a∈A

max
s∈Sa,b∈B

sim(s, b).

(11)
Here,Sa is a set of sentences appearing after sen-
tencea in the original article; andsim(a, b) de-
notes the cosine similarity of sentencesa and b
(defined as in the topical-closeness criterion). Fig-
ure 3 shows an example of calculating the succes-
sion criterion to arrange segmentsB afterA. The
succession criterion measures the substitutability
of the succedent information (eg, the sentences ap-
pearing after the sentencea ∈ A) as segmentB.

3.5 SVM classifier to assess the integrated
criterion

We integrate the four criteria described above
to define the functionf(A Â B) to represent
the association direction and strength of the two
segmentsA and B (Formula 2). More specifi-
cally, given the two segmentsA andB, function
f(A Â B) is defined to yield the integrated asso-
ciation strength from four values,fchro(A Â B),
ftopic(A Â B), fpre(A Â B), andfsucc(A Â B).
We formalize the integration task as a binary clas-
sification problem and employ a Support Vector
Machine (SVM) as the classifier. We conducted a
supervised learning as follows.

We partition a human-ordered extract into pairs
each of which consists of two non-overlapping
segments. Let us explain the partitioning process
taking four human-ordered sentences,a Â b Â
c Â d shown in Figure 4. Firstly, we place the
partitioning point just after the first sentencea.
Focusing on sentencea arranged just before the
partition point and sentenceb arranged just after
we identify the pair{(a), (b)} of two segments
(a) and(b). Enumerating all possible pairs of two
segments facing just before/after the partitioning
point, we obtain the following pairs,{(a), (b Â
c)} and{(a), (b Â c Â d)}. Similarly, segment

+1 : [fchro(A Â B), ftopic(A Â B), fpre(A Â B), fsucc(A Â B)]

−1 : [fchro(B Â A), ftopic(B Â A), fpre(B Â A), fsucc(B Â A)]

Figure 5: Two vectors in a training data generated
from two ordered segmentsA Â B

pairs,{(b), (c)}, {(a Â b), (c)}, {(b), (c Â d)},
{(a Â b), (c Â d)}, are obtained from the parti-
tioning point between sentence b and c. Collect-
ing the segment pairs from the partitioning point
between sentencesc andd (i.e., {(c), (d)}, {(b Â
c), (d)} and{(a Â b Â c), (d)}), we identify ten
pairs in total form the four ordered sentences. In
general, this process yieldsn(n2−1)/6 pairs from
orderedn sentences. From each pair of segments,
we generate one positive and one negative training
instance as follows.

Given a pair of two segmentsA andB arranged
in an orderA Â B, we calculate four values,
fchro(A Â B), ftopic(A Â B), fpre(A Â B),
and fsucc(A Â B) to obtain the instance with
the four-dimensional vector (Figure 5). We label
the instance (corresponding toA Â B) as a posi-
tive class (ie,+1). Simultaneously, we obtain an-
other instance with a four-dimensional vector cor-
responding toB Â A. We label it as a negative
class (ie,−1). Accumulating these instances as
training data, we obtain a binary classifier by using
a Support Vector Machine with a quadratic kernel.
The SVM classifier yields the association direc-
tion of two segments (eg,A Â B or B Â A) with
the class information (ie,+1 or −1). We assign
the association strength of two segments by using
the class probability estimate that the instance be-
longs to a positive (+1) class. When an instance
is classified into a negative (−1) class, we set the
association strength as zero (see the definition of
Formula 2).

4 Evaluation

We evaluated the proposed method by using the
3rd Text Summarization Challenge (TSC-3) cor-
pus2. The TSC-3 corpus contains 30 sets of ex-
tracts, each of which consists of unordered sen-
tences3 extracted from Japanese newspaper arti-
cles relevant to a topic (query). We arrange the
extracts by using different algorithms and evaluate

2http://lr-www.pi.titech.ac.jp/tsc/tsc3-en.html
3Each extract consists of ca. 15 sentences on average.
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Table 1: Correlation between two sets of human-
ordered extracts

Metric Mean Std. Dev Min Max
Spearman 0.739 0.304 -0.2 1
Kendall 0.694 0.290 0 1
Average Continuity 0.401 0.404 0.001 1

the readability of the ordered extracts by a subjec-
tive grading and several metrics.

In order to construct training data applica-
ble to the proposed method, we asked two hu-
man subjects to arrange the extracts and obtained
30(topics) × 2(humans) = 60 sets of ordered
extracts. Table 1 shows the agreement of the or-
dered extracts between the two subjects. The cor-
relation is measured by three metrics, Spearman’s
rank correlation, Kendall’s rank correlation, and
average continuity (described later). The mean
correlation values (0.74 for Spearman’s rank cor-
relation and0.69 for Kendall’s rank correlation)
indicate a certain level of agreement in sentence
orderings made by the two subjects. 8 out of 30
extracts were actually identical.

We applied the leave-one-out method to the pro-
posed method to produce a set of sentence or-
derings. In this experiment, the leave-out-out
method arranges an extract by using an SVM
model trained from the rest of the 29 extracts. Re-
peating this process 30 times with a different topic
for each iteration, we generated a set of 30 ex-
tracts for evaluation. In addition to the proposed
method, we prepared six sets of sentence orderings
produced by different algorithms for comparison.
We describe briefly the seven algorithms (includ-
ing the proposed method):

Agglomerative ordering (AGL) is an ordering
arranged by the proposed method;

Random ordering (RND) is the lowest anchor,
in which sentences are arranged randomly;

Human-made ordering (HUM) is the highest
anchor, in which sentences are arranged by
a human subject;

Chronological ordering (CHR) arranges sen-
tences with the chronology criterion defined
in Formula 8. Sentences are arranged in
chronological order of their publication date;

Topical-closeness ordering (TOP)arranges sen-
tences with the topical-closeness criterion de-
fined in Formula 9;

0 20 40 60 80 100

UnacceptablePoorAcceptablePerfect

HUM

AGL

CHR

RND

%

Figure 6: Subjective grading

Precedence ordering (PRE)arranges sentences
with the precedence criterion defined in For-
mula 10;

Suceedence ordering (SUC)arranges sentences
with the succession criterion defined in For-
mula 11.

The last four algorithms (CHR, TOP, PRE, and
SUC) arrange sentences by the corresponding cri-
terion alone, each of which uses the association
strength directly to arrange sentences without the
integration of other criteria. These orderings are
expected to show the performance of each expert
independently and their contribution to solving the
sentence ordering problem.

4.1 Subjective grading

Evaluating a sentence ordering is a challenging
task. Intrinsic evaluation that involves human
judges to rank a set of sentence orderings is a nec-
essary approach to this task (Barzilay et al., 2002;
Okazaki et al., 2004). We asked two human judges
to rate sentence orderings according to the follow-
ing criteria. Aperfectsummary is a text that we
cannot improve any further by re-ordering. Anac-
ceptablesummary is one that makes sense and is
unnecessary to revise even though there is some
room for improvement in terms of readability. A
poor summary is one that loses a thread of the
story at some places and requires minor amend-
ment to bring it up to an acceptable level. Anun-
acceptablesummary is one that leaves much to be
improved and requires overall restructuring rather
than partial revision. To avoid any disturbance in
rating, we inform the judges that the summaries
were made from a same set of extracted sentences
and only the ordering of sentences is different.

Figure 6 shows the distribution of the subjective
grading made by two judges to four sets of order-
ings, RND, CHR, AGL and HUM. Each set of or-
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Teval = (e Â a Â b Â c Â d)
Tref = (a Â b Â c Â d Â e)

Figure 7: An example of an ordering under evalu-
ationTeval and its referenceTref .

derings has30(topics)× 2(judges)= 60 ratings.
Most RND orderings are rated asunacceptable.
Although CHR and AGL orderings have roughly
the same number ofperfectorderings (ca.25%),
the AGL algorithm gained moreacceptableorder-
ings (47%) than the CHR alghrotihm (30%). This
fact shows that integration of CHR experts with
other experts worked well by pushing poor order-
ing to an acceptable level. However, a huge gap
betweenAGLandHUM orderings was also found.
The judges rated28% AGL orderings asperfect
while the figure rose as high as82% for HUM
orderings. Kendall’s coefficient of concordance
(Kendall’sW ), which asses the inter-judge agree-
ment of overall ratings, reported a higher agree-
ment between the two judges (W = 0.939).

4.2 Metrics for semi-automatic evaluation

We also evaluated sentence orderings by reusing
two sets of gold-standard orderings made for the
training data. In general, subjective grading con-
sumes much time and effort, even though we
cannot reproduce the evaluation afterwards. The
previous studies (Barzilay et al., 2002; Lapata,
2003) employ rank correlation coefficients such
as Spearman’s rank correlation and Kendall’s rank
correlation, assuming a sentence ordering to be
a rank. Okazaki et al. (2004) propose a metric
that assess continuity of pairwise sentences com-
pared with the gold standard. In addition to Spear-
man’s and Kendall’s rank correlation coefficients,
we propose anaverage continuitymetric, which
extends the idea of the continuity metric to contin-
uousk sentences.

A text with sentences arranged in proper order
does not interrupt a human’s reading while moving
from one sentence to the next. Hence, the qual-
ity of a sentence ordering can be estimated by the
number of continuous sentences that are also re-
produced in the reference sentence ordering. This
is equivalent to measuring a precision of continu-
ous sentences in an ordering against the reference
ordering. We definePn to measure the precision of

Table 2: Comparison with human-made ordering
Method Spearman Kendall Average

coefficient coefficient Continuity
RND -0.127 -0.069 0.011
TOP 0.414 0.400 0.197
PRE 0.415 0.428 0.293
SUC 0.473 0.476 0.291
CHR 0.583 0.587 0.356
AGL 0.603 0.612 0.459

n continuous sentences in an ordering to be evalu-
ated as,

Pn =
m

N − n + 1
. (12)

Here,N is the number of sentences in the refer-
ence ordering;n is the length of continuous sen-
tences on which we are evaluating;m is the num-
ber of continuous sentences that appear in both the
evaluation and reference orderings. In Figure 7,
the precision of3 continuous sentencesP3 is cal-
culated as:

P3 =
2

5− 3 + 1
= 0.67. (13)

The Average Continuity (AC) is defined as the
logarithmic average ofPn over2 to k:

AC = exp

(
1

k − 1

k∑

n=2

log(Pn + α)

)
. (14)

Here,k is a parameter to control the range of the
logarithmic average; andα is a small value in case
if Pn is zero. We setk = 4 (ie, more than five
continuous sentences are not included for evalua-
tion) andα = 0.01. Average Continuity becomes
0 when evaluation and reference orderings share
no continuous sentences and1 when the two or-
derings are identical. In Figure 7, Average Conti-
nuity is calculated as0.63. The underlying idea of
Formula 14 was proposed by Papineni et al. (2002)
as the BLEU metric for the semi-automatic evalu-
ation of machine-translation systems. The origi-
nal definition of the BLEU metric is to compare a
machine-translated text with its reference transla-
tion by using the word n-grams.

4.3 Results of semi-automatic evaluation

Table 2 reports the resemblance of orderings pro-
duced by six algorithms to the human-made ones
with three metrics, Spearman’s rank correlation,
Kendall’s rank correlation, and Average Continu-
ity. The proposed method (AGL) outperforms the
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rest in all evaluation metrics, although the chrono-
logical ordering (CHR) appeared to play the major
role. The one-way analysis of variance (ANOVA)
verified the effects of different algorithms for sen-
tence orderings with all metrics (p < 0.01). We
performed Tukey Honest Significant Differences
(HSD) test to compare differences among these al-
gorithms. The Tukey test revealed that AGL was
significantly better than the rest. Even though we
could not compare our experiment with the prob-
abilistic approach (Lapata, 2003) directly due to
the difference of the text corpora, the Kendall co-
efficient reported higher agreement than Lapata’s
experiment (Kendall=0.48 with lemmatized nouns
and Kendall=0.56 with verb-noun dependencies).

Figure 8 shows precisionPn with different
length values of continuous sentencen for the six
methods compared in Table 2. The number of
continuous sentences becomes sparse for a higher
value of lengthn. Therefore, the precision values
decrease as the lengthn increases. Although RND
ordering reported some continuous sentences for
lower n values, no continuous sentences could be
observed for the highern values. Four criteria de-
scribed in Section 3 (ie, CHR, TOP, PRE, SUC)
produce segments of continuous sentences at all
values ofn.

5 Conclusion

We present a bottom-up approach to arrange sen-
tences extracted for multi-document summariza-
tion. Our experimental results showed a signif-
icant improvement over existing sentence order-
ing strategies. However, the results also implied
that chronological ordering played the major role
in arranging sentences. A future direction of this

study would be to explore the application of the
proposed framework to more generic texts, such
as documents without chronological information.
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Abstract 

We have constructed a corpus of news ar-
ticles in which events are annotated for 
estimated bounds on their duration. Here 
we describe a method for measuring in-
ter-annotator agreement for these event 
duration distributions. We then show that 
machine learning techniques applied to 
this data yield coarse-grained event dura-
tion information, considerably outper-
forming a baseline and approaching hu-
man performance. 

1 Introduction 

Consider the sentence from a news article: 

George W. Bush met with Vladimir Putin in 
Moscow. 

How long was the meeting?  Our first reaction 
to this question might be that we have no idea.  
But in fact we do have an idea.  We know the 
meeting was longer than 10 seconds and less 
than a year.  How much tighter can we get the 
bounds to be?  Most people would say the meet-
ing lasted between an hour and three days. 

There is much temporal information in text 
that has hitherto been largely unexploited, en-
coded in the descriptions of events and relying 
on our knowledge of the range of usual durations 
of types of events.  This paper describes one part 
of an exploration into how this information can 
be captured automatically.  Specifically, we have 
developed annotation guidelines to minimize dis-
crepant judgments and annotated 58 articles, 
comprising 2288 events; we have developed a 
method for measuring inter-annotator agreement 
when the judgments are intervals on a scale; and 
we have shown that machine learning techniques 
applied to the annotated data considerably out-

perform a baseline and approach human per-
formance.   

This research is potentially very important in 
applications in which the time course of events is 
to be extracted from news. For example, whether 
two events overlap or are in sequence often de-
pends very much on their durations.  If a war 
started yesterday, we can be pretty sure it is still 
going on today.  If a hurricane started last year, 
we can be sure it is over by now. 

The corpus that we have annotated currently 
contains all the 48 non-Wall-Street-Journal (non-
WSJ) news articles (a total of 2132 event in-
stances), as well as 10 WSJ articles (156 event 
instances), from the TimeBank corpus annotated 
in TimeML (Pustejovky et al., 2003). The non-
WSJ articles (mainly political and disaster news) 
include both print and broadcast news that are 
from a variety of news sources, such as ABC, 
AP, and VOA. 

In the corpus, every event to be annotated was 
already identified in TimeBank.  Annotators 
were instructed to provide lower and upper 
bounds on the duration of the event, encompass-
ing 80% of the possibilities, excluding anoma-
lous cases, and taking the entire context of the 
article into account. For example, here is the 
graphical output of the annotations (3 annotators) 
for the “finished” event (underlined) in the sen-
tence 

After the victim, Linda Sanders, 35, had fin-
ished her cleaning and was waiting for her 
clothes to dry,... 
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This graph shows that the first annotator be-
lieves that the event lasts for minutes whereas the 
second annotator believes it could only last for 
several seconds. The third annotates the event to 
range from a few seconds to a few minutes. A 
logarithmic scale is used for the output because 
of the intuition that the difference between 1 sec-
ond and 20 seconds is significant, while the dif-
ference between 1 year 1 second and 1 year 20 
seconds is negligible.  

A preliminary exercise in annotation revealed 
about a dozen classes of systematic discrepancies 
among annotators’ judgments.  We thus devel-
oped guidelines to make annotators aware of 
these cases and to guide them in making the 
judgments.  For example, many occurrences of 
verbs and other event descriptors refer to multi-
ple events, especially but not exclusively if the 
subject or object of the verb is plural.  In “Iraq 
has destroyed its long-range missiles”, there is 
the time it takes to destroy one missile and the 
duration of the interval in which all the individ-
ual events are situated – the time it takes to de-
stroy all its missiles.  Initially, there were wide 
discrepancies because some annotators would 
annotate one value, others the other.  Annotators 
are now instructed to make judgments on both 
values in this case.  The use of the annotation 
guidelines resulted in about 10% improvement in 
inter-annotator agreement (Pan et al., 2006), 
measured as described in Section 2. 

There is a residual of gross discrepancies in 
annotators’ judgments that result from differ-
ences of opinion, for example, about how long a 
government policy is typically in effect.  But the 
number of these discrepancies was surprisingly 
small. 

The method and guidelines for annotation are 
described in much greater detail in (Pan et al., 
2006).  In the current paper, we focus on how 
inter-annotator agreement is measured, in Sec-
tion 2, and in Sections 3-5 on the machine learn-
ing experiments.  Because the annotated corpus 
is still fairly small, we cannot hope to learn to 
make fine-grained judgments of event durations 
that are currently annotated in the corpus, but as 
we demonstrate, it is possible to learn useful 
coarse-grained judgments.   

Although there has been much work on tem-
poral anchoring and event ordering in text 
(Hitzeman et al., 1995; Mani and Wilson, 2000; 
Filatova and Hovy, 2001; Boguraev and Ando, 
2005), to our knowledge, there has been no seri-
ous published empirical effort to model and learn 
vague and implicit duration information in natu-

ral language, such as the typical durations of 
events, and to perform reasoning over this infor-
mation. (Cyc apparently has some fuzzy duration 
information, although it is not generally avail-
able; Rieger (1974) discusses the issue for less 
than a page; there has been work in fuzzy logic 
on representing and reasoning with imprecise 
durations (Godo and Vila, 1995; Fortemps, 
1997), but these make no attempt to collect hu-
man judgments on such durations or learn to ex-
tract them automatically from texts.) 

2 Inter-Annotator Agreement 

Although the graphical output of the annotations 
enables us to visualize quickly the level of agree-
ment among different annotators for each event, 
a quantitative measurement of the agreement is 
needed. 

The kappa statistic (Krippendorff, 1980; Car-
letta, 1996) has become the de facto standard to 
assess inter-annotator agreement. It is computed 
as: 

)(1
)()(

EP
EPAP

−
−

=κ  

P(A) is the observed agreement among the an-
notators, and P(E) is the expected agreement, 
which is the probability that the annotators agree 
by chance.  

In order to compute the kappa statistic for our 
task, we have to compute P(A) and P(E), but 
those computations are not straightforward.  

P(A): What should count as agreement among 
annotators for our task?  

P(E): What is the probability that the annota-
tors agree by chance for our task? 

2.1 What Should Count as Agreement? 

Determining what should count as agreement is 
not only important for assessing inter-annotator 
agreement, but is also crucial for later evaluation 
of machine learning experiments. For example, 
for a given event with a known gold standard 
duration range from 1 hour to 4 hours, if a ma-
chine learning program outputs a duration of 3 
hours to 5 hours, how should we evaluate this 
result? 

In the literature on the kappa statistic, most au-
thors address only category data; some can han-
dle more general data, such as data in interval 
scales or ratio scales. However, none of the tech-
niques directly apply to our data, which are 
ranges of durations from a lower bound to an 
upper bound. 
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Figure 1: Overlap of Judgments of [10 minutes, 
30 minutes] and [10 minutes, 2 hours]. 
 

In fact, what coders were instructed to anno-
tate for a given event is not just a range, but a 
duration distribution for the event, where the 
area between the lower bound and the upper 
bound covers about 80% of the entire distribution 
area. Since it’s natural to assume the most likely 
duration for such distribution is its mean (aver-
age) duration, and the distribution flattens out 
toward the upper and lower bounds, we use the 
normal or Gaussian distribution to model our 
duration distributions. If the area between lower 
and upper bounds covers 80% of the entire dis-
tribution area, the bounds are each 1.28 standard 
deviations from the mean.  

Figure 1 shows the overlap in distributions for 
judgments of [10 minutes, 30 minutes] and [10 
minutes, 2 hours], and the overlap or agreement 
is 0.508706. 

2.2 Expected Agreement 

What is the probability that the annotators agree 
by chance for our task? The first quick response 
to this question may be 0, if we consider all the 
possible durations from 1 second to 1000 years 
or even positive infinity. 

However, not all the durations are equally pos-
sible. As in (Krippendorff, 1980), we assume 
there exists one global distribution for our task 
(i.e., the duration ranges for all the events), and 
“chance” annotations would be consistent with 
this distribution. Thus, the baseline will be an 
annotator who knows the global distribution and 
annotates in accordance with it, but does not read 
the specific article being annotated. Therefore, 
we must compute the global distribution of the 
durations, in particular, of their means and their 
widths. This will be of interest not only in deter-
mining expected agreement, but also in terms of  
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Figure 2: Distribution of Means of Annotated 
Durations. 

 
what it says about the genre of news articles and 
about fuzzy judgments in general. 

We first compute the distribution of the means 
of all the annotated durations. Its histogram is 
shown in Figure 2, where the horizontal axis 
represents the mean values in the natural loga-
rithmic scale and the vertical axis represents the 
number of annotated durations with that mean. 

There are two peaks in this distribution. One is 
from 5 to 7 in the natural logarithmic scale, 
which corresponds to about 1.5 minutes to 30 
minutes. The other is from 14 to 17 in the natural 
logarithmic scale, which corresponds to about 8 
days to 6 months. One could speculate that this 
bimodal distribution is because daily newspapers 
report short events that happened the day before 
and place them in the context of larger trends.  

We also compute the distribution of the widths 
(i.e., Xupper – Xlower) of all the annotated durations, 
and its histogram is shown in Figure 3, where the 
horizontal axis represents the width in the natural 
logarithmic scale and the vertical axis represents 
the number of annotated durations with that 
width. Note that it peaks at about a half order of 
magnitude (Hobbs and Kreinovich, 2001).  

Since the global distribution is determined by 
the above mean and width distributions, we can 
then compute the expected agreement, i.e., the 
probability that the annotators agree by chance, 
where the chance is actually based on this global 
distribution. 

Two different methods were used to compute 
the expected agreement (baseline), both yielding 
nearly equal results. These are described in detail 
in (Pan et al., 2006). For both, P(E) is about 0.15. 
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Figure 3: Distribution of Widths of Annotated 
Durations. 

3 Features 

In this section, we describe the lexical, syntactic, 
and semantic features that we considered in 
learning event durations. 

3.1 Local Context 

For a given event, the local context features in-
clude a window of n tokens to its left and n to-
kens to its right, as well as the event itself, for n 
= {0, 1, 2, 3}. The best n determined via cross 
validation turned out to be 0, i.e., the event itself 
with no local context. But we also present results 
for n = 2 in Section 4.3 to evaluate the utility of 
local context. 

A token can be a word or a punctuation mark. 
Punctuation marks are not removed, because they 
can be indicative features for learning event du-
rations. For example, the quotation mark is a 
good indication of quoted reporting events, and 
the duration of such events most likely lasts for 
seconds or minutes, depending on the length of 
the quoted content. However, there are also cases 
where quotation marks are used for other pur-
poses, such as emphasis of quoted words and 
titles of artistic works. 

For each token in the local context, including 
the event itself, three features are included: the 
original form of the token, its lemma (or root 
form), and its part-of-speech (POS) tag. The 
lemma of the token is extracted from parse trees 
generated by the CONTEX parser (Hermjakob 
and Mooney, 1997) which includes rich context 
information in parse trees, and the Brill tagger 
(Brill, 1992) is used for POS tagging. 

The context window doesn’t cross the bounda-
ries of sentences. When there are not enough to-
kens on either side of the event within the win-
dow, “NULL” is used for the feature values. 

Features Original Lemma POS 
Event signed sign VBD 
1token-after the the DT 
2token-after plan plan NN 
1token-before Friday Friday NNP 
2token-before on on IN 

Table 1: Local context features for the “signed” 
event in sentence (1) with n = 2. 
 

The local context features extracted for the 
“signed” event in sentence (1) is shown in Table 
1 (with a window size n = 2). The feature vector 
is [signed, sign, VBD, the, the, DT, plan, plan, 
NN, Friday, Friday, NNP, on, on, IN]. 

 
(1) The two presidents on Friday signed the 

plan. 

3.2 Syntactic Relations 

The information in the event’s syntactic envi-
ronment is very important in deciding the dura-
tions of events. For example, there is a difference 
in the durations of the “watch” events in the 
phrases “watch a movie” and “watch a bird fly”. 

For a given event, both the head of its subject 
and the head of its object are extracted from the 
parse trees generated by the CONTEX parser. 
Similarly to the local context features, for both 
the subject head and the object head, their origi-
nal form, lemma, and POS tags are extracted as 
features. When there is no subject or object for 
an event, “NULL” is used for the feature values. 

For the “signed” event in sentence (1), the 
head of its subject is “presidents” and the head of 
its object is “plan”. The extracted syntactic rela-
tion features are shown in Table 2, and the fea-
ture vector is [presidents, president, NNS, plan, 
plan, NN]. 

3.3 WordNet Hypernyms 

Events with the same hypernyms may have simi-
lar durations. For example, events “ask” and 
“talk” both have a direct WordNet (Miller, 1990) 
hypernym of “communicate”, and most of the 
time they do have very similar durations in the 
corpus. 

However, closely related events don’t always 
have the same direct hypernyms. For example, 
“see” has a direct hypernym of “perceive”, 
whereas “observe” needs two steps up through 
the hypernym hierarchy before reaching “per-
ceive”. Such correlation between events may be 
lost if only the direct hypernyms of the words are 
extracted. 
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Features Original Lemma POS 
Subject presidents president NNS 
Object plan plan NN 

Table 2: Syntactic relation features for the 
“signed” event in sentence (1). 
 
Feature 1-hyper 2-hyper 3-hyper 
Event write communicate interact 

Subject corporate 
executive executive adminis-

trator 
Object idea content cognition 
Table 3: WordNet hypernym features for the 
event (“signed”), its subject (“presidents”), and 
its object (“plan”) in sentence (1). 
 

It is useful to extract the hypernyms not only 
for the event itself, but also for the subject and 
object of the event. For example, events related 
to a group of people or an organization usually 
last longer than those involving individuals, and 
the hypernyms can help distinguish such con-
cepts. For example, “society” has a “group” hy-
pernym (2 steps up in the hierarchy), and 
“school” has an “organization” hypernym (3 
steps up). The direct hypernyms of nouns are 
always not general enough for such purpose, but 
a hypernym at too high a level can be too general 
to be useful. For our learning experiments, we 
extract the first 3 levels of hypernyms from 
WordNet. 

Hypernyms are only extracted for the events 
and their subjects and objects, not for the local 
context words. For each level of hypernyms in 
the hierarchy, it’s possible to have more than one 
hypernym, for example, “see” has two direct hy-
pernyms, “perceive” and “comprehend”. For a 
given word, it may also have more than one 
sense in WordNet. In such cases, as in (Gildea 
and Jurafsky, 2002), we only take the first sense 
of the word and the first hypernym listed for each 
level of the hierarchy. A word disambiguation 
module might improve the learning performance. 
But since the features we need are the hypernyms, 
not the word sense itself, even if the first word 
sense is not the correct one, its hypernyms can 
still be good enough in many cases. For example, 
in one news article, the word “controller” refers 
to an air traffic controller, which corresponds to 
the second sense in WordNet, but its first sense 
(business controller) has the same hypernym of 
“person” (3 levels up) as the second sense (direct 
hypernym). Since we take the first 3 levels of 
hypernyms, the correct hypernym is still ex-
tracted. 

 

P(A) P(E) Kappa 
0.528 0.740 0.877 0.500 0.755 

Table 4: Inter-Annotator Agreement for Binary 
Event Durations. 

 
When there are less than 3 levels of hy-

pernyms for a given word, its hypernym on the 
previous level is used. When there is no hy-
pernym for a given word (e.g., “go”), the word 
itself will be used as its hypernyms. Since 
WordNet only provides hypernyms for nouns 
and verbs, “NULL” is used for the feature values 
for a word that is not a noun or a verb.  

For the “signed” event in sentence (1), the ex-
tracted WordNet hypernym features for the event 
(“signed”), its subject (“presidents”), and its ob-
ject (“plan”) are shown in Table 3, and the fea-
ture vector is [write, communicate, interact, cor-
porate_executive, executive, administrator, idea, 
content, cognition]. 

4 Experiments 

The distribution of the means of the annotated 
durations in Figure 2 is bimodal, dividing the 
events into those that take less than a day and 
those that take more than a day. Thus, in our first 
machine learning experiment, we have tried to 
learn this coarse-grained event duration informa-
tion as a binary classification task. 

4.1 Inter-Annotator Agreement, Baseline, 
and Upper Bound 

Before evaluating the performance of different 
learning algorithms, the inter-annotator agree-
ment, the baseline and the upper bound for the 
learning task are assessed first.  

Table 4 shows the inter-annotator agreement 
results among 3 annotators for binary event dura-
tions. The experiments were conducted on the 
same data sets as in (Pan et al., 2006). Two 
kappa values are reported with different ways of 
measuring expected agreement (P(E)), i.e., 
whether or not the annotators have prior knowl-
edge of the global distribution of the task. 

The human agreement before reading the 
guidelines (0.877) is a good estimate of the upper 
bound performance for this binary classification 
task. The baseline for the learning task is always 
taking the most probable class. Since 59.0% of 
the total data is “long” events, the baseline per-
formance is 59.0%. 
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Class Algor. Prec. Recall F-Score
SVM 0.707 0.606 0.653 
NB 0.567 0.768 0.652 Short 
C4.5 0.571 0.600 0.585 
SVM 0.793 0.857 0.823 
NB 0.834 0.665 0.740 Long 

 C4.5 0.765 0.743 0.754 
Table 5: Test Performance of Three Algorithms. 

4.2 Data 

The original annotated data can be straightfor-
wardly transformed for this binary classification 
task. For each event annotation, the most likely 
(mean) duration is calculated first by averaging 
(the logs of) its lower and upper bound durations. 
If its most likely (mean) duration is less than a 
day (about 11.4 in the natural logarithmic scale), 
it is assigned to the “short” event class, otherwise 
it is assigned to the “long” event class. (Note that 
these labels are strictly a convenience and not an 
analysis of the meanings of “short” and “long”.) 

We divide the total annotated non-WSJ data 
(2132 event instances) into two data sets: a train-
ing data set with 1705 event instances (about 
80% of the total non-WSJ data) and a held-out 
test data set with 427 event instances (about 20% 
of the total non-WSJ data). The WSJ data (156 
event instances) is kept for further test purposes 
(see Section 4.4). 

4.3 Experimental Results (non-WSJ) 

Learning Algorithms. Three supervised learn-
ing algorithms were evaluated for our binary 
classification task, namely, Support Vector Ma-
chines (SVM) (Vapnik, 1995), Naïve Bayes 
(NB) (Duda and Hart, 1973), and Decision Trees 
C4.5 (Quinlan, 1993). The Weka (Witten and 
Frank, 2005) machine learning package was used 
for the implementation of these learning algo-
rithms. Linear kernel is used for SVM in our ex-
periments. 

Each event instance has a total of 18 feature 
values, as described in Section 3, for the event 
only condition, and 30 feature values for the lo-
cal context condition when n = 2. For SVM and 
C4.5, all features are converted into binary fea-
tures (6665 and 12502 features). 

Results. 10-fold cross validation was used to 
train the learning models, which were then tested 
on the unseen held-out test set, and the perform-
ance (including the precision, recall, and F-score1  

                                                 
1 F-score is computed as the harmonic mean of the preci-
sion and recall: F = (2*Prec*Rec)/(Prec+Rec). 

Algorithm Precision  
Baseline 59.0% 
C4.5 69.1% 
NB 70.3% 
SVM 76.6% 
Human Agreement 87.7% 

Table 6: Overall Test Precision on non-WSJ 
Data. 

 
for each class) of the three learning algorithms is 
shown in Table 5. The significant measure is 
overall precision, and this is shown for the three 
algorithms in Table 6, together with human a-
greement (the upper bound of the learning task) 
and the baseline. 

We can see that among all three learning algo-
rithms, SVM achieves the best F-score for each 
class and also the best overall precision (76.6%). 
Compared with the baseline (59.0%) and human 
agreement (87.7%), this level of performance is 
very encouraging, especially as the learning is 
from such limited training data. 

Feature Evaluation. The best performing 
learning algorithm, SVM, was then used to ex-
amine the utility of combinations of four differ-
ent feature sets (i.e., event, local context, syntac-
tic, and WordNet hypernym features). The de-
tailed comparison is shown in Table 7.  

We can see that most of the performance 
comes from event word or phrase itself. A sig-
nificant improvement above that is due to the 
addition of information about the subject and 
object. Local context does not help and in fact 
may hurt, and hypernym information also does 
not seem to help2. It is of interest that the most 
important information is that from the predicate 
and arguments describing the event, as our lin-
guistic intuitions would lead us to expect. 

4.4 Test on WSJ Data 

Section 4.3 shows the experimental results with 
the learned model trained and tested on the data 
with the same genre, i.e., non-WSJ articles. 
In order to evaluate whether the learned model 
can perform well on data from different news 
genres, we tested it on the unseen WSJ data (156 
event instances). The performance (including the 
precision, recall, and F-score for each class) is 
shown in Table 8. The precision (75.0%) is very 
close to the test performance on the non-WSJ  

                                                 
2 In the “Syn+Hyper” cases, the learning algorithm with and 
without local context gives identical results, probably be-
cause the other features dominate. 
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Event Only (n = 0) Event Only + Syntactic Event + Syn + Hyper Class Prec. Rec. F Prec. Rec. F Prec. Rec. F 
Short 0.742 0.465  0.571 0.758 0.587 0.662 0.707    0.606 0.653 
Long 0.748 0.908 0.821 0.792 0.893 0.839 0.793 0.857 0.823 
Overall Prec. 74.7% 78.2% 76.6% 
 Local Context (n = 2) Context + Syntactic Context + Syn + Hyper 
Short 0.672 0.568 0.615 0.710 0.600    0.650 0.707    0.606 0.653 
Long 0.774 0.842 0.806 0.791 0.860 0.824 0.793 0.857 0.823 
Overall Prec. 74.2% 76.6% 76.6% 

Table 7: Feature Evaluation with Different Feature Sets using SVM. 
 

Class Prec. Rec. F 
Short 0.692   0.610 0.649
Long 0.779   0.835 0.806
Overall Prec. 75.0% 
Table 8: Test Performance on WSJ data. 

 
P(A) P(E) Kappa 

0.151 0.762 0.798 0.143 0.764 
Table 9: Inter-Annotator Agreement for Most 
Likely Temporal Unit. 
 
data, and indicates the significant generalization 
capacity of the learned model. 

5 Learning the Most Likely Temporal 
Unit 

These encouraging results have prompted us to 
try to learn more fine-grained event duration in-
formation, viz., the most likely temporal units of 
event durations (cf. (Rieger 1974)’s ORDER-
HOURS, ORDERDAYS). 

For each original event annotation, we can ob-
tain the most likely (mean) duration by averaging 
its lower and upper bound durations, and assign-
ing it to one of seven classes (i.e., second, min-
ute, hour, day, week, month, and year) based on 
the temporal unit of its most likely duration.  

However, human agreement on this more fine-
grained task is low (44.4%). Based on this obser-
vation, instead of evaluating the exact agreement 
between annotators, an “approximate agreement” 
is computed for the most likely temporal unit of 
events. In “approximate agreement”, temporal 
units are considered to match if they are the same 
temporal unit or an adjacent one. For example, 
“second” and “minute” match, but “minute” and 
“day” do not. 

Some preliminary experiments have been con-
ducted for learning this multi-classification task. 
The same data sets as in the binary classification 
task were used. The only difference is that the 
class for each instance is now labeled with one 

Algorithm Precision  
Baseline 51.5% 
C4.5 56.4% 
NB 65.8% 
SVM 67.9% 
Human Agreement 79.8% 
Table 10: Overall Test Precisions. 

 
of the seven temporal unit classes. 

The baseline for this multi-classification task 
is always taking the temporal unit which with its 
two neighbors spans the greatest amount of data. 
Since the “week”, “month”, and “year” classes 
together take up largest portion (51.5%) of the 
data, the baseline is always taking the “month” 
class, where both “week” and “year” are also 
considered a match. Table 9 shows the inter-
annotator agreement results for most likely tem-
poral unit when using “approximate agreement”. 
Human agreement (the upper bound) for this 
learning task increases from 44.4% to 79.8%. 

10-fold cross validation was also used to train 
the learning models, which were then tested on 
the unseen held-out test set. The performance of 
the three algorithms is shown in Table 10. The 
best performing learning algorithm is again SVM 
with 67.9% test precision. Compared with the 
baseline (51.5%) and human agreement (79.8%), 
this again is a very promising result, especially 
for a multi-classification task with such limited 
training data. It is reasonable to expect that when 
more annotated data becomes available, the 
learning algorithm will achieve higher perform-
ance when learning this and more fine-grained 
event duration information. 

Although the coarse-grained duration informa-
tion may look too coarse to be useful, computers 
have no idea at all whether a meeting event takes 
seconds or centuries, so even coarse-grained es-
timates would give it a useful rough sense of how 
long each event may take. More fine-grained du-
ration information is definitely more desirable 
for temporal reasoning tasks. But coarse-grained 
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durations to a level of temporal units can already 
be very useful. 

6 Conclusion 

In the research described in this paper, we have 
addressed a problem -- extracting information 
about event durations encoded in event descrip-
tions -- that has heretofore received very little 
attention in the field.  It is information that can 
have a substantial impact on applications where 
the temporal placement of events is important.  
Moreover, it is representative of a set of prob-
lems – making use of the vague information in 
text – that has largely eluded empirical ap-
proaches in the past.  In (Pan et al., 2006), we 
explicate the linguistic categories of the phenom-
ena that give rise to grossly discrepant judgments 
among annotators, and give guidelines on resolv-
ing these discrepancies.  In the present paper, we 
describe a method for measuring inter-annotator 
agreement when the judgments are intervals on a 
scale; this should extend from time to other sca-
lar judgments.  Inter-annotator agreement is too 
low on fine-grained judgments.  However, for the 
coarse-grained judgments of more than or less 
than a day, and of approximate agreement on 
temporal unit, human agreement is acceptably 
high.  For these cases, we have shown that ma-
chine-learning techniques achieve impressive 
results.   
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Abstract

In this paper we define a novel similarity
measure between examples of textual en-
tailments and we use it as a kernel func-
tion in Support Vector Machines (SVMs).
This allows us to automatically learn the
rewrite rulesthat describe a non trivial set
of entailment cases. The experiments with
the data sets of the RTE 2005 challenge
show an improvement of 4.4% over the
state-of-the-art methods.

1 Introduction

Recently, textual entailment recognition has been
receiving a lot of attention. The main reason is
that the understanding of the basic entailment pro-
cesses will allow us to model more accurate se-
mantic theories of natural languages (Chierchia
and McConnell-Ginet, 2001) and design important
applications (Dagan and Glickman, 2004), e.g.,
Question Answering and Information Extraction.

However, previous work (e.g., (Zaenen et al.,
2005)) suggests that determining whether or not
a textT entails a hypothesisH is quite complex
even when all the needed information is explic-
itly asserted. For example, the sentenceT1: “At
the end of the year, all solid companies pay divi-
dends.” entails the hypothesisH1: “At the end of
the year, all solid insurancecompanies pay divi-
dends.” but it does not entail the hypothesisH2:
“At the end of the year, all solid companies pay
cashdividends.”

Although these implications are uncontrover-
sial, their automatic recognition is complex if we
rely on models based on lexical distance (or sim-
ilarity) between hypothesis and text, e.g., (Corley
and Mihalcea, 2005). Indeed, according to such

approaches, the hypothesesH1 and H2 are very
similar and seem to be similarly related toT1. This
suggests that we should study the properties and
differences of such two examples (negative and
positive) to derive more accurate entailment mod-
els. For example, if we consider the following en-
tailment:

T3 ⇒ H3?
T3 “All wild animals eat plants that have

scientifically proven medicinal proper-
ties.”

H3 “All wild mountain animals eat plants
that have scientifically proven medici-
nal properties.”

we note thatT3 is structurally (and somehow lex-
ically similar) toT1 andH3 is more similar toH1

than toH2. Thus, fromT1 ⇒ H1 we may extract
rules to derive thatT3 ⇒ H3.

The above example suggests that we should rely
not only on aintra-pair similarity betweenT and
H but also on across-pairsimilarity between two
pairs(T ′,H ′) and(T ′′,H ′′). The latter similarity
measure along with a set of annotated examples al-
lows a learning algorithm to automatically derive
syntactic and lexical rules that can solve complex
entailment cases.

In this paper, we define a new cross-pair similar-
ity measure based on text and hypothesis syntactic
trees and we use such similarity with traditional
intra-pair similarities to define a novel semantic
kernel function. We experimented with such ker-
nel using Support Vector Machines (Vapnik, 1995)
on the test tests of the Recognizing Textual En-
tailment (RTE) challenges (Dagan et al., 2005;
Bar Haim et al., 2006). The comparative results
show that (a) we have designed an effective way
to automatically learn entailment rules from ex-
amples and (b) our approach is highly accurate and
exceeds the accuracy of the current state-of-the-art
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models (Glickman et al., 2005; Bayer et al., 2005)
by about 4.4% (i.e. 63% vs. 58.6%) on the RTE 1
test set (Dagan et al., 2005).

In the remainder of this paper, Sec. 2 illustrates
the related work, Sec. 3 introduces the complexity
of learning entailments from examples, Sec. 4 de-
scribes our models, Sec. 6 shows the experimental
results and finally Sec. 7 derives the conclusions.

2 Related work

Although the textual entailment recognition prob-
lem is not new, most of the automatic approaches
have been proposed only recently. This has been
mainly due to the RTE challenge events (Dagan et
al., 2005; Bar Haim et al., 2006). In the following
we report some of such researches.

A first class of methods defines measures of
the distance or similarity betweenT and H ei-
ther assuming the independence between words
(Corley and Mihalcea, 2005; Glickman et al.,
2005) in a bag-of-word fashion or exploiting syn-
tactic interpretations (Kouylekov and Magnini,
2005). A pair(T,H) is then in entailment when
sim(T,H) > α. These approaches can hardly
determine whether the entailment holds in the ex-
amples of the previous section. From the point of
view of bag-of-word methods, the pairs(T1,H1)
and (T1,H2) have both the same intra-pair simi-
larity since the sentences ofT1 andH1 as well as
those ofT1 andH2 differ by a noun,insuranceand
cash, respectively. At syntactic level, also, we can-
not capture the required information as such nouns
are both noun modifiers:insurancemodifiescom-
paniesandcashmodifiesdividends.

A second class of methods can give a solution
to the previous problem. These methods generally
combine a similarity measure with a set of possi-
ble transformationsT applied over syntactic and
semantic interpretations. The entailment between
T andH is detected when there is a transformation
r ∈ T so thatsim(r(T ),H) > α. These trans-
formations are logical rules in (Bos and Markert,
2005) or sequences of allowedrewrite rulesin (de
Salvo Braz et al., 2005). The disadvantage is that
such rules have to be manually designed. More-
over, they generally model better positive implica-
tions than negative ones and they do not consider
errors in syntactic parsing and semantic analysis.

3 Challenges in learning from examples

In the introductory section, we have shown that,
to carry out automatic learning from examples, we

need to define a cross-pair similarity measure. Its
definition is not straightforward as it should detect
whether two pairs(T ′,H ′) and (T ′′,H ′′) realize
the samerewrite rules. This measure should con-
sider pairs similar when: (1)T ′ andH ′ are struc-
turally similar toT ′′ andH ′′, respectively and (2)
the lexical relations within the pair(T ′,H ′) are
compatible with those in(T ′′,H ′′). Typically, T

andH show a certain degree of overlapping, thus,
lexical relations (e.g., between the same words)
determineword movementsfrom T to H (or vice
versa). This is important to model the syntac-
tic/lexical similarity between example pairs. In-
deed, if we encode such movements in the syntac-
tic parse trees of texts and hypotheses, we can use
interesting similarity measures defined for syntac-
tic parsing, e.g., the tree kernel devised in (Collins
and Duffy, 2002).

To consider structural and lexical relation simi-
larity, we augment syntactic trees withplacehold-
erswhich identify linked words. More in detail:
- We detect links between wordswt in T that are
equal, similar, or semantically dependent on words
wh in H. We callanchorsthe pairs(wt, wh) and
we associate them withplaceholders. For exam-
ple, in Fig. 1, the placeholder2” indicates the
(companies,companies)anchor betweenT1 and
H1. This allows us to derive the word movements
between text and hypothesis.
- We align the trees of the two textsT ′ andT ′′ as
well as the tree of the two hypothesesH ′ andH ′′

by considering theword movements. We find a
correct mapping between placeholders of the two
hypothesisH ′ andH ′′ and apply it to the tree of
H ′′ to substitute its placeholders. The same map-
ping is used to substitute the placeholders inT ′′.
This mapping should maximize the structuralsim-
ilarity between the four trees by considering that
placeholders augment the node labels. Hence, the
cross-pair similarity computation is reduced to the
tree similarity computation.

The above steps define an effective cross-pair
similarity that can be applied to the example in
Fig. 1: T1 andT3 share the subtree in bold start-
ing with S → NP VP. The lexicals inT3 and H3

are quite different from thoseT1 andH1, but we
can rely on the structural properties expressed by
their bold subtrees. These are more similar to the
subtrees ofT1 andH1 than those ofT1 andH2,
respectively. Indeed,H1 and H3 share the pro-
ductionNP → DT JJ NN NNS while H2 andH3 do
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Figure 1: Relations between(T1,H1), (T1,H2), and(T3,H3).

not. Consequently, to decide if (T3,H3) is a valid
entailment, we should rely on the decision made
for (T1,H1). Note also that the dashed lines con-
necting placeholders of two texts (hypotheses) in-
dicate structurally equivalent nodes. For instance,
the dashed line between3 and b links the main
verbs both in the textsT1 andT3 and in the hy-
pothesesH1 andH3. After substituting3 with b
and 2 with a, we can detect ifT1 andT3 share
the bold subtreeS → NP2 VP 3 . As such subtree
is shared also byH1 andH3, the words within the
pair (T1,H1) are correlated similarly to the words
in (T3,H3).

The above example emphasizes that we need
to derive thebest mapping between placeholder
sets. It can be obtained as follows: letA′ andA′′

be the placeholders of(T ′,H ′) and(T ′′,H ′′), re-
spectively, without loss of generality, we consider
|A′| ≥ |A′′| and we align a subset ofA′ toA′′. The
best alignment is the one that maximizes the syn-

tactic and lexical overlapping of the two subtrees
induced by the aligned set of anchors.

More precisely, letC be the set of all bijective
mappings froma′ ⊆ A′ : |a′| = |A′′| to A′′, an
elementc ∈ C is a substitution function. We
define as the best alignment the one determined
by cmax = argmaxc∈C(KT (t(H ′, c), t(H ′′, i))+

KT (t(T ′, c), t(T ′′, i)) (1)

where (a)t(S, c) returns the syntactic tree of the
hypothesis (text)S with placeholders replaced by
means of the substitutionc, (b) i is the identity
substitution and (c)KT (t1, t2) is a function that
measures the similarity between the two treest1
and t2 (for more details see Sec. 4.2). For ex-
ample, thecmax between(T1,H1) and (T3,H3)
is {( 2’ , a’ ), ( 2” , a” ), ( 3 , b), ( 4 , c)}.

4 Similarity Models
In this section we describe how anchors are found
at the level of a single pair(T,H) (Sec. 4.1). The
anchoring process gives the direct possibility of
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implementing an inter-pair similarity that can be
used as a baseline approach or in combination with
the cross-pair similarity. This latter will be imple-
mented with tree kernel functions over syntactic
structures (Sec. 4.2).

4.1 Anchoring and Lexical Similarity
The algorithm that we design to find the anchors
is based on similarity functions between words or
more complex expressions. Our approach is in line
with many other researches (e.g., (Corley and Mi-
halcea, 2005; Glickman et al., 2005)).

Given the set of content words (verbs, nouns,
adjectives, and adverbs)WT andWH of the two
sentencesT andH, respectively, the set of anchors
A ⊂ WT ×WH is built using a similarity measure
between two wordssimw(wt, wh). Each element
wh ∈ WH will be part of a pair(wt, wh) ∈ A if:
1) simw(wt, wh) 6= 0
2) simw(wt, wh) = maxw′

t∈WT
simw(w′

t, wh)
According to these properties, elements inWH

can participate in more than one anchor and con-
versely more than one element inWH can be
linked to a single elementw ∈ WT .

The similaritysimw(wt, wh) can be defined us-
ing different indicators and resources. First of all,
two words are maximally similar if these have the
same surface formwt = wh. Second, we can use
one of the WordNet (Miller, 1995) similarities in-
dicated withd(lw, lw′) (in line with what was done
in (Corley and Mihalcea, 2005)) and different rela-
tion between words such as the lexical entailment
between verbs (Ent) and derivationally relation
between words (Der). Finally, we use the edit dis-
tance measurelev(wt, wh) to capture the similar-
ity between words that are missed by the previous
analysis for misspelling errors or for the lack of
derivationally forms not coded in WordNet.

As result, given the syntactic category
cw ∈ {noun, verb, adjective, adverb} and
the lemmatized formlw of a word w, the simi-
larity measure between two wordsw and w′ is
defined as follows:

simw(w, w
′
) =



































1 if w = w′∨
lw = l

w′ ∧ cw = c
w′∨

((lw, cw), (l
w′ , c

w′ )) ∈ Ent∨
((lw, cw), (l

w′ , c
w′ )) ∈ Der∨

lev(w, w′) = 1
d(lw, l

w′ ) if cw = c
w′ ∧ d(lw, l

w′ ) > 0.2
0 otherwise

(2)

It is worth noticing that, the above measure is not
a puresimilarity measure as it includes the entail-
ment relation that does not represent synonymy or
similarity between verbs. To emphasize the contri-
bution of each used resource, in the experimental

section, we will compare Eq. 2 with some versions
that exclude some word relations.

The above word similarity measure can be used
to compute the similarity betweenT and H. In
line with (Corley and Mihalcea, 2005), we define
it as:

s1(T, H) =

∑

(wt,wh)∈A

simw(wt, wh) × idf(wh)

∑

wh∈WH

idf(wh)
(3)

whereidf(w) is the inverse document frequency
of the word w. For sake of comparison, we
consider also the corresponding more classical
version that does not apply the inverse document
frequency

s2(T, H) =
∑

(wt,wh)∈A

simw(wt, wh)/|WH | (4)

¿From the above intra-pair similarities,s1

and s2, we can obtain the baselinecross-pair
similarities based on only lexical information:

Ki((T
′, H ′), (T ′′, H ′′)) = si(T

′, H ′) × si(T
′′, H ′′), (5)

wherei ∈ {1, 2}. In the next section we define a
novel cross-pair similarity that takes into account
syntactic evidence by means of tree kernel func-
tions.

4.2 Cross-pair syntactic kernels
Section 3 has shown that to measure the syn-
tactic similarity between two pairs,(T ′,H ′)
and (T ′′,H ′′), we should capture the number of
common subtrees between texts and hypotheses
that share the same anchoring scheme. The best
alignment between anchor sets, i.e. the best
substitutioncmax, can be found with Eq. 1. As the
corresponding maximum quantifies thealignment
degree, we could define a cross-pair similarity as
follows:

Ks((T
′, H ′), (T ′′, H ′′)) = max

c∈C

(

KT (t(H ′, c), t(H ′′, i))

+KT (t(T ′, c), t(T ′′, i)
)

, (6)

where asKT (t1, t2) we use the tree kernel func-
tion defined in (Collins and Duffy, 2002). This
evaluates the number of subtrees shared byt1 and
t2, thus defining an implicit substructure space.

Formally, given a subtree spaceF =
{f1, f2, . . . , f|F|}, the indicator functionIi(n)
is equal to 1 if the targetfi is rooted at
node n and equal to 0 otherwise. A tree-
kernel function overt1 and t2 is KT (t1, t2) =
∑

n1∈Nt1

∑

n2∈Nt2
∆(n1, n2), whereNt1 andNt2

are the sets of thet1’s andt2’s nodes, respectively.
In turn ∆(n1, n2) =

∑|F|
i=1 λl(fi)Ii(n1)Ii(n2),
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where0 ≤ λ ≤ 1 andl(fi) is the number of lev-
els of the subtreefi. Thusλl(fi) assigns a lower
weight to larger fragments. Whenλ = 1, ∆ is
equal to the number of common fragments rooted
at nodesn1 andn2. As described in (Collins and
Duffy, 2002), ∆ can be computed inO(|Nt1 | ×
|Nt2 |).

TheKT function has been proven to be a valid
kernel, i.e. its associatedGrammatrix is positive-
semidefinite. Some basic operations on kernel
functions, e.g. the sum, are closed with respect
to the set of valid kernels. Thus, if the maximum
held such property, Eq. 6 would be a valid ker-
nel and we could use it in kernel based machines
like SVMs. Unfortunately, a counterexample il-
lustrated in (Boughorbel et al., 2004) shows that
themaxfunction does not produce valid kernels in
general.

However, we observe that: (1)
Ks((T

′,H ′), (T ′′,H ′′)) is a symmetric func-
tion since the set of transformationC are always
computed with respect to the pair that has the
largest anchor set; (2) in (Haasdonk, 2005), it
is shown that when kernel functions are not
positive semidefinite, SVMs still solve a data
separation problem in pseudo Euclidean spaces.
The drawback is that the solution may be only
a local optimum. Therefore, we can experiment
Eq. 6 with SVMs and observe if the empirical
results are satisfactory. Section 6 shows that the
solutions found by Eq. 6 produce accuracy higher
than those evaluated on previous automatic textual
entailment recognition approaches.

5 Refining cross-pair syntactic similarity

In the previous section we have defined the intra
and the cross pair similarity. The former does not
show relevant implementation issues whereas the
latter should be optimized to favor its applicability
with SVMs. The Eq. 6 improvement depends on
three factors: (1) its computation complexity; (2)
a correct marking of tree nodes with placeholders;
and, (3) the pruning of irrelevant information in
large syntactic trees.

5.1 Controlling the computational cost

The computational cost of cross-pair similarity be-
tween two tree pairs (Eq. 6) depends on the size of
C. This is combinatorial in the size ofA′ andA′′,
i.e. |C| = (|A′|− |A′′|)!|A′′|! if |A′| ≥ |A′′|. Thus
we should keep the sizes ofA′ andA′′ reasonably
small.

To reduce the number of placeholders, we con-
sider the notion ofchunkdefined in (Abney, 1996),
i.e.,not recursive kernelsof noun, verb, adjective,
and adverb phrases. When placeholders are in a
single chunk both in the text and hypothesis we
assign them the same name. For example, Fig. 1
shows the placeholders2’ and 2” that are substi-
tuted by the placeholder2 . The placeholder re-
duction procedure also gives the possibility of re-
solving the ambiguity still present in the anchor
setA (see Sec. 4.1). A way to eliminate the am-
biguous anchors is to select the ones that reduce
the final number of placeholders.

5.2 Augmenting tree nodes with placeholders

Anchors are mainly used to extract relevant syn-
tactic subtrees between pairs of text and hypoth-
esis. We also use them to characterize the syn-
tactic information expressed by such subtrees. In-
deed, Eq. 6 depends on the number of common
subtrees between two pairs. Such subtrees are
matched when they have the same node labels.
Thus, to keep track of the argument movements,
we augment the node labels with placeholders.
The larger number of placeholders two hypothe-
ses (texts) match the larger the number of their
common substructures is (i.e. higher similarity).
Thus, it is really important where placeholders are
inserted.

For example, the sentences in the pair(T1,H1)
have related subjects2 and related main verbs
3 . The same occurs in the sentences of the pair
(T3,H3), respectivelya and b . To obtain such
node marking, the placeholders are propagated in
the syntactic tree, from the leaves1 to the target
nodes according to the head of constituents. The
example of Fig. 1 shows that the placeholder0

climbs up to the node governing all the NPs.

5.3 Pruning irrelevant information in large
text trees

Often only a portion of the parse trees is relevant
to detect entailments. For instance, let us consider
the following pair from the RTE 2005 corpus:

1To increase the generalization capacity of the tree ker-
nel function we choose not to assign any placeholder to the
leaves.
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T ⇒ H (id: 929)

T “Ron Gainsford, chief executive of the
TSI, said: ”It is a major concern to us
that parents could be unwittingly expos-
ing their children to the risk of sun dam-
age, thinking they are better protected
than they actually are.”

H “Ron Gainsford is the chief executive of
the TSI.”

Only the bold part ofT supports the implication;
the rest is useless and also misleading: if we used
it to compute the similarity it would reduce the im-
portance of the relevant part. Moreover, as we nor-
malize the syntactic tree kernel (KT ) with respect
to the size of the two trees, we need to focus only
on the part relevant to the implication.

The anchored leaves are good indicators of rel-
evant parts but also some other parts may be very
relevant. For example, the function wordnotplays
an important role. Another example is given by the
word insurancein H1 and mountain in H3 (see
Fig. 1). They support the implicationT1 ⇒ H1

andT1 ⇒ H3 as well ascashsupportsT1 ; H2.
By removing these words and the related struc-
tures, we cannot determine the correct implica-
tions of the first two and the incorrect implication
of the second one. Thus, we keep all the words that
are immediately related to relevant constituents.

The reduction procedure can be formally ex-
pressed as follows: given a syntactic treet, the set
of its nodesN(t), and a set of anchors, we build
a treet′ with all the nodesN ′ that are anchors or
ancestors of any anchor. Moreover, we add tot′

the leaf nodes of the original treet that are direct
children of the nodes inN ′. We apply such proce-
dure only to the syntactic trees of texts before the
computation of the kernel function.

6 Experimental investigation
The aim of the experiments is twofold: we show
that (a) entailment recognition rules can be learned
from examples and (b) our kernel functions over
syntactic structures are effective to derive syntac-
tic properties. The above goals can be achieved by
comparing the different intra and cross pair simi-
larity measures.

6.1 Experimental settings
For the experiments, we used the Recognizing
Textual Entailment Challenge data sets, which we
name as follows:
- D1, T1 andD2, T2, are the development and
the test sets of the first (Dagan et al., 2005) and
second (Bar Haim et al., 2006) challenges, respec-
tively. D1 contains 567 examples whereasT1,

D2 andT2 have all the same size, i.e. 800 train-
ing/testing instances. The positive examples con-
stitute the 50% of the data.
- ALL is the union ofD1, D2, andT1, which we
also split in 70%-30%. This set is useful to test if
we can learn entailments from the data prepared in
the two different challenges.
- D2(50%)′ andD2(50%)′′ is a random split of
D2. It is possible that the data sets of the two com-
petitions are quite different thus we created this
homogeneoussplit.

We also used the following resources:
- The Charniak parser (Charniak, 2000) and the
morpha lemmatiser (Minnen et al., 2001) to carry
out the syntactic and morphological analysis.
- WordNet 2.0 (Miller, 1995) to extract both the
verbs in entailment,Ent set, and the derivation-
ally related words,Der set.
- The wn::similarity package (Pedersen et
al., 2004) to compute the Jiang&Conrath (J&C)
distance (Jiang and Conrath, 1997) as in (Corley
and Mihalcea, 2005). This is one of the best fig-
ure method which provides a similarity score in
the [0, 1] interval. We used it to implement the
d(lw, lw′) function.
- A selected portion of the British National Cor-
pus2 to compute the inverse document frequency
(idf ). We assigned the maximumidf to words not
found in the BNC.
- SVM-light-TK3 (Moschitti, 2006) which en-
codes the basic tree kernel function,KT , in SVM-
light (Joachims, 1999). We used such software
to implementKs (Eq. 6), K1, K2 (Eq. 5) and
Ks + Ki kernels. The latter combines our new
kernel with traditional approaches (i ∈ {1, 2}).

6.2 Results and analysis
Table 1 reports the results of different similarity
kernels on the different training and test splits de-
scribed in the previous section. The table is orga-
nized as follows:

The first 5 rows (Experiment settings) report the
intra-pair similarity measures defined in Section
4.1, the 6th row refers to only theidf similarity
metric whereas the following two rows report the
cross-pair similarity carried out with Eq. 6 with
(Synt Trees with placeholders) and without (Only
Synt Trees) augmenting the trees with placehold-
ers, respectively. Each column in theExperiment

2http://www.natcorp.ox.ac.uk/
3SVM-light-TK is available athttp://ai-nlp.info

.uniroma2.it/moschitti/
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Experiment Settings
w = w′ ∨ lw = l

w′ ∧ cw = c
w′

√ √ √ √ √ √ √ √

cw = c
w′ ∧ d(lw, l

w′ ) > 0.2
√ √ √ √ √ √

((lw , cw), (l
w′ , c

w′ )) ∈ Der
√ √ √ √

((lw , cw), (l
w′ , c

w′ )) ∈ Ent
√ √ √ √

lev(w, w′) = 1
√ √ √

idf
√ √ √ √ √ √

Only Synt Trees
√

Synt Trees with placeholders
√

Datasets
“Train:D1-Test:T1” 0.5388 0.5813 0.5500 0.5788 0.5900 0.5888 0.6213 0.6300
“Train:T1-Test:D1” 0.5714 0.5538 0.5767 0.5450 0.5591 0.5644 0.5732 0.5838
“Train:D2(50%)′-Test:D2(50%)′′” 0.6034 0.5961 0.6083 0.6010 0.6083 0.6083 0.6156 0.6350
“Train:D2(50%)′′ -Test:D2(50%)′” 0.6452 0.6375 0.6427 0.6350 0.6324 0.6272 0.5861 0.6607
“Train:D2-Test:T2” 0.6000 0.5950 0.6025 0.6050 0.6050 0.6038 0.6238 0.6388
Mean 0.5918 0.5927 0.5960 0.5930 0.5990 0.5985 0.6040 0.6297

(± 0.0396 ) (± 0.0303 ) (± 0.0349 ) (± 0.0335 ) (± 0.0270 ) (± 0.0235 ) (± 0.0229 ) (± 0.0282 )
“Train:ALL(70%)-Test:ALL(30%)” 0.5902 0.6024 0.6009 - 0.6131 0.6193 0.6086 0.6376
“Train:ALL-Test:T2” 0.5863 0.5975 0.5975 0.6038 - - 0.6213 0.6250

Table 1:Experimental results of the different methods over different test settings

settingsindicates a different intra-pair similarity
measure built by means of a combination of basic
similarity approaches. These are specified with the
check sign

√
. For example, Column 5 refers to a

model using: the surface word form similarity, the
d(lw, lw′) similarity and theidf .

The next 5 rows show the accuracy on the data
sets and splits used for the experiments and the
next row reports the average and Std. Dev. over
the previous 5 results. Finally, the last two rows
report the accuracy on ALL dataset split in 70/30%
and on the whole ALL dataset used for training
and T2 for testing.

¿From the table we note the following aspects:
- First, the lexical-based distance kernelsK1 and
K2 (Eq. 5) show accuracy significantly higher than
the random baseline, i.e. 50%. In all the datasets
(except for the first one), thesimw(T,H) simi-
larity based on the lexical overlap (first column)
provides an accuracy essentially similar to the best
lexical-based distance method.
- Second, the dataset “Train:D1-Test:T1” allows
us to compare our models with the ones of the first
RTE challenge (Dagan et al., 2005). The accuracy
reported for the best systems, i.e. 58.6% (Glick-
man et al., 2005; Bayer et al., 2005), is not signif-
icantly different from the result obtained withK1

that uses theidf .
- Third, the dramatic improvement observed in
(Corley and Mihalcea, 2005) on the dataset
“Train:D1-Test:T1” is given by theidf rather than
the use of the J&C similarity (second vs. third
columns). The use of J&C with theidf decreases
the accuracy of theidf alone.
- Next, our approach (last column) is significantly
better than all the other methods as it provides the
best result for each combination of training and
test sets. On the “Train:D1-Test:T1” test set, it

exceeds the accuracy of the current state-of-the-
art models (Glickman et al., 2005; Bayer et al.,
2005) by about 4.4 absolute percent points (63%
vs. 58.6%) and 4% over our best lexical simi-
larity measure. By comparing the average on all
datasets, our system improves on all the methods
by at least 3 absolute percent points.
- Finally, the accuracy produced bySynt Trees with
placeholdersis higher than the one obtained with
Only Synt Trees. Thus, the use of placeholders
is fundamental to automatically learn entailments
from examples.

6.2.1 Qualitative analysis
Hereafter we show some instances selected

from the first experiment “Train:T1-Test:D1”.
They were correctly classified by our overall
model (last column) and miss-classified by the
models in the seventh and in the eighth columns.
The first is an example in entailment:

T ⇒ H (id: 35)

T “Saudi Arabia, the biggest oil pro-
ducer in the world, was once a sup-
porter of Osama bin Laden and his
associates who led attacks against the
United States.”

H “Saudi Arabia is the world’s biggest oil
exporter.”

It was correctly classified by exploiting examples
like these two:

T ⇒ H (id: 929)

T “Ron Gainsford, chief executive of the
TSI, said: ...”

H “Ron Gainsford is the chief executive of
the TSI.”

T ⇒ H (id: 976)

T “Harvey Weinstein, the co-chairman of
Miramax, who was instrumental in pop-
ularizing both independent and foreign
films with broad audiences, agrees.”

H “Harvey Weinstein is the co-chairman
of Miramax.”
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The rewrite rule is:”X, Y, ...” implies ”X is Y” .
This rule is also described in (Hearst, 1992).

A more interesting rule relates the following
two sentences which are not in entailment:

T ; H (id: 2045)
T “Mrs. Lane, who has been a Director

since 1989, is Special Assistant to the
Board of Trustees and to the President
of Stanford University.”

H “Mrs. Lane is the president of Stanford
University.”

It was correctly classified using instances like the
following:

T ; H (id: 2044)

T “Jacqueline B. Wender is Assistant to
the President of Stanford University.”

H “Jacqueline B. Wender is the President
of Stanford University.”

T ; H (id: 2069)

T “Grieving father Christopher Yavelow
hopes to deliver one million letters to
the queen of Holland to bring his chil-
dren home.”

H “Christopher Yavelow is the queen of
Holland.”

Here, the implicit rule is:”X (VP (V ...) (NP (to Y)
...)” does not imply”X is Y” .

7 Conclusions
We have presented a model for the automatic
learning of rewrite rules for textual entailments
from examples. For this purpose, we devised a
novel powerful kernel based on cross-pair simi-
larities. We experimented with such kernel us-
ing Support Vector Machines on the RTE test
sets. The results show that (1) learning entailments
from positive and negative examples is a viable ap-
proach and (2) our model based on kernel meth-
ods is highly accurate and improves on the current
state-of-the-art entailment systems.

In the future, we would like to study approaches
to improve the computational complexity of our
kernel function and to design approximated ver-
sions that are valid Mercer’s kernels.
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Abstract

We present an efficient algorithm for the
redundancy elimination problem: Given
an underspecified semantic representation
(USR) of a scope ambiguity, compute an
USR with fewer mutually equivalent read-
ings. The algorithm operates on underspec-
ified chart representations which are de-
rived from dominance graphs; it can be ap-
plied to the USRs computed by large-scale
grammars. We evaluate the algorithm on
a corpus, and show that it reduces the de-
gree of ambiguity significantly while tak-
ing negligible runtime.

1 Introduction

Underspecification is nowadays the standard ap-
proach to dealing with scope ambiguities in com-
putational semantics (van Deemter and Peters,
1996; Copestake et al., 2004; Egg et al., 2001;
Blackburn and Bos, 2005). The basic idea be-
hind it is to not enumerate all possible semantic
representations for each syntactic analysis, but to
derive a single compact underspecified represen-
tation (USR). This simplifies semantics construc-
tion, and current algorithms support the efficient
enumeration of the individual semantic representa-
tions from an USR (Koller and Thater, 2005b).

A major promise of underspecification is that it
makes it possible, in principle, to rule out entire
subsets of readings that we are not interested in
wholesale, without even enumerating them. For in-
stance, real-world sentences with scope ambigui-
ties often have many readings that are semantically
equivalent. Subsequent modules (e.g. for doing in-
ference) will typically only be interested in one
reading from each equivalence class, and all oth-
ers could be deleted. This situation is illustrated
by the following two (out of many) sentences from
the Rondane treebank, which is distributed with

the English Resource Grammar (ERG; Flickinger
(2002)), a large-scale HPSG grammar of English.

(1) For travellers going to Finnmark there is a
bus service from Oslo to Alta through Swe-
den. (Rondane 1262)

(2) We quickly put up the tents in the lee of a
small hillside and cook for the first time in
the open. (Rondane 892)

For the annotated syntactic analysis of (1), the
ERG derives an USR with eight scope bearing op-
erators, which results in a total of 3960 readings.
These readings are all semantically equivalent to
each other. On the other hand, the USR for (2) has
480 readings, which fall into two classes of mutu-
ally equivalent readings, characterised by the rela-
tive scope of “the lee of” and “a small hillside.”

In this paper, we present an algorithm for the
redundancy elimination problem: Given an USR,
compute an USR which has fewer readings, but
still describes at least one representative of each
equivalence class – without enumerating any read-
ings. This algorithm makes it possible to compute
the one or two representatives of the semantic
equivalence classes in the examples, so subsequent
modules don’t have to deal with all the other equiv-
alent readings. It also closes the gap between the
large number of readings predicted by the gram-
mar and the intuitively perceived much lower de-
gree of ambiguity of these sentences. Finally, it
can be helpful for a grammar designer because it
is much more feasible to check whether two read-
ings are linguistically reasonable than 480. Our al-
gorithm is applicable to arbitrary USRs (not just
those computed by the ERG). While its effect is
particularly significant on the ERG, which uni-
formly treats all kinds of noun phrases, including
proper names and pronouns, as generalised quanti-
fiers, it will generally help deal with spurious ambi-
guities (such as scope ambiguities between indef-
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inites), which have been a ubiquitous problem in
most theories of scope since Montague Grammar.

We model equivalence in terms of rewrite rules
that permute quantifiers without changing the se-
mantics of the readings. The particular USRs we
work with are underspecified chart representations,
which can be computed from dominance graphs
(or USRs in some other underspecification for-
malisms) efficiently (Koller and Thater, 2005b).
We evaluate the performance of the algorithm on
the Rondane treebank and show that it reduces the
median number of readings from 56 to 4, by up
to a factor of 666.240 for individual USRs, while
running in negligible time.

To our knowledge, our algorithm and its less
powerful predecessor (Koller and Thater, 2006)
are the first redundancy elimination algorithms in
the literature that operate on the level of USRs.
There has been previous research on enumerating
only some representatives of each equivalence
class (Vestre, 1991; Chaves, 2003), but these
approaches don’t maintain underspecification:
After running their algorithms, they are left with
a set of readings rather than an underspecified
representation, i.e. we could no longer run other
algorithms on an USR.

The paper is structured as follows. We will first de-
fine dominance graphs and review the necessary
background theory in Section 2. We will then intro-
duce our notion of equivalence in Section 3, and
present the redundancy elimination algorithm in
Section 4. In Section 5, we describe the evaluation
of the algorithm on the Rondane corpus. Finally,
Section 6 concludes and points to further work.

2 Dominance graphs

The basic underspecification formalism we as-
sume here is that of (labelled) dominance graphs
(Althaus et al., 2003). Dominance graphs are
equivalent to leaf-labelled normal dominance con-
straints (Egg et al., 2001), which have been dis-
cussed extensively in previous literature.

Definition 1. A (compact) dominance graph is a
directed graph (V,E ]D) with two kinds of edges,
tree edges E and dominance edges D, such that:

1. The graph (V,E) defines a collection of node
disjoint trees of height 0 or 1. We call the
trees in (V,E) the fragments of the graph.

2. If (v,v′) is a dominance edge in D, then v is
a hole and v′ is a root. A node v is a root if v

does not have incoming tree edges; otherwise,
v is a hole.

A labelled dominance graph over a ranked sig-
nature Σ is a triple G = (V,E ]D,L) such that
(V,E ]D) is a dominance graph and L : V  Σ

is a partial labelling function which assigns a node
v a label with arity n iff v is a root with n outgoing
tree edges. Nodes without labels (i.e. holes) must
have outgoing dominance edges.

We will write R(F) for the root of the fragment
F , and we will typically just say “graph” instead
of “labelled dominance graph”.

An example of a labelled dominance graph is
shown to the left of Fig. 1. Tree edges are drawn
as solid lines, and dominance edges as dotted lines,
directed from top to bottom. This graph can serve
as an USR for the sentence “a representative of
a company saw a sample” if we demand that the
holes are “plugged” by roots while realising the
dominance edges as dominance, as in the two con-
figurations (of five) shown to the right. These con-
figurations are trees that encode semantic represen-
tations of the sentence. We will freely read config-
urations as ground terms over the signature Σ.

2.1 Hypernormally connected graphs

Throughout this paper, we will only consider hy-
pernormally connected (hnc) dominance graphs.
Hnc graphs are equivalent to chain-connected
dominance constraints (Koller et al., 2003), and
are closely related to dominance nets (Niehren and
Thater, 2003). Fuchss et al. (2004) have presented
a corpus study that strongly suggests that all dom-
inance graphs that are generated by current large-
scale grammars are (or should be) hnc.

Technically, a graph G is hypernormally con-
nected iff each pair of nodes is connected by a sim-
ple hypernormal path in G. A hypernormal path
(Althaus et al., 2003) in G is a path in the undi-
rected version Gu of G that does not use two dom-
inance edges that are incident to the same hole.

Hnc graphs have a number of very useful struc-
tural properties on which this paper rests. One
which is particularly relevant here is that we can
predict in which way different fragments can dom-
inate each other.

Definition 2. Let G be a hnc dominance graph. A
fragment F1 in G is called a possible dominator
of another fragment F2 in G iff it has exactly one
hole h which is connected to R(F2) by a simple hy-
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Figure 1: A dominance graph that represents the five readings of the sentence “a representative of a
company saw a sample” (left) and two of its five configurations.

{1,2,3,4,5,6,7} :〈1,h1 7→ {4},h2 7→ {2,3,5,6,7}〉
〈2,h3 7→ {1,4,5},h4 7→ {3,6,7}〉
〈3,h5 7→ {5},h6 7→ {1,2,4,5,7}〉

{2,3,5,6,7} :〈2,h3 7→ {5},h4 7→ {3,6,7}〉
〈3,h5 7→ {6},h6 7→ {2,5,7}〉

{3,6,7} :〈3,h5 7→ {6},h6 7→ {7}〉
{2,5,7} :〈2,h3 7→ {5},h4 7→ {7}〉
{1,4,5} :〈1,h1 7→ {4},h2 7→ {5}〉

{1,2,4,5,7} :〈1,h1 7→ {4},h2 7→ {2,5,7}〉
〈2,h3 7→ {1,4,5},h4 7→ {7}〉

Figure 2: The chart for the graph in Fig. 1.

pernormal path which doesn’t use R(F1). We write
ch(F1,F2) for this unique h.

Lemma 1 (Koller and Thater (2006)). Let F1, F2
be fragments in a hnc dominance graph G. If there
is a configuration C of G in which R(F1) dominates
R(F2), then F1 is a possible dominator of F2, and
in particular ch(F1,F2) dominates R(F2) in C.

By applying this rather abstract result, we can
derive a number of interesting facts about the ex-
ample graph in Fig. 1. The fragments 1, 2, and 3
are possible dominators of all other fragments (and
of each other), while the fragments 4 through 7
aren’t possible dominators of anything (they have
no holes); so 4 through 7 must be leaves in any con-
figuration of the graph. In addition, if fragment 2
dominates fragment 3 in any configuration, then in
particular the right hole of 2 will dominate the root
of 3; and so on.

2.2 Dominance charts
Below we will not work with dominance graphs
directly. Rather, we will use dominance charts
(Koller and Thater, 2005b) as our USRs: they are
more explicit USRs, which support a more fine-
grained deletion of reading sets than graphs.

A dominance chart for the graph G is a mapping
of weakly connected subgraphs of G to sets of
splits (see Fig. 2), which describe possible ways

of constructing configurations of the subgraph.
A subgraph G′ is assigned one split for each
fragment F in G′ which can be at the root of a
configuration of G′. If the graph is hnc, removing
F from the graph splits G′ into a set of weakly
connected components (wccs), each of which is
connected to exactly one hole of F . We also record
the wccs, and the hole to which each wcc belongs,
in the split. In order to compute all configurations
represented by a split, we can first compute
recursively the configurations of each component;
then we plug each combination of these sub-
configurations into the appropriate holes of the
root fragment. We define the configurations asso-
ciated with a subgraph as the union over its splits,
and those of the entire chart as the configurations
associated with the complete graph.

Fig. 2 shows the dominance chart correspond-
ing to the graph in Fig. 1. The chart represents
exactly the configuration set of the graph, and is
minimal in the sense that every subgraph and ev-
ery split in the chart can be used in constructing
some configuration. Such charts can be computed
efficiently (Koller and Thater, 2005b) from a dom-
inance graph, and can also be used to compute the
configurations of a graph efficiently.

The example chart expresses that three frag-
ments can be at the root of a configuration of the
complete graph: 1, 2, and 3. The entry for the split
with root fragment 2 tells us that removing 2 splits
the graph into the subgraphs {1,4,5} and {3,6,7}
(see Fig. 3). If we configure these two subgraphs
recursively, we obtain the configurations shown in
the third column of Fig. 3; we can then plug these
sub-configurations into the appropriate holes of 2
and obtain a configuration for the entire graph.

Notice that charts can be exponentially larger
than the original graph, but they are still expo-
nentially smaller than the entire set of readings
because common subgraphs (such as the graph
{2,5,7} in the example) are represented only once,
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Figure 3: Extracting a configuration from a chart.

and are small in practice (see (Koller and Thater,
2005b) for an analysis). Thus the chart can still
serve as an underspecified representation.

3 Equivalence

Now let’s define equivalence of readings more
precisely. Equivalence of semantic representations
is traditionally defined as the relation between
formulas (say, of first-order logic) which have
the same interpretation. However, even first-order
equivalence is an undecidable problem, and broad-
coverage semantic representations such as those
computed by the ERG usually have no well-
defined model-theoretic semantics and therefore
no concept of semantic equivalence.

On the other hand, we do not need to solve
the full semantic equivalence problem, as we only
want to compare formulas that are readings of the
same sentence, i.e. different configurations of the
same USR. Such formulas only differ in the way
that the fragments are combined. We can therefore
approximate equivalence by using a rewrite system
that permutes fragments and defining equivalence
of configurations as mutual rewritability as usual.

By way of example, consider again the two con-
figurations shown in Fig. 1. We can obtain the sec-
ond configuration from the (semantically equiva-
lent) first one by applying the following rewrite
rule, which rotates the fragments 1 and 2:

ax(az(P,Q),R)→ az(P,ax(Q,R)) (3)

Thus we take these two configurations to be
equivalent with respect to the rewrite rule. (We
could also have argued that the second configura-
tion can be rewritten into the first by using the in-
verted rule.)

We formalise this rewriting-based notion of
equivalence as follows. The definition uses the ab-
breviation x[1,k) for the sequence x1, . . . ,xk−1, and
x(k,n] for xk+1, . . . ,xn.

Definition 3. A permutation system R is a system
of rewrite rules over the signature Σ of the follow-

ing form:

f1(x[1,i), f2(y[1,k),z,y(k,m]),x(i,n])→
f2(y[1,k), f1(x[1,i),z,x(i,n]),y(k,m])

The permutability relation P(R) is the binary rela-
tion P(R) ⊆ (Σ×N)2 which contains exactly the
tuples (( f1, i),( f2,k)) and (( f2,k),( f1, i)) for each
such rewrite rule. Two terms are equivalent with re-
spect to R, s≈R t, iff there is a sequence of rewrite
steps and inverse rewrite steps that rewrite s into t.

If G is a graph over Σ and R a permutation sys-
tem, then we write SCR(G) for the set of equiva-
lence classes Conf(G)/≈R, where Conf(G) is the
set of configurations of G.

The rewrite rule (3) above is an instance of this
schema, as are the other three permutations of ex-
istential quantifiers. These rules approximate clas-
sical semantic equivalence of first-order logic, as
they rewrite formulas into classically equivalent
ones. Indeed, all five configurations of the graph
in Fig. 1 are rewriting-equivalent to each other.

In the case of the semantic representations gen-
erated by the ERG, we don’t have access to an
underlying interpretation. But we can capture lin-
guistic intuitions about the equivalence of readings
in permutation rules. For instance, proper names
and pronouns (which the ERG analyses as scope-
bearers, although they can be reduced to constants
without scope) can be permuted with anything. In-
definites and definites permute with each other if
they occur in each other’s scope, but not if they
occur in each other’s restriction; and so on.

4 Redundancy elimination

Given a permutation system, we can now try to get
rid of readings that are equivalent to other readings.
One way to formalise this is to enumerate exactly
one representative of each equivalence class. How-
ever, after such a step we would be left with a col-
lection of semantic representations rather than an
USR, and could not use the USR for ruling out
further readings. Besides, a naive algorithm which
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first enumerates all configurations would be pro-
hibitively slow.

We will instead tackle the following underspec-
ified redundancy elimination problem: Given an
USR G, compute an USR G′ with Conf(G′) ⊆
Conf(G) and SCR(G) = SCR(G′). We want
Conf(G′) to be as small as possible. Ideally, it
would contain no two equivalent readings, but in
practice we won’t always achieve this kind of com-
pleteness. Our redundancy elimination algorithm
will operate on a dominance chart and successively
delete splits and subgraphs from the chart.

4.1 Permutable fragments
Because the algorithm must operate on USRs
rather than configurations, it needs a way to pre-
dict from the USR alone which fragments can be
permuted in configurations. This is not generally
possible in unrestricted graphs, but for hnc graphs
it is captured by the following criterion.

Definition 4. Let R be a permutation system. Two
fragments F1 and F2 with root labels f1 and f2
in a hnc graph G are called R-permutable iff
they are possible dominators of each other and
(( f1,ch(F1,F2)),( f2,ch(F2,F1))) ∈ P(R).

For example, in Fig. 1, the fragments 1 and 2
are permutable, and indeed they can be permuted
in any configuration in which one is the parent of
the other. This is true more generally:

Lemma 2 (Koller and Thater (2006)). Let G be a
hnc graph, F1 and F2 be R-permutable fragments
with root labels f1 and f2, and C1 any config-
uration of G of the form C( f1(. . . , f2(. . .), . . .))
(where C is the context of the subterm). Then
C1 can be R-rewritten into a tree C2 of the form
C( f2(. . . , f1(. . .), . . .)) which is also a configura-
tion of G.

The proof uses the hn connectedness of G in two
ways: in order to ensure that C2 is still a configu-
ration of G, and to make sure that F2 is plugged
into the correct hole of F1 for a rule application
(cf. Lemma 1). Note that C2 ≈R C1 by definition.

4.2 The redundancy elimination algorithm
Now we can use permutability of fragments to
define eliminable splits. Intuitively, a split of a
subgraph G is eliminable if each of its configura-
tions is equivalent to a configuration of some other
split of G. Removing such a split from the chart
will rule out some configurations; but it does not
change the set of equivalence classes.

Definition 5. Let R be a permutation system. A
split S = (F, . . . ,hi 7→Gi, . . .) of a graph G is called
eliminable in a chart Ch if some Gi contains a frag-
ment F ′ such that (a) Ch contains a split S′ of G
with root fragment F ′, and (b) F ′ is R-permutable
with F and all possible dominators of F ′ in Gi.

In Fig. 1, each of the three splits is eliminable.
For example, the split with root fragment 1 is elim-
inable because the fragment 3 permutes both with
2 (which is the only possible dominator of 3 in the
same wcc) and with 1 itself.

Proposition 3. Let Ch be a dominance chart, and
let S be an eliminable split of a hnc subgraph. Then
SC(Ch) = SC(Ch−S).

Proof. Let C be an arbitrary configuration of S =
(F,h1 7→ G1, . . . ,hn 7→ Gn), and let F ′ ∈ Gi be the
root fragment of the assumed second split S′.

Let F1, . . . ,Fn be those fragments in C that are
properly dominated by F and properly dominate
F ′. All of these fragments must be possible domi-
nators of F ′, and all of them must be in Gi as well,
so F ′ is permutable with each of them. F ′ must
also be permutable with F . This means that we can
apply Lemma 2 repeatedly to move F ′ to the root
of the configuration, obtaining a configuration of
S′ which is equivalent to C.

Notice that we didn’t require that Ch must be
the complete chart of a dominance graph. This
means we can remove eliminable splits from a
chart repeatedly, i.e. we can apply the following
redundancy elimination algorithm:

REDUNDANCY-ELIMINATION(Ch,R)
1 for each split S in Ch
2 do if S is eliminable with respect to R
3 then remove S from Ch

Prop. 3 shows that the algorithm is a correct
algorithm for the underspecified redundancy
elimination problem. The particular order in
which eliminable splits are removed doesn’t
affect the correctness of the algorithm, but it may
change the number of remaining configurations.
The algorithm generalises an earlier elimination
algorithm (Koller and Thater, 2006) in that the
earlier algorithm required the existence of a single
split which could be used to establish eliminability
of all other splits of the same subgraph.

We can further optimise this algorithm by keep-
ing track of how often each subgraph is referenced
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Figure 4: A graph for which the algorithm is not
complete.

by the splits in the chart. Once a reference count
drops to zero, we can remove the entry for this
subgraph and all of its splits from the chart. This
doesn’t change the set of configurations of the
chart, but may further reduce the chart size. The
overall runtime for the algorithm is O(n2S), where
S is the number of splits in Ch and n is the num-
ber of nodes in the graph. This is asymptotically
not much slower than the runtime O((n + m)S) it
takes to compute the chart in the first place (where
m is the number of edges in the graph).

4.3 Examples and discussion

Let’s look at a run of the algorithm on the chart
in Fig. 2. The algorithm can first delete the elim-
inable split with root 1 for the entire graph G. After
this deletion, the splits for G with root fragments
2 and 3 are still eliminable; so we can e.g. delete
the split for 3. At this point, only one split is left
for G. The last split for a subgraph can never be
eliminable, so we are finished with the splits for
G. This reduces the reference count of some sub-
graphs (e.g. {2,3,5,6,7}) to 0, so we can remove
these subgraphs too. The output of the algorithm is
the chart shown below, which represents a single
configuration (the one shown in Fig. 3).

{1,2,3,4,5,6,7} :〈2,h2 7→ {1,4},h4 7→ {3,6,7}〉
{1,4} :〈1,h1 7→ {4}〉

{3,6,7} :〈3,h5 7→ {6},h6 7→ {7}〉

In this case, the algorithm achieves complete re-
duction, in the sense that the final chart has no two
equivalent configurations. It remains complete for
all variations of the graph in Fig. 1 in which some
or all existential quantifiers are replaces by univer-
sal quantifiers. This is an improvement over our
earlier algorithm (Koller and Thater, 2006), which
computed a chart with four configurations for the
graph in which 1 and 2 are existential and 3 is uni-
versal, as opposed to the three equivalence classes
of this graph’s configurations.

However, the present algorithm still doesn’t
achieve complete reduction for all USRs. One ex-
ample is shown in Fig. 4. This graph has six config-
urations in four equivalence classes, but no split of
the whole graph is eliminable. The algorithm will
delete a split for the subgraph {1,2,4,5,7}, but the
final chart will still have five, rather than four, con-
figurations. A complete algorithm would have to
recognise that {1,3,4,6,7} and {2,3,5,6,7} have
splits (for 1 and 2, respectively) that lead to equiv-
alent configurations and delete one of them. But
it is far from obvious how such a non-local deci-
sion could be made efficiently, and we leave this
for future work.

5 Evaluation

In this final section, we evaluate the the effective-
ness and efficiency of the elimination algorithm:
We run it on USRs from a treebank and measure
how many readings are redundant, to what extent
the algorithm eliminates this redundancy, and how
much time it takes to do this.

Resources. The experiments are based on the
Rondane corpus, a Redwoods (Oepen et al., 2002)
style corpus which is distributed with the English
Resource Grammar (Flickinger, 2002). The cor-
pus contains analyses for 1076 sentences from the
tourism domain, which are associated with USRs
based upon Minimal Recursion Semantics (MRS).
The MRS representations are translated into dom-
inance graphs using the open-source utool tool
(Koller and Thater, 2005a), which is restricted to
MRS representations whose translations are hnc.
By restricting ourselves to such MRSs, we end up
with a data set of 999 dominance graphs. The aver-
age number of scope bearing operators in the data
set is 6.5, and the median number of readings is 56.

We then defined a (rather conservative) rewrite
system RERG for capturing the permutability rela-
tion of the quantifiers in the ERG. This amounted
to 34 rule schemata, which are automatically ex-
panded to 494 rewrite rules.

Experiment: Reduction. We first analysed the
extent to which our algorithm eliminated the re-
dundancy of the USRs in the corpus. We com-
puted dominance charts for all USRs, ran the al-
gorithm on them, and counted the number of con-
figurations of the reduced charts. We then com-
pared these numbers against a baseline and an up-
per bound. The upper bound is the true number of
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Figure 5: Mean reduction factor on Rondane.

equivalence classes with respect to RERG; for effi-
ciency reasons we could only compute this num-
ber for USRs with up to 500.000 configurations
(95 % of the data set). The baseline is given by
the number of readings that remain if we replace
proper names and pronouns by constants and vari-
ables, respectively. This simple heuristic is easy to
compute, and still achieves nontrivial redundancy
elimination because proper names and pronouns
are quite frequent (28% of the noun phrase occur-
rences in the data set). It also shows the degree of
non-trivial scope ambiguity in the corpus.

For each measurement, we sorted the USRs ac-
cording to the number N of configurations, and
grouped USRs according to the natural logarithm
of N (rounded down) to obtain a logarithmic scale.

First, we measured the mean reduction factor
for each log(N) class, i.e. the ratio of the num-
ber of all configurations to the number of remain-
ing configurations after redundancy elimination
(Fig. 5). The upper-bound line in the figure shows
that there is a great deal of redundancy in the USRs
in the data set. The average performance of our
algorithm is close to the upper bound and much
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Figure 6: Percentage of USRs for which the algo-
rithm and the baseline achieve complete reduction.
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better than the baseline. For USRs with fewer than
e8 = 2980 configurations (83 % of the data set), the
mean reduction factor of our algorithm is above
86 % of the upper bound. The median number
of configurations for the USRs in the whole data
set is 56, and the median number of equivalence
classes is 3; again, the median number of config-
urations of the reduced charts is very close to the
upper bound, at 4 (baseline: 8). The highest reduc-
tion factor for an individual USR is 666.240.

We also measured the ratio of USRs for which
the algorithm achieves complete reduction (Fig. 6):
The algorithm is complete for 56 % of the USRs
in the data set. It is complete for 78 % of the USRs
with fewer than e5 = 148 configurations (64 % of
the data set), and still complete for 66 % of the
USRs with fewer than e8 configurations.

Experiment: Efficiency. Finally, we measured
the runtime of the elimination algorithm. The run-
time of the elimination algorithm is generally com-
parable to the runtime for computing the chart in
the first place. However, in our experiments we
used an optimised version of the elimination algo-
rithm, which computes the reduced chart directly
from a dominance graph by checking each split
for eliminability before it is added to the chart.
We compare the performance of this algorithm to
the baseline of computing the complete chart. For
comparison, we have also added the time it takes
to enumerate all configurations of the graph, as a
lower bound for any algorithm that computes the
equivalence classes based on the full set of config-
urations. Fig. 7 shows the mean runtimes for each
log(N) class, on the USRs with less than one mil-
lion configurations (958 USRs).

As the figure shows, the asymptotic runtimes
for computing the complete chart and the reduced
chart are about the same, whereas the time for
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enumerating all configurations grows much faster.
(Note that the runtime is reported on a logarithmic
scale.) For USRs with many configurations, com-
puting the reduced chart actually takes less time
on average than computing the complete chart
because the chart-filling algorithm is called on
fewer subgraphs. While the reduced-chart algo-
rithm seems to be slower than the complete-chart
one for USRs with less than e5 configurations,
these runtimes remain below 20 milliseconds on
average, and the measurements are thus quite un-
reliable. In summary, we can say that there is no
overhead for redundancy elimination in practice.

6 Conclusion

We presented an algorithm for redundancy elimina-
tion on underspecified chart representations. This
algorithm successively deletes eliminable splits
from the chart, which reduces the set of described
readings while making sure that at least one rep-
resentative of each original equivalence class re-
mains. Equivalence is defined with respect to a cer-
tain class of rewriting systems; this definition ap-
proximates semantic equivalence of the described
formulas and fits well with the underspecification
setting. The algorithm runs in polynomial time in
the size of the chart.

We then evaluated the algorithm on the Ron-
dane corpus and showed that it is useful in practice:
the median number of readings drops from 56 to
4, and the maximum individual reduction factor is
666.240. The algorithm achieves complete reduc-
tion for 56% of all sentences. It does this in neg-
ligible runtime; even the most difficult sentences
in the corpus are reduced in a matter of seconds,
whereas the enumeration of all readings would
take about a year. This is the first corpus evalua-
tion of a redundancy elimination in the literature.

The algorithm improves upon previous work
(Koller and Thater, 2006) in that it eliminates more
splits from the chart. It is an improvement over ear-
lier algorithms for enumerating irredundant read-
ings (Vestre, 1991; Chaves, 2003) in that it main-
tains underspecifiedness; note that these earlier pa-
pers never made any claims with respect to, or eval-
uated, completeness.

There are a number of directions in which the
present algorithm could be improved. We are cur-
rently pursuing some ideas on how to improve the
completeness of the algorithm further. It would
also be worthwhile to explore heuristics for the or-

der in which splits of the same subgraph are elim-
inated. The present work could be extended to al-
low equivalence with respect to arbitrary rewrite
systems. Most generally, we hope that the methods
developed here will be useful for defining other
elimination algorithms, which take e.g. full world
knowledge into account.
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Abstract
The psycholinguistic literature provides
evidence for syntactic priming, i.e., the
tendency to repeat structures. This pa-
per describes a method for incorporating
priming into an incremental probabilis-
tic parser. Three models are compared,
which involve priming of rules between
sentences, within sentences, and within
coordinate structures. These models sim-
ulate the reading time advantage for par-
allel structures found in human data, and
also yield a small increase in overall pars-
ing accuracy.

1 Introduction

Over the last two decades, the psycholinguistic
literature has provided a wealth of experimental
evidence for syntactic priming, i.e., the tendency
to repeat syntactic structures (e.g., Bock, 1986).
Most work on syntactic priming has been con-
cerned with sentence production; however, recent
studies also demonstrate a preference for struc-
tural repetition in human parsing. This includes
the so-called parallelism effect demonstrated by
Frazier et al. (2000): speakers processes coordi-
nated structures more quickly when the second
conjunct repeats the syntactic structure of the first
conjunct.

Two alternative accounts of the parallelism ef-
fect have been proposed. Dubey et al. (2005) ar-
gue that the effect is simply an instance of a perva-
sive syntactic priming mechanism in human pars-
ing. They provide evidence from a series of cor-
pus studies which show that parallelism is not lim-
ited to co-ordination, but occurs in a wide range
of syntactic structures, both within and between
sentences, as predicted if a general priming mech-
anism is assumed. (They also show this effect is
stronger in coordinate structures, which could ex-
plain Frazier et al.’s (2000) results.)

Frazier and Clifton (2001) propose an alterna-
tive account of the parallelism effect in terms of a

copying mechanism. Unlike priming, this mecha-
nism is highly specialized and only applies to co-
ordinate structures: if the second conjunct is en-
countered, then instead of building new structure,
the language processor simply copies the structure
of the first conjunct; this explains why a speed-
up is observed if the two conjuncts are parallel. If
the copying account is correct, then we would ex-
pect parallelism effects to be restricted to coordi-
nate structures and not to apply in other contexts.

This paper presents a parsing model which im-
plements both the priming mechanism and the
copying mechanism, making it possible to com-
pare their predictions on human reading time data.
Our model also simulates other important aspects
of human parsing: (i) it is broad-coverage, i.e.,
it yields accurate parses for unrestricted input,
and (ii) it processes sentences incrementally, i.e.,
on a word-by-word basis. This general modeling
framework builds on probabilistic accounts of hu-
man parsing as proposed by Jurafsky (1996) and
Crocker and Brants (2000).

A priming-based parser is also interesting from
an engineering point of view. To avoid sparse
data problems, probabilistic parsing models make
strong independence assumptions; in particular,
they generally assume that sentences are indepen-
dent of each other, in spite of corpus evidence for
structural repetition between sentences. We there-
fore expect a parsing model that includes struc-
tural repetition to provide a better fit with real cor-
pus data, resulting in better parsing performance.
A simple and principled approach to handling
structure re-use would be to use adaptation prob-
abilities for probabilistic grammar rules (Church,
2000), analogous to cache probabilities used in
caching language models (Kuhn and de Mori,
1990). This is the approach we will pursue in this
paper.

Dubey et al. (2005) present a corpus study that
demonstrates the existence of parallelism in cor-
pus data. This is an important precondition for un-
derstanding the parallelism effect; however, they
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do not develop a parsing model that accounts for
the effect, which means they are unable to evaluate
their claims against experimental data. The present
paper overcomes this limitation. In Section 2, we
present a formalization of the priming and copy-
ing models of parallelism and integrate them into
an incremental probabilistic parser. In Section 3,
we evaluate this parser against reading time data
taken from Frazier et al.’s (2000) parallelism ex-
periments. In Section 4, we test the engineering
aspects of our model by demonstrating that a small
increase in parsing accuracy can be obtained with
a parallelism-based model. Section 5 provides an
analysis of the performance of our model, focus-
ing on the role of the distance between prime and
target.

2 Priming Models

We propose three models designed to capture the
different theories of structural repetition discussed
above. To keep our model as simple as possi-
ble, each formulation is based on an unlexicalized
probabilistic context free grammar (PCFG). In this
section, we introduce the models and discuss the
novel techniques used to model structural similar-
ity. We also discuss the design of the probabilistic
parser used to evaluate the models.

2.1 Baseline Model

The unmodified PCFG model serves as the Base-
line. A PCFG assigns trees probabilities by treat-
ing each rule expansion as conditionally indepen-
dent given the parent node. The probability of a
rule LHS → RHS is estimated as:

P(RHS|LHS) =
c(LHS → RHS)

c(LHS)

2.2 Copy Model

The first model we introduce is a probabilistic
variant of Frazier and Clifton’s (2001) copying
mechanism: it models parallelism in coordination
and nothing else. This is achieved by assuming
that the default operation upon observing a coordi-
nator (assumed to be anything with a CC tag, e.g.,
‘and’) is to copy the full subtree of the preced-
ing coordinate sister. Copying impacts on how the
parser works (see Section 2.5), and in a probabilis-
tic setting, it also changes the probability of trees
with parallel coordinated structures. If coordina-
tion is present, the structure of the second item is
either identical to the first, or it is not.1 Let us call

1The model only considers two-item coordination or the
last two sisters of multiple-item coordination.

the probability of having a copied tree as pident.
This value may be estimated directly from a cor-
pus using the formula

p̂ident =
cident

ctotal

Here, cident is the number of coordinate structures
in which the two conjuncts have the same internal
structure and ctotal is the total number of coordi-
nate structures. Note we assume there is only one
parameter pident applicable everywhere (i.e., it has
the same value for all rules).

How is this used in a PCFG parser? Let t1 and t2
represent, respectively, the first and second coor-
dinate sisters and let PPCFG(t) be the PCFG prob-
ability of an arbitrary subtree t.

Because of the independence assumptions of
the PCFG, we know that pident � PPCFG(t). One
way to proceed would be to assign a probability
of pident when structures match, and (1− pident) ·
PPCFG(t2) when structures do not match. However,
some probability mass is lost this way: there is
a nonzero PCFG probability (namely, PPCFG(t1))
that the structures match.

In other words, we may have identical subtrees
in two different ways: either due to a copy oper-
ation, or due to a PCFG derivation. If pcopy is the
probability of a copy operation, we can write this
fact more formally as: pident = PPCFG(t1)+ pcopy.

Thus, if the structures do match, we assign the
second sister a probability of:

pcopy +PPCFG(t1)

If they do not match, we assign the second con-
junct the following probability:

1−PPCFG(t1)− pcopy

1−PPCFG(t1)
·PPCFG(t2)

This accounts for both a copy mismatch and a
PCFG derivation mismatch, and assures the prob-
abilities still sum to one. These probabilities for
parallel and non-parallel coordinate sisters, there-
fore, gives us the basis of the Copy model.

This leaves us with the problem of finding an
estimate for pcopy. This value is approximated as:

p̂copy = p̂ident−
1
|T2|

∑
t∈T2

PPCFG(t)

In this equation, T2 is the set of all second con-
juncts.

2.3 Between Model

While the Copy model limits itself to parallelism
in coordination, the next two models simulate
structural priming in general. Both are similar in
design, and are based on a simple insight: we may
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condition a PCFG rule expansion on whether the
rule occurred in some previous context. If Prime is
a binary-valued random variable denoting if a rule
occurred in the context, then we define:

P(RHS|LHS,Prime) =
c(LHS → RHS,Prime)

c(LHS,Prime)
This is essentially an instantiation of Church’s
(2000) adaptation probability, albeit with PCFG
rules instead of words. For our first model, this
context is the previous sentence. Thus, the model
can be said to capture the degree to which rule use
is primed between sentences. We henceforth refer
to this as the Between model. Following the con-
vention in the psycholinguistic literature, we refer
to a rule use in the previous sentence as a ‘prime’,
and a rule use in the current sentence as the ‘tar-
get’. Each rule acts once as a target (i.e., the event
of interest) and once as a prime. We may classify
such adapted probabilities into ‘positive adapta-
tion’, i.e., the probability of a rule given the rule
occurred in the preceding sentence, and ‘negative
adaptation’, i.e., the probability of a rule given that
the rule did not occur in the preceding sentence.

2.4 Within Model

Just as the Between model conditions on rules
from the previous sentence, the Within sentence
model conditions on rules from earlier in the cur-
rent sentence. Each rule acts once as a target, and
possibly several times as a prime (for each subse-
quent rule in the sentence). A rule is considered
‘used’ once the parser passes the word on the left-
most corner of the rule. Because the Within model
is finer grained than the Between model, it can be
used to capture the parallelism effect in coordina-
tion. In other words, this model could explain par-
allelism in coordination as an instance of a more
general priming effect.

2.5 Parser

As our main purpose is to build a psycholinguistic
model of structure repetition, the most important
feature of the parsing model is to build structures
incrementally.2

Reading time experiments, including the paral-
lelism studies of Frazier et al. (2000), make word-
by-word measurements of the time taken to read

2In addition to incremental parsing, a characteristic some
of psycholinguistic models of sentence comprehension is to
parse deterministically. While we can compute the best in-
cremental analysis at any point, ours models do not parse de-
terministically. However, following the principles of rational
analysis (Anderson, 1991), our goal is not to mimic the hu-
man parsing mechanism, but rather to create a model of hu-
man parsing behavior.

a novel and a bookwrote
0 3
Terry

4 5 61 2 7

NP NP

NP

a novel and a bookTerry wrote
0 31 4 5 62 7

NP

NP NP

Figure 1: Upon encountering a coordinator, the
copy model copies the most likely first conjunct.

sentences. Slower reading times are known to be
correlated with processing difficulty, and faster
reading times (as is the case with parallel struc-
tures) are correlated with processing ease. A prob-
abilistic parser may be considered to be a sen-
tence processing model via a ‘linking hypothesis’,
which links the parser’s word-by-word behavior to
human reading behavior. We discuss this topic in
more detail in Section 3. At this point, it suffices
to say that we require a parser which has the pre-
fix property, i.e., which parses incrementally, from
left to right.

Therefore, we use an Earley-style probabilis-
tic parser, which outputs Viterbi parses (Stolcke,
1995). We have two versions of the parser: one
which parses exhaustively, and a second which
uses a variable width beam, pruning any edges
whose merit is 1

2000 of the best edge. The merit
of an edge is its inside probability times a prior
P(LHS) times a lookahead probability (Roark and
Johnson, 1999). To speed up parsing time, we right
binarize the grammar,3 remove empty nodes, coin-
dexation and grammatical functions. As our goal
is to create the simplest possible model which can
nonetheless model experimental data, we do not
make any tree modification designed to improve
accuracy (as, e.g., Klein and Manning 2003).

The approach used to implement the Copy
model is to have the parser copy the subtree of the
first conjunct whenever it comes across a CC tag.
Before copying, though, the parser looks ahead to
check if the part-of-speech tags after the CC are
equivalent to those inside the first conjunct. The
copying model is visualized in Figure 1: the top
panel depicts a partially completed edge upon see-
ing a CC tag, and the second panel shows the com-
pleted copying operation. It should be clear that

3We found that using an unbinarized grammar did not al-
ter the results, at least in the exhaustive parsing case.
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the copy operation gives the most probable sub-
tree in a given span. To illustrate this, consider Fig-
ure 1. If the most likely NP between spans 2 and 7
does not involve copying (i.e. only standard PCFG
rule derivations), the parser will find it using nor-
mal rule derivations. If it does involve copying, for
this particular rule, it must involve the most likely
NP subtree from spans 2 to 3. As we parse in-
crementally, we are guaranteed to have found this
edge, and can use it to construct the copied con-
junct over spans 5 to 7 and therefore the whole
co-ordinated NP from spans 2 to 7.

To simplify the implementation of the copying
operation, we turn off right binarization so that the
constituent before and after a coordinator are part
of the same rule, and therefore accessible from the
same edge. This makes it simple to calculate the
new probability: construct the copied subtree, and
decide where to place the resulting edge on the
chart.

The Between and Within models require a cache
of recently used rules. This raises two dilem-
mas. First, in the Within model, keeping track of
full contextual history is incompatible with chart
parsing. Second, whenever a parsing error occurs,
the accuracy of the contextual history is compro-
mised. As we are using a simple unlexicalized
parser, such parsing errors are probably quite fre-
quent.

We handle the first problem by using one sin-
gle parse as an approximation of the history. The
more realistic choice for this single parse is the
best parse so far according to the parser. Indeed,
this is the approach we use for our main results in
Section 3. However, because of the second prob-
lem noted above, in Section 4, we simulated the
context by filling the cache with rules from the
correct tree. In the Between model, these are the
rules of the correct parse of the previous tree; in
the Within model, these are the rules used in the
correct parse at points up to (but not including) the
current word.

3 Human Reading Time Experiment

In this section, we test our models by applying
them to experimental reading time data. Frazier
et al. (2000) reported a series of experiments that
examined the parallelism preference in reading. In
one of their experiments, they monitored subjects’
eye-movements while they read sentences like (1):

(1) a. Hilda noticed a strange man and a tall
woman when she entered the house.

b. Hilda noticed a man and a tall woman
when she entered the house.

They found that total reading times were faster on
the phrase tall woman in (1a), where the coordi-
nated noun phrases are parallel in structure, com-
pared with in (1b), where they are not.

There are various approaches to modeling pro-
cessing difficulty using a probabilistic approach.
One possibility is to use an incremental parser
with a beam search or an n-best approach. Pro-
cessing difficulty is predicted at points in the input
string where the current best parse is replaced by
an alternative derivation (Jurafsky, 1996; Crocker
and Brants, 2000). An alternative is to keep track
of all derivations, and predict difficulty at points
where there is a large change in the shape of
the probability distribution across adjacent pars-
ing states (Hale, 2001). A third approach is to
calculate the forward probability (Stolcke, 1995)
of the sentence using a PCFG. Low probabilities
are then predicted to correspond to high process-
ing difficulty. A variant of this third approach is
to assume that processing difficulty is correlated
with the (log) probability of the best parse (Keller,
2003). This final formulation is the one used for
the experiments presented in this paper.

3.1 Method

The item set was adapted from that of Frazier et al.
(2000). The original two relevant conditions of
their experiment (1a,b) differ in terms of length.
This results in a confound in the PCFG frame-
work, because longer sentences tend to result in
lower probabilities (as the parses tend to involve
more rules). To control for such length differences,
we adapted the materials by adding two extra con-
ditions in which the relation between syntactic
parallelism and length was reversed. This resulted
in the following four conditions:

(2) a. DT JJ NN and DT JJ NN (parallel)
Hilda noticed a tall man and a strange
woman when she entered the house.

b. DT NN and DT JJ NN (non-parallel)
Hilda noticed a man and a strange
woman when she entered the house.

c. DT JJ NN and DT NN (non-parallel)
Hilda noticed a tall man and a woman
when she entered the house.

d. DT NN and DT NN (parallel)
Hilda noticed a man and a woman when
she entered the house.
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In order to account for Frazier et al.’s paral-
lelism effect a probabilistic model should pre-
dict a greater difference in probability be-
tween (2a) and (2b) than between (2c) and (2d)
(i.e., (2a)−(2b) > (2c)−(2d)). This effect will not
be confounded with length, because the relation
between length and parallelism is reversed be-
tween (2a,b) and (2c,d). We added 8 items to the
original Frazier et al. materials, resulting in a new
set of 24 items similar to (2).

We tested three of our PCFG-based models on
all 24 sets of 4 conditions. The models were the
Baseline, the Within and the Copy models, trained
exactly as described above. The Between model
was not tested as the experimental stimuli were
presented without context. Each experimental sen-
tence was input as a sequence of correct POS tags,
and the log probability estimate of the best parse
was recorded.

3.2 Results and Discussion

Table 1 shows the mean log probabilities estimated
by the models for the four conditions, along with
the relevant differences between parallel and non-
parallel conditions.

Both the Within and the Copy models show a
parallelism advantage, with this effect being much
more pronounced for the Copy model than the
Within model. To evaluate statistical significance,
the two differences for each item were compared
using a Wilcoxon signed ranks test. Significant
results were obtained both for the Within model
(N = 24, Z = 1.67, p < .05, one-tailed) and for
the Copy model (N = 24, Z = 4.27, p < .001, one-
tailed). However, the effect was much larger for
the Copy model, a conclusion which is confirmed
by comparing the differences of differences be-
tween the two models (N = 24, Z = 4.27, p < .001,
one-tailed). The Baseline model was not evalu-
ated statistically, because by definition it predicts a
constant value for (2a)−(2b) and (2c)−(2d) across
all items. This is simply a consequence of the
PCFG independence assumption, coupled with the
fact that the four conditions of each experimen-
tal item differ only in the occurrences of two NP
rules.

The results show that the approach taken here
can be successfully applied to the modeling of
experimental data. In particular, both the Within
and the Copy models show statistically reliable
parallelism effects. It is not surprising that the
copy model shows a large parallelism effect for
the Frazier et al. (2000) items, as it was explicitly
designed to prefer structurally parallel conjuncts.

The more interesting result is the parallelism ef-
fect found for the Within model, which shows that
such an effect can arise from a more general prob-
abilistic priming mechanism.

4 Parsing Experiment

In the previous section, we were able to show that
the Copy and Within models are able to account
for human reading-time performance for parallel
coordinate structures. While this result alone is
sufficient to claim success as a psycholinguistic
model, it has been argued that more realistic psy-
cholinguistic models ought to also exhibit high ac-
curacy and broad-coverage, both crucial properties
of the human parsing mechanism (e.g., Crocker
and Brants, 2000).

This should not be difficult: our starting point
was a PCFG, which already has broad coverage
behavior (albeit with only moderate accuracy).
However, in this section we explore what effects
our modifications have to overall coverage, and,
perhaps more interestingly, to parsing accuracy.

4.1 Method

The models used here were the ones introduced
in Section 2 (which also contains a detailed de-
scription of the parser that we used to apply the
models). The corpus used for both training and
evaluation is the Wall Street Journal part of the
Penn Treebank. We use sections 1–22 for train-
ing, section 0 for development and section 23 for
testing. Because the Copy model posits coordi-
nated structures whenever POS tags match, pars-
ing efficiency decreases if POS tags are not pre-
determined. Therefore, we assume POS tags as in-
put, using the gold-standard tags from the treebank
(following, e.g., Roark and Johnson 1999).

4.2 Results and Discussion

Table 2 lists the results in terms of F-score on
the test set.4 Using exhaustive search, the base-
line model achieves an F-score of 73.3, which is
comparable to results reported for unlexicalized
incremental parsers in the literature (e.g. the RB1
model of Roark and Johnson, 1999). All models
exhibit a small decline in performance when beam
search is used. For the Within model we observe a
slight improvement in performance over the base-
line, both for the exhaustive search and the beam

4Based on a χ2 test on precision and recall, all results are
statistically different from each other. The Copy model actu-
ally performs slightly better than the Baseline in the exhaus-
tive case.
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Model para: (2a) non-para: (2b) non-para: (2c) para: (2d) (2a)−(2b) (2c)−(2d)
Baseline −33.47 −32.37 −32.37 −31.27 −1.10 −1.10
Within −33.28 −31.67 −31.70 −29.92 −1.61 −1.78
Copy −16.18 −27.22 −26.91 −15.87 11.04 −11.04

Table 1: Mean log probability estimates for Frazier et al (2000) items

Exhaustive Search Beam Search Beam + Coord Fixed Coverage
Model F-score Coverage F-score Coverage F-score Coverage F-score Coverage
Baseline 73.3 100 73.0 98.0 73.1 98.1 73.0 97.5
Within 73.6 100 73.4 98.4 73.0 98.5 73.4 97.5
Between 71.6 100 71.7 98.7 71.5 99.0 71.8 97.5
Copy 73.3 100 – – 73.0 98.1 73.1 97.5

Table 2: Parsing results for the Within, Between, and Copy model compared to a PCFG baseline.

search conditions. The Between model, however,
resulted in a decrease in performance.

We also find that the Copy model performs at
the baseline level. Recall that in order to simplify
the implementation of the copying, we had to dis-
able binarization for coordinate constituents. This
means that quaternary rules were used for coordi-
nation (X → X1 CC X2 X ′), while normal binary
rules (X → Y X ′) were used everywhere else. It
is conceivable that this difference in binarization
explains the difference in performance between
the Between and Within models and the Copy
model when beam search was used. We there-
fore also state the performance for Between and
Within models with binarization limited to non-
coordinate structures in the column labeled ‘Beam
+ Coord’ in Table 2. The pattern of results, how-
ever, remains the same.

The fact that coverage differs between models
poses a problem in that it makes it difficult to
compare the F-scores directly. We therefore com-
pute separate F-scores for just those sentences that
were covered by all four models. The results are
reported in the ‘Fixed Coverage’ column of Ta-
ble 2. Again, we observe that the copy model per-
forms at baseline level, while the Within model
slightly outperforms the baseline, and the Between
model performs worse than the baseline. In Sec-
tion 5 below we will present an error analysis that
tries to investigate why the adaptation models do
not perform as well as expected.

Overall, we find that the modifications we intro-
duced to model the parallelism effect in humans
have a positive, but small, effect on parsing ac-
curacy. Nonetheless, the results also indicate the
success of both the Copy and Within approaches
to parallelism as psycholinguistic models: a mod-
ification primarily useful for modeling human be-

havior has no negative effects on computational
measures of coverage or accuracy.

5 Distance Between Rule Uses

Although both the Within and Copy models suc-
ceed at the main task of modeling the paral-
lelism effect, the parsing experiments in Section 4
showed mixed results with respect to F-scores:
a slight increase in F-score was observed for the
Within model, but the Between model performed
below the baseline. We therefore turn to an error
analysis, focusing on these two models.

Recall that the Within and Between models es-
timate two probabilities for a rule, which we have
been calling the positive adaptation (the probabil-
ity of a rule when the rule is also in the history),
and the negative adaptation (the probability of a
rule when the rule is not in the history). While
the effect is not always strong, we expect positive
adaptation to be higher than negative adaptation
(Dubey et al., 2005). However, this is not always
the case.

In the Within model, for example, the rule
NP → DT JJ NN has a higher negative than posi-
tive adaptation (we will refer to such rules as ‘neg-
atively adapted’). The more common rule NP →
DT NN has a higher positive adaptation (‘pos-
itively adapted’). Since the latter is three times
more common, this raises a concern: what if adap-
tation is an artifact of frequency? This ‘frequency’
hypothesis posits that a rule recurring in a sentence
is simply an artifact of the its higher frequency.
The frequency hypothesis could explain an inter-
esting fact: while the majority of rules tokens have
positive adaptation, the majority of rule types have
negative adaptation. An important corollary of the
frequency hypothesis is that we would not expect
to find a bias towards local rule re-uses.
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Iterate through the treebank
Remember how many words each constituent spans

Iterate through the treebank
Iterate through each tree
Upon finding a constituent spanning 1-4 words

Swap it with a randomly chosen constituent
of 1-4 words
Update the remembered size of the swapped
constituents and their subtrees

Iterate through the treebank 4 more times
Swap constituents of size 5-9, 10-19, 20-35
and 35+ words, respectively

Figure 2: The treebank randomization algorithm

Nevertheless, the NP → DT JJ NN rule is
an exception: most negatively adapted rules have
very low frequencies. This raises the possibility
that sparse data is the cause of the negatively
adapted rules. This makes intuitive sense: we need
many rule occurrences to accurately estimate pos-
itive or negative adaptation.

We measure the distribution of rule use to ex-
plore if negatively adapted rules owe more to fre-
quency effects or to sparse data. This distributional
analysis also serves to measure ‘decay’ effects in
structural repetition. The decay effect in priming
has been observed elsewhere (Szmrecsanyi, 2005),
and suggests that positive adaptation is higher the
closer together two rules are.

5.1 Method

We investigate the dispersion of rules by plot-
ting histograms of the distance between subse-
quent rule uses. The basic premise is to look for
evidence of an early peak or skew, which sug-
gests rule re-use. To ensure that the histogram it-
self is not sensitive to sparse data problems, we
group all rules into two categories: those which are
positively adapted, and those which are negatively
adapted.

If adaptation is not due to frequency alone, we
would expect the histograms for both positively
and negatively adapted rules to be skewed towards
local rule repetition. Detecting a skew requires a
baseline without repetition. We propose the con-
cept of ‘randomizing’ the treebank to create such
a baseline. The randomization algorithm is de-
scribed in Figure 2. The algorithm entails swap-
ping subtrees, taking care that small subtrees are
swapped first (otherwise large chunks would be
swapped at once, preserving a great deal of con-
text). This removes local effects, giving a distribu-
tion due frequency alone.

After applying the randomization algorithm to
the treebank, we may construct the distance his-
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Figure 3: Log of number of words between rule
invocations

togram for both the non-randomized and random-
ized treebanks. The distance between two occur-
rences of a rule is calculated as the number of
words between the first word on the left corner of
each rule. A special case occurs if a rule expansion
invokes another use of the same rule. When this
happens, we do not count the distance between the
first and second expansion. However, the second
expansion is still remembered as the most recent.

We group rules into those that have a higher
positive adaptation and those that have a higher
negative adaptation. We then plot a histogram of
rule re-occurrence distance for both groups, in
both the non-randomized and randomized corpora.

5.2 Results and Discussion

The resulting plot for the Within model is shown
in Figure 3. For both the positive and negatively
adapted rules, we find that randomization results
in a lower, less skewed peak, and a longer tail.
We conclude that rules tend to be repeated close
to one another more than we expect by chance,
even for negatively adapted rules. This is evidence
against the frequency hypothesis, and in favor of
the sparse data hypothesis. This means that the
small size of the increase in F-score we found in
Section 4 is not due to the fact that the adaption
is just an artifact of rule frequency. Rather, it can
probably be attributed to data sparseness.

Note also that the shape of the histogram pro-
vides a decay curve. Speculatively, we suggest that
this shape could be used to parameterize the decay
effect and therefore provide an estimate for adap-
tation which is more robust to sparse data. How-
ever, we leave the development of such a smooth-
ing function to future research.
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6 Conclusions and Future Work

The main contribution of this paper has been to
show that an incremental parser can simulate syn-
tactic priming effects in human parsing by incor-
porating probability models that take account of
previous rule use. Frazier et al. (2000) argued that
the best account of their observed parallelism ad-
vantage was a model in which structure is copied
from one coordinate sister to another. Here, we ex-
plored a probabilistic variant of the copy mecha-
nism, along with two more general models based
on within- and between-sentence priming. Al-
though the copy mechanism provided the strongest
parallelism effect in simulating the human reading
time data, the effect was also successfully simu-
lated by a general within-sentence priming model.
On the basis of simplicity, we therefore argue that
it is preferable to assume a simpler and more gen-
eral mechanism, and that the copy mechanism is
not needed. This conclusion is strengthened when
we turn to consider the performance of the parser
on the standard Penn Treebank test set: the Within
model showed a small increase in F-score over the
PCFG baseline, while the copy model showed no
such advantage.5

All the models we proposed offer a broad-
coverage account of human parsing, not just a lim-
ited model on a hand-selected set of examples,
such as the models proposed by Jurafsky (1996)
and Hale (2001) (but see Crocker and Brants
2000).

A further contribution of the present paper has
been to develop a methodology for analyzing the
(re-)use of syntactic rules over time in a corpus. In
particular, we have defined an algorithm for ran-
domizing the constituents of a treebank, yielding
a baseline estimate of chance repetition.

In the research reported in this paper, we have
adopted a very simple model based on an unlex-
icalized PCFG. In the future, we intend to ex-
plore the consequences of introducing lexicaliza-
tion into the parser. This is particularly interest-
ing from the point of view of psycholinguistic
modeling, because there are well known inter-
actions between lexical repetition and syntactic
priming, which require lexicalization for a proper
treatment. Future work will also involve the use
of smoothing to increase the benefit of priming
for parsing accuracy. The investigations reported

5The broad-coverage parsing experiment speaks against
a ‘facilitation’ hypothesis, i.e., that the copying and prim-
ing mechanisms work together. However, a full test of this
(e.g., by combining the two models) is left to future research.

in Section 5 provide a basis for estimating the
smoothing parameters.
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Abstract

We present a novel classifier-based deter-
ministic parser for Chinese constituency
parsing. Our parser computes parse trees
from bottom up in one pass, and uses
classifiers to make shift-reduce decisions.
Trained and evaluated on the standard
training and test sets, our best model (us-
ing stacked classifiers) runs in linear time
and has labeled precision and recall above
88% using gold-standard part-of-speech
tags, surpassing the best published re-
sults. Our SVM parser is 2-13 times faster
than state-of-the-art parsers, while produc-
ing more accurate results. Our Maxent
and DTree parsers run at speeds 40-270
times faster than state-of-the-art parsers,
but with 5-6% losses in accuracy.

1 Introduction and Background

Syntactic parsing is one of the most fundamental
tasks in Natural Language Processing (NLP). In
recent years, Chinese syntactic parsing has also
received a lot of attention in the NLP commu-
nity, especially since the release of large collec-
tions of annotated data such as the Penn Chi-
nese Treebank (Xue et al., 2005). Corpus-based
parsing techniques that are successful for English
have been applied extensively to Chinese. Tradi-
tional statistical approaches build models which
assign probabilities to every possible parse tree
for a sentence. Techniques such as dynamic pro-
gramming, beam-search, and best-first-search are
then employed to find the parse tree with the high-
est probability. The massively ambiguous nature
of wide-coverage statistical parsing,coupled with
cubic-time (or worse) algorithms makes this ap-
proach too slow for many practical applications.

Deterministic parsing has emerged as an attrac-
tive alternative to probabilistic parsing, offering

accuracy just below the state-of-the-art in syn-
tactic analysis of English, but running in linear
time (Sagae and Lavie, 2005; Yamada and Mat-
sumoto, 2003; Nivre and Scholz, 2004). Encour-
aging results have also been shown recently by
Cheng et al. (2004; 2005) in applying determin-
istic models to Chinese dependency parsing.

We present a novel classifier-based determin-
istic parser for Chinese constituency parsing. In
our approach, which is based on the shift-reduce
parser for English reported in (Sagae and Lavie,
2005), the parsing task is transformed into a suc-
cession of classification tasks. The parser makes
one pass through the input sentence. At each parse
state, it consults a classifier to make shift/reduce
decisions. The parser then commits to a decision
and enters the next parse state. Shift/reduce deci-
sions are made deterministically based on the lo-
cal context of each parse state, and no backtrack-
ing is involved. This process can be viewed as a
greedy search where only one path in the whole
search space is considered. Our parser produces
both dependency and constituent structures, but in
this paper we will focus on constituent parsing.

By separating the classification task from the
parsing process, we can take advantage of many
machine learning techniques such as classifier en-
semble. We conducted experiments with four
different classifiers: support vector machines
(SVM), Maximum-Entropy (Maxent), Decision
Tree (DTree) and memory-based learning (MBL).
We also compared the performance of three differ-
ent classifier ensemble approaches (simple voting,
classifier stacking and meta-classifier).

Our best model (using stacked classifiers) runs
in linear time and has labeled precision and
recall above 88% using gold-standard part-of-
speech tags, surpassing the best published results
(see Section 5). Our SVM parser is 2-13 times
faster than state-of-the-art parsers, while produc-

425



ing more accurate results. Our Maxent and DTree
parsers are 40-270 times faster than state-of-the-
art parsers, but with 5-6% losses in accuracy.

2 Deterministic parsing model

Like other deterministic parsers, our parser as-
sumes input has already been segmented and
tagged with part-of-speech (POS) information
during a preprocessing step1. The main data struc-
tures used in the parsing algorithm are a queue and
a stack. The input word-POS pairs to be processed
are stored in the queue. The stack holds the partial
parse trees that are built during parsing. A parse
state is represented by the content of the stack and
queue.

The classifier makes shift/reduce decisions
based on contextual features that represent the
parse state. A shift action removes the first item
on the queue and puts it onto the stack. A reduce
action is in the form of Reduce-{Binary|Unary}-
X, where{Binary|Unary} denotes whether one or
two items are to be removed from the stack, and X
is the label of a new tree node that will be domi-
nating the removed items. Because a reduction is
either unary or binary, the resulting parse tree will
only have binary and/or unary branching nodes.

Parse trees are also lexicalized to produce de-
pendency structures. For lexicalization, we used
the same head-finding rules reported in (Bikel,
2004). With this additional information, reduce
actions are now in the form of Reduce-{Binary
|Unary}-X-Direction. The “Direction” tag gives
information about whether to take the head-node
of the left subtree or the right subtree to be the
head of the new tree, in the case of binary reduc-
tion. A simple transformation process as described
in (Sagae and Lavie, 2005) is employed to con-
vert between arbitrary branching trees and binary
trees. This transformation breaks multi-branching
nodes down into binary-branching nodes by in-
serting temporary nodes; temporary nodes are col-
lapsed and removed when we transform a binary
tree back into a multi-branching tree.

The parsing process succeeds when all the items
in the queue have been processed and there is only
one item (the final parse tree) left on the stack.
If the classifier returns a shift action when there
are no items left on the queue, or a reduce ac-
tion when there are no items on the stack, the

1We constructed our own POS tagger based on SVM; see
Section 3.3.

parser fails. In this case, the parser simply com-
bines all the items on the stack into one IP node,
and outputs this as a partial parse. Sagae and
Lavie (2005) have shown that this algorithm has
linear time complexity, assuming that classifica-
tion takes constant time. The next example il-
lustrates the process for the input “Y� (Brown)
6¯ (visits)Þ0 (Shanghai)” that is tagged with
the POS sequence “NR (Proper Noun) VV (Verb)
NR (Proper Noun)”.

1. In the initial parsing state, the stack (S) is
empty, and the queue (Q) holds word and
POS tag pairs for the input sentence.
(S): Empty

(Q): NR

Y�

VV

6¯

NR

Þ0

2. The first action item that the classifier gives
is a shift action.
(S): NR

Y�

(Q): VV

6¯

NR

Þ0

3. The next action is a reduce-Unary-NP, which
means reducing the first item on the stack to a
NP node. Node (NRY�) becomes the head
of the new NP node and this information is
marked by brackets. The new parse state is:
(S): NP (NRY�)

NR

Y�

(Q): VV

6¯

NR

Þ0

4. The next action is shift.
(S): NP (NRY�)

NR

Y�

VV

6¯

(Q): NR

Þ0

5. The next action is again shift.
(S): NP (NRY�)

NR

Y�

VV

6¯

NR

Þ0

(Q): Empty

6. The next action is reduce-Unary-NP.
(S): NP (NRY�)

NR

Y�

VV

6¯

NP (NRÞ0)

NR

Þ0
(Q): Empty

7. The next action is reduce-Binary-VP-Left.
The node (VV6¯) will be the head of the
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new VP node.
(S): NP (NRY�)

NR

Y�

VP (VV 6¯)

VV

6¯

NP (NRÞ0)

NR

Þ0
(Q): Empty

8. The next action is reduce-Binary-IP-Right.
Since after the action is performed, there will
be only one tree node(IP) left on the stack and
no items on the queue, this is the final action.
The final state is:
(S): IP (VV 6¯)

NP (NRY�)

NR

Y�

VP (VV 6¯)

VV

6¯

NP (NRÞ0)

NR

Þ0
(Q): Empty

3 Classifiers and Feature Selection

Classification is the key component of our parsing
model. We conducted experiments with four dif-
ferent types of classifiers.

3.1 Classifiers

Support Vector Machine: Support Vector Ma-
chine is a discriminative classification technique
which solves the binary classification problem by
finding a hyperplane in a high dimensional space
that gives the maximum soft margin, based on
the Structural Risk Minimization Principle. We
used the TinySVM toolkit (Kudo and Matsumoto,
2000), with a degree 2 polynomial kernel. To train
a multi-class classifier, we used the one-against-all
scheme.

Maximum-Entropy Classifier : In a
Maximum-entropy model, the goal is to esti-
mate a set of parameters that would maximize
the entropy over distributions that satisfy certain
constraints. These constraints will force the model
to best account for the training data (Ratnaparkhi,
1999). Maximum-entropy models have been used
for Chinese character-based parsing (Fung et al.,
2004; Luo, 2003) and POS tagging (Ng and Low,
2004). In our experiments, we used Le’s Maxent
toolkit (Zhang, 2004). This implementation uses
the Limited-Memory Variable Metric method for
parameter estimation. We trained all our models
using 300 iterations with no event cut-off, and
a Gaussian prior smoothing value of 2. Maxent
classifiers output not only a single class label, but

also a number of possible class labels and their
associated probability estimate.

Decision Tree Classifier: Statistical decision
tree is a classic machine learning technique that
has been extensively applied to NLP. For exam-
ple, decision trees were used in the SPATTER sys-
tem (Magerman, 1994) to assign probability dis-
tribution over the space of possible parse trees.
In our experiment, we used the C4.5 decision
tree classifier, and ignored lexical features whose
counts were less than 7.

Memory-Based Learning: Memory-Based
Learning approaches the classification problem
by storing training examples explicitly in mem-
ory, and classifying the current case by finding
the most similar stored cases (using k-nearest-
neighbors). We used the TiMBL toolkit (Daele-
mans et al., 2004) in our experiment, withk = 5.

3.2 Feature selection

For each parse state, a set of features are
extracted and fed to each classifier. Fea-
tures are distributionally-derived or linguistically-
based, and carry the context of a particular parse
state. When input to the classifier, each feature is
treated as a contextual predicate which maps an
outcome and a context totrue, false value.

The specific features used with the classifiers
are listed in Table 1.

Sun and Jurafsky (2003) studied the distribu-
tional property of rhythm in Chinese, and used the
rhythmic feature to augment a PCFG model for
a practical shallow parsing task. This feature has
the value 1, 2 or 3 for monosyllabic, bi-syllabic or
multi-syllabic nouns or verbs. For noun and verb
phrases, the feature is defined as the number of
words in the phrase. Sun and Jurafsky found that
in NP and VP constructions there are strong con-
straints on the word length for verbs and nouns
(a kind of rhythm), and on the number of words
in a constituent. We employed these same rhyth-
mic features to see whether this property holds for
the Penn Chinese Treebank data, and if it helps in
the disambiguation of phrase types. Experiments
show that this feature does increase classification
accuracy of the SVM model by about 1%.

In both Chinese and English, there are punctu-
ation characters that come in pairs (e.g., parenthe-
ses). In Chinese, such pairs are more frequent
(quotes, single quotes, and book-name marks).
During parsing, we note how many opening punc-
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1 A Boolean feature indicates if a closing punctuation is expected or not.
2 A Boolean value indicates if the queue is empty or not.
3 A Boolean feature indicates whether there is a comma separating S(1) andS(2) or not.
4 Last action given by the classifier, and number of words in S(1) and S(2).
5 Headword and its POS of S(1), S(2), S(3) and S(4), and word and POS of Q(1), Q(2), Q(3) and Q(4).
6 Nonterminal label of the root of S(1) and S(2), and number of punctuations in S(1) and S(2).
7 Rhythmic features and the linear distance between the head-words of the S(1) and S(2).
8 Number of words found so far to be dependents of the head-words ofS(1) and S(2).
9 Nonterminal label, POS and headword of the immediate left and right child of the root of S(1) and S(2).
10 Most recently found word and POS pair that is to the left of the head-wordof S(1) and S(2).
11 Most recently found word and POS pair that is to the right of the head-word of S(1) and S(2).

Table 1: Features for classification

tuations we have seen on the stack. If the number
is odd, then feature 2 will have value 1, otherwise
0. A boolean feature is used to indicate whether or
not an odd number of opening punctuations have
been seen and a closing punctuation is expected;
in this case the feature gives a strong hint to the
parser that all the items in the queue before the
closing punctuation, and the items on the stack
after the opening punctuation should be under a
common constituent node which begins and ends
with the two punctuations.

3.3 POS tagging

In our parsing model, POS tagging is treated as
a separate problem and it is assumed that the in-
put has already been tagged with POS. To com-
pare with previously published work, we evaluated
the parser performance on automatically tagged
data. We constructed a simple POS tagger using
an SVM classifier. The tagger makes two passes
over the input sentence. The first pass extracts fea-
tures from the two words and POS tags that came
before the current word, the two words follow-
ing the current word, and the current word itself
(the length of the word, whether the word con-
tains numbers, special symbols that separates for-
eign first and last names, common Chinese family
names, western alphabets or dates). Then the tag
is assigned to the word according to SVM classi-
fier’s output. In the second pass, additional fea-
tures such as the POS tags of the two words fol-
lowing the current word, and the POS tag of the
current word (assigned in the first pass) are used.
This tagger had a measured precision of 92.5% for
sentences≤ 40 words.

4 Experiments

We performed experiments using the Penn Chi-
nese Treebank. Sections 001-270 (3484 sentences,
84,873 words) were used for training, 271-300

(348 sentences, 7980 words) for development, and
271-300 (348 sentences, 7980 words) for testing.
The whole dataset contains 99629 words, which is
about 1/10 of the size of the English Penn Tree-
bank. Standard corpus preparation steps were
done prior to parsing, so that empty nodes were
removed, and the resulting A over A unary rewrite
nodes are collapsed. Functional labels of the non-
terminal nodes are also removed, but we did not
relabel the punctuations, unlike in (Jiang, 2004).
Bracket scoring was done by the EVALB pro-
gram2, and preterminals were not counted as con-
stituents. In all our experiments, we used labeled
recall (LR), labeled precision (LP) and F1 score
(harmonic mean of LR and LP) as our evaluation
metrics.

4.1 Results of different classifiers

Table 2 shows the classification accuracy and pars-
ing accuracy of the four different classifiers on the
development set for sentences≤ 40 words, with
gold-standard POS tagging. The runtime (Time)
of each model and number of failed parses (Fail)
are also shown.

Classification Parsing Accuracy
Model Accuracy LR LP F1 Fail Time
SVM 94.3% 86.9% 87.9% 87.4% 0 3m 19s
Maxent 92.6% 84.1%85.2%84.6% 5 0m 21s
DTree1 92.0% 78.8%80.3%79.5% 42 0m 12s
DTree2 N/A 81.6%83.6%82.6% 30 0m 18s
MBL 90.6% 74.3%75.2%74.7% 2 16m 11s

Table 2: Comparison of different classifier mod-
els’ parsing accuracies on development set for sen-
tences≤ 40 words, with gold-standard POS

For the DTree learner, we experimented with
two different classification strategies. In our first
approach, the classification is done in a single
stage (DTree1). The learner is trained for a multi-

2http://nlp.cs.nyu.edu/evalb/
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class classification problem where the class labels
include shift and all possible reduce actions. But
this approach yielded a lot of parse failures (42 out
of 350 sentences failed during parsing, and par-
tial parse tree was returned). These failures were
mostly due to false shift actions in cases where
the queue is empty. To alleviate this problem, we
broke the classification process down to two stages
(DTree2). A first stage classifier makes a binary
decision on whether the action is shift or reduce.
If the output is reduce, a second-stage classifier de-
cides which reduce action to take. Results showed
that breaking down the classification task into two
stages increased overall accuracy, and the number
of failures was reduced to 30.

The SVM model achieved the highest classifi-
cation accuracy and the best parsing results. It
also successfully parsed all sentences. The Max-
ent model’s classification error rate (7.4%) was
30% higher than the error rate of the SVM model
(5.7%), and its F1 (84.6%) was 3.2% lower than
SVM model’s F1 (87.4%). But Maxent model was
about 9.5 times faster than the SVM model. The
DTree classifier achieved 81.6% LR and 83.6%
LP. The MBL model did not perform well; al-
though MBL and SVM differed in accuracy by
only about 3 percent, the parsing results showed
a difference of more than 10 percent. One pos-
sible explanation for the poor performance of
the MBL model is that all the features we used
were binary features, and memory-based learner
is known to work better with multivalue features
than binary features in natural language learning
tasks (van den Bosch and Zavrel, 2000).

In terms of speed and accuracy trade-off, there
is a 5.5% trade-off in F1 (relative to SVM’s F1)
for a roughly 14 times speed-up between SVM
and two-stage DTree. Maxent is more balanced
in the sense that its accuracy was slightly lower
(3.2%) than SVM, and was just about as fast as the
two-stage DTree on the development set. The high
speed of the DTree and Maxent models make them
very attractive in applications where speed is more
critical than accuracy. While the SVM model
takes more CPU time, we show in Section 5 that
when compared to existing parsers, SVM achieves
about the same or higher accuracy but is at least
twice as fast.

Using gold-standard POS tagging, the best clas-
sifier model (SVM) achieved LR of 87.2% and LP
of 88.3%, as shown in Table 4. Both measures sur-

pass the previously known best results on parsing
using gold-standard tagging. We also tested the
SVM model using data automatically tagged by
our POS tagger, and it achieved LR of 78.1% and
LP of 81.1% for sentences≤ 40 words, as shown
in Table 3.

4.2 Classifier Ensemble Experiments

Classifier ensemble by itself has been a fruitful
research direction in machine learning in recent
years. The basic idea in classifier ensemble is
that combining multiple classifiers can often give
significantly better results than any single classi-
fier alone. We experimented with three different
classifier ensemble strategies: classifier stacking,
meta-classifier, and simple voting.

Using the SVM classifier’s results as a baseline,
we tested these approaches on the development
set. In classifier stacking, we collect the outputs
from Maxent, DTree and TiMBL, which are all
trained on a separate dataset from the training set
(section 400-650 of the Penn Chinese Treebank,
smaller than the original training set). We use their
classification output as features, in addition to the
original feature set, to train a new SVM model
on the original training set. We achieved LR of
90.3% and LP of 90.5% on the development set,
a 3.4% and 2.6% improvement in LR and LP, re-
spectively. When tested on the test set, we gained
1% improvement in F1 when gold-standard POS
tagging is used. When tested with automatic tag-
ging, we achieved a 0.5% improvement in F1. Us-
ing Bikel’s significant tester with 10000 times ran-
dom shuffle, the p-value for LR and LP are 0.008
and 0.457, respectively. The increase in recall
is statistically significant, and it shows classifier
stacking can improve performance.

On the other hand, we did not find meta-
classification and simple voting very effective. In
simple voting, we make the classifiers to vote in
each step for every parse action. The F1 of sim-
ple voting method is downgraded by 5.9% rela-
tive to SVM model’s F1. By analyzing the inter-
agreement among classifiers, we found that there
were no cases where Maxent’s top output and
DTree’s output were both correct and SVM’s out-
put was wrong. Using the top output from Maxent
and DTree directly does not seem to be comple-
mentary to SVM.

In the meta-classifier approach, we first col-
lect the output from each classifier trained on sec-
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MODEL ≤ 40 words ≤ 100 words Unlimited
LR LP F1 POS LR LP F1 POS LR LP F1 POS

Bikel & Chiang 2000 76.8%77.8%77.3% - 73.3%74.6%74.0% - - - - -
Levy & Manning 2003 79.2%78.4%78.8% - - - - - - - - -
Xiong et al. 2005 78.7%80.1%79.4% - - - - - - - - -
Bikel’s Thesis 2004 78.0%81.2%79.6% - 74.4%78.5%76.4% - - - - -
Chiang & Bikel 2002 78.8%81.1%79.9% - 75.2%78.0%76.6% - - - - -
Jiang’s Thesis 2004 80.1%82.0%81.1%92.4% - - - - - - - -
Sun & Jurafsky 2004 85.5% 86.4% 85.9% - - - - - 83.3% 82.2% 82.7% -
DTree model 71.8%76.9%74.4%92.5% 69.2%74.5%71.9%92.2% 68.7%74.2%71.5%92.1%
SVM model 78.1%81.1%79.6%92.5% 75.5%78.5% 77.0%92.2% 75.0%78.0%76.5%92.1%
Stacked classifier model79.2%81.1%80.1%92.5% 76.7% 78.4%77.5% 92.2% 76.2%78.0%77.1%92.1%

Table 3: Comparison with related work on the test set using automatically generated POS

tion 1-210 (roughly 3/4 of the entire training set).
Then specifically for Maxent, we collected the top
output as well as its associated probability esti-
mate. Then we used the outputs and probabil-
ity estimate as features to train an SVM classifier
that makes a decision on which classifier to pick.
Meta-classifier results did not change at all from
our baseline. In fact, the meta-classifier always
picked SVM as its output. This agrees with our
observation for the simple voting case.

5 Comparison with Related Work

Bikel and Chiang (2000) constructed two parsers
using a lexicalized PCFG model that is based on
Collins’ model 2 (Collins, 1999), and a statisti-
cal Tree-adjoining Grammar(TAG) model. They
used the same train/development/test split, and
achieved LR/LP of 76.8%/77.8%. In Bikel’s the-
sis (2004), the same Collins emulation model
was used, but with tweaked head-finding rules.
Also a POS tagger was used for assigning tags
for unseen words. The refined model achieved
LR/LP of 78.0%/81.2%. Chiang and Bikel (2002)
used inside-outside unsupervised learning algo-
rithm to augment the rules for finding heads, and
achieved an improved LR/LP of 78.8%/81.1%.
Levy and Manning (2003) used a factored model
that combines an unlexicalized PCFG model with
a dependency model. They achieved LR/LP
of 79.2%/78.4% on a different test/development
split. Xiong et al. (2005) used a similar model to
the BBN’s model in (Bikel and Chiang, 2000),
and augmented the model by semantic categori-
cal information and heuristic rules. They achieved
LR/LP of 78.7%/80.1%. Hearne and Way (2004)
used a Data-Oriented Parsing (DOP) approach
that was optimized for top-down computation.
They achieved F1 of 71.3 on a different test and
training set. Jiang (2004) reported LR/LP of

80.1%/82.0% on sentences≤ 40 words (results
not available for sentences≤ 100 words) by ap-
plying Collins’ parser to Chinese. In Sun and
Jurafsky (2004)’s work on Chinese shallow se-
mantic parsing, they also applied Collin’s parser
to Chinese. They reported up-to-date the best
parsing performance on Chinese Treebank. They
achieved LR/LP of 85.5%/86.4% on sentences≤
40 words, and LR/LP of 83.3%/82.2% on sen-
tences≤ 100 words, far surpassing all other pre-
viously reported results. Luo (2003) and Fung et
al. (2004) addressed the issue of Chinese text seg-
mentation in their work by constructing character-
based parsers. Luo integrated segmentation, POS
tagging and parsing into one maximum-entropy
framework. He achieved a F1 score of 81.4% in
parsing. But the score was achieved using 90% of
the 250K-CTB (roughly 2.5 times bigger than our
training set) for training and 10% for testing. Fung
et al.(2004) also took the maximum-entropy mod-
eling approach, but augmented by transformation-
based learning. They used the standard training
and testing split. When tested with gold-standard
segmentation, they achieved a F1 score of 79.56%,
but POS-tagged words were treated as constituents
in their evaluation.

In comparison with previous work, our parser’s
accuracy is very competitive. Compared to Jiang’s
work and Sun and Jurafsky’s work, the classifier
ensemble model of our parser is lagging behind by
1% and 5.8% in F1, respectively. But compared
to all other works, our classifier stacking model
gave better or equal results for all three measures.
In particular, the classifier ensemble model and
SVM model of our parser achieved second and
third highest LP, LR and F1 for sentences≤ 100
words as shown in Table 3. (Sun and Jurafsky did
not report results on sentences≤ 100 words, but
it is worth noting that out of all the test sentences,
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only 2 sentences have length> 100).
Jiang (2004) and Bikel (2004)3 also evaluated

their parsers on the test set for sentences≤ 40
words, using gold-standard POS tagged input. Our
parser gives significantly better results as shown
in Table 4. The implication of this result is two-
fold. On one hand, it shows that if POS tagging
accuracy can be increased, our parser is likely to
benefit more than the other two models; on the
other hand, it also indicates that our deterministic
model is less resilient to POS errors. Further de-
tailed analysis is called for, to study the extent to
which POS tagging errors affects the deterministic
parsing model.

Model LR LP F1
Bikel’s Thesis 2004 80.9%84.5%82.7%
Jiang’s Thesis 2004 84.5%88.0%86.2%
DTree model 80.5%83.9%82.2%
Maxent model 81.4%82.8%82.1%
SVM model 87.2%88.3% 87.8%
Stacked classifier model88.3% 88.1%88.2%

Table 4: Comparison with related work on the test
set for sentence≤ 40 words, using gold-standard
POS

To measure efficiency, we ran two publicly
available parsers (Levy and Manning’s PCFG
parser (2003) and Bikel’s parser (2004)) on
the standard test set and compared the run-
time4. The runtime of these parsers are shown
in minute:second format in Table 5. Our SVM
model is more than 2 times faster than Levy and
Manning’s parser, and more than 13 times faster
than Bikel’s parser. Our DTree model is 40 times
faster than Levy and Manning’s parser, and 270
times faster than Bikel’s parser. Another advan-
tage of our parser is that it does not take as much
memory as these other parsers do. In fact, none
of the models except MBL takes more than 60
megabytes of memory at runtime. In compari-
son, Levy and Manning’s PCFG parser requires
more than 400 mega-bytes of memory when pars-
ing long sentences (70 words or longer).

6 Discussion and future work

One unique attraction of this deterministic pars-
ing framework is that advances in machine learn-
ing field can be directly applied to parsing, which

3Bikel’s parser used gold-standard POS tags for unseen
words only. Also, the results are obtained from a parser
trained on 250K-CTB, about 2.5 times bigger than CTB 1.0.

4All the experiments were conducted on a Pentium IV
2.4GHz machine with 2GB of RAM.

Model runtime
Bikel 54m 6s
Levy & Manning 8m 12s
Our DTree model 0m 14s
Our Maxent model0m 24s
Our SVM model 3m 50s

Table 5: Comparison of parsing speed

opens up lots of possibilities for continuous im-
provements, both in terms of accuracy and effi-
ciency. For example, in this paper we experi-
mented with one method of simple voting. An al-
ternative way of doing simple voting is to let the
parsers vote on membership of constituents after
each parser has produced its own parse tree (Hen-
derson and Brill, 1999), instead of voting at each
step during parsing.

Our initial attempt to increase the accuracy of
the DTree model by applying boosting techniques
did not yield satisfactory results. In our exper-
iment, we implemented the AdaBoost.M1 (Fre-
und and Schapire, 1996) algorithm using re-
sampling to vary the training set distribution.
Results showed AdaBoost suffered severe over-
fitting problems and hurts accuracy greatly, even
with a small number of samples. One possible
reason for this is that our sample space is very
unbalanced across the different classes. A few
classes have lots of training examples while a large
number of classes are rare, which could raise the
chance of overfitting.

In our experiments, SVM model gave better re-
sults than the Maxent model. But it is important
to note that although the same set of features were
used in both models, a degree 2 polynomial ker-
nel was used in the SVM classifier while Maxent
only has degree 1 features. In our future work, we
will experiment with degree 2 features and L1 reg-
ularization in the Maxent model, which may give
us closer performance to the SVM model with a
much faster speed.

7 Conclusion

In this paper, we presented a novel determinis-
tic parser for Chinese constituent parsing. Us-
ing gold-standard POS tags, our best model (us-
ing stacked classifiers) runs in linear time and has
labeled recall and precision of 88.3% and 88.1%,
respectively, surpassing the best published results.
And with a trade-off of 5-6% in accuracy, our
DTree and Maxent parsers run at speeds 40-270
times faster than state-of-the-art parsers. Our re-
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sults have shown that the deterministic parsing
framework is a viable and effective approach to
Chinese parsing. For future work, we will fur-
ther improve the speed and accuracy of our mod-
els, and apply them to more Chinese and multi-
lingual natural language applications that require
high speed and accurate parsing.
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Abstract

We present an automatic approach to tree annota-
tion in which basic nonterminal symbols are alter-
nately split and merged to maximize the likelihood
of a training treebank. Starting with a simple X-
bar grammar, we learn a new grammar whose non-
terminals are subsymbols of the original nontermi-
nals. In contrast with previous work, we are able
to split various terminals to different degrees, as ap-
propriate to the actual complexity in the data. Our
grammars automatically learn the kinds of linguistic
distinctions exhibited in previous work on manual
tree annotation. On the other hand, our grammars
are much more compact and substantially more ac-
curate than previous work on automatic annotation.
Despite its simplicity, our best grammar achieves
an F1 of 90.2% on the Penn Treebank, higher than
fully lexicalized systems.

1 Introduction

Probabilistic context-free grammars (PCFGs) underlie
most high-performance parsers in one way or another
(Collins, 1999; Charniak, 2000; Charniak and Johnson,
2005). However, as demonstrated in Charniak (1996)
and Klein and Manning (2003), a PCFG which sim-
ply takes the empirical rules and probabilities off of a
treebank does not perform well. This naive grammar
is a poor one because its context-freedom assumptions
are too strong in some places (e.g. it assumes that sub-
ject and object NPs share the same distribution) and too
weak in others (e.g. it assumes that long rewrites are
not decomposable into smaller steps). Therefore, a va-
riety of techniques have been developed to both enrich
and generalize the naive grammar, ranging from simple
tree annotation and symbol splitting (Johnson, 1998;
Klein and Manning, 2003) to full lexicalization and in-
tricate smoothing (Collins, 1999; Charniak, 2000).

In this paper, we investigate the learning of a gram-
mar consistent with a treebank at the level of evalua-
tion symbols (such as NP, VP, etc.) but split based on
the likelihood of the training trees. Klein and Manning
(2003) addressed this question from a linguistic per-
spective, starting with a Markov grammar and manu-
ally splitting symbols in response to observed linguistic

trends in the data. For example, the symbol NP might
be split into the subsymbol NPˆS in subject position
and the subsymbol NPˆVP in object position. Recently,
Matsuzaki et al. (2005) and also Prescher (2005) ex-
hibited an automatic approach in which each symbol is
split into a fixed number of subsymbols. For example,
NP would be split into NP-1 through NP-8. Their ex-
citing result was that, while grammars quickly grew too
large to be managed, a 16-subsymbol induced grammar
reached the parsing performance of Klein and Manning
(2003)’s manual grammar. Other work has also investi-
gated aspects of automatic grammar refinement; for ex-
ample, Chiang and Bikel (2002) learn annotations such
as head rules in a constrained declarative language for
tree-adjoining grammars.

We present a method that combines the strengths of
both manual and automatic approaches while address-
ing some of their common shortcomings. Like Mat-
suzaki et al. (2005) and Prescher (2005), we induce
splits in a fully automatic fashion. However, we use a
more sophisticated split-and-merge approach that allo-
cates subsymbols adaptively where they are most effec-
tive, like a linguist would. The grammars recover pat-
terns like those discussed in Klein and Manning (2003),
heavily articulating complex and frequent categories
like NP and VP while barely splitting rare or simple
ones (see Section 3 for an empirical analysis).

Empirically, hierarchical splitting increases the ac-
curacy and lowers the variance of the learned gram-
mars. Another contribution is that, unlike previous
work, we investigate smoothed models, allowing us to
split grammars more heavily before running into the
oversplitting effect discussed in Klein and Manning
(2003), where data fragmentation outweighs increased
expressivity.

Our method is capable of learning grammars of sub-
stantially smaller size and higher accuracy than previ-
ous grammar refinement work, starting from a simpler
initial grammar. For example, even beginning with an
X-bar grammar (see Section 1.1) with 98 symbols, our
best grammar, using 1043 symbols, achieves a test set
F1 of 90.2%. This is a 27% reduction in error and a sig-
nificant reduction in size1 over the most accurate gram-

1This is a 97.5% reduction in number of symbols. Mat-
suzaki et al. (2005) do not report a number of rules, but our
small number of symbols and our hierarchical training (which

433



(a) FRAG

RB

Not

NP

DT

this

NN

year

.

.

(b) ROOT

FRAG

FRAG

RB

Not

NP

DT

this

NN

year

.

.

Figure 1: (a) The original tree. (b) The X-bar tree.

mar in Matsuzaki et al. (2005). Our grammar’s accu-
racy was higher than fully lexicalized systems, includ-
ing the maximum-entropy inspired parser of Charniak
and Johnson (2005).

1.1 Experimental Setup

We ran our experiments on the Wall Street Journal
(WSJ) portion of the Penn Treebank using the stan-
dard setup: we trained on sections 2 to 21, and we
used section 1 as a validation set for tuning model hy-
perparameters. Section 22 was used as development
set for intermediate results. All of section 23 was re-
served for the final test. We used the EVALB parseval
reference implementation, available from Sekine and
Collins (1997), for scoring. All reported development
set results are averages over four runs. For the final test
we selected the grammar that performed best on the de-
velopment set.

Our experiments are based on a completely unanno-
tated X-bar style grammar, obtained directly from the
Penn Treebank by the binarization procedure shown in
Figure 1. For each local tree rooted at an evaluation
nonterminalX , we introduce a cascade of new nodes
labeledX so that each has two children. Rather than
experiment with head-outward binarization as in Klein
and Manning (2003), we simply used a left branching
binarization; Matsuzaki et al. (2005) contains a com-
parison showing that the differences between binariza-
tions are small.

2 Learning

To obtain a grammar from the training trees, we want
to learn a set of rule probabilitiesβ on latent annota-
tions that maximize the likelihood of the training trees,
despite the fact that the original trees lack the latent
annotations. The Expectation-Maximization (EM) al-
gorithm allows us to do exactly that.2 Given a sen-
tencew and its unannotated treeT , consider a non-
terminalA spanning(r, t) and its childrenB and C

spanning(r, s) and (s, t). Let Ax be a subsymbol
of A, By of B, andCz of C. Then the inside and

outside probabilities PIN (r, t, Ax)
def
= P (wr:t|Ax) and

POUT(r, t, Ax)
def
= P (w1:rAxwt:n) can be computed re-

encourages sparsity) suggest a large reduction.
2Other techniques are also possible; Henderson (2004)

uses neural networks to induce latent left-corner parser states.

cursively:

PIN (r, t, Ax) =
∑

y,z

β(Ax → ByCz)
×PIN (r, s, By)PIN (s, t, Cz)

POUT(r, s, By) =
∑

x,z

β(Ax → ByCz)
×POUT(r, t, Ax)PIN (s, t, Cz)

POUT(s, t, Cz) =
∑

x,y

β(Ax → ByCz)
×POUT(r, t, Ax)PIN (r, s, By)

Although we show only the binary component here, of
course there are both binary and unary productions that
are included. In the Expectation step, one computes
the posterior probability of each annotated rule and po-
sition in each training set treeT :

P ((r, s, t, Ax → ByCz)|w, T ) ∝ POUT(r, t, Ax)

×β(Ax → ByCz)PIN (r, s, By)PIN (s, t, Cz) (1)

In the Maximization step, one uses the above probabil-
ities as weighted observations to update the rule proba-
bilities:

β(Ax → ByCz) :=
#{Ax → ByCz}∑

y′,z′ #{Ax → By′Cz′}

Note that, because there is no uncertainty about the lo-
cation of the brackets, this formulation of the inside-
outside algorithm is linear in the length of the sentence
rather than cubic (Pereira and Schabes, 1992).

For our lexicon, we used a simple yet robust method
for dealing with unknown and rare words by extract-
ing a small number of features from the word and then
computing appproximate tagging probabilities.3

2.1 Initialization

EM is only guaranteed to find a local maximum of the
likelihood, and, indeed, in practice it often gets stuck in
a suboptimal configuration. If the search space is very
large, even restarting may not be sufficient to alleviate
this problem. One workaround is to manually specify
some of the annotations. For instance, Matsuzaki et al.
(2005) start by annotating their grammar with the iden-
tity of the parent and sibling, which are observed (i.e.
not latent), before adding latent annotations.4 If these
manual annotations are good, they reduce the search
space for EM by constraining it to a smaller region. On
the other hand, this pre-splitting defeats some of the
purpose of automatically learning latent annotations,

3A word is classified into one of 50 unknown word cate-
gories based on the presence of features such as capital let-
ters, digits, and certain suffixes and its tagging probability is
given by: P′(word|tag) = k P̂(class|tag) wherek is a con-
stant representingP (word|class) and can simply be dropped.
Rare words are modeled using a combination of their known
and unknown distributions.

4In other words, in the terminology of Klein and Man-
ning (2003), they begin with a (vertical order=2, horizontal
order=1) baseline grammar.
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Figure 2: Evolution of the DT tag during hierarchical splitting and merging. Shown are the top three words for
each subcategory and their respective probability.

leaving to the user the task of guessing what a good
starting annotation might be.

We take a different, fully automated approach. We
start with a completely unannotated X-bar style gram-
mar as described in Section 1.1. Since we will evaluate
our grammar on its ability to recover the Penn Treebank
nonterminals, we must include them in our grammar.
Therefore, this initialization is the absolute minimum
starting grammar that includes the evaluation nontermi-
nals (and maintains separate grammar symbols for each
of them).5 It is a very compact grammar: 98 symbols,6

236 unary rules, and 3840 binary rules. However, it
also has a very low parsing performance: 65.8/59.8
LP/LR on the development set.

2.2 Splitting

Beginning with this baseline grammar, we repeatedly
split and re-train the grammar. In each iteration we
initialize EM with the results of the smaller gram-
mar, splitting every previous annotation symbol in two
and adding a small amount of randomness (1%) to
break the symmetry. The results are shown in Fig-
ure 3. Hierarchical splitting leads to better parame-
ter estimates over directly estimating a grammar with
2k subsymbols per symbol. While the two procedures
are identical for only two subsymbols (F1: 76.1%),
the hierarchical training performs better for four sub-
symbols (83.7% vs. 83.2%). This advantage grows
as the number of subsymbols increases (88.4% vs.
87.3% for 16 subsymbols). This trend is to be ex-
pected, as the possible interactions between the sub-
symbols grows as their number grows. As an exam-
ple of how staged training proceeds, Figure 2 shows
the evolution of the subsymbols of the determiner (DT)
tag, which first splits demonstratives from determiners,
then splits quantificational elements from demonstra-
tives along one branch and definites from indefinites
along the other.

5If our purpose was only to model language, as measured
for instance by perplexity on new text, it could make sense
to erase even the labels of the Penn Treebank to let EM find
better labels by itself, giving an experiment similar to that of
Pereira and Schabes (1992).

645 part of speech tags, 27 phrasal categories and the 26
intermediate symbols which were added during binarization

Because EM is a local search method, it is likely to
converge to different local maxima for different runs.
In our case, the variance is higher for models with few
subcategories; because not all dependencies can be ex-
pressed with the limited number of subcategories, the
results vary depending on which one EM selects first.
As the grammar size increases, the important depen-
dencies can be modeled, so the variance decreases.

2.3 Merging

It is clear from all previous work that creating more la-
tent annotations can increase accuracy. On the other
hand, oversplitting the grammar can be a serious prob-
lem, as detailed in Klein and Manning (2003). Adding
subsymbols divides grammar statistics into many bins,
resulting in a tighter fit to the training data. At the same
time, each bin gives a less robust estimate of the gram-
mar probabilities, leading to overfitting. Therefore, it
would be to our advantage to split the latent annota-
tions only where needed, rather than splitting them all
as in Matsuzaki et al. (2005). In addition, if all sym-
bols are split equally often, one quickly (4 split cycles)
reaches the limits of what is computationally feasible
in terms of training time and memory usage.

Consider the comma POS tag. We would like to see
only one sort of this tag because, despite its frequency,
it always produces the terminal comma (barring a few
annotation errors in the treebank). On the other hand,
we would expect to find an advantage in distinguishing
between various verbal categories and NP types. Addi-
tionally, splitting symbols like the comma is not only
unnecessary, but potentially harmful, since it need-
lessly fragments observations of other symbols’ behav-
ior.

It should be noted that simple frequency statistics are
not sufficient for determining how often to split each
symbol. Consider the closed part-of-speech classes
(e.g. DT, CC, IN) or the nonterminal ADJP. These
symbols are very common, and certainly do contain
subcategories, but there is little to be gained from
exhaustively splitting them before even beginning to
model the rarer symbols that describe the complex in-
ner correlations inside verb phrases. Our solution is
to use a split-and-merge approach broadly reminiscent
of ISODATA, a classic clustering procedure (Ball and
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Hall, 1967).
To prevent oversplitting, we could measure the util-

ity of splitting each latent annotation individually and
then split the best ones first. However, not only is this
impractical, requiring an entire training phase for each
new split, but it assumes the contributions of multiple
splits are independent. In fact, extra subsymbols may
need to be added to several nonterminals before they
can cooperate to pass information along the parse tree.
Therefore, we go in the opposite direction; that is, we
split every symbol in two, train, and then measure for
each annotation the loss in likelihood incurred when
removing it. If this loss is small, the new annotation
does not carry enough useful information and can be
removed. What is more, contrary to the gain in like-
lihood for splitting, the loss in likelihood for merging
can be efficiently approximated.7

Let T be a training tree generating a sentencew.
Consider a noden of T spanning(r, t) with the label
A; that is, the subtree rooted atn generateswr:t and
has the labelA. In the latent model, its labelA is split
up into several latent labels,Ax. The likelihood of the
data can be recovered from the inside and outside prob-
abilities atn:

P(w, T ) =
∑

x

PIN (r, t, Ax)POUT(r, t, Ax) (2)

Consider merging, atn only, two annotationsA1 and
A2. SinceA now combines the statistics ofA1 andA2,
its production probabilities are the sum of those ofA1

andA2, weighted by their relative frequencyp1 andp2

in the training data. Therefore the inside score ofA is:

PIN (r, t, A) = p1PIN(r, t, A1) + p2PIN (r, t, A2)

SinceA can be produced asA1 or A2 by its parents, its
outside score is:

POUT(r, t, A) = POUT(r, t, A1) + POUT(r, t, A2)

Replacing these quantities in (2) gives us the likelihood
Pn(w, T ) where these two annotations and their corre-
sponding rules have been merged, around only noden.

We approximate the overall loss in data likelihood
due to mergingA1 andA2 everywhere in all sentences
wi by the product of this loss for each local change:

∆ANNOTATION (A1, A2) =
∏

i

∏

n∈Ti

Pn(wi, Ti)

P(wi, Ti)

This expression is an approximation because it neglects
interactions between instances of a symbol at multiple
places in the same tree. These instances, however, are

7The idea of merging complex hypotheses to encourage
generalization is also examined in Stolcke and Omohundro
(1994), who used a chunking approach to propose new pro-
ductions in fully unsupervised grammar induction. They also
found it necessary to make local choices to guide their likeli-
hood search.

often far apart and are likely to interact only weakly,
and this simplification avoids the prohibitive cost of
running an inference algorithm for each tree and an-
notation. We refer to the operation of splitting anno-
tations and re-merging some them based on likelihood
loss as a split-merge (SM) cycle. SM cycles allow us to
progressively increase the complexity of our grammar,
giving priority to the most useful extensions.

In our experiments, merging was quite valuable. De-
pending on how many splits were reversed, we could
reduce the grammar size at the cost of little or no loss
of performance, or even a gain. We found that merging
50% of the newly split symbols dramatically reduced
the grammar size after each splitting round, so that af-
ter 6 SM cycles, the grammar was only 17% of the size
it would otherwise have been (1043 vs. 6273 subcat-
egories), while at the same time there was no loss in
accuracy (Figure 3). Actually, the accuracy even in-
creases, by 1.1% at 5 SM cycles. The numbers of splits
learned turned out to not be a direct function of symbol
frequency; the numbers of symbols for both lexical and
nonlexical tags after 4 SM cycles are given in Table 2.
Furthermore, merging makes large amounts of splitting
possible. It allows us to go from 4 splits, equivalent to
the24 = 16 substates of Matsuzaki et al. (2005), to 6
SM iterations, which take a few days to run on the Penn
Treebank.

2.4 Smoothing

Splitting nonterminals leads to a better fit to the data by
allowing each annotation to specialize in representing
only a fraction of the data. The smaller this fraction,
the higher the risk of overfitting. Merging, by allow-
ing only the most beneficial annotations, helps mitigate
this risk, but it is not the only way. We can further
minimize overfitting by forcing the production proba-
bilities from annotations of the same nonterminal to be
similar. For example, a noun phrase in subject position
certainly has a distinct distribution, but it may benefit
from being smoothed with counts from all other noun
phrases. Smoothing the productions of each subsym-
bol by shrinking them towards their common base sym-
bol gives us a more reliable estimate, allowing them to
share statistical strength.

We perform smoothing in a linear way. The es-
timated probability of a productionpx = P(Ax →
By Cz) is interpolated with the average over all sub-
symbols ofA.

p′x = (1 − α)px + αp̄ where p̄ =
1

n

∑

x

px

Here,α is a small constant: we found 0.01 to be a good
value, but the actual quantity was surprisingly unimpor-
tant. Because smoothing is most necessary when pro-
duction statistics are least reliable, we expect smooth-
ing to help more with larger numbers of subsymbols.
This is exactly what we observe in Figure 3, where
smoothing initially hurts (subsymbols are quite distinct
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and do not need their estimates pooled) but eventually
helps (as symbols have finer distinctions in behavior
and smaller data support).

2.5 Parsing

When parsing new sentences with an annotated gram-
mar, returning the most likely (unannotated) tree is in-
tractable: to obtain the probability of an unannotated
tree, one must sum over combinatorially many annota-
tion trees (derivations) for each tree (Sima’an, 1992).

Matsuzaki et al. (2005) discuss two approximations.
The first is settling for the most probable derivation
rather than most probable parse, i.e. returning the single
most likely (Viterbi) annotated tree (derivation). This
approximation is justified if the sum is dominated by
one particular annotated tree. The second approxima-
tion that Matsuzaki et al. (2005) present is the Viterbi
parse under a new sentence-specific PCFG, whose rule
probabilities are given as the solution of a variational
approximation of the original grammar. However, their
rule probabilities turn out to be the posterior probabil-
ity, given the sentence, of each rule being used at each
position in the tree. Their algorithm is therefore thela-
belled recall algorithm of Goodman (1996) but applied
to rules. That is, it returns the tree whose expected
number of correct rules is maximal. Thus, assuming
one is interested in a per-position score like F1 (which
is its own debate), this method of parsing is actually
more appropriate than finding the most likely parse,
not simply a cheap approximation of it, and it need not
be derived by a variational argument. We refer to this
method of parsing as themax-rule parser. Since this
method is not a contribution of this paper, we refer the
reader to the fuller presentations in Goodman (1996)
and Matsuzaki et al. (2005). Note that contrary to the
original labelled recall algorithm, which maximizes the
number of correct symbols, this tree only contains rules
allowed by the grammar. As a result, the percentage of
complete matches with the max-rule parser is typically
higher than with the Viterbi parser. (37.5% vs. 35.8%
for our best grammar).

These posterior rule probabilities are still given by
(1), but, since the structure of the tree is no longer
known, we must sum over it when computing the in-
side and outside probabilities:

PIN (r, t, Ax)=
∑

B,C,s

∑

y,z

β(Ax → ByCz)×
PIN (r, s, By)PIN (s, t, Cz)

POUT(r, s, By)=
∑

A,C,t

∑

x,z

β(Ax → ByCz)×
POUT(r, t, Ax)PIN (s, t, Cz)

POUT(s, t, Cz)=
∑

A,B,r

∑

x,y

β(Ax → ByCz)×
POUT(r, t, Ax)PIN (r, s, By)

For efficiency reasons, we use a coarse-to-fine prun-
ing scheme like that of Caraballo and Charniak (1998).
For a given sentence, we first run the inside-outside
algorithm using the baseline (unannotated) grammar,
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Figure 3: Hierarchical training leads to better parame-
ter estimates. Merging reduces the grammar size sig-
nificantly, while preserving the accuracy and enabling
us to do more SM cycles. Parameter smoothing leads
to even better accuracy for grammars with high com-
plexity.

producing a packed forest representation of the poste-
rior symbol probabilities for each span. For example,
one span might have a posterior probability of 0.8 of
the symbol NP, bute−10 for PP. Then, we parse with the
larger annotated grammar, but, at each span, we prune
away any symbols whose posterior probability under
the baseline grammar falls below a certain threshold
(e−8 in our experiments). Even though our baseline
grammar has a very low accuracy, we found that this
pruning barely impacts the performance of our better
grammars, while significantly reducing the computa-
tional cost. For a grammar with 479 subcategories (4
SM cycles), lowering the threshold toe−15 led to an F1
improvement of 0.13% (89.03 vs. 89.16) on the devel-
opment set but increased the parsing time by a factor of
16.

3 Analysis

So far, we have presented a split-merge method for
learning to iteratively subcategorize basic symbols
like NP and VP into automatically induced subsym-
bols (subcategories in the original sense of Chomsky
(1965)). This approach gives parsing accuracies of up
to 90.7% on the development set, substantially higher
than previous symbol-splitting approaches, while start-
ing from an extremely simple base grammar. However,
in general, any automatic induction system is in dan-
ger of being entirely uninterpretable. In this section,
we examine the learned grammars, discussing what is
learned. We focus particularly on connections with the
linguistically motivated annotations of Klein and Man-
ning (2003), which we do generally recover.

Inspecting a large grammar by hand is difficult, but
fortunately, our baseline grammar has less than 100
nonterminal symbols, and even our most complicated
grammar has only 1043 total (sub)symbols. It is there-
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VBZ
VBZ-0 gives sells takes
VBZ-1 comes goes works
VBZ-2 includes owns is
VBZ-3 puts provides takes
VBZ-4 says adds Says
VBZ-5 believes means thinks
VBZ-6 expects makes calls
VBZ-7 plans expects wants
VBZ-8 is ’s gets
VBZ-9 ’s is remains
VBZ-10 has ’s is
VBZ-11 does Is Does

NNP
NNP-0 Jr. Goldman INC.
NNP-1 Bush Noriega Peters
NNP-2 J. E. L.
NNP-3 York Francisco Street
NNP-4 Inc Exchange Co
NNP-5 Inc. Corp. Co.
NNP-6 Stock Exchange York
NNP-7 Corp. Inc. Group
NNP-8 Congress Japan IBM
NNP-9 Friday September August
NNP-10 Shearson D. Ford
NNP-11 U.S. Treasury Senate
NNP-12 John Robert James
NNP-13 Mr. Ms. President
NNP-14 Oct. Nov. Sept.
NNP-15 New San Wall

JJS
JJS-0 largest latest biggest
JJS-1 least best worst
JJS-2 most Most least

DT
DT-0 the The a
DT-1 A An Another
DT-2 The No This
DT-3 The Some These
DT-4 all those some
DT-5 some these both
DT-6 That This each
DT-7 this that each
DT-8 the The a
DT-9 no any some
DT-10 an a the
DT-11 a this the

CD
CD-0 1 50 100
CD-1 8.50 15 1.2
CD-2 8 10 20
CD-3 1 30 31
CD-4 1989 1990 1988
CD-5 1988 1987 1990
CD-6 two three five
CD-7 one One Three
CD-8 12 34 14
CD-9 78 58 34
CD-10 one two three
CD-11 million billion trillion

PRP
PRP-0 It He I
PRP-1 it he they
PRP-2 it them him

RBR
RBR-0 further lower higher
RBR-1 more less More
RBR-2 earlier Earlier later

IN
IN-0 In With After
IN-1 In For At
IN-2 in for on
IN-3 of for on
IN-4 from on with
IN-5 at for by
IN-6 by in with
IN-7 for with on
IN-8 If While As
IN-9 because if while
IN-10 whether if That
IN-11 that like whether
IN-12 about over between
IN-13 as de Up
IN-14 than ago until
IN-15 out up down

RB
RB-0 recently previously still
RB-1 here back now
RB-2 very highly relatively
RB-3 so too as
RB-4 also now still
RB-5 however Now However
RB-6 much far enough
RB-7 even well then
RB-8 as about nearly
RB-9 only just almost
RB-10 ago earlier later
RB-11 rather instead because
RB-12 back close ahead
RB-13 up down off
RB-14 not Not maybe
RB-15 n’t not also

Table 1: The most frequent three words in the subcategories of several part-of-speech tags.

fore relatively straightforward to review the broad be-
havior of a grammar. In this section, we review a
randomly-selected grammar after 4 SM cycles that pro-
duced an F1 score on the development set of 89.11. We
feel it is reasonable to present only a single grammar
because all the grammars are very similar. For exam-
ple, after 4 SM cycles, the F1 scores of the 4 trained
grammars have a variance of only 0.024, which is tiny
compared to the deviation of 0.43 obtained by Mat-
suzaki et al. (2005)). Furthermore, these grammars
allocate splits to nonterminals with a variance of only
0.32, so they agree to within a single latent state.

3.1 Lexical Splits

One of the original motivations for lexicalization of
parsers is the fact that part-of-speech (POS) tags are
usually far too general to encapsulate a word’s syntac-
tic behavior. In the limit, each word may well have
its own unique syntactic behavior, especially when, as
in modern parsers, semantic selectional preferences are
lumped in with traditional syntactic trends. However,
in practice, and given limited data, the relationship be-
tween specific words and their syntactic contexts may
be best modeled at a level more fine than POS tag but
less fine than lexical identity.

In our model, POS tags are split just like any other
grammar symbol: the subsymbols for several tags are
shown in Table 1, along with their most frequent mem-
bers. In most cases, the categories are recognizable as
either classic subcategories or an interpretable division
of some other kind.

Nominal categories are the most heavily split (see
Table 2), and have the splits which are most semantic
in nature (though not without syntactic correlations).
For example, plural common nouns (NNS) divide into
the maximum number of categories (16). One cate-
gory consists primarily of dates, whose typical parent
is an NP subsymbol whose typical parent is a root S,
essentially modeling the temporal noun annotation dis-
cussed in Klein and Manning (2003). Another cate-
gory specializes in capitalized words, preferring as a
parent an NP with an S parent (i.e. subject position).
A third category specializes in monetary units, and
so on. These kinds of syntactico-semantic categories
are typical, and, given distributional clustering results
like those of Schuetze (1998), unsurprising. The sin-
gular nouns are broadly similar, if slightly more ho-
mogenous, being dominated by categories for stocks
and trading. The proper noun category (NNP, shown)
also splits into the maximum 16 categories, including
months, countries, variants ofCo. andInc., first names,
last names, initials, and so on.

Verbal categories are also heavily split. Verbal sub-
categories sometimes reflect syntactic selectional pref-
erences, sometimes reflect semantic selectional prefer-
ences, and sometimes reflect other aspects of verbal
syntax. For example, the present tense third person
verb subsymbols (VBZ) are shown. The auxiliaries get
three clear categories:do, have, andbe (this pattern
repeats in other tenses), as well a fourth category for
the ambiguous’s. Verbs of communication (says) and
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NNP 62 CC 7 WP$ 2 NP 37 CONJP 2
JJ 58 JJR 5 WDT 2 VP 32 FRAG 2
NNS 57 JJS 5 -RRB- 2 PP 28 NAC 2
NN 56 : 5 ” 1 ADVP 22 UCP 2
VBN 49 PRP 4 FW 1 S 21 WHADVP 2
RB 47 PRP$ 4 RBS 1 ADJP 19 INTJ 1
VBG 40 MD 3 TO 1 SBAR 15 SBARQ 1
VB 37 RBR 3 $ 1 QP 9 RRC 1
VBD 36 WP 2 UH 1 WHNP 5 WHADJP 1
CD 32 POS 2 , 1 PRN 4 X 1
IN 27 PDT 2 “ 1 NX 4 ROOT 1
VBZ 25 WRB 2 SYM 1 SINV 3 LST 1
VBP 19 -LRB- 2 RP 1 PRT 2
DT 17 . 2 LS 1 WHPP 2
NNPS 11 EX 2 # 1 SQ 2

Table 2: Number of latent annotations determined by
our split-merge procedure after 6 SM cycles

propositional attitudes (beleives) that tend to take in-
flected sentential complements dominate two classes,
while control verbs (wants) fill out another.

As an example of a less-split category, the superla-
tive adjectives (JJS) are split into three categories,
corresponding principally tomost, least, and largest,
with most frequent parents NP, QP, and ADVP, respec-
tively. The relative adjectives (JJR) are split in the same
way. Relative adverbs (RBR) are split into a different
three categories, corresponding to (usually metaphor-
ical) distance (further), degree (more), and time (ear-
lier). Personal pronouns (PRP) are well-divided into
three categories, roughly: nominative case, accusative
case, and sentence-initial nominative case, which each
correlate very strongly with syntactic position. As an-
other example of a specific trend which was mentioned
by Klein and Manning (2003), adverbs (RB) do contain
splits for adverbs under ADVPs (also), NPs (only), and
VPs (not).

Functional categories generally show fewer splits,
but those splits that they do exhibit are known to be
strongly correlated with syntactic behavior. For exam-
ple, determiners (DT) divide along several axes: defi-
nite (the), indefinite (a), demonstrative (this), quantifi-
cational (some), negative polarity (no, any), and var-
ious upper- and lower-case distinctions inside these
types. Here, it is interesting to note that these distinc-
tions emerge in a predictable order (see Figure 2 for DT
splits), beginning with the distinction between demon-
stratives and non-demonstratives, with the other dis-
tinctions emerging subsequently; this echoes the result
of Klein and Manning (2003), where the authors chose
to distinguish the demonstrative constrast, but not the
additional ones learned here.

Another very important distinction, as shown in
Klein and Manning (2003), is the various subdivi-
sions in the preposition class (IN). Learned first is
the split between subordinating conjunctions likethat
and proper prepositions. Then, subdivisions of each
emerge: wh-subordinators likeif, noun-modifying
prepositions likeof, predominantly verb-modifying
ones likefrom, and so on.

Many other interesting patterns emerge, including

ADVP
ADVP-0 RB-13 NP-2 RB-13 PP-3 IN-15 NP-2
ADVP-1 NP-3 RB-10 NP-3 RBR-2 NP-3 IN-14
ADVP-2 IN-5 JJS-1 RB-8 RB-6 RB-6 RBR-1
ADVP-3 RBR-0 RB-12 PP-0 RP-0
ADVP-4 RB-3 RB-6 ADVP-2 SBAR-8 ADVP-2 PP-5
ADVP-5 RB-5 NP-3 RB-10 RB-0
ADVP-6 RB-4 RB-0 RB-3 RB-6
ADVP-7 RB-7 IN-5 JJS-1 RB-6
ADVP-8 RB-0 RBS-0 RBR-1 IN-14
ADVP-9 RB-1 IN-15 RBR-0

SINV
SINV-0 VP-14 NP-7 VP-14 VP-15 NP-7 NP-9

VP-14 NP-7 .-0
SINV-1 S-6 ,-0 VP-14 NP-7 .-0

S-11 VP-14 NP-7 .-0

Table 3: The most frequent three productions of some
latent annotations.

many classical distinctions not specifically mentioned
or modeled in previous work. For example, thewh-
determiners (WDT) split into one class forthat and an-
other forwhich, while thewh-adverbs align by refer-
ence type: event-basedhow andwhy vs. entity-based
when andwhere. The possesive particle (POS) has one
class for the standard’s, but another for the plural-only
apostrophe. As a final example, the cardinal number
nonterminal (CD) induces various categories for dates,
fractions, spelled-out numbers, large (usually financial)
digit sequences, and others.

3.2 Phrasal Splits

Analyzing the splits of phrasal nonterminals is more
difficult than for lexical categories, and we can merely
give illustrations. We show some of the top productions
of two categories in Table 3.

A nonterminal split can be used to model an other-
wise uncaptured correlation between that symbol’s ex-
ternal context (e.g. its parent symbol) and its internal
context (e.g. its child symbols). A particularly clean ex-
ample of a split correlating external with internal con-
texts is the inverted sentence category (SINV), which
has only two subsymbols, one which usually has the
ROOT symbol as its parent (and which has sentence fi-
nal puncutation as its last child), and a second subsym-
bol which occurs in embedded contexts (and does not
end in punctuation). Such patterns are common, but of-
ten less easy to predict. For example, possesive NPs get
two subsymbols, depending on whether their possessor
is a person / country or an organization. The external
correlation turns out to be that people and countries are
more likely to possess a subject NP, while organizations
are more likely to possess an object NP.

Nonterminal splits can also be used to relay infor-
mation between distant tree nodes, though untangling
this kind of propagation and distilling it into clean ex-
amples is not trivial. As one example, the subsym-
bol S-12 (matrix clauses) occurs only under the ROOT
symbol. S-12’s children usually include NP-8, which
in turn usually includes PRP-0, the capitalized nomi-
native pronouns, DT-{1,2,6} (the capitalized determin-
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ers), and so on. This same propagation occurs even
more frequently in the intermediate symbols, with, for
example, one subsymbol ofNP symbol specializing in
propagating proper noun sequences.

Verb phrases, unsurprisingly, also receive a full set
of subsymbols, including categories for infinitive VPs,
passive VPs, several for intransitive VPs, several for
transitive VPs with NP and PP objects, and one for
sentential complements. As an example of how lexi-
cal splits can interact with phrasal splits, the two most
frequent rewrites involving intransitive past tense verbs
(VBD) involve two different VPs and VBDs: VP-14→
VBD-13 and VP-15→ VBD-12. The difference is that
VP-14s are main clause VPs, while VP-15s are sub-
ordinate clause VPs. Correspondingly, VBD-13s are
verbs of communication (said, reported), while VBD-
12s are an assortment of verbs which often appear in
subordinate contexts (did, began).

Other interesting phenomena also emerge. For ex-
ample, intermediate symbols, which in previous work
were very heavily, manually split using a Markov pro-
cess, end up encoding processes which are largely
Markov, but more complex. For example, some classes
of adverb phrases (those with RB-4 as their head) are
‘forgotten’ by theVP intermediate grammar. The rele-
vant rule is the very probableVP-2→ VP-2 ADVP-6;
adding this ADVP to a growing VP does not change the
VP subsymbol. In essense, at least a partial distinction
between verbal arguments and verbal adjucts has been
learned (as exploited in Collins (1999), for example).

4 Conclusions

By using a split-and-merge strategy and beginning with
the barest possible initial structure, our method reli-
ably learns a PCFG that is remarkably good at pars-
ing. Hierarchical split/merge training enables us to
learn compact but accurate grammars, ranging from ex-
tremely compact (an F1 of 78% with only 147 sym-
bols) to extremely accurate (an F1 of 90.2% for our
largest grammar with only 1043 symbols). Splitting
provides a tight fit to the training data, while merging
improves generalization and controls grammar size. In
order to overcome data fragmentation and overfitting,
we smooth our parameters. Smoothing allows us to
add a larger number of annotations, each specializing
in only a fraction of the data, without overfitting our
training set. As one can see in Table 4, the resulting
parser ranks among the best lexicalized parsers, beat-
ing those of Collins (1999) and Charniak and Johnson
(2005).8 Its F1 performance is a 27% reduction in er-
ror over Matsuzaki et al. (2005) and Klein and Man-
ning (2003). Not only is our parser more accurate, but
the learned grammar is also significantly smaller than
that of previous work. While this all is accomplished
with only automatic learning, the resulting grammar is

8Even with the Viterbi parser our best grammar achieves
88.7/88.9 LP/LR.

≤ 40 words LP LR CB 0CB
Klein and Manning (2003) 86.9 85.7 1.10 60.3

Matsuzaki et al. (2005) 86.6 86.7 1.19 61.1
Collins (1999) 88.7 88.5 0.92 66.7

Charniak and Johnson (2005)90.1 90.1 0.74 70.1
This Paper 90.3 90.0 0.78 68.5

all sentences LP LR CB 0CB
Klein and Manning (2003) 86.3 85.1 1.31 57.2

Matsuzaki et al. (2005) 86.1 86.0 1.39 58.3
Collins (1999) 88.3 88.1 1.06 64.0

Charniak and Johnson (2005)89.5 89.6 0.88 67.6
This Paper 89.8 89.6 0.92 66.3

Table 4: Comparison of our results with those of others.

human-interpretable. It shows most of the manually in-
troduced annotations discussed by Klein and Manning
(2003), but also learns other linguistic phenomena.
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Abstract 

Partial cognates are pairs of words in two 
languages that have the same meaning in 
some, but not all contexts. Detecting the 
actual meaning of a partial cognate in 
context can be useful for Machine Trans-
lation tools and for Computer-Assisted 
Language Learning tools. In this paper 
we propose a supervised and a semi-
supervised method to disambiguate par-
tial cognates between two languages: 
French and English. The methods use 
only automatically-labeled data; therefore 
they can be applied for other pairs of lan-
guages as well. We also show that our 
methods perform well when using cor-
pora from different domains. 

1 Introduction 

When learning a second language, a student 
can benefit from knowledge in his / her first lan-
guage (Gass, 1987), (Ringbom, 1987), (LeBlanc 
et al. 1989). Cognates – words that have similar 
spelling and meaning – can accelerate vocabu-
lary acquisition and facilitate the reading com-
prehension task. On the other  hand, a student has 
to pay attention to the pairs of words that look 
and sound similar but have different meanings – 
false friends pairs, and especially to pairs of 
words that share meaning in some but not all 
contexts – the partial cognates.  

Carroll (1992) claims that false friends can be 
a hindrance in second language learning. She 
suggests that a cognate pairing process between 
two words that look alike happens faster in the 
learner’s mind than a false-friend pairing. Ex-

periments with second language learners of dif-
ferent stages conducted by Van et al. (1998) 
suggest that missing false-friend recognition can 
be corrected when cross-language activation is 
used – sounds, pictures, additional explanation, 
feedback. 
   Machine Translation (MT) systems can benefit 
from extra information when translating a certain 
word in context. Knowing if a word in the source 
language is a cognate or a false friend with a 
word in the target language can improve the 
translation results. Cross-Language Information 
Retrieval systems can use the knowledge of the 
sense of certain words in a query in order to re-
trieve desired documents in the target language.  

Our task, disambiguating partial cognates, is in 
a way equivalent to coarse grain cross-language 
Word-Sense Discrimination. Our focus is disam-
biguating French partial cognates in context: de-
ciding if they are used as cognates with an 
English word, or if they are used as false friends. 

There is a lot of work done on monolingual 
Word Sense Disambiguation (WSD) systems that 
use supervised and unsupervised methods and 
report good results on Senseval data, but there is 
less work done to disambiguate cross-language 
words. The results of this process can be useful 
in many NLP tasks. 
   Although French and English belong to differ-
ent branches of the Indo-European family of lan-
guages, their vocabulary share a great number of 
similarities. Some are words of Latin and Greek 
origin: e.g., education and theory. A small num-
ber of very old, “genetic" cognates go back all 
the way to Proto-Indo-European, e.g., mére - 
mother and pied - foot. The majority of these 
pairs of words penetrated the French and English 
language due to the geographical, historical, and 
cultural contact between the two countries over 
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many centuries (borrowings). Most of the bor-
rowings have changed their orthography, follow-
ing different orthographic rules (LeBlanc and 
Seguin, 1996) and most likely their meaning as 
well. Some of the adopted words replaced the 
original word in the language, while others were 
used together but with slightly or completely dif-
ferent meanings. 
   In this paper we describe a supervised and also 
a semi-supervised method to discriminate the 
senses of partial cognates between French and 
English. In the following sections we present 
some definitions, the way we collected the data, 
the methods that we used, and evaluation ex-
periments with results for both methods.   

2 Definitions  

We adopt the following definitions. The defini-
tions are language-independent, but the examples 
are pairs of French and English words, respec-
tively. 
Cognates, or True Friends (Vrais Amis), are 
pairs of words that are perceived as similar and 
are mutual translations. The spelling can be iden-
tical or not, e.g., nature - nature, reconnaissance 
- recognition. 
False Friends (Faux Amis) are pairs of words in 
two languages that are perceived as similar but 
have different meanings, e.g., main (= hand) - 
main (= principal or essential), blesser (= to in-
jure) - bless (= bénir).  
Partial Cognates are pairs of words that have 
the same meaning in both languages in some but 
not all contexts. They behave as cognates or as 
false friends, depending on the sense that is used 
in each context. For example, in French, facteur 
means not only factor, but also mailman, while 
étiquette can also mean label or sticker, in addi-
tion to the cognate sense. 
Genetic Cognates are word pairs in related lan-
guages that derive directly from the same word 
in the ancestor (proto-)language. Because of 
gradual phonetic and semantic changes over long 
periods of time, genetic cognates often differ in 
form and/or meaning, e.g., père - father, chef - 
head. This category excludes lexical borrowings, 
i.e., words transferred from one language to an-
other at some point of time, such as concierge. 

3 Related Work 

As far as we know there is no work done to dis-
ambiguate partial cognates between two lan-
guages.  

   Ide (2000) has shown on a small scale that 
cross-lingual lexicalization can be used to define 
and structure sense distinctions. Tufis et al. 
(2004) used cross-lingual lexicalization, word-
nets alignment for several languages, and a clus-
tering algorithm to perform WSD on a set of 
polysemous English words. They report an accu-
racy of 74%. 
   One of the most active researchers in identify-
ing cognates between pairs of languages is 
Kondrak (2001; 2004).  His work is more related 
to the phonetic aspect of cognate identification. 
He used in his work algorithms that combine dif-
ferent orthographic and phonetic measures, re-
current sound correspondences, and some 
semantic similarity based on glosses overlap. 
Guy (1994) identified letter correspondence be-
tween words and estimates the likelihood of re-
latedness. No semantic component is present in 
the system, the words are assumed to be already 
matched by their meanings. Hewson (1993), 
Lowe and Mazadon (1994) used systematic 
sound correspondences to determine proto-
projections for identifying cognate sets.  
   WSD is a task that has attracted researchers 
since 1950 and it is still a topic of high interest. 
Determining the sense of an ambiguous word, 
using bootstrapping and texts from a different 
language was done by Yarowsky (1995),  Hearst 
(1991), Diab (2002), and Li and Li (2004).   
   Yarowsky (1995) has used a few seeds and 
untagged sentences in a bootstrapping algorithm 
based on decision lists. He added two constrains 
– words tend to have one sense per discourse and 
one sense per collocation. He reported high accu-
racy scores for a set of 10 words. The monolin-
gual bootstrapping approach was also used by 
Hearst (1991), who used a small set of hand-
labeled data to bootstrap from a larger corpus for 
training a noun disambiguation system for Eng-
lish. Unlike Yarowsky (1995), we use automatic 
collection of seeds. Besides our monolingual 
bootstrapping technique, we also use bilingual 
bootstrapping. 
   Diab (2002) has shown that unsupervised WSD 
systems that use parallel corpora can achieve 
results that are close to the results of a supervised 
approach. She used parallel corpora in French, 
English, and Spanish, automatically-produced 
with MT tools to determine cross-language lexi-
calization sets of target words. The major goal of 
her work was to perform monolingual English 
WSD. Evaluation was performed on the nouns 
from the English all words data in Senseval2. 
Additional knowledge was added to the system 
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from WordNet in order to improve the results. In 
our experiments we use the parallel data in a dif-
ferent way: we use words from parallel sentences 
as features for Machine Learning (ML). Li and 
Li (2004) have shown that word translation and 
bilingual bootstrapping is a good combination for 
disambiguation. They were using a set of 7 pairs 
of Chinese and English words. The two senses of 
the words were highly distinctive: e.g. bass as 
fish or music; palm as tree or hand. 

Our work described in this paper shows that 
monolingual and bilingual bootstrapping can be 
successfully used to disambiguate partial cog-
nates between two languages. Our approach dif-
fers from the ones we mentioned before not only 
from the point of human effort needed to anno-
tate data – we require almost none, and from the 
way we use the parallel data to automatically 
collect training examples for machine learning, 
but also by the fact that we use only off-the-shelf 
tools and resources: free MT and ML tools, and 
parallel corpora. We show that a combination of 
these resources can be used with success in a task 
that would otherwise require a lot of time and 
human effort.  

4 Data for Partial Cognates 

We performed experiments with ten pairs of par-
tial cognates. We list them in Table 1. For a 
French partial cognate we list its English cognate 
and several false friends in English. Often the 
French partial cognate has two senses (one for 
cognate, one for false friend), but sometimes it 
has more than two senses: one for cognate and 
several for false friends (nonetheless, we treat 
them together). For example, the false friend 
words for note have one sense for grades and one 
for bills. 

The partial cognate (PC), the cognate (COG) 
and false-friend (FF) words were collected from 
a web resource1. The resource contained a list of 
400 false-friends with 64 partial cognates. All 
partial cognates are words frequently used in the 
language. We selected ten partial cognates pre-
sented in Table 1 according to the number of ex-
tracted sentences (a balance between the two 
meanings), to evaluate and experiment our pro-
posed methods. 

The human effort that we required for our 
methods was to add more false-friend English 
words, than the ones we found in the web re-
source. We wanted to be able to distinguish the 

                                                           
1 http://french.about.com/library/fauxamis/blfauxam_a.htm 

senses of cognate and false-friends for a wider 
variety of senses. This task was done using a bi-
lingual dictionary2.  

 
Table 1. The ten pairs of partial cognates. 
French par-
tial cognate 

English  
cognate 

English false friends 

blanc blank white, livid 
circulation circulation traffic 
client client customer, patron, patient, 

spectator, user, shopper 
corps corps body, corpse 
détail detail retail 
mode mode fashion, trend, style, 

vogue 
note note mark, grade, bill, check,  

account 
police police policy, insurance, font, 

face 
responsable responsi-

ble 
in charge, responsible 
party, official, representa-
tive, person in charge, 
executive, officer  

route route road, roadside 
 

4.1 Seed Set Collection 

Both the supervised and the semi-supervised 
method that we will describe in Section 5 are 
using a set of seeds. The seeds are parallel sen-
tences, French and English, which contain the 
partial cognate. For each partial-cognate word, a 
part of the set contains the cognate sense and 
another part the false-friend sense.  

As we mentioned in Section 3, the seed sen-
tences that we use are not hand-tagged with the 
sense (the cognate sense or the false-friend 
sense); they are automatically annotated by the 
way we collect them. To collect the set of seed 
sentences we use parallel corpora from Hansard3, 
and EuroParl4, and the, manually aligned BAF 
corpus.5  

The cognate sense sentences were created by 
extracting parallel sentences that had on the 
French side the French cognate and on the Eng-
lish side the English cognate. See the upper part 
of Table 2 for an example. 
     The same approach was used to extract sen-
tences with the false-friend sense of the partial 
cognate, only this time we used the false-friend 
English words. See lower the part of Table 2. 

                                                           
2 http://www.wordreference.com 
3 http://www.isi.edu/natural-language/download/hansard/   
   and  http://www.tsrali.com/ 
4 http://people.csail.mit.edu/koehn/publications/europarl/ 
5 http://rali.iro.umontreal.ca/Ressources/BAF/  
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Table 2. Example sentences from parallel corpus. 
Fr 
(PC:COG) 

Je note, par exemple, que l'accusé a fait 
une autre déclaration très incriminante à 
Hall environ deux mois plus tard. 

En 
(COG) 

I note, for instance, that he made another 
highly incriminating statement to Hall 
two months later. 

Fr 
(PC:FF) 

S'il gèle les gens ne sont pas capables de 
régler leur note de chauffage 

En 
(FF) 

If there is a hard frost, people are unable 
to pay their bills. 

 
   To keep the methods simple and language-
independent, no lemmatization was used. We 
took only sentences that had the exact form of 
the French and English word as described in Ta-
ble 1. Some improvement might be achieved 
when using lemmatization. We wanted to see 
how well we can do by using sentences as they 
are extracted from the parallel corpus, with no 
additional pre-processing and without removing 
any noise that might be introduced during the 
collection process. 

From the extracted sentences, we used 2/3 of 
the sentences for training (seeds) and 1/3 for test-
ing when applying both the supervised and semi-
supervised approach. In Table 3 we present the 
number of seeds used for training and testing.  

We will show in Section 6, that even though 
we started with a small amount of seeds from a 
certain domain – the nature of the parallel corpus 
that we had, an improvement can be obtained in  
discriminating the senses of partial cognates us-
ing free text from other domains.  
 
Table 3. Number of parallel sentences used as seeds. 
Partial 
Cognates 

Train 
CG 

Train 
FF 

Test 
CG 

Test 
FF 

Blanc 54 78 28 39 
Circulation 213 75 107 38 
Client 105 88 53 45 
Corps 88 82 44 42 
Détail 120 80 60 41 
Mode 76 104 126 53 
Note 250 138 126 68 
Police 154 94 78 48 
Responsable 200 162 100 81 
Route 69 90 35 46 
AVERAGE 132.9 99.1 66.9 50.1 
 

5 Methods 

In this section we describe the supervised and the 
semi-supervised methods that we use in our ex-
periments. We will also describe the data sets 

that we used for the monolingual and bilingual 
bootstrapping technique.  
   For both methods we have the same goal: to 
determine which of the two senses (the cognate 
or the false-friend sense) of a partial-cognate 
word is present in a test sentence. The classes in 
which we classify a sentence that contains a par-
tial cognate are: COG (cognate) and FF (false-
friend). 

5.1 Supervised Method 

For both the supervised and semi-supervised 
method we used the bag-of-words (BOW) ap-
proach of modeling context, with binary values 
for the features. The features were words from 
the training corpus that appeared at least 3 times 
in the training sentences. We removed the stop-
words from the features. A list of stopwords for 
English and one for French was used. We ran 
experiments when we kept the stopwords as fea-
tures but the results did not improve.  

Since we wanted to learn the contexts in which 
a partial cognate has a cognate sense and the con-
texts in which it has a false-friend sense, the cog-
nate and false friend words were not taken into 
account as features. Leaving them in would mean 
to indicate the classes, when applying the 
methods for the English sentences since all the 
sentences with the cognate sense contain the cog-
nate word and all the false-friend sentences do 
not contain it. For the French side all collected 
sentences contain the partial cognate word, the 
same for both senses.  

As a baseline for the experiments that we pre-
sent we used the ZeroR classifier from WEKA6, 
which predicts the class that is the most frequent 
in the training corpus. The classifiers for which 
we report results are: Naïve Bayes with a kernel 
estimator, Decision Trees - J48, and a Support 
Vector Machine implementation - SMO. All the 
classifiers can be found in the WEKA package. 
We used these classifiers because we wanted to 
have a probabilistic, a decision-based and a func-
tional classifier. The decision tree classifier al-
lows us to see which features are most 
discriminative. 

Experiments were performed with other classi-
fiers and with different levels of tuning, on a 10-
fold cross validation approach as well; the classi-
fiers we mentioned above were consistently the 
ones that obtained the best accuracy results.   

The supervised method used in our experi-
ments consists in training the classifiers on the 
                                                           
6 http://www.cs.waikato.ac.nz/ml/weka/ 
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automatically-collected training seed sentences, 
for each partial cognate, and then test their per-
formance on the testing set. Results for this 
method are presented later, in Table 5. 

5.2 Semi-Supervised Method 

For the semi-supervised method we add unla-
belled examples from monolingual corpora: the 
French newspaper LeMonde7 1994, 1995 (LM), 
and the BNC8 corpus, different domain corpora 
than the seeds. The procedure of adding and us-
ing this unlabeled data is described in the Mono-
lingual Bootstrapping (MB) and Bilingual 
Bootstrapping (BB) sections.  

5.2.1  Monolingual Bootstrapping 

The monolingual bootstrapping algorithm that 
we used for experiments on French sentences 
(MB-F) and on English sentences (MB-E) is:  
 

For each pair of partial cognates (PC)  
1. Train a classifier on the training seeds – us-
ing the BOW approach and a NB-K classifier 
with attribute selection on the features. 
2. Apply the classifier on unlabeled data – 
sentences that contain the PC word, extracted 
from LeMonde (MB-F) or from BNC (MB-E)  
3. Take the first k newly classified sentences, 
both from the COG and FF class and add 
them to the  training seeds  (the most confident 
ones – the  prediction  accuracy greater or 
equal than a threshold =0.85) 
4. Rerun the experiments training on the new 
training set 
5. Repeat steps 2 and 3 for t times  

   endFor 
 
For the first step of the algorithm we used NB-K 
classifier because it was the classifier that consis-
tently performed better. We chose to perform 
attribute selection on the features after we tried 
the method without attribute selection. We ob-
tained better results when using attribute selec-
tion. This sub-step was performed with the 
WEKA tool, the Chi-Square attribute selection 
was chosen. 

In the second step of the MB algorithm the 
classifier that was trained on the training seeds 
was then used to classify the unlabeled data that 
was collected from the two additional resources. 
For the MB algorithm on the French side we 
trained the classifier on the French side of the 

                                                           
7 http://www.lemonde.fr/ 
8 http://www.natcorp.ox.ac.uk/ 

training seeds and then we applied the classifier 
to classify the sentences that were extracted from 
LeMonde and contained the partial cognate. The 
same approach was used for the MB on the Eng-
lish side only this time we were using the English 
side of the training seeds for training the classi-
fier and the BNC corpus to extract new exam-
ples. In fact, the MB-E step is needed only for 
the BB method. 

Only the sentences that were classified with a 
probability greater than 0.85 were selected for 
later use in the bootstrapping algorithm.  

   The number of sentences that were chosen 
from the new corpora and used in the first step of 
the MB and BB are presented in Table 4. 
 
Table 4. Number of sentences selected from the 
LeMonde and BNC corpus. 

PC LM 
COG 

LM 
FF 

BNC 
COG 

BNC 
FF 

Blanc 45 250 0 241 
Circulation 250 250 70 180 
Client 250 250 77 250 
Corps 250 250 131 188 
Détail 250 163 158 136 
Mode 151 250 176 262 
Note 250 250 178 281 
Police 250 250 186 200 
Responsable 250 250 177 225 
Route 250 250 217 118 

 
For the partial-cognate Blanc with the cognate 
sense, the number of sentences that had a prob-
ability distribution greater or equal with the 
threshold was low. For the rest of partial cog-
nates the number of selected sentences was lim-
ited by the value of parameter k in the algorithm.  

5.2.2   Bilingual Bootstrapping 

The algorithm for bilingual bootstrapping that we 
propose and tried in our experiments is: 
 
1. Translate the English sentences that were col-
lected in the MB-E step into French using an 
online MT9 tool and add them to the French seed 
training data.  
2.  Repeat the MB-F and MB-E steps for T times. 

 
For the both monolingual and bilingual boot-

strapping techniques the value of the parameters 
t and T is 1 in our experiments. 

                                                           
9 http://www.freetranslation.com/free/web.asp 
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6 Evaluation and Results 

In this section we present the results that we 
obtained with the supervised and semi-
supervised methods that we applied to disam-
biguate partial cognates. 

Due to space issue we show results only for 
testing on the testing sets and not for the 10-fold 
cross validation experiments on the training data. 
For the same reason, we present the results that 
we obtained only with the French side of the par-
allel corpus, even though we trained classifiers 
on the English sentences as well. The results for 
the 10-fold cross validation and for the English 
sentences are not much different than the ones 
from Table 5 that describe the supervised method 
results on French sentences. 

 
   Table 5. Results for the Supervised Method.    
PC ZeroR NB-K Trees SMO 
Blanc 58% 95.52% 98.5% 98.5% 

Circulation 74% 91.03% 80% 89.65% 

Client 54.08% 67.34% 66.32% 61.22% 

Corps 51.16% 62% 61.62% 69.76% 

Détail 59.4% 85.14% 85.14% 87.12% 

Mode 58.24% 89.01% 89.01% 90% 

Note 64.94% 89.17% 77.83% 85.05% 

Police 61.41% 79.52% 93.7% 94.48% 

Responsable 55.24% 85.08% 70.71% 75.69% 

Route 56.79% 54.32% 56.79% 56.79% 

AVERAGE 59.33% 80.17% 77.96% 80.59% 

 
Table 6 and Table 7 present results for the MB 

and BB. More experiments that combined MB 
and BB techniques were also performed. The 
results are presented in Table 9. 

   Our goal is to disambiguate partial cognates 
in general, not only in the particular domain of 
Hansard and EuroParl. For this reason we used 
another set of automatically determined sen-
tences from a multi-domain parallel corpus. 

The set of new sentences (multi-domain) was 
extracted in the same manner as the seeds from 
Hansard and EuroParl. The new parallel corpus 
is a small one, approximately 1.5 million words, 
but contains texts from different domains: maga-
zine articles, modern fiction, texts from interna-
tional organizations and academic textbooks. We 
are using this set of sentences in our experiments 
to show that our methods perform well on multi-
domain corpora and also because our aim is to be 

able to disambiguate PC in different domains. 
From this parallel corpus we were able to extract 
the number of sentences shown in Table 8. 

With this new set of sentences we performed 
different experiments both for MB and BB. All 
results are described in Table 9. Due to space 
issue we report the results only on the average 
that we obtained for all the 10 pairs of partial 
cognates.  

The symbols that we use in Table 9 represent:  
S – the seed training corpus, TS – the seed test 

set,  BNC and LM – sentences extracted from 
LeMonde and BNC (Table 4), and NC – the sen-
tences that were extracted from the multi-domain 
new corpus. When we use the + symbol we put 
together all the sentences extracted from the re-
spective corpora. 

 
Table 6. Monolingual Bootstrapping on the French side. 
PC ZeroR NB-K Dec.Tree SMO 
Blanc 58.20% 97.01% 97.01% 98.5% 

Circulation 73.79% 90.34% 70.34% 84.13% 

Client 54.08% 71.42% 54.08% 64.28% 

Corps 51.16% 78% 56.97% 69.76% 

Détail 59.4% 88.11% 85.14% 82.17% 

Mode 58.24% 89.01% 90.10% 85% 

Note 64.94% 85.05% 71.64% 80.41% 

Police 61.41% 71.65% 92.91% 71.65% 

Responsable 55.24% 87.29% 77.34% 81.76% 

Route 56.79% 51.85% 56.79% 56.79% 

AVERAGE 59.33% 80.96% 75.23% 77.41% 

 
Table 7. Bilingual Bootstrapping. 
PC ZeroR NB-K Dec.Tree SMO 
Blanc 58.2% 95.52% 97.01% 98.50% 

Circulation 73.79% 92.41% 63.44% 87.58% 

Client 45.91% 70.4% 45.91% 63.26% 

Corps 48.83% 83% 67.44% 82.55% 

Détail 59% 91.08% 85.14% 86.13% 

Mode 58.24% 87.91% 90.1% 87% 

Note 64.94% 85.56% 77.31% 79.38% 

Police 61.41% 80.31% 96.06% 96.06% 

Responsable 44.75% 87.84% 74.03% 79.55% 

Route 43.2% 60.49% 45.67% 64.19% 

AVERAGE 55.87% 83.41% 74.21% 82.4% 
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Table 8. New Corpus (NC) sentences. 
PC COG FF 
Blanc 18 222 

Circulation 26 10 

Client 70 44 

Corps 4 288 

Détail 50 0 

Mode 166 12 

Note 214 20 

Police 216 6 

Responsable 104 66 

Route 6 100 

 

6.1  Discussion of the Results

The results of the experiments and the methods 
that we propose show that we can use with suc-
cess unlabeled data to learn from, and that the 
noise that is introduced due to the seed set collec-
tion is tolerable by the ML techniques that we 
use.  

Some results of the experiments we present in 
Table 9 are not as good as others. What is impor-
tant to notice is that every time we used MB or 
BB or both, there was an improvement. For some 
experiments MB did better, for others BB was 
the method that improved the performance; 
nonetheless for some combinations MB together 
with BB was the method that worked best.  

In Tables 5 and 7 we show that BB improved 
the results on the NB-K classifier with 3.24%, 
compared with the supervised method (no boot-
strapping), when we tested only on the test set 
(TS), the one that represents 1/3 of the initially-
collected parallel sentences. This improvement is 
not statistically significant, according to a t-test.  

In Table 9 we show that our proposed methods 
bring improvements for different combinations 
of training and testing sets. Table 9, lines 1 and 2 
show that BB with NB-K brought an improve-
ment of 1.95% from no bootstrapping, when we 
tested on the multi-domain corpus NC. For the 
same setting, there was an improvement of 
1.55% when we tested on TS (Table 9, lines 6 
and 8). When we tested on the combination 
TS+NC, again BB brought an improvement of 
2.63% from no bootstrapping (Table 9, lines 10 
and 12). The difference between MB and BB 
with this setting is 6.86% (Table 9, lines 11 and 
12). According to a t-test the 1.95% and 6.86% 
improvements are statistically significant. 

 Table 9. Results for different experiments with 
monolingual and bilingual bootstrapping (MB and 
BB).  

Train Test ZeroR NB-K Trees SMO 
S (no 

bootstrapping) 
NC 67% 71.97% 73.75% 76.75%

S+BNC 
(BB) 

NC 64% 73.92% 60.49% 74.80%

S+LM 
(MB) 

NC 67.85% 67.03% 64.65% 65.57%

S +LM+BNC 
(MB+BB) 

NC 64.19% 70.57% 57.03% 66.84%

S+LM+BNC 
(MB+BB) 

TS 55.87% 81.98% 74.37% 78.76%

S+NC 
(no bootstr.) 

TS 57.44% 82.03% 76.91% 80.71%

S+NC+LM 
(MB) 

TS 57.44% 82.02% 73.78% 77.03%

S+NC+BNC 
(BB) 

TS 56.63% 83.58% 68.36% 82.34%

S+NC+LM+ 
BNC(MB+BB)

TS 58% 83.10% 75.61% 79.05%

S (no bootstrap-
ping) 

TS+NC 62.70% 77.20% 77.23% 79.26%

S+LM 
(MB) 

TS+NC 62.70% 72.97% 70.33% 71.97%

S+BNC 
(BB) 

TS+NC 61.27% 79.83% 67.06% 78.80%

S+LM+BNC 
(MB+BB) 

TS+NC 61.27% 77.28% 65.75% 73.87%

 
    The number of features that were extracted 
from the seeds was more than double at each MB 
and BB experiment, showing that even though 
we started with seeds from a language restricted 
domain, the method is able to capture knowledge 
form different domains as well. Besides the 
change in the number of features, the domain of 
the features has also changed form the parlia-
mentary one to others, more general, showing 
that the method will be able to disambiguate sen-
tences where the partial cognates cover different 
types of context.  

Unlike previous work that has done with 
monolingual or bilingual bootstrapping, we tried 
to disambiguate not only words that have senses 
that are very different e.g. plant – with a sense of 
biological plant or with the sense of factory. In 
our set of partial cognates the French word route 
is a difficult word to disambiguate even for hu-
mans: it has a cognate sense when it refers to a 
maritime or trade route and a false-friend sense 
when it is used as road. The same observation 
applies to client (the cognate sense is client, and 
the false friend sense is customer, patron, or pa-
tient) and to circulation (cognate in air or blood 
circulation, false friend in street traffic).  
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7 Conclusion and Future Work 

We showed that with simple methods and using 
available tools we can achieve good results in the 
task of partial cognate disambiguation. 
   The accuracy might be increased by using de-
pendencies relations, lemmatization, part-of-
speech tagging – extract sentences where the par-
tial cognate has the same POS, and other types of 
data representation combined with different se-
mantic tools (e.g. decision lists, rule based sys-
tems).  

In our experiments we use a machine language 
representation – binary feature values, and we 
show that nonetheless machines are capable of 
learning from new information, using an iterative 
approach, similar to the learning process of hu-
mans. New information was collected and ex-
tracted by classifiers when additional corpora 
were used for training. 
   In addition to the applications that we men-
tioned in Section 1, partial cognates can also be 
useful in Computer-Assisted Language Learning 
(CALL) tools. Search engines for E-Learning can 
find useful a partial cognate annotator. A teacher 
that prepares a test to be integrated into a CALL 
tool can save time by using our methods to 
automatically disambiguate partial cognates, 
even though the automatic classifications need to 
be checked by the teacher.  

In future work we plan to try different repre-
sentations of the data, to use knowledge of the 
relations that exists between the partial cognate 
and the context words, and to run experiments 
when we iterate the MB and BB steps more than 
once. 
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Abstract

This paper investigates conceptually and
empirically the novel sense matching task,
which requires to recognize whether the
senses of two synonymous words match in
context. We suggest direct approaches to
the problem, which avoid the intermediate
step of explicit word sense disambigua-
tion, and demonstrate their appealing ad-
vantages and stimulating potential for fu-
ture research.

1 Introduction

In many language processing settings it is needed
to recognize that a given word or term may be sub-
stituted by a synonymous one. In a typical in-
formation seeking scenario, an information need
is specified by some given source words. When
looking for texts that match the specified need the
source words might be substituted with synony-
mous target words. For example, given the source
word ‘weapon’ a system may substitute it with the
target synonym ‘arm’.

This scenario, which is generally referred here
as lexical substitution, is a common technique
for increasing recall in Natural Language Process-
ing (NLP) applications. In Information Retrieval
(IR) and Question Answering (QA) it is typically
termed query/question expansion (Moldovan and
Mihalcea, 2000; Negri, 2004). Lexical Substi-
tution is also commonly applied to identify syn-
onyms in text summarization, for paraphrasing in
text generation, or is integrated into the features of
supervised tasks such as Text Categorization and
Information Extraction. Naturally, lexical substi-
tution is a very common first step in textual en-
tailment recognition, which models semantic in-

ference between a pair of texts in a generalized ap-
plication independent setting (Dagan et al., 2005).

To perform lexical substitution NLP applica-
tions typically utilize a knowledge source of syn-
onymous word pairs. The most commonly used
resource for lexical substitution is the manually
constructed WordNet (Fellbaum, 1998). Another
option is to use statistical word similarities, such
as in the database constructed by Dekang Lin (Lin,
1998). We generically refer to such resources as
substitution lexicons.

When using a substitution lexicon it is assumed
that there are some contexts in which the given
synonymous words share the same meaning. Yet,
due to polysemy, it is needed to verify that the
senses of the two words do indeed match in a given
context. For example, there are contexts in which
the source word ‘weapon’ may be substituted by
the target word ‘arm’; however one should recog-
nize that ‘arm’ has a different sense than ‘weapon’
in sentences such as “repetitive movements could
cause injuries to hands, wrists and arms.”

A commonly proposed approach to address
sense matching in lexical substitution is applying
Word Sense Disambiguation (WSD) to identify
the senses of the source and target words. Then,
substitution is applied only if the words have the
same sense (or synset, in WordNet terminology).
In settings in which the source is given as a sin-
gle term without context, sense disambiguation
is performed only for the target word; substitu-
tion is then applied only if the target word’s sense
matches at least one of the possible senses of the
source word.

One might observe that such application of WSD

addresses the task at hand in a somewhat indi-
rect manner. In fact, lexical substitution only re-
quires knowing that the source and target senses
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do match, but it does not require that the match-
ing senses will be explicitly identified. Selecting
explicitly the right sense in context, which is then
followed by verifying the desired matching, might
be solving a harder intermediate problem than re-
quired. Instead, we can define the sense match-
ing problem directly as a binary classification task
for a pair of synonymous source and target words.
This task requires to decide whether the senses of
the two words do or do not match in a given con-
text (but it does not require to identify explicitly
the identity of the matching senses).

A highly related task was proposed in (Mc-
Carthy, 2002). McCarthy’s proposal was to ask
systems to suggest possible “semantically similar
replacements” of a target word in context, where
alternative replacements should be grouped to-
gether. While this task is somewhat more com-
plicated as an evaluation setting than our binary
recognition task, it was motivated by similar ob-
servations and applied goals. From another per-
spective, sense matching may be viewed as a lex-
ical sub-case of the general textual entailment
recognition setting, where we need to recognize
whether the meaning of the target word “entails”
the meaning of the source word in a given context.

This paper provides a first investigation of the
sense matching problem. To allow comparison
with the classical WSD setting we derived an
evaluation dataset for the new problem from the
Senseval-3 English lexical sample dataset (Mihal-
cea and Edmonds, 2004). We then evaluated alter-
native supervised and unsupervised methods that
perform sense matching either indirectly or di-
rectly (i.e. with or without the intermediate sense
identification step). Our findings suggest that in
the supervised setting the results of the direct and
indirect approaches are comparable. However, ad-
dressing directly the binary classification task has
practical advantages and can yield high precision
values, as desired in precision-oriented applica-
tions such as IR and QA.

More importantly, direct sense matching sets
the ground for implicit unsupervised approaches
that may utilize practically unlimited volumes
of unlabeled training data. Furthermore, such
approaches circumvent the sisyphean need for
specifying explicitly a set of stipulated senses.
We present an initial implementation of such an
approach using a one-class classifier, which is
trained on unlabeled occurrences of the source

word and applied to occurrences of the target
word. Our current results outperform the unsuper-
vised baseline and put forth a whole new direction
for future research.

2 WSD and Lexical Expansion

Despite certain initial skepticism about the useful-
ness of WSD in practical tasks (Voorhees, 1993;
Sanderson, 1994), there is some evidence that
WSD can improve performance in typical NLP

tasks such as IR and QA. For example, (Shütze
and Pederson, 1995) gives clear indication of the
potential for WSD to improve the precision of an IR

system. They tested the use of WSD on a standard
IR test collection (TREC-1B), improving precision
by more than 4%.

The use of WSD has produced successful exper-
iments for query expansion techniques. In partic-
ular, some attempts exploited WordNet to enrich
queries with semantically-related terms. For in-
stance, (Voorhees, 1994) manually expanded 50
queries over the TREC-1 collection using syn-
onymy and other WordNet relations. She found
that the expansion was useful with short and in-
complete queries, leaving the task of proper auto-
matic expansion as an open problem.

(Gonzalo et al., 1998) demonstrates an incre-
ment in performance over an IR test collection us-
ing the sense data contained in SemCor over a
purely term based model. In practice, they ex-
perimented searching SemCor with disambiguated
and expanded queries. Their work shows that
a WSD system, even if not performing perfectly,
combined with synonymy enrichment increases
retrieval performance.

(Moldovan and Mihalcea, 2000) introduces the
idea of using WordNet to extend Web searches
based on semantic similarity. Their results showed
that WSD-based query expansion actually im-
proves retrieval performance in a Web scenario.
Recently (Negri, 2004) proposed a sense-based
relevance feedback scheme for query enrichment
in a QA scenario (TREC-2003 and ACQUAINT),
demonstrating improvement in retrieval perfor-
mance.

While all these works clearly show the potential
usefulness of WSD in practical tasks, nonetheless
they do not necessarily justify the efforts for refin-
ing fine-grained sense repositories and for build-
ing large sense-tagged corpora. We suggest that
the sense matching task, as presented in the intro-
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duction, may relieve major drawbacks of applying
WSD in practical scenarios.

3 Problem Setting and Dataset

To investigate the direct sense matching problem
it is necessary to obtain an appropriate dataset of
examples for this binary classification task, along
with gold standard annotation. While there is
no such standard (application independent) dataset
available it is possible to derive it automatically
from existing WSD evaluation datasets, as de-
scribed below. This methodology also allows
comparing direct approaches for sense matching
with classical indirect approaches, which apply an
intermediate step of identifying the most likely
WordNet sense.

We derived our dataset from the Senseval-3 En-
glish lexical sample dataset (Mihalcea and Ed-
monds, 2004), taking all 25 nouns, adjectives and
adverbs in this sample. Verbs were excluded since
their sense annotation in Senseval-3 is not based
on WordNet senses. The Senseval dataset includes
a set of example occurrences in context for each
word, split to training and test sets, where each ex-
ample is manually annotated with the correspond-
ing WordNet synset.

For the sense matching setting we need exam-
ples of pairs of source-target synonymous words,
where at least one of these words should occur in
a given context. Following an applicative moti-
vation, we mimic an IR setting in which a sin-
gle source word query is expanded (substituted)
by a synonymous target word. Then, it is needed
to identify contexts in which the target word ap-
pears in a sense that matches the source word. Ac-
cordingly, we considered each of the 25 words in
the Senseval sample as a target word for the sense
matching task. Next, we had to pick for each target
word a corresponding synonym to play the role of
the source word. This was done by creating a list
of all WordNet synonyms of the target word, under
all its possible senses, and picking randomly one
of the synonyms as the source word. For example,
the word ‘disc’ is one of the words in the Sense-
val lexical sample. For this target word the syn-
onym ‘record’ was picked, which matches ‘disc’
in its musical sense. Overall, 59% of all possible
synsets of our target words included an additional
synonym, which could play the role of the source
word (that is, 41% of the synsets consisted of the
target word only). Similarly, 62% of the test exam-

ples of the target words were annotated by a synset
that included an additional synonym.

While creating source-target synonym pairs it
was evident that many WordNet synonyms corre-
spond to very infrequent senses or word usages,
such as the WordNet synonyms germ and source.
Such source synonyms are useless for evaluat-
ing sense matching with the target word since the
senses of the two words would rarely match in per-
ceivable contexts. In fact, considering our motiva-
tion for lexical substitution, it is usually desired to
exclude such obscure synonym pairs from substi-
tution lexicons in practical applications, since they
would mostly introduce noise to the system. To
avoid this problem the list of WordNet synonyms
for each target word was filtered by a lexicogra-
pher, who excluded manually obscure synonyms
that seemed worthless in practice. The source syn-
onym for each target word was then picked ran-
domly from the filtered list. Table 1 shows the 25
source-target pairs created for our experiments. In
future work it may be possible to apply automatic
methods for filtering infrequent sense correspon-
dences in the dataset, by adopting algorithms such
as in (McCarthy et al., 2004).

Having source-target synonym pairs, a classifi-
cation instance for the sense matching task is cre-
ated from each example occurrence of the target
word in the Senseval dataset. A classification in-
stance is thus defined by a pair of source and target
words and a given occurrence of the target word in
context. The instance should be classified as pos-
itive if the sense of the target word in the given
context matches one of the possible senses of the
source word, and as negative otherwise. Table 2
illustrates positive and negative example instances
for the source-target synonym pair ‘record-disc’,
where only occurrences of ‘disc’ in the musical
sense are considered positive.

The gold standard annotation for the binary
sense matching task can be derived automatically
from the Senseval annotations and the correspond-
ing WordNet synsets. An example occurrence of
the target word is considered positive if the an-
notated synset for that example includes also the
source word, and Negative otherwise. Notice that
different positive examples might correspond to
different senses of the target word. This happens
when the source and target share several senses,
and hence they appear together in several synsets.
Finally, since in Senseval an example may be an-
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source-target source-target source-target source-target source-target
statement-argument subdivision-arm atm-atmosphere hearing-audience camber-bank
level-degree deviation-difference dissimilar-different trouble-difficulty record-disc
raging-hot ikon-image crucial-important sake-interest bare-simple
opinion-judgment arrangement-organization newspaper-paper company-party substantial-solid
execution-performance design-plan protection-shelter variety-sort root-source

Table 1: Source and target pairs

sentence annotation
This is anyway a stunning disc, thanks to the playing of the Moscow Virtuosi with Spivakov. positive
He said computer networks would not be affected and copies of information should be made on
floppy discs.

negative

Before the dead soldier was placed in the ditch his personal possessions were removed, leaving
one disc on the body for identification purposes

negative

Table 2: positive and negative examples for the source-target synonym pair ‘record-disc’

notated with more than one sense, it was consid-
ered positive if any of the annotated synsets for the
target word includes the source word.

Using this procedure we derived gold standard
annotations for all the examples in the Senseval-
3 training section for our 25 target words. For the
test set we took up to 40 test examples for each tar-
get word (some words had fewer test examples),
yielding 913 test examples in total, out of which
239 were positive. This test set was used to eval-
uate the sense matching methods described in the
next section.

4 Investigated Methods

As explained in the introduction, the sense match-
ing task may be addressed by two general ap-
proaches. The traditional indirect approach would
first disambiguate the target word relative to a pre-
defined set of senses, using standard WSD meth-
ods, and would then verify that the selected sense
matches the source word. On the other hand, a
direct approach would address the binary sense
matching task directly, without selecting explicitly
a concrete sense for the target word. This section
describes the alternative methods we investigated
under supervised and unsupervised settings. The
supervised methods utilize manual sense annota-
tions for the given source and target words while
unsupervised methods do not require any anno-
tated sense examples. For the indirect approach
we assume the standard WordNet sense repository
and corresponding annotations of the target words
with WordNet synsets.

4.1 Feature set and classifier

As a vehicle for investigating different classifica-
tion approaches we implemented a “vanilla” state
of the art architecture for WSD. Following com-
mon practice in feature extraction (e.g. (Yarowsky,
1994)), and using the mxpost1 part of speech tag-
ger and WordNet’s lemmatization, the following
feature set was used: bag of word lemmas for the
context words in the preceding, current and fol-
lowing sentence; unigrams of lemmas and parts
of speech in a window of +/- three words, where
each position provides a distinct feature; and bi-
grams of lemmas in the same window. The SVM-
Light (Joachims, 1999) classifier was used in the
supervised settings with its default parameters. To
obtain a multi-class classifier we used a standard
one-vs-all approach of training a binary SVM for
each possible sense and then selecting the highest
scoring sense for a test example.

To verify that our implementation provides a
reasonable replication of state of the art WSD we
applied it to the standard Senseval-3 Lexical Sam-
ple WSD task. The obtained accuracy2 was 66.7%,
which compares reasonably with the mid-range of
systems in the Senseval-3 benchmark (Mihalcea
and Edmonds, 2004). This figure is just a few
percent lower than the (quite complicated) best
Senseval-3 system, which achieved about 73% ac-
curacy, and it is much higher than the standard
Senseval baselines. We thus regard our classifier
as a fair vehicle for comparing the alternative ap-
proaches for sense matching on equal grounds.

1ftp://ftp.cis.upenn.edu/pub/adwait/jmx/jmx.tar.gz
2The standard classification accuracy measure equals pre-

cision and recall as defined in the Senseval terminology when
the system classifies all examples, with no abstentions.
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4.2 Supervised Methods
4.2.1 Indirect approach

The indirect approach for sense matching fol-
lows the traditional scheme of performing WSD

for lexical substitution. First, the WSD classifier
described above was trained for the target words
of our dataset, using the Senseval-3 sense anno-
tated training data for these words. Then, the clas-
sifier was applied to the test examples of the target
words, selecting the most likely sense for each ex-
ample. Finally, an example was classified as pos-
itive if the selected synset for the target word in-
cludes the source word, and as negative otherwise.

4.2.2 Direct approach
As explained above, the direct approach ad-

dresses the binary sense matching task directly,
without selecting explicitly a sense for the target
word. In the supervised setting it is easy to ob-
tain such a binary classifier using the annotation
scheme described in Section 3. Under this scheme
an example was annotated as positive (for the bi-
nary sense matching task) if the source word is
included in the Senseval gold standard synset of
the target word. We trained the classifier using the
set of Senseval-3 training examples for each tar-
get word, considering their derived binary anno-
tations. Finally, the trained classifier was applied
to the test examples of the target words, yielding
directly a binary positive-negative classification.

4.3 Unsupervised Methods
It is well known that obtaining annotated training
examples for WSD tasks is very expensive, and
is often considered infeasible in unrestricted do-
mains. Therefore, many researchers investigated
unsupervised methods, which do not require an-
notated examples. Unsupervised approaches have
usually been investigated within Senseval using
the “All Words” dataset, which does not include
training examples. In this paper we preferred us-
ing the same test set which was used for the super-
vised setting (created from the Senseval-3 “Lexi-
cal Sample” dataset, as described above), in order
to enable comparison between the two settings.
Naturally, in the unsupervised setting the sense la-
bels in the training set were not utilized.

4.3.1 Indirect approach
State-of-the-art unsupervised WSD systems are

quite complex and they are not easy to be repli-
cated. Thus, we implemented the unsupervised

version of the Lesk algorithm (Lesk, 1986) as a
reference system, since it is considered a standard
simple baseline for unsupervised approaches. The
Lesk algorithm is one of the first algorithms de-
veloped for semantic disambiguation of all-words
in unrestricted text. In its original unsupervised
version, the only resource required by the algo-
rithm is a machine readable dictionary with one
definition for each possible word sense. The algo-
rithm looks for words in the sense definitions that
overlap with context words in the given sentence,
and chooses the sense that yields maximal word
overlap. We implemented a version of this algo-
rithm using WordNet sense-definitions with con-
text length of ±10 words before and after the tar-
get word.

4.3.2 The direct approach: one-class learning
The unsupervised settings for the direct method

are more problematic because most of unsuper-
vised WSD algorithms (such as the Lesk algo-
rithm) rely on dictionary definitions. For this rea-
son, standard unsupervised techniques cannot be
applied in a direct approach for sense matching, in
which the only external information is a substitu-
tion lexicon.

In this subsection we present a direct unsuper-
vised method for sense matching. It is based on
the assumption that typical contexts in which both
the source and target words appear correspond to
their matching senses. Unlabeled occurrences of
the source word can then be used to provide evi-
dence for lexical substitution because they allow
us to recognize whether the sense of the target
word matches that of the source. Our strategy is
to represent in a learning model the typical con-
texts of the source word in unlabeled training data.
Then, we exploit such model to match the contexts
of the target word, providing a decision criterion
for sense matching. In other words, we expect that
under a matching sense the target word would oc-
cur in prototypical contexts of the source word.

To implement such approach we need a learning
technique that does not rely on the availability of
negative evidence, that is, a one-class learning al-
gorithm. In general, the classification performance
of one-class approaches is usually quite poor, if
compared to supervised approaches for the same
tasks. However, in many practical settings one-
class learning is the only available solution.

For our experiments we adopted the one-class
SVM learning algorithm (Schölkopf et al., 2001)
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implemented in the LIBSVM package,3 and repre-
sented the unlabeled training examples by adopt-
ing the feature set described in Subsection 4.1.
Roughly speaking, a one-class SVM estimates the
smallest hypersphere enclosing most of the train-
ing data. New test instances are then classified
positively if they lie inside the sphere, while out-
liers are regarded as negatives. The ratio between
the width of the enclosed region and the number
of misclassified training examples can be varied
by setting the parameter ν ∈ (0, 1). Smaller val-
ues of ν will produce larger positive regions, with
the effect of increasing recall.

The appealing advantage of adopting one-class
learning for sense matching is that it allows us to
define a very elegant learning scenario, in which it
is possible to train “off-line” a different classifier
for each (source) word in the lexicon. Such a clas-
sifier can then be used to match the sense of any
possible target word for the source which is given
in the substitution lexicon. This is in contrast to
the direct supervised method proposed in Subsec-
tion 4.2, where a different classifier for each pair
of source - target words has to be defined.

5 Evaluation

5.1 Evaluation measures and baselines
In the lexical substitution (and expansion) set-
ting, the standard WSD metrics (Mihalcea and Ed-
monds, 2004) are not suitable, because we are in-
terested in the binary decision of whether the tar-
get word matches the sense of a given source word.
In analogy to IR, we are more interested in positive
assignments, while the opposite case (i.e. when the
two words cannot be substituted) is less interest-
ing. Accordingly, we utilize the standard defini-
tions of precision, recall and F1 typically used in
IR benchmarks. In the rest of this section we will
report micro averages for these measures on the
test set described in Section 3.

Following the Senseval methodology, we evalu-
ated two different baselines for unsupervised and
supervised methods. The random baseline, used
for the unsupervised algorithms, was obtained by
choosing either the positive or the negative class
at random resulting in P = 0.262, R = 0.5,
F1 = 0.344. The Most Frequent baseline has
been used for the supervised algorithms and is ob-
tained by assigning the positive class when the

3Freely available from www.csie.ntu.edu.tw/
/∼cjlin/libsvm.

percentage of positive examples in the training set
is above 50%, resulting in P = 0.65, R = 0.41,
F1 = 0.51.

5.2 Supervised Methods

Both the indirect and the direct supervised meth-
ods presented in Subsection 4.2 have been tested
and compared to the most frequent baseline.

Indirect. For the indirect methodology we
trained the supervised WSD system for each tar-
get word on the sense-tagged training sample. As
described in Subsection 4.2, we implemented a
simple SVM-based WSD system (see Section 4.2)
and applied it to the sense-matching task. Results
are reported in Table 3. The direct strategy sur-
passes the most frequent baseline F1 score, but the
achieved precision is still below it. We note that in
this multi-class setting it is less straightforward to
tradeoff recall for precision, as all senses compete
with each other.

Direct. In the direct supervised setting, sense
matching is performed by training a binary clas-
sifier, as described in Subsection 4.2.

The advantage of adopting a binary classifica-
tion strategy is that the precision/recall tradeoff
can be tuned in a meaningful way. In SVM learn-
ing, such tuning is achieved by varying the param-
eter J , that allows us to modify the cost function
of the SVM learning algorithm. If J = 1 (default),
the weight for the positive examples is equal to the
weight for the negatives. When J > 1, negative
examples are penalized (increasing recall), while,
whenever 0 < J < 1, positive examples are penal-
ized (increasing precision). Results obtained by
varying this parameter are reported in Figure 1.

Figure 1: Direct supervised results varying J
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Supervised P R F1 Unsupervised P R F1

Most Frequent Baseline 0.65 0.41 0.51 Random Baseline 0.26 0.50 0.34
Multiclass SVM Indirect 0.59 0.63 0.61 Lesk Indirect 0.24 0.19 0.21
Binary SVM (J = 0.5) Direct 0.80 0.26 0.39 One-Class ν = 0.3 Direct 0.26 0.72 0.39
Binary SVM (J = 1) Direct 0.76 0.46 0.57 One-Class ν = 0.5 Direct 0.29 0.56 0.38
Binary SVM (J = 2) Direct 0.68 0.53 0.60 One-Class ν = 0.7 Direct 0.28 0.36 0.32
Binary SVM (J = 3) Direct 0.69 0.55 0.61 One-Class ν = 0.9 Direct 0.23 0.10 0.14

Table 3: Classification results on the sense matching task

Adopting the standard parameter settings (i.e.
J = 1, see Table 3), the F1 of the system
is slightly lower than for the indirect approach,
while it reaches the indirect figures when J in-
creases. More importantly, reducing J allows us
to boost precision towards 100%. This feature is
of great interest for lexical substitution, particu-
larly in precision oriented applications like IR and
QA, for filtering irrelevant candidate answers or
documents.

5.3 Unsupervised methods

Indirect. To evaluate the indirect unsupervised
settings we implemented the Lesk algorithm, de-
scribed in Subsection 4.3.1, and evaluated it on
the sense matching task. The obtained figures,
reported in Table 3, are clearly below the base-
line, suggesting that simple unsupervised indirect
strategies cannot be used for this task. In fact, the
error of the first step, due to low WSD accuracy
of the unsupervised technique, is propagated in
the second step, producing poor sense matching.
Unfortunately, state-of-the-art unsupervised sys-
tems are actually not much better than Lesk on all-
words task (Mihalcea and Edmonds, 2004), dis-
couraging the use of unsupervised indirect meth-
ods for the sense matching task.

Direct. Conceptually, the most appealing solu-
tion for the sense matching task is the one-class
approach proposed for the direct method (Section
4.3.2). To perform our experiments, we trained a
different one-class SVM for each source word, us-
ing a sample of its unlabeled occurrences in the
BNC corpus as training set. To avoid huge train-
ing sets and to speed up the learning process, we
fixed the maximum number of training examples
to 10000 occurrences per word, collecting on av-
erage about 6500 occurrences per word.

For each target word in the test sample, we ap-
plied the classifier of the corresponding source
word. Results for different values of ν are reported
in Figure 2 and summarized in Table 3.

Figure 2: One-class evaluation varying ν

While the results are somewhat above the base-
line, just small improvements in precision are re-
ported, and recall is higher than the baseline for
ν < 0.6. Such small improvements may suggest
that we are following a relevant direction, even
though they may not be useful yet for an applied
sense-matching setting.

Further analysis of the classification results for
each word revealed that optimal F1 values are ob-
tained by adopting different values of ν for differ-
ent words. In the optimal (in retrospect) param-
eter settings for each word, performance for the
test set is noticeably boosted, achieving P = 0.40,
R = 0.85 and F1 = 0.54. Finding a principled un-
supervised way to automatically tune the ν param-
eter is thus a promising direction for future work.

Investigating further the results per word, we
found that the correlation coefficient between the
optimal ν values and the degree of polysemy of
the corresponding source words is 0.35. More in-
terestingly, we noticed a negative correlation (r
= -0.30) between the achieved F1 and the degree
of polysemy of the word, suggesting that polyse-
mous source words provide poor training models
for sense matching. This can be explained by ob-
serving that polysemous source words can be sub-
stituted with the target words only for a strict sub-
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set of their senses. On the other hand, our one-
class algorithm was trained on all the examples
of the source word, which include irrelevant ex-
amples that yield noisy training sets. A possible
solution may be obtained using clustering-based
word sense discrimination methods (Pedersen and
Bruce, 1997; Schütze, 1998), in order to train dif-
ferent one-class models from different sense clus-
ters. Overall, the analysis suggests that future re-
search may obtain better binary classifiers based
just on unlabeled examples of the source word.

6 Conclusion

This paper investigated the sense matching task,
which captures directly the polysemy problem in
lexical substitution. We proposed a direct ap-
proach for the task, suggesting the advantages of
natural control of precision/recall tradeoff, avoid-
ing the need in an explicitly defined sense reposi-
tory, and, most appealing, the potential for novel
completely unsupervised learning schemes. We
speculate that there is a great potential for such
approaches, and suggest that sense matching may
become an appealing problem and possible track
in lexical semantic evaluations.
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Abstract 

This paper presents a new approach 
based on Equivalent Pseudowords (EPs) 
to tackle Word Sense Disambiguation 
(WSD) in Chinese language. EPs are par-
ticular artificial ambiguous words, which 
can be used to realize unsupervised WSD. 
A Bayesian classifier is implemented to 
test the efficacy of the EP solution on 
Senseval-3 Chinese test set. The per-
formance is better than state-of-the-art 
results with an average F-measure of 0.80. 
The experiment verifies the value of EP 
for unsupervised WSD. 

1 Introduction 

Word sense disambiguation (WSD) has been a 
hot topic in natural language processing, which is 
to determine the sense of an ambiguous word in 
a specific context. It is an important technique 
for applications such as information retrieval, 
text mining, machine translation, text classifica-
tion, automatic text summarization, and so on. 

Statistical solutions to WSD acquire linguistic 
knowledge from the training corpus using ma-
chine learning technologies, and apply the 
knowledge to disambiguation. The first statistical 
model of WSD was built by Brown et al. (1991). 
Since then, most machine learning methods have 
been applied to WSD, including decision tree, 
Bayesian model, neural network, SVM, maxi-

mum entropy, genetic algorithms, and so on. For 
different learning methods, supervised methods 
usually achieve good performance at a cost of 
human tagging of training corpus. The precision 
improves with larger size of training corpus. 
Compared with supervised methods, unsuper-
vised methods do not require tagged corpus, but 
the precision is usually lower than that of the 
supervised methods. Thus, knowledge acquisi-
tion is critical to WSD methods.  

This paper proposes an unsupervised method 
based on equivalent pseudowords, which ac-
quires WSD knowledge from raw corpus. This 
method first determines equivalent pseudowords 
for each ambiguous word, and then uses the 
equivalent pseudowords to replace the ambigu-
ous word in the corpus. The advantage of this 
method is that it does not need parallel corpus or 
seed corpus for training. Thus, it can use a large-
scale monolingual corpus for training to solve 
the data-sparseness problem. Experimental re-
sults show that our unsupervised method per-
forms better than the supervised method. 

The remainder of the paper is organized as fol-
lows. Section 2 summarizes the related work. 
Section 3 describes the conception of Equivalent 
Pseudoword. Section 4 describes EP-based Un-
supervised WSD Method and the evaluation re-
sult. The last section concludes our approach. 

2 Related Work 

For supervised WSD methods,  a knowledge ac-
quisition bottleneck is to prepare the manually 
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tagged corpus. Unsupervised method is an alter-
native, which often involves automatic genera-
tion of tagged corpus, bilingual corpus alignment, 
etc. The value of unsupervised methods lies in 
the knowledge acquisition solutions they adopt. 

2.1 Automatic Generation of Training Corpus 

Automatic corpus tagging is a solution to WSD, 
which generates large-scale corpus from a small 
seed corpus. This is a weakly supervised learning 
or semi-supervised learning method. This rein-
forcement algorithm dates back to Gale et al. 
(1992a). Their investigation was based on a 6-
word test set with 2 senses for each word. 

Yarowsky (1994 and 1995), Mihalcea and 
Moldovan (2000), and Mihalcea (2002) have 
made further research to obtain large corpus of 
higher quality from an initial seed corpus. A 
semi-supervised method proposed by Niu et al. 
(2005) clustered untagged instances with tagged 
ones starting from a small seed corpus, which 
assumes that similar instances should have simi-
lar tags. Clustering was used instead of boot-
strapping and was proved more efficient.  

2.2 Method Based on Parallel Corpus 

Parallel corpus is a solution to the bottleneck of 
knowledge acquisition. Ide et al. (2001 and 
2002), Ng et al. (2003), and Diab (2003, 2004a, 
and 2004b) made research on the use of align-
ment for WSD.  

Diab and Resnik (2002) investigated the feasi-
bility of automatically annotating large amounts 
of data in parallel corpora using an unsupervised 
algorithm, making use of two languages simulta-
neously, only one of which has an available 
sense inventory. The results showed that word-
level translation correspondences are a valuable 
source of information for sense disambiguation. 

The method by Li and Li (2002) does not re-
quire parallel corpus. It avoids the alignment 
work and takes advantage of bilingual corpus. 

In short, technology of automatic corpus tag-
ging is based on the manually labeled corpus. 
That is to say, it still need human intervention 
and is not a completely unsupervised method. 
Large-scale parallel corpus; especially word-
aligned corpus is highly unobtainable, which has 
limited the WSD methods based on parallel cor-
pus.  

3 Equivalent Pseudoword 

This section describes how to obtain equivalent 
pseudowords without a seed corpus. 

Monosemous words are unambiguous priori 
knowledge. According to our statistics, they ac-
count for 86%~89% of the instances in a diction-
ary and 50% of the items in running corpus, they 
are potential knowledge source for WSD.  

A monosemous word is usually synonymous 
to some polysemous words. For example the 
words "信守 , 严守 , 恪守 遵照 遵从 遵循, , , , 
遵守" has similar meaning as one of the senses 
of the ambiguous word "保守", while "康健, 强
健, 健旺 健壮 壮健, , 强壮 精壮 壮实 敦实, , , , , 
硬朗 康泰 健朗 健硕, , , " are the same for "健康". 
This is quite common in Chinese, which can be 
used as a knowledge source for WSD. 

3.1 Definition of Equivalent Pseudoword 

If the ambiguous words in the corpus are re-
placed with its synonymous monosemous word, 
then is it convenient to acquire knowledge from 
raw corpus? For example in table 1, the ambigu-
ous word "把握" has three senses, whose syn-
onymous monosemous words are listed on the 
right column. These synonyms contain some in-
formation for disambiguation task. 

An artificial ambiguous word can be coined 
with the monosemous words in table 1. This 
process is similar to the use of general pseu-
dowords (Gale et al., 1992b; Gaustad, 2001; Na-
kov and Hearst, 2003), but has some essential 
differences. This artificial ambiguous word need 
to simulate the function of the real ambiguous 
word, and to acquire semantic knowledge as the 
real ambiguous word does. Thus, we call it an 
equivalent pseudoword (EP) for its equivalence 
with the real ambiguous word. It's apparent that 
the equivalent pseudoword has provided a new 
way to unsupervised WSD. 

S1 信心/自信心 

S2 握住/在握/把住/抓住/控制把握(ba3 wo4)

S3 领会/理解/领悟/深谙/体会

Table 1. Synonymous Monosemous Words for 
the Ambiguous Word "把握" 

The equivalence of the EP with the real am-
biguous word is a kind of semantic synonym or 
similarity, which demands a maximum similarity 
between the two words. An ambiguous word has 
the same number of EPs as of senses. Each EP's 
sense maps to a sense of ambiguous word. 

The semantic equivalence demands further 
equivalence at each sense level. Every corre-
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sponding sense should have the maximum simi-
larity, which is the strictest limit to the construc-
tion of an EP. 

The starting point of unsupervised WSD based 
on EP is that EP can substitute the original word 
for knowledge acquisition in model training. 
Every instance of each morpheme of the EP can 
be viewed as an instance of the ambiguous word, 
thus the training set can be enlarged easily. EP is 
a solution to data sparseness for lack of human 
tagging in WSD. 

3.2 Basic Assumption for EP-based WSD 

It is based on the following assumptions that EPs 
can substitute the original ambiguous word for 
knowledge acquisition in WSD model training. 

Assumption 1: Words of the same meaning 
play the same role in a language. The sense is an 
important attribute of a word. This plays as the 
basic assumption in this paper. 

Assumption 2: Words of the same meaning 
occur in similar context. This assumption is 
widely used in semantic analysis and plays as a 
basis for much related research. For example, 
some researchers cluster the contexts of ambigu-
ous words for WSD, which shows good perform-
ance (Schutze, 1998). 

Because an EP has a higher similarity with the 
ambiguous word in syntax and semantics, it is a 
useful knowledge source for WSD. 

3.3 Design and Construction of EPs 

Because of the special characteristics of EPs, it's 
more difficult to construct an EP than a general 
pseudo word. To ensure the maximum similarity 
between the EP and the original ambiguous word, 
the following principles should be followed. 

1) Every EP should map to one and only one 
original ambiguous word. 

2) The morphemes of an EP should map one 
by one to those of the original ambiguous word. 

3) The sense of the EP should be the same as 
the corresponding ambiguous word, or has the 
maximum similarity with the word. 

4) The morpheme of a pseudoword stands for 
a sense, while the sense should consist of one or 
more morphemes.  

5) The morpheme should be a monosemous 
word. 

The fourth principle above is the biggest dif-
ference between the EP and a general pseudo 
word. The sense of an EP is composed of one or 
several morphemes. This is a remarkable feature 

of the EP, which originates from its equivalent 
linguistic function with the original word. To 
construct the EP, it must be ensured that the 
sense of the EP maps to that of the original word. 
Usually, a candidate monosemous word for a 
morpheme stands for part of the linguistic func-
tion of the ambiguous word, thus we need to 
choose several morphemes to stand for one sense.  

The relatedness of the senses refers to the 
similarity of the contexts of the original ambigu-
ous word and its EP. The similarity between the 
words means that they serve as synonyms for 
each other. This principle demands that both se-
mantic and pragmatic information should be 
taken into account in choosing a morpheme word. 

3.4 Implementation of the EP-based Solution 

An appropriate machine-readable dictionary is 
needed for construction of the EPs. A Chinese 
thesaurus is adopted and revised to meet this de-
mand. 
Extended Version of TongYiCiCiLin 
To extend the TongYiCiCiLin (Cilin) to hold 
more words, several linguistic resources are 
adopted for manually adding new words. An ex-
tended version of the Cilin is achieved, which 
includes 77,343 items. 

A hierarchy of three levels is organized in the 
extended Cilin for all items. Each node in the 
lowest level, called a minor class, contains sev-
eral words of the same class. The words in one 
minor class are divided into several groups ac-
cording to their sense similarity and relatedness, 
and each group is further divided into several 
lines, which can be viewed as the fifth level of 
the thesaurus. The 5-level hierarchy of the ex-
tended Cilin is shown in figure 1. The lower the 
level is, the more specific the sense is. The fifth 
level often contains a few words or only one 
word, which is called an atom word group, an 
atom class or an atom node. The words in the 
same atom node hold the smallest semantic dis-
tance. 

From the root node to the leaf node, the sense 
is described more and more detailed, and the 
words in the same node are more and more re-
lated. Words in the same fifth level node have 
the same sense and linguistic function, which 
ensures that they can substitute for each other 
without leading to any change in the meaning of 
a sentence. 
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Figure 1. Organization of Cilin (extended) 

 
The extended version of extended Cilin is 

freely downloadable from the Internet and has 
been used by over 20 organizations in the world1. 

Construction of EPs 
According to the position of the ambiguous word, 
a proper word is selected as the morpheme of the 
EP. Almost every ambiguous word has its corre-
sponding EP constructed in this way. 

The first step is to decide the position of the 
ambiguous word starting from the leaf node of 
the tree structure. Words in the same leaf node 
are identical or similar in the linguistic function 
and word sense. Other words in the leaf node of 
the ambiguous word are called brother words of 
it. If there is a monosemous brother word, it can 
be taken as a candidate morpheme for the EP. If 
there does not exist such a brother word, trace to 
the fourth level. If there is still no monosemous 
brother word in the fourth level, trace to the third 
level. Because every node in the third level con-
tains many words, candidate morpheme for the 
ambiguous can usually be found. 

In most cases, candidate morphemes can be 
found at the fifth level. It is not often necessary 
to search to the fourth level, less to the third. Ac-
cording to our statistics, the extended Cilin con-
tains about monosemous words for 93% of the 
ambiguous words in the fifth level, and 97% in 
the fourth level. There are only 112 ambiguous 
words left, which account for the other 3% and 
mainly are functional words. Some of the 3% 
words are rarely used, which cannot be found in 
even a large corpus. And words that lead to se-
mantic misunderstanding are usually content 
words. In WSD research for English, only nouns, 
verbs, adjectives and adverbs are considered. 
                                                 
1 It is located at http://www.ir-lab.org/. 

From this aspect, the extended version of Cilin 
meets our demand for the construction of EPs. 

If many monosemous brother words are found 
in the fourth or third level, there are many candi-
date morphemes to choose from. A further selec-
tion is made based on calculation of sense simi-
larity. More similar brother words are chosen. 
Computing of EPs 
Generally, several morpheme words are needed 
for better construction of an EP. We assume that 
every morpheme word stands for a specific sense 
and does not influence each other. It is more 
complex to construct an EP than a common 
pseudo word, and the formulation and statistical 
information are also different. 

An EP is described as follows:  
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Where WEP is the EP word, Si is a sense of the 
ambiguous word, and Wik is a morpheme word of 
the EP. 

The statistical information of the EP is calcu-
lated as follows: 

1） stands for the frequency of the S)( iSC i : 

∑=
k

iki WCSC )()(  

2） stands for the co-occurrence fre-
quency of S

),( fi WSC

i and the contextual word Wf : 

∑=
k

fikfi WWCWSC ),(),(  
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Ambiguous word citation (Qin and 
Wang, 2005) Ours Ambiguous word citation (Qin and 

Wang, 2005) Ours 

把握(ba3 wo4) 0.56 0.87 没有(mei2 you3) 0.75 0.68 

包(bao1) 0.59 0.75 起来(qi3 lai2) 0.82 0.54 

材料(cai2 liao4) 0.67 0.79 钱(qian2) 0.75 0.62 

冲击(chong1 ji1) 0.62 0.69 日子(ri4 zi3) 0.75 0.68 

穿(chuan1) 0.80 0.57 少(shao3) 0.69 0.56 

地方(di4 fang1) 0.65 0.65 突出(tu1 chu1) 0.82 0.86 

分子(fen1 zi3) 0.91 0.81 研究(yan2 jiu1) 0.69 0.63 

运动(yun4 dong4) 0.61 0.82 活动(huo2 dong4) 0.79 0.88 

老(lao3) 0.59 0.50 走(zou3) 0.72 0.60 

路(lu4) 0.74 0.64 坐(zuo4) 0.90 0.73 

Average 0.72 0.69 Note: Average of the 20 words 

Table 2. The F-measure for the Supervised WSD 

 

4 EP-based Unsupervised WSD Method 

EP is a solution to the semantic knowledge ac-
quisition problem, and it does not limit the 
choice of statistical learning methods. All of the 
mathematical modeling methods can be applied 
to EP-based WSD methods. This section focuses 
on the application of the EP concept to WSD, 
and chooses Bayesian method for the classifier 
construction. 

4.1 A Sense Classifier Based on the Bayes-
ian Model 

Because the model acquires knowledge from the 
EPs but not from the original ambiguous word, 
the method introduced here does not need human 
tagging of training corpus. 

In the training stage for WSD, statistics of EPs 
and context words are obtained and stored in a 
database. Senseval-3 data set plus unsupervised 
learning method are adopted to investigate into 
the value of EP in WSD. To ensure the compara-
bility of experiment results, a Bayesian classifier 
is used in the experiments. 
Bayesian Classifier 
Although the Bayesian classifier is simple, it is 
quite efficient, and it shows good performance 
on WSD. 

The Bayesian classifier used in this paper is 
described in (1) 

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
+= ∑

∈ ij

k
cv

kjkSi SvPSPwS )|(log)(logmaxarg)( (1)

Where wi is the ambiguous word,  is the 
occurrence probability of the sense S

)( kSP

k,  
is the conditional probability of the context word 
v

)|( kj SvP

j, and ci is the set of the context words. 
To simplify the experiment process, the Naive 

Bayesian modeling is adopted for the sense clas-
sifier. Feature selection and ensemble classifica-
tion are not applied, which is both to simplify the 
calculation and to prove the effect of EPs in 
WSD. 
Experiment Setup and Results  
The Senseval-3 Chinese ambiguous words are 
taken as the testing set, which includes 20 words, 
each with 2-8 senses. The data for the ambiguous 
words are divided into a training set and a testing 
set by a ratio of 2:1. There are 15-20 training 
instances for each sense of the words, and occurs 
by the same frequency in the training and test set. 

Supervised WSD is first implemented using 
the Bayesian model on the Senseval-3 data set. 
With a context window of (-10, +10), the open 
test results are shown in table 2. 

The F-measure in table 2 is defined in (2). 

RP
RPF

+
××

=
2  (2) 
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Where P and R refer to the precision and recall 
of the sense tagging respectively, which are cal-
culated as shown in (3) and (4) 

)tagged(
)correct(

C
CP =  (3) 

)all(
)correct(

C
CR =  (4) 

Where C(tagged) is the number of tagged in-
stances of senses, C(correct) is the number of 
correct tags, and C(all) is the number of tags in 
the gold standard set. Every sense of the am-
biguous word has a P value, a R value and a F 
value. The F value in table 2 is a weighted aver-
age of all the senses. 

In the EP-based unsupervised WSD experi-
ment, a 100M corpus (People's Daily for year 
1998) is used for the EP training instances. The 
Senseval-3 data is used for the test. In our ex-
periments, a context window of (-10, +10) is 
taken. The detailed results are shown in table 3. 

4.2 Experiment Analysis and Discussion 

Experiment Evaluation Method 
Two evaluation criteria are used in the experi-
ments, which are the F-measure and precision. 
Precision is a usual criterion in WSD perform-
ance analysis. Only in recent years, the precision, 
recall, and F-measure are all taken to evaluate 
the WSD performance. 

In this paper, we will only show the f-measure 
score because it is a combined score of precision 
and recall. 

Result Analysis on Bayesian Supervised WSD 
Experiment 
The experiment results in table 2 reveals that the 
results of supervised WSD and those of (Qin and 
Wang, 2005) are different. Although they are all 
based on the Bayesian model, Qin and Wang 
(2005) used an ensemble classifier. However, the 
difference of the average value is not remarkable. 

As introduced above, in the supervised WSD 
experiment, the various senses of the instances 
are evenly distributed. The lower bound as Gale 
et al. (1992c) suggested should be very low and 
it is more difficult to disambiguate if there are 
more senses. The experiment verifies this reason-
ing, because the highest F-measure is less than 
90%, and the lowest is less than 60%, averaging 
about 70%. 

With the same number of senses and the same 
scale of training data, there is a big difference 
between the WSD results. This shows that other 
factors exist which influence the performance 
other than the number of senses and training data 
size. For example, the discriminability among the 
senses is an important factor. The WSD task be-
comes more difficult if the senses of the ambigu-
ous word are more similar to each other. 
Experiment Analysis of the EP-based WSD 
The EP-based unsupervised method takes the 
same open test set as the supervised method. The 
unsupervised method shows a better performance, 
with the highest F-measure score at 100%, low-
est at 59% and average at 80%. The results 
shows that EP is useful in unsupervised WSD. 
 

Sequence 
Number Ambiguous word F-measure Sequence 

Number Ambiguous word F-measure 
(%) 

1 把握(ba3 wo4) 0.93 11 没有(mei2 you3) 1.00 

2 包(bao1) 0.74 12 起来(qi3 lai2) 0.59 

3 料(cai2 liao4) 0.80 13 钱(qian2) 0.71 

4 冲击(chong1 ji1) 0.85 14 日子(ri4 zi3) 0.62 

5 穿(chuan1) 0.79 15 少(shao3) 0.82 

6 地方(di4 fang1) 0.78 16 突出(tu1 chu1) 0.93 

7 分子(fen1 zi3) 0.94 17 研究(yan2 jiu1) 0.71 

8 运动(yun4 
dong4) 0.94 18 活动(huo2 dong4) 0.89 

9 老(lao3) 0.85 19 走(zou3) 0.68 

10 路(lu4) 0.81 20 坐(zuo4) 0.67 

Average 0.80 Note: Average of the 20 words 

Table 3. The Results for Unsupervised WSD based on EPs 
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From the results in table 2 and table 3, it can 

be seen that 16 among the 20 ambiguous words 
show better WSD performance in unsupervised 
SWD than in supervised WSD, while only 2 of 
them shows similar results and 2 performs worse . 
The average F-measure of the unsupervised 
method is higher by more than 10%. The reason 
lies in the following aspects: 

1) Because there are several morpheme words 
for every sense of the word in construction of the 
EP, rich semantic information can be acquired in 
the training step and is an advantage for sense 
disambiguation. 

2) Senseval-3 has provided a small-scale train-
ing set, with 15-20 training instances for each 
sense, which is not enough for the WSD model-
ing. The lack of training information leads to a 
low performance of the supervised methods. 

3) With a large-scale training corpus, the un-
supervised WSD method has got plenty of train-
ing instances for a high performance in disam-
biguation. 

4) The discriminability of some ambiguous 
word may be low, but the corresponding EPs 
could be easier to disambiguate. For example, 
the ambiguous word "穿" has two senses which 
are difficult to distinguish from each other, but 
its Eps' senses of "越过/穿过/穿越" and "戳/捅/
通/扎"can be easily disambiguated. It is the same 
for the word "冲击", whose Eps' senses are "撞
击/磕碰 /碰撞" and "损害/伤害". EP-based 
knowledge acquisition of these ambiguous words 
for WSD has helped a lot to achieve high per-
formance. 

5 Conclusion 

As discussed above, the supervised WSD method 
shows a low performance because of its depend-
ency on the size of the training data. This reveals 
its weakness in knowledge acquisition bottleneck. 
EP-based unsupervised method has overcame 
this weakness. It requires no manually tagged 
corpus to achieve a satisfactory performance on 
WSD. Experimental results show that EP-based 
method is a promising solution to the large-scale 
WSD task. In future work, we will examine the 
effectiveness of EP-based method in other WSD 
techniques. 
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Abstract

This paper presents techniques to apply
semi-CRFs to Named Entity Recognition
tasks with a tractable computational cost.
Our framework can handle an NER task
that has long named entities and many
labels which increase the computational
cost. To reduce the computational cost,
we propose two techniques: the first is the
use of feature forests, which enables us to
pack feature-equivalent states, and the sec-
ond is the introduction of a filtering pro-
cess which significantly reduces the num-
ber of candidate states. This framework
allows us to use a rich set of features ex-
tracted from the chunk-based representa-
tion that can capture informative charac-
teristics of entities. We also introduce a
simple trick to transfer information about
distant entities by embedding label infor-
mation into non-entity labels. Experimen-
tal results show that our model achieves an
F-score of 71.48% on the JNLPBA 2004
shared task without using any external re-
sources or post-processing techniques.

1 Introduction

The rapid increase of information in the biomedi-
cal domain has emphasized the need for automated
information extraction techniques. In this paper
we focus on the Named Entity Recognition (NER)
task, which is the first step in tackling more com-
plex tasks such as relation extraction and knowl-
edge mining.

Biomedical NER (Bio-NER) tasks are, in gen-
eral, more difficult than ones in the news domain.
For example, the best F-score in the shared task of

Bio-NER in COLING 2004 JNLPBA (Kim et al.,
2004) was 72.55% (Zhou and Su, 2004)1, whereas
the best performance at MUC-6, in which systems
tried to identify general named entities such as
person or organization names, was an accuracy of
95% (Sundheim, 1995).

Many of the previous studies of Bio-NER tasks
have been based on machine learning techniques
including Hidden Markov Models (HMMs) (Bikel
et al., 1997), the dictionary HMM model (Kou et
al., 2005) and Maximum Entropy Markov Mod-
els (MEMMs) (Finkel et al., 2004). Among these
methods, conditional random fields (CRFs) (Laf-
ferty et al., 2001) have achieved good results (Kim
et al., 2005; Settles, 2004), presumably because
they are free from the so-called label bias problem
by using a global normalization.

Sarawagi and Cohen (2004) have recently in-
troduced semi-Markov conditional random fields
(semi-CRFs). They are defined on semi-Markov
chains and attach labels to the subsequences of a
sentence, rather than to the tokens2. The semi-
Markov formulation allows one to easily construct
entity-level features. Since the features can cap-
ture all the characteristics of a subsequence, we
can use, for example, a dictionary feature which
measures the similarity between a candidate seg-
ment and the closest element in the dictionary.
Kou et al. (2005) have recently showed that semi-
CRFs perform better than CRFs in the task of
recognition of protein entities.

The main difficulty of applying semi-CRFs to
Bio-NER lies in the computational cost at training

1Krauthammer (2004) reported that the inter-annotator
agreement rate of human experts was 77.6% for bio-NLP,
which suggests that the upper bound of the F-score in a Bio-
NER task may be around 80%.

2Assuming that non-entity words are placed in unit-length
segments.
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Table 1: Length distribution of entities in the train-
ing set of the shared task in 2004 JNLPBA

Length # entity Ratio
1 21646 42.19
2 15442 30.10
3 7530 14.68
4 3505 6.83
5 1379 2.69
6 732 1.43
7 409 0.80
8 252 0.49

>8 406 0.79
total 51301 100.00

because the number of named entity classes tends
to be large, and the training data typically contain
many long entities, which makes it difficult to enu-
merate all the entity candidates in training. Table
1 shows the length distribution of entities in the
training set of the shared task in 2004 JNLPBA.
Formally, the computational cost of training semi-
CRFs isO(KLN), whereL is the upper bound
length of entities,N is the length of sentence and
K is the size of label set. And that of training in
first order semi-CRFs isO(K2LN). The increase
of the cost is used to transfer non-adjacent entity
information.

To improve the scalability of semi-CRFs, we
propose two techniques: the first is to intro-
duce a filtering process that significantly re-
duces the number of candidate entities by using
a “lightweight” classifier, and the second is to
usefeature forest(Miyao and Tsujii, 2002), with
which we pack the feature equivalent states. These
enable us to construct semi-CRF models for the
tasks where entity names may be long and many
class-labels exist at the same time. We also present
an extended version of semi-CRFs in which we
can make use of information about a preceding
named entity in defining features within the frame-
work of first order semi-CRFs. Since the preced-
ing entity is not necessarily adjacent to the current
entity, we achieve this by embedding the informa-
tion on preceding labels for named entities into the
labels for non-named entities.

2 CRFs and Semi-CRFs

CRFs are undirected graphical models that encode
a conditional probability distribution using a given

set of features. CRFs allow both discriminative
training and bi-directional flow of probabilistic in-
formation along the sequence. In NER, we of-
ten use linear-chain CRFs, which define the con-
ditional probability of a state sequencey = y1, ...,
yn given the observed sequencex = x1,...,xn by:

p(y|x, λ) =
1

Z(x)
exp(Σn

i=1Σjλjfj(yi−1, yi, x, i)),

(1)
wherefj(yi−1, yi,x, i) is a feature function and
Z(x) is the normalization factor over all the state
sequences for the sequencex. The model parame-
ters are a set of real-valued weightsλ = {λj}, each
of which represents the weight of a feature. All the
feature functions are real-valued and can use adja-
cent label information.

Semi-CRFs are actually a restricted version of
order-L CRFs in which all the labels in a chunk are
the same. We follow the definitions in (Sarawagi
and Cohen, 2004). Lets = 〈s1, ..., sp〉 denote a
segmentation of x, where a segmentsj = 〈tj , uj ,
yj〉 consists of a start positiontj , an end position
uj , and a labelyj . We assume that segments have a
positive length bounded above by the pre-defined
upper boundL (tj ≤ uj , uj − tj + 1 ≤ L) and
completely cover the sequencex without overlap-
ping, that is,s satisfiest1 = 1, up = |x|, and
tj+1 = uj + 1 for j = 1, ..., p − 1. Semi-CRFs
define a conditional probability of a state sequence
y given an observed sequencex by:

p(y|x, λ) =
1

Z(x)
exp(ΣjΣiλifi(sj)), (2)

wherefi(sj) := fi(yj−1, yj ,x, tj , uj) is a fea-
ture function andZ(x) is the normalization factor
as defined for CRFs. The inference problem for
semi-CRFs can be solved by using a semi-Markov
analog of the usual Viterbi algorithm. The com-
putational cost for semi-CRFs isO(KLN) where
L is the upper bound length of entities,N is the
length of sentence andK is the number of label
set. If we use previous label information, the cost
becomesO(K2LN).

3 Using Non-Local Information in
Semi-CRFs

In conventional CRFs and semi-CRFs, one can
only use the information on the adjacent previ-
ous label when defining the features on a certain
state or entity. In NER tasks, however, informa-
tion about a distant entity is often more useful than
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O protein O O DNA
O protein O-protein O-protein DNA

Figure 1: Modification of “O” (other labels) to
transfer information on a preceding named entity.

information about the previous state (Finkel et al.,
2005). For example, consider the sentence “... in-
cluding Sp1 and CP1.” where the correct labels of
“Sp1” and “CP1” are both “protein”. It would be
useful if the model could utilize the (non-adjacent)
information about “Sp1” being “protein” to clas-
sify “CP1” as “protein”. On the other hand, in-
formation about adjacent labels does not necessar-
ily provide useful information because, in many
cases, the previous label of a named entity is “O”,
which indicates a non-named entity. For 98.0% of
the named entities in the training data of the shared
task in the 2004 JNLPBA, the label of the preced-
ing entity was “O”.

In order to incorporate such non-local informa-
tion into semi-CRFs, we take a simple approach.
We divide the label of “O” into “ O-protein” and
“O” so that they convey the information on the
preceding named entity. Figure 1 shows an ex-
ample of this conversion, in which the two labels
for the third and fourth states are converted from
“O” to “ O-protein”. When we define the fea-
tures for the fifth state, we can use the informa-
tion on the preceding entity “protein” by look-
ing at the fourth state. Since this modification
changes only the label set, we can do this within
the framework of semi-CRF models. This idea is
originally proposed in (Peshkin and Pfeffer, 2003).
However, they used a dynamic Bayesian network
(DBNs) rather than a semi-CRF, and semi-CRFs
are likely to have significantly better performance
than DBNs.

In previous work, such non-local information
has usually been employed at a post-processing
stage. This is because the use of long distance
dependency violates the locality of the model and
prevents us from using dynamic programming
techniques in training and inference. Skip-CRFs
(Sutton and McCallum, 2004) are a direct imple-

mentation of long distance effects to the model.
However, they need to determine the structure
for propagating non-local information in advance.
In a recent study by Finkel et al., (2005), non-
local information is encoded using an indepen-
dence model, and the inference is performed by
Gibbs sampling, which enables us to use a state-
of-the-art factored model and carry out training ef-
ficiently, but inference still incurs a considerable
computational cost. Since our model handles lim-
ited type of non-local information, i.e. the label
of the preceding entity, the model can be solved
without approximation.

4 Reduction of Training/Inference Cost

The straightforward implementation of this mod-
eling in semi-CRFs often results in a prohibitive
computational cost.

In biomedical documents, there are quite a few
entity names which consist of many words (names
of 8 words in length are not rare). This makes
it difficult for us to use semi-CRFs for biomedi-
cal NER, because we have to setL to be eight or
larger, whereL is the upper bound of the length of
possible chunks in semi-CRFs. Moreover, in or-
der to take into account the dependency between
named entities of different classes appearing in a
sentence, we need to incorporate multiple labels
into a single probabilistic model. For example, in
the shared task in COLING 2004 JNLPBA (Kim
et al., 2004) the number of labels is six (“pro-
tein”, “ DNA”, “ RNA”, “ cell line”, “ cell type”
and “other”). This also increases the computa-
tional cost of a semi-CRF model.

To reduce the computational cost, we propose
two methods (see Figure 2). The first is employing
a filtering process using a lightweight classifier to
remove unnecessary state candidates beforehand
(Figure 2 (2)), and the second is the using thefea-
ture forest model(Miyao and Tsujii, 2002) (Fig-
ure 2 (3)), which employs dynamic programming
at training “as much as possible”.

4.1 Filtering with a naive Bayes classifier

We introduce a filtering process to remove low
probability candidate states. This is the first step
of our NER system. After this filtering step, we
construct semi-CRFs on the remaining candidate
states using a feature forest. Therefore the aim of
this filtering is to reduce the number of candidate
states, without removing correct entities. This idea
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(1) EnumerateCandidate States (2) Filtering byNaïve Bayes (3) Construct feature forest
Training/Inference

: other : entity : other with preceding entity information

Figure 2: The framework of our system. We first enumerate all possible candidate states, and then filter
out low probability states by using a light-weight classifier, and represent them by using feature forest.

Table 2: Features used in the naive Bayes Classi-
fier for the entity candidate:ws, ws+1, ...,we. spi

is the result of shallow parsing atwi.

Feature Name Example of Features
Start/End Word ws, we

Inside Word ws, ws+1, ... ,we

Context Word ws−1, we+1

Start/End SP sps, spe

Inside SP sps, sps+1, ...,spe

Context SP sps−1, spe+1

is similar to the method proposed by Tsuruoka and
Tsujii (2005) for chunk parsing, in which implau-
sible phrase candidates are removed beforehand.

We construct a binary naive Bayes classifier us-
ing the same training data as those for semi-CRFs.
In training and inference, we enumerate all possi-
ble chunks (the max length of a chunk isL as for
semi-CRFs) and then classify those into “entity”
or “other”. Table 2 lists the features used in the
naive Bayes classifier. This process can be per-
formed independently of semi-CRFs

Since the purpose of the filtering is to reduce the
computational cost, rather than to achieve a good
F-score by itself, we chose the threshold probabil-
ity of filtering so that the recall of filtering results
would be near 100%.

4.2 Feature Forest

In estimating semi-CRFs, we can use an efficient
dynamic programming algorithm, which is simi-
lar to the forward-backward algorithm (Sarawagi
and Cohen, 2004). The proposal here is a more
general framework for estimating sequential con-
ditional random fields.

This framework is based onthe feature forest

DNA
protein
Other DNA

protein
Other: or node (disjunctive node): and node (conjunctive node)

pos i i+1
……

Figure 3: Example of feature forest representation
of linear chain CRFs. Feature functions are as-
signed to “and” nodes.

protein
O-protein
protein uj =8 prev-entity:protein

uj =  8prev-entity: proteinpacked
pos 87 9

Figure 4: Example of packed representation of
semi-CRFs. The states that have the same end po-
sition and prev-entity label are packed.

model, which was originally proposed for disam-
biguation models for parsing (Miyao and Tsujii,
2002). A feature forest model is a maximum en-
tropy model defined overfeature forests, which are
abstract representations of an exponential number
of sequence/tree structures. A feature forest is
an “and/or” graph: in Figure 3, circles represent
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“and” nodes (conjunctivenodes), while boxes de-
note “or” nodes (disjunctivenodes). Feature func-
tions are assigned to “and” nodes. We can use
the information of the previous “and” node for de-
signing the feature functions through the previous
“or” node. Each sequence in a feature forest is
obtained by choosing a conjunctive node for each
disjunctive node. For example, Figure 3 represents
3 × 3 = 9 sequences, since each disjunctive node
has three candidates. It should be noted that fea-
ture forests can represent an exponential number
of sequences with a polynomial number of con-
junctive/disjunctive nodes.

One can estimate a maximum entropy model for
the whole sequence with dynamic programming
by representing the probabilistic events, i.e. se-
quence of named entity tags, by feature forests
(Miyao and Tsujii, 2002).

In the previous work (Lafferty et al., 2001;
Sarawagi and Cohen, 2004), “or” nodes are con-
sidered implicitly in the dynamic programming
framework. In feature forest models, “or” nodes
are packed when they have same conditions. For
example, “or” nodes are packed when they have
same end positions and same labels in the first or-
der semi-CRFs,

In general, we can pack different “or” nodes that
yield equivalent feature functions in the follow-
ing nodes. In other words, “or” nodes are packed
when the following states use partial information
on the preceding states. Consider the task of tag-
gingentityandO-entity, where the latter tag is ac-
tually O tags that distinguish the preceding named
entity tags. When we simply apply first-order
semi-CRFs, we must distinguish states that have
different previous states. However, when we want
to distinguish only the preceding named entity tags
rather than the immediate previous states, feature
forests can represent these events more compactly
(Figure 4). We can implement this as follows. In
each “or” node, we generate the following “and”
nodes and their feature functions. Then we check
whether there exist “or” node which has same con-
ditions by using its information about “end posi-
tion” and “previous entity”. If so, we connect the
“and” node to the corresponding “or” node. If not,
we generate a new “or” node and continue the pro-
cess.

Since the states with labelO-entity and entity
are packed, the computational cost of training in
our model (First order semi-CRFs) becomes the

half of the original one.

5 Experiments

5.1 Experimental Setting

Our experiments were performed on the training
and evaluation set provided by the shared task in
COLING 2004 JNLPBA (Kim et al., 2004). The
training data used in this shared task came from
the GENIA version 3.02 corpus. In the task there
are five semantic labels:protein, DNA, RNA,
cell line andcell type. The training set consists
of 2000 abstracts from MEDLINE, and the evalu-
ation set consists of 404 abstracts. We divided the
original training set into 1800 abstracts and 200
abstracts, and the former was used as the training
data and the latter as the development data. For
semi-CRFs, we usedamis3 for training the semi-
CRF with feature-forest. We usedGENIA taggar4

for POS-tagging and shallow parsing.
We setL = 10 for training and evaluation when

we do not stateL explicitly , whereL is the upper
bound of the length of possible chunks in semi-
CRFs.

5.2 Features

Table 3 lists the features used in our semi-CRFs.
We describe the chunk-dependent features in de-
tail, which cannot be encoded in token-level fea-
tures.

“Whole chunk” is the normalized names at-
tached to a chunk, which performs like the closed
dictionary. “Length” and “Length and End-
Word ” capture the tendency of the length of a
named entity. “Count feature” captures the ten-
dency for named entities to appear repeatedly in
the same sentence.

“Preceding Entity and Prev Word” are fea-
tures that capture specifically words for conjunc-
tions such as “and” or “ , (comma)”, e.g., for the
phrase “OCIM1 and K562”, both “OCIM1” and
“K562” are assignedcell line labels. Even if
the model can determine only that “OCIM1” is a
cell line , this feature helps “K562” to be assigned
the labelcell line.

5.3 Results

We first evaluated the filtering performance. Table
4 shows the result of the filtering on the training

3http://www-tsujii.is.s.u-tokyo.ac.jp/amis/
4http://www-tsujii.is.s.u-tokyo.ac.jp/GENIA/tagger/

Note that the evaluation data are not used for training the GE-
NIA tagger.
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Table 3: Feature templates used for the chunks := ws ws+1 ... we wherews andwe represent the words
at the beginning and ending of the target chunk respectively.pi is the part of speech tag ofwi andsci is
the shallow parse result ofwi.

Feature Name description of features
Non-Chunk Features

Word/POS/SC with Position BEGIN + ws, END +we, IN + ws+1, ..., IN +we−1, BEGIN +ps,...

Context Uni-gram/Bi-gram ws−1, we+1, ws−2 + ws−1, we+1 + we+2, ws−1 + we+1

Prefix/Suffix of Chunk 2/3-gram character prefix ofws, 2/3/4-gram character suffix ofwe

Orthography capitalization and word formation ofws...we

Chunk Features
Whole chunk ws + ws+1 + ... +we

Word/POS/SC End Bi-grams we−1 + we, pe−1 + pe, sce−1 + sce

Length, Length and End Word |s|, |s|+we

Count Feature the frequency ofwsws+1..we in a sentence is greater than one

Preceding Entity Features
Preceding Entity /and Prev Word PrevState, PrevState + ws−1

Table 4: Filtering results using the naive Bayes
classifier. The number of entity candidates for the
training set was4179662, and that of the develop-
ment set was418628.

Training set
Threshold probability reduction ratio recall

1.0 × 10−12 0.14 0.984
1.0 × 10−15 0.20 0.993

Development set
Threshold probability reduction ratio recall

1.0 × 10−12 0.14 0.985
1.0 × 10−15 0.20 0.994

and evaluation data. The naive Bayes classifiers
effectively reduced the number of candidate states
with very few falsely removed correct entities.

We then examined the effect of filtering on the
final performance. In this experiment, we could
not examine the performance without filtering us-
ing all the training data, because training on all
the training data without filtering required much
larger memory resources (estimated to be about
80G Byte) than was possible for our experimental
setup. We thus compared the result of the recog-
nizers with and without filtering using only 2000
sentences as the training data. Table 5 shows the
result of the total system with different filtering
thresholds. The result indicates that the filtering
method achieved very well without decreasing the
overall performance.

We next evaluate the effect of filtering, chunk

information and non-local information on final
performance. Table 6 shows the performance re-
sult for the recognition task.L means the upper
bound of the length of possible chunks in semi-
CRFs. We note that we cannot examine the re-
sult ofL = 10 without filtering because of the in-
tractable computational cost. The row “w/o Chunk
Feature” shows the result of the system which does
not employ Chunk-Features in Table 3 at training
and inference. The row “Preceding Entity” shows
the result of a system which usesPreceding En-
tity and Preceding Entity and Prev Word fea-
tures. The results indicate that the chunk features
contributed to the performance, and the filtering
process enables us to use full chunk representation
(L = 10). The results of McNemar’s test suggest
that the system with chunk features is significantly
better than the system without it (the p-value is
less than1.0 < 10−4). The result of the preceding
entity information improves the performance. On
the other hand, the system with preceding infor-
mation is not significantly better than the system
without it5. Other non-local information may im-
prove performance with our framework and this is
a topic for future work.

Table 7 shows the result of the overall perfor-
mance in our best setting, which uses the infor-
mation about the preceding entity and1.0×10−15

threshold probability for filtering. We note that the
result of our system is similar to those of other sys-

5The result of the classifier on development data is74.64
(without preceding information) and75.14 (with preceding
information).
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Table 5: Performance with filtering on the development data.(< 1.0 × 10−12) means the threshold
probability of the filtering is1.0 × 10−12.

Recall Precision F-scoreMemory Usage (MB) Training Time (s)
Small Training Data = 2000 sentences

Without filtering 65.77 72.80 69.10 4238 7463
Filtering (< 1.0 × 10.0−12) 64.22 70.62 67.27 600 1080
Filtering (< 1.0 × 10.0−15) 65.34 72.52 68.74 870 2154

All Training Data = 16713 sentences
Without filtering Not available Not available
Filtering (< 1.0 × 10.0−12) 70.05 76.06 72.93 10444 14661
Filtering (< 1.0 × 10.0−15) 72.09 78.47 75.14 15257 31636

Table 6: Overall performance on the evaluation set.L is the upper bound of the length of possible chunks
in semi-CRFs.

Recall Precision F-score
L < 5 64.33 65.51 64.92
L = 10 + Filtering (< 1.0 × 10.0−12) 70.87 68.33 69.58
L = 10 + Filtering (< 1.0 × 10.0−15) 72.59 70.16 71.36
w/o Chunk Feature 70.53 69.92 70.22
+ Preceding Entity 72.65 70.35 71.48

tems in several respects, that is, the performance of
cell line is not good, and the performance of the
right boundary identification (78.91% in F-score)
is better than that of the left boundary identifica-
tion (75.19% in F-score).

Table 8 shows a comparison between our sys-
tem and other state-of-the-art systems. Our sys-
tem has achieved a comparable performance to
these systems and would be still improved by us-
ing external resources or conducting pre/post pro-
cessing. For example, Zhou et. al (2004) used
post processing, abbreviation resolution and exter-
nal dictionary, and reported that they improved F-
score by3.1%, 2.1% and1.2% respectively. Kim
et. al (2005) used the original GENIA corpus
to employ the information about other semantic
classes for identifying term boundaries. Finkel
et. al (2004) used gazetteers, web-querying, sur-
rounding abstracts, and frequency counts from
the BNC corpus. Settles (2004) used seman-
tic domain knowledge of 17 types of lexicon.
Since our approach and the use of external re-
sources/knowledge do not conflict but are com-
plementary, examining the combination of those
techniques should be an interesting research topic.

Table 7: Performance of our system on the evalu-
ation set

Class Recall Precision F-score
protein 77.74 68.92 73.07

DNA 69.03 70.16 69.59
RNA 69.49 67.21 68.33

cell type 65.33 82.19 72.80
cell line 57.60 53.14 55.28

overall 72.65 70.35 71.48

Table 8: Comparison with other systems

System Recall Precision F-score

Zhou et. al (2004) 75.99 69.42 72.55
Our system 72.65 70.35 71.48
Kim et.al (2005) 72.77 69.68 71.19
Finkel et. al (2004) 68.56 71.62 70.06
Settles (2004) 70.3 69.3 69.8
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6 Conclusion

In this paper, we have proposed a single proba-
bilistic model that can capture important charac-
teristics of biomedical named entities. To over-
come the prohibitive computational cost, we have
presented an efficient training framework and a fil-
tering method which enabled us to apply first or-
der semi-CRF models to sentences having many
labels and entities with long names. Our results
showed that our filtering method works very well
without decreasing the overall performance. Our
system achieved an F-score of 71.48% without the
use of gazetteers, post-processing or external re-
sources. The performance of our system came
close to that of the current best performing system
which makes extensive use of external resources
and rule based post-processing.

The contribution of the non-local information
introduced by our method was not significant in
the experiments. However, other types of non-
local information have also been shown to be ef-
fective (Finkel et al., 2005) and we will examine
the effectiveness of other non-local information
which can be embedded into label information.

As the next stage of our research, we hope to ap-
ply our method to shallow parsing, in which seg-
ments tend to be long and non-local information is
important.
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Abstract

As natural language understanding re-
search advances towards deeper knowledge
modeling, the tasks become more and more
complex: we are interested in more nu-
anced word characteristics, more linguistic
properties, deeper semantic and syntactic
features. One such example, explored in
this article, is the mention detection and
recognition task in the Automatic Content
Extraction project, with the goal of iden-
tifying named, nominal or pronominal ref-
erences to real-world entities—mentions—
and labeling them with three types of in-
formation: entity type, entity subtype and
mention type. In this article, we investi-
gate three methods of assigning these re-
lated tags and compare them on several
data sets. A system based on the methods
presented in this article participated and
ranked very competitively in the ACE’04
evaluation.

1 Introduction

Information extraction is a crucial step toward un-
derstanding and processing natural language data,
its goal being to identify and categorize impor-
tant information conveyed in a discourse. Exam-
ples of information extraction tasks are identifi-
cation of the actors and the objects in written
text, the detection and classification of the rela-
tions among them, and the events they participate
in. These tasks have applications in, among other
fields, summarization, information retrieval, data
mining, question answering, and language under-
standing.

One of the basic tasks of information extraction
is the mention detection task. This task is very
similar to named entity recognition (NER), as the
objects of interest represent very similar concepts.
The main difference is that the latter will identify,
however, only named references, while mention de-
tection seeks named, nominal and pronominal ref-
erences. In this paper, we will call the identified
references mentions – using the ACE (NIST, 2003)
nomenclature – to differentiate them from entities

which are the real-world objects (the actual person,
location, etc) to which the mentions are referring
to1.

Historically, the goal of the NER task was to find
named references to entities and quantity refer-
ences – time, money (MUC-6, 1995; MUC-7, 1997).
In recent years, Automatic Content Extraction
evaluation (NIST, 2003; NIST, 2004) expanded the
task to also identify nominal and pronominal refer-
ences, and to group the mentions into sets referring
to the same entity, making the task more compli-
cated, as it requires a co-reference module. The set
of identified properties has also been extended to
include the mention type of a reference (whether it
is named, nominal or pronominal), its subtype (a
more specific type dependent on the main entity
type), and its genericity (whether the entity points
to a specific entity, or a generic one2), besides the
customary main entity type. To our knowledge,
little research has been done in the natural lan-
guage processing context or otherwise on investi-
gating the specific problem of how such multiple la-
bels are best assigned. This article compares three
methods for such an assignment.

The simplest model which can be considered for
the task is to create an atomic tag by “gluing” to-
gether the sub-task labels and considering the new
label atomic. This method transforms the prob-
lem into a regular sequence classification task, sim-
ilar to part-of-speech tagging, text chunking, and
named entity recognition tasks. We call this model
the all-in-one model. The immediate drawback
of this model is that it creates a large classifica-
tion space (the cross-product of the sub-task clas-
sification spaces) and that, during decoding, par-
tially similar classifications will compete instead of
cooperate - more details are presented in Section
3.1. Despite (or maybe due to) its relative sim-
plicity, this model obtained good results in several
instances in the past, for POS tagging in morpho-
logically rich languages (Hajic and Hladká, 1998)

1In a pragmatic sense, entities are sets of mentions
which co-refer.

2This last attribute, genericity, depends only loosely
on local context. As such, it should be assigned while
examining all mentions in an entity, and for this reason
is beyond the scope of this article.
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and mention detection (Jing et al., 2003; Florian
et al., 2004).

At the opposite end of classification methodol-
ogy space, one can use a cascade model, which per-
forms the sub-tasks sequentially in a predefined or-
der. Under such a model, described in Section 3.3,
the user will build separate models for each sub-
task. For instance, it could first identify the men-
tion boundaries, then assign the entity type, sub-
type, and mention level information. Such a model
has the immediate advantage of having smaller
classification spaces, with the drawback that it re-
quires a specific model invocation path.

In between the two extremes, one can use a joint
model, which models the classification space in the
same way as the all-in-one model, but where the
classifications are not atomic. This system incor-
porates information about sub-model parts, such
as whether the current word starts an entity (of
any type), or whether the word is part of a nomi-
nal mention.

The paper presents a novel contrastive analysis
of these three models, comparing them on several
datasets in three languages selected from the ACE
2003 and 2004 evaluations. The methods described
here are independent of the underlying classifiers,
and can be used with any sequence classifiers. All
experiments in this article use our in-house imple-
mentation of a maximum entropy classifier (Flo-
rian et al., 2004), which we selected because of its
flexibility of integrating arbitrary types of features.
While we agree that the particular choice of classi-
fier will undoubtedly introduce some classifier bias,
we want to point out that the described procedures
have more to do with the organization of the search
space, and will have an impact, one way or another,
on most sequence classifiers, including conditional
random field classifiers.3

The paper is organized as follows: Section 2 de-
scribes the multi-task classification problem and
prior work, Section 3.3 presents and contrasts the
three meta-classification models. Section 4 outlines
the experimental setup and the obtained results,
and Section 5 concludes the paper.

2 Multi-Task Classification

Many tasks in Natural Language Processing in-
volve labeling a word or sequence of words with
a specific property; classic examples are part-of-
speech tagging, text chunking, word sense disam-
biguation and sentiment classification. Most of the
time, the word labels are atomic labels, containing
a very specific piece of information (e.g. the word

3While not wishing to delve too deep into the issue
of label bias, we would also like to point out (as it
was done, for instance, in (Klein, 2003)) that the label
bias of MEMM classifiers can be significantly reduced
by allowing them to examine the right context of the
classification point - as we have done with our model.

is noun plural, or starts a noun phrase, etc). There
are cases, though, where the labels consist of sev-
eral related, but not entirely correlated, properties;
examples include mention detection—the task we
are interested in—, syntactic parsing with func-
tional tag assignment (besides identifying the syn-
tactic parse, also label the constituent nodes with
their functional category, as defined in the Penn
Treebank (Marcus et al., 1993)), and, to a lesser
extent, part-of-speech tagging in highly inflected
languages.4

The particular type of mention detection that we
are examining in this paper follows the ACE gen-
eral definition: each mention in the text (a refer-
ence to a real-world entity) is assigned three types
of information:5

• An entity type, describing the type of the en-
tity it points to (e.g. person, location, organi-
zation, etc)

• An entity subtype, further detailing the type
(e.g. organizations can be commercial, gov-
ernmental and non-profit, while locations can
be a nation, population center, or an interna-
tional region)

• A mention type, specifying the way the en-
tity is realized – a mention can be named
(e.g. John Smith), nominal (e.g. professor),
or pronominal (e.g. she).

Such a problem – where the classification consists
of several subtasks or attributes – presents addi-
tional challenges, when compared to a standard
sequence classification task. Specifically, there are
inter-dependencies between the subtasks that need
to be modeled explicitly; predicting the tags inde-
pendently of each other will likely result in incon-
sistent classifications. For instance, in our running
example of mention detection, the subtype task is
dependent on the entity type; one could not have a
person with the subtype non-profit. On the other
hand, the mention type is relatively independent of
the entity type and/or subtype: each entity type
could be realized under any mention type and vice-
versa.

The multi-task classification problem has been
subject to investigation in the past. Caruana
et al. (1997) analyzed the multi-task learning

4The goal there is to also identify word properties
such as gender, number, and case (for nouns), mood
and tense (for verbs), etc, besides the main POS tag.
The task is slightly different, though, as these proper-
ties tend to have a stronger dependency on the lexical
form of the classified word.

5There is a fourth assigned type – a flag specifying
whether a mention is specific (i.e. it refers at a clear
entity), generic (refers to a generic type, e.g. “the sci-
entists believe ..”), unspecified (cannot be determined
from the text), or negative (e.g. “ no person would do
this”). The classification of this type is beyond the
goal of this paper.
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(MTL) paradigm, where individual related tasks
are trained together by sharing a common rep-
resentation of knowledge, and demonstrated that
this strategy yields better results than one-task-at-
a-time learning strategy. The authors used a back-
propagation neural network, and the paradigm was
tested on several machine learning tasks. It also
contains an excellent discussion on how and why
the MTL paradigm is superior to single-task learn-
ing. Florian and Ngai (2001) used the same multi-
task learning strategy with a transformation-based
learner to show that usually disjointly handled
tasks perform slightly better under a joint model;
the experiments there were run on POS tagging
and text chunking, Chinese word segmentation and
POS tagging. Sutton et al. (2004) investigated
the multitask classification problem and used a dy-
namic conditional random fields method, a gener-
alization of linear-chain conditional random fields,
which can be viewed as a probabilistic generaliza-
tion of cascaded, weighted finite-state transducers.
The subtasks were represented in a single graphi-
cal model that explicitly modeled the sub-task de-
pendence and the uncertainty between them. The
system, evaluated on POS tagging and base-noun
phrase segmentation, improved on the sequential
learning strategy.

In a similar spirit to the approach presented in
this article, Florian (2002) considers the task of
named entity recognition as a two-step process:
the first is the identification of mention boundaries
and the second is the classification of the identified
chunks, therefore considering a label for each word
being formed from two sub-labels: one that spec-
ifies the position of the current word relative in a
mention (outside any mentions, starts a mention, is
inside a mention) and a label specifying the men-
tion type . Experiments on the CoNLL’02 data
show that the two-process model yields consider-
ably higher performance.

Hacioglu et al. (2005) explore the same task, in-
vestigating the performance of the AIO and the
cascade model, and find that the two models have
similar performance, with the AIO model having a
slight advantage. We expand their study by adding
the hybrid joint model to the mix, and further in-
vestigate different scenarios, showing that the cas-
cade model leads to superior performance most of
the time, with a few ties, and show that the cas-
cade model is especially beneficial in cases where
partially-labeled data (only some of the component
labels are given) is available. It turns out though,
(Hacioglu, 2005) that the cascade model in (Ha-
cioglu et al., 2005) did not change to a “mention
view” sequence classification6 (as we did in Section
3.3) in the tasks following the entity detection, to
allow the system to use longer range features.

6As opposed to a “word view”.

3 Classification Models

This section presents the three multi-task classifi-
cation models, which we will experimentally con-
trast in Section 4. We are interested in performing
sequence classification (e.g. assigning a label to
each word in a sentence, otherwise known as tag-
ging). Let X denote the space of sequence elements
(words) and Y denote the space of classifications
(labels), both of them being finite spaces. Our goal
is to build a classifier

h : X+ → Y+

which has the property that |h (x̄)| = |x̄| ,∀x̄ ∈ X+

(i.e. the size of the input sequence is preserved).
This classifier will select the a posteriori most likely
label sequence ȳ = arg maxȳ′ p

(
ȳ′|x̄); in our case

p (ȳ|x̄) is computed through the standard Markov
assumption:

p (y1,m| x̄) =
∏

i

p (yi|x̄, yi−n+1,i−1) (1)

where yi,j denotes the sequence of labels yi..yj .
Furthermore, we will assume that each label y
is composed of a number of sub-labels y =(
y1y2 . . . yk

)
7; in other words, we will assume the

factorization of the label space into k subspaces
Y = Y1 × Y2 × . . .× Yk.

The classifier we used in the experimental sec-
tion is a maximum entropy classifier (similar to
(McCallum et al., 2000))—which can integrate sev-
eral sources of information in a rigorous manner.
It is our empirical observation that, from a perfor-
mance point of view, being able to use a diverse
and abundant feature set is more important than
classifier choice, and the maximum entropy frame-
work provides such a utility.

3.1 The All-In-One Model

As the simplest model among those presented here,
the all-in-one model ignores the natural factoriza-
tion of the output space and considers all labels as
atomic, and then performs regular sequence clas-
sification. One way to look at this process is the
following: the classification space Y = Y1 × Y2 ×
. . . × Yk is first mapped onto a same-dimensional
space Z through a one-to-one mapping o : Y → Z;
then the features of the system are defined on the
space X+ ×Z, instead of X+ × Y.

While having the advantage of being simple, it
suffers from some theoretical disadvantages:

• The classification space can be very large, be-
ing the product of the dimensions of sub-task
spaces. In the case of the 2004 ACE data
there are 7 entity types, 4 mention types and
many subtypes; the observed number of actual

7We can assume, without any loss of generality, that
all labels have the same number of sub-labels.
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All-In-One Model Joint Model
B-PER

B-LOC

B-ORG B-

B-MISC

Table 1: Features predicting start of an entity in
the all-in-one and joint models

sub-label combinations on the training data is
401. Since the dynamic programing (Viterbi)
search’s runtime dependency on the classifica-
tion space is O (|Z|n) (n is the Markov depen-
dency size), using larger spaces will negatively
impact the decoding run time.8

• The probabilities p (zi|x̄, zi−n,i−1) require
large data sets to be computed properly. If
the training data is limited, the probabilities
might be poorly estimated.

• The model is not friendly to partial evaluation
or weighted sub-task evaluation: different, but
partially similar, labels will compete against
each other (because the system will return a
probability distribution over the classification
space), sometimes resulting in wrong partial
classification.9

• The model cannot directly use data that is
only partially labeled (i.e. not all sub-labels
are specified).

Despite the above disadvantages, this model has
performed well in practice: Hajic and Hladká
(1998) applied it successfully to find POS se-
quences for Czech and Florian et al. (2004) re-
ports good results on the 2003 ACE task. Most
systems that participated in the CoNLL 2002 and
2003 shared tasks on named entity recognition
(Tjong Kim Sang, 2002; Tjong Kim Sang and
De Meulder, 2003) applied this model, as they
modeled the identification of mention boundaries
and the assignment of mention type at the same
time.

3.2 The Joint Model

The joint model differs from the all-in-one model
in the fact that the labels are no longer atomic: the
features of the system can inspect the constituent
sub-labels. This change helps alleviate the data

8From a practical point of view, it might not be very
important, as the search is pruned in most cases to only
a few hypotheses (beam-search); in our case, pruning
the beam only introduced an insignificant model search
error (0.1 F-measure).

9To exemplify, consider that the system outputs the
following classifications and probabilities: O (0.2), B-
PER-NAM (0.15), B-PER-NOM (0.15); even the latter
2 suggest that the word is the start of a person mention,
the O label will win because the two labels competed
against each other.

Detect Boundaries 
  & Entity Types

Assemble full tag

Detect Entity Subtype Detect Mention Type

Figure 1: Cascade flow example for mention detec-
tion.

sparsity encountered by the previous model by al-
lowing sub-label modeling. The joint model the-
oretically compares favorably with the all-in-one
model:

• The probabilities p (yi|x̄, yi−n,i−1) =

p

((
y1
i , . . . , y

k
i

) |x̄,
(
yji−n,i−1

)
j=1,k

)
might

require less training data to be properly
estimated, as different sub-labels can be
modeled separately.

• The joint model can use features that predict
just one or a subset of the sub-labels. Ta-
ble 1 presents the set of basic features that
predict the start of a mention for the CoNLL
shared tasks for the two models. While the
joint model can encode the start of a mention
in one feature, the all-in-one model needs to
use four features, resulting in fewer counts per
feature and, therefore, yielding less reliably es-
timated features (or, conversely, it needs more
data for the same estimation confidence).

• The model can predict some of the sub-tags
ahead of the others (i.e. create a dependency
structure on the sub-labels). The model used
in the experimental section predicts the sub-
labels by using only sub-labels for the previous
words, though.

• It is possible, though computationally expen-
sive, for the model to use additional data
that is only partially labeled, with the model
change presented later in Section 3.4.

3.3 The Cascade Model

For some tasks, there might already exist a natural
hierarchy among the sub-labels: some sub-labels
could benefit from knowing the value of other,
primitive, sub-labels. For example,

• For mention detection, identifying the men-
tion boundaries can be considered as a primi-
tive task. Then, knowing the mention bound-
aries, one can assign an entity type, subtype,
and mention type to each mention.

• In the case of parsing with functional tags, one
can perform syntactic parsing, then assign the
functional tags to the internal constituents.
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Words Since Donna Karan International went public in 1996 ...
Labels O B-ORG I-ORG I-ORG O O O O ...

Figure 2: Sequence tagging for mention detection: the case for a cascade model.

• For POS tagging, one can detect the main
POS first, then detect the other specific prop-
erties, making use of the fact that one knows
the main tag.

The cascade model is essentially a factorization
of individual classifiers for the sub-tasks; in this
framework, we will assume that there is a more
or less natural dependency structure among sub-
tasks, and that models for each of the subtasks
will be built and applied in the order defined by
the dependency structure. For example, as shown
in Figure 1, one can detect mention boundaries and
entity type (at the same time), then detect mention
type and subtype in “parallel” (i.e. no dependency
exists between these last 2 sub-tags).

A very important advantage of the cascade
model is apparent in classification cases where
identifying chunks is involved (as is the case with
mention detection), similar to advantages that
rescoring hypotheses models have: in the second
stage, the chunk classification stage, it can switch
to a mention view, where the classification units
are entire mentions and words outside of mentions.
This allows the system to make use of aggregate
features over the mention words (e.g. all the words
are capitalized), and to also effectively use a larger
Markov window (instead of 2-3 words, it will use 2-
3 chunks/words around the word of interest). Fig-
ure 2 contains an example of such a case: the cas-
cade model will have to predict the type of the
entire phrase Donna Karan International, in the
context ’Since <chunk> went public in ..’, which
will give it a better opportunity to classify it as an
organization. In contrast, because the joint model
and AIO have a word view of the sentence, will lack
the benefit of examining the larger region, and will
not have access at features that involve partial fu-
ture classifications (such as the fact that another
mention of a particular type follows).

Compared with the other two models, this clas-
sification method has the following advantages:

• The classification spaces for each subtask are
considerably smaller; this fact enables the cre-
ation of better estimated models
• The problem of partially-agreeing competing

labels is completely eliminated
• One can easily use different/additional data to

train any of the sub-task models.

3.4 Adding Partially Labeled Data

Annotated data can be sometimes expensive to
come by, especially if the label set is complex. But

not all sub-tasks were created equal: some of them
might be easier to predict than others and, there-
fore, require less data to train effectively in a cas-
cade setup. Additionally, in realistic situations,
some sub-tasks might be considered to have more
informational content than others, and have prece-
dence in evaluation. In such a scenario, one might
decide to invest resources in annotating additional
data only for the particularly interesting sub-task,
which could reduce this effort significantly.

To test this hypothesis, we annotated additional
data with the entity type only. The cascade model
can incorporate this data easily: it just adds it
to the training data for the entity type classifier
model. While it is not immediately apparent how
to incorporate this new data into the all-in-one and
joint models, in order to maintain fairness in com-
paring the models, we modified the procedures to
allow for the inclusion. Let T denote the original
training data, and T ′ denote the additional train-
ing data.

For the all-in-one model, the additional training
data cannot be incorporated directly; this is an in-
herent deficiency of the AIO model. To facilitate a
fair comparison, we will incorporate it in an indi-
rect way: we train a classifier C on the additional
training data T ′, which we then use to classify the
original training data T . Then we train the all-
in-one classifier on the original training data T ,
adding the features defined on the output of ap-
plying the classifier C on T .

The situation is better for the joint model: the
new training data T ′ can be incorporated directly
into the training data T .10 The maximum entropy
model estimates the model parameters by maxi-
mizing the data log-likelihood

L =
∑

(x,y)

p̂ (x, y) log qλ (y|x)

where p̂ (x, y) is the observed probability dis-
tribution of the pair (x, y) and qλ (y|x) =
1
Z

∏
j exp (λj · fj (x, y)) is the conditional ME

probability distribution as computed by the model.
In the case where some of the data is partially an-
notated, the log-likelihood becomes

L =
∑

(x,y)∈T ∪T ′
p̂ (x, y) log qλ (y|x)

10The solution we present here is particular for
MEMM models (though similar solutions may exist for
other models as well). We also assume the reader is fa-
miliar with the normal MaxEnt training procedure; we
present here only the differences to the standard algo-
rithm. See (Manning and Schütze, 1999) for a good
description.
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=
∑

(x,y)∈T
p̂ (x, y) log qλ (y|x)

+
∑

(x,y)∈T ′
p̂ (x, y) log qλ (y|x) (2)

The only technical problem that we are faced with
here is that we cannot directly estimate the ob-
served probability p̂ (x, y) for examples in T ′, since
they are only partially labeled. Borrowing the
idea from the expectation-maximization algorithm
(Dempster et al., 1977), we can replace this proba-
bility by the re-normalized system proposed prob-
ability: for (x, yx) ∈ T ′, we define

q̂ (x, y) = p̂ (x) δ (y ∈ yx)
qλ (y|x)∑

y′∈yx qλ (y′|x)
︸ ︷︷ ︸

=q̂λ(y|x)

where yx is the subset of labels from Y which are
consistent with the partial classification of x in T ′.
δ (y ∈ yx) is 1 if and only if y is consistent with
the partial classification yx.11 The log-likelihood
computation in Equation (2) becomes

L =
∑

(x,y)∈T
p̂ (x, y) log qλ (y|x)

+
∑

(x,y)∈T ′
q̂ (x, y) log qλ (y|x)

To further simplify the evaluation, the quantities
q̂ (x, y) are recomputed every few steps, and are
considered constant as far as finding the optimum
λ values is concerned (the partial derivative com-
putations and numerical updates otherwise become
quite complicated, and the solution is no longer
unique). Given this new evaluation function, the
training algorithm will proceed exactly the same
way as in the normal case where all the data is
fully labeled.

4 Experiments

All the experiments in this section are run on the
ACE 2003 and 2004 data sets, in all the three
languages covered: Arabic, Chinese, and English.
Since the evaluation test set is not publicly avail-
able, we have split the publicly available data into
a 80%/20% data split. To facilitate future compar-
isons with work presented here, and to simulate a
realistic scenario, the splits are created based on
article dates: the test data is selected as the last
20% of the data in chronological order. This way,
the documents in the training and test data sets
do not overlap in time, and the ones in the test
data are posterior to the ones in the training data.
Table 2 presents the number of documents in the
training/test datasets for the three languages.

11For instance, the full label B-PER is consistent
with the partial label B, but not with O or I.

Language Training Test
Arabic 511 178
Chinese 480 166

English 2003 658 139
English 2004 337 114

Table 2: Datasets size (number of documents)

Each word in the training data is labeled with
one of the following properties:12

• if it is not part of any entity, it’s labeled as O
• if it is part of an entity, it contains a tag spec-

ifying whether it starts a mention (B -) or is
inside a mention (I -). It is also labeled with
the entity type of the mention (seven possible
types: person, organization, location, facility,
geo-political entity, weapon, and vehicle), the
mention type (named, nominal, pronominal,
or premodifier13), and the entity subtype (de-
pends on the main entity type).

The underlying classifier used to run the experi-
ments in this article is a maximum entropy model
with a Gaussian prior (Chen and Rosenfeld, 1999),
making use of a large range of features, includ-
ing lexical (words and morphs in a 3-word win-
dow, prefixes and suffixes of length up to 4, Word-
Net (Miller, 1995) for English), syntactic (POS
tags, text chunks), gazetteers, and the output of
other information extraction models. These fea-
tures were described in (Florian et al., 2004), and
are not discussed here. All three methods (AIO,
joint, and cascade) instantiate classifiers based on
the same feature types whenever possible. In terms
of language-specific processing, the Arabic system
uses as input morphological segments, while the
Chinese system is a character-based model (the in-
put elements x ∈ X are characters), but it has
access to word segments as features.

Performance in the ACE task is officially eval-
uated using a special-purpose measure, the ACE
value metric (NIST, 2003; NIST, 2004). This
metric assigns a score based on the similarity be-
tween the system’s output and the gold-standard
at both mention and entity level, and assigns dif-
ferent weights to different entity types (e.g. the
person entity weights considerably more than a fa-
cility entity, at least in the 2003 and 2004 evalu-
ations). Since this article focuses on the mention
detection task, we decided to use the more intu-
itive (unweighted) F-measure: the harmonic mean
of precision and recall.

12The mention encoding is the IOB2 encoding pre-
sented in (Tjong Kim Sang and Veenstra, 1999) and
introduced by (Ramshaw and Marcus, 1994) for the
task of base noun phrase chunking.

13This is a special class, used for mentions that mod-
ify other labeled mentions; e.g. French in “French
wine”. This tag is specific only to ACE’04.
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For the cascade model, the sub-task flow is pre-
sented in Figure 1. In the first step, we identify
the mention boundaries together with their entity
type (e.g. person, organization, etc). In prelimi-
nary experiments, we tried to “cascade” this task.
The performance was similar on both strategies;
the separated model would yield higher recall at
the expense of precision, while the combined model
would have higher precision, but lower recall. We
decided to use in the system with higher precision.
Once the mentions are identified and classified with
the entity type property, the data is passed, in par-
allel, to the mention type detector and the subtype
detector.

For English and Arabic, we spent three person-
weeks to annotate additional data labeled with
only the entity type information: 550k words for
English and 200k words for Arabic. As mentioned
earlier, adding this data to the cascade model is a
trivial task: the data just gets added to the train-
ing data, and the model is retrained. For the AIO
model, we have build another mention classifier on
the additional training data, and labeled the orig-
inal ACE training data with it. It is important
to note here that the ACE training data (called
T in Section 3.4) is consistent with the additional
training data T ′: the annotation guidelines for T ′
are the same as for the original ACE data, but we
only labeled entity type information. The result-
ing classifications are then used as features in the
final AIO classifier. The joint model uses the addi-
tional partially-labeled data in the way described
in Section 3.4; the probabilities q̂ (x, y) are updated
every 5 iterations.

Table 3 presents the results: overall, the cascade
model performs significantly better than the all-
in-one model in four out the six tested cases - the
numbers presented in bold reflect that the differ-
ence in performance to the AIO model is statisti-
cally significant.14 The joint model, while manag-
ing to recover some ground, falls in between the
AIO and the cascade models.

When additional partially-labeled data was
available, the cascade and joint models receive a
statistically significant boost in performance, while
the all-in-one model’s performance barely changes.
This fact can be explained by the fact that the en-
tity type-only model is in itself errorful; measuring
the performance of the model on the training data
yields a performance of 82 F-measure;15 therefore
the AIO model will only access partially-correct

14To assert the statistical significance of the results,
we ran a paired Wilcoxon test over the series obtained
by computing F-measure on each document in the test
set. The results are significant at a level of at least
0.009.

15Since the additional training data is consistent in
the labeling of the entity type, such a comparison is in-
deed possible. The above mentioned score is on entity
types only.

Language Data+ A-I-O Joint Cascade
Arabic’04 no 59.2 59.1 59.7

yes 59.4 60.0 60.7
English’04 no 72.1 72.3 73.7

yes 72.5 74.1 75.2
Chinese’04 no 71.2 71.7 71.7
English ’03 no 79.5 79.5 79.7

Table 3: Experimental results: F-measure on the
full label

Language Data+ A-I-O Joint Cascade
Arabic’04 no 66.3 66.5 67.5

yes 66.4 67.9 68.9
English’04 no 77.9 78.1 79.2

yes 78.3 80.5 82.6
Chinese’04 no 75.4 76.1 76.8
English ’03 no 80.4 80.4 81.1

Table 4: F-measure results on entity type only

data, and is unable to make effective use of it.
In contrast, the training data for the entity type
in the cascade model effectively triples, and this
change is reflected positively in the 1.5 increase in
F-measure.

Not all properties are equally valuable: the en-
tity type is arguably more interesting than the
other properties. If we restrict ourselves to eval-
uating the entity type output only (by projecting
the output label to the entity type only), the differ-
ence in performance between the all-in-one model
and cascade is even more pronounced, as shown in
Table 4. The cascade model outperforms here both
the all-in-one and joint models in all cases except
English’03, where the difference is not statistically
significant.

As far as run-time speed is concerned, the AIO
and cascade models behave similarly: our imple-
mentation tags approximately 500 tokens per sec-
ond (averaged over the three languages, on a Pen-
tium 3, 1.2Ghz, 2Gb of memory). Since a MaxEnt
implementation is mostly dependent on the num-
ber of features that fire on average on a example,
and not on the total number of features, the joint
model runs twice as slow: the average number of
features firing on a particular example is consider-
ably higher. On average, the joint system can tag
approximately 240 words per second. The train
time is also considerably longer; it takes 15 times as
long to train the joint model as it takes to train the
all-in-one model (60 mins/iteration compared to
4 mins/iteration); the cascade model trains faster
than the AIO model.

One last important fact that is worth mention-
ing is that a system based on the cascade model
participated in the ACE’04 competition, yielding
very competitive results in all three languages.
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5 Conclusion

As natural language processing becomes more so-
phisticated and powerful, we start focus our at-
tention on more and more properties associated
with the objects we are seeking, as they allow for
a deeper and more complex representation of the
real world. With this focus comes the question of
how this goal should be accomplished – either de-
tect all properties at once, one at a time through
a pipeline, or a hybrid model. This paper presents
three methods through which multi-label sequence
classification can be achieved, and evaluates and
contrasts them on the Automatic Content Extrac-
tion task. On the ACE mention detection task,
the cascade model which predicts first the mention
boundaries and entity types, followed by mention
type and entity subtype outperforms the simple all-
in-one model in most cases, and the joint model in
a few cases.

Among the proposed models, the cascade ap-
proach has the definite advantage that it can easily
and productively incorporate additional partially-
labeled data. We also presented a novel modifica-
tion of the joint system training that allows for the
direct incorporation of additional data, which in-
creased the system performance significantly. The
all-in-one model can only incorporate additional
data in an indirect way, resulting in little to no
overall improvement.

Finally, the performance obtained by the cas-
cade model is very competitive: when paired with a
coreference module, it ranked very well in the “En-
tity Detection and Tracking” task in the ACE’04
evaluation.
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Abstract

Hidden Markov models (HMMs) are pow-
erful statistical models that have found
successful applications in Information Ex-
traction (IE). In current approaches to ap-
plying HMMs to IE, an HMM is used to
model text at the document level. This
modelling might cause undesired redun-
dancy in extraction in the sense that more
than one filler is identified and extracted.
We propose to use HMMs to model text
at the segment level, in which the extrac-
tion process consists of two steps: a seg-
ment retrieval step followed by an extrac-
tion step. In order to retrieve extraction-
relevant segments from documents, we in-
troduce a method to use HMMs to model
and retrieve segments. Our experimen-
tal results show that the resulting segment
HMM IE system not only achieves near
zero extraction redundancy, but also has
better overall extraction performance than
traditional document HMM IE systems.

1 Introduction

A Hidden Markov Model (HMM) is a finite state
automaton with stochastic state transitions and
symbol emissions (Rabiner, 1989). The automa-
ton models a random process that can produce
a sequence of symbols by starting from some
state, transferring from one state to another state
with a symbol being emitted at each state, un-
til a final state is reached. Formally, a hidden
Markov model (HMM) is specified by a five-tuple
(S,K,Π, A, B), whereS is a set of states;K is the
alphabet of observation symbols;Π is the initial
state distribution;A is the probability distribution

of state transitions; andB is the probability distri-
bution of symbol emissions. When the structure of
an HMM is determined, the complete model para-
meters can be represented asλ = (A,B,Π).

HMMs are particularly useful in modelling se-
quential data. They have been applied in several
areas within natural language processing (NLP),
with one of the most successful efforts in speech
recognition. HMMs have also been applied in
information extraction. An early work of using
HMMs for IE is (Leek, 1997) in which HMMs are
trained to extract gene name-location facts from a
collection of scientific abstracts. Another related
work is (Bikel et al., 1997) which used HMMs as
part of its modelling for the name finding problem
in information extraction.

A more recent work on applying HMMs to IE
is (Freitag and McCallum, 1999), in which a sep-
arate HMM is built for extracting fillers for each
slot. To train an HMM for extracting fillers for
a specific slot, maximum likelihood estimation is
used to determine the probabilities (i.e., the ini-
tial state probabilities, the state transition proba-
bilities, and the symbol emission probabilities) as-
sociated with each HMM from labelled texts.

One characteristic of current HMM-based IE
systems is that an HMM models the entire doc-
ument. Each document is viewed as a long se-
quence of tokens (i.e., words, punctuation marks
etc.), which is the observation generated from the
given HMM. The extraction is performed by find-
ing the best state sequence for this observed long
token sequence constituting the whole document,
and the subsequences of tokens that pass through
the target filler state are extracted as fillers. We
call such approaches to applying HMMs to IE at
the document level as document-based HMM IE
or document HMM IEfor brevity.
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In addition to HMMs, there are other Markovian
sequence models that have been applied to IE. Ex-
amples of these models include maximum entropy
Markov models (McCallum et al., 2000), Bayesian
information extraction network (Peshkin and Pf-
effer, 2003), and conditional random fields (Mc-
Callum, 2003) (Peng and McCallum, 2004). In
the IE systems using these models, extraction is
performed by sequential tag labelling. Similar to
HMM IE, each document is considered to be a sin-
gle steam of tokens in these IE models as well.

In this paper, we introduce the concept of ex-
traction redundancy, and show that current docu-
ment HMM IE systems often produce undesired
redundant extractions. In order to address this ex-
traction redundancy issue, we propose a segment-
based two-step extraction approach in which a seg-
ment retrieval step is imposed before the extrac-
tion step. Our experimental results show that the
resulting segment-based HMM IE system not only
achieves near-zero extraction redundancy but also
improves the overall extraction performance.

This paper is organized as follows. In section
2, we describe our document HMM IE system in
which the Simple Good-Turning (SGT) smooth-
ing is applied for probability estimation. We also
evaluate our document HMM IE system, and com-
pare it to the related work. In Section3, we point
out the extraction redundancy issue in a document
HMM IE system. The definition of the extrac-
tion redundancy is introduced for better evalua-
tion of an IE system with possible redundant ex-
traction. In order to address this extraction redun-
dancy issue, we propose our segment-based HMM
IE method in Section4, in which a segment re-
trieval step is applied before the extraction is per-
formed. Section5 presents a segment retrieval
algorithm by using HMMs to model and retrieve
segments. We compare the performance between
the segment HMM IE system and the document
HMM IE system in Section6. Finally, conclusions
are made and some future work is mentioned in
Section7.

2 Document-based HMM IE with the
SGT smoothing

2.1 HMM structure

We use a similar HMM structure (named as
HMM Context) as in (Freitag and McCallum,
1999) for our document HMM IE system. An
example of such an HMM is shown in Figure1,

in which the number of pre-context states, post-
context states, and the number of parallel filler
paths are all set to 4, the default model parame-
ter setting in our system.
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Figure 1:An example of HMMContext structure

HMM Context consists of the following four
kinds of states in addition to the specialstart and
endstates.

Filler states Fillermn, m = 1, 2, 3, 4 andn =
1, · · · ,m states, correspond to the occur-
rences of filler tokens.

Background state This state corresponds to the
occurrences of the tokens that are not related
to fillers or their contexts.

Pre context statesPre4, P re3, P re2, P re1

states correspond to the events present when
context tokens occur before the fillers at
the specific positions relative to the fillers,
respectively.

Post context statesPost1, Post2, Post3, Post4
states correspond to the events present when
context tokens occur after the fillers at
the specific positions relative to the fillers,
respectively.

Our HMM structure differs from the one used
in (Freitag and McCallum, 1999) in that we have
added the transitions from the last post context
state to every pre context state as well as every first
filler state. This handles the situation where two
filler occurrences in the document are so close to
each other that the text segment between these two
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fillers is shorter than the sum of the pre context and
the post context sizes.

2.2 Smoothing in HMM IE

There are many probabilities that need to be es-
timated to train an HMM for information extrac-
tion from a limited number of labelled documents.
The data sparseness problem commonly occurring
in probabilistic learning would also be an issue
in the training for an HMM IE system, especially
when more advanced HMMContext models are
used. Since the emission vocabulary is usually
large with respect to the number of training exam-
ples, maximum likelihood estimation of emission
probabilities will lead to inappropriate zero prob-
abilities for many words in the alphabet.

The Simple Good-Turning (SGT) smoothing
(Gale and Sampson, 1995) is a simple version
of Good-Turning approach, which is a population
frequency estimator used to adjust the observed
term frequencies to estimate the real population
term frequencies. The observed frequency distrib-
ution from the sample can be represented as a vec-
tor of (r, nr) pairs,r = 1, 2, · · · . r values are the
observed term frequencies from the training data,
andnr refers to the number of different terms that
occur with frequencyr in the sample.

For eachr observed in the sample, the Good-
Turning method gives an estimation for its real
population frequency asr∗ = (r + 1)E(nr+1)

E(nr) ,
where E(nr) is the expected number of terms
with frequencyr. For unseen events, an amount
of probability P0 is assigned to all these unseen
events,P0 = E(n1)

N ≈ n1
N , whereN is the total

number of term occurrences in the sample.
The SGT smoothing has been successfully ap-

plied to naive Bayes IE systems in (Gu and Cer-
cone, 2006) for more robust probability estima-
tion. We apply the SGT smoothing method to
our HMM IE systems to alleviate the data sparse-
ness problem in HMM training. In particular, the
emission probability distribution for each state is
smoothed using the SGT method. The number
of unseen emission terms is estimated, as the ob-
served alphabet size difference between the spe-
cific state emission term distribution and the all
term distribution, for each state before assigning
the total unseen probability obtained from the SGT
smoothing among all these unseen terms.

The data sparseness problem in probability es-
timation for HMMs has been addressed to some

extent in previous HMM based IE systems (e.g.,
(Leek, 1997) and (Freitag and McCallum, 1999)).
Smoothing methods such as absolute discounting
have been used for this purpose. Moreover, (Fre-
itag and McCallum, 1999) uses ashrinkagetech-
nique for estimating word emission probabilities
of HMMs in the face of sparse training data. It first
defines a shrinkage topology over HMM states,
then learns the mixture weights for producing in-
terpolated emission probabilities by using a sep-
arate data set that is “held-out” from the labelled
data. This technique is calleddeleted interpolation
in speech recognition (Jelinek and Mercer, 1980).

2.3 Experimental results on document HMM
IE and comparison to related work

We evaluated our document HMM IE system on
the seminar announcements IE domain using ten-
fold cross validation evaluation. The data set con-
sists of 485 annotated seminar announcements,
with the fillers for the following four slots spec-
ified for each seminar:location (the location of a
seminar),speaker(the speaker of a seminar),stime
(the starting time of a seminar) andetime(the end-
ing time of a seminar). In our HMM IE exper-
iments, the structure parameters are set to system
default values, i.e., 4 for both pre-context and post-
context size, and 4 for the number of parallel filler
paths.

Table 1 shows F1 scores (95% confidence
intervals) of our Document HMM IE system
(Doc HMM). The performance numbers from
other HMM IE systems (Freitag and McCallum,
1999) are also listed in Table1 for comparison,
where HMM None is their HMM IE system that
uses absolute discounting but with no shrinkage,
and HMM Global is the representative version of
their HMM IE system with shrinkage.

By using the same structure parameters (i.e., the
same context size) as in (Freitag and McCallum,
1999), our DocHMM system performs consis-
tently better on all slots than their HMM IE sys-
tem using absolute discounting. Even compared
to their much more complex version of HMM IE
with shrinkage, our system has achieved compa-
rable results onlocation, speakerand stime, but
obtained significantly better performance on the
etimeslot. It is noted that our smoothing method
is much simpler to apply, and does not require any
extra effort such as specifying shrinkage topology
or any extra labelled data for a held-out set.
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Table 1:F1 of Document HMM IE systems on seminar announcements

Learner location speaker stime etime
Doc HMM 0.8220±0.022 0.7135±0.025 1.0000±0.0 0.9488±0.012

HMM None 0.735 0.513 0.991 0.814
HMM Global 0.839 0.711 0.991 0.595

3 Document extraction redundancy in
HMM IE

3.1 Issue with document-based HMM IE

In existing HMM based IE systems, an HMM is
used to model the entire document as one long ob-
servation sequence emitted from the HMM. The
extracted fillers are identified by any part of the
sequence in which tokens in it are labelled as one
of the filler states. The commonly used structure
of the hidden Markov models in IE allows multiple
passes through the paths of the filler states. So it is
possible for the labelled state sequences to present
multiple filler extractions.

It is not known from the performance reports
from previous works (e.g., (Freitag and McCal-
lum, 1999)) that how exactly a correct extraction
for one document is defined in HMM IE evalua-
tion. One way to define a correct extraction for a
document is to require that at least one of the text
segments that pass the filler states is the same as
a labelled filler. Alternatively, we can define the
correctness by requiring that all the text segments
that pass the filler states are same as the labelled
fillers. In this case, it is actually required an ex-
act match between the HMM state sequence de-
termined by the system and the originally labelled
one for that document. Very likely, the former
correctness criterion was used in evaluating these
document-based HMM IE systems. We used the
same criterion for evaluating our document HMM
IE systems in Section2.

Although it might be reasonable to define that a
document is correctly extracted if any one of the
identified fillers from the state sequence labelled
by the system is a correct filler, certain issues exist
when a document HMM IE system returns multi-
ple extractions for the same slot for one document.
For example, it is possible that some of the fillers
found by the system are not correct extractions. In
this situation, such document-wise extraction eval-
uation alone would not be sufficient to measure the
performance of an HMM IE system.

Document HMM IE modelling does provide

any guidelines for selecting one mostly likely filler
from the ones identified by the state sequence
matching over the whole document. For the tem-
plate filling IE problem that is of our interest in
this paper, the ideal extraction result is one slot
filler per document. Otherwise, some further post-
processing would be required to choose only one
extraction, from the multiple fillers possibly ex-
tracted by a document HMM IE system, for filling
in the slot template for that document.

3.2 Concept of document extraction
redundancy in HMM IE

In order to make a more complete extraction per-
formance evaluation in an HMM-based IE system,
we introduce another performance measure,docu-
ment extraction redundancyas defined in Defini-
tion 1, to be used with the document-wise extrac-
tion correctness measure .

Definition 1. Document extraction redundancy
is defined over the documents that contain correct
extraction(s), as the ratio of theincorrectly ex-
tracted fillers to all returned fillers from the docu-
ment HMM IE system.

For example, when the document HMM IE sys-
tem issues more than one slot extraction for a
document, if all the issued extractions are correct
ones, then the extraction redundancy for that doc-
ument is 0. Among all the issued extractions, the
larger of the number of incorrect extractions is, the
closer the extraction redundancy for that document
is to 1. However, the extraction redundancy can
never be 1 according to our definition, since this
measure is only defined over the documents that
contain at lease one correct extraction.

Now let us have a look at the extraction redun-
dancy in the document HMM IE system from Sec-
tion 2. We calculate the average document ex-
traction redundancy over all the documents that
are judged as correctly extracted. The evalua-
tion results for the document extraction redun-
dancy (shown in column R) are listed in Table2,
paired with their corresponding F1 scores from the
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document-wise extraction evaluation.

Table 2: F1 / redundancy in document HMM IE
on SA domain

Slot F1 R
location 0.8220 0.0543
speaker 0.7135 0.0952
stime 1.0000 0.1312
etime 0.9488 0.0630

Generally speaking, the HMM IE systems
based on document modelling has exhibited a cer-
tain extraction redundancy for any slot in this IE
domain, and in some cases such as forspeakerand
stime, the average extraction redundancy is by all
means not negligible.

4 Segment-based HMM IE Modelling

In order to make the IE system capable of pro-
ducing the ideal extraction result that issues only
one slot filler for each document, we propose a
segment-based HMM IE framework in the follow-
ing sections of this paper. We expect this frame-
work can dramatically reduce the document ex-
traction redundancy and make the resulting IE sys-
tem output extraction results to the template filling
IE task with the least post-processing requirement.

The basic idea of our approach is to use HMMs
to extract fillers from onlyextraction-relevantpart
of text instead of the entire document. We re-
fer to this modelling as segment-based HMM IE,
or segment HMM IEfor brevity. The unit of
the extraction-relevant text segments is definable
according to the nature of the texts. For most
texts, one sentence in the text can be regarded as
a text segment. For some texts that are not writ-
ten in a grammatical style and sentence boundaries
are hard to identify, we can define aextraction-
relevant text segment be the part of text that in-
cludes a filler occurrence and its contexts.

4.1 Segment-based HMM IE modelling: the
procedure

By imposing an extraction-relevant text segment
retrieval in the segment HMM IE modelling, we
perform an extraction on a document by complet-
ing the following two successive sub-tasks.

Step 1: Identify from the entire documents the
text segments that are relevant to a specific

slot extraction. In other words, the docu-
ment is filtered by locating text segments that
might contain a filler.

Step 2: Extraction is performed by applying
the segment HMM only on the extraction-
relevant text segments that are obtained from
the first step. Each retrieved segment is la-
belled with the most probable state sequence
by the HMM, and all these segments are
sorted according to their normalized likeli-
hoods of their best state sequences. The
filler(s) identified by the segment having the
largest likelihood is/are returned as the ex-
traction result.

4.2 Extraction from relevant segments

Since it is usual that more than one segment have
been retrieved at Step 1, these segments need to
compete at step 2 for issuing extraction(s) from
their best state sequences found with regard to the
HMM λ used for extraction. For each segments
with token length ofn, its normalized best state
sequence likelihood is defined as follows.

l(s) = log
(
max
all Q

P (Q, s|λ)
)× 1

n
, (1)

whereλ is the HMM andQ is any possible state
sequence associated withs. All the retrieved seg-
ments are then ranked according to theirl(s), and
the segment with the highestl(s) number is se-
lected and the extraction is identified from its la-
belled state sequence by the segment HMM.

This proposed two-step HMM based extraction
procedure requires that the training of the IE mod-
els follows the same style. First, we need to learn
an extraction-relevance segment retrieval system
from the labelled texts which will be described in
detail in Section5. Then, an HMM is trained for
each slot extraction by only using the extraction-
relevant text segments instead of the whole docu-
ments.

By limiting the HMM training to a much
smaller part of the texts, basically including the
fillers and their surrounding contexts, the alpha-
bet size of all emission symbols associated with
the HMM would be significantly reduced. Com-
pared to the common document-based HMM IE
modelling, our proposed segment-based HMM IE
modelling would also ease the HMM training dif-
ficulty caused by the data sparseness problem
since we are working on a smaller alphabet.
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5 Extraction-relevant segment retrieval
using HMMs

We propose a segment retrieval approach for per-
forming the first subtask by also using HMMs. In
particular, it trains an HMM from labelled seg-
ments in texts, and then use the learned HMM
to determine whether a segment is relevant or not
with regard to a specific extraction task. In order
to distinguish the HMM used for segment retrieval
in the first step from the HMM used for the extrac-
tion in the second step, we call the former one as
theretrieval HMM and the later one as theextrac-
tor HMM.

5.1 Training HMMs for segment retrieval

To train a retrieval HMM, it requires each training
segment to be labelled in the same way as in the
annotated training document. After the training
texts are segmented into sentences (we are using
sentence as the segment unit), the obtained seg-
ments that carry the original slot filler tags are used
directly as the training examples for the retrieval
HMM.

An HMM with the same IE specific structure
is trained from the prepared training segments in
exactly the same way as we train an HMM in the
document HMM IE system from a set of training
documents. The difference is that much shorter
labelled observation sequences are used.

5.2 Segment retrieval using HMMs

After a retrieval HMM is trained from the labelled
segments, we use this HMM to determine whether
an unseen segment is relevant or not to a spe-
cific extraction task. This is done by estimating,
from the HMM, how likely the associated state se-
quence of the given segment passes the target filler
states. The HMMλ trained from labelled seg-
ments has the structure as shown in Figure1. So
for a segments, all the possible state sequences
can be categorized into two kinds: the state se-
quences passing through one of the target filler
path, and the state sequences not passing through
any target filler states.

Because of the structure constraints of the spec-
ified HMM in IE, we can see that the second kind
of state sequences actually have only one possible
path, denoted asQbg in which the whole observa-
tion sequence ofs starts at the background state
qbg and continues staying in the background state
until the end. Lets = O1O2 · · ·OT , whereT is

the length ofs in tokens. The probability ofs fol-
lowing this particular background state pathQbg

can be easily calculated with respect to the HMM
λ as follows:

P (s,Qbg|λ) =πqbg
bqbg

(O1)aqbgqbg
bqbg

(O2)

· · · aqbgqbg
bqbg

(OT ),

whereπi is the initial state probability for statei,
bi(Ot) is the emission probability of symbolOt at
statei, andaij is the state transition probability
from statei to statej.

We know that the probability of observings
given the HMMλ actually sums over the proba-
bilities of observings on all the possible state se-
quences given the HMM, i.e.,

P (s|λ) =
∑

all Q

P (s,Q|λ)

Let Qfiller denote the set of state sequences
that pass through any filler states. We have
{all Q} = Qbg∪Qfiller. P (s|λ) can be calculated
efficiently using the forward-backward procedure
which makes the estimate for the total probabil-
ity of all state paths that go through filler states
straightforward to be:

P (s,Qfiller|λ) ∆=
∑

allQ∈Qfiller

P (s,Q|λ)

= P (s|λ)− P (s,Qbg|λ).

Now it is clear to see that, if the calculated
P (s,Qfiller|λ) > P (s, Qbg|λ), then segments is
considered more likely to have filler occurrence(s).
Therefore in this case we classifys as an extrac-
tion relevant segment and it will be retrieved.

5.3 Document-wise retrieval performance

Since the purpose of our segment retrieval is to
identify relevant segments from each document,
we need to define how to determine whether a doc-
ument is correctly filtered (i.e., with extraction rel-
evant segments retrieved) by a given segment re-
trieval system. We consider two criteria, first a
loose correctness definition as follows:

Definition 2. A document isleast correctly fil-
teredby the segment retrieval system whenat least
oneof the extraction relevant segments in that doc-
ument has been retrieved by the system; otherwise,
we say the system fails on that document.

Then we define a stricter correctness measure as
follows:
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Definition 3. A document ismost correctly fil-
tered by the segment retrieval system only when
all the extraction relevant segments in that docu-
ment have been retrieved by the system; otherwise,
we say the system fails on that document.

The overall segment retrieval performance is
measured byretrieval precision(i.e., ratio of the
number of correctly filtered documents to the
number of documents from which the system has
retrieved at least one segments) andretrieval re-
call (i.e., ratio of the number of correctly filtered
documents to the number of documents that con-
tain relevant segments). According to the just
defined two correctness measures, the overall re-
trieval performance for the all testing documents
can be evaluated under both theleast correctly fil-
teredand theleast correctly filteredmeasures.

We also evaluate averagedocument-wise seg-
ment retrieval redundancy, as defined in Defini-
tion 4 to measure the segment retrieval accuracy.

Definition 4. Document-wise segment retrieval
redundancyis defined over the documents which
are least correctly filtered by the segment retrieval
system, as the ratio of the retrievedirrelevantseg-
ments to all retrieved segments for that document.

5.4 Experimental results on segment retrieval

Table 3 shows the document-wise segment re-
trieval performance evaluation results under both
least correctly filteredandmost correctly filtered
measures, as well as the related average number of
retrieved segments for each document (as in Col-
umnnSeg) and the average retrieval redundancy.

Shown from Table3, the segment retrieval re-
sults have achieved high recall especially with the
least correctly filteredcorrectness criterion. In
addition, the system has produced the retrieval
results with relatively small redundancy which
means most of the segments that are fed to the seg-
ment HMM extractor from the retrieval step are
actually extraction-related segments.

6 Segment vs. document HMM IE

We conducted experiments to evaluate our
segment-based HMM IE model, using the pro-
posed segment retrieval approach, and compar-
ing their final extraction performance to the
document-based HMM IE model. Table4 shows
the overall performance comparison between the
document HMM IE system (DocHMM) and the
segment HMM IE system (SegHMM).

Compared to the document-based HMM IE
modelling, the extraction performance onlocation
is significantly improved by our segment HMM IE
system. The important improvement from the seg-
ment HMM IE system that it has achieved zero
extraction redundancy for all the slots in this ex-
periment.

7 Conclusions and future work

In current HMM based IE systems, an HMM is
used to model at the document level which causes
certain redundancy in the extraction. We pro-
pose a segment-based HMM IE modelling method
in order to achieve near-zero redundancy extrac-
tion. In our segment HMM IE approach, a seg-
ment retrieval step is first applied so that the HMM
extractor identifies fillers from a smaller set of
extraction-relevant segments. The resulting seg-
ment HMM IE system using the segment retrieval
method has not only achieved nearly zero extrac-
tion redundancy, but also improved the overall ex-
traction performance. The effect of the segment-
based HMM extraction goes beyond applying a
post-processing step to the document-based HMM
extraction, since the latter can only reduce the re-
dundancy but not improve the F1 scores.

For the template-filling style IE problems, it is
more reasonable to perform extraction by HMM
state labelling on segments, instead of on the en-
tire document. When the observation sequence to
be labelled becomes longer, finding the best sin-
gle state sequence for it would become a more dif-
ficult task. Since the effect of changing a small
part in a very long state sequence would not be as
obvious, with regard to the state path probability
calculation, as changing the same subsequence in
a much shorter state sequence. In fact, this per-
spective not only applies in HMM IE modelling,
but also applies in any IE modelling in which ex-
traction is performed by sequential state labelling.
We are working on extending this segment-based
framework to other Markovian sequence models
used for IE.

Segment retrieval for extraction is an important
step in segment HMM IE, since it filters out ir-
relevant segments from the document. The HMM
for extraction is supposed to model extraction-
relevant segments, so the irrelevant segments that
are fed to the second step would make the ex-
traction more difficult by adding noise to the
competition among relevant segments. We have
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Table 3:Segment retrieval results

Slot
least correctly most correctly

Precision Recall Precision Recall nSeg Redundancy
location 0.8948 0.9177 0.8758 0.8982 2.6064 0.4569
speaker 0.8791 0.7633 0.6969 0.6042 1.6082 0.1664
stime 1.0000 1.0000 0.9464 0.9464 2.6576 0.1961
etime 0.4717 0.9952 0.4570 0.9609 1.7896 0.1050

Table 4:F1 comparison on seminar announcements (document HMM IE vs. segment HMM IE)

Learner location speaker stime etime
F1 R F1 R F1 R F1 R

Doc HMM 0.822±0.022 0.0543 0.7135±0.025 0.0952 1.0000±0.0 0.131 0.9488±0.012 0.063
SegHMM 0.8798±0.018 0 0.7162±0.025 0 0.998±0.003 0 0.9611±0.011 0

presented and evaluated our segment retrieval
method. Document-wise retrieval performance
can give us more insights on the goodness of a par-
ticular segment retrieval method for our purpose:
the document-wise retrieval recall using theleast
correctly filteredmeasure provides an upper bound
on the final extraction performance.

Our current segment retrieval method requires
the training documents to be segmented in ad-
vance. Although sentence segmentation is a rela-
tively easy task in NLP, some segmentation errors
are still unavoidable especially for ungrammatical
online texts. For example, an improper segmenta-
tion could set a segment boundary in the middle
of a filler, which would definitely affect the final
extraction performance of the segment HMM IE
system. In the future, we intend to design segment
retrieval methods that do not require documents to
be segmented before retrieval, hence avoiding the
possibility of early-stage errors introduced from
the text segmentation step. A very promising idea
is to adapt a naive Bayes IE to perform redundant
extractions directly on an entire document to re-
trieve filler-containing text segments for a segment
HMM IE system.
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Abstract 

This paper presents a new web mining 
scheme for parallel data acquisition. 
Based on the Document Object Model 
(DOM), a web page is represented as a 
DOM tree. Then a DOM tree alignment 
model is proposed to identify the transla-
tionally equivalent texts and hyperlinks 
between two parallel DOM trees. By 
tracing the identified parallel hyperlinks, 
parallel web documents are recursively 
mined. Compared with previous mining 
schemes, the benchmarks show that this 
new mining scheme improves the mining 
coverage, reduces mining bandwidth, and 
enhances the quality of mined parallel 
sentences. 

1 Introduction 

Parallel bilingual corpora are critical resources 
for statistical machine translation (Brown 1993), 
and cross-lingual information retrieval (Nie 
1999). Additionally, parallel corpora have been 
exploited for various monolingual natural lan-
guage processing (NLP) tasks, such as word-
sense disambiguation (Ng 2003) and paraphrase 
acquisition (Callison 2005). 

However, large scale parallel corpora are not 
readily available for most language pairs. Even 
where resources are available, such as for Eng-
lish-French, the data are usually restricted to 
government documents (e.g., the Hansard corpus, 
which consists of French-English translations of 
debates in the Canadian parliament) or newswire 
texts. The "governmentese" that characterizes 
these document collections cannot be used on its 
own to train data-driven machine translation sys-
tems for a range of domains and language pairs.  

With a sharply increasing number of bilingual 
web sites, web mining for parallel data becomes 
a promising solution to this knowledge acquisi-
tion problem. In an effort to estimate the amount 
of bilingual data on the web, (Ma and Liberman 
1999) surveyed web pages in the de (German 

web site) domain, showing that of 150,000 web-
sites in the .de domain, 10% are German-English 
bilingual. Based on such observations, some web 
mining systems have been developed to auto-
matically obtain parallel corpora from the web 
(Nie et al 1999; Ma and Liberman 1999; Chen, 
Chau and Yeh 2004; Resnik and Smith 2003 �
Zhang et al 2006 ). These systems mine parallel 
web documents within bilingual web sites, ex-
ploiting the fact that URLs of many parallel web 
pages are named with apparent patterns to facili-
tate website maintenance. Hence given a bilin-
gual website, the mining systems use pre-defined 
URL patterns to discover candidate parallel 
documents within the site. Then content-based 
features will be used to verify the translational 
equivalence of the candidate pairs. 

However, due to the diversity of web page 
styles and website maintenance mechanisms, 
bilingual websites use varied naming schemes 
for parallel documents. For example, the United 
Nation’s website, which contains thousands of 
parallel pages, simply names the majority of its 
web pages with some computer generated ad-hoc 
URLs. Such a website then cannot be mined by 
the URL pattern-based mining scheme. To fur-
ther improve the coverage of web mining, other 
patterns associated with translational parallelism 
are called for. 

Besides, URL pattern-based mining may raise 
concerns on high bandwidth cost and slow 
download speed. Based on descriptions of (Nie et 
al 1999; Ma and Liberman 1999; Chen, Chau 
and Yeh 2004), the mining process requires a full 
host crawling to collect URLs before using URL 
patterns to discover the parallel documents. 
Since in many bilingual web sites, parallel 
documents are much sparser than comparable 
documents, a significant portion of internet 
bandwidth is wasted on downloading web pages 
without translational counterparts.  

Furthermore, there is a lack of discussion on 
the quality of mined data. To support machine 
translation, parallel sentences should be extracted 
from the mined parallel documents. However, 
current sentence alignment models, (Brown et al 
1991; Gale & Church 1991; Wu 1994; Chen 
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1993; Zhao and Vogel, 2002; etc.) are targeted 
on traditional textual documents. Due to the 
noisy nature of the web documents, parallel web 
pages may consist of non-translational content 
and many out-of-vocabulary words, both of 
which reduce sentence alignment accuracy. To 
improve sentence alignment performance on the 
web data, the similarity of the HTML tag struc-
tures between the parallel web documents should 
be leveraged properly in the sentence alignment 
model. 

In order to improve the quality of mined data 
and increase the mining coverage and speed, this 
paper proposes a new web parallel data mining 
scheme. Given a pair of parallel web pages as 
seeds, the Document Object Model1  (DOM) is 
used to represent the web pages as a pair of 
DOM trees. Then a stochastic DOM tree align-
ment model is used to align translationally 
equivalent content, including both textual chunks 
and hyperlinks, between the DOM tree pairs. The 
parallel hyperlinks discovered are regarded as 
anchors to new parallel data. This makes the 
mining scheme an iterative process. 

The new mining scheme has three advantages: 
(i) Mining coverage is increased. Parallel hyper-
links referring to parallel web page is a general 
and reliable pattern for parallel data mining. 
Many bilingual websites not supporting URL 
pattern-based mining scheme support this new 
mining scheme. Our mining experiment shows 
that, using the new web mining scheme, the web 
mining throughput is increased by 32%; (ii) The 
quality of the mined data is improved. By lever-
aging the web pages’ HTML structures, the sen-
tence aligner supported by the DOM tree align-
ment model outperforms conventional ones by 
7% in both precision and recall;  (iii) The band-
width cost is reduced by restricting web page 
downloads to the links that are very likely to be 
parallel. 

The rest of the paper is organized as follows: 
In the next section, we introduce the related work. 
In Section 3, a new web parallel data mining 
scheme is presented. Three component technolo-
gies, the DOM tree alignment model, the sen-
tence aligner, and the candidate parallel page 
verification model are presented in Section 4, 5, 
and 6. Section 7 presents experiments and 
benchmarks. The paper is finally concluded in 
Section 8. 

                                                 
1 See http://www.w3.org/DOM/ 

2 Related Work 

The parallel data available on the web have been 
an important knowledge source for machine 
translation. For example, Hong Kong Laws, an 
English-Chinese Parallel corpus released by Lin-
guistic Data Consortium (LDC) is downloaded 
from the Department of Justice of the Hong 
Kong Special Administrative Region website. 

Recently, web mining systems have been built 
to automatically acquire parallel data from the 
web. Exemplary systems include PTMiner (Nie 
et al 1999), STRAND (Resnik and Smith, 2003), 
BITS (Ma and Liberman, 1999), and PTI (Chen, 
Chau and Yeh, 2004). Given a bilingual website, 
these systems identify candidate parallel docu-
ments using pre-defined URL patterns. Then 
content-based features are employed for candi-
date verification. Particularly, HTML tag simi-
larities have been exploited to verify parallelism 
between pages. But it is done by simplifying 
HTML tags as a string sequence instead of a hi-
erarchical DOM tree. Tens of thousands parallel 
documents have been acquired with accuracy 
over 90%.  

To support machine translation, parallel sen-
tence pairs should be extracted from the parallel 
web documents. A number of techniques for 
aligning sentences in parallel corpora have been 
proposed. (Gale & Church 1991; Brown et al. 
1991; Wu 1994) used sentence length as the ba-
sic feature for alignment. (Kay & Roscheisen 
1993; and Chen 1993) used lexical information 
for sentence alignment. Models combining 
length and lexicon information were proposed in 
(Zhao and Vogel, 2002; Moore 2002). Signal 
processing techniques is also employed in sen-
tence alignment by (Church 1993; Fung & 
McKeown 1994). Recently, much research atten-
tion has been paid to aligning sentences in com-
parable documents (Utiyama et al 2003, 
Munteanu et al 2004).  

 The DOM tree alignment model is the key 
technique of our mining approach. Although, to 
our knowledge, this is the first work discussing 
DOM tree alignments, there is substantial re-
search focusing on syntactic tree alignment 
model for machine translation. For example, (Wu 
1997; Alshawi, Bangalore, and Douglas, 2000; 
Yamada and Knight, 2001) have studied syn-
chronous context free grammar. This formalism 
requires isomorphic syntax trees for the source 
sentence and its translation. (Shieber and Scha-
bes 1990) presents a synchronous tree adjoining 
grammar (STAG) which is able to align two syn-
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tactic trees at the linguistic minimal units. The 
synchronous tree substitution grammar (STSG) 
presented in (Hajic etc. 2004) is a simplified ver-
sion of STAG which allows tree substitution op-
eration, but prohibits the operation of tree ad-
junction.  

3 A New Parallel Data Mining Scheme 
Supported by DOM Tree Alignment 

Our new web parallel data mining scheme con-
sists of the following steps:  

 
(1) Given a web site, the root page and web 

pages directly linked from the root page are 
downloaded. Then for each of the 
downloaded web page, all of its anchor texts 
(i.e. the hyperlinked words on a web page) 
are compared with a list of predefined strings 
known to reflect translational equivalence 
among web pages (Nie et al 1999). Exam-
ples of such predefined trigger strings in-
clude: (i) trigger words for English transla-
tion {English, English Version, 

���
, 
���

�
, etc.}; and (ii) trigger words for Chinese 

translation {Chinese, Chinese Version, Sim-
plified Chinese, Traditional Chinese, � � , 
� ����� , etc.}. If both categories of trigger 
words are found, the web site is considered 
bilingual, and every web page pair are sent to 
Step 2 for parallelism verification. 

(2) Given a pair of the plausible parallel web 
pages, a verification module is called to de-
termine if the page pair is truly translation-
ally equivalent.  

(3) For each verified pair of parallel web pages, 
a DOM tree alignment model is called to ex-
tract parallel text chunks and hyperlinks. 

(4) Sentence alignment is performed on each 
pair of the parallel text chunks, and the re-
sulting parallel sentences are saved in an 
output file. 

(5) For each pair of parallel hyperlinks, the cor-
responding pair of web pages is downloaded, 
and then goes to Step 2 for parallelism veri-
fication. If no more parallel hyperlinks are 
found, stop the mining process. 

Our new mining scheme is iterative in nature. 
It fully exploits the information contained in the 
parallel data and effectively uses it to pinpoint 
the location holding more parallel data. This ap-
proach is based on our observation that parallel 
pages share similar structures holding parallel 
content, and parallel hyperlinks refer to new par-
allel pages. 

By exploiting both the HTML tag similarity 
and the content-based translational equivalences, 
the DOM tree alignment model extracts parallel 
text chunks. Working on the parallel text chunks 
instead of the text of the whole web page, the 
sentence alignment accuracy can be improved by 
a large margin. 

In the next three sections, three component 
techniques, the DOM tree alignment model, sen-
tence alignment model, and candidate web page 
pair verification model are introduced. 

4 DOM Tree Alignment Model 

The Document Object Model (DOM) is an appli-
cation programming interface for valid HTML 
documents. Using DOM, the logical structure of 
a HTML document is represented as a tree where 
each node belongs to some pre-defined node 
types (e.g. Document, DocumentType, Element, 
Text, Comment, ProcessingInstruction etc.). 
Among all these types of nodes, the nodes most 
relevant to our purpose are Element nodes (cor-
responding to the HTML tags) and Text nodes 
(corresponding to the texts). To simplify the de-
scription of the alignment model, minor modifi-
cations of the standard DOM tree are made: (i) 
Only the Element nodes and Text nodes are kept 
in our document tree model. (ii) The ALT attrib-
ute is represented as Text node in our document 
tree model. The ALT text are textual alternative 
when images cannot be displayed, hence is help-
ful to align images and hyperlinks. (iii) the Text 
node (which must be a leaf) and its parent Ele-
ment node are combined into one node in order 
to concise the representation of  the alignment 
model. The above three modifications are exem-
plified in Fig. 1. 

 

 
Fig. 1 Difference between Standard DOM and 

Our Document Tree 
 
Despite these minor differences, our document 

tree is still referred as DOM tree throughout this 
paper. 
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4.1 DOM Tree Alignment 

Similar to STSG, our DOM tree alignment model 
supports node deletion, insertion and substitution. 
Besides, both STSG and our DOM tree align-
ment model define the alignment as a tree hierar-
chical invariance process, i.e. if node A is aligned 
with node B, then the children of A are either 
deleted or aligned with the children of B.  

But two major differences exist between 
STSG and our DOM tree alignment model: (i) 
Our DOM tree alignment model requires the 
alignment a sequential order invariant process, 
i.e. if node A is aligned with node B, then the 
sibling nodes following A have to be either de-
leted or aligned with the sibling nodes following 
B.  (ii) (Hajic etc. 2004) presents STSG in the 
context of language generation, while we search 
for the best alignment on the condition that both 
trees are given.  

To facilitate the presentation of the tree align-
ment model, the following symbols are intro-
duced: given a HTML document D, DT refers to 
the corresponding DOM tree; D

iN refers to the ith 
node of DT (here the index of the node is in the 
breadth-first order), and D

iT refers to the sub-tree 
rooted at D

iN , so D

1N refers to the root of DT , 
and DT=D

1T ;  [ ]
D

ji,T refers to the forest consisting 

of the sub-trees rooted at nodes from D

iT to D

jT . 

t.N D

i refers to the text of node D

iN ; l.N D

i refers to 
the HTML tag of the node D

iN ; jC.N D

i  refers to 

the jth child of the node D

iN ; [ ]nmC ,

D

i .N refers to 

the consecutive sequence of D

iN ’s children nodes 
from mC.N D

i to nC.N D

i ; the sub-tree rooted at 

jC.N D

i is represented as jTC.N D

i  and the forest 

rooted at [ ]nmC ,

D

i .N  is represented as [ ]nmTC ,

D

i .N . 
Finally NULL  refers to the empty node intro-
duced for node deletion.  

To accommodate the hierarchical structure of 
the DOM tree, two different translation prob-
abilities are defined: 

( )E

i

F

m TTPr : probability of translating sub-tree 
E

iT into sub-tree F

mT ; 

( )E

i

F

m NNPr : probability of translating node 
E

iN into F

mN . 

Besides, [ ] [ ]( )ATT E
ji

F
nm ,Pr ,,  represents the prob-

ability of translating the forest [ ]
E

jiT , into 

[ ]
F

nmT , based on the alignment A. The tree align-

ment A is defined as a mapping from target 
nodes onto source nodes or the null node.  

Given two HTML documents F (in French) 
and E (in English), the tree alignment task is 
defined as searching for A which maximizes the 
following probability: 

( ) ( ) ( )EEFEF TAATTTTA Pr,Pr,Pr ∝               (1) 

where ( )ETAPr  represents the prior knowledge 

of the alignment configurations.  
By introducing dp  which refers to the prob-

ability of a source or target node deletion occur-
ring in an alignment configuration, the alignment 
prior ( )ETAPr  is assumed as the following bi-

nominal distribution: 
 ( ) ( ) M

d

L

d

E ppTA −∝ 1Pr  

where L is the count of non-empty alignments in 
A, and M is the count of source and target node 
deletions in A. 
As to ( )ATT EF ,Pr , we can estimate as 

( ) ( )ATTATT EFEF ,Pr,Pr 11= , and ( )ATTr E
i

F
l ,P  

can be calculated recursively depending on the 
alignment configuration of A : 
(1) If F

lN is aligned with E

iN , and the children of 
F

lN are aligned with the children of E

iN , then 
we have 

( )
( ) [ ] �

�

�
�
�

�=
��
	


�
�

ATCNTCNNN

ATT

K

E

iK

F

l

E

i

F

l

E

i

F

l

,..PrPr

,Pr

',1,1

    

where K and K’ are degree of F

lN  and E

iN . 
(2) If F

lN is deleted, and the children of F

lN  is 
aligned with E

iT , then we have 
( ) ( ) [ ]( )ATTCNNULLNATT E

iK

F

l

F

l

E

i

F

l ,.PrPr,Pr ,1=

where K is the degree of F

lN  
(3) If E

iN is deleted, and F

lN is aligned with the 
children of E

iN , then  

( ) ( )ATCTTATT K

E

i

F

l

E

i

F

l ,.Pr,Pr ],1[=               

where K is the degree of E

iN . 
To complete the alignment model, 

[ ]( )ATTr E

ji

F

nm ,P ,],[  is to be estimated. As mentioned 

before, only the alignment configurations with 
unchanged node sequential order are considered 

as valid. So, [ ]( )ATTr E

ji

F

nm ,P ,],[ is estimated recur-

sively according to the following five alignment 
configurations of A: 
(4) If F

mT is aligned with E

iT , and [ ]
F

nmT ,1+  is 
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aligned with [ ]
E

jiT ,1+ , then  

[ ]( ) ( ) [ ]( )ATTrNNATTr E

ji

F

nm

E

i

F

m

E

ji

F

nm ,PPr,P ,1],1[,],[ ++=    

(5) If F

mT is deleted, and [ ]
F

nmT ,1+ is aligned with 

[ ]
E

jiT , , then 

[ ]( ) ( ) [ ]( )ATTrNULLNATTr E

ji

F

nm

F

m

E

ji

F

nm ,PPr,P ,],1[,],[ +=

 
(6) If E

iT is deleted, and [ ]
F

nmT , is aligned with 

[ ]
E

jiT ,1+ , then 

[ ]( ) [ ]( )ATTATTr E

ji

F

nm

E

ji

F

nm ,Pr,P ,1],[,],[ +=     

(7) If F

mN  is deleted, and F

mN ’s children [ ]K

F

m CN ,1.  

is combined with [ ]
F

nmT ,1+ to aligned with [ ]
E

jiT , , 
then 

[ ]( )
( ) [ ]( )ATTTCNrNULLN

ATTr
E

ji

F

nmK

F

m

F

m

E

ji

F

nm

,.PPr

,P

,],1[],1[

,],[

+=
   

where K is the degree of .F

mN  
(8) E

iN  is deleted, and E

iN ’s children [ ]K

E

i CN ,1.  

is combined with [ ]
E

jiT ,1+ to be aligned with 

[ ]
F

nmT , , then 

[ ]( ) [ ]( )ATTCNTATTr E
K

E
i

FEF
jinmjinm ,.Pr,P ,1],[,],[ ],1[ +=       

where K is the degree of .E

iN  
 

Finally, the node translation probability is 
modeled as ( ) ( ) ( )tNtNlNlNNN E

i

F

l

E

i

F

l

E

j

F

l ..Pr..PrPr ≈  . And 

the text translation probability ( )EF ttPr  is model 

using IBM model I (Brown et al 1993). 

4.2 Parameter Estimation Using Expecta-
tion-Maximization 

Our tree alignment model involves three catego-
ries of parameters: the text translation probability 

( )EF ttPr , tag mapping probability ( )'Pr ll , and 

node deletion probability dp .  
Conventional parallel data released by LDC 

are used to train IBM model I for estimating the 
text translation probability ( )EF ttPr .   

One way to estimate ( )'Pr ll and dp  is to 

manually align nodes between parallel DOM 
trees, and use them as training corpora for 
maximum likelihood estimation. However, this is 
a very time-consuming and error-prone proce-
dure. In this paper, the inside outside algorithm 
presented in (Lari and Young, 1990) is extended 

to train parameters ( )'Pr ll  and dp  by optimally 

fitting the existing parallel DOM trees. 

4.3 Dynamic Programming for Decoding 

It is observed that if two trees are optimally 
aligned, the alignment of their sub-trees must be 
optimal as well. In the decoding process, dy-
namic programming techniques can be applied to 
find the optimal tree alignment using that of the 
sub-trees in a bottom up manner. The following 
is the pseudo-code of the decoding algorithm: 

 
For i= || FT  to 1  (bottom-up) { 

For j= || ET to 1 (bottom-up) { 
derive the best alignments among 

[ ]iK

F

i TCT ,1.  and [ ]jK

E

j TCT ,1. , and then com-

pute the best alignment between 
F

iN and E
jN .  

where || FT and || ET are number of nodes in 
FT and ET ; iK and jK are the degrees of F

iN and 
E
jN . The time complexity of the decoding algo-

rithm is )))(degree)((degree|||TO(| 2

F

EF

E TTT +×× , 
where the degree of a tree is defined as the larg-
est degree of its nodes. 

5 Aligning Sentences Using Tree Align-
ment Model 

To exploit the HTML structure similarities be-
tween parallel web documents, a cascaded ap-
proach is used in our sentence aligner implemen-
tation.  

First, text chunks associated with DOM tree 
nodes are aligned using the DOM tree alignment 
model. Then for each pair of parallel text chunks, 
the sentence aligner described in (Zhao et al 
2002), which combines IBM model I and the 
length model of (Gale & Church 1991) under a 
maximum likelihood criterion, is used to align 
parallel sentences.  

6 Web Document Pair Verification 
Model 

To verify whether a candidate web document 
pair is truly parallel, a binary maximum entropy 
based classifier is used.  

Following (Nie et al 1999) and  (Resnik and 
Smith, 2003), three features are used: (i) file 
length ratio;  (ii) HTML tag similarity; (iii) sen-
tence alignment score.  
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The HTML tag similarity feature is computed 
as follows: all of the HTML tags of a given web 
page are extracted, and concatenated as a string. 
Then, a minimum edit distance between the two 
tag strings associated with the candidate pair is 
computed, and the HMTL tag similarity score is 
defined as the ratio of match operation number to 
the total operation number.  

The sentence alignment score is defined as the 
ratio of the number of aligned sentences and the 
total number of sentences in both files. 

Using these three features, the maximum en-
tropy model is trained on 1,000 pairs of web 
pages manually labeled as parallel or non-
parallel. The Iterative Scaling algorithm (Pietra, 
Pietra and Lafferty 1995) is used for the training. 

7 Experimental Results 

The DOM tree alignment based mining system is 
used to acquire English-Chinese parallel data 
from the web. The mining procedure is initiated 
by acquiring Chinese website list. 

We have downloaded about 300,000 URLs of 
Chinese websites from the web directories at 
cn.yahoo.com, hk.yahoo.com and tw.yahoo.com. 
And each website is sent to the mining system 
for English-Chinese parallel data acquisition. To 
ensure that the whole mining experiment to be 
finished in schedule, we stipulate that it takes at 
most 10 hours on mining each website. Totally 
11,000 English-Chinese websites are discovered, 
from which 63,214 pairs of English-Chinese par-
allel web documents are mined. After sentence 
alignment, totally 1,069,423 pairs of English-
Chinese parallel sentences are extracted. 

In order to compare the system performance, 
100 English-Chinese bilingual websites are also 
mined using the URL pattern based mining 
scheme. Following (Nie et al 1999; Ma and 
Liberman 1999; Chen, Chau and Yeh 2004), the 
URL pattern-based mining consists of three steps: 
(i) host crawling for URL collection; (ii) candi-
date pair identification by pre-defined URL pat-
tern matching; (iii) candidate pair verification. 

Based on these mining results, the quality of 
the mined data, the mining coverage and mining 
efficiency are measured.  

First, we benchmarked the precision of the 
mined parallel documents. 3,000 pairs of Eng-
lish-Chinese candidate documents are randomly 
selected from the output of each mining system, 
and are reviewed by human annotators. The 
document level precision is shown in Table 1.  

 

 URL pattern DOM Tree Align-
ment 

Precision 93.5% 97.2% 

Table 1: Precision of Mined Parallel Documents 
 

The document-level mining precision solely 
depends on the candidate document pair verifica-
tion module. The verification modules of both 
mining systems use the same features, and the 
only difference is that in the new mining system 
the sentence alignment score is computed with 
DOM tree alignment support. So the 3.7% im-
provement in document-level precision indirectly 
confirms the enhancement of sentence alignment. 

Secondly, the accuracy of sentence alignment 
model is benchmarked as follows: 150 English-
Chinese parallel document pairs are randomly 
taken from our mining results. All parallel sen-
tence pairs in these document pairs are manually 
annotated by two annotators with cross-
validation. We have compared sentence align-
ment accuracy with and without DOM tree 
alignment support. In case of no tree alignment 
support, all the texts in the web pages are ex-
tracted and sent to sentence aligner for alignment. 
The benchmarks are shown in Table 2. 

 
Alignment 
Method 

Num-
ber 
Right 

Num-
ber 
Wrong 

Num-
ber 
Missed 

Preci-
sion 

Recall 

Eng-Chi 
(no DOM 
tree) 

2172 285 563 86.9% 79.4% 

Eng-Chi 
(with DOM 
tree) 

2369 156 366 93.4% 86.6% 

Table 2: sentence alignment accuracy 
 
Table 2 shows that with DOM tree alignment 

support, the sentence alignment accuracy is 
greatly improved by 7% in both precision and 
recall. We also observed that the recall is lower 
than precision. This is because web pages tend to 
contain many short sentences (one or two words 
only) whose alignment is hard to identify due to 
the lack of content information. 

Although Table 2 benchmarks the accuracy of 
sentence aligner, but the quality of the final sen-
tence pair outputs depend on many other mod-
ules as well, e.g. the document level parallelism 
verification, sentence breaker, Chinese word 
breaker, etc. To further measure the quality of 
the mined data, 2,000 sentence pairs are ran-
domly picked from the final output, and are 
manually classified into three categories: (i) ex-
act parallel, (ii) roughly parallel: two parallel 
sentences involving missing words or erroneous 
additions; (iii) not parallel. Two annotators are 
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assigned for this task with cross-validation. As is 
shown in Table 3, 93.5% of output sentence pairs 
are either exact or roughly parallel. 

 
Corpus Exact 

Parallel 
Roughly 
Parallel 

Not Parallel 

Mined 1703 167 130 

Table 3  Quality of Mined Parallel Sentences 
As we know, the absolute value of mining sys-

tem recall is hard to estimate because it is im-
practical to evaluate all the parallel data held by 
a bilingual website. Instead, we compare mining 
coverage and efficiency between the two systems. 
100 English-Chinese bilingual website are mined 
by both of the system. And the mining efficiency 
comparison is reported in Table 4. 
 

Mining 
System 

Parallel Page 
Pairs found 
& verified 

# of page 
downloads 

# of 
downloads 
per pair 

URL pat-
tern-based 
Mining 

4383 84942 19.38 

DOM Tree 
Align-
ment-
based 
Mining 

5785 13074 2.26 

 Table 4. Mining Efficiency Comparison on 100 
Bilingual Websites 

 
Although it downloads less data, the DOM 

tree based mining scheme increases the parallel 
data acquisition throughput by 32%. Furthermore, 
the ratio of downloaded page count per parallel 
pair is 2.26, which means the bandwidth usage is 
almost optimal. 

Another interesting topic is the complemen-
tarities between both mining systems. As re-
ported in Table (5),  1797 pairs of parallel docu-
ments mined by the new scheme is not covered 
by the URL pattern-based scheme. So if both 
systems are used, the throughput can be further 
increased by 41%. 

 
# of Parallel Page 
Pairs Mined by 
Both Systems  

# of Parallel Page 
Pairs Mined by 
URL Patterns 
only 

# of Parallel Page 
Pairs Mined by 
Tree Alignment 
only 

3988 395 1797 

 Table 5. Mining Results Complementarities on 
100 Bilingual Website 

8 Discussion and Conclusion 

Mining parallel data from web is a promising 
method to overcome the knowledge bottleneck 
faced by machine translation. To build a practical 
mining system, three research issues should be 
fully studied: (i) the quality of mined data, (ii) 

the mining coverage, and (iii) the mining speed. 
Exploiting DOM tree similarities helps in all the 
three issues. 

Motivated by this observation, this paper pre-
sents a new web mining scheme for parallel data 
acquisition. A DOM tree alignment model is pro-
posed to identify translationally equivalent text 
chunks and hyperlinks between two HTML 
documents. Parallel hyperlinks are used to pin-
point new parallel data, and make parallel data 
mining a recursive process. Parallel text chunks 
are fed into sentence aligner to extract parallel 
sentences.  

Benchmarks show that sentence aligner sup-
ported by DOM tree alignment achieves per-
formance enhancement by 7% in both precision 
and recall. Besides, the new mining scheme re-
duce the bandwidth cost by 8~9 times on average 
compared with the URL pattern-based mining 
scheme. In addition, the new mining scheme is 
more general and reliable, and is able to mine 
more data. Using the new mining scheme alone, 
the mining throughput is increased by 32%, and 
when combined with URL pattern-based scheme, 
the mining throughput is increased by 41%. 
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Abstract

This paper describes the development of
QuestionBank, a corpus of 4000 parse-
annotated questions for (i) use in training
parsers employed in QA, and (ii) evalua-
tion of question parsing. We present a se-
ries of experiments to investigate the ef-
fectiveness of QuestionBank as both an
exclusive and supplementary training re-
source for a state-of-the-art parser in pars-
ing both question and non-question test
sets. We introduce a new method for
recovering empty nodes and their an-
tecedents (capturing long distance depen-
dencies) from parser output in CFG trees
using LFG f-structure reentrancies. Our
main findings are (i) using QuestionBank
training data improves parser performance
to 89.75% labelled bracketing f-score, an
increase of almost 11% over the base-
line; (ii) back-testing experiments on non-
question data (Penn-II WSJ Section 23)
shows that the retrained parser does not
suffer a performance drop on non-question
material; (iii) ablation experiments show
that the size of training material provided
by QuestionBank is sufficient to achieve
optimal results; (iv) our method for recov-
ering empty nodes captures long distance
dependencies in questions from the ATIS
corpus with high precision (96.82%) and
low recall (39.38%). In summary, Ques-
tionBank provides a useful new resource
in parser-based QA research.

1 Introduction

Parse-annotated corpora (treebanks) are crucial for
developing machine learning and statistics-based
parsing resources for a given language or task.
Large treebanks are available for major languages,

however these are often based on a specific text
type or genre, e.g. financial newspaper text (the
Penn-II Treebank (Marcus et al., 1993)). This can
limit the applicability of grammatical resources in-
duced from treebanks in that such resources un-
derperform when used on a different type of text
or for a specific task.

In this paper we present work on creating Ques-
tionBank, a treebank of parse-annotated questions,
which can be used as a supplementary training re-
source to allow parsers to accurately parse ques-
tions (as well as other text). Alternatively, the re-
source can be used as a stand-alone training corpus
to train a parser specifically for questions. Either
scenario will be useful in training parsers for use
in question answering (QA) tasks, and it also pro-
vides a suitable resource to evaluate the accuracy
of these parsers on questions.

We use a semi-automatic “bootstrapping”
method to create the question treebank from raw
text. We show that a parser trained on the ques-
tion treebank alone can accurately parse ques-
tions. Training on a combined corpus consisting of
the question treebank and an established training
set (Sections 02-21 of the Penn-II Treebank), the
parser gives state-of-the-art performance on both
questions and a non-question test set (Section 23
of the Penn-II Treebank).

Section 2 describes background work and mo-
tivation for the research presented in this paper.
Section 3 describes the data we used to create
the corpus. In Section 4 we describe the semi-
automatic method to “bootstrap” the question cor-
pus, discuss some interesting and problematic
phenomena, and show how the manual vs. auto-
matic workload distribution changed as work pro-
gressed. Two sets of experiments using our new
question corpus are presented in Section 5. In
Section 6 we introduce a new method for recover-
ing empty nodes and their antecedents using Lex-
ical Functional Grammar (LFG) f-structure reen-
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trancies. Section 7 concludes and outlines future
work.

2 Background and Motivation

High quality probabilistic, treebank-based parsing
resources can be rapidly induced from appropri-
ate treebank material. However, treebank- and
machine learning-based grammatical resources re-
flect the characteristics of the training data. They
generally underperform on test data substantially
different from the training data.

Previous work on parser performance and do-
main variation by Gildea (2001) showed that by
training a parser on the Penn-II Treebank and test-
ing on the Brown corpus, parser accuracy drops by
5.7% compared to parsing the Wall Street Journal
(WSJ) based Penn-II Treebank Section 23. This
shows a negative effect on parser performance
even when the test data is not radically different
from the training data (both the Penn II and Brown
corpora consist primarily of written texts of Amer-
ican English, the main difference is the consider-
ably more varied nature of the text in the Brown
corpus). Gildea also shows how to resolve this
problem by adding appropriate data to the training
corpus, but notes that a large amount of additional
data has little impact if it is not matched to the test
material.

Work on more radical domain variance and on
adapting treebank-induced LFG resources to anal-
yse ATIS (Hemphill et al., 1990) question mate-
rial is described in Judge et al. (2005). The re-
search established that even a small amount of ad-
ditional training data can give a substantial im-
provement in question analysis in terms of both
CFG parse accuracy and LFG grammatical func-
tional analysis, with no significant negative effects
on non-question analysis. Judge et al. (2005) sug-
gest, however, that further improvements are pos-
sible given a larger question training corpus.

Clark et al. (2004) worked specifically with
question parsing to generate dependencies for QA
with Penn-II treebank-based Combinatory Cate-
gorial Grammars (CCG’s). They use “what” ques-
tions taken from the TREC QA datasets as the ba-
sis for a What-Question corpus with CCG annota-
tion.

3 Data Sources

The raw question data for QuestionBank comes
from two sources, the TREC 8-11 QA track

test sets1, and a question classifier training set
produced by the Cognitive Computation Group
(CCG2) at the University of Illinois at Urbana-
Champaign.3 We use equal amounts of data from
each source so as not to bias the corpus to either
data source.

3.1 TREC Questions

The TREC evaluations have become the standard
evaluation for QA systems. Their test sets con-
sist primarily of fact seeking questions with some
imperative statements which request information,
e.g. “List the names of cell phone manufactur-
ers.” We included 2000 TREC questions in the
raw data from which we created the question tree-
bank. These 2000 questions consist of the test
questions for the first three years of the TREC QA
track (1893 questions) and 107 questions from the
2003 TREC test set.

3.2 CCG Group Questions

The CCG provide a number of resources for de-
veloping QA systems. One of these resources is
a set of 5500 questions and their answer types for
use in training question classifiers. The 5500 ques-
tions were stripped of answer type annotation, du-
plicated TREC questions were removed and 2000
questions were used for the question treebank.

The CCG 5500 questions come from a number
of sources (Li and Roth, 2002) and some of these
questions contain minor grammatical mistakes so
that, in essence, this corpus is more representa-
tive of genuine questions that would be put to a
working QA system. A number of changes in to-
kenisation were corrected (eg. separating contrac-
tions), but the minor grammatical errors were left
unchanged because we believe that it is necessary
for a parser for question analysis to be able to cope
with this sort of data if it is to be used in a working
QA system.

4 Creating the Treebank

4.1 Bootstrapping a Question Treebank

The algorithm used to generate the question tree-
bank is an iterative process of parsing, manual cor-
rection, retraining, and parsing.

1http://trec.nist.gov/data/qa.html
2Note that the acronym CCG here refers to Cognitive

Computation Group, rather than Combinatory Categorial
Grammar mentioned in Section 2.

3http://l2r.cs.uiuc.edu/ cogcomp/tools.php
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Algorithm 1 Induce a parse-annotated treebank
from raw data

repeat
Parse a new section of raw data
Manually correct errors in the parser output
Add the corrected data to the training set
Extract a new grammar for the parser

until All the data has been processed

Algorithm 1 summarises the bootstrapping al-
gorithm. A section of raw data is parsed. The
parser output is then manually corrected, and
added to the parser’s training corpus. A new gram-
mar is then extracted, and the next section of raw
data is parsed. This process continues until all the
data has been parsed and hand corrected.

4.2 Parser

The parser used to process the raw questions prior
to manual correction was that of Bikel (2002)4 ,
a retrainable emulation of Collins (1999) model
2 parser. Bikel’s parser is a history-based parser
which uses a lexicalised generative model to parse
sentences. We used WSJ Sections 02-21 of the
Penn-II Treebank to train the parser for the first it-
eration of the algorithm. The training corpus for
subsequent iterations consisted of the WSJ ma-
terial and increasing amounts of processed ques-
tions.

4.3 Basic Corpus Development Statistics

Our question treebank was created over a period
of three months at an average annotation speed of
about 60 questions per day. This is quite rapid
for treebank development. The speed of the pro-
cess was helped by two main factors: the questions
are generally quite short (typically about 10 words
long), and, due to retraining on the continually in-
creasing training set, the quality of the parses out-
put by the parser improved dramatically during the
development of the treebank, with the effect that
corrections during the later stages were generally
quite small and not as time consuming as during
the initial phases of the bootstrapping process.

For example, in the first week of the project the
trees from the parser were of relatively poor qual-
ity and over 78% of the trees needed to be cor-
rected manually. This slowed the annotation pro-
cess considerably and parse-annotated questions

4Downloaded from http://www.cis.upenn.edu/∼dbikel
/software.html#stat-parser

were being produced at an average rate of 40 trees
per day. During the later stages of the project this
had changed dramatically. The quality of trees
from the parser was much improved with less than
20% of the trees requiring manual correction. At
this stage parse-annotated questions were being
produced at an average rate of 90 trees per day.

4.4 Corpus Development Error Analysis

Some of the more frequent errors in the parser
output pertain to the syntactic analysis of WH-
phrases (WHNP, WHPP, etc). In Sections 02-21
of the Penn-II Treebank, these are used more often
in relative clause constructions than in questions.
As a result many of the corpus questions were
given syntactic analyses corresponding to relative
clauses (SBAR with an embedded S) instead of as
questions (SBARQ with an embedded SQ). Figure
1 provides an example.

SBAR

WHNP

WP

Who

S

VP

VBD

created

NP

DT

the

NN

Muppets
(a)

SBARQ

WHNP

WP

Who

SQ

VP

VBD

created

NP

DT

the

NNPS

Muppets
(b)

Figure 1: Example tree before (a) and after correc-
tion (b)

Because the questions are typically short, an er-
ror like this has quite a large effect on the accu-
racy for the overall tree; in this case the f-score
for the parser output (Figure 1(a)) would be only
60%. Errors of this nature were quite frequent
in the first section of questions analysed by the
parser, but with increased training material becom-
ing available during successive iterations, this er-
ror became less frequent and towards the end of
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the project it was only seen in rare cases.

WH-XP marking was the source of a number of
consistent (though infrequent) errors during anno-
tation. This occurred mostly in PP constructions
containing WHNPs. The parser would output a
structure like Figure 2(a), where the PP mother of
the WHNP is not correctly labelled as a WHPP as
in Figure 2(b).

PP

IN

by

WHNP

WP$

whose

NN

authority

WHPP

IN

by

WHNP

WP$

whose

NN

authority

(a) (b)

Figure 2: WH-XP assignment

The parser output often had to be rearranged
structurally to varying degrees. This was common
in the longer questions. A recurring error in the
parser output was failing to identify VPs in SQs
with a single object NP. In these cases the verb
and the object NP were left as daughters of the
SQ node. Figure 3(a) illustrates this, and Figure
3(b) shows the corrected tree with the VP node in-
serted.

SBARQ

WHNP

WP

Who

SQ

VBD

killed

NP

Ghandi

SBARQ

WHNP

WP

Who

SQ

VP

VBD

killed

NP

Ghandi

(a) (b)

Figure 3: VP missing inside SQ with a single NP

On inspection, we found that the problem was
caused by copular constructions, which, accord-
ing to the Penn-II annotation guidelines, do not
feature VP constituents. Since almost half of the
question data contain copular constructions, the
parser trained on this data would sometimes mis-
analyse non-copular constructions or, conversely,
incorrectly bracket copular constructions using a
VP constituent (Figure 4(a)).

The predictable nature of these errors meant that
they were simple to correct. This is due to the par-
ticular context in which they occur and the finite
number of forms of the copular verb.

SBARQ

WHNP

WP

What

SQ

VP

VBZ

is

NP

a fear of shadows

SBARQ

WHNP

WP

What

SQ

VBZ

is

NP

a fear of shadows

(a) (b)

Figure 4: Erroneous VP in copular constructions

5 Experiments with QuestionBank

In order to test the effect training on the question
corpus has on parser performance, we carried out
a number of experiments. In cross-validation ex-
periments with 90%/10% splits we use all 4000
trees in the completed QuestionBank as the test
set. We performed ablation experiments to inves-
tigate the effect of varying the amount of question
and non-question training data on the parser’s per-
formance. For these experiments we divided the
4000 questions into two sets. We randomly se-
lected 400 trees to be held out as a gold standard
test set against which to evaluate, the remaining
3600 trees were then used as a training corpus.

5.1 Establishing the Baseline

The baseline we use for our experiments is pro-
vided by Bikel’s parser trained on WSJ Sections
02-21 of the Penn-II Treebank. We test on all 4000
questions in our question treebank, and also Sec-
tion 23 of the Penn-II Treebank.

QuestionBank
Coverage 100
F-Score 78.77

WSJ Section 23
Coverage 100
F-Score 82.97

Table 1: Baseline parsing results

Table 1 shows the results for our baseline eval-
uations on question and non-question test sets.
While the coverage for both tests is high, the
parser underperforms significantly on the question
test set with a labelled bracketing f-score of 78.77
compared to 82.97 on Section 23 of the Penn-II
Treebank. Note that unlike the published results
for Bikel’s parser in our evaluations we test on
Section 23 and include punctuation.

5.2 Cross-Validation Experiments

We carried out two cross-validation experiments.
In the first experiment we perform a 10-fold cross-
validation experiment using our 4000 question
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treebank. In each case a randomly selected set of
10% of the questions in QuestionBank was held
out during training and used as a test set. In this
way parses from unseen data were generated for
all 4000 questions and evaluated against the Ques-
tionBank trees.

The second cross-validation experiment was
similar to the first, but in each of the 10 folds we
train on 90% of the 4000 questions in Question-
Bank and on all of Sections 02-21 of the Penn-II
Treebank.

In both experiments we also backtest each of the
ten grammars on Section 23 of the Penn-II Tree-
bank and report the average scores.

QuestionBank
Coverage 100
F-Score 88.82

Backtest on Sect 23
Coverage 98.79
F-Score 59.79

Table 2: Cross-validation experiment using the
4000 question treebank

Table 2 shows the results for the first cross-
validation experiment, using only the 4000 sen-
tence QuestionBank. Compared to Table 1, the re-
sults show a significant improvement of over 10%
on the baseline f-score for questions. However, the
tests on the non-question Section 23 data show not
only a significant drop in accuracy but also a drop
in coverage.

Questions
Coverage 100
F-Score 89.75

Backtest on Sect 23
Coverage 100
F-Score 82.39

Table 3: Cross-validation experiment using Penn-
II Treebank Sections 02-21 and 4000 questions

Table 3 shows the results for the second cross-
validation experiment using Sections 02-21 of the
Penn-II Treebank and the 4000 questions in Ques-
tionBank. The results show an even greater in-
crease on the baseline f-score than the experiments
using only the question training set (Table 2). The
non-question results are also better and are com-
parable to the baseline (Table 1).

5.3 Ablation Runs
In a further set of experiments we investigated the
effect of varying the amount of data in the parser’s
training corpus. We experiment with varying both
the amount of QuestionBank and Penn-II Tree-
bank data that the parser is trained on. In each
experiment we use the 400 question test set and

Section 23 of the Penn-II Treebank to evaluate
against, and the 3600 question training set de-
scribed above and Sections 02-21 of the Penn-II
Treebank as the basis for the parser’s training cor-
pus. We report on three experiments:

In the first experiment we train the parser using
only the 3600 question training set. We performed
ten training and parsing runs in this experiment,
incrementally reducing the size of the Question-
Bank training corpus by 10% of the whole on each
run.

The second experiment is similar to the first but
in each run we add Sections 02-21 of the Penn-II
Treebank to the (shrinking) training set of ques-
tions.

The third experiment is the converse of the sec-
ond, the amount of questions in the training set
remains fixed (all 3600) and the amount of Penn-
II Treebank material is incrementally reduced by
10% on each run.
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Figure 5: Results for ablation experiment reducing
3600 training questions in steps of 10%

Figure 5 graphs the coverage and f-score for
the parser in tests on the 400 question test set,
and Section 23 of the Penn-II Treebank in ten
parsing runs with the amount of data in the 3600
question training corpus reducing incrementally
on each run. The results show that training on only
a small amount of questions, the parser can parse
questions with high accuracy. For example when
trained on only 10% of the 3600 questions used
in this experiment, the parser successfully parses
all of the 400 question test set and achieves an f-
score of 85.59. However the results for the tests
on WSJ Section 23 are considerably worse. The
parser never manages to parse the full test set, and
the best score at 59.61 is very low.

Figure 6 graphs the results for the second abla-
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Figure 6: Results for ablation experiment using
PTB Sections 02-21 (fixed) and reducing 3600
questions in steps of 10%
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Figure 7: Results for ablation experiment using
3600 questions (fixed) and reducing PTB Sections
02-21 in steps of 10%

tion experiment. The training set for the parser
consists of a fixed amount of Penn-II Treebank
data (Sections 02-21) and a reducing amount of
question data from the 3600 question training set.
Each grammar is tested on both the 400 question
test set, and WSJ Section 23. The results here
are significantly better than in the previous exper-
iment. In all of the runs the coverage for both test
sets is 100%, f-scores for the question test set de-
crease as the amount of question data in the train-
ing set is reduced (though they are still quite high.)
There is little change in the f-scores for the tests on
Section 23, the results all fall in the range 82.36 to
82.46, which is comparable to the baseline score.

Figure 7 graphs the results for the third abla-
tion experiment. In this case the training set is a
fixed amount of the question training set described
above (all 3600 questions) and a reducing amount
of data from Sections 02-21 of the Penn Treebank.

The graph shows that the parser performs consis-
tently well on the question test set in terms of both
coverage and accuracy. The tests on Section 23,
however, show that as the amount of Penn-II Tree-
bank material in the training set decreases, the f-
score also decreases.

6 Long Distance Dependencies

Long distance dependencies are crucial in the
proper analysis of question material. In English
wh-questions, the fronted wh-constituent refers to
an argument position of a verb inside the interrog-
ative construction. Compare the superficially sim-
ilar

1. Who1 [t1] killed Harvey Oswald?

2. Who1 did Harvey Oswald kill [t1]?

(1) queries the agent (syntactic subject) of the de-
scribed eventuality, while (2) queries the patient
(syntactic object). In the Penn-II and ATIS tree-
banks, dependencies such as these are represented
in terms of empty productions, traces and coindex-
ation in CFG tree representations (Figure 8).

SBARQ

WHNP-1

WP

Who
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NP

*T*-1

VP

VBD

killed

NP
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(a)
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WHNP-1
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Who
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AUX

did

NP

Harvey Oswald

VP

VB

kill

NP

*T*-1
(b)

Figure 8: LDD resolved treebank style trees

With few exceptions5 the trees produced by cur-
rent treebank-based probabilistic parsers do not
represent long distance dependencies (Figure 9).

Johnson (2002) presents a tree-based method
for reconstructing LDD dependencies in Penn-
II trained parser output trees. Cahill et al.
(2004) present a method for resolving LDDs

5Collins’ Model 3 computes a limited number of wh-
dependencies in relative clause constructions.
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Figure 9: Parser output trees

at the level of Lexical-Functional Grammar f-
structure (attribute-value structure encodings of
basic predicate-argument structure or dependency
relations) without the need for empty productions
and coindexation in parse trees. Their method is
based on learning finite approximations of func-
tional uncertainty equations (regular expressions
over paths in f-structure) from an automatically f-
structure annotated version of the Penn-II treebank
and resolves LDDs at f-structure. In our work we
use the f-structure-based method of Cahill et al.
(2004) to “reverse engineer” empty productions,
traces and coindexation in parser output trees. We
explain the process by way of a worked example.

We use the parser output tree in Figure 9(a)
(without empty productions and coindexation) and
automatically annotate the tree with f-structure
information and compute LDD-resolution at the
level of f-structure using the resources of Cahill
et al. (2004). This generates the f-structure an-
notated tree6 and the LDD resolved f-structure in
Figure 10.

Note that the LDD is indicated in terms of a
reentrancy 1 between the question FOCUS and the
SUBJ function in the resolved f-structure. Given
the correspondence between the f-structure and f-
structure annotated nodes in the parse tree, we
compute that the SUBJ function newly introduced
and reentrant with the FOCUS function is an argu-
ment of the PRED ‘kill’ and the verb form ‘killed’
in the tree. In order to reconstruct the correspond-
ing empty subject NP node in the parser output
tree, we need to determine candidate anchor sites

6Lexical annotations are suppressed to aid readability.
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Figure 10: Annotated tree and f-structure

for the empty node. These anchor sites can only be
realised along the path up to the maximal projec-
tion of the governing verb indicated by ↑=↓ anno-
tations in LFG. This establishes three anchor sites:
VP, SQ and the top level SBARQ. From the auto-
matically f-structure annotated Penn-II treebank,
we extract f-structure annotated PCFG rules for
each of the three anchor sites whose RHSs contain
exactly the information (daughter categories plus
LFG annotations) in the tree in Figure 10 (in the
same order) plus an additional node (of whatever
CFG category) annotated ↑SUBJ=↓, located any-
where within the RHSs. This will retrieve rules of
the form

VP→ NP [↑ SUBJ =↓] V BD[↑=↓] NP [↑ OBJ =↓]

V P → . . .

. . .

SQ → NP [↑ SUBJ =↓] V P [↑=↓]

SQ → . . .

. . .

SBARQ → . . .

. . .

each with their associated probabilities. We select
the rule with the highest probability and cut the
rule into the tree in Figure 10 at the appropriate
anchor site (as determined by the rule LHS). In our
case this selects SQ → NP [↑ SUBJ=↓]V P [↑=↓]
and the resulting tree is given in Figure 11. From
this tree, it is now easy to compute the tree with
the coindexed trace in Figure 8 (a).

In order to evaluate our empty node and coin-
dexation recovery method, we conducted two ex-
periments, one using 146 gold-standard ATIS
question trees and one using parser output on the
corresponding strings for the 146 ATIS question
trees.
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Figure 11: Resolved tree

In the first experiment, we delete empty nodes
and coindexation from the ATIS gold standard
trees and and reconstruct them using our method
and the preprocessed ATIS trees. In the second
experiment, we parse the strings corresponding to
the ATIS trees with Bikel’s parser and reconstruct
the empty productions and coindexation. In both
cases we evaluate against the original (unreduced)
ATIS trees and score if and only if all of inser-
tion site, inserted CFG category and coindexation
match.

Parser Output Gold Standard Trees
Precision 96.77 96.82

Recall 38.75 39.38

Table 4: Scores for LDD recovery (empty nodes
and antecedents)

Table 4 shows that currently the recall of our
method is quite low at 39.38% while the accu-
racy is very high with precision at 96.82% on the
ATIS trees. Encouragingly, evaluating parser out-
put for the same sentences shows little change in
the scores with recall at 38.75% and precision at
96.77%.

7 Conclusions

The data represented in Figure 5 show that train-
ing a parser on 50% of QuestionBank achieves an
f-score of 88.56% as against 89.24% for training
on all of QuestionBank. This implies that while
we have not reached an absolute upper bound, the
question corpus is sufficiently large that the gain
in accuracy from adding more data is so small that
it does not justify the effort.

We will evaluate grammars learned from
QuestionBank as part of a working QA sys-
tem. A beta-release of the non-LDD-resolved

QuestionBank is available for download at
http://www.computing.dcu.ie/∼
jjudge/qtreebank/4000qs.txt. The fi-
nal, hand-corrected, LDD-resolved version will be
available in October 2006.
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Abstract

We present an algorithm which creates a
German CCGbank by translating the syn-
tax graphs in the German Tiger corpus into
CCG derivation trees. The resulting cor-
pus contains 46,628 derivations, covering
95% of all complete sentences in Tiger.
Lexicons extracted from this corpus con-
tain correct lexical entries for 94% of all
known tokens in unseen text.

1 Introduction

A number of wide-coverage TAG, CCG, LFG and
HPSG grammars (Xia, 1999; Chen et al., 2005;
Hockenmaier and Steedman, 2002a; O’Donovan
et al., 2005; Miyao et al., 2004) have been ex-
tracted from the Penn Treebank (Marcus et al.,
1993), and have enabled the creation of wide-
coverage parsers for English which recover local
and non-local dependencies that approximate the
underlying predicate-argument structure (Hocken-
maier and Steedman, 2002b; Clark and Curran,
2004; Miyao and Tsujii, 2005; Shen and Joshi,
2005). However, many corpora (Böhomvá et al.,
2003; Skut et al., 1997; Brants et al., 2002) use
dependency graphs or other representations, and
the extraction algorithms that have been developed
for Penn Treebank style corpora may not be im-
mediately applicable to this representation. As a
consequence, research on statistical parsing with
“deep” grammars has largely been confined to En-
glish. Free-word order languages typically pose
greater challenges for syntactic theories (Rambow,
1994), and the richer inflectional morphology of
these languages creates additional problems both
for the coverage of lexicalized formalisms such
as CCG or TAG, and for the usefulness of de-
pendency counts extracted from the training data.
On the other hand, formalisms such as CCG and
TAG are particularly suited to capture the cross-

ing dependencies that arise in languages such as
Dutch or German, and by choosing an appropriate
linguistic representation, some of these problems
may be mitigated.
Here, we present an algorithm which translates

the German Tiger corpus (Brants et al., 2002) into
CCG derivations. Similar algorithms have been
developed by Hockenmaier and Steedman (2002a)
to create CCGbank, a corpus of CCG derivations
(Hockenmaier and Steedman, 2005) from the Penn
Treebank, by Çakıcı (2005) to extract a CCG lex-
icon from a Turkish dependency corpus, and by
Moortgat andMoot (2002) to induce a type-logical
grammar for Dutch.
The annotation scheme used in Tiger is an ex-

tension of that used in the earlier, and smaller,
German Negra corpus (Skut et al., 1997). Tiger
is better suited for the extraction of subcatego-
rization information (and thus the translation into
“deep” grammars of any kind), since it distin-
guishes between PP complements and modifiers,
and includes “secondary” edges to indicate shared
arguments in coordinate constructions. Tiger also
includes morphology and lemma information.
Negra is also provided with a “Penn Treebank”-

style representation, which uses flat phrase struc-
ture trees instead of the crossing dependency
structures in the original corpus. This version
has been used by Cahill et al. (2005) to extract a
German LFG. However, Dubey and Keller (2003)
have demonstrated that lexicalization does not
help a Collins-style parser that is trained on this
corpus, and Levy and Manning (2004) have shown
that its context-free representation is a poor ap-
proximation to the underlying dependency struc-
ture. The resource presented here will enable
future research to address the question whether
“deep” grammars such as CCG, which capture the
underlying dependencies directly, are better suited
to parsing German than linguistically inadequate
context-free approximations.
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1. Standard main clause
Peter gibt Maria das Buch
����� ��������������������������� ����� �����

�� �� ��
���	
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2. Main clause with fronted adjunct 3. Main clause with fronted complement
dann gibt Peter Maria das Buch
��� ��������������������������� ����� ����� �����

�

���	
������� �������������������
�

�����������
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Maria gibt Peter das Buch
����� ��������������������������� ����� �����

�� � ��
���	
��������������� ������������������� �������������������
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�����������

��
���	
�

Figure 1: CCG uses topicalization (1.), a type-changing rule (2.), and type-raising (3.) to capture the
different variants of German main clause order with the same lexical category for the verb.

2 German syntax and morphology

Morphology German verbs are inflected for
person, number, tense and mood. German nouns
and adjectives are inflected for number, case and
gender, and noun compounding is very productive.

Word order German has three different word
orders that depend on the clause type. Main
clauses (1) are verb-second. Imperatives and ques-
tions are verb-initial (2). If a modifier or one of
the objects is moved to the front, the word order
becomes verb-initial (2). Subordinate and relative
clauses are verb-final (3):

(1) a. Peter gibt Maria das Buch.
Peter gives Mary the book.

b. ein Buch gibt Peter Maria.
c. dann gibt Peter Maria das Buch.

(2) a. Gibt Peter Maria das Buch?
b. Gib Maria das Buch!

(3) a. dass Peter Maria das Buch gibt.
b. das Buch, das Peter Maria gibt.

Local Scrambling In the so-called “Mittelfeld”
all orders of arguments and adjuncts are poten-
tially possible. In the following example, all 5!
permutations are grammatical (Rambow, 1994):

(4) dass [eine Firma] [meinem Onkel] [die Möbel] [vor
drei Tagen] [ohne Voranmeldung] zugestellt hat.
that [a company] [to my uncle] [the furniture] [three
days ago] [without notice] delivered has.

Long-distance scrambling Objects of embed-
ded verbs can also be extraposed unboundedly
within the same sentence (Rambow, 1994):

(5) dass [den Schrank] [niemand] [zu reparieren] ver-
sprochen hat.
that [the wardrobe] [nobody] [to repair] promised
has.

3 A CCG for German

3.1 Combinatory Categorial Grammar

CCG (Steedman (1996; 2000)) is a lexicalized
grammar formalism with a completely transparent
syntax-semantics interface. Since CCG is mildly
context-sensitive, it can capture the crossing de-
pendencies that arise in Dutch or German, yet is
efficiently parseable.
In categorial grammar, words are associ-

ated with syntactic categories, such as ���� or
��������� for English intransitive and transitive
verbs. Categories of the form ��� or ��� are func-
tors, which take an argument � to their left or right
(depending on the the direction of the slash) and
yield a result �. Every syntactic category is paired
with a semantic interpretation (usually a �-term).
Like all variants of categorial grammar, CCG

uses function application to combine constituents,
but it also uses a set of combinatory rules such as
composition (�) and type-raising (�). Non-order-
preserving type-raising is used for topicalization:

Application: ��� � � �
� ��� � �

Composition: ��� ��� �� ���
��� ��� �� ���
��� ��� �� ���
��� ��� �� ���

Type-raising: � �� �������
Topicalization: � �� �������

Hockenmaier and Steedman (2005) advocate
the use of additional “type-changing” rules to deal
with complex adjunct categories (e.g. ������� �
���	���� for ing-VPs that act as noun phrase mod-
ifiers). Here, we also use a small number of such
rules to deal with similar adjunct cases.
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3.2 Capturing German word order

We follow Steedman (2000) in assuming that the
underlying word order in main clauses is always
verb-initial, and that the sententce-initial subject is
in fact topicalized. This enables us to capture dif-
ferent word orders with the same lexical category
(Figure 1). We use the features ��
�� and ��
�
��� to
distinguish verbs in main and subordinate clauses.
Main clauses have the feature ������, requiring ei-
ther a sentential modifier with category ���������
��,
a topicalized subject (����������
�����������), or a
type-raised argument (����������
�����), where �

can be any argument category, such as a noun
phrase, prepositional phrase, or a non-finite VP.
Here is the CCG derivation for the subordinate
clause (������) example:

dass Peter Maria das Buch gibt
����
�����
���� ����� ����� ����� �����
�����������������������

�
����
�����������������

�
���
����������

�
���
����

�
����
�

For simplicity’s sake our extraction algorithm
ignores the issues that arise through local scram-
bling, and assumes that there are different lexical
category for each permutation.1

Type-raising and composition are also used to
deal with wh-extraction and with long-distance
scrambling (Figure 2).

4 Translating Tiger graphs into CCG

4.1 The Tiger corpus

The Tiger corpus (Brants et al., 2002) is a pub-
licly available2 corpus of ca. 50,000 sentences (al-
most 900,000 tokens) taken from the Frankfurter
Rundschau newspaper. The annotation is based
on a hybrid framework which contains features of
phrase-structure and dependency grammar. Each
sentence is represented as a graph whose nodes
are labeled with syntactic categories (NP, VP, S,
PP, etc.) and POS tags. Edges are directed and la-
beled with syntactic functions (e.g. head, subject,
accusative object, conjunct, appositive). The edge
labels are similar to the Penn Treebank function
tags, but provide richer and more explicit infor-
mation. Only 72.5% of the graphs have no cross-
ing edges; the remaining 27.5% are marked as dis-

1Variants of CCG, such as Set-CCG (Hoffman, 1995) and
Multimodal-CCG (Baldridge, 2002), allow a more compact
lexicon for free word order languages.

2http://www.ims.uni-stuttgart.de/projekte/TIGER

continuous. 7.3% of the sentences have one or
more “secondary” edges, which are used to indi-
cate double dependencies that arise in coordinated
structures which are difficult to bracket, such as
right node raising, argument cluster coordination
or gapping. There are no traces or null elements to
indicate non-local dependencies or wh-movement.
Figure 2 shows the Tiger graph for a PP whose

NP argument is modified by a relative clause.
There is no NP level inside PPs (and no noun level
inside NPs). Punctuation marks are often attached
at the so-called “virtual” root (VROOT) of the en-
tire graph. The relative pronoun is a dative object
(edge label DA) of the embedded infinitive, and
is therefore attached at the VP level. The relative
clause itself has the category S; the incoming edge
is labeled RC (relative clause).

4.2 The translation algorithm

Our translation algorithm has the following steps:

translate(TigerGraph g):
TigerTree t = createTree(g);
preprocess(t);
if (t �� null)

CCGderiv d = translateToCCG(t);
if (d �� null);

if (isCCGderivation(d))
return d;

else fail;
else fail;

else fail;

1. Creating a planar tree: After an initial pre-
processing step which inserts punctuation that is
attached to the “virtual” root (VROOT) of the
graph in the appropriate locations, discontinuous
graphs are transformed into planar trees. Starting
at the lowest nonterminal nodes, this step turns
the Tiger graph into a planar tree without cross-
ing edges, where every node spans a contiguous
substring. This is required as input to the actual
translation step, since CCG derivations are pla-
nar binary trees. If the first to the �th child of a
node � span a contiguous substring that ends in
the �th word, and the �����th child spans a sub-
string starting at � � ���, we attempt to move
the first � children of � to its parent � (if the
head position of � is greater than �). Punctuation
marks and adjuncts are simply moved up the tree
and treated as if they were originally attached to
� . This changes the syntactic scope of adjuncts,
but typically only VP modifiers are affected which
could also be attached at a higher VP or S node
without a change in meaning. The main exception

507



1. The original Tiger graph:
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2. After transformation into a planar tree and preprocessing:
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Figure 2: From Tiger graphs to CCG derivations

are extraposed relative clauses, which CCG treats
as sentential modifiers with an anaphoric depen-
dency. Arguments that are moved up are marked
as extracted, and an additional “extraction” edge
(explained below) from the original head is intro-
duced to capture the correct dependencies in the
CCG derivation. Discontinuous dependencies be-
tween resumptive pronouns (“place holders”, PH)
and their antecedents (“repeated elements”, RE)
are also dissolved.

2. Additional preprocessing: In order to obtain
the desired CCG analysis, a certain amount of pre-
processing is required. We insert NPs into PPs,
nouns into NPs3, and change sentences whose
first element is a complementizer (dass, ob, etc.)
into an SBAR (a category which does not ex-
ist in the original Tiger annotation) with S argu-

3The span of nouns is given by the NK edge label.

ment. This is necessary to obtain the desired CCG
derivations where complementizers and preposi-
tions take a sentential or nominal argument to their
right, whereas they appear at the same level as
their arguments in the Tiger corpus. Further pre-
processing is required to create the required struc-
tures for wh-extraction and certain coordination
phenomena (see below).
In figure 2, preprocessing of the original Tiger

graph (top) yields the tree shown in the middle
(edge labels are shown as Penn Treebank-style
function tags).4

We will first present the basic translation algo-
rithm before we explain how we obtain a deriva-
tion which captures the dependency between the
relative pronoun and the embedded verb.

4We treat reflexive pronouns as modifiers.
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3. The basic translation step Our basic transla-
tion algorithm is very similar to Hockenmaier and
Steedman (2005). It requires a planar tree with-
out crossing edges, where each node is marked as
head, complement or adjunct. The latter informa-
tion is represented in the Tiger edge labels, and
only a small number of additional head rules is re-
quired. Each individual translation step operates
on local trees, which are typically flat.

N

C� C� ... C� ... C��� C�

Assuming the CCG category of � is �, and its
head position is �, the algorithm traverses first the
left nodes 	� ...	 ��� from left to right to create a
right-branching derivation tree, and then the right
nodes (	� ...	 ��� ) from right to left to create a
left-branching tree. The algorithm starts at the root
category and recursively traverses the tree.

N
C� L�C� L�... R

R
R

H� ...
C���

C�

The CCG category of complements and of the
root of the graph is determined from their Tiger
label. VPs are �������, where the feature ��� dis-
tinguishes bare infinitives, zu-infinitives, passives,
and (active) past participles. With the exception
of passives, these features can be determined from
the POS tags alone.5 Embedded sentences (under
an SBAR-node) are always ��
�
���. NPs and nouns
(�� and �) have a case feature, e.g. �����.6 Like
the English CCGbank, our grammar ignores num-
ber and person agreement.

Special cases: Wh-extraction and extraposition
In Tiger, wh-extraction is not explicitly marked.
Relative clauses, wh-questions and free relatives
are all annotated as S-nodes,and the wh-word is
a normal argument of the verb. After turning the
graph into a planar tree, we can identify these
constructions by searching for a relative pronoun
in the leftmost child of an S node (which may
be marked as extraposed in the case of extrac-
tion from an embedded verb). As shown in fig-
ure 2, we turn this S into an SBAR (a category
which does not exist in Tiger) with the first edge
as complementizer and move the remaining chil-

5Eventive (“werden”) passive is easily identified by con-
text; however, we found that not all stative (“sein”) passives
seem to be annotated as such.

6In some contexts, measure nouns (e.g. Mark, Kilometer)
lack case annotation.

dren under a new S node which becomes the sec-
ond daughter of the SBAR. The relative pronoun
is the head of this SBAR and takes the S-node as
argument. Its category is ��
�
���, since all clauses
with a complementizer are verb-final. In order to
capture the long-range dependency, a “trace” is
introduced, and percolated down the tree, much
like in the algorithm of Hockenmaier and Steed-
man (2005), and similar to GPSG’s slash-passing
(Gazdar et al., 1985). These trace categories are
appended to the category of the head node (and
other arguments are type-raised as necessary). In
our case, the trace is also associated with the verb
whose argument it is. If the span of this verb
is within the span of a complement, the trace is
percolated down this complement. When the VP
that is headed by this verb is reached, we assume
a canonical order of arguments in order to “dis-
charge” the trace.
If a complement node is marked as extraposed,

it is also percolated down the head tree until the
constituent whose argument it is is found. When
another complement is found whose span includes
the span of the constituent whose argument the ex-
traposed edge is, the extraposed category is perco-
lated down this tree (we assume extraction out of
adjuncts is impossible).7 In order to capture the
topicalization analysis, main clause subjects also
introduce a trace. Fronted complements or sub-
jects, and the first adjunct in main clauses are ana-
lyzed as described in figure 1.

Special case: coordination – secondary edges
Tiger uses “secondary edges” to represent the de-
pendencies that arise in coordinate constructions
such as gapping, argument cluster coordination
and right (or left) node raising (Figure 3). In right
(left) node raising, the shared elements are argu-
ments or adjuncts that appear on the right periph-
ery of the last, (or left periphery of the first) con-
junct. CCG uses type-raising and composition to
combine the incomplete conjuncts into one con-
stituent which combines with the shared element:

liest immer und beantwortet gerne jeden Brief.
always reads and gladly replies to every letter.
������������� 	��� ������������� ��

���
�������������

�
��������

7In our current implementation, each node cannot have
more than one forward and one backward extraposed element
and one forward and one backward trace. It may be preferable
to use list structures instead, especially for extraposition.
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Complex coordinations: a Tiger graph with secondary edges

MO

während
  while

 KOUS

  78
  78

CARD

Prozent
percent

   NN

und
and

KON

sich
refl.

PRF 

 aussprachen
    argued

     VVFIN

HDSBCP

  für
  for

APPR

Bush
Bush

  NE

 S

OA

 
 vier
 vier

CARD

Prozent
percent

   NN

  für
  for

APPR

Clinton
Clinton

    NE

NKAC

PP

NKAC

PP

NKNK

NP

NKNK

NP

SBMO

 S

CDCJ CJ

CS

The planar tree after preprocessing:

SBAR
KOUS-HD
während

S-ARG
ARGCLUSTER

S-CJ
NP-SB

78 Prozent

PRF-MO
sich

PP-MO

für Bush

KON-CD
und

S-CJ
NP-SB

vier Prozent

PP-MO

für Clinton

VVFIN-HD
aussprachen

The resulting CCG derivation:
���

���������	
�

während

���
����

���
���������
�������������

���
���������
�������������

���
���������
�������������

���
���������
�������������

�������

78 Prozent

�������������

sich

�������������

für Bush

���
���������
��������������	����

	���

und

���
���������
�������������

���
���������
�������������

�������

vier Prozent

�������������

für Clinton

���
������������

aussprachen

Figure 3: Processing secondary edges in Tiger

In order to obtain this analysis, we lift such
shared peripheral constituents inside the conjuncts
of conjoined sentences CS (or verb phrases, CVP)
to new S (VP) level that we insert in between the
CS and its parent.
In argument cluster coordination (Figure 3), the

shared peripheral element (aussprachen) is the
head.8 In CCG, the remaining arguments and ad-
juncts combine via composition and typeraising
into a functor category which takes the category of
the head as argument (e.g. a ditransitive verb), and
returns the same category that would result from
a non-coordinated structure (e.g. a VP). The re-
sult category of the furthest element in each con-
junct is equal to the category of the entire VP (or
sentence), and all other elements are type-raised
and composed with this to yield a category which
takes as argument a verb with the required subcat
frame and returns a verb phrase (sentence). Tiger
assumes instead that there are two conjuncts (one
of which is headless), and uses secondary edges

8Während has scope over the entire coordinated structure.

to indicate the dependencies between the head and
the elements in the distant conjunct. Coordinated
sentences and VPs (CS and CVP) that have this
annotation are rebracketed to obtain the CCG con-
stituent structure, and the conjuncts are marked as
argument clusters. Since the edges in the argu-
ment cluster are labeled with their correct syntac-
tic functions, we are able to mimic the derivation
during category assignment.
In sentential gapping, the main verb is shared

and appears in the middle of the first conjunct:
(6) Er trinkt Bier und sie Wein.

He drinks beer and she wine.

As in the English CCGbank, we ignore this con-
struction, which requires a non-combinatory “de-
composition” rule (Steedman, 1990).

5 Evaluation

Translation coverage The algorithm can fail at
several stages. If the graph cannot be turned into a
tree, it cannot be translated. This happens in 1.3%
(647) of all sentences. In many cases, this is due
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to coordinated NPs or PPs where one or more con-
juncts are extraposed. We believe that these are
anaphoric, and further preprocessing could take
care of this. In other cases, this is due to verb top-
icalization (gegeben hat Peter Maria das Buch),
which our algorithm cannot currently deal with.9

For 1.9% of the sentences, the algorithm cannot
obtain a correct CCG derivation. Mostly this is
the case because some traces and extraposed el-
ements cannot be discharged properly. Typically
this happens either in local scrambling, where an
object of the main verb appears between the aux-
iliary and the subject (hat das Buch Peter...)10, or
when an argument of a noun that appears in a rel-
ative clause is extraposed to the right. There are
also a small number of constituents whose head is
not annotated. We ignore any gapping construc-
tion or argument cluster coordination that we can-
not get into the right shape (1.5%), 732 sentences).
There are also a number of other constructions

that we do not currently deal with. We do not pro-
cess sentences if the root of the graph is a “virtual
root” that does not expand into a sentence (1.7%,
869). This is mostly the case for strings such as
Frankfurt (Reuters)), or if we cannot identify a
head child of the root node (1.3%, 648; mostly
fragments or elliptical constructions).
Overall, we obtain CCG derivations for 92.4%

(46,628) of all 54,0474 sentences, including
88.4% (12,122) of those whose Tiger graphs are
marked as discontinuous (13,717), and 95.2%
of all 48,957 full sentences (excluding headless
roots, and fragments, but counting coordinate
structures such as gapping).

Lexicon size There are 2,506 lexical category
types, but 1,018 of these appear only once. 933
category types appear more than 5 times.

Lexical coverage In order to evaluate coverage
of the extracted lexicon on unseen data, we split
the corpus into segments of 5,000 sentences (ig-
noring the last 474), and perform 10-fold cross-
validation, using 9 segments to extract a lexicon
and the 10th to test its coverage. Average cover-
age is 86.7% (by token) of all lexical categories.
Coverage varies between 84.4% and 87.6%. On
average, 92% (90.3%-92.6%) of the lexical tokens

9The corresponding CCG derivation combines the rem-
nant complements as in argument cluster coordination.

10This problem arises because Tiger annotates subjects as
arguments of the auxiliary. We believe this problem could be
avoided if they were instead arguments of the non-finite verb.

that appear in the held-out data also appear in the
training data. On these seen tokens, coverage is
94.2% (93.5%-92.6%). More than half of all miss-
ing lexical entries are nouns.
In the English CCGbank, a lexicon extracted

from section 02-21 (930,000 tokens) has 94% cov-
erage on all tokens in section 00, and 97.7% cov-
erage on all seen tokens (Hockenmaier and Steed-
man, 2005). In the English data set, the proportion
of seen tokens (96.2%) is much higher, most likely
because of the relative lack of derivational and in-
flectional morphology. The better lexical coverage
on seen tokens is also to be expected, given that the
flexible word order of German requires case mark-
ings on all nouns as well as at least two different
categories for each tensed verb, and more in order
to account for local scrambling.

6 Conclusion and future work

We have presented an algorithm which converts
the syntax graphs in the German Tiger corpus
(Brants et al., 2002) into Combinatory Catego-
rial Grammar derivation trees. This algorithm is
currently able to translate 92.4% of all graphs in
Tiger, or 95.2% of all full sentences. Lexicons
extracted from this corpus contain the correct en-
tries for 86.7% of all and 94.2% of all seen to-
kens. Good lexical coverage is essential for the
performance of statistical CCG parsers (Hocken-
maier and Steedman, 2002a). Since the Tiger cor-
pus contains complete morphological and lemma
information for all words, future work will address
the question of how to identify and apply a set of
(non-recursive) lexical rules (Carpenter, 1992) to
the extracted CCG lexicon to create a much larger
lexicon. The number of lexical category types is
almost twice as large as that of the English CCG-
bank. This is to be expected, since our gram-
mar includes case features, and German verbs re-
quire different categories for main and subordinate
clauses. We currently perform only the most es-
sential preprocessing steps, although there are a
number of constructions that might benefit from
additional changes (e.g. comparatives, parentheti-
cals, or fragments), both to increase coverage and
accuracy of the extracted grammar.
Since Tiger corpus is of comparable size to the

Penn Treebank, we hope that the work presented
here will stimulate research into statistical wide-
coverage parsing of free word order languages
such as German with deep grammars like CCG.
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Abstract

For many years, statistical machine trans-
lation relied on generative models to pro-
vide bilingual word alignments. In 2005,
several independent efforts showed that
discriminative models could be used to
enhance or replace the standard genera-
tive approach. Building on this work,
we demonstrate substantial improvement
in word-alignment accuracy, partly though
improved training methods, but predomi-
nantly through selection of more and bet-
ter features. Our best model produces the
lowest alignment error rate yet reported on
Canadian Hansards bilingual data.

1 Introduction

Until recently, almost all work in statistical ma-
chine translation was based on word alignments
obtained from combinations of generative prob-
abalistic models developed at IBM by Brown et
al. (1993), sometimes augmented by an HMM-
based model or Och and Ney’s “Model 6” (Och
and Ney, 2003). In 2005, however, several in-
dependent efforts (Liu et al., 2005; Fraser and
Marcu, 2005; Ayan et al., 2005; Taskar et al.,
2005; Moore, 2005; Ittycheriah and Roukos,
2005) demonstrated that discriminatively trained
models can equal or surpass the alignment accu-
racy of the standard models, if the usual unla-
beled bilingual training corpus is supplemented
with human-annotated word alignments for only
a small subset of the training data.

The work cited above makes use of various
training procedures and a wide variety of features.
Indeed, whereas it can be difficult to design a fac-
torization of a generative model that incorporates

all the desired information, it is relatively easy to
add arbitrary features to a discriminative model.
We take advantage of this, building on our ex-
isting framework (Moore, 2005), to substantially
reduce the alignment error rate (AER) we previ-
ously reported, given the same training and test
data. Through a careful choice of features, and
modest improvements in training procedures, we
obtain the lowest error rate yet reported for word
alignment of Canadian Hansards data.

2 Overall Approach

As in our previous work (Moore, 2005), we train
two models we call stage 1 and stage 2, both in
the form of a weighted linear combination of fea-
ture values extracted from a pair of sentences and
a proposed word alignment of them. The possible
alignment having the highest overall score is se-
lected for each sentence pair. Thus, for a sentence
pair (e, f) we seek the alignment̂a such that

â = argmaxa

n∑

i=1

λifi(a, e, f)

where thefi are features and theλi are weights.
The models are trained on a large number of bilin-
gual sentence pairs, a small number of which
have hand-created word alignments provided to
the training procedure. A set of hand alignments
of a different subset of the overall training corpus
is used to evaluate the models.

In the stage 1 model, all the features are based
on surface statistics of the training data, plus the
hypothesized alignment. The entire training cor-
pus is then automatically aligned using this model.
The stage 2 model uses features based not only
on the parallel sentences themselves but also on
statistics of the alignments produced by the stage
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1 model. The stage 1 model is discussed in Sec-
tion 3, and the stage 2 model, in Section 4. After
experimenting with many features and combina-
tions of features, we made the final selection based
on minimizing training set AER.

For alignment search, we use a method nearly
identical to our previous beam search procedure,
which we do not discuss in detail. We made two
minor modifications to handle the possiblity that
more than one alignment may have the same score,
which we previously did not take into account.
First, we modified the beam search so that the
beam size dynamically expands if needed to ac-
comodate all the possible alignments that have the
same score. Second we implemented a structural
tie breaker, so that the same alignment will always
be chosen as the one-best from a set of alignments
having the same score. Neither of these changes
significantly affected the alignment results.

The principal training method is an adaptation
of averaged perceptron learning as described by
Collins (2002). The differences between our cur-
rent and earlier training methods mainly address
the observation that perceptron training is very
sensitive to the order in which data is presented to
the learner. We also investigated the large-margin
training technique described by Tsochantaridis et
al. (2004). The training procedures are described
in Sections 5 and 6.

3 Stage 1 Model

In our previous stage 1 model, we used five fea-
tures. The most informative feature was the sum
of bilingual word-association scores for all linked
word pairs, computed as a log likelihood ratio. We
used two features to measure the degree of non-
monotonicity of alignments, based on traversing
the alignment in the order of the source sentence
tokens, and noting the instances where the corre-
sponding target sentence tokens were not in left-
to-right order. One feature counted the number of
times there was a backwards jump in the order of
the target sentence tokens, and the other summed
the magnitudes of these jumps. In order to model
the trade-off between one-to-one and many-to-one
alignments, we included a feature that counted the
number of alignment links such that one of the
linked words participated in another link. Our fifth
feature was the count of the number of words in
the sentence pair left unaligned.

In addition to these five features, we employed

two hard constraints. One constraint was that the
only alignment patterns allowed were 1–1, 1–2, 1–
3, 2–1, and 3–1. Thus, many-to-many link pat-
terns were disallowed, and a single word could be
linked to at most three other words. The second
constraint was that a possible link was considered
only if it involved the strongest degree of associ-
ation within the sentence pair for at least one of
the words to be linked. If both words had stronger
associations with other words in the sentence pair,
then the link was disallowed.

Our new stage 1 model includes all the features
we used previously, plus the constraint on align-
ment patterns. The constraint involving strongest
association is not used. In addition, our new stage
1 model employs the following features:

association score rank features We define the
rank of an association with respect to a word in a
sentence pair to be the number of association types
(word-type to word-type) for that word that have
higher association scores, such that words of both
types occur in the sentence pair. The contraint on
strength of association we previously used can be
stated as a requirement that no link be considered
unless the corresponding association is of rank 0
for at least one of the words. We replace this hard
constraint with two features based on association
rank. One feature totals the sum of the associa-
tion ranks with respect to both words involved in
each link. The second feature sums the minimum
of association ranks with respect to both words in-
volved in each link. For alignments that obey the
previous hard constraint, the value of this second
feature would always be 0.

jump distance difference feature In our origi-
nal models, the only features relating to word or-
der were those measuring nonmonotonicity. The
likelihoods of various forward jump distances
were not modeled. If alignments are dense
enough, measuring nonmonotonicity gets at this
indirectly; if every word is aligned, it is impossible
to have large forward jumps without correspond-
ingly large backwards jumps, because something
has to link to the words that are jumped over. If
word alignments are sparse, however, due to free
translation, it is possible to have alignments with
very different forward jumps, but the same back-
wards jumps. To differentiate such alignments,
we introduce a feature that sums the differences
between the distance between consecutive aligned
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source words and the distance between the closest
target words they are aligned to.

many-to-one jump distance features It seems
intuitive that the likelihood of a large forward
jump on either the source or target side of an align-
ment is much less if the jump is between words
that are both linked to the same word of the other
language. This motivates the distinction between
thed1 andd>1 parameters in IBM Models 4 and 5.
We model this by including two features. One fea-
ture sums, for each wordw, the number of words
not linked tow that fall between the first and last
words linked tow. The other features counts only
such words that are linked to some word other than
w. The intuition here is that it is not so bad to have
a function word not linked to anything, between
two words linked to the same word.

exact match feature We have a feature that
sums the number of words linked to identical
words. This is motivated by the fact that proper
names or specialized terms are often the same in
both languages, and we want to take advantage of
this to link such words even when they are too rare
to have a high association score.

lexical features Taskar et al. (2005) gain con-
siderable benefit by including features counting
the links between particular high frequency words.
They use 25 such features, covering all pairs of
the five most frequent non-punctuation words in
each language. We adopt this type of feature but
do so more agressively. We include features for
all bilingual word pairs that have at least two co-
occurrences in the labeled training data. In addi-
tion, we include features counting the number of
unlinked occurrences of each word having at least
two occurrences in the labeled training data.

In training our new stage 1 model, we were con-
cerned that using so many lexical features might
result in overfitting to the training data. To try to
prevent this, we train the stage 1 model by first op-
timizing the weights for all other features, then op-
timizing the weights for the lexical features, with
the other weights held fixed to their optimium val-
ues without lexical features.

4 Stage 2 Model

In our original stage 2 model, we replaced the log-
likelihood-based word association statistic with
the logarithm of the estimated conditional prob-
ability of a cluster of words being linked by the

stage 1 model, given that they co-occur in a
pair of aligned sentences, computed over the full
(500,000 sentence pairs) training data. We esti-
mated these probabilities using a discounted max-
imum likelihood estimate, in which a small fixed
amount was subtracted from each link count:

LPd(w1, . . . , wk) =
links1(w1, . . . , wk)− d

cooc(w1, . . . , wk)

LPd(w1, . . . , wk) represents the estimated condi-
tional link probability for the cluster of words
w1, . . . , wk; links1(w1, . . . , wk) is the number of
times they are linked by the stage 1 model,d is
the discount; andcooc(w1, . . . , wk) is the number
of times they co-occur. We found thatd = 0.4
seemed to minimize training set AER.

An important difference between our stage 1
and stage 2 models is that the stage 1 model con-
siders each word-to-word link separately, but al-
lows multiple links per word, as long as they lead
to an alignment consisting only of one-to-one and
one-to-many links (in either direction). The stage
2 model, however, uses conditional probabilities
for both one-to-one and one-to-many clusters, but
requires all clusters to be disjoint. Our original
stage 2 model incorporated the same addtional fea-
tures as our original stage 1 model, except that the
feature that counts the number of links involved in
non-one-to-one link clusters was omitted.

Our new stage 2 model differs in a number of
ways from the original version. First we replace
the estimated conditional probability of a cluster
of words being linked with the estimated condi-
tional odds of a cluster of words being linked:

LO(w1, . . . , wk) =

links1(w1, . . . , wk) + 1

(cooc(w1, . . . , wk)− links1(w1, . . . , wk)) + 1

LO(w1, . . . , wk) represents the estimated con-
ditional link odds for the cluster of words
w1, . . . , wk. Note that we use “add-one” smooth-
ing in place of a discount.

Additional features in our new stage 2 model in-
clude the unaligned word feature used previously,
plus the following features:

symmetrized nonmonotonicity feature We
symmetrize the previous nonmonontonicity fea-
ture that sums the magnitude of backwards jumps,
by averaging the sum of of backwards jumps in
the target sentence order relative to the source
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sentence order, with the sum of the backwards
jumps in the source sentence order relative to the
target sentence order. We omit the feature that
counts the number of backwards jumps.

multi-link feature This feature counts the num-
ber of link clusters that are not one-to-one. This
enables us to model whether the link scores for
these clusters are more or less reliable than the link
scores for one-to-one clusters.

empirically parameterized jump distance fea-
ture We take advantage of the stage 1 alignment
to incorporate a feature measuring the jump dis-
tances between alignment links that are more so-
phisticated than simply measuring the difference
in source and target distances, as in our stage 1
model. We measure the (signed) source and target
distances between all pairs of links in the stage 1
alignment of the full training data. From this, we
estimate the odds of each possible target distance
given the corresponding source distance:

JO(dt|ds) =

C(target dist = dt ∧ source dist = ds) + 1

C(target dist 6= dt ∧ source dist = ds) + 1

We similarly estimate the odds of each possi-
ble source distance given the corresponding target
distance. The feature values consist of the sum
of the scaled log odds of the jumps between con-
secutive links in a hypothesized alignment, com-
puted in both source sentence and target sentence
order. This feature is applied only when both the
source and target jump distances are non-zero, so
that it applies only to jumps between clusters, not
to jumps on the “many” side of a many-to-one
cluster. We found it necessary to linearly scale
these feature values in order to get good results (in
terms of training set AER) when using perceptron
training.1 We found empirically that we could get
good results in terms of training set AER by divid-
ing each log odds estimate by the largest absolute
value of any such estimate computed.

5 Perceptron Training

We optimize feature weights using a modification
of averaged perceptron learning as described by
Collins (2002). Given an initial set of feature
weight values, the algorithm iterates through the

1Note that this is purely for effective training, since after
training, one could adjust the feature weights according tothe
scale factor, and use the original feature values.

labeled training data multiple times, comparing,
for each sentence pair, the best alignmentahyp ac-
cording to the current model with the reference
alignmentaref . At each sentence pair, the weight
for each feature is is incremented by a multiple of
the difference between the value of the feature for
the best alignment according to the model and the
value of the feature for the reference alignment:

λi ← λi + η(fi(aref , e, f)− fi(ahyp, e, f))

The updated feature weights are used to compute
ahyp for the next sentence pair. The multiplierη

is called the learning rate. In the averaged percep-
tron, the feature weights for the final model are
the average of the weight values over all the data
rather than simply the values after the final sen-
tence pair of the final iteration.

Differences between our approach and Collins’s
include averaging feature weights over each pass
through the data, rather than over all passes; ran-
domizing the order of the data for each learn-
ing pass; and performing an evaluation pass af-
ter each learning pass, with feature weights fixed
to their average values for the preceding learning
pass, during which training set AER is measured.
This procedure is iterated until a local minimum
on training set AER is found.

We initialize the weight of the anticipated most-
informative feature (word-association scores in
stage 1; conditional link probabilities or odds in
stage 2) to 1.0, with other feature weights intial-
ized to 0. The weight for the most informative fea-
ture is not updated. Allowing all weights to vary
allows many equivalent sets of weights that differ
only by a constant scale factor. Fixing one weight
eliminates a spurious apparent degree of freedom.

Previously, we set the learning rateη differently
in training his stage 1 and stage 2 models. For the
stage 2 model, we used a single learning rate of
0.01. For the stage 1 model, we used a sequence
of learning rates: 1000, 100, 10, and 1.0. At each
transition between learning rates, we re-initialized
the feature weights to the optimum values found
with the previous learning rate.

In our current work, we make a number of mod-
ifications to this procedure. We reset the feature
weights to the best averaged values we have yet
seen at the begining of each learning pass through
the data. Anecdotally, this seems to result in faster
convergence to a local AER minimum. We also
use multiple learning rates for both the stage 1 and
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stage 2 models, setting the learning rates automat-
ically. The initial learning rate is the maximum ab-
solute value (for one word pair/cluster) of the word
association, link probability, or link odds feature,
divided by the number of labeled training sentence
pairs. Since many of the feature values are simple
counts, this allows a minimal difference of 1 in
the feature value, if repeated in every training ex-
ample, to permit a count feature to have as large
a weighted value as the most informative feature,
after a single pass through the data.

After the learning search terminates for a given
learning rate, we reduce the learning rate by a fac-
tor of 10, and iterate until we judge that we are at
a local minimum for this learning rate. We con-
tinue with progressively smaller learning rates un-
til an entire pass through the data produces fea-
ture weights that differ so little from their values
at the beginning of the pass that the training set
AER does not change.

Two final modifications are inspired by the real-
ization that the results of perceptron training are
very sensitive to the order in which the data is
presented. Since we randomize the order of the
data on every pass, if we make a pass through the
training data, and the training set AER increases, it
may be that we simply encountered an unfortunate
ordering of the data. Therefore, when training set
AER increases, we retry two additional times with
the same initial weights, but different random or-
derings of the data, before giving up and trying a
smaller learning rate. Finally, we repeat the entire
training process multiple times, and average the
feature weights resulting from each of these runs.
We currently use 10 runs of each model. This final
averaging is inspired by the idea of “Bayes-point
machines” (Herbrich and Graepel, 2001).

6 SVM Training

After extensive experiments with perceptron train-
ing, we wanted to see if we could improve the re-
sults obtained with our best stage 2 model by using
a more sophisticated training method. Perceptron
training has been shown to obtain good results for
some problems, but occasionally very poor results
are reported, notably by Taskar et al. (2005) for the
word-alignment problem. We adopted the support
vector machine (SVM) method for structured out-
put spaces of Tsochantaridis et al. (2005), using
Joachims’SV M struct package.

Like standard SVM learning, this method tries

to find the hyperplane that separates the training
examples with the largest margin. Despite a very
large number of possible output labels (e.g., all
possible alignments of a given pair of sentences),
the optimal hyperplane can be efficiently approx-
imated given the desired error rate, using a cut-
ting plane algorithm. In each iteration of the al-
gorithm, it adds the “best” incorrect predictions
given the current model as constraints, and opti-
mizes the weight vector subject only to them.

The main advantage of this algorithm is that
it does not pose special restrictions on the out-
put structure, as long as “decoding” can be done
efficiently. This is crucial to us because sev-
eral features we found very effective in this task
are difficult to incorporate into structured learning
methods that require decomposable features. This
method also allows a variety of loss functions, but
we use only simple 0-1 loss, which in our case
means whether or not the alignment of a sentence
pair is completely correct, since this worked as
well as anything else we tried.

Our SVM method has a number of free param-
eters, which we tried tuning in two different ways.
One way is minimizing training set AER, which
is how we chose the stopping points in perceptron
training. The other is five-fold cross validation.
In this method, we train five times on 80% of the
training data and test on the other 20%, with five
disjoint subsets used for testing. The parameter
values yielding the best averaged AER on the five
test subsets of the training set are used to train the
final model on the entire training set.

7 Evaluation

We used the same training and test data as in our
previous work, a subset of the Canadian Hansards
bilingual corpus supplied for the bilingual word
alignment workshop held at HLT-NAACL 2003
(Mihalcea and Pedersen, 2003). This subset com-
prised 500,000 English-French sentences pairs, in-
cluding 224 manually word-aligned sentence pairs
for labeled training data, and 223 labeled sen-
tences pairs as test data. Automatic sentence
alignment of the training data was provided by Ul-
rich Germann, and the hand alignments of the la-
beled data were created by Franz Och and Her-
mann Ney (Och and Ney, 2003).

For baselines, Table 1 shows the test set re-
sults we previously reported, along with results for
IBM Model 4, trained with Och’s Giza++ software
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Alignment Recall Precision AER
Prev LLR 0.829 0.848 0.160
CLP1 0.889 0.934 0.086
CLP2 0.898 0.947 0.075
Giza E→ F 0.870 0.890 0.118
Giza F→ E 0.876 0.907 0.106
Giza union 0.929 0.845 0.124
Giza intersection 0.817 0.981 0.097
Giza refined 0.908 0.929 0.079

Table 1: Baseline Results.

package, using the default configuration file (Och
and Ney, 2003).2 “Prev LLR” is our earlier stage
1 model, and CLP1 and CLP2 are two versions
of our earlier stage 2 model. For CLP1, condi-
tional link probabilities were estimated from the
alignments produced by our “Prev LLR” model,
and for CLP2, they were obtained from a yet
earlier, heuristic alignment model. Results for
IBM Model 4 are reported for models trained in
both directions, English-to-French and French-to-
English, and for the union, intersection, and what
Och and Ney (2003) call the “refined” combina-
tion of the those two alignments.

Results for our new stage 1 model are presented
in Table 2. The first line is for the model described
in Section 3, optimizing non-lexical features be-
fore lexical features. The second line gives results
for optimizing all features simultaneously. The
next line omits lexical features entirely. The last
line is for our original stage 1 model, but trained
using our improved perceptron training method.

As we can see, our best stage 1 model reduces
the error rate of previous stage 1 model by almost
half. Comparing the first two lines shows that two-
phase training of non-lexical and lexical features
produces a 0.7% reduction in test set error. Al-
though the purpose of the two-phase training was
to mitigate overfitting to the training data, we also
found training set AER was reduced (7.3% vs.
8.8%). Taken all together, the results show a 7.9%
total reduction in error rate: 4.0% from new non-
lexical features, 3.3% from lexical features with
two-phase training, and 0.6% from other improve-
ments in perceptron training.

Table 3 presents results for perceptron training
of our new stage 2 model. The first line is for the
model as described in Section 4. Since the use of
log odds is somewhat unusual, in the second line

2Thanks to Chris Quirk for providing Giza++ alignments.

Alignment Recall Precision AER
Two-phase train 0.907 0.928 0.081
One-phase train 0.911 0.912 0.088
No lex feats 0.889 0.885 0.114
Prev LLR (new train) 0.834 0.855 0.154

Table 2: Stage 1 Model Results.

Alignment Recall Precision AER
Log odds 0.935 0.964 0.049
Log probs 0.934 0.962 0.051
CLP1 (new A & T) 0.925 0.952 0.060
CLP1 (new A) 0.917 0.955 0.063

Table 3: Stage 2 Model Results.

we show results for a similiar model, but using log
probabilities instead of log odds for both the link
model and the jump model. This result is 0.2%
worse than the log-odds-based model, but the dif-
ference is small enough to warrant testing its sig-
nificance. Comparing the errors on each test sen-
tence pair with a 2-tailed pairedt test, the results
were suggestive, but not significant (p = 0.28)

The third line of Table 3 shows results for our
earlier CLP1 model with probabilities estimated
from our new stage 1 model alignments (“new
A”), using our recent modifications to perceptron
training (“new T”). These results are significantly
worse than either of the two preceding models
(p < 0.0008). The fourth line is for the same
model and stage 1 alignments, but with our earlier
perceptron training method. While the results are
0.3% worse than with our new training method,
the difference is not significant (p = 0.62).

Table 4 shows the results of SVM training of
the model that was best under perceptron training,
tuning free parameters either by minimizing error
on the entire training set or by 5-fold cross val-
idation on the training set. The cross-validation
method produced slightly lower test-set AER, but
both results rounded to 4.7%. While these results
are somewhat better than with perceptron training,
the differences are not significant (p ≥ 0.47).

8 Comparisons to Other Work

At the time we carried out the experiments de-
scribed above, our sub-5% AER results were the
best we were aware of for word alignment of
Canadian Hansards bilingual data, although direct
comparisons are problematic due to differences in
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Alignment Recall Precision AER
Min train err 0.941 0.962 0.047
5× CV 0.942 0.962 0.047

Table 4: SVM Training Results.

total training data, labeled training data, and test
data. The best previously reported result was by
Och and Ney (2003), who obtained 5.2% AER
for a combination including all the IBM mod-
els except Model 2, plus the HMM model and
their Model 6, together with a bilingual dictionary,
for the refined alignment combination, trained on
three times as much data as we used.

Cherry and Lin’s (2003) method obtained an
AER of 5.7% as reported by Mihalcea and Peder-
sen (2003), the previous lowest reported error rate
for a method that makes no use of the IBM mod-
els. Cherry and Lin’s method is similar to ours
in using explicit estimates of the probability of a
link given the co-occurence of the linked words;
but it is generative rather than discriminative, it re-
quires a parser for the English side of the corpus,
and it does not model many-to-one links. Taskar
et al. (2005) reported 5.4% AER for a discrimina-
tive model that includes predictions from the inter-
section of IBM Model 4 alignments as a feature.
Their best result without using information from
the IBM models was 10.7% AER.

After completing the experiments described in
Section 7, we became aware further developments
in the line of research reported by Taskar et al.
(Lacoste-Julien et al., 2006). By modifying their
previous approach to allow many-to-one align-
ments and first-order interactions between align-
ments, Lacoste-Julien et al. have improved their
best AER without using information from the
more complex IBM models to 6.2%. Their best
result, however, is obtained from a model that in-
cludes both a feature recording intersected IBM
Model 4 predictions, plus a feature whose val-
ues are the alignment probabilities obtained from a
pair of HMM alignment models trained in both di-
rections in such a way that they agree on the align-
ment probabilities (Liang et al., 2006). With this
model, they obtained a much lower 3.8% AER.

Lacoste-Julien very graciously provided both
the IBM Model 4 predictions and the probabili-
ties estimated by the bidirectional HMM models
that they had used to compute these additional fea-
ture values. We then added features based on this

information to see how much we could improve
our best model. We also eliminated one other dif-
ference between our results and those of Lacoste-
Julien et al., by training on all 1.1 million English-
French sentence pairs from the 2003 word align-
ment workshop, rather than the 500,000 sentence
pairs we had been using.

Since all our other feature values derived from
probabilities are expressed as log odds, we also
converted the HMM probabilities estimated by
Liang et al. to log odds. To make this well de-
fined in all cases, we thresholded high probabili-
ties (including 1.0) at 0.999999, and low probabil-
ities (including 0.0) at 0.1 (which we found pro-
duced lower training set error than using a very
small non-zero probability, although we have not
searched systematically for the optimal value).

In our latest experiments, we first established
that simply increasing the unlabled training data
to 1.1 million sentence pairs made very little dif-
ference, reducing the test-set AER of our stage 2
model under perceptron training only from 4.9%
to 4.8%. Combining our stage 2 model features
with the HMM log odds feature using SVM train-
ing with 5-fold cross validation yielded a substan-
tial reduction in test-set AER to 3.9% (96.9% pre-
cision, 95.1% recall). We found it somewhat dif-
ficult to improve these results further by including
IBM Model 4 intersection feature. We finally ob-
tained our best results, however, for both training-
set and test-set AER, by holding the stage 2 model
feature weights at the values obtained by SVM
training with the HMM log odds feature, and op-
timizing the HMM log odds feature weight and
IBM Model 4 intersection feature weight with per-
ceptron training.3 This produced a test-set AER of
3.7% (96.9% precision, 95.5% recall).

9 Conclusions

For Canadian Hansards data, the test-set AER of
4.7% for our stage 2 model is one of the lowest
yet reported for an aligner that makes no use of
the expensive IBM models, and our test-set AER
of 3.7% for the stage 2 model in combination with
the HMM log odds and Model 4 intersection fea-
tures is the lowest yet reported for any aligner.4

Perhaps if any general conclusion is to be drawn
from our results, it is that in creating a discrim-

3At this writing we have not yet had time to try this with
SVM training.

4However, the difference between our result and the 3.8%
of Lacoste-Julien et al. is almost certainly not significant.
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inative word alignment model, the model struc-
ture and features matter the most, with the dis-
criminative training method of secondary impor-
tance. While we obtained a small improvements
by varying the training method, few of the differ-
ences were statistically significant. Having better
features was much more important.
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Abstract

We propose a novel reordering model for
phrase-based statistical machine transla-
tion (SMT) that uses a maximum entropy
(MaxEnt) model to predicate reorderings
of neighbor blocks (phrase pairs). The
model provides content-dependent, hier-
archical phrasal reordering with general-
ization based on features automatically
learned from a real-world bitext. We
present an algorithm to extract all reorder-
ing events of neighbor blocks from bilin-
gual data. In our experiments on Chinese-
to-English translation, this MaxEnt-based
reordering model obtains significant im-
provements in BLEU score on the NIST
MT-05 and IWSLT-04 tasks.

1 Introduction

Phrase reordering is of great importance for
phrase-based SMT systems and becoming an ac-
tive area of research recently. Compared with
word-based SMT systems, phrase-based systems
can easily address reorderings of words within
phrases. However, at the phrase level, reordering
is still a computationally expensive problem just
like reordering at the word level (Knight, 1999).

Many systems use very simple models to re-
order phrases1. One is distortion model (Och
and Ney, 2004; Koehn et al., 2003) which penal-
izes translations according to their jump distance
instead of their content. For example, ifN words
are skipped, a penalty ofN will be paid regard-
less of which words are reordered. This model
takes the risk of penalizing long distance jumps

1In this paper, we focus our discussions on phrases that
are not necessarily aligned to syntactic constituent boundary.

which are common between two languages with
very different orders. Another simple model is flat
reordering model (Wu, 1996; Zens et al., 2004;
Kumar et al., 2005) which is not content depen-
dent either. Flat model assigns constant probabili-
ties for monotone order and non-monotone order.
The two probabilities can be set to prefer mono-
tone or non-monotone orientations depending on
the language pairs.

In view of content-independency of the dis-
tortion and flat reordering models, several re-
searchers (Och et al., 2004; Tillmann, 2004; Ku-
mar et al., 2005; Koehn et al., 2005) proposed a
more powerful model called lexicalized reorder-
ing model that is phrase dependent. Lexicalized
reordering model learns local orientations (mono-
tone or non-monotone) with probabilities for each
bilingual phrase from training data. During de-
coding, the model attempts to finding a Viterbi lo-
cal orientation sequence. Performance gains have
been reported for systems with lexicalized reorder-
ing model. However, since reorderings are re-
lated to concrete phrases, researchers have to de-
sign their systems carefully in order not to cause
other problems, e.g. the data sparseness problem.

Another smart reordering model was proposed
by Chiang (2005). In his approach, phrases are re-
organized into hierarchical ones by reducing sub-
phrases to variables. This template-based scheme
not only captures the reorderings of phrases, but
also integrates some phrasal generalizations into
the global model.

In this paper, we propose a novel solution for
phrasal reordering. Here, under the ITG constraint
(Wu, 1997; Zens et al., 2004), we need to con-
sider just two kinds of reorderings,straight and
invertedbetween two consecutive blocks. There-
fore reordering can be modelled as a problem of
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classification with only two labels,straight and
inverted. In this paper, we build a maximum en-
tropy based classification model as the reordering
model. Different from lexicalized reordering, we
do not use the whole block as reordering evidence,
but only features extracted from blocks. This is
more flexible. It makes our model reorder any
blocks, observed in training or not. The whole
maximum entropy based reordering model is em-
bedded inside a log-linear phrase-based model of
translation. Following the Bracketing Transduc-
tion Grammar (BTG) (Wu, 1996), we built a
CKY-style decoder for our system, which makes
it possible to reorder phrases hierarchically.

To create a maximum entropy based reordering
model, the first step is learning reordering exam-
ples from training data, similar to the lexicalized
reordering model. But in our way, any evidences
of reorderings will be extracted, not limited to re-
orderings of bilingual phrases of length less than a
predefined number of words. Secondly, features
will be extracted from reordering examples ac-
cording to feature templates. Finally, a maximum
entropy classifier will be trained on the features.

In this paper we describe our system and the
MaxEnt-based reordering model with the associ-
ated algorithm. We also present experiments that
indicate that the MaxEnt-based reordering model
improves translation significantly compared with
other reordering approaches and a state-of-the-art
distortion-based system (Koehn, 2004).

2 System Overview

2.1 Model

Under the BTG scheme, translation is more
like monolingual parsing through derivations.
Throughout the translation procedure, three rules
are used to derive the translation

A
[ ]→ (A1, A2) (1)

A
〈 〉→ (A1, A2) (2)

A → (x, y) (3)

During decoding, the source sentence is seg-
mented into a sequence of phrases as in a standard
phrase-based model. Then the lexical rule(3) 2 is

2Currently, we restrict phrasesx and y not to be null.
Therefore neither deletion nor insertion is carried out during
decoding. However, these operations are to be considered in
our future version of model.

used to translate source phrasey into target phrase
x and generate a blockA. Later, thestraight rule
(1) merges two consecutive blocks into a single
larger block in the straight order; while thein-
vertedrule (2) merges them in the inverted order.
These two merging rules will be used continuously
until the whole source sentence is covered. When
the translation is finished, a tree indicating the hi-
erarchical segmentation of the source sentence is
also produced.

In the following, we will define the model in
a straight way, not in the dynamic programming
recursion way used by (Wu, 1996; Zens et al.,
2004). We focus on defining the probabilities of
different rules by separating different features (in-
cluding the language model) out from the rule
probabilities and organizing them in a log-linear
form. This straight way makes it clear how rules
are used and what they depend on.

For the two merging rulesstraightandinverted,
applying them on two consecutive blocksA1 and
A2 is assigned a probabilityPrm(A)

Prm(A) = ΩλΩ · 4λLM

pLM (A1,A2) (4)

where theΩ is the reordering score of blockA1

andA2, λΩ is its weight, and4pLM (A1,A2) is the
increment of the language model score of the two
blocks according to their final order,λLM is its
weight.

For the lexical rule, applying it is assigned a
probabilityPrl(A)

Prl(A) = p(x|y)λ1 · p(y|x)λ2 · plex(x|y)λ3

·plex(y|x)λ4 · exp(1)λ5 · exp(|x|)λ6

·pλLM
LM (x) (5)

wherep(·) are the phrase translation probabilities
in both directions,plex(·) are the lexical transla-
tion probabilities in both directions, andexp(1)
and exp(|x|) are the phrase penalty and word
penalty, respectively. These features are very com-
mon in state-of-the-art systems (Koehn et al.,
2005; Chiang, 2005) andλs are weights of fea-
tures.

For the reordering modelΩ, we define it on the
two consecutive blocksA1 andA2 and their order
o ∈ {straight, inverted}

Ω = f(o,A1, A2) (6)

Under this framework, different reordering mod-
els can be designed. In fact, we defined four re-
ordering models in our experiments. The first one
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is NONE, meaning no explicit reordering features
at all. We setΩ to 1 for all different pairs of
blocks and their orders. So the phrasal reorder-
ing is totally dependent on the language model.
This model is obviously different from the mono-
tone search, which does not use theinvertedrule at
all. The second one is a distortion style reordering
model, which is formulated as

Ω =

{
exp(0), o = straight
exp(|A1|) + (|A2|), o = inverted

where |Ai| denotes the number of words on the
source side of blocks. WhenλΩ < 0, this de-
sign will penalize those non-monotone transla-
tions. The third one is a flat reordering model,
which assigns probabilities for the straight and in-
verted order. It is formulated as

Ω =

{
pm, o = straight
1− pm, o = inverted

In our experiments on Chinese-English tasks, the
probability for the straight order is set atpm =
0.95. This is because word order in Chinese and
English is usually similar. The last one is the maxi-
mum entropy based reordering model proposed by
us, which will be described in the next section.

We define a derivationD as a sequence of appli-
cations of rules(1) − (3), and letc(D) ande(D)
be the Chinese and English yields ofD. The prob-
ability of a derivationD is

Pr(D) =
∏

i

Pr(i) (7)

wherePr(i) is the probability of theith applica-
tion of rules. Given an input sentencec, the final
translatione∗ is derived from the best derivation
D∗

D∗ = argmax
c(D)=c

Pr(D)

e∗ = e(D∗) (8)

2.2 Decoder

We developed a CKY style decoder that employs a
beam search algorithm, similar to the one by Chi-
ang (2005). The decoder finds the best derivation
that generates the input sentence and its transla-
tion. From the best derivation, the best Englishe∗

is produced.
Given a source sentencec, firstly we initiate the

chart with phrases from phrase translation table

by applying the lexical rule. Then for each cell
that spans fromi to j on the source side, all pos-
sible derivations spanning fromi to j are gener-
ated. Our algorithm guarantees that any sub-cells
within (i, j) have been expanded before cell(i, j)
is expanded. Therefore the way to generate deriva-
tions in cell (i, j) is to merge derivations from
any two neighbor sub-cells. This combination is
done by applying thestraight and invertedrules.
Each application of these two rules will generate
a new derivation covering cell(i, j). The score of
the new generated derivation is derived from the
scores of its two sub-derivations, reordering model
score and the increment of the language model
score according to the Equation(4). When the
whole input sentence is covered, the decoding is
over.

Pruning of the search space is very important for
the decoder. We use three pruning ways. The first
one is recombination. When two derivations in
the same cell have the samew leftmost/rightmost
words on the English yields, wherew depends on
the order of the language model, they will be re-
combined by discarding the derivation with lower
score. The second one is the threshold pruning
which discards derivations that have a score worse
thanα times the best score in the same cell. The
last one is the histogram pruning which only keeps
the topn best derivations for each cell. In all our
experiments, we setn = 40, α = 0.5 to get a
tradeoff between speed and performance in the de-
velopment set.

Another feature of our decoder is thek-best list
generation. Thek-best list is very important for
the minimum error rate training (Och, 2003a)
which is used for tuning the weightsλ for our
model. We use a very lazy algorithm for thek-best
list generation, which runs two phases similarly to
the one by Huang et al. (2005). In the first phase,
the decoder runs as usual except that it keeps some
information of weaker derivations which are to be
discarded during recombination. This will gener-
ate not only the first-best of final derivation but
also a shared forest. In the second phase, the
lazy algorithm runs recursively on the shared for-
est. It finds the second-best of the final deriva-
tion, which makes its children to find their second-
best, and children’s children’s second-best, until
the leaf node’s second-best. Then it finds the third-
best, forth-best, and so on. In all our experiments,
we setk = 200.
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The decoder is implemented in C++. Using the
pruning settings described above, without thek-
best list generation, it takes about 6 seconds to
translate a sentence of average length 28.3 words
on a 2GHz Linux system with 4G RAM memory.

3 Maximum Entropy Based Reordering
Model

In this section, we discuss how to create a max-
imum entropy based reordering model. As de-
scribed above, we defined the reordering modelΩ
on the three factors: ordero, block A1 and block
A2. The central problem is, given two neighbor
blocks A1 and A2, how to predicate their order
o ∈ {straight, inverted}. This is a typical prob-
lem of two-class classification. To be consistent
with the whole model, the conditional probabil-
ity p(o|A1, A2) is calculated. A simple way to
compute this probability is to take counts from the
training data and then to use the maximum likeli-
hood estimate (MLE)

p(o|A1, A2) =
Count(o,A1, A2)
Count(A1, A2)

(9)

The similar way is used by lexicalized reordering
model. However, in our model this way can’t work
because blocks become larger and larger due to us-
ing the merging rules, and finally unseen in the
training data. This means we can not use blocks
as direct reordering evidences.

A good way to this problem is to use features of
blocks as reordering evidences. Good features can
not only capture reorderings, avoid sparseness, but
also integrate generalizations. It is very straight
to use maximum entropy model to integrate fea-
tures to predicate reorderings of blocks. Under the
MaxEnt model, we have

Ω = pθ(o|A1, A2) =
exp(

∑
i θihi(o,A1, A2))∑

o exp(
∑

i θihi(o,A1, A2))
(10)

where the functionshi ∈ {0, 1} are model features
and theθi are weights of the model features which
can be trained by different algorithms (Malouf,
2002).

3.1 Reordering Example Extraction
Algorithm

The input for the algorithm is a bilingual corpus
with high-precision word alignments. We obtain
the word alignments using the way of Koehn et al.
(2005). After running GIZA++ (Och and Ney,

target

source

b1

b2

b3

b4

c1

c2

Figure 1: The bold dots are corners. The ar-
rows from the corners are their links. Cornerc1 is
shared by blockb1 andb2, which in turn are linked
by the STRAIGHT links,bottomleftand topright
of c1. Similarly, blockb3 andb4 are linked by the
INVERTED links, topleftandbottomrightof c2.

2000) in both directions, we apply the“grow-
diag-final” refinement rule on the intersection
alignments for each sentence pair.

Before we introduce this algorithm, we intro-
duce some formal definitions. The first one is
blockwhich is a pair of source and target contigu-
ous sequences of words

b = (si2
i1

, tj2j1)

b must be consistent with the word alignmentM

∀(i, j) ∈ M, i1 ≤ i ≤ i2 ↔ j1 ≤ j ≤ j2

This definition is similar to that of bilingual phrase
except that there is no length limitation over block.
A reordering exampleis a triple of (o, b1, b2)
whereb1 and b2 are two neighbor blocks ando
is the order between them. We define each vertex
of block ascorner. Each corner has fourlinks in
four directions:topright, topleft, bottomright, bot-
tomleft, and each link links a set of blocks which
have the corner as their vertex. Thetopright and
bottomleftlink blocks with the straight order, so
we call themSTRAIGHTlinks. Similarly, we call
thetopleftandbottomright INVERTEDlinks since
they link blocks with the inverted order. For con-
venience, we useb ←↩ L to denote that blockb
is linked by the linkL. Note that the STRAIGHT
links can not coexist with the INVERTED links.
These definitions are illustrated in Figure 1.

The reordering example extraction algorithm is
shown in Figure 2. The basic idea behind this al-
gorithm is to register all neighbor blocks to the
associated links of corners which are shared by
them. To do this, we keep an array to record link

524



1: Input : sentence pair(s, t) and their alignmentM
2: < := ∅
3: for each span(i1, i2) ∈ s do
4: find blockb = (si2

i1
, tj2

j1
) that is consistent withM

5: Extend blockb on the target boundary with one possi-
ble non-aligned word to get blocksE(b)

6: for each blockb∗ ∈ b
⋃

E(b) do
7: Registerb∗ to the links of four corners of it
8: end for
9: end for

10: for each cornerC in the matrixM do
11: if STRAIGHT links existthen
12: < := <⋃{(straight, b1, b2)},

b1 ←↩ C.bottomleft, b2 ←↩ C.topright
13: else ifINVERTED links existthen
14: < := <⋃{(inverted, b1, b2)},

b1 ←↩ C.topleft, b2 ←↩ C.bottomright
15: end if
16: end for
17: Output : reordering examples<

Figure 2: Reordering Example Extraction Algo-
rithm.

information of corners when extracting blocks.
Line 4 and 5 are similar to the phrase extraction
algorithm by Och (2003b). Different from Och,
we just extend one word which is aligned to null
on the boundary of target side. If we put some
length limitation over the extracted blocks and out-
put them, we get bilingual phrases used in standard
phrase-based SMT systems and also in our sys-
tem. Line 7 updates all links associated with the
current block. You can attach the current block
to each of these links. However this will increase
reordering examples greatly, especially those with
thestraight order. In our Experiments, we just at-
tach the smallest blocks to the STRAIGHT links,
and the largest blocks to the INVERTED links.
This will keep the number of reordering examples
acceptable but without performance degradation.
Line 12 and 14 extract reordering examples.

3.2 Features

With the extracted reordering examples, we can
obtain features for our MaxEnt-based reordering
model. We design two kinds of features, lexi-
cal features and collocation features. For a block
b = (s, t), we uses1 to denote the first word of the
sources, t1 to denote the first word of the targett.

Lexical features are defined on the single word
s1 or t1. Collocation features are defined on the
combinations1 or t1 between two blocksb1 and
b2. Three kinds of combinations are used. The first
one is source collocation,b1.s1&b2.s1. The sec-
ond is target collocation,b1.t1&b2.t1. The last one

hi(o, b
1, b2) =

{
1, b1.t1 = E1, o = O
0, otherwise

hj(o, b
1, b2) =

{
1, b1.t1 = E1, b

2.t1 = E2, o = O
0, otherwise

Figure 3: MaxEnt-based reordering feature tem-
plates. The first one is a lexical feature, and the
second one is a target collocation feature, where
Ei are English words,O ∈ {straight, inverted}.

is block collocation,b1.s1&b1.t1 andb2.s1&b2.t1.
The templates for the lexical feature and the collo-
cation feature are shown in Figure 3.

Why do we use the first words as features?
These words are nicely at the boundary of blocks.
One of assumptions of phrase-based SMT is that
phrase cohere across two languages (Fox, 2002),
which means phrases in one language tend to be
moved together during translation. This indicates
that boundary words of blocks may keep informa-
tion for their movements/reorderings. To test this
hypothesis, we calculate the information gain ra-
tio (IGR) for boundary words as well as the whole
blocks against the order on the reordering exam-
ples extracted by the algorithm described above.
The IGR is the measure used in the decision tree
learning to select features (Quinlan, 1993). It
represents how precisely the feature predicate the
class. For featuref and classc, theIGR(f, c)

IGR(f, c) =
En(c)− En(c|f)

En(f)
(11)

where En(·) is the entropy and En(·|·)
is the conditional entropy. To our sur-
prise, the IGR for the four boundary words
(IGR(〈b1.s1, b2.s1, b1.t1, b2.t1〉, order) =
0.2637) is very close to that for the two blocks
together (IGR(〈b1, b2〉, order) = 0.2655).
Although our reordering examples do not cover
all reordering events in the training data, this
result shows that boundary words do provide
some clues for predicating reorderings.

4 Experiments

We carried out experiments to compare against
various reordering models and systems to demon-
strate the competitiveness of MaxEnt-based re-
ordering:

1. Monotone search: theinverted rule is not
used.
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2. Reordering variants: theNONE, distortion
and flat reordering models described in Sec-
tion 2.1.

3. Pharaoh: A state-of-the-art distortion-based
decoder (Koehn, 2004).

4.1 Corpus

Our experiments were made on two Chinese-to-
English translation tasks: NIST MT-05 (news do-
main) and IWSLT-04 (travel dialogue domain).

NIST MT-05 . In this task, the bilingual train-
ing data comes from the FBIS corpus with 7.06M
Chinese words and 9.15M English words. The tri-
gram language model training data consists of En-
glish texts mostly derived from the English side
of the UN corpus (catalog number LDC2004E12),
which totally contains 81M English words. For the
efficiency of minimum error rate training, we built
our development set using sentences of length at
most 50 characters from the NIST MT-02 evalua-
tion test data.

IWSLT-04 . For this task, our experiments were
carried out on the small data track. Both the
bilingual training data and the trigram language
model training data are restricted to the supplied
corpus, which contains 20k sentences, 179k Chi-
nese words and 157k English words. We used the
CSTAR 2003 test set consisting of 506 sentence
pairs as development set.

4.2 Training

We obtained high-precision word alignments us-
ing the way described in Section 3.1. Then we
ran our reordering example extraction algorithm to
output blocks of length at most 7 words on the Chi-
nese side together with their internal alignments.
We also limited the length ratio between the target
and source language (max(|s|, |t|)/min(|s|, |t|))
to 3. After extracting phrases, we calculated the
phrase translation probabilities and lexical transla-
tion probabilities in both directions for each bilin-
gual phrase.

For the minimum-error-rate training, we re-
implemented Venugopal’s trainer3 (Venugopal
et al., 2005) in C++. For all experiments, we ran
this trainer with the decoder iteratively to tune the
weightsλs to maximize the BLEU score on the
development set.

3See http://www.cs.cmu.edu/ ashishv/mer.html. This is a
Matlab implementation.

Pharaoh
We shared the same phrase translation tables
between Pharaoh and our system since the two
systems use the same features of phrases. In fact,
we extracted more phrases than Pharaoh’s trainer
with its default settings. And we also used our re-
implemented trainer to tune lambdas of Pharaoh
to maximize its BLEU score. During decoding,
we pruned the phrase table withb = 100 (default
20), pruned the chart withn = 100, α = 10−5

(default setting), and limited distortions to 4
(default 0).

MaxEnt-based Reordering Model
We firstly ran our reordering example extraction
algorithm on the bilingual training data without
any length limitations to obtain reordering ex-
amples and then extracted features from these
examples. In the task of NIST MT-05, we
obtained about 2.7M reordering examples with
the straight order, and 367K with the inverted
order, from which 112K lexical features and
1.7M collocation features after deleting those
with one occurrence were extracted. In the task
of IWSLT-04, we obtained 79.5k reordering
examples with the straight order, 9.3k with the
inverted order, from which 16.9K lexical features
and 89.6K collocation features after deleting those
with one occurrence were extracted. Finally, we
ran the MaxEnt toolkit by Zhang4 to tune the
feature weights. We set iteration number to 100
and Gaussian prior to 1 for avoiding overfitting.

4.3 Results

We dropped unknown words (Koehn et al., 2005)
of translations for both tasks before evaluating
their BLEU scores. To be consistent with the
official evaluation criterions of both tasks, case-
sensitive BLEU-4 scores were computed For the
NIST MT-05 task and case-insensitive BLEU-4
scores were computed for the IWSLT-04 task5.
Experimental results on both tasks are shown in
Table 1. Italic numbers refer to results for which
the difference to the best result (indicated in bold)
is not statistically significant. For all scores, we
also show the 95% confidence intervals computed
using Zhang’s significant tester (Zhang et al.,
2004) which was modified to conform to NIST’s

4See http://homepages.inf.ed.ac.uk/s0450736
/maxenttoolkit.html.

5Note that the evaluation criterion of IWSLT-04 is not to-
tally matched since we didn’t remove punctuation marks.
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definition of the BLEU brevity penalty.
We observe that if phrasal reordering is totally

dependent on the language model (NONE) we
get the worst performance, even worse than the
monotone search. This indicates that our language
models were not strong to discriminate between
straight orders and inverted orders. The flat and
distortion reordering models (Row 3 and 4) show
similar performance with Pharaoh. Although they
are not dependent on phrases, they really reorder
phrases with penalties to wrong orders supported
by the language model and therefore outperform
the monotone search. In row 6, only lexical fea-
tures are used for the MaxEnt-based reordering
model; while row 7 uses lexical features and col-
location features. On both tasks, we observe that
various reordering approaches show similar and
stable performance ranks in different domains and
the MaxEnt-based reordering models achieve the
best performance among them. Using all features
for the MaxEnt model (lex + col) is marginally
better than using only lex features (lex).

4.4 Scaling to Large Bitexts

In the experiments described above, collocation
features do not make great contributions to the per-
formance improvement but make the total num-
ber of features increase greatly. This is a prob-
lem for MaxEnt parameter estimation if it is scaled
to large bitexts. Therefore, for the integration of
MaxEnt-based phrase reordering model in the sys-
tem trained on large bitexts, we remove colloca-
tion features and only use lexical features from
the last words of blocks (similar to those from the
first words of blocks with similar performance).
This time the bilingual training data contain 2.4M
sentence pairs (68.1M Chinese words and 73.8M
English words) and two trigram language models
are used. One is trained on the English side of
the bilingual training data. The other is trained on
the Xinhua portion of the Gigaword corpus with
181.1M words. We also use some rules to trans-
late numbers, time expressions and Chinese per-
son names. The new Bleu score on NIST MT-05
is 0.291 which is very promising.

5 Discussion and Future Work

In this paper we presented a MaxEnt-based phrase
reordering model for SMT. We used lexical fea-
tures and collocation features from boundary
words of blocks to predicate reorderings of neigh-

Systems NIST MT-05 IWSLT-04
monotone 20.1± 0.8 37.8± 3.2
NONE 19.6± 0.8 36.3± 2.9
Distortion 20.9± 0.8 38.8± 3.0
Flat 20.5± 0.8 38.7± 2.8
Pharaoh 20.8± 0.8 38.9± 3.3
MaxEnt (lex) 22.0± 0.8 42.4± 3.3
MaxEnt (lex + col) 22.2± 0.8 42.8± 3.3

Table 1: BLEU-4 scores (%) with the 95% confi-
dence intervals. Italic numbers refer to results for
which the difference to the best result (indicated in
bold) is not statistically significant.

bor blocks. Experiments on standard Chinese-
English translation tasks from two different do-
mains showed that our method achieves a signif-
icant improvement over the distortion/flat reorder-
ing models.

Traditional distortion/flat-based SMT transla-
tion systems are good for learning phrase transla-
tion pairs, but learn nothing for phrasal reorder-
ings from real-world data. This is our original
motivation for designing a new reordering model,
which can learn reorderings from training data just
like learning phrasal translations. Lexicalized re-
ordering model learns reorderings from training
data, but it binds reorderings to individual concrete
phrases, which restricts the model to reorderings
of phrases seen in training data. On the contrary,
the MaxEnt-based reordering model is not limited
by this constraint since it is based on features of
phrase, not phrase itself. It can be easily general-
ized to reorder unseen phrases provided that some
features are fired on these phrases.

Another advantage of the MaxEnt-based re-
ordering model is that it can take more fea-
tures into reordering, even though they are non-
independent. Tillmann et. al (2005) also use a
MaxEnt model to integrate various features. The
difference is that they use the MaxEnt model to
predict not only orders but also blocks. To do that,
it is necessary for the MaxEnt model to incorpo-
rate real-valued features such as the block trans-
lation probability and the language model proba-
bility. Due to the expensive computation, a local
model is built. However, our MaxEnt model is just
a module of the whole log-linear model of transla-
tion which uses its score as a real-valued feature.
The modularity afforded by this design does not
incur any computation problems, and make it eas-
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ier to update one sub-model with other modules
unchanged.

Beyond the MaxEnt-based reordering model,
another feature deserving attention in our system
is the CKY style decoder which observes the ITG.
This is different from the work of Zens et. al.
(2004). In their approach, translation is generated
linearly, word by word and phrase by phrase in a
traditional way with respect to the incorporation
of the language model. It can be said that their de-
coder did not violate the ITG constraints but not
that it observed the ITG. The ITG not only de-
creases reorderings greatly but also makes reorder-
ing hierarchical. Hierarchical reordering is more
meaningful for languages which are organized hi-
erarchically. From this point, our decoder is simi-
lar to the work by Chiang (2005).

The future work is to investigate other valuable
features, e.g. binary features that explain blocks
from the syntactical view. We think that there is
still room for improvement if more contributing
features are used.
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Abstract

In this paper, we argue that n-gram lan-
guage models are not sufficient to address
word reordering required for Machine Trans-
lation. We propose a new distortion model
that can be used with existing phrase-based
SMT decoders to address those n-gram lan-
guage model limitations. We present empirical
results in Arabic to English Machine Transla-
tion that show statistically significant improve-
ments when our proposed model is used. We
also propose a novel metric to measure word
order similarity (or difference) between any
pair of languages based on word alignments.

1 Introduction

A language model is a statistical model that gives
a probability distribution over possible sequences of
words. It computes the probability of producing a given
word w1 given all the words that precede it in the sen-
tence. An n-gram language model is an n-th order
Markov model where the probability of generating a
given word depends only on the last n − 1 words im-
mediately preceding it and is given by the following
equation:

P (wk
1 ) = P (w1)P (w2|w1) · · · P (wn|w

n−1

1 ) (1)

where k >= n.
N -gram language models have been successfully

used in Automatic Speech Recognition (ASR) as was
first proposed by (Bahl et al., 1983). They play an im-
portant role in selecting among several candidate word
realization of a given acoustic signal. N -gram lan-
guage models have also been used in Statistical Ma-
chine Translation (SMT) as proposed by (Brown et al.,
1990; Brown et al., 1993). The run-time search pro-
cedure used to find the most likely translation (or tran-
scription in the case of Speech Recognition) is typically
referred to as decoding.

There is a fundamental difference between decoding
for machine translation and decoding for speech recog-

nition. When decoding a speech signal, words are gen-
erated in the same order in which their corresponding
acoustic signal is consumed. However, that is not nec-
essarily the case in MT due to the fact that different
languages have different word order requirements. For
example, in Spanish and Arabic adjectives are mainly
noun post-modifiers, whereas in English adjectives are
noun pre-modifiers. Therefore, when translating be-
tween Spanish and English, words must usually be re-
ordered.

Existing statistical machine translation decoders
have mostly relied on language models to select the
proper word order among many possible choices when
translating between two languages. In this paper, we
argue that a language model is not sufficient to ade-
quately address this issue, especially when translating
between languages that have very different word orders
as suggested by our experimental results in Section 5.
We propose a new distortion model that can be used
as an additional component in SMT decoders. This
new model leads to significant improvements in MT
quality as measured by BLEU (Papineni et al., 2002).
The experimental results we report in this paper are for
Arabic-English machine translation of news stories.

We also present a novel method for measuring word
order similarity (or differences) between any given pair
of languages based on word alignments as described in
Section 3.

The rest of this paper is organized as follows. Sec-
tion 2 presents a review of related work. In Section 3
we propose a method for measuring the distortion be-
tween any given pair of languages. In Section 4, we
present our proposed distortion model. In Section 5,
we present some empirical results that show the utility
of our distortion model for statistical machine trans-
lation systems. Then, we conclude this paper with a
discussion in Section 6.

2 Related Work

Different languages have different word order require-
ments. SMT decoders attempt to generate translations
in the proper word order by attempting many possible
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word reorderings during the translation process. Trying
all possible word reordering is an NP-Complete prob-
lem as shown in (Knight, 1999), which makes search-
ing for the optimal solution among all possible permu-
tations computationally intractable. Therefore, SMT
decoders typically limit the number of permutations
considered for efficiency reasons by placing reorder-
ing restrictions. Reordering restrictions for word-based
SMT decoders were introduced by (Berger et al., 1996)
and (Wu, 1996). (Berger et al., 1996) allow only re-
ordering of at most n words at any given time. (Wu,
1996) propose using contiguity restrictions on the re-
ordering. For a comparison and a more detailed discus-
sion of the two approaches see (Zens and Ney, 2003).

A different approach to allow for a limited reorder-
ing is to reorder the input sentence such that the source
and the target sentences have similar word order and
then proceed to monotonically decode the reordered
source sentence.

Monotone decoding translates words in the same or-
der they appear in the source language. Hence, the
input and output sentences have the same word order.
Monotone decoding is very efficient since the optimal
decoding can be found in polynomial time. (Tillmann
et al., 1997) proposed a DP-based monotone search al-
gorithm for SMT. Their proposed solution to address
the necessary word reordering is to rewrite the input
sentence such that it has a similar word order to the de-
sired target sentence. The paper suggests that reorder-
ing the input reduces the translation error rate. How-
ever, it does not provide a methodology on how to per-
form this reordering.

(Xia and McCord, 2004) propose a method to auto-
matically acquire rewrite patterns that can be applied
to any given input sentence so that the rewritten source
and target sentences have similar word order. These
rewrite patterns are automatically extracted by pars-
ing the source and target sides of the training parallel
corpus. Their approach show a statistically-significant
improvement over a phrase-based monotone decoder.
Their experiments also suggest that allowing the de-
coder to consider some word order permutations in
addition to the rewrite patterns already applied to the
source sentence actually decreases the BLEU score.

Rewriting the input sentence whether using syntactic
rules or heuristics makes hard decisions that can not
be undone by the decoder. Hence, reordering is better
handled during the search algorithm and as part of the
optimization function.

Phrase-based monotone decoding does not directly
address word order issues. Indirectly, however, the
phrase dictionary1 in phrase-based decoders typically
captures local reorderings that were seen in the training
data. However, it fails to generalize to word reorder-
ings that were never seen in the training data. For ex-
ample, a phrase-based decoder might translate the Ara-

1Also referred to in the literature as the set of blocks or
clumps.

bic phrase AlwlAyAt AlmtHdp2 correctly into English
as the United States if it was seen in its training data,
was aligned correctly, and was added to the phrase dic-
tionary. However, if the phrase Almmlkp AlmtHdp is
not in the phrase dictionary, it will not be translated
correctly by a monotone phrase decoder even if the in-
dividual units of the phrase Almmlkp and AlmtHdp, and
their translations (Kingdom and United, respectively)
are in the phrase dictionary since that would require
swapping the order of the two words.

(Och et al., 1999; Tillmann and Ney, 2003) relax
the monotonicity restriction in their phrase-based de-
coder by allowing a restricted set of word reorderings.
For their translation task, word reordering is done only
for words belonging to the verb group. The context in
which they report their results is a Speech-to-Speech
translation from German to English.

(Yamada and Knight, 2002) propose a syntax-based
decoder that restrict word reordering based on reorder-
ing operations on syntactic parse-trees of the input
sentence. They reported results that are better than
word-based IBM4-like decoder. However, their de-
coder is outperformed by phrase-based decoders such
as (Koehn, 2004), (Och et al., 1999), and (Tillmann and
Ney, 2003) . Phrase-based SMT decoders mostly rely
on the language model to select among possible word
order choices. However, in our experiments we show
that the language model is not reliable enough to make
the choices that lead to a better MT quality. This obser-
vation is also reported by (Xia and McCord, 2004).We
argue that the distortion model we propose leads to a
better translation as measured by BLEU.

Distortion models were first proposed by (Brown et
al., 1993) in the so-called IBM Models. IBM Mod-
els 2 and 3 define the distortion parameters in terms of
the word positions in the sentence pair, not the actual
words at those positions. Distortion probability is also
conditioned on the source and target sentence lengths.
These models do not generalize well since their param-
eters are tied to absolute word position within sentences
which tend to be different for the same words across
sentences. IBM Models 4 and 5 alleviate this limita-
tion by replacing absolute word positions with relative
positions. The latter models define the distortion pa-
rameters for a cept (one or more words). This models
phrasal movement better since words tend to move in
blocks and not independently. The distortion is con-
ditioned on classes of the aligned source and target
words. The entire source and target vocabularies are
reduced to a small number of classes (e.g., 50) for the
purpose of estimating those parameters.

Similarly, (Koehn et al., 2003) propose a relative dis-
tortion model to be used with a phrase decoder. The
model is defined in terms of the difference between the
position of the current phrase and the position of the
previous phrase in the source sentence. It does not con-

2Arabic text appears throughout this paper in Tim Buck-
walter’s Romanization.
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Arabic Ezp1 AbrAhym2 ystqbl3 ms&wlA4 AqtSAdyA5 sEwdyA6 fy7 bgdAd8

English Izzet1 Ibrahim2 Meets3 Saudi4 Trade5 official6 in7 Baghdad8

Word Alignment (Ezp1,Izzet1) (AbrAhym2,Ibrahim2) (ystqbl3,Meets3) ( ms&wlA4,official6)
(AqtSAdyA5,Trade5) (sEwdyA6,Saudi4) (fy7,in7) (bgdAd8,Baghdad8)

Reordered English Izzet1 Ibrahim2 Meets3 official6 Trade5 Saudi4 in7 Baghdad8

Table 1: Alignment-based word reordering. The indices are not part of the sentence pair, they are only used to
illustrate word positions in the sentence. The indices in the reordered English denote word position in the original
English order.

sider the words in those positions.
The distortion model we propose assigns a proba-

bility distribution over possible relative jumps condi-
tioned on source words. Conditioning on the source
words allows for a much more fine-grained model. For
instance, words that tend to act as modifers (e.g., adjec-
tives) would have a different distribution than verbs or
nouns. Our model’s parameters are directly estimated
from word alignments as we will further explain in Sec-
tion 4. We will also show how to generalize this word
distortion model to a phrase-based model.

(Och et al., 2004; Tillman, 2004) propose
orientation-based distortion models lexicalized on the
phrase level. There are two important distinctions be-
tween their models and ours. First, they lexicalize their
model on the phrases, which have many more param-
eters and hence would require much more data to esti-
mate reliably. Second, their models consider only the
direction (i.e., orientation) and not the relative jump.

We are not aware of any work on measuring word
order differences between a given language pair in the
context of statistical machine translation.

3 Measuring Word Order Similarity
Between Two Language

In this section, we propose a simple, novel method for
measuring word order similarity (or differences) be-
tween any given language pair. This method is based
on word-alignments and the BLEU metric.

We assume that we have word-alignments for a set
of sentence pairs. We first reorder words in the target
sentence (e.g., English when translating from Arabic
to English) according to the order in which they are
aligned to the source words as shown in Table 1. If
a target word is not aligned, then, we assume that it
is aligned to the same source word that the preceding
aligned target word is aligned to.

Once the reordered target (here English) sentences
are generated, we measure the distortion between the
language pair by computing the BLEU3 score between
the original target and reordered target, treating the
original target as the reference.

Table 2 shows these scores for Arabic-English and

3the BLEU scores reported throughout this paper are for
case-sensitive BLEU. The number of references used is also
reported (e.g., BLEUr1n4c: r1 means 1 reference, n4 means
upto 4-gram are considred, c means case sensitive).

Chinese-English. The word alignments we use are both
annotated manually by human annotators. The Arabic-
English test set is the NIST MT Evaluation 2003 test
set. It contains 663 segments (i.e., sentences). The
Arabic side consists of 16,652 tokens and the English
consists of 19,908 tokens. The Chinese-English test set
contains 260 segments. The Chinese side is word seg-
mented and consists of 4,319 tokens and the English
consists of 5,525 tokens.

As suggested by the BLEU scores reported in Ta-
ble 2, Arabic-English has more word order differences
than Chinese-English. The difference in n-gPrec is big-
ger for smaller values of n, which suggests that Arabic-
English has more local word order differences than in
Chinese-English.

4 Proposed Distortion Model

The distortion model we are proposing consists of three
components: outbound, inbound, and pair distortion.
Intuitively our distortion models attempt to capture the
order in which source words need to be translated. For
instance, the outbound distortion component attempts
to capture what is typically translated immediately after
the word that has just been translated. Do we tend to
translate words that precede it or succeed it? Which
word position to translate next?

Our distortion parameters are directly estimated
from word alignments by simple counting over align-
ment links in the training data. Any aligner such as
(Al-Onaizan et al., 1999) or (Vogel et al., 1996) can
be used to obtain word alignments. For the results
reported in this paper word alignments were obtained
using a maximum-posterior word aligner4 described in
(Ge, 2004).

We will illustrate the components of our model with
a partial word alignment. Let us assume that our
source sentence5 is (f10, f250, f300)

6, and our target
sentence is (e410, e20), and their word alignment is
a = ((f10, e410), (f300, e20)). Word Alignment a can

4We also estimated distortion parameters using a Maxi-
mum Entropy aligner and the differences were negligible.

5In practice, we add special symbols at the start and end of
the source and target sentences, we also assume that the start
symbols in the source and target are aligned, and similarly
for the end symbols. Those special symbols are omitted in
our example for ease of presentation.

6The indices here represent source and target vocabulary
ids.
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N-gram Precision Arabic-English Chinese-English
1-gPrec 1 1
2-gPrec 0.6192 0.7378
3-gPrec 0.4547 0.5382
4-gPrec 0.3535 0.3990
5-gPrec 0.2878 0.3075
6-gPrec 0.2378 0.2406
7-gPrec 0.1977 0.1930
8-gPrec 0.1653 0.1614
9-gPrec 0.1380 0.1416
BLEUr1n4c 0.3152 0.3340
95% Confidence σ 0.0180 0.0370

Table 2: Word order similarity for two language pairs: Arabic-English and Chinese-English. n-gPrec is the n-gram
precision as defined in BLEU.

be rewritten as a1 = 1 and a2 = 3 (i.e., the second tar-
get word is aligned to the third source word). From this
partial alignment we increase the counts for the follow-
ing outbound, inbound, and pair distortions: Po(δ =
+2|f10), Pi(δ = +2|f300). and Pp(δ = +2|f10, f300).

Formally, our distortion model components are de-
fined as follows:

Outbound Distortion:

Po(δ|fi) =
C(δ|fi)∑

k

C(δk |fi)
(2)

where fi is a foreign word (i.e., Arabic in our case),
δ is the step size, and C(δ|fi) is the observed count of
this parameter over all word alignments in the training
data. The value for δ, in theory, ranges from −max to
+max (where max is the maximum source sentence
length observed), but in practice only a small number
of those step sizes are observed in the training data,
and hence, have non-zero value).

Inbound Distortion:

Pi(δ|fj) =
C(δ|fj)∑

k

C(δk|fj)
(3)

Pairwise Distortion:

Pp(δ|fi, fj) =
C(δ|fi, fj)∑

k

C(δk|fi, fj)
(4)

In order to use these probability distributions in our
decoder, they are then turned into costs. The outbound
distortion cost is defined as:

Co(δ|fi) = log {αPo(δ|fi) + (1 − α)Ps(δ)} (5)

where Ps(δ) is a smoothing distribution 7 and α is a
linear-mixture parameter 8.

7The smoothing we use is a geometrically decreasing dis-
tribution as the step size increases.

8For the experiments reported here we use α = 0.1,
which is set empirically.

The inbound and pair costs (Ci(δ|fi) and
Cp(δ|fi, fj)) can be defined in a similar fashion.

So far, our distortion cost is defined in terms of
words, not phrases. Therefore, we need to general-
ize the distortion cost in order to use it in a phrase-
based decoder. This generalization is defined in terms
of the internal word alignment within phrases (we used
the Viterbi word alignment). We illustrate this with
an example: Suppose the last position translated in the
source sentence so far is n and we are to cover a source
phrase p=wlAyp wA$nTn that begins at position m in
the source sentence. Also, suppose that our phrase dic-
tionary provided the translation Washington State, with
internal word alignment a = (a1 = 2, a2 = 1) (i.e.,
a=(<Washington,wA$nTn>,<State,wlAyp>), then the
outbound phrase cost is defined as:

Co(p, n, m, a) =Co(δ = (m − n)|fn)+

l−1∑

i=1

Co(δ = (ai+1 − ai) |fai
)

(6)

where l is the length of the target phrase, a is the
internal word alignment, fn is source word at position
n (in the sentence), and fai

is the source word that is
aligned to the i-th word in the target side of the phrase
(not the sentence).

The inbound and pair distortion costs (i..e,
Ci(p, n, m, a) and Cp(p, n, m, a)) can be defined
in a similar fashion.

The above distortion costs are used in conjunction
with other cost components used in our decoder. The
ultimate word order choice made is influenced by both
the language model cost as well as the distortion cost.

5 Experimental Results

The phrase-based decoder we use is inspired by the de-
coder described in (Tillmann and Ney, 2003) and sim-
ilar to that described in (Koehn, 2004). It is a multi-
stack, multi-beam search decoder with n stacks (where
n is the length of the source sentence being decoded)
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s 0 1 1 1 1 1 2 2 2 2
w 0 4 6 8 10 12 4 6 8 10
BLEUr1n4c 0.5617 0.6507 0.6443 0.6430 0.6461 0.6456 0.6831 0.6706 0.6609 0.6596

2 3 3 3 3 3 4 4 4 4 4
12 4 6 8 10 12 4 6 8 10 12

0.6626 0.6919 0.6751 0.6580 0.6505 0.6490 0.6851 0.6592 0.6317 0.6237 0.6081

Table 3: BLEU scores for the word order restoration task. The BLEU scores reported here are with 1 reference.
The input is the reordered English in the reference. The 95% Confidence σ ranges from 0.011 to 0.016

and a beam associated with each stack as described
in (Al-Onaizan, 2005). The search is done in n time
steps. In time step i, only hypotheses that cover ex-
actly i source words are extended. The beam search
algorithm attempts to find the translation (i.e., hypoth-
esis that covers all source words) with the minimum
cost as in (Tillmann and Ney, 2003) and (Koehn, 2004)
. The distortion cost is added to the log-linear mixture
of the hypothesis extension in a fashion similar to the
language model cost.

A hypothesis covers a subset of the source words.
The final translation is a hypothesis that covers all
source words and has the minimum cost among all pos-
sible 9 hypotheses that cover all source words. A hy-
pothesis h is extended by matching the phrase dictio-
nary against source word sequences in the input sen-
tence that are not covered in h. The cost of the new
hypothesis C(hnew) = C(h) + C(e), where C(e) is
the cost of this extension. The main components of
the cost of extension e can be defined by the following
equation:

C(e) = λ1CLM (e) + λ2CTM (e) + λ3CD(e)

where CLM (e) is the language model cost, CTM (e)
is the translation model cost, and CD(e) is the distor-
tion cost. The extension cost depends on the hypothesis
being extended, the phrase being used in the extension,
and the source word positions being covered.

The word reorderings that are explored by the search
algorithm are controlled by two parameters s and w as
described in (Tillmann and Ney, 2003). The first pa-
rameter s denotes the number of source words that are
temporarily skipped (i.e., temporarily left uncovered)
during the search to cover a source word to the right of
the skipped words. The second parameter is the win-
dow width w, which is defined as the distance (in num-
ber of source words) between the left-most uncovered
source word and the right-most covered source word.

To illustrate these restrictions, let us assume the
input sentence consists of the following sequence
(f1, f2, f3, f4). For s=1 and w=2, the permissi-
ble permutations are (f1, f2, f3, f4), (f2, f1, f3, f4),

9Exploring all possible hypothesis with all possible word
permutations is computationally intractable. Therefore, the
search algorithm gives an approximation to the optimal so-
lution. All possible hypotheses refers to all hypotheses that
were explored by the decoder.

(f2, f3, f1, f4), (f1, f3, f2, f4),(f1, f3, f4, f2), and
(f1, f2, f4, f3).

5.1 Experimental Setup

The experiments reported in this section are in the con-
text of SMT from Arabic into English. The training
data is a 500K sentence-pairs subsample of the 2005
Large Track Arabic-English Data for NIST MT Evalu-
ation.

The language model used is an interpolated trigram
model described in (Bahl et al., 1983). The language
model is trained on the LDC English GigaWord Cor-
pus.

The test set used in the experiments in this section
is the 2003 NIST MT Evaluation test set (which is not
part of the training data).

5.2 Reordering with Perfect Translations

In the experiments in this section, we show the util-
ity of a trigram language model in restoring the correct
word order for English. The task is a simplified transla-
tion task, where the input is reordered English (English
written in Arabic word order) and the output is English
in the correct order. The source sentence is a reordered
English sentence in the same manner we described in
Section 3. The objective of the decoder is to recover
the correct English order.

We use the same phrase-based decoder we use for
our SMT experiments, except that only the language
model cost is used here. Also, the phrase dictionary
used is a one-to-one function that maps every English
word in our vocabulary to itself. The language model
we use for the experiments reported here is the same
as the one used for other experiments reported in this
paper.

The results in Table 3 illustrate how the language
model performs reasonably well for local reorderings
(e.g., for s = 3 and w = 4), but its perfromance de-
teriorates as we relax the reordering restrictions by in-
creasing the reordering window size (w).

Table 4 shows some examples of original English,
English in Arabic order, and the decoder output for two
different sets of reordering parameters.

5.3 SMT Experiments

The phrases in the phrase dictionary we use in
the experiments reported here are a combination
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Eng Ar Opposition Iraqi Prepares for Meeting mid - January in Kurdistan
Orig. Eng. Iraqi Opposition Prepares for mid - January Meeting in Kurdistan
Output1 Iraqi Opposition Meeting Prepares for mid - January in Kurdistan
Output2 Opposition Meeting Prepares for Iraqi Kurdistan in mid - January

Eng Ar Head of Congress National Iraqi Visits Kurdistan Iraqi
Orig. Eng. Head of Iraqi National Congress Visits Iraqi Kurdistan
Output1 Head of Iraqi National Congress Visits Iraqi Kurdistan
Output2 Head Visits Iraqi National Congress of Iraqi Kurdistan

Eng Ar House White Confirms Presence of Tape New Bin Laden
Orig. Eng. White House Confirms Presence of New Bin Laden Tape
Output1 White House Confirms Presence of Bin Laden Tape New
Output2 White House of Bin Laden Tape Confirms Presence New

Table 4: Examples of reordering with perfect translations. The examples show English in Arabic order (Eng Ar.),
English in its original order (Orig. Eng.) and decoding with two different parameter settings. Output1 is decoding
with (s=3,w=4). Output2 is decoding with (s=4,w=12). The sentence lengths of the examples presented here are
much shorter than the average in our test set (∼ 28.5).

s w Distortion Used? BLEUr4n4c

0 0 NO 0.4468
1 8 NO 0.4346
1 8 YES 0.4715

2 8 NO 0.4309
2 8 YES 0.4775

3 8 NO 0.4283
3 8 YES 0.4792

4 8 NO 0.4104
4 8 YES 0.4782

Table 5: BLEU scores for the Arabic-English machine translation task. The 95% Confidence σ ranges from 0.0158
to 0.0176. s is the number of words temporarily skipped, and w is the word permutation window size.

of phrases automatically extracted from maximum-
posterior alignments and maximum entropy align-
ments. Only phrases that conform to the so-called con-
sistent alignment restrictions (Och et al., 1999) are ex-
tracted.

Table 5 shows BLEU scores for our SMT decoder
with different parameter settings for skip s, window
width w, with and without our distortion model. The
BLEU scores reported in this table are based on 4 refer-
ence translations. The language model, phrase dictio-
nary, and other decoder tuning parameters remain the
same in all experiments reported in this table.

Table 5 clearly shows that as we open the search and
consider wider range of word reorderings, the BLEU
score decreases in the absence of our distortion model
when we rely solely on the language model. Wrong
reorderings look attractive to the decoder via the lan-
guage model which suggests that we need a richer
model with more parameter. In the absence of richer
models such as the proposed distortion model, our re-
sults suggest that it is best to decode monotonically and
only allow local reorderings that are captured in our
phrase dictionary.

However, when the distortion model is used, we see
statistically significant increases in the BLEU score as
we consider more word reorderings. The best BLEU
score achieved when using the distortion model is
0.4792 , compared to a best BLEU score of 0.4468
when the distortion model is not used.

Our results on the 2004 and 2005 NIST MT Evalua-
tion test sets using the distortion model are 0.4497 and
0.464610, respectively.

Table 6 shows some Arabic-English translation ex-
amples using our decoder with and without the distor-
tion model.

6 Conclusion and Future Work

We presented a new distortion model that can be in-
tegrated with existing phrase-based SMT decoders.
The proposed model shows statistically significant im-
provement over a state-of-the-art phrase-based SMT
decoder. We also showed that n-gram language mod-

10The MT05 BLEU score is the from the official NIST
evaluation. The MT04 BLEU score is only our second run
on MT04.
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Input (Ar) kwryA Al$mAlyp mstEdp llsmAH lwA$nTn bAltHqq mn AnhA lA tSnE AslHp nwwyp
Ref. (En) North Korea Prepared to allow Washington to check it is not Manufacturing Nuclear

Weapons
Out1 North Korea to Verify Washington That It Was Not Prepared to Make Nuclear Weapons
Out2 North Korea Is Willing to Allow Washington to Verify It Does Not Make Nuclear Weapons

Input (Ar) wAkd AldblwmAsy An ”AnsHAb (kwryA Al$mAlyp mn AlmEAhdp) ybd> AEtbArA mn
Alywm”.

Ref. (En) The diplomat confirmed that ”North Korea’s withdrawal from the treaty starts as of today.”
Out1 The diplomat said that ” the withdrawal of the Treaty (start) North Korea as of today. ”
Out2 The diplomat said that the ” withdrawal of (North Korea of the treaty) will start as of

today ”.

Input (Ar) snrfE *lk AmAm Almjls Aldstwry”.
Ref. (En) We will bring this before the Constitutional Assembly.”
Out1 The Constitutional Council to lift it. ”
Out2 This lift before the Constitutional Council ”.

Input (Ar) wAkd AlbrAdEy An mjls AlAmn ”ytfhm” An 27 kAnwn AlvAny/ynAyr lys mhlp nhA}yp.
Ref. (En) Baradei stressed that the Security Council ”appreciates” that January 27 is not a final

ultimatum.
Out1 Elbaradei said that the Security Council ” understand ” that is not a final period January 27.
Out2 Elbaradei said that the Security Council ” understand ” that 27 January is not a final period.

Table 6: Selected examples of our Arabic-English SMT output. The English is one of the human reference trans-
lations. Output 1 is decoding without the distortion model and (s=4, w=8), which corresponds to 0.4104 BLEU
score. Output 2 is decoding with the distortion model and (s=3, w=8), which corresponds to 0.4792 BLEU score.
The sentences presented here are much shorter than the average in our test set. The average length of the arabic
sentence in the MT03 test set is ∼ 24.7.

els are not sufficient to model word movement in trans-
lation. Our proposed distortion model addresses this
weakness of the n-gram language model.

We also propose a novel metric to measure word or-
der similarity (or differences) between any pair of lan-
guages based on word alignments. Our metric shows
that Chinese-English have a closer word order than
Arabic-English.

Our proposed distortion model relies solely on word
alignments and is conditioned on the source words.
The majority of word movement in translation is
mainly due to syntactic differences between the source
and target language. For example, Arabic is verb-initial
for the most part. So, when translating into English,
one needs to move the verb after the subject, which is
often a long compounded phrase. Therefore, we would
like to incorporate syntactic or part-of-speech informa-
tion in our distortion model.
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Abstract

This paper presents a study on if and how
automatically extracted keywords can be
used to improve text categorization. In
summary we show that a higher perfor-
mance — as measured by micro-averaged
F-measure on a standard text categoriza-
tion collection — is achieved when the
full-text representation is combined with
the automatically extracted keywords. The
combination is obtained by giving higher
weights to words in the full-texts that
are also extracted as keywords. We also
present results for experiments in which
the keywords are the only input to the cat-
egorizer, either represented as unigrams
or intact. Of these two experiments, the
unigrams have the best performance, al-
though neither performs as well as head-
lines only.

1 Introduction

Automatic text categorization is the task of assign-
ing any of a set of predefined categories to a doc-
ument. The prevailing approach is that ofsuper-
vised machine learning, in which an algorithm is
trained on documents with known categories. Be-
fore any learning can take place, the documents
must be represented in a form that is understand-
able to the learning algorithm. A trainedpredic-
tion modelis subsequently applied to previously
unseen documents, to assign the categories. In
order to perform a text categorization task, there
are two major decisions to make: how to repre-
sent the text, and what learning algorithm to use
to create the prediction model. The decision about
the representation is in turn divided into two sub-

questions: what features to select as input and
which type of value to assign to these features.

In most studies, the best performing representa-
tion consists of the full length text, keeping the
tokens in the document separate, that is as uni-
grams. In recent years, however, a number of ex-
periments have been performed in which richer
representations have been evaluated. For exam-
ple, Caropreso et al. (2001) compare unigrams
and bigrams; Moschitti et al. (2004) add com-
plex nominals to their bag-of-words representa-
tion, while Kotcz et al. (2001), and Mihalcea and
Hassan (2005) present experiments where auto-
matically extracted sentences constitute the input
to the representation. Of these three examples,
only the sentence extraction seems to have had any
positive impact on the performance of the auto-
matic text categorization.

In this paper, we present experiments in which
keywords, that have been automatically extracted,
are used as input to the learning, both on their own
and in combination with a full-text representation.
That the keywords are extracted means that the se-
lected terms are present verbatim in the document.
A keyword may consist of one or several tokens.
In addition, a keyword may well be a whole ex-
pression or phrase, such assnakes and ladders.
The main goal of the study presented in this pa-
per is to investigate if automatically extracted key-
words can improve automatic text categorization.
We investigate what impact keywords have on the
task by predicting text categories on the basis of
keywords only, and by combining full-text repre-
sentations with automatically extracted keywords.
We also experiment with different ways of rep-
resenting keywords, either as unigrams or intact.
In addition, we investigate the effect of using the
headlines — represented as unigrams — as input,
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to compare their performance to that of the key-
words.

The outline of the paper is as follows: in Section
2, we present the algorithm used to automatically
extract the keywords. In Section 3, we present the
corpus, the learning algorithm, and the experimen-
tal setup for the performed text categorization ex-
periments. In Section 4, the results are described.
An overview of related studies is given in Section
5, and Section 6 concludes the paper.

2 Selecting the Keywords

This section describes the method that was used to
extract the keywords for the text categorization ex-
periments discussed in this paper. One reason why
this method, developed by Hulth (2003; 2004),
was chosen is because it is tuned for short texts
(more specifically for scientific journal abstracts).
It was thus suitable for the corpus used in the de-
scribed text categorization experiments.

The approach taken to the automatic keyword
extraction is that of supervised machine learning,
and the prediction models were trained on man-
ually annotated data. No new training was done
on the text categorization documents, but models
trained on other data were used. As a first step
to extract keywords from a document, candidate
terms are selected from the document in three dif-
ferent manners. One term selection approach is
statistically oriented. This approach extracts all
uni-, bi-, and trigrams from a document. The two
other approaches are of a more linguistic charac-
ter, utilizing the words’ parts-of-speech (PoS), that
is, the word class assigned to a word. One ap-
proach extracts all noun phrase (NP) chunks, and
the other all terms matching any of a set of empir-
ically defined PoS patterns (frequently occurring
patterns of manual keywords). All candidate terms
are stemmed.

Four features are calculated for each candi-
date term: term frequency; inverse document fre-
quency; relative position of the first occurrence;
and the PoS tag or tags assigned to the candidate
term. To make the final selection of keywords,
the three predictions models are combined. Terms
that are subsumed by another keyword selected
for the document are removed. For each selected
stem, the most frequently occurring unstemmed
form in the document is presented as a keyword.
Each document is assigned at the most twelve key-
words, provided that the added regression value

Assign. Corr.
mean mean P R F

8.6 3.6 41.5 46.9 44.0

Table 1: The number of assigned (Assign.) key-
words in mean per document; the number of cor-
rect (Corr.) keywords in mean per document; pre-
cision (P); recall (R); and F-measure (F), when 3–
12 keywords are extracted per document.

(given by the prediction models) is higher than an
empirically defined threshold value. To avoid that
a document gets no keywords, at least three key-
words are assigned although the added regression
value is below the threshold (provided that there
are at least three candidate terms).

In Hulth (2004) an evaluation on 500 abstracts
in English is presented. For the evaluation, key-
words assigned to the test documents by profes-
sional indexers are used as a gold standard, that
is, the manual keywords are treated as the one
and only truth. The evaluation measures arepreci-
sion(how many of the automatically assigned key-
words that are also manually assigned keywords)
and recall (how many of the manually assigned
keywords that are found by the automatic indexer).
The third measure used for the evaluations is the
F-measure(the harmonic mean of precision and
recall). Table 1 shows the result on that particu-
lar test set. This result may be considered to be
state-of-the-art.

3 Text Categorization Experiments

This section describes in detail the four experi-
mental settings for the text categorization exper-
iments.

3.1 Corpus

For the text categorization experiments we used
theReuters-21578 corpus, which contains 20 000
newswire articles in English with multiple cate-
gories (Lewis, 1997). More specifically, we used
theModAptesplit, containing 9 603 documents for
training and 3 299 documents in the fixed test set,
and the 90 categories that are present in both train-
ing and test sets.

As a first pre-processing step, we extracted the
texts contained in the TITLE and BODY tags. The
pre-processed documents were then given as in-
put to the keyword extraction algorithm. In Ta-
ble 2, the number of keywords assigned to the doc-
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uments in the training set and the test set are dis-
played. As can be seen in this table, three is the
number of keywords that is most often extracted.
In the training data set, 9 549 documents are as-
signed keywords, while 54 are empty, as they have
no text in the TITLE or BODY tags. Of the 3 299
documents in the test set, 3 285 are assigned key-
words, and the remaining fourteen are those that
are empty. The empty documents are included in
the result calculations for the fixed test set, in or-
der to enable comparisons with other experiments.
The mean number of keyword extracted per docu-
ment in the training set is 6.4 and in the test set 6.1
(not counting the empty documents).

Keywords Training docs Test docs
0 54 14
1 68 36
2 829 272
3 2 016 838
4 868 328
5 813 259
6 770 252
7 640 184
8 527 184
9 486 177
10 688 206
11 975 310
12 869 239

Table 2: Number of automatically extracted key-
words per document in training set and test set re-
spectively.

3.2 Learning Method

The focus of the experiments described in this pa-
per was the text representation. For this reason, we
used only one learning algorithm, namely an im-
plementation ofLinear Support Vector Machines
(Joachims, 1999). This is the learning method that
has obtained the best results in text categorization
experiments (Dumais et al., 1998; Yang and Liu,
1999).

3.3 Representations

This section describes in detail the input repre-
sentations that we experimented with. An impor-
tant step for the feature selection is the dimen-
sionality reduction, that is reducing the number
of features. This can be done by removing words
that are rare (that occur in too few documents or

have too low term frequency), or very common
(by applying a stop-word list). Also, terms may
be stemmed, meaning that they are merged into a
common form. In addition, any of a number of
feature selection metrics may be applied to further
reduce the space, for example chi-square, or infor-
mation gain (see for example Forman (2003) for a
survey).

Once that the features have been set, the final
decision to make is what feature value to assign.
There are to this end three common possibilities:
a boolean representation (that is, the term exists in
the document or not), term frequency, or tf*idf.

Two sets of experiments were run in which the
automatically extracted keywords were the only
input to the representation. In the first set, key-
words that contained several tokens were kept in-
tact. For example a keyword such asparadise fruit
was represented asparadise fruit and was
— from the point of view of the classifier — just as
distinct from the single tokenfruit as frommeat-
packers. No stemming was performed in this set
of experiments.

In the second set of keywords-only experiments,
the keywords were split up into unigrams, and also
stemmed. For this purpose, we used Porter’s stem-
mer (Porter, 1980). Thereafter the experiments
were performed identically for the two keyword
representations.

In a third set of experiments, we extracted only
the content in the TITLE tags, that is, the head-
lines. The tokens in the headlines were stemmed
and represented as unigrams. The main motiva-
tion for the title experiments was to compare their
performance to that of the keywords.

For all of these three feature inputs, we first
evaluated which one of the three possible feature
values to use (boolean, tf, or tf*idf). Thereafter,
we reduced the space by varying the minimum
number of occurrences in the training data, for a
feature to be kept.

The starting point for the fourth set of exper-
iments was a full-text representation, where all
stemmed unigrams occurring three or more times
in the training data were selected, with the feature
value tf*idf. Assuming that extracted keywords
convey information about a document’s gist, the
feature values in the full-text representation were
given higher weights if the feature was identical to
a keyword token. This was achieved by adding the
term frequency of a full-text unigram to the term
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frequency of an identical keyword unigram. Note
that this does not mean that the term frequency
value was necessarily doubled, as a keyword often
contains more than one token, and it was the term
frequency of the whole keyword that was added.

3.4 Training and Validation

This section describes the parameter tuning, for
which we used the training data set. This set
was divided into five equally sized folds, to de-
cide which setting of the following two parameters
that resulted in the best performing classifier: what
feature value to use, and the threshold for the min-
imum number of occurrence in the training data
(in this particular order).

To obtain a baseline, we made a full-text uni-
gram run with boolean as well as with tf*idf fea-
ture values, setting the occurrence threshold to
three.

As stated previously, in this study, we were
concerned only with the representation, and more
specifically with the feature input. As we did not
tune any other parameters than the two mentioned
above, the results can be expected to be lower than
the state-of-the art, even for the full-text run with
unigrams.

The number of input features for the full-text
unigram representation for the whole training set
was 10 676, after stemming and removing all to-
kens that contained only digits, as well as those
tokens that occurred less than three times. The
total number of keywords assigned to the 9 603
documents in the training data was 61 034. Of
these were 29 393 unique. When splitting up the
keywords into unigrams, the number of unique
stemmed tokens was 11 273.

3.5 Test

As a last step, we tested the best performing rep-
resentations in the four different experimental set-
tings on the independent test set.

The number of input features for the full-text
unigram representation was 10 676. The total
number of features for the intact keyword repre-
sentation was 4 450 with the occurrence thresh-
old set to three, while the number of stemmed
keyword unigrams was 6 478, with an occurrence
threshold of two. The total number of keywords
extracted from the 3 299 documents in the test set
was 19 904.

Next, we present the results for the validation
and test procedures.

4 Results

To evaluate the performance, we usedprecision,
recall, andmicro-averaged F-measure, and we let
the F-measure be decisive. The results for the 5-
fold cross validation runs are shown in Table 3,
where the values given are the average of the five
runs made for each experiment. As can be seen
in this table, the full-text run with a boolean fea-
ture value gave 92.3% precision, 69.4% recall, and
79.2% F-measure. The full-text run with tf*idf
gave a better result as it yielded 92.9% precision,
71.3% recall, and 80.7% F-measure. Therefore we
defined the latter as baseline.

In the first type of the experiment where each
keyword was treated as a feature independently
of the number of tokens contained, the recall
rates were considerably lower (between 32.0%
and 42.3%) and the precision rates were somewhat
lower (between 85.8% and 90.5%) compared to
the baseline. The best performance was obtained
when using a boolean feature value, and setting the
minimum number of occurrence in training data to
three (giving an F-measure of 56.9%).

In the second type of experiments, where
the keywords were split up into unigrams and
stemmed, recall was higher but still low (between
60.2% and 64.8%) and precision was somewhat
lower (88.9–90.2%) when compared to the base-
line. The best results were achieved with a boolean
representation (similar to the first experiment) and
the minimum number of occurrence in the training
data set to two (giving an F-measure of 75.0%)

In the third type of experiments, where only the
text in the TITLE tags was used and was repre-
sented as unigrams and stemmed, precision rates
increased above the baseline to 93.3–94.5%. Here,
the best representation was tf*idf with a token oc-
curring at least four times in the training data (with
an F-measure of 79.9%).

In the fourth and last set of experiments, we
gave higher weights to full-text tokens if the same
token was present in an automatically extracted
keyword. Here we obtained the best results. In
these experiments, the term frequency of a key-
word unigram was added to the term frequency
for the full-text features, whenever the stems were
identical. For this representation, we experi-
mented with setting the minimum number of oc-
currence in training data both before and after that
the term frequency for the keyword token was
added to the term frequency of the unigram. The
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Input feature Feature value Min. occurrence Precision Recall F-measure

full-text unigram bool 3 92.31 69.40 79.22
full-text unigram tf*idf 3 92.89 71.30 80.67

keywords-only intact bool 1 90.54 36.64 52.16
keywords-only intact tf 1 88.68 33.74 48.86
keywords-only intact tf*idf 1 89.41 32.05 47.18
keywords-only intact bool 2 89.27 40.43 55.64
keywords-only intact bool 3 87.11 42.28 56.90
keywords-only intact bool 4 85.81 41.97 56.35

keywords-only unigram bool 1 89.12 64.61 74.91
keywords-only unigram tf 1 89.89 60.23 72.13
keywords-only unigram tf*idf 1 90.17 60.36 72.31
keywords-only unigram bool 2 89.02 64.83 75.02
keywords-only unigram bool 3 88.90 64.82 74.97

title bool 1 94.17 68.17 79.08
title tf 1 94.37 67.89 78.96
title tf*idf 1 94.46 68.49 79.40
title tf*idf 2 93.92 69.19 79.67
title tf*idf 3 93.75 69.65 79.91
title tf*idf 4 93.60 69.74 79.92
title tf*idf 5 93.31 69.40 79.59

keywords+full tf*idf 3 (before adding) 92.73 72.02 81.07
keywords+full tf*idf 3 (after adding) 92.75 71.94 81.02

Table 3: The average results from 5-fold cross validations for the baseline candidates and the four types
of experiments, with various parameter settings.

highest recall (72.0%) and F-measure (81.1%) for
all validation runs were achieved when the occur-
rence threshold was set before the addition of the
keywords.

Next, the results on the fixed test data set for
the four experimental settings with the best per-
formance on the validation runs are presented.

Table 4 shows the results obtained on the fixed
test data set for the baseline and for those experi-
ments that obtained the highest F-measure for each
one of the four experiment types.

We can see that the baseline — where the full-
text is represented as unigrams with tf*idf as fea-
ture value — yields 93.0% precision, 71.7% re-
call, and 81.0% F-measure. When the intact key-
words are used as feature input with a boolean fea-
ture value and at least three occurrences in train-
ing data, the performance decreases greatly both
considering the correctness of predicted categories
and the number of categories that are found.

When the keywords are represented as uni-
grams, a better performance is achieved than when
they are kept intact. This is in line with the find-

ings onn-grams by Caropreso et al. (2001). How-
ever, the results are still not satisfactory since both
the precision and recall rates are lower than the
baseline.

Titles, on the other hand, represented as uni-
grams and stemmed, are shown to be a useful in-
formation source when it comes to correctly pre-
dicting the text categories. Here, we achieve the
highest precision rate of 94.2% although the recall
rate and the F-measure are lower than the baseline.

Full-texts combined with keywords result in the
highest recall value, 72.9%, as well as the highest
F-measure, 81.7%, both above the baseline.

Our results clearly show that automatically ex-
tracted keywords can be a valuable supplement to
full-text representations and that the combination
of them yields the best performance, measured as
both recall and micro-averaged F-measure. Our
experiments also show that it is possible to do a
satisfactory categorization having only keywords,
given that we treat them as unigrams. Lastly, for
higher precision in text classification, we can use
the stemmed tokens in the headlines as features
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Input feature Feature value Min. occurrence Precision Recall F-measure
full-text unigram tf*idf 3 93.03 71.69 80.98
keywords-only intact bool 3 89.56 41.48 56.70
keywords-only unigram bool 2 90.23 64.16 74.99
title tf*idf 4 94.23 68.43 79.28
keywords+full tf*idf 3 92.89 72.94 81.72

Table 4: Results on the fixed test set.

with tf*idf values.
As discussed in Section 2 and also presented in

Table 2, the number of keywords assigned per doc-
ument varies from zero to twelve. In Figure 1, we
have plotted how the precision, the recall, and the
F-measure for the test set vary with the number of
assigned keywords for the keywords-only unigram
representation.
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Figure 1: Precision, recall, and F-measure for
each number of assigned keywords. The values
in brackets denote the number of documents.

We can see that the F-measure and the recall reach
their highest points when three keywords are ex-
tracted. The highest precision (100%) is obtained
when the classification is performed on a single
extracted keyword, but then there are only 36 doc-
uments present in this group, and the recall is low.
Further experiments are needed in order to estab-
lish the optimal number of keywords to extract.

5 Related Work

For the work presented in this paper, there are two
aspects that are of interest in previous work. These
are in how the alternative input features (that is, al-
ternative from unigrams) are selected and in how
this alternative representation is used in combina-
tion with a bag-of-words representation (if it is).

An early work on linguistic phrases is done by
Fürnkranz et al. (1998), where all noun phrases
matching any of a number of syntactic heuristics
are used as features. This approach leads to a
higher precision at the low recall end, when eval-
uated on a corpus of Web pages. Aizawa (2001)
extracts PoS-tagged compounds, matching pre-
defined PoS patterns. The representation contains
both the compounds and their constituents, and
a small improvement is shown in the results on
Reuters-21578. Moschitti and Basili (2004) add
complex nominals as input features to their bag-
of-words representation. The phrases are extracted
by a system for terminology extraction1. The more
complex representation leads to a small decrease
on the Reuters corpus. In these studies, it is un-
clear how many phrases that are extracted and
added to the representations.

Li et al. (2003) map documents (e-mail mes-
sages) that are to be classified into a vector space
of keywords with associated probabilities. The
mapping is based on a training phase requiring
both texts and their corresponding summaries.

Another approach to combine different repre-
sentations is taken by Sahlgren and Cöster (2004),
where the full-text representation is combined
with a concept-based representation by selecting
one or the other for each category. They show
that concept-based representations can outperform
traditional word-based representations, and that a
combination of the two different types of represen-
tations improves the performance of the classifier
over all categories.

Keywords assigned to a particular text can be
seen as a dense summary of the same. Some
reports on how automatic summarization can be
used to improve text categorization exist. For ex-

1In terminology extraction all terms describing a domain
are to be extracted. The aim of automatic keyword indexing,
on the other hand, is to find a small set of terms that describes
a specific document, independently of the domain it belongs
to. Thus, the set of terms must be limited to contain only the
most salient ones.
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ample, Ko et al. (2004) use methods from text
summarization to find the sentences containing the
important words. The words in these sentences are
then given a higher weight in the feature vectors,
by modifying the term frequency value with the
sentence’s score. The F-measure increases from
85.8 to 86.3 on theNewsgroupsdata set using Sup-
port vector machines.

Mihalcea and Hassan (2004) use an unsuper-
vised method2 to extract summaries, which in turn
are used to categorize the documents. In their ex-
periments on a sub-set of Reuters-21578 (among
others), Mihalcea and Hassan show that the preci-
sion is increased when using the summaries rather
than the full length documents.Özgür et al. (2005)
have shown that limiting the representation to
2 000 features leads to a better performance, as
evaluated on Reuters-21578. There is thus evi-
dence that using only a sub-set of a document can
give a more accurate classification. The question,
though, is which sub-set to use.

In summary, the work presented in this paper
has the most resemblance with the work by Ko et
al. (2004), who also use a more dense version of
a document to alter the feature values of a bag-of-
words representation of a full-length document.

6 Concluding Remarks

In the experiments described in this paper, we
investigated if automatically extracted keywords
can improve automatic text categorization. More
specifically, we investigated what impact key-
words have on the task of text categorization by
making predictions on the basis of keywords only,
represented either as unigrams or intact, and by
combining the full-text representation with auto-
matically extracted keywords. The combination
was obtained by giving higher weights to words in
the full-texts that were also extracted as keywords.
Throughout the study, we were concerned with
the data representation and feature selection pro-
cedure. We investigated what feature value should
be used (boolean, tf, or tf*idf) and the minimum
number of occurrence of the tokens in the training
data.

We showed that keywords can improve the per-
formance of the text categorization. When key-
words were used as a complement to the full-text
representation an F-measure of 81.7% was ob-

2This method has also been used to extract keywords (Mi-
halcea and Tarau, 2004).

tained, higher than without the keywords (81.0%).
Our results also clearly indicate that keywords
alone can be used for the text categorization task
when treated as unigrams, obtaining an F-measure
of 75.0%. Lastly, for higher precision (94.2%) in
text classification, we can use the stemmed tokens
in the headlines.

The results presented in this study are lower
than the state-of-the-art, even for the full-text run
with unigrams, as we did not tune any other pa-
rameters than the feature values (boolean, term
frequency, or tf*idf) and the threshold for the min-
imum number of occurrence in the training data.

There are, of course, possibilities for further
improvements. One possibility could be to com-
bine the tokens in the headlines and keywords in
the same way as the full-text representation was
combined with the keywords. Another possible
improvement concerns the automatic keyword ex-
traction process. The keywords are presented in
order of their estimated “keywordness”, based on
the added regression value given by the three pre-
diction models. This means that one alternative
experiment would be to give different weights de-
pending on which rank the keyword has achieved
from the keyword extraction system. Another al-
ternative would be to use the actual regression
value.

We would like to emphasize that the automati-
cally extracted keywords used in our experiments
are not statistical phrases, such as bigrams or tri-
grams, but meaningful phrases selected by includ-
ing linguistic analysis in the extraction procedure.

One insight that we can get from these ex-
periments is that the automatically extracted key-
words, which themselves have an F-measure of
44.0, can yield an F-measure of 75.0 in the cat-
egorization task. One reason for this is that the
keywords have been evaluated using manually as-
signed keywords as the gold standard, meaning
that paraphrasing and synonyms are severely pun-
ished. Kotcz et al. (2001) propose to use text cate-
gorization as a way to more objectively judge au-
tomatic text summarization techniques, by com-
paring how well an automatic summary fares on
the task compared to other automatic summaries
(that is, as anextrinsic evaluation method). The
same would be valuable for automatic keyword in-
dexing. Also, such an approach would facilitate
comparisons between different systems, as com-
mon test-beds are lacking.
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In this study, we showed that automatic text
categorization can benefit from automatically ex-
tracted keywords, although the bag-of-words rep-
resentation is competitive with the best perfor-
mance. Automatic keyword extraction as well as
automatic text categorization are research areas
where further improvements are needed in order to
be useful for more efficient information retrieval.
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Abstract 

Words and character-bigrams are both 
used as features in Chinese text process-
ing tasks, but no systematic comparison 
or analysis of their values as features for 
Chinese text categorization has been re-
ported heretofore. We carry out here a 
full performance comparison between 
them by experiments on various docu-
ment collections (including a manually 
word-segmented corpus as a golden stan-
dard), and a semi-quantitative analysis to 
elucidate the characteristics of their be-
havior; and try to provide some prelimi-
nary clue for feature term choice (in most 
cases, character-bigrams are better than 
words) and dimensionality setting in text 
categorization systems. 

1 Introduction1 

Because of the popularity of the Vector Space 
Model (VSM) in text information processing, 
document indexing (term extraction) acts as a 
pre-requisite step in most text information proc-
essing tasks such as Information Retrieval 
(Baeza-Yates and Ribeiro-Neto, 1999) and Text 
Categorization (Sebastiani, 2002). It is empiri-
cally known that the indexing scheme is a non-
trivial complication to system performance, es-
pecially for some Asian languages in which there 
are no explicit word margins and even no natural 
semantic unit. Concretely, in Chinese Text Cate-
gorization tasks, the two most important index-

                                                 
1 This research is supported by the National Natural Science 
Foundation of China under grant number 60573187 and  
60321002, and the Tsinghua-ALVIS Project co-sponsored 
by the National Natural Science Foundation of China under 
grant number 60520130299 and EU FP6. 

ing units (feature terms) are word and character-
bigram, so the problem is: which kind of terms2 
should be chosen as the feature terms, words or 
character-bigrams? 

To obtain an all-sided idea about feature 
choice beforehand,  we review here the possible 
feature variants (or, options). First, at the word 
level, we can do stemming, do stop-word prun-
ing, include POS (Part of Speech) information, 
etc. Second, term combinations (such as “word-
bigram”, “word + word-bigram”, “character-
bigram + character-trigram”3, etc.) can also be 
used as features (Nie et al., 2000). But, for Chi-
nese Text Categorization, the “word or bigram” 
question is fundamental. They have quite differ-
ent characteristics (e.g. bigrams overlap each 
other in text, but words do not) and influence the 
classification performance in different ways. 

In Information Retrieval, it is reported that bi-
gram indexing schemes outperforms word 
schemes to some or little extent (Luk and Kwok, 
1997; Leong and Zhou 1998; Nie et al., 2000). 
Few similar comparative studies have been re-
ported for Text Categorization (Li et al., 2003) so 
far in literature. 

Text categorization and Information Retrieval 
are tasks that sometimes share identical aspects 
(Sebastiani, 2002) apart from term extraction 
(document indexing), such as tfidf term weight-
ing and performance evaluation. Nevertheless, 
they are different tasks. One of the generally ac-
cepted connections between Information Re-
trieval and Text Categorization is that an infor-
mation retrieval task could be partially taken as a 
binary classification problem with the query as 
the only positive training document. From this 
                                                 
2 The terminology “term” stands for both word and charac-
ter-bigram. Term or  combination of terms (in word-bigram 
or other forms) might be chosen as “feature”. 
3 The terminology “character” stands for Chinese character, 
and “bigram” stands for character-bigram in this paper. 
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viewpoint, an IR task and a general TC task have 
a large difference in granularity. To better illus-
trate this difference, an example is present here. 
The words “制片人(film producer)” and “译制

片(dubbed film)” should be taken as different 
terms in an IR task because a document with one 
would not necessarily be a good match for a 
query with the other, so the bigram “制片(film 
production)” is semantically not a shared part of 
these two words, i.e. not an appropriate feature 
term. But in a Text Categorization task, both 
words might have a similar meaning at the cate-
gory level (“film” category, generally), which 
enables us to regard the bigram “制片” as a se-
mantically acceptable representative word snip-
pet for them, or for the category. 

There are also differences in some other as-
pects of IR and TC. So it is significant to make a 
detailed comparison and analysis here on the 
relative value of words and bigrams as features 
in Text Categorization. The organization of this 
paper is as follows: Section 2 shows some ex-
periments on different document collections to 
observe the common trends in the performance 
curves of the word-scheme and bigram-scheme; 
Section 3 qualitatively analyses these trends; 
Section 4 makes some statistical analysis to cor-
roborate the issues addressed in Section 3; Sec-
tion 5 summarizes the results and concludes. 

2 Performance Comparison 

Three document collections in Chinese language 
are used in this study. 

The electronic version of Chinese Encyclo-
pedia (“CE”): It has 55 subject categories and 
71674 single-labeled documents (entries). It is 
randomly split by a proportion of 9:1 into a train-
ing set with 64533 documents and a test set with 
7141 documents. Every document has the full-
text. This data collection does not have much of 
a sparseness problem. 

The training data from a national Chinese 
text categorization evaluation4 (“CTC”): It has 
36 subject categories and 3600 single-labeled5 
documents. It is randomly split by a proportion 
of 4:1 into a training set with 2800 documents 
and a test set with 720 documents. Documents in 
this data collection are from various sources in-
cluding news websites, and some documents 
                                                 
4 The Annual Evaluation of  Chinese Text Categorization 
2004, by 863 National Natural Science Foundation. 
5 In the original document collection, a document might 
have a secondary category label. In this study, only the pri-
mary category label is reserved. 

may be very short. This data collection has a 
moderate sparseness problem. 

A manually word-segmented corpus from 
the State Language Affairs Commission 
(“LC”): It has more than 100 categories and 
more than 20000 single-labeled documents6. In 
this study, we choose a subset of 12 categories 
with the most documents (totally 2022 docu-
ments). It is randomly split by a proportion of 2:1 
into a training set and a test set. Every document 
has the full-text and has been entirely word-
segmented7 by hand (which could be regarded as 
a golden standard of segmentation). 

All experiments in this study are carried out at 
various feature space dimensionalities to show 
the scalability. Classifiers used in this study are 
Rocchio and SVM. All experiments here are 
multi-class tasks and each document is assigned 
a single category label. 

The outline of this section is as follows: Sub-
section 2.1 shows experiments based on the Roc-
chio classifier, feature selection schemes besides 
Chi and term weighting schemes besides tfidf to 
compare the automatic segmented word features 
with bigram features on CE and CTC, and both 
document collections lead to similar behaviors; 
Subsection 2.2 shows experiments on CE by a 
SVM classifier,  in which, unlike with the Roc-
chio method, Chi feature selection scheme and 
tfidf term weighting scheme outperform other 
schemes; Subsection 2.3 shows experiments by a 
SVM classifier with Chi feature selection and 
tfidf term weighting on LC (manual word seg-
mentation) to compare the best word features 
with bigram features. 

2.1 The Rocchio Method and Various Set-
tings 

The Rocchio method is rooted in the IR tradition, 
and is very different from machine learning ones 
(such as SVM) (Joachims, 1997; Sebastiani, 
2002). Therefore, we choose it here as one of the 
representative classifiers to be examined. In the 
experiment, the control parameter of negative 
examples is set to 0, so this Rocchio based classi-
fier is in fact a centroid-based classifier. 

Chimax is a state-of-the-art feature selection 
criterion for dimensionality reduction (Yang and 
Peterson, 1997; Rogati and Yang, 2002). Chi-
max*CIG (Xue and Sun, 2003a) is reported to be 
better in Chinese text categorization by a cen-

                                                 
6 Not completed. 
7 And POS (part-of-speech) tagged as well. But POS tags 
are not used in this study. 
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troid based classifier, so we choose it as another 
representative feature selection criterion besides 
Chimax. 

Likewise, as for term weighting schemes, in 
addition to tfidf, the state of the art (Baeza-Yates 
and Ribeiro-Neto, 1999), we also choose 
tfidf*CIG (Xue and Sun, 2003b). 

Two word segmentation schemes are used for 
the word-indexing of documents. One is the 
maximum match algorithm (“mmword” in the 
figures), which is a representative of simple and 
fast word segmentation algorithms.  The other is 
ICTCLAS8 (“lqword” in the figures). ICTCLAS 
is one of the best word segmentation systems 
(SIGHAN 2003) and reaches a segmentation 
precision of more than 97%, so we choose it as a 
representative of state-of-the-art schemes for 
automatic word-indexing of document). 

For evaluation of single-label classifications,  
F1-measure, precision, recall and accuracy 
(Baeza-Yates and Ribeiro-Neto, 1999; Sebastiani, 
2002) have the same value by microaveraging9, 
and are labeled with “performance” in the fol-
lowing figures. 
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Figure 1. chi-tfidf and chicig-tfidfcig on CE 

Figure 1 shows the performance-
dimensionality curves of the chi-tfidf approach 
and the approach with CIG, by mmword, lqword 
and bigram document indexing, on the CE 
document collection. We can see that the original 
chi-tfidf approach is better at low dimensional-
ities (less than 10000 dimensions), while the CIG 
version is better at high dimensionalities and 
reaches a higher limit.10 

                                                 
8 http://www.nlp.org.cn/project/project.php?proj_id=6 
9 Microaveraging is more prefered in most cases than 
macroaveraging (Sebastiani 2002). 
10 In all figures in this paper, curves might be truncated due 
to the large scale of dimensionality, especially the curves of 

1 2 3 4 5 6 7 8
x 104

0.5

0.6

0.7

0.8

pe
rfo

rm
an

ce

mmword

chi-tfidf      
chicig-tfidfcig

1 2 3 4 5 6 7 8
x 104

0.5

0.6

0.7

0.8

lqword

pe
rfo

rm
an

ce

chi-tfidf      
chicig-tfidfcig

1 2 3 4 5 6 7 8
x 104

0.5

0.6

0.7

0.8

bigram

pe
rfo

rm
an

ce

dimensionality

chi-tfidf      
chicig-tfidfcig

 
Figure 2. chi-tfidf and chicig-tfidfcig on CTC 

Figure 2 shows the same group of curves for 
the CTC document collection. The curves fluctu-
ate more than the curves for the CE collection 
because of sparseness; The CE collection is more 
sensitive to the additions of terms that come with 
the increase of dimensionality. The CE curves in 
the following figures show similar fluctuations 
for the same reason. 

For a parallel comparison among mmword, 
lqword and bigram schemes, the curves in  Fig-
ure 1 and Figure 2 are regrouped and shown in 
Figure 3 and Figure 4. 
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Figure 3. mmword, lqword and bigram on CE 
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Figure 4. mmword, lqword and bigram on CTC 

                                                                          
bigram scheme. For these kinds of figures, at least one of 
the following is satisfied: (a) every curve has shown its 
zenith; (b) only one curve is not complete and has shown a 
higher zenith than other curves; (c) a margin line is shown 
to indicate the limit of the incomplete curve. 
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We can see that the lqword scheme outper-
forms the mmword scheme at almost any dimen-
sionality, which means the more precise the word 
segmentation the better the classification per-
formance. At the same time, the bigram scheme 
outperforms both of the word schemes on a high 
dimensionality, wherea the word schemes might 
outperform the bigram scheme on a low dimen-
sionality. 

Till now, the experiments on CE and CTC 
show the same characteristics despite the per-
formance fluctuation on CTC caused by sparse-
ness. Hence in the next subsections CE is used 
instead of both of them because its curves are 
smoother. 

2.2 SVM on Words and Bigrams 

As stated in the previous subsection, the lqword 
scheme always outperforms the mmword scheme; 
we compare here only the lqword scheme with 
the bigram scheme.  

Support Vector Machine (SVM) is one of the 
best classifiers at present (Vapnik, 1995; 
Joachims, 1998), so we choose it as the main 
classifier in this study. The SVM implementation 
used here is LIBSVM (Chang, 2001); the type of 
SVM is set to “C-SVC” and the kernel type is set 
to linear, which means a one-with-one scheme is 
used in the multi-class classification. 

Because the CIG’s effectiveness on a SVM 
classifier is not examined in Xue and Sun (2003a, 
2003b)’s report, we make here the four combina-
tions of schemes with and without CIG in feature 
selection and term weighting. The experiment 
results are shown in Figure 5. The collection 
used is CE. 
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Figure 5. chi-tfidf and cig-involved approaches 

on lqword and bigram 

Here we find that the chi-tfidf combination 
outperforms any approach with CIG, which is the 
opposite of the results with the Rocchio method. 
And the results with SVM are all better than the 
results with the Rocchio method. So we find that 
the feature selection scheme and the term 

weighting scheme are related to the classifier, 
which is worth noting. In other words, no feature 
selection scheme or term weighting scheme is 
absolutely the best for all classifiers. Therefore, a 
reasonable choice is to select the best performing 
combination of feature selection scheme, term 
weighting scheme and classifier, i.e. chi-tfidf and 
SVM. The curves for the lqword scheme and the 
bigram scheme are redrawn in Figure 6 to make 
them clearer. 
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Figure 6. lqword and bigram on CE 

The curves shown in Figure 6 are similar to 
those in Figure 3. The differences are: (a) a lar-
ger dimensionality is needed for the bigram 
scheme to start outperforming the lqword scheme; 
(b) the two schemes have a smaller performance 
gap. 

The lqword scheme reaches its top perform-
ance at a dimensionality of around 40000, and 
the bigram scheme reaches its top performance 
at a dimensionality of around 60000 to 70000, 
after which both schemes’ performances slowly 
decrease. The reason is that the low ranked terms 
in feature selection are in fact noise and do not 
help to classification, which is why the feature 
selection phase is necessary. 

2.3 Comparing Manually Segmented 
Words and Bigrams 
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Figure 7. word and bigram on LC 
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Up to now, bigram features seem to be better 
than word ones for fairly large dimensionalities. 
But it appears that word segmentation precision 
impacts classification performance. So we 
choose here a fully manually segmented docu-
ment collection to detect the best performance a 
word scheme could  reach and compare it with 
the bigram scheme. 

Figure 7 shows such an experiment result on 
the LC document collection (the circles indicate 
the maximums and the dash-dot lines indicate the 
superior limit and the asymptotic interior limit of 
the bigram scheme). The word scheme reaches a 
top performance around the dimensionality of 
20000, which is a little higher than the bigram 
scheme’s zenith around 70000. 

Besides this experiment on 12 categories of 
the LC document collection, some experiments 
on fewer (2 to 6) categories of this subset were 
also done, and showed similar behaviors. The 
word scheme shows a better performance than 
the bigram scheme and needs a much lower di-
mensionality. The simpler the classification task 
is, the more distinct this behavior is. 

3 Qualitative Analysis 

To analyze the performance of words and bi-
grams as feature terms in Chinese text categori-
zation, we need to investigate two aspects as fol-
lows. 

3.1 An Individual Feature Perspective 

The word is a natural semantic unit in Chinese 
language and expresses a complete meaning in 
text. The bigram is not a natural semantic unit 
and might not express a complete meaning in 
text, but there are also reasons for the bigram to 
be a good feature term. 

First, two-character words and three-character 
words account for most of all multi-character 
Chinese words (Liu and Liang, 1986). A two-
character word can be substituted by the same 
bigram. At the granularity of most categorization 
tasks, a three-character words can often be sub-
stituted by one of its sub-bigrams (namely the 
“intraword bigram” in the next section)  without 
a change of meaning. For instance, “标赛” is a 
sub-bigram of the word “锦标赛(tournament)” 
and could represent it without ambiguity. 

Second, a bigram may overlap on two succes-
sive words (namely the “interword bigram” in 
the next section), and thus to some extent fills the 
role of a word-bigram. The word-bigram as a 
more definite (although more sparse) feature  

surely helps the classification. For instance, “气
预” is a bigram overlapping on the two succes-
sive words “ 天 气 (weather)” and “ 预 报
(forecast)”, and could almost replace the word-
bigram (also a phrase) “天气预报(weather fore-
cast)”, which is more likely to be a representative 
feature of the category “气象学(meteorology)” 
than either word. 

Third, due to the first issue, bigram features 
have some capability of identifying OOV (out-
of-vocabulary) words 11 , and help improve the 
recall of classification. 

The above issues state the advantages of bi-
grams compared with words. But in the first and 
second issue, the equivalence between bigram 
and word or word-bigram is not perfect. For in-
stance, the word “文学(literature)” is a also sub-
bigram of the word “天文学(astronomy)”, but 
their meanings are completely different. So the 
loss and distortion of semantic information is a 
disadvantage of bigram features over word fea-
tures.  

Furthermore, one-character words cover about 
7% of words and more than 30% of word occur-
rences in the Chinese language; they are effev-
tive in the word scheme and are not involved in 
the above issues. Note that the impact of effec-
tive one-character words on the classification is 
not as large as their total frequency, because the 
high frequency ones are often too common to 
have a good classification power, for instance, 
the word “的 (of, ‘s)”. 

3.2 A Mass Feature Perspective 

Features are not independently acting in text 
classification. They are assembled together to 
constitute a feature space. Except for a few mod-
els such as Latent Semantic Indexing (LSI) 
(Deerwester et al., 1990), most models assume 
the feature space to be orthogonal. This assump-
tion might not affect the effectiveness of the 
models, but the semantic redundancy and com-
plementation among the feature terms do impact 
on the classification efficiency at a given dimen-
sionality. 

According to the first issue addressed in the 
previous subsection, a bigram might cover for 
more than one word. For instance, the bigram 
“织物” is a sub-bigram of the words “织物

(fabric)”,“棉织物 (cotton fabric)”, “针织物
(knitted fabric)”, and also a good substitute of 
                                                 
11 The “OOV words” in this paper stand for the words that 
occur in the test documents but not in the training document. 

549



them. So, to a certain extent, word features are 
redundant with regard to the bigram features as-
sociated to them. Similarly, according to the sec-
ond issue addressed, a bigram might cover for 
more than one word-bigram. For instance, the 
bigram “篇小” is a sub-bigram of the word-
bigrams (phrases) “短篇小说(short story)”, “中
篇小说(novelette)”, “长篇小说(novel)” and also 
a good substitute for them. So, as an addition to 
the second issue stated in the previous subsection, 
a bigram feature might even cover for more than 
one word-bigram. 

On the other hand, bigrams features are also 
redundant with regard to word features associ-
ated with them. For instance, the “锦标” and “标
赛” are both sub-bigrams of the previously men-
tioned word “锦标赛”. In some cases, more than 
one sub-bigram can be a good representative of a 
word. 

We make a word list and a bigram list sorted 
by the feature selection criterion in a descending 
order. We now try to find how the relative re-
dundancy degrees of the word list and the bigram 
list vary with the dimensionality. Following is-
sues are elicited by an observation on the two 
lists (not shown here due to space limitations). 

The relative redundancy rate in the word list 
keeps even while the dimensionality varies to a 
certain extent, because words that share a com-
mon sub-bigram might not have similar statistics 
and thus be scattered in the word feature list. 
Note that these words are possibly ranked lower 
in the list than the sub-bigram because feature 
selection criteria (such as Chi) often prefer 
higher frequency terms to lower frequency ones, 
and every word containing the bigram certainly 
has a lower frequency than the bigram itself. 

The relative redundancy in the bigram list 
might be not as even as in the word list. Good 
(representative) sub-bigrams of a word are quite 
likely to be ranked close to the word itself. For 
instance, “作曲” and “曲家” are sub-bigrams of 
the word “作曲家(music composer)”, both the 
bigrams and the word are on the top of the lists. 
Theretofore, the bigram list has a relatively large 
redundancy rate at low dimensionalities. The 
redundancy rate should decrease along with the 
increas of dimensionality for: (a) the relative re-
dundancy in the word list counteracts the redun-
dancy in the bigram list, because the words that 
contain a same bigram are gradually included as 
the dimensionality increases; (b) the proportion 
of interword bigrams increases in the bigram list 

and there is generally no redundancy between 
interword bigrams and intraword bigrams. 

Last, there are more bigram features than word 
features because bigrams can overlap each other 
in the text but words can not. Thus the bigrams 
as a whole should theoretically contain more in-
formation than the words as a whole. 

From the above analysis and observations, bi-
gram features are expected to outperform word 
features at high dimensionalities. And word fea-
tures are expected to outperform bigram features 
at low dimensionalities.  

4 Semi-Quantitative Analysis 

In this section, a preliminary statistical analysis 
is presented to corroborate the statements in the 
above qualitative analysis and expected to be 
identical with the experiment results shown in 
Section 1. All statistics in this section are based 
on the CE document collection and the lqword 
segmentation scheme (because the CE document 
collection is large enough to provide good statis-
tical characteristics). 

4.1 Intraword Bigrams and Interword Bi-
grams 

In the previous section, only the intraword bi-
grams were discussed together with the words. 
But every bigram may have both intraword oc-
currences and interword occurrences. Therefore 
we need to distinguish these two kinds of bi-
grams at a statistical level. For every bigram, the 
number of intraword occurrences and the number 
of interword occurrences are counted and we can 
use 

 
1log
1

interword#
intraword#

+⎛ ⎞
⎜ ⎟+⎝ ⎠

 

as a metric to indicate its natual propensity to be 
a intraword bigram. The probability density of 
bigrams about on this metric is shown in Figure 
8. 
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Figure 8. Bigram Probability Density on 

log(intraword#/interword#) 
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The figure shows a mixture of two Gaussian 
distributions, the left one for “natural interword 
bigrams” and the right one for “natural intraword 
bigrams”. We can moderately distinguish these 
two kinds of bigrams by a division at -1.4. 

4.2 Overall Information Quantity of a Fea-
ture Space 

The performance limit of a classification is re-
lated to the quantity of information used. So a 
quantitative metric of the information a feature 
space can provide is need. Feature Quantity (Ai-
zawa, 2000) is suitable for this purpose because 
it comes from information theory and is additive; 
tfidf was also reported as an appropriate metric of 
feature quantity (defined as “probability ⋅ infor-
mation”). Because of the probability involved as 
a factor, the overall information provided by a 
feature space can be calculated on training data 
by summation. 

The redundancy and complementation men-
tioned in Subsection 3.2 must be taken into ac-
count in the calculation of overall information 
quantity. For bigrams, the redundancy with re-
gard to words associated with them between two 
intraword bigrams is given by 
 { }

1,2

1 2( ) min ( ), ( )
b w

tf w idf b idf b
⊂

⋅∑  

in which b1 and b2 stand for the two bigrams and 
w stands for any word containing both of them. 
The overall information quantity is obtained by 
subtracting the redundancy between each pair of 
bigrams from the sum of all features’ feature 
quantity (tfidf). Redundancy among more than 
two bigrams is ignored. For words, there is only 
complementation among words but not redun-
dancy, the complementation with regard to bi-
grams associated with them is given by 

 
{ } if  exists;

if  does not exists.

( ) min ( ) ,

( ) ( ),
b w

b

b

tf w idf b

tf w idf w
⊂

⋅⎧⎪
⎨

⋅⎪⎩
 

in which b is an intraword bigram contained by 
w. The overall information is calculated by 
summing the complementations of all words. 

4.3 Statistics and Discussion 

Figure 9 shows the variation of these overall in-
formation metrics on the CE document collection. 
It corroborates the characteristics analyzed in 
Section 3 and corresponds with the performance 
curves in Section 2.  

Figure 10 shows the proportion of interword 
bigrams at different dimensionalities, which also 
corresponds with the analysis in Section 3. 
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Figure 9. Overall Information Quantity on CE 

The curves do not cross at exactly the same 
dimensionality as in the figures in Section 1, be-
cause other complications impact on the classifi-
cation performance: (a) OOV word identifying 
capability, as stated in Subsection 3.1; (b) word 
segmentation precision; (c) granularity of the 
categories (words have more definite semantic 
meaning than bigrams and lead to a better per-
formance for small category granularities); (d) 
noise terms, introduced in the feature space dur-
ing the increase of dimensionality. With these 
factors, the actual curves would not keep increas-
ing as they do in Figure 9. 

0 2 4 6 8 10 12 14 16

x 104

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

dimensionality

in
te

rw
or

d 
bi

gr
am

 p
ro

po
rti

on

 
Figure 10. Interword Bigram Proportion on CE 

5 Conclusion 

In this paper, we aimed to thoroughly compare 
the value of words and bigrams as feature terms 
in text categorization, and make the implicit 
mechanism explicit. 

Experimental comparison showed that the Chi 
feature selection scheme and the tfidf term 
weighting scheme are still the best choices for 
(Chinese) text categorization on a SVM classifier. 
In most cases, the bigram scheme outperforms 
the word scheme at high dimensionalities and 
usually reaches its top performance at a dimen-
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sionality of around 70000. The word scheme of-
ten outperforms the bigram scheme at low di-
mensionalities and reaches its top performance at 
a dimensionality of less than 40000. 

Whether the best performance of the word 
scheme is higher than the best performance 
scheme depends considerably on the word seg-
mentation precision and the number of categories. 
The word scheme performs better with a higher 
word segmentation precision and fewer (<10) 
categories. 

A word scheme costs more document indexing 
time than a bigram scheme does; however a bi-
gram scheme costs more training time and classi-
fication time than a word scheme does at the 
same performance level due to its higher dimen-
sionality. Considering that the document index-
ing is needed in both the training phase and the 
classification phase, a high precision word 
scheme is more time consuming as a whole than 
a bigram scheme. 

As a concluding suggestion: a word scheme is 
more fit for small-scale tasks (with no more than 
10 categories and no strict classification speed 
requirements) and needs a high precision word 
segmentation system; a bigram scheme is more 
fit for large-scale tasks (with dozens of catego-
ries or even more) without too strict training 
speed requirements (because a high dimensional-
ity and a large number of categories lead to a 
long training time). 
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Abstract

Cross-language Text Categorization is the
task of assigning semantic classes to docu-
ments written in a target language (e.g. En-
glish) while the system is trained using la-
beled documents in a source language (e.g.
Italian).

In this work we present many solutions ac-
cording to the availability of bilingual re-
sources, and we show that it is possible
to deal with the problem even when no
such resources are accessible. The core
technique relies on the automatic acquisi-
tion of Multilingual Domain Models from
comparable corpora.

Experiments show the effectiveness of our
approach, providing a low cost solution for
the Cross Language Text Categorization
task. In particular, when bilingual dictio-
naries are available the performance of the
categorization gets close to that of mono-
lingual text categorization.

1 Introduction

In the worldwide scenario of the Web age, mul-
tilinguality is a crucial issue to deal with and
to investigate, leading us to reformulate most of
the classical Natural Language Processing (NLP)
problems into a multilingual setting. For in-
stance the classical monolingual Text Categoriza-
tion (TC) problem can be reformulated as a Cross
Language Text Categorization (CLTC) task, in
which the system is trained using labeled exam-
ples in a source language (e.g. English), and it
classifies documents in a different target language
(e.g. Italian).

The applicative interest for the CLTC is im-
mediately clear in the globalized Web scenario.
For example, in the community based trade (e.g.
eBay) it is often necessary to archive texts in dif-
ferent languages by adopting common merceolog-
ical categories, very often defined by collections
of documents in a source language (e.g. English).
Another application along this direction is Cross
Lingual Question Answering, in which it would
be very useful to filter out the candidate answers
according to their topics.

In the literature, this task has been proposed
quite recently (Bel et al., 2003; Gliozzo and Strap-
parava, 2005). In those works, authors exploited
comparable corpora showing promising results. A
more recent work (Rigutini et al., 2005) proposed
the use of Machine Translation techniques to ap-
proach the same task.

Classical approaches for multilingual problems
have been conceived by following two main direc-
tions: (i) knowledge based approaches, mostly im-
plemented by rule based systems and (ii) empirical
approaches, in general relying on statistical learn-
ing from parallel corpora. Knowledge based ap-
proaches are often affected by low accuracy. Such
limitation is mainly due to the problem of tun-
ing large scale multilingual lexical resources (e.g.
MultiWordNet, EuroWordNet) for the specific ap-
plication task (e.g. discarding irrelevant senses,
extending the lexicon with domain specific terms
and their translations). On the other hand, em-
pirical approaches are in general more accurate,
because they can be trained from domain specific
collections of parallel text to represent the appli-
cation needs. There exist many interesting works
about using parallel corpora for multilingual appli-
cations (Melamed, 2001), such as Machine Trans-
lation (Callison-Burch et al., 2004), Cross Lingual
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Information Retrieval (Littman et al., 1998), and
so on.

However it is not always easy to find or build
parallel corpora. This is the main reason why
the “weaker” notion of comparable corpora is a
matter of recent interest in the field of Computa-
tional Linguistics (Gaussier et al., 2004). In fact,
comparable corpora are easier to collect for most
languages (e.g. collections of international news
agencies), providing a low cost knowledge source
for multilingual applications.

The main problem of adopting comparable cor-
pora for multilingual knowledge acquisition is that
only weaker statistical evidence can be captured.
In fact, while parallel corpora provide stronger
(text-based) statistical evidence to detect transla-
tion pairs by analyzing term co-occurrences in
translated documents, comparable corpora pro-
vides weaker (term-based) evidence, because text
alignments are not available.

In this paper we present some solutions to deal
with CLTC according to the availability of bilin-
gual resources, and we show that it is possible
to deal with the problem even when no such re-
sources are accessible. The core technique relies
on the automatic acquisition of Multilingual Do-
main Models (MDMs) from comparable corpora.
This allows us to define a kernel function (i.e. a
similarity function among documents in different
languages) that is then exploited inside a Support
Vector Machines classification framework. We
also investigate this problem exploiting synset-
aligned multilingual WordNets and standard bilin-
gual dictionaries (e.g. Collins).

Experiments show the effectiveness of our ap-
proach, providing a simple and low cost solu-
tion for the Cross-Language Text Categorization
task. In particular, when bilingual dictionar-
ies/repositories are available, the performance of
the categorization gets close to that of monolin-
gual TC.

The paper is structured as follows. Section 2
briefly discusses the notion of comparable cor-
pora. Section 3 shows how to perform cross-
lingual TC when no bilingual dictionaries are
available and it is possible to rely on a compa-
rability assumption. Section 4 present a more
elaborated technique to acquire MDMs exploiting
bilingual resources, such as MultiWordNet (i.e.
a synset-aligned WordNet) and Collins bilingual
dictionary. Section 5 evaluates our methodolo-

gies and Section 6 concludes the paper suggesting
some future developments.

2 Comparable Corpora

Comparable corpora are collections of texts in dif-
ferent languages regarding similar topics (e.g. a
collection of news published by agencies in the
same period). More restrictive requirements are
expected for parallel corpora (i.e. corpora com-
posed of texts which are mutual translations),
while the class of the multilingual corpora (i.e.
collection of texts expressed in different languages
without any additional requirement) is the more
general. Obviously parallel corpora are also com-
parable, while comparable corpora are also multi-
lingual.

In a more precise way, let L =
{L1, L2, . . . , Ll} be a set of languages, let
T i = {ti

1
, ti

2
, . . . , tin} be a collection of texts ex-

pressed in the language Li ∈ L, and let ψ(tjh, t
i
z)

be a function that returns 1 if tiz is the translation
of tjh and 0 otherwise. A multilingual corpus is
the collection of texts defined by T ∗ =

⋃

i T
i. If

the function ψ exists for every text tiz ∈ T ∗ and
for every language Lj , and is known, then the
corpus is parallel and aligned at document level.

For the purpose of this paper it is enough to as-
sume that two corpora are comparable, i.e. they
are composed of documents about the same top-
ics and produced in the same period (e.g. possibly
from different news agencies), and it is not known
if a function ψ exists, even if in principle it could
exist and return 1 for a strict subset of document
pairs.

The texts inside comparable corpora, being
about the same topics, should refer to the same
concepts by using various expressions in different
languages. On the other hand, most of the proper
nouns, relevant entities and words that are not yet
lexicalized in the language, are expressed by using
their original terms. As a consequence the same
entities will be denoted with the same words in
different languages, allowing us to automatically
detect couples of translation pairs just by look-
ing at the word shape (Koehn and Knight, 2002).
Our hypothesis is that comparable corpora contain
a large amount of such words, just because texts,
referring to the same topics in different languages,
will often adopt the same terms to denote the same
entities1 .

1According to our assumption, a possible additional cri-
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However, the simple presence of these shared
words is not enough to get significant results in
CLTC tasks. As we will see, we need to exploit
these common words to induce a second-order
similarity for the other words in the lexicons.

2.1 The Multilingual Vector Space Model

Let T = {t1, t2, . . . , tn} be a corpus, and V =
{w1, w2, . . . , wk} be its vocabulary. In the mono-
lingual settings, the Vector Space Model (VSM)
is a k-dimensional space R

k, in which the text
tj ∈ T is represented by means of the vector ~tj
such that the zth component of ~tj is the frequency
of wz in tj . The similarity among two texts in the
VSM is then estimated by computing the cosine of
their vectors in the VSM.

Unfortunately, such a model cannot be adopted
in the multilingual settings, because the VSMs of
different languages are mainly disjoint, and the
similarity between two texts in different languages
would always turn out to be zero. This situation
is represented in Figure 1, in which both the left-
bottom and the rigth-upper regions of the matrix
are totally filled by zeros.

On the other hand, the assumption of corpora
comparability seen in Section 2, implies the pres-
ence of a number of common words, represented
by the central rows of the matrix in Figure 1.

As we will show in Section 5, this model is
rather poor because of its sparseness. In the next
section, we will show how to use such words as
seeds to induce a Multilingual Domain VSM, in
which second order relations among terms and
documents in different languages are considered
to improve the similarity estimation.

3 Exploiting Comparable Corpora

Looking at the multilingual term-by-document
matrix in Figure 1, a first attempt to merge the
subspaces associated to each language is to exploit
the information provided by external knowledge
sources, such as bilingual dictionaries, e.g. col-
lapsing all the rows representing translation pairs.
In this setting, the similarity among texts in dif-
ferent languages could be estimated by exploit-
ing the classical VSM just described. However,
the main disadvantage of this approach to esti-
mate inter-lingual text similarity is that it strongly

terion to decide whether two corpora are comparable is to
estimate the percentage of terms in the intersection of their
vocabularies.

relies on the availability of a multilingual lexical
resource. For languages with scarce resources a
bilingual dictionary could be not easily available.
Secondly, an important requirement of such a re-
source is its coverage (i.e. the amount of possible
translation pairs that are actually contained in it).
Finally, another problem is that ambiguous terms
could be translated in different ways, leading us to
collapse together rows describing terms with very
different meanings. In Section 4 we will see how
the availability of bilingual dictionaries influences
the techniques and the performance. In the present
Section we want to explore the case in which such
resources are supposed not available.

3.1 Multilingual Domain Model

A MDM is a multilingual extension of the concept
of Domain Model. In the literature, Domain Mod-
els have been introduced to represent ambiguity
and variability (Gliozzo et al., 2004) and success-
fully exploited in many NLP applications, such as
Word Sense Disambiguation (Strapparava et al.,
2004), Text Categorization and Term Categoriza-
tion.

A Domain Model is composed of soft clusters
of terms. Each cluster represents a semantic do-
main, i.e. a set of terms that often co-occur in
texts having similar topics. Such clusters iden-
tify groups of words belonging to the same seman-
tic field, and thus highly paradigmatically related.
MDMs are Domain Models containing terms in
more than one language.

A MDM is represented by a matrix D, contain-
ing the degree of association among terms in all
the languages and domains, as illustrated in Table
1. For example the term virus is associated to both

MEDICINE COMPUTER SCIENCE

HIV e/i 1 0
AIDSe/i 1 0
viruse/i 0.5 0.5
hospitale 1 0
laptope 0 1
Microsofte/i 0 1
clinicai 1 0

Table 1: Example of Domain Matrix. we denotes
English terms, wi Italian terms and we/i the com-
mon terms to both languages.

the domain COMPUTER SCIENCE and the domain
MEDICINE while the domain MEDICINE is associ-
ated to both the terms AIDS and HIV. Inter-lingual
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Figure 1: Multilingual term-by-document matrix

domain relations are captured by placing differ-
ent terms of different languages in the same se-
mantic field (as for example HIV e/i, AIDSe/i,
hospitale, and clinicai). Most of the named enti-
ties, such as Microsoft and HIV are expressed us-
ing the same string in both languages.

Formally, let V i = {wi
1
, wi

2
, . . . , wi

ki
} be the

vocabulary of the corpus T i composed of doc-
ument expressed in the language Li, let V ∗ =
⋃

i V
i be the set of all the terms in all the lan-

guages, and let k∗ = |V ∗| be the cardinality of
this set. Let D = {D1, D2, ..., Dd} be a set of do-
mains. A DM is fully defined by a k∗ × d domain
matrix D representing in each cell di,z the domain
relevance of the ith term of V ∗ with respect to the
domain Dz . The domain matrix D is used to de-
fine a function D : Rk∗ → R

d, that maps the doc-
ument vectors ~tj expressed into the multilingual
classical VSM (see Section 2.1), into the vectors
~t′j in the multilingual domain VSM. The function
D is defined by2

D(~tj) = ~tj(I
IDF

D) = ~t′j (1)

where I
IDF is a diagonal matrix such that iIDF

i,l =

IDF (wl
i), ~tj is represented as a row vector, and

IDF (wl
i) is the Inverse Document Frequency of

2In (Wong et al., 1985) the formula 1 is used to define a
Generalized Vector Space Model, of which the Domain VSM
is a particular instance.

wl
i evaluated in the corpus T l.

In this work we exploit Latent Semantic Anal-
ysis (LSA) (Deerwester et al., 1990) to automat-
ically acquire a MDM from comparable corpora.
LSA is an unsupervised technique for estimating
the similarity among texts and terms in a large
corpus. In the monolingual settings LSA is per-
formed by means of a Singular Value Decom-
position (SVD) of the term-by-document matrix
T describing the corpus. SVD decomposes the
term-by-document matrix T into three matrixes
T ' VΣk′U

T where Σk′ is the diagonal k × k

matrix containing the highest k′ � k eigenval-
ues of T, and all the remaining elements are set
to 0. The parameter k′ is the dimensionality of
the Domain VSM and can be fixed in advance (i.e.
k′ = d).

In the literature (Littman et al., 1998) LSA
has been used in multilingual settings to define
a multilingual space in which texts in different
languages can be represented and compared. In
that work LSA strongly relied on the availability
of aligned parallel corpora: documents in all the
languages are represented in a term-by-document
matrix (see Figure 1) and then the columns corre-
sponding to sets of translated documents are col-
lapsed (i.e. they are substituted by their sum) be-
fore starting the LSA process. The effect of this
step is to merge the subspaces (i.e. the right and
the left sectors of the matrix in Figure 1) in which

556



the documents have been originally represented.
In this paper we propose a variation of this strat-

egy, performing a multilingual LSA in the case in
which an aligned parallel corpus is not available.
It exploits the presence of common words among
different languages in the term-by-document ma-
trix. The SVD process has the effect of creating a
LSA space in which documents in both languages
are represented. Of course, the higher the number
of common words, the more information will be
provided to the SVD algorithm to find common
LSA dimension for the two languages. The re-
sulting LSA dimensions can be perceived as mul-
tilingual clusters of terms and document. LSA can
then be used to define a Multilingual Domain Ma-
trix DLSA. For further details see (Gliozzo and
Strapparava, 2005).

As Kernel Methods are the state-of-the-art su-
pervised framework for learning and they have
been successfully adopted to approach the TC task
(Joachims, 2002), we chose this framework to per-
form all our experiments, in particular Support
Vector Machines3 . Taking into account the exter-
nal knowledge provided by a MDM it is possible
estimate the topic similarity among two texts ex-
pressed in different languages, with the following
kernel:

KD(ti, tj) =
〈D(ti),D(tj)〉

√

〈D(tj),D(tj)〉〈D(ti),D(ti)〉

(2)
where D is defined as in equation 1.

Note that when we want to estimate the similar-
ity in the standard Multilingual VSM, as described
in Section 2.1, we can use a simple bag of words
kernel. The BoW kernel is a particular case of the
Domain Kernel, in which D = I, and I is the iden-
tity matrix. In the evaluation typically we consider
the BoW Kernel as a baseline.

4 Exploiting Bilingual Dictionaries

When bilingual resources are available it is possi-
ble to augment the the “common” portion of the
matrix in Figure 1. In our experiments we ex-
ploit two alternative multilingual resources: Mul-
tiWordNet and the Collins English-Italian bilin-
gual dictionary.

3We adopted the efficient implementation freely available
at http://svmlight.joachims.org/.

MultiWordNet4. It is a multilingual computa-
tional lexicon, conceived to be strictly aligned
with the Princeton WordNet. The available lan-
guages are Italian, Spanish, Hebrew and Roma-
nian. In our experiment we used the English and
the Italian components. The last version of the
Italian WordNet contains around 58,000 Italian
word senses and 41,500 lemmas organized into
32,700 synsets aligned whenever possible with
WordNet English synsets. The Italian synsets
are created in correspondence with the Princeton
WordNet synsets, whenever possible, and seman-
tic relations are imported from the corresponding
English synsets. This implies that the synset index
structure is the same for the two languages.

Thus for the all the monosemic words, we aug-
ment each text in the dataset with the correspond-
ing synset-id, which act as an expansion of the
“common” terms of the matrix in Figure 1. Adopt-
ing the methodology described in Section 3.1, we
exploit these common sense-indexing to induce
a second-order similarity for the other terms in
the lexicons. We evaluate the performance of the
cross-lingual text categorization, using both the
BoW Kernel and the Multilingual Domain Kernel,
observing that also in this case the leverage of the
external knowledge brought by the MDM is effec-
tive.

It is also possible to augment each text with all
the synset-ids of all the words (i.e. monosemic and
polysemic) present in the dataset, hoping that the
SVM machine learning device cut off the noise
due to the inevitable spurious senses introduced in
the training examples. Obviously in this case, dif-
ferently from the “monosemic” enrichment seen
above, it does not make sense to apply any dimen-
sionality reduction supplied by the Multilingual
Domain Model (i.e. the resulting second-order re-
lations among terms and documents produced on
a such “extended” corpus should not be meaning-
ful)5.

Collins. The Collins machine-readable bilingual
dictionary is a medium size dictionary includ-
ing 37,727 headwords in the English Section and
32,602 headwords in the Italian Section.

This is a traditional dictionary, without sense in-
dexing like the WordNet repository. In this case

4Available at http://multiwordnet.itc.it.
5The use of a WSD system would help in this issue. How-

ever the rationale of this paper is to see how far it is possible
to go with very few resources. And we suppose that a multi-
lingual all-words WSD system is not easily available.
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English Italian
Categories Training Test Total Training Test Total
Quality of Life 5759 1989 7748 5781 1901 7682
Made in Italy 5711 1864 7575 6111 2068 8179
Tourism 5731 1857 7588 6090 2015 8105
Culture and School 3665 1245 4910 6284 2104 8388
Total 20866 6955 27821 24266 8088 32354

Table 2: Number of documents in the data set partitions

we follow the way, for each text of one language,
to augment all the present words with the transla-
tion words found in the dictionary. For the same
reason, we chose not to exploit the MDM, while
experimenting along this way.

5 Evaluation

The CLTC task has been rarely attempted in the
literature, and standard evaluation benchmark are
not available. For this reason, we developed
an evaluation task by adopting a news corpus
kindly put at our disposal by AdnKronos, an im-
portant Italian news provider. The corpus con-
sists of 32,354 Italian and 27,821 English news
partitioned by AdnKronos into four fixed cat-
egories: QUALITY OF LIFE, MADE IN ITALY,
TOURISM, CULTURE AND SCHOOL. The En-
glish and the Italian corpora are comparable, in
the sense stated in Section 2, i.e. they cover the
same topics and the same period of time. Some
news stories are translated in the other language
(but no alignment indication is given), some oth-
ers are present only in the English set, and some
others only in the Italian. The average length of
the news stories is about 300 words. We randomly
split both the English and Italian part into 75%
training and 25% test (see Table 2). We processed
the corpus with PoS taggers, keeping only nouns,
verbs, adjectives and adverbs.

Table 3 reports the vocabulary dimensions of
the English and Italian training partitions, the vo-
cabulary of the merged training, and how many
common lemmata are present (about 14% of the
total). Among the common lemmata, 97% are
nouns and most of them are proper nouns. Thus
the initial term-by-document matrix is a 43,384 ×
45,132 matrix, while the DLSA was acquired us-
ing 400 dimensions.

As far as the CLTC task is concerned, we tried
the many possible options. In all the cases we
trained on the English part and we classified the
Italian part, and we trained on the Italian and clas-

# lemmata
English training 22,704
Italian training 26,404
English + Italian 43,384
common lemmata 5,724

Table 3: Number of lemmata in the training parts
of the corpus

sified on the English part. When used, the MDM
was acquired running the SVD only on the joint
(English and Italian) training parts.

Using only comparable corpora. Figure 2 re-
ports the performance without any use of bilingual
dictionaries. Each graph show the learning curves
respectively using a BoW kernel (that is consid-
ered here as a baseline) and the multilingual do-
main kernel. We can observe that the latter largely
outperform a standard BoW approach. Analyzing
the learning curves, it is worth noting that when
the quantity of training increases, the performance
becomes better and better for the Multilingual Do-
main Kernel, suggesting that with more available
training it could be possible to improve the results.

Using bilingual dictionaries. Figure 3 reports
the learning curves exploiting the addition of the
synset-ids of the monosemic words in the corpus.
As expected the use of a multilingual repository
improves the classification results. Note that the
MDM outperforms the BoW kernel.

Figure 4 shows the results adding in the English
and Italian parts of the corpus all the synset-ids
(i.e. monosemic and polisemic) and all the transla-
tions found in the Collins dictionary respectively.
These are the best results we get in our experi-
ments. In these figures we report also the perfor-
mance of the corresponding monolingual TC (we
used the SVM with the BoW kernel), which can
be considered as an upper bound. We can observe
that the CLTC results are quite close to the perfor-
mance obtained in the monolingual classification
tasks.
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Figure 2: Cross-language learning curves: no use of bilingual dictionaries
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Figure 3: Cross-language learning curves: monosemic synsets from MultiWordNet
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Figure 4: Cross-language learning curves: all synsets from MultiWordNet // All translations from Collins

559



6 Conclusion and Future Work

In this paper we have shown that the problem of
cross-language text categorization on comparable
corpora is a feasible task. In particular, it is pos-
sible to deal with it even when no bilingual re-
sources are available. On the other hand when it is
possible to exploit bilingual repositories, such as a
synset-aligned WordNet or a bilingual dictionary,
the obtained performance is close to that achieved
for the monolingual task. In any case we think
that our methodology is low-cost and simple, and
it can represent a technologically viable solution
for multilingual problems. For the future we try to
explore also the use of a word sense disambigua-
tion all-words system. We are confident that even
with the actual state-of-the-art WSD performance,
we can improve the actual results.

Acknowledgments

This work has been partially supported by the ON-
TOTEXT (From Text to Knowledge for the Se-
mantic Web) project, funded by the Autonomous
Province of Trento under the FUP-2004 program.

References
N. Bel, C. Koster, and M. Villegas. 2003. Cross-

lingual text categorization. In Proceedings of Eu-
ropean Conference on Digital Libraries (ECDL),
Trondheim, August.

C. Callison-Burch, D. Talbot, and M. Osborne.
2004. Statistical machine translation with word-and
sentence-aligned parallel corpora. In Proceedings of
ACL-04, Barcelona, Spain, July.

S. Deerwester, S. T. Dumais, G. W. Furnas, T.K. Lan-
dauer, and R. Harshman. 1990. Indexing by latent
semantic analysis. Journal of the American Society
for Information Science, 41(6):391–407.

E. Gaussier, J. M. Renders, I. Matveeva, C. Goutte, and
H. Dejean. 2004. A geometric view on bilingual
lexicon extraction from comparable corpora. In Pro-
ceedings of ACL-04, Barcelona, Spain, July.

A. Gliozzo and C. Strapparava. 2005. Cross language
text categorization by acquiring multilingual domain
models from comparable corpora. In Proc. of the
ACL Workshop on Building and Using Parallel Texts
(in conjunction of ACL-05), University of Michigan,
Ann Arbor, June.

A. Gliozzo, C. Strapparava, and I. Dagan. 2004. Unsu-
pervised and supervised exploitation of semantic do-
mains in lexical disambiguation. Computer Speech
and Language, 18:275–299.

T. Joachims. 2002. Learning to Classify Text using
Support Vector Machines. Kluwer Academic Pub-
lishers.

P. Koehn and K. Knight. 2002. Learning a translation
lexicon from monolingual corpora. In Proceedings
of ACL Workshop on Unsupervised Lexical Acquisi-
tion, Philadelphia, July.

M. Littman, S. Dumais, and T. Landauer. 1998. Auto-
matic cross-language information retrieval using la-
tent semantic indexing. In G. Grefenstette, editor,
Cross Language Information Retrieval, pages 51–
62. Kluwer Academic Publishers.

D. Melamed. 2001. Empirical Methods for Exploiting
Parallel Texts. The MIT Press.

L. Rigutini, M. Maggini, and B. Liu. 2005. An EM
based training algorithm for cross-language text cat-
egorizaton. In Proceedings of Web Intelligence Con-
ference (WI-2005), Compiègne, France, September.
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Abstract 

Recent developments in statistical modeling 
of various linguistic phenomena have shown 
that additional features give consistent per-
formance improvements. Quite often, im-
provements are limited by the number of fea-
tures a system is able to explore. This paper 
describes a novel progressive training algo-
rithm that selects features from virtually 
unlimited feature spaces for conditional 
maximum entropy (CME) modeling. Experi-
mental results in edit region identification 
demonstrate the benefits of the progressive 
feature selection (PFS) algorithm: the PFS 
algorithm maintains the same accuracy per-
formance as previous CME feature selection 
algorithms (e.g., Zhou et al., 2003) when the 
same feature spaces are used. When addi-
tional features and their combinations are 
used, the PFS gives 17.66% relative im-
provement over the previously reported best 
result in edit region identification on 
Switchboard corpus (Kahn et al., 2005), 
which leads to a 20% relative error reduction 
in parsing the Switchboard corpus when gold 
edits are used as the upper bound. 

1 Introduction 

Conditional Maximum Entropy (CME) modeling 
has received a great amount of attention within 
natural language processing community for the 
past decade (e.g., Berger et al., 1996; Reynar and 
Ratnaparkhi, 1997; Koeling, 2000; Malouf, 2002; 
Zhou et al., 2003; Riezler and Vasserman, 2004). 
One of the main advantages of CME modeling is 

the ability to incorporate a variety of features in a 
uniform framework with a sound mathematical 
foundation. Recent improvements on the original 
incremental feature selection (IFS) algorithm, 
such as Malouf (2002) and Zhou et al. (2003), 
greatly speed up the feature selection process. 
However, like many other statistical modeling 
algorithms, such as boosting (Schapire and 
Singer, 1999) and support vector machine (Vap-
nik 1995), the algorithm is limited by the size of 
the defined feature space. Past results show that 
larger feature spaces tend to give better results. 
However, finding a way to include an unlimited 
amount of features is still an open research prob-
lem. 

In this paper, we propose a novel progressive 
feature selection (PFS) algorithm that addresses 
the feature space size limitation. The algorithm is 
implemented on top of the Selective Gain Com-
putation (SGC) algorithm (Zhou et al., 2003), 
which offers fast training and high quality mod-
els. Theoretically, the new algorithm is able to 
explore an unlimited amount of features. Be-
cause of the improved capability of the CME 
algorithm, we are able to consider many new 
features and feature combinations during model 
construction. 

To demonstrate the effectiveness of our new 
algorithm, we conducted a number of experi-
ments on the task of identifying edit regions, a 
practical task in spoken language processing. 
Based on the convention from Shriberg (1994) 
and Charniak and Johnson (2001), a disfluent 
spoken utterance is divided into three parts: the 
reparandum, the part that is repaired; the inter-
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regnum, which can be filler words or empty; and 
the repair/repeat, the part that replaces or repeats 
the reparandum. The first two parts combined are 
called an edit or edit region. An example is 
shown below: 
 

interregnum 

It is, you know, this is a tough problem.
reparandum repair 

 
In section 2, we briefly review the CME mod-

eling and SGC algorithm. Then, section 3 gives a 
detailed description of the PFS algorithm. In sec-
tion 4, we describe the Switchboard corpus, fea-
tures used in the experiments, and the effective-
ness of the PFS with different feature spaces. 
Section 5 concludes the paper. 

2 Background 

Before presenting the PFS algorithm, we first 
give a brief review of the conditional maximum 
entropy modeling, its training process, and the 
SGC algorithm. This is to provide the back-
ground and motivation for our PFS algorithm. 

2.1 Conditional Maximum Entropy Model 

The goal of CME is to find the most uniform 
conditional distribution of y given observation 
x, ( )xyp , subject to constraints specified by a set 
of features ( )yxf i , , where features typically take 
the value of either 0 or 1 (Berger et al., 1996). 
More precisely, we want to maximize 
 ( ) ( ) ( ) ( )( )xypxypxppH

yx
log~

,
∑−=           (1) 

given the constraints:  
                  ( ) ( )ii fEfE ~

=                         (2) 
where  

( ) ( ) ( )∑=
yx

ii yxfyxpfE
,

,,~~  

is the empirical expected feature count from the 
training data and 

   ( ) ( ) ( ) ( )∑=
yx

ii yxfxypxpfE
,

,~  

is the feature expectation from  the conditional 
model ( )xyp . 

This results in the following exponential 
model: 

              ( ) ( ) ( )⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
= ∑

j
jj yxf

xZ
xyp ,exp1 λ          (3) 

where λj  is the weight corresponding to the fea-
ture fj, and Z(x) is a normalization factor. 

A variety of different phenomena, including 
lexical, structural, and semantic aspects, in natu-
ral language processing tasks can be expressed in 

terms of features. For example, a feature can be 
whether the word in the current position is a verb, 
or the word is a particular lexical item. A feature 
can also be about a particular syntactic subtree, 
or a dependency relation (e.g., Charniak and 
Johnson, 2005). 

2.2 Selective Gain Computation Algorithm 

In real world applications, the number of possi-
ble features can be in the millions or beyond. 
Including all the features in a model may lead to 
data over-fitting, as well as poor efficiency and 
memory overflow. Good feature selection algo-
rithms are required to produce efficient and high 
quality models. This leads to a good amount of 
work in this area (Ratnaparkhi et al., 1994; Ber-
ger et al., 1996; Pietra et al, 1997; Zhou et al., 
2003; Riezler and Vasserman, 2004) 

In the most basic approach, such as Ratna-
parkhi et al. (1994) and Berger et al. (1996), 
training starts with a uniform distribution over all 
values of y and an empty feature set. For each 
candidate feature in a predefined feature space, it 
computes the likelihood gain achieved by includ-
ing the feature in the model. The feature that 
maximizes the gain is selected and added to the 
current model. This process is repeated until the 
gain from the best candidate feature only gives 
marginal improvement. The process is very slow, 
because it has to re-compute the gain for every 
feature at each selection stage, and the computa-
tion of a parameter using Newton’s method be-
comes expensive, considering that it has to be 
repeated many times.  

The idea behind the SGC algorithm (Zhou et 
al., 2003) is to use the gains computed in the 
previous step as approximate upper bounds for 
the subsequent steps. The gain for a feature 
needs to be re-computed only when the feature 
reaches the top of a priority queue ordered by 
gain. In other words, this happens when the fea-
ture is the top candidate for inclusion in the 
model. If the re-computed gain is smaller than 
that of the next candidate in the list, the feature is 
re-ranked according to its newly computed gain, 
and the feature now at the top of the list goes 
through the same gain re-computing process.  

This heuristics comes from evidences that the 
gains become smaller and smaller as more and 
more good features are added to the model. This 
can be explained as follows: assume that the 
Maximum Likelihood (ML) estimation lead to 
the best model that reaches a ML value. The ML 
value is the upper bound. Since the gains need to 
be positive to proceed the process, the difference 
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between the Likelihood of the current and the 
ML value becomes smaller and smaller. In other 
words, the possible gain each feature may add to 
the model gets smaller. Experiments in Zhou et 
al. (2003) also confirm the prediction that the 
gains become smaller when more and more fea-
tures are added to the model, and the gains do 
not get unexpectively bigger or smaller as the 
model grows. Furthermore, the experiments in 
Zhou et al. (2003) show no significant advantage 
for looking ahead beyond the first element in the 
feature list. The SGC algorithm runs hundreds to 
thousands of times faster than the original IFS 
algorithm without degrading classification per-
formance. We used this algorithm for it enables 
us to find high quality CME models quickly. 

The original SGC algorithm uses a technique 
proposed by Darroch and Ratcliff (1972) and 
elaborated by Goodman (2002): when consider-
ing a feature fi, the algorithm only modifies those 
un-normalized conditional probabilities: 

( )( )∑ j jj yxf ,exp λ   

for (x, y) that satisfy fi (x, y)=1, and subsequently 
adjusts the corresponding normalizing factors 
Z(x) in (3). An implementation often uses a map-
ping table, which maps features to the training 
instance pairs (x, y).  

3 Progressive Feature Selection Algo-
rithm 

In general, the more contextual information is 
used, the better a system performs. However, 
richer context can lead to combinatorial explo-
sion of the feature space. When the feature space 
is huge (e.g., in the order of tens of millions of 
features or even more), the SGC algorithm ex-
ceeds the memory limitation on commonly avail-
able computing platforms with gigabytes of 
memory.  

To address the limitation of the SGC algo-
rithm, we propose a progressive feature selection 
algorithm that selects features in multiple rounds. 
The main idea of the PFS algorithm is to split the 
feature space into tractable disjoint sub-spaces 
such that the SGC algorithm can be performed 
on each one of them. In the merge step, the fea-
tures that SGC selects from different sub-spaces 
are merged into groups. Instead of re-generating 
the feature-to-instance mapping table for each 
sub-space during the time of splitting and merg-
ing, we create the new mapping table from the 
previous round’s tables by collecting those en-
tries that correspond to the selected features. 
Then, the SGC algorithm is performed on each 

of the feature groups and new features are se-
lected from each of them. In other words, the 
feature space splitting and subspace merging are 
performed mainly on the feature-to-instance 
mapping tables. This is a key step that leads to 
this very efficient PFS algorithm.  

At the beginning of each round for feature se-
lection, a uniform prior distribution is always 
assumed for the new CME model. A more pre-
cise description of the PFS algorithm is given in 
Table 1, and it is also graphically illustrated in 
Figure 1. 

Given:  
    Feature space F(0) = {f1

(0), f2
(0), …, fN

(0)},
step_num = m,  select_factor = s 

1. Split the feature space into N1 parts 
    {F1

(1), F2
(1), …, FN1

(1)} = split(F(0)) 

2. for k=1 to m-1 do 
      //2.1 Feature selection 
      for each feature space Fi

(k) do 
           FSi

(k) = SGC(Fi
(k), s) 

      //2.2 Combine selected features 
      {F1

(k+1), …, FNk+1
(k+1)}  =  

                      merge(FS1
(k), …, FSNk

(k)) 

3. Final feature selection & optimization
F(m) = merge(FS1

(m-1), …, FSNm-1
(m-1)) 

FS(m) = SGC(F(m), s) 
Mfinal = Opt(FS(m)) 

 
Table 1. The PFS algorithm. 
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Figure 1. Graphic illustration of PFS algorithm. 
 

In Table 1, SGC() invokes the SGC algorithm, 
and Opt() optimizes feature weights. The func-
tions split() and merge() are used to split and 
merge the feature space respectively.  

Two variations of the split() function are in-
vestigated in the paper and they are described 
below: 

1. random-split: randomly split a feature 
space into n- disjoint subspaces, and select 
an equal amount of features for each fea-
ture subspace.  

2. dimension-based-split: split a feature 
space into disjoint subspaces based on fea-
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ture dimensions/variables, and select the 
number of features for each feature sub-
space with a certain distribution.  

We use a simple method for merge() in the 
experiments reported here, i.e., adding together 
the features from a set of selected feature sub-
spaces. 

One may image other variations of the split() 
function, such as allowing overlapping sub-
spaces. Other alternatives for merge() are also 
possible, such as randomly grouping the selected 
feature subspaces in the dimension-based split. 
Due to the limitation of the space, they are not 
discussed here. 

This approach can in principle be applied to 
other machine learning algorithms as well.  

4 Experiments with PFS for Edit Re-
gion Identification 

In this section, we will demonstrate the benefits 
of the PFS algorithm for identifying edit regions. 
The main reason that we use this task is that the 
edit region detection task uses features from sev-
eral levels, including prosodic, lexical, and syn-
tactic ones. It presents a big challenge to find a 
set of good features from a huge feature space.  

First we will present the additional features 
that the PFS algorithm allows us to include. 
Then, we will briefly introduce the variant of the 
Switchboard corpus used in the experiments. Fi-
nally, we will compare results from two variants 
of the PFS algorithm. 

4.1 Edit Region Identification Task 

In spoken utterances, disfluencies, such as self-
editing, pauses and repairs, are common phe-
nomena. Charniak and Johnson (2001) and Kahn 
et al. (2005) have shown that improved edit re-
gion identification leads to better parsing accu-
racy – they observe a relative reduction in pars-
ing f-score error of 14% (2% absolute) between 
automatic and oracle edit removal.  

The focus of our work is to show that our new 
PFS algorithm enables the exploration of much 
larger feature spaces for edit identification – in-
cluding prosodic features, their confidence 
scores, and various feature combinations – and 
consequently, it further improves edit region 
identification. Memory limitation prevents us 
from including all of these features in experi-
ments using the boosting method described in 
Johnson and Charniak (2004) and Zhang and 
Weng (2005). We couldn’t use the new features 

with the SGC algorithm either for the same rea-
son. 

The features used here are grouped according 
to variables, which define feature sub-spaces as 
in Charniak and Johnson (2001) and Zhang and 
Weng (2005). In this work, we use a total of 62 
variables, which include 16 1  variables from 
Charniak and Johnson (2001) and Johnson and 
Charniak (2004), an additional 29 variables from 
Zhang and Weng (2005), 11 hierarchical POS tag 
variables, and 8 prosody variables (labels and 
their confidence scores). Furthermore, we ex-
plore 377 combinations of these 62 variables, 
which include 40 combinations from Zhang and 
Weng (2005). The complete list of the variables 
is given in Table 2, and the combinations used in 
the experiments are given in Table 3. One addi-
tional note is that some features are obtained af-
ter the rough copy procedure is performed, where 
we used the same procedure as the one by Zhang 
and Weng (2005). For a fair comparison with the 
work by Kahn et al. (2005), word fragment in-
formation is retained. 

4.2 The Re-segmented Switchboard Data 

In order to include prosodic features and be able 
to compare with the state-oft-art, we use the 
University of Washington re-segmented 
Switchboard corpus, described in Kahn et al. 
(2005). In this corpus, the Switchboard sentences 
were segmented into V5-style sentence-like units 
(SUs) (LDC, 2004). The resulting sentences fit 
more closely with the boundaries that can be de-
tected through automatic procedures (e.g., Liu et 
al., 2005). Because the edit region identification 
results on the original Switchboard are not di-
rectly comparable with the results on the newly 
segmented data, the state-of-art results reported 
by Charniak and Johnson (2001) and Johnson 
and Charniak (2004) are repeated on this new 
corpus by Kahn et al. (2005).  

The re-segmented UW Switchboard corpus is 
labeled with a simplified subset of the ToBI pro-
sodic system (Ostendorf et al., 2001).  The three 
simplified labels in the subset are p, 1 and 4, 
where p refers to a general class of disfluent 
boundaries (e.g., word fragments, abruptly short-
ened words, and hesitation); 4 refers to break 
level 4, which describes a boundary that has a 
boundary tone and phrase-final lengthening;

                                                 
1 Among the original 18 variables, two variables, Pf and Tf 
are not used in our experiments, because they are mostly 
covered by the other variables. Partial word flags only con-
tribute to 3 features in the final selected feature list. 
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Categories Variable Name Short Description 

Orthographic 
Words W-5, … , W+5 

Words at the current position and the left and right 5 
positions. 

Partial Word Flags P-3, …, P+3 
Partial word flags at the current position and the left 
and right 3 positions 

Words 

Distance DINTJ, DW, DBigram, DTrigram Distance features 

POS Tags T-5, …, T+5 
POS tags at the current position and the left and 
right 5 positions. Tags 

Hierarchical  
POS Tags (HTag) HT-5, …, HT+5 

Hierarchical POS tags at the current position and the 
left and right 5 positions. 

HTag Rough Copy Nm, Nn, Ni, Nl, Nr, Ti Hierarchical POS rough copy features. 
Rough Copy 

Word Rough Copy WNm, WNi, WNl, WNr Word rough copy features. 

Prosody Labels PL0, …, PL3 
Prosody label with largest post possibility at the 
current position and the right 3 positions. Prosody 

Prosody Scores PC0, …, PC3 
Prosody confidence at the current position and the 
right 3 positions. 

Table 2. A complete list of variables used in the experiments. 
 

Categories Short Description Number of  
Combinations 

Tags HTagComb Combinations among Hierarchical POS Tags  55 

Words OrthWordComb Combinations among Orthographic Words 55 

Tags 
WTComb 

WTTComb Combinations of Orthographic Words and POS 
Tags; Combination among POS Tags 176 

Rough Copy RCComb Combinations of HTag Rough Copy and Word 
Rough Copy 55 

Prosody PComb Combinations among Prosody, and with Words 36 

Table 3. All the variable combinations used in the experiments. 
 
and 1 is used to include the break index levels 
BL 0, 1, 2, and 3. Since the majority of the cor-
pus is labeled via automatic methods, the f-
scores for the prosodic labels are not high. In 
particular, 4 and p have f-scores of about 70% 
and 60% respectively (Wong et al., 2005). There-
fore, in our experiments, we also take prosody 
confidence scores into consideration. 

Besides the symbolic prosody labels, the cor-
pus preserves the majority of the previously an-
notated syntactic information as well as edit re-
gion labels.  

In following experiments, to make the results 
comparable, the same data subsets described in 
Kahn et al. (2005) are used for training, develop-
ing and testing. 

4.3 Experiments 

The best result on the UW Switchboard for edit 
region identification uses a TAG-based approach 
(Kahn et al., 2005). On the original Switchboard 
corpus, Zhang and Weng (2005) reported nearly 
20% better results using the boosting method 

with a much larger feature space 2 . To allow 
comparison with the best past results, we create a 
new CME baseline with the same set of features 
as that used in Zhang and Weng (2005).  

We design a number of experiments to test the 
following hypotheses: 

1. PFS can include a huge number of new 
features, which leads to an overall per-
formance improvement. 

2. Richer context, represented by the combi-
nations of different variables, has a posi-
tive impact on performance. 

3. When the same feature space is used, PFS 
performs equally well as the original SGC 
algorithm. 

The new models from the PFS algorithm are 
trained on the training data and tuned on the de-
velopment data. The results of our experiments 
on the test data are summarized in Table 4. The 
first three lines show that the TAG-based ap-
proach is outperformed by the new CME base-
line (line 3) using all the features in Zhang and 
Weng (2005). However, the improvement from 
                                                 
2 PFS is not applied to the boosting algorithm at this time 
because it would require significant changes to the available 
algorithm.  
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Results on test data Feature Space Codes number of 
features Precision Recall F-Value 

TAG-based result on UW-SWBD reported in Kahn et al. (2005)    78.20 
CME with all the variables from Zhang and Weng (2005) 2412382 89.42 71.22 79.29 

CME with all the variables from Zhang and Weng (2005) + post 2412382 87.15 73.78 79.91 

+HTag +HTagComb +WTComb +RCComb 17116957 90.44 72.53 80.50 

+HTag +HTagComb +WTComb +RCComb +PL0 … PL3 17116981 88.69 74.01 80.69 

+HTag +HTagComb +WTComb +RCComb +PComb: without cut 20445375 89.43 73.78 80.86 

+HTag +HTagComb +WTComb +RCComb +PComb: cut2 19294583 88.95 74.66 81.18 

+HTag +HTagComb +WTComb +RCComb +PComb: cut2 +Gau 19294583 90.37 74.40 81.61 

+HTag +HTagComb +WTComb +RCComb +PComb: cut2 +post 19294583 86.88 77.29 81.80 
+HTag +HTagComb +WTComb +RCComb +PComb: cut2 +Gau 
+post  19294583 87.79 77.02 82.05 

Table 4. Summary of experimental results with PFS. 
 

CME is significantly smaller than the reported 
results using the boosting method. In other 
words, using CME instead of boosting incurs a 
performance hit. 

The next four lines in Table 4 show that addi-
tional combinations of the feature variables used 
in Zhang and Weng (2005) give an absolute im-
provement of more than 1%. This improvement 
is realized through increasing the search space to 
more than 20 million features, 8 times the maxi-
mum size that the original boosting and CME 
algorithms are able to handle.  

Table 4 shows that prosody labels alone make 
no difference in performance. Instead, for each 
position in the sentence, we compute the entropy 
of the distribution of the labels’ confidence 
scores. We normalize the entropy to the range [0, 
1], according to the formula below: 

            ( ) ( )UniformHpHscore −= 1        (4) 
Including this feature does result in a good 

improvement. In the table, cut2 means that we 
equally divide the feature scores into 10 buckets 
and any number below 0.2 is ignored. The total 
contribution from the combined feature variables 
leads to a 1.9% absolute improvement. This con-
firms the first two hypotheses. 

When Gaussian smoothing (Chen and 
Rosenfeld, 1999), labeled as +Gau, and post-
processing (Zhang and Weng, 2005), labeled as 
+post, are added, we observe 17.66% relative 
improvement (or 3.85% absolute) over the previ-
ous best f-score of 78.2 from Kahn et al. (2005). 

To test hypothesis 3, we are constrained to the 
feature spaces that both PFS and SGC algorithms 
can process. Therefore, we take all the variables 
from Zhang and Weng (2005) as the feature 
space for the experiments. The results are listed 
in Table 5. We observed no f-score degradation 

with PFS. Surprisingly, the total amount of time 
PFS spends on selecting its best features is 
smaller than the time SGC uses in selecting its 
best features. This confirms our hypothesis 3. 

 
Results on test data Split / Non-split Precision Recall F-Value 

non-split 89.42 71.22 79.29 
split by 4 parts 89.67 71.68 79.67 
split by 10 parts 89.65 71.29 79.42 

Table 5. Comparison between PFS and SGC with 
all the variables from Zhang and Weng (2005). 
 

The last set of experiments for edit identifica-
tion is designed to find out what split strategies 
PFS algorithm should adopt in order to obtain 
good results. Two different split strategies are 
tested here. In all the experiments reported so far, 
we use 10 random splits, i.e., all the features are 
randomly assigned to 10 subsets of equal size. 
We may also envision a split strategy that divides 
the features based on feature variables (or dimen-
sions), such as word-based, tag-based, etc. The 
four dimensions used in the experiments are 
listed as the top categories in Tables 2 and 3, and 
the results are given in Table 6.  

 
Results on test data Split  

Criteria 
Allocation 

Criteria Precision Recall F-Value 
Random Uniform 88.95 74.66 81.18 

Dimension Uniform 89.78 73.42 80.78 
Dimension Prior 89.78 74.01 81.14 

Table 6. Comparison of split strategies using feature space 
+HTag+HTagComb+WTComb+RCComb+PComb: cut2 

 
In Table 6, the first two columns show criteria 

for splitting feature spaces and the number of 
features to be allocated for each group. Random 
and Dimension mean random-split and dimen-
sion-based-split, respectively. When the criterion 
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is Random, the features are allocated to different 
groups randomly, and each group gets the same 
number of features. In the case of dimension-
based split, we determine the number of features 
allocated for each dimension in two ways. When 
the split is Uniform, the same number of features 
is allocated for each dimension. When the split is 
Prior, the number of features to be allocated in 
each dimension is determined in proportion to 
the importance of each dimension. To determine 
the importance, we use the distribution of the 
selected features from each dimension in the 
model “+ HTag + HTagComb + WTComb + 
RCComb + PComb: cut2”, namely: Word-based 
15%, Tag-based 70%, RoughCopy-based 7.5% 
and Prosody-based 7.5%3. From the results, we 
can see no significant difference between the 
random-split and the dimension-based-split. 

To see whether the improvements are trans-
lated into parsing results, we have conducted one 
more set of experiments on the UW Switchboard 
corpus. We apply the latest version of Charniak’s 
parser (2005-08-16) and the same procedure as 
Charniak and Johnson (2001) and Kahn et al. 
(2005) to the output from our best edit detector 
in this paper. To make it more comparable with 
the results in Kahn et al. (2005), we repeat the 
same experiment with the gold edits, using the 
latest parser. Both results are listed in Table 7. 
The difference between our best detector and the 
gold edits in parsing (1.51%) is smaller than the 
difference between the TAG-based detector and 
the gold edits (1.9%). In other words, if we use 
the gold edits as the upper bound, we see a rela-
tive error reduction of 20.5%. 

 
Parsing F-score 

Methods Edit  
F-score 

Reported 
in Kahn et 
al. (2005) 

Latest 
Charniak 

Parser 

Diff. 
with 

Oracle 
Oracle 100 86.9 87.92 -- 
Kahn et 
al. (2005) 78.2 85.0 -- 1.90 

PFS best 
results 82.05 -- 86.41 1.51 

Table 7. Parsing F-score various different edit 
region identification results. 

                                                 
3 It is a bit of cheating to use the distribution from the se-
lected model. However, even with this distribution, we do 
not see any improvement over the version with random-
split. 

5 Conclusion 

This paper presents our progressive feature selec-
tion algorithm that greatly extends the feature 
space for conditional maximum entropy model-
ing. The new algorithm is able to select features 
from feature space in the order of tens of mil-
lions in practice, i.e., 8 times the maximal size 
previous algorithms are able to process, and 
unlimited space size in theory. Experiments on 
edit region identification task have shown that 
the increased feature space leads to 17.66% rela-
tive improvement (or 3.85% absolute) over the 
best result reported by Kahn et al. (2005), and 
10.65% relative improvement (or 2.14% abso-
lute) over the new baseline SGC algorithm with 
all the variables from Zhang and Weng (2005). 
We also show that symbolic prosody labels to-
gether with confidence scores are useful in edit 
region identification task. 

In addition, the improvements in the edit iden-
tification lead to a relative 20% error reduction in 
parsing disfluent sentences when gold edits are 
used as the upper bound.  
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Abstract
We first show how a structurallocality bias can improve the
accuracy of state-of-the-art dependency grammar induction
models trained by EM from unannotated examples (Klein
and Manning, 2004). Next, by annealing the free parame-
ter that controls this bias, we achieve further improvements.
We then describe an alternative kind of structural bias, to-
ward “broken” hypotheses consisting of partial structures
over segmented sentences, and show a similar pattern of im-
provement. We relate this approach to contrastive estimation
(Smith and Eisner, 2005a), apply the latter to grammar in-
duction in six languages, and show that our new approach
improves accuracy by 1–17% (absolute) over CE (and 8–30%
over EM), achieving to our knowledge the best results on this
task to date. Our method,structural annealing, is a gen-
eral technique with broad applicability to hidden-structure
discovery problems.

1 Introduction

Inducing a weighted context-free grammar from
flat text is a hard problem. A common start-
ing point for weighted grammar induction is
the Expectation-Maximization (EM) algorithm
(Dempster et al., 1977; Baker, 1979). EM’s
mediocre performance (Table 1) reflects two prob-
lems. First, it seeks to maximize likelihood, but a
grammar that makes the training data likely does
not necessarily assign a linguistically defensible
syntactic structure. Second, the likelihood surface
is not globally concave, and learners such as the
EM algorithm can get trapped on local maxima
(Charniak, 1993).

We seek here to capitalize on the intuition that,
at least early in learning, the learner should search
primarily for string-local structure, because most
structure is local.1 By penalizing dependencies be-
tween two words that are farther apart in the string,
we obtain consistent improvements in accuracy of
the learned model (§3).

We then explore how graduallychangingδ over
time affects learning (§4): we start out with a

∗This work was supported by a Fannie and John Hertz
Foundation fellowship to the first author and NSF ITR grant
IIS-0313193 to the second author. The views expressed are
not necessarily endorsed by the sponsors. We thank three
anonymous COLING-ACL reviewers for comments.

1To be concrete, in the corpora tested here, 95% of de-
pendency links cover≤ 4 words (English, Bulgarian, Por-
tuguese),≤ 5 words (German, Turkish),≤ 6 words (Man-
darin).

model selection among values ofλ andΘ(0)

worst unsup. sup. oracle

German 19.8 19.8 54.4 54.4

English 21.8 41.6 41.6 42.0

Bulgarian 24.7 44.6 45.6 45.6

Mandarin 31.8 37.2 50.0 50.0

Turkish 32.1 41.2 48.0 51.4

Portuguese 35.4 37.4 42.3 43.0

Table 1: Baseline performance of EM-trained dependency
parsing models:F1 on non-$ attachments in test data, with
various model selection conditions (3 initializers× 6 smooth-
ing values). The languages are listed in decreasing order by
the training set size. Experimental details can be found in the
appendix.

strong preference for short dependencies, then re-
lax the preference. The new approach,structural
annealing, often gives superior performance.

An alternative structural bias is explored in§5.
This approach views a sentence as a sequence
of one or more yields of separate, independent
trees. The points of segmentation are a hidden
variable, and during learning all possible segmen-
tations are entertained probabilistically. This al-
lows the learner to accept hypotheses that explain
the sentences as independent pieces.

In §6 we briefly reviewcontrastive estimation
(Smith and Eisner, 2005a), relating it to the new
method, and show its performance alone and when
augmented with structural bias.

2 Task and Model

In this paper we use a simple unlexicalized depen-
dency model due to Klein and Manning (2004).
The model is a probabilistic head automaton gram-
mar (Alshawi, 1996) with a “split” form that ren-
ders it parseable in cubic time (Eisner, 1997).

Let x = 〈x1, x2, ..., xn〉 be the sentence.x0 is a
special “wall” symbol, $, on the left of every sen-
tence. A treey is defined by a pair of functions
yleft andyright (both{0, 1, 2, ..., n} → 2{1,2,...,n})
that map each word to its sets of left and right de-
pendents, respectively. The graph is constrained
to be aprojectivetree rooted at $: each word ex-
cept $ has a single parent, and there are no cycles
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or crossing dependencies.2 yleft(0) is taken to be
empty, andyright(0) contains the sentence’s single
head. Letyi denote the subtree rooted at position
i. The probabilityP (yi | xi) of generating this
subtree, given its head wordxi, is defined recur-
sively:∏

D∈{left ,right}

pstop(stop | xi,D , [yD(i) = ∅]) (1)

×
∏

j∈yD (i)

pstop(¬stop | xi,D ,firsty(j))

×pchild(xj | xi,D)× P (yj | xj)

wherefirsty(j) is a predicate defined to be true iff
xj is the closest child (on either side) to its parent
xi. The probability of the entire tree is given by
pΘ(x,y) = P (y0 | $). The parametersΘ are the
conditional distributionspstop andpchild.

Experimental baseline: EM. Following com-
mon practice, we always replace words by part-of-
speech (POS) tags before training or testing. We
used the EM algorithm to train this model on POS
sequences in six languages. Complete experimen-
tal details are given in the appendix. Performance
with unsupervised and supervised model selec-
tion across differentλ values in add-λ smoothing
and three initializersΘ(0) is reported in Table 1.
The supervised-selected model is in the 40–55%
F1-accuracy range on directed dependency attach-
ments. (HereF1 ≈ precision≈ recall; see ap-
pendix.) Supervised model selection, which uses
a small annotated development set, performs al-
most as well as the oracle, but unsupervised model
selection, which selects the model that maximizes
likelihood on anunannotateddevelopment set, is
often much worse.

3 Locality Bias among Trees

Hidden-variable estimation algorithms—
including EM—typically work by iteratively
manipulating the model parametersΘ to improve
an objective functionF (Θ). EM explicitly
alternates between the computation of aposterior
distribution over hypotheses,pΘ(y | x) (where
y is any tree with yieldx), and computing a new
parameter estimateΘ.3

2A projective parser could achieve perfect accuracy on our
English and Mandarin datasets,> 99% on Bulgarian, Turk-
ish, and Portuguese, and> 98% on German.

3For weighted grammar-based models, the posterior does
not need to be explicitly represented; instead expectations un-
derpΘ are used to compute updates toΘ.
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Figure 1: Test-setF1 performance of models trained by EM
with a locality bias at varyingδ. Each curve corresponds
to a different language and shows performance of supervised
model selectionwithin a givenδ, acrossλ andΘ(0) values.
(See Table 3 for performance of models selectedacrossδs.)
We decode withδ = 0, though we found that keeping the
training-time value ofδ would have had almost no effect. The
EM baseline corresponds toδ = 0.

One way to bias a learner toward local expla-
nations is to penalize longer attachments. This
was done for supervised parsing in different ways
by Collins (1997), Klein and Manning (2003),
and McDonald et al. (2005), all of whom con-
sidered intervening material or coarse distance
classes when predicting children in a tree. Eis-
ner and Smith (2005) achieved speed and accuracy
improvements by modeling distance directly in a
ML-estimated (deficient) generative model.

Here we usestring distanceto measure the
length of a dependency link and consider the inclu-
sion of a sum-of-lengths feature in the probabilis-
tic model, for learning only. Keeping our original
model, we will simply multiply into the probabil-
ity of each tree another factor that penalizes long
dependencies, giving:

p′Θ(x,y) ∝ pΘ(x,y)·e

δ

n∑
i=1

∑
j∈y(i)

|i− j|


(2)

wherey(i) = yleft(i) ∪ yright(i). Note that if
δ = 0, we have the original model. Asδ → −∞,
the new modelp′Θ will favor parses with shorter
dependencies. The dynamic programming algo-
rithms remain the same as before, with the appro-
priate eδ|i−j| factor multiplied in at each attach-
ment betweenxi andxj . Note that whenδ = 0,
p′Θ ≡ pΘ.

Experiment. We applied a locality bias to the
same dependency model by settingδ to different
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Figure 2: Test-setF1 performance of models trained by EM
with structural annealing on the distance weightδ. Here
we show performance with add-10 smoothing, the all-zero
initializer, for three languages with three different initial val-
uesδ0. Time progresses from left to right. Note that it is
generally best to start atδ0 � 0; note also the importance of
picking the right point on the curve to stop. See Table 3 for
performance of models selected across smoothing, initializa-
tion, starting, and stopping choices, in all six languages.

values in[−1, 0.2] (see Eq. 2). The same initial-
izersΘ(0) and smoothing conditions were tested.
Performance of supervised model selection among
models trained at differentδ values is plotted in
Fig. 1. When a model is selected acrossall condi-
tions (3 initializers× 6 smoothing values× 7 δs)
using annotated development data, performance is
notably better than the EM baseline using the same
selection procedure (see Table 3, second column).

4 Structural Annealing

The central idea of this paper is to gradually
change(anneal) the biasδ. Early in learning, local
dependencies are emphasized by settingδ � 0.
Then δ is iteratively increased and training re-
peated, using the last learned model to initialize.

This idea bears a strong similarity todetermin-
istic annealing (DA), a technique used in clus-
tering and classification to smooth out objective
functions that are piecewise constant (hence dis-
continuous) or bumpy (non-concave) (Rose, 1998;
Ueda and Nakano, 1998). In unsupervised learn-
ing, DA iteratively re-estimates parameters like
EM, but begins by requiring that the entropy of
the posteriorpΘ(y | x) be maximal, then gradu-
ally relaxes this entropy constraint. Since entropy
is concave inΘ, the initial task is easy (maximize
a concave, continuous function). At each step the
optimization task becomes more difficult, but the
initializer is given by the previous step and, in
practice, tends to be close to a good local max-
imum of the more difficult objective. By the last

iteration the objective is the same as in EM, but the
annealed search process has acted like a good ini-
tializer. This method was applied with some suc-
cess to grammar induction models by Smith and
Eisner (2004).

In this work, instead of imposing constraints on
the entropy of the model, we manipulate bias to-
ward local hypotheses. Asδ increases, we penal-
ize long dependencies less. We call thisstructural
annealing, since we are varying the strength of a
soft constraint (bias) on structural hypotheses. In
structural annealing, the final objective would be
the same as EM if our finalδ, δf = 0, but we
found that annealing farther (δf > 0) works much
better.4

Experiment: Annealing δ. We experimented
with annealing schedules forδ. We initialized at
δ0 ∈ {−1,−0.4,−0.2}, and increasedδ by 0.1 (in
the first case) or0.05 (in the others) up toδf = 3.
Models were trained to convergence at eachδ-
epoch. Model selection was applied over the same
initialization and regularization conditions as be-
fore,δ0, and also over the choice ofδf , with stop-
ping allowed at any stage along theδ trajectory.

Trajectories for three languages with three dif-
ferent δ0 values are plotted in Fig. 2. Generally
speaking,δ0 � 0 performs better. There is con-
sistently an early increase in performance asδ in-
creases, but the stoppingδf matters tremendously.
Selected annealed-δ models surpass EM in all six
languages; see the third column of Table 3. Note
that structural annealing does not always outper-
form fixed-δ training (English and Portuguese).
This is because we only tested a few values ofδ0,
since annealing requires longer runtime.

5 Structural Bias via Segmentation

A related way to focus on local structure early
in learning is to broaden the set of hypothe-
ses to includepartial parse structures. Ifx =
〈x1, x2, ..., xn〉, the standard approach assumes
that x corresponds to the vertices of a single de-
pendency tree. Instead, we entertain every hypoth-
esis in whichx is asequenceof yields fromsepa-
rate, independently-generated trees. For example,
〈x1, x2, x3〉 is the yield of one tree,〈x4, x5〉 is the

4The reader may note thatδf > 0 actually corresponds to
a bias towardlongerattachments. A more apt description in
the context of annealing is to say that during early stages the
learner starts liking local attachments too much, and we need
to exaggerateδ to “coax” it to new hypotheses. See Fig. 2.
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Figure 3: Test-setF1 performance of models trained by EM
with structural annealing on the breakage weightβ. Here
we show performance with add-10 smoothing, the all-zero
initializer, for three languages with three different initial val-
uesβ0. Time progresses from left (largeβ) to right. See Ta-
ble 3 for performance of models selected across smoothing,
initialization, and stopping choices, in all six languages.

yield of a second, and〈x6, ..., xn〉 is the yield of a
third. One extreme hypothesis is thatx is n single-
node trees. At the other end of the spectrum is the
original set of hypotheses—full trees onx. Each
has a nonzero probability.

Segmented analyses are intermediate represen-
tations that may be helpful for a learner to use
to formulate notions of probable local structure,
without committing to full trees.5 We onlyallow
unobserved breaks, never positing a hard segmen-
tation of the training sentences. Over time, we in-
crease the bias against broken structures, forcing
the learner to commit most of its probability mass
to full trees.

5.1 Vine Parsing

At first glance broadening the hypothesis space
to entertain all2n−1 possible segmentations may
seem expensive. In fact the dynamic program-
ming computation is almost the same as sum-
ming or maximizing over connected dependency
trees. For the latter, we use an inside-outside al-
gorithm that computes a score for every parse tree
by computing the scores ofitems, or partial struc-
tures, through a bottom-up process. Smaller items
are built first, then assembled using a set of rules
defining how larger items can be built.6

Now note that anysequenceof partial trees
overx can be constructed by combining the same
items into trees. The only difference is that we

5See also work on partial parsing as a task in its own right:
Hindle (1990)inter alia.

6See Eisner and Satta (1999) for the relevant algorithm
used in the experiments.

are willing to consider unassembled sequences of
these partial trees as hypotheses, in addition to
the fully connected trees. One way to accom-
plish this in terms ofyright(0) is to say that the
root, $, is allowed to have multiple children, in-
stead of just one. Here, these children are inde-
pendent of each other (e.g., generated by a uni-
gram Markov model). In supervised dependency
parsing, Eisner and Smith (2005) showed that im-
posing a hard constraint on the whole structure—
specifically that each non-$ dependency arc cross
fewer thank words—can give guaranteedO(nk2)
runtime with little to no loss in accuracy (for sim-
ple models). This constraint could lead to highly
contrived parse trees, or none at all, for some
sentences—both are avoided by the allowance of
segmentation into a sequence of trees (each at-
tached to $). The construction of the “vine” (se-
quence of $’s children) takes onlyO(n) time once
the chart has been assembled.

Our broadened hypothesis model is a proba-
bilistic vine grammar with a unigram model over
$’s children. We allow (but do not require) seg-
mentation of sentences, where each independent
child of $ is the root of one of the segments. We do
not impose any constraints on dependency length.

5.2 Modeling Segmentation

Now the total probability of ann-length sentence
x, marginalizing over its hidden structures, sums
up not only over trees, but over segmentations of
x. For completeness, we must include a proba-
bility model over the number of trees generated,
which could be anywhere from1 to n. The model
over the numberT of trees given a sentence of
lengthn will take the following log-linear form:

P (T = t | n) = etβ

/
n∑

i=1

eiβ

whereβ ∈ R is the sole parameter. Whenβ = 0,
every value ofT is equally likely. Forβ � 0, the
model prefers larger structures with few breaks.
At the limit (β → −∞), we achieve the standard
learning setting, where the model must explainx
using a single tree. We start however atβ � 0,
where the model prefers smaller trees with more
breaks, in the limit preferring each word inx to be
its own tree. We could describe “brokenness” as a
feature in the model whose weight,β, is chosen
extrinsically (and time-dependently), rather than
empirically—just as was done withδ.
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model selection among values ofσ2 andΘ(0)

worst unsup. sup. oracle

DORT1 32.5 59.3 63.4 63.4

Ger
.

LENGTH 30.5 56.4 57.3 57.8

DORT1 20.9 56.6 57.4 57.4

Eng
.
LENGTH 29.1 37.2 46.2 46.2

DORT1 19.4 26.0 40.5 43.1

Bul. LENGTH 25.1 35.3 38.3 38.3

DORT1 9.4 24.2 41.1 41.1

M
an

.
LENGTH 13.7 17.9 26.2 26.2

DORT1 7.3 38.6 58.2 58.2

Tu
r.

LENGTH 21.5 34.1 55.5 55.5

DORT1 35.0 59.8 71.8 71.8

Por
.

LENGTH 30.8 33.6 33.6 33.6

Table 2: Performance of CE on test data, for different neigh-
borhoods and with different levels of regularization. Bold-
face marks scores better than EM-trained models selected the
same way (Table 1). The score is theF1 measure on non-$
attachments.

Annealingβ resembles the popularbootstrap-
ping technique (Yarowsky, 1995), which starts out
aiming for high precision, and gradually improves
coverage over time. With strong bias (β � 0), we
seek a model that maintains high dependency pre-
cision on (non-$) attachments by attaching most
tags to $. Over time, as this is iteratively weak-
ened (β → −∞), we hope to improve coverage
(dependency recall). Bootstrapping was applied
to syntax learning by Steedman et al. (2003). Our
approach differs in being able to remain partly ag-
nostic about each tag’s true parent (e.g., by giving
50% probability to attaching to $), whereas Steed-
man et al. make a hard decision to retrain on a
whole sentencefully or leave it out fully. In ear-
lier work, Brill and Marcus (1992) adopted a “lo-
cal first” iterative merge strategy for discovering
phrase structure.

Experiment: Annealing β. We experimented
with different annealing schedules forβ. The ini-
tial value ofβ, β0, was one of{−1

2 , 0, 1
2}. After

EM training,β was diminished by1
10 ; this was re-

peated down to a value ofβf = −3. Performance
after training at eachβ value is shown in Fig. 3.7

We see that, typically, there is a sharp increase
in performance somewhere during training, which
typically lessens asβ → −∞. Startingβ too high
can also damage performance. This method, then,

7Performance measures are given using afull parser that
finds the single best parse of the sentence with the learned
parsing parameters. Had we decoded with avineparser, we
would see a precision↘, recall↗ curve asβ decreased.

is not robust to the choice ofλ, β0, or βf , nor does
it always do as well as annealingδ, although con-
siderable gains are possible; see the fifth column
of Table 3.

By testing models trained with afixedvalue ofβ
(for values in[−1, 1]), we ascertained that the per-
formance improvement is due largely to annealing,
not just the injection of segmentation bias (fourth
vs. fifth column of Table 3).8

6 Comparison and Combination with
Contrastive Estimation

Contrastive estimation (CE) was recently intro-
duced (Smith and Eisner, 2005a) as a class of alter-
natives to the likelihood objective function locally
maximized by EM. CE was found to outperform
EM on the task of focus in this paper, when ap-
plied to English data (Smith and Eisner, 2005b).
Here we review the method briefly, show how it
performs across languages, and demonstrate that
it can be combined effectively with structural bias.

Contrastive training defines for each examplexi

a class of presumably poor, but similar, instances
called the “neighborhood,”N(xi), and seeks to
maximize

CN(Θ) =
∑

i

log pΘ(xi | N(xi))

=
∑

i

log

∑
y pΘ(xi,y)∑

x′∈N(xi)

∑
y pΘ(x′,y)

At this point we switch to a log-linear (rather
than stochastic) parameterization of the same
weighted grammar, for ease of numerical opti-
mization. All this means is thatΘ (specifically,
pstop andpchild in Eq. 1) is now a set of nonnega-
tive weights rather than probabilities.

Neighborhoods that can be expressed as finite-
state lattices built fromxi were shown to give sig-
nificant improvements in dependency parser qual-
ity over EM. Performance of CE using two of
those neighborhoods on the current model and
datasets is shown in Table 2.9 0-mean diagonal
Gaussian smoothing was applied, with different
variances, and model selection was applied over
smoothing conditions and the same initializers as

8In principle, segmentation can be combined with the lo-
cality bias in§3 (δ). In practice, we found that this usually
under-performed the EM baseline.

9We experimented with DELETE1, TRANSPOSE1, DELE-
TEORTRANSPOSE1, and LENGTH. To conserve space we
show only the latter two, which tend to perform best.
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EM fixed δ annealedδ fixedβ annealedβ CE fixedδ + CE
δ δ0 → δf β β0 → βf N N, δ

German 54.4 61.3 0.2 70.0 -0.4→ 0.4 66.2 0.4 68.9 0.5→ -2.4 63.4 DORT1 63.8 DORT1, -0.2

English 41.6 61.8 -0.6 53.8 -0.4→ 0.3 55.6 0.2 58.4 0.5→ 0.0 57.4 DORT1 63.5 DORT1, -0.4

Bulgarian 45.6 49.2 -0.2 58.3 -0.4→ 0.2 47.3 -0.2 56.5 0→ -1.7 40.5 DORT1 –
Mandarin 50.0 51.1 -0.4 58.0 -1.0→ 0.2 38.0 0.2 57.2 0.5→ -1.4 43.4 DEL1 –
Turkish 48.0 62.3 -0.2 62.4 -0.2→ -0.15 53.6 -0.2 59.4 0.5→ -0.7 58.2 DORT1 61.8 DORT1, -0.6

Portuguese 42.3 50.4 -0.4 50.2 -0.4→ -0.1 51.5 0.2 62.7 0.5→ -0.5 71.8 DORT1 72.6 DORT1, -0.2

Table 3: Summary comparing models trained in a variety of ways with some relevant hyperparameters. Supervised model
selection was applied in all cases, including EM (see the appendix). Boldface marks the best performance overall and trials
that this performance did not significantly surpass under a sign test (i.e.,p 6< 0.05). The score is theF1 measure on non-$
attachments. The fixedδ + CE condition was tested only for languages where CE improved over EM.

before. Four of the languages have at least one ef-
fective CE condition, supporting our previous En-
glish results (Smith and Eisner, 2005b), but CE
was harmful for Bulgarian and Mandarin. Perhaps
better neighborhoods exist for these languages, or
there is some ideal neighborhood that would per-
form well for all languages.

Our approach of allowing broken trees (§5) is
a natural extension of the CE framework. Con-
trastive estimation views learning as a process of
moving posterior probability massfrom (implicit)
negative examplesto (explicit) positive examples.
The positive evidence, as in MLE, is taken to be
the observed data. As originally proposed, CE al-
lowed a redefinition of the implicit negative ev-
idence from “all other sentences” (as in MLE)
to “sentences likexi, but perturbed.” Allowing
segmentation of the training sentences redefines
the positiveand negative evidence. Rather than
moving probability mass only to full analyses of
the training examplexi, we also allow probability
mass to go to partial analyses ofxi.

By injecting a bias (δ 6= 0 or β > −∞) among
tree hypotheses, however, we have gone beyond
the CE framework. We have added features to
the tree model (dependency length-sum, number
of breaks), whose weights we extrinsically manip-
ulate over time to impose locality biasCN and im-
prove search onCN. Another idea, not explored
here, is to change the contents of the neighborhood
N over time.

Experiment: Locality Bias within CE. We
combined CE with a fixed-δ locality bias for
neighborhoods that were successful in the earlier
CE experiment, namely DELETEORTRANSPOSE1
for German, English, Turkish, and Portuguese.
Our results, shown in the seventh column of Ta-
ble 3, show that, in all cases except Turkish, the

combination improves over either technique on its
own. We leave exploration of structural annealing
with CE to future work.

Experiment: Segmentation Bias within CE.
For (language,N) pairs where CE was effec-
tive, we trained models using CE with a fixed-
β segmentation model. Across conditions (β ∈
[−1, 1]), these models performed very badly, hy-
pothesizing extremely local parse trees: typically
over 90% of dependencies were length 1 and
pointed in the same direction, compared with the
60–70% length-1 rate seen in gold standards. To
understand why, consider that the CE goal is to
maximize the score of a sentenceand all its seg-
mentations while minimizing the scores of neigh-
borhood sentences and their segmentations. Ann-
gram model can accomplish this, since the same
n-grams are present in all segmentations ofx,
and (some) differentn-grams appear inN(x)
(for LENGTH and DELETEORTRANSPOSE1). A
bigram-like model that favors monotone branch-
ing, then, is not a bad choice for a CE learner that
must account for segmentations ofx andN(x).

Why doesn’t CEwithoutsegmentation resort to
n-gram-like models? Inspection of models trained
using the standard CE method (no segmentation)
with transposition-based neighborhoods TRANS-
POSE1 and DELETEORTRANSPOSE1 did have
high rates of length-1 dependencies, while the
poorly-performing DELETE1 models foundlow
length-1 rates. This suggests that a bias toward
locality (“n-gram-ness”) is built into the former
neighborhoods, and may partly explain why CE
works when it does. We achieved a similar locality
bias in the likelihood framework when we broad-
ened the hypothesis space, but doing so under CE
over-focuses the model on local structures.
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7 Error Analysis

We compared errors made by the selected EM con-
dition with the best overall condition, for each lan-
guage. We found that the number of corrected at-
tachments always outnumbered the number of new
errors by a factor of two or more.

Further, the new models are not getting better
by merely reversing thedirection of links made
by EM; undirected accuracy also improved signif-
icantly under a sign test (p < 10−6), across all six
languages. While the most common corrections
were to nouns, these account for only 25–41% of
corrections, indicating that corrections are not “all
of the same kind.”

Finally, since more than half of corrections in
every language involved reattachment to a noun
or a verb (content word), we believe the improved
models to be getting closer than EM to the deeper
semantic relations between words that, ideally,
syntactic models should uncover.

8 Future Work

One weakness of all recent weighted grammar
induction work—including Klein and Manning
(2004), Smith and Eisner (2005b), and the present
paper—is a sensitivity to hyperparameters, includ-
ing smoothing values, choice ofN (for CE), and
annealing schedules—not to mention initializa-
tion. This is quite observable in the results we have
presented. An obstacle for unsupervised learn-
ing in general is the need for automatic, efficient
methods for model selection. For annealing, in-
spiration may be drawn from continuation meth-
ods; see, e.g., Elidan and Friedman (2005). Ideally
one would like to select values simultaneously for
many hyperparameters, perhaps using a small an-
notated corpus (as done here), extrinsic figures of
merit on successful learning trajectories, or plau-
sibility criteria (Eisner and Karakos, 2005).

Grammar induction serves as a tidy example
for structural annealing. In future work, we envi-
sion that other kinds of structural bias and anneal-
ing will be useful in other difficult learning prob-
lems where hidden structure is required, including
machine translation, where the structure can con-
sist of word correspondences or phrasal or recur-
sive syntax with correspondences. The technique
bears some similarity to the estimation methods
described by Brown et al. (1993), which started
by estimating simple models, using each model to
seed the next.

9 Conclusion

We have presented a new unsupervised parameter
estimation method, structural annealing, for learn-
ing hidden structure that biases toward simplic-
ity and gradually weakens (anneals) the bias over
time. We applied the technique to weighted de-
pendency grammar induction and achieved a sig-
nificant gain in accuracy over EM and CE, raising
the state-of-the-art across six languages from 42–
54% to 58–73% accuracy.
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A Experimental Setup

Following the usual conventions (Klein and Man-
ning, 2002), our experiments use treebank POS
sequences of length≤ 10, stripped of words and
punctuation. For smoothing, we apply add-λ, with
six values ofλ (in CE trials, we use a 0-mean di-
agonal Gaussian prior with five different values of
σ2). Our training datasets are:
• 8,227Germansentences from the TIGER Tree-
bank (Brants et al., 2002),
• 5,301 English sentences from the WSJ Penn
Treebank (Marcus et al., 1993),
• 4,929Bulgarian sentences from the BulTree-
Bank (Simov et al., 2002; Simov and Osenova,
2003; Simov et al., 2004),
• 2,775Mandarin sentences from the Penn Chi-
nese Treebank (Xue et al., 2004),

• 2,576 Turkish sentences from the METU-
Sabanci Treebank (Atalay et al., 2003; Oflazer et
al., 2003), and
• 1,676 Portuguesesentences from the Bosque
portion of the Floresta Sintá(c)tica Treebank
(Afonso et al., 2002).
The Bulgarian, Turkish, and Portuguese datasets
come from the CoNLL-X shared task (Buchholz
and Marsi, 2006); we thank the organizers.

When comparing a hypothesized treey to a
gold standardy∗, precision and recall measures
are available. If every tree in the gold standard and
every hypothesis tree is such that|yright(0)| = 1,
then precision= recall = F1, since|y| = |y∗|.
|yright(0)| = 1 for all hypothesized trees in this
paper, but not all treebank trees; hence we report
the F1 measure. The test set consists of around
500 sentences (in each language).

Iterative training proceeds until either 100 it-
erations have passed, or the objective converges
within a relative tolerance ofε = 10−5, whichever
occurs first.

Models trained at different hyperparameter set-
tings and with different initializers are selected
using a 500-sentence development set.Unsuper-
visedmodel selection means the model with the
highest training objective value on the develop-
ment set was chosen.Supervisedmodel selection
chooses the model that performs best on the anno-
tated development set. (Oracle andworst model
selection are chosen based on performance on the
test data.)

We use three initialization methods. We run a
single special E step (to get expected counts of
model events) then a single M step that renormal-
izes to get a probabilistic modelΘ(0). In initializer
1, the E step scores each tree as follows (only con-
nected trees are scored):

u(x,yleft ,yright) =
n∏

i=1

∏
j∈y(i)

(
1 +

1
|i− j|

)
(Proper) expectations under these scores are com-

puted using an inside-outside algorithm. Initial-
izer 2 computes expected counts directly, without
dynamic programming. For ann-length sentence,
p(yright(0) = {i}) = 1

n andp(j ∈ y(i)) ∝ 1
|i−j| .

These are scaled by an appropriate constant for
each sentence, then summed across sentences to
compute expected event counts. Initializer 3 as-
sumes a uniform distribution over hidden struc-
tures in the special E step by setting all log proba-
bilities to zero.
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Abstract

Short vowels and other diacritics are not
part of written Arabic scripts. Exceptions
are made for important political and reli-
gious texts and in scripts for beginning stu-
dents of Arabic. Script without diacritics
have considerable ambiguity because many
words with different diacritic patterns ap-
pear identical in a diacritic-less setting. We
propose in this paper a maximum entropy
approach for restoring diacritics in a doc-
ument. The approach can easily integrate
and make effective use of diverse types of
information; the model we propose inte-
grates a wide array of lexical, segment-
based and part-of-speech tag features. The
combination of these feature types leads
to a state-of-the-art diacritization model.
Using a publicly available corpus (LDC’s
Arabic Treebank Part 3), we achieve a di-
acritic error rate of 5.1%, a segment error
rate 8.5%, and a word error rate of 17.3%.
In case-ending-less setting, we obtain a di-
acritic error rate of 2.2%, a segment error
rate 4.0%, and a word error rate of 7.2%.

1 Introduction

Modern Arabic written texts are composed of
scripts without short vowels and other diacritic
marks. This often leads to considerable ambigu-
ity since several words that have different diacritic
patterns may appear identical in a diacritic-less
setting. Educated modern Arabic speakers are able
to accurately restore diacritics in a document. This
is based on the context and their knowledge of the
grammar and the lexicon of Arabic. However, a
text without diacritics becomes a source of confu-
sion for beginning readers and people with learning
disabilities. A text without diacritics is also prob-
lematic for applications such as text-to-speech or
speech-to-text, where the lack of diacritics adds
another layer of ambiguity when processing the
data. As an example, full vocalization of text is
required for text-to-speech applications, where the
mapping from graphemes to phonemes is simple

compared to languages such as English and French;
where there is, in most cases, one-to-one relation-
ship. Also, using data with diacritics shows an
improvement in the accuracy of speech-recognition
applications (Afify et al., 2004). Currently, text-to-
speech, speech-to-text, and other applications use
data where diacritics are placed manually, which
is a tedious and time consuming excercise. A di-
acritization system that restores the diacritics of
scripts, i.e. supply the full diacritical markings,
would be of interest to these applications. It also
would greatly benefit nonnative speakers, sufferers
of dyslexia and could assist in restoring diacritics
of children’s and poetry books, a task that is cur-
rently done manually.

We propose in this paper a statistical approach
that restores diacritics in a text document. The
proposed approach is based on the maximum en-
tropy framework where several diverse sources of
information are employed. The model implicitly
learns the correlation between these types of infor-
mation and the output diacritics.

In the next section, we present the set of diacrit-
ics to be restored and the ambiguity we face when
processing a non-diacritized text. Section 3 gives
a brief summary of previous related works. Sec-
tion 4 presents our diacritization model; we ex-
plain the training and decoding process as well as
the different feature categories employed to restore
the diacritics. Section 5 describes a clearly defined
and replicable split of the LDC’s Arabic Treebank
Part 3 corpus, used to built and evaluate the sys-
tem, so that the reproduction of the results and
future comparison can accurately be established.
Section 6 presents the experimental results. Sec-
tion 7 reports a comparison of our approach to
the finite state machine modeling technique that
showed promissing results in (Nelken and Shieber,
2005). Finally, section 8 concludes the paper and
discusses future directions.

2 Arabic Diacritics

The Arabic alphabet consists of 28 letters that can
be extended to a set of 90 by additional shapes,
marks, and vowels (Tayli and Al-Salamah, 1990).
The 28 letters represent the consonants and long
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vowels such as A��, ù�� (both pronounced as /a:/),

ù
 � (pronounced as /i:/), and ñ� (pronounced as

/u:/). Long vowels are constructed by combin-
ing A��, ù��, ù
 �, and ñ� with the short vowels. The

short vowels and certain other phonetic informa-
tion such as consonant doubling (shadda) are not
represented by letters, but by diacritics. A dia-
critic is a short stroke placed above or below the
consonant. Table 1 shows the complete set of Ara-

Diacritic Name Meaning/

on
�è Pronunciation

Short vowels��è fatha /a/
��è damma /u/
�è� kasra /i/

Doubled case ending (“tanween”)
��è tanween al-fatha /an/
��è tanween al-damma /un/
�è� tanween al-kasra /in/

Syllabification marks��è shadda consonant

doubling��è sukuun vowel

absence

Table 1: Arabic diacritics on the letter – consonant
–

�è (pronounced as /t/).

bic diacritics. We split the Arabic diacritics into
three sets: short vowels, doubled case endings, and
syllabification marks. Short vowels are written as
symbols either above or below the letter in text
with diacritics, and dropped all together in text
without diacritics. We find three short vowels:

• fatha: it represents the /a/ sound and is an

oblique dash over a consonant as in
��è (c.f.

fourth row of Table 1).

• damma: it represents the /u/ sound and is
a loop over a consonant that resembles the
shape of a comma (c.f. fifth row of Table 1).

• kasra: it represents the /i/ sound and is an
oblique dash under a consonant (c.f. sixth row
of Table 1).

The doubled case ending diacritics are vowels used
at the end of the words to mark case distinction,
which can be considered as a double short vowels;
the term “tanween” is used to express this phe-
nomenon. Similar to short vowels, there are three
different diacritics for tanween: tanween al-fatha,

tanween al-damma, and tanween al-kasra. They
are placed on the last letter of the word and have
the phonetic effect of placing an “N” at the end
of the word. Text with diacritics contains also two
syllabification marks:

• shadda: it is a gemination mark placed above

the Arabic letters as in
��è. It denotes the dou-

bling of the consonant. The shadda is usually

combined with a short vowel such as in
���è.

• sukuun: written as a small circle as in
��è. It is

used to indicate that the letter doesn’t contain
vowels.

Figure 1 shows an Arabic sentence transcribed with
and without diacritics. In modern Arabic, writing
scripts without diacritics is the most natural way.
Because many words with different vowel patterns
may appear identical in a diacritic-less setting,
considerable ambiguity exists at the word level.
The word I.

�J», for example, has 21 possible forms

that have valid interpretations when adding dia-
critics (Kirchhoff and Vergyri, 2005). It may have

the interpretation of the verb “to write” in �I.
��J
�
»

(pronounced /kataba/). Also, it can be interpreted

as “books” in the noun form �I.
��J
�
» (pronounced /ku-

tubun/). A study made by (Debili et al., 2002)
shows that there is an average of 11.6 possible di-
acritizations for every non-diacritized word when
analyzing a text of 23,000 script forms.

. �èQ» 	YÖÏ @ ��


K�QË @ I.

�J»

. �è� �Q
��
»
�	Y�ÜÏ @ ���



K�
��QË @ �I.

��J
�
»

Figure 1: The same Arabic sentence without (up-
per row) and with (lower row) diacritics. The En-
glish translation is “the president wrote the docu-
ment.”

Arabic diacritic restoration is a non-trivial task as
expressed in (El-Imam, 2003). Native speakers of
Arabic are able, in most cases, to accurately vo-
calize words in text based on their context, the
speaker’s knowledge of the grammar, and the lex-
icon of Arabic. Our goal is to convert knowledge
used by native speakers into features and incor-
porate them into a maximum entropy model. We
assume that the input text does not contain any
diacritics.

3 Previous Work

Diacritic restoration has been receiving increas-
ing attention and has been the focus of several
studies. In (El-Sadany and Hashish, 1988), a rule
based method that uses morphological analyzer for
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vowelization was proposed. Another, rule-based
grapheme to sound conversion approach was ap-
peared in 2003 by Y. El-Imam (El-Imam, 2003).
The main drawbacks of these rule based methods is
that it is difficult to maintain the rules up-to-date
and extend them to other Arabic dialects. Also,
new rules are required due to the changing nature
of any “living” language.

More recently, there have been several new stud-
ies that use alternative approaches for the diacriti-
zation problem. In (Emam and Fisher, 2004) an
example based hierarchical top-down approach is
proposed. First, the training data is searched hi-
erarchically for a matching sentence. If there is
a matching sentence, the whole utterance is used.
Otherwise they search for matching phrases, then
words to restore diacritics. If there is no match at
all, character n-gram models are used to diacritize
each word in the utterance.

In (Vergyri and Kirchhoff, 2004), diacritics in
conversational Arabic are restored by combining
morphological and contextual information with an
acoustic signal. Diacritization is treated as an un-
supervised tagging problem where each word is
tagged as one of the many possible forms provided
by the Buckwalter’s morphological analyzer (Buck-
walter, 2002). The Expectation Maximization
(EM) algorithm is used to learn the tag sequences.

Y. Gal in (Gal, 2002) used a HMM-based diacriti-
zation approach. This method is a white-space
delimited word based approach that restores only
vowels (a subset of all diacritics).

Most recently, a weighted finite state machine
based algorithm is proposed (Nelken and Shieber,
2005). This method employs characters and larger
morphological units in addition to words. Among
all the previous studies this one is more sophisti-
cated in terms of integrating multiple information
sources and formulating the problem as a search
task within a unified framework. This approach
also shows competitive results in terms of accuracy
when compared to previous studies. In their algo-
rithm, a character based generative diacritization
scheme is enabled only for words that do not occur
in the training data. It is not clearly stated in the
paper whether their method predict the diacritics
shedda and sukuun.

Even though the methods proposed for diacritic
restoration have been maturing and improving over
time, they are still limited in terms of coverage and
accuracy. In the approach we present in this paper,
we propose to restore the most comprehensive list
of the diacritics that are used in any Arabic text.
Our method differs from the previous approaches
in the way the diacritization problem is formulated
and because multiple information sources are inte-
grated. We view the diacritic restoration problem
as sequence classification, where given a sequence

of characters our goal is to assign diacritics to each
character. Our appoach is based on Maximum
Entropy (MaxEnt henceforth) technique (Berger
et al., 1996). MaxEnt can be used for sequence
classification, by converting the activation scores
into probabilities (through the soft-max function,
for instance) and using the standard dynamic pro-
gramming search algorithm (also known as Viterbi
search). We find in the literature several other
approaches of sequence classification such as (Mc-
Callum et al., 2000) and (Lafferty et al., 2001).
The conditional random fields method presented
in (Lafferty et al., 2001) is essentially a MaxEnt
model over the entire sequence: it differs from the
Maxent in that it models the sequence informa-
tion, whereas the Maxent makes a decision for each
state independently of the other states. The ap-
proach presented in (McCallum et al., 2000) com-
bines Maxent with Hidden Markov models to allow
observations to be presented as arbitrary overlap-
ping features, and define the probability of state
sequences given observation sequences.

We report in section 7 a comparative study be-
tween our approach and the most competitive dia-
critic restoration method that uses finite state ma-
chine algorithm (Nelken and Shieber, 2005). The
MaxEnt framework was successfully used to com-
bine a diverse collection of information sources and
yielded a highly competitive model that achieves a
5.1% DER.

4 Automatic Diacritization

The performance of many natural language pro-
cessing tasks, such as shallow parsing (Zhang et
al., 2002) and named entity recognition (Florian
et al., 2004), has been shown to depend on inte-
grating many sources of information. Given the
stated focus of integrating many feature types, we
selected the MaxEnt classifier. MaxEnt has the
ability to integrate arbitrary types of information
and make a classification decision by aggregating
all information available for a given classification.

4.1 Maximum Entropy Classifiers

We formulate the task of restoring diacritics as
a classification problem, where we assign to each
character in the text a label (i.e., diacritic). Be-
fore formally describing the method1, we introduce
some notations: let Y = {y1, . . . , yn} be the set of
diacritics to predict or restore, X be the example
space and F = {0, 1}

m
be a feature space. Each ex-

ample x ∈ X has associated a vector of binary fea-
tures f (x) = (f1 (x) , . . . , fm (x)). In a supervised
framework, like the one we are considering here, we
have access to a set of training examples together
with their classifications: {(x1, y1) , . . . , (xk, yk)}.

1This is not meant to be an in-depth introduction
to the method, but a brief overview to familiarize the
reader with them.
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The MaxEnt algorithm associates a set of weights
(αij)

i=1...n

j=1...m
with the features, which are estimated

during the training phase to maximize the likeli-
hood of the data (Berger et al., 1996). Given these
weights, the model computes the probability dis-
tribution over labels for a particular example x as
follows:

P (y|x) =
1

Z(x)

m
∏

j=1

α
fj (x)
ij , Z(x) =

∑

i

∏

j

α
fj (x)
ij

where Z(X ) is a normalization factor. To esti-
mate the optimal αj values, we train our Max-
Ent model using the sequential conditional gener-
alized iterative scaling (SCGIS) technique (Good-
man, 2002). While the MaxEnt method can nicely
integrate multiple feature types seamlessly, in cer-
tain cases it is known to overestimate its confidence
in especially low-frequency features. To overcome
this problem, we use the regularization method
based on adding Gaussian priors as described in
(Chen and Rosenfeld, 2000). After computing the
class probability distribution, the chosen diacritic
is the one with the most aposteriori probability.
The decoding algorithm, described in section 4.2,
performs sequence classification, through dynamic
programming.

4.2 Search to Restore Diacritics

We are interested in finding the diacritics of all
characters in a script or a sentence. These dia-
critics have strong interdependencies which can-
not be properly modeled if the classification is per-
formed independently for each character. We view
this problem as sequence classification, as con-
trasted with an example-based classification prob-
lem: given a sequence of characters in a sentence
x1x2 . . . xL, our goal is to assign diacritics (labels)
to each character, resulting in a sequence of diacrit-
ics y1y2 . . . yL. We make an assumption that dia-
critics can be modeled as a limited order Markov
sequence: the diacritic associated with the char-
acter i depends only on the diacritics associated
with the k previous diacritics, where k is usually
equal to 3. Given this assumption, and the nota-
tion xL

1 = x1 . . . xL, the conditional probability of
assigning the diacritic sequence yL

1 to the character
sequence xL

1 becomes

p
(

yL
1 |x

L
1

)

=

p
(

y1|x
L
1

)

p
(

y2|x
L
1 , y1

)

. . . p
(

yL|x
L
1 , yL−1

L−k+1

)

(1)
and our goal is to find the sequence that maximizes
this conditional probability

ŷL
1 = arg max

yL
1

p
(

yL
1 |x

L
1

)

(2)

While we restricted the conditioning on the classi-
fication tag sequence to the previous k diacritics,

we do not impose any restrictions on the condition-
ing on the characters – the probability is computed
using the entire character sequence xL

1 .

To obtain the sequence in Equation (2), we create
a classification tag lattice (also called trellis), as
follows:

• Let xL
1 be the input sequence of character and

S = {s1, s2, . . . , sm} be an enumeration of Yk

(m = |Y|
k
) - we will call an element sj a state.

Every such state corresponds to the labeling
of k successive characters. We find it useful
to think of an element si as a vector with k

elements. We use the notations si [j] for jth

element of such a vector (the label associated
with the token xi−k+j+1) and si [j1 . . . j2] for
the sequence of elements between indices j1

and j2.

• We conceptually associate every character
xi, i = 1, . . . , L with a copy of S, Si =
{

si
1, . . . , s

i
m

}

; this set represents all the possi-

ble labelings of characters xi
i−k+1 at the stage

where xi is examined.

• We then create links from the set Si to the
Si+1, for all i = 1 . . . L− 1, with the property
that

w
(

s
i
j1

, s
i+1

j2

)

=







p
(

si+1

j1
[k] |xL

1 , si+1

j2
[1..k − 1]

)

if si
j1

[2..k] = si+1

j2
[1..k − 1]

0 otherwise

These weights correspond to probability of a
transition from the state si

j1
to the state si+1

j2
.

• For every character xi, we compute recur-
sively2

β0 (sj) = 0, j = 1, . . . , k

βi (sj) = max
j1=1,...,M

βi−1 (sj1 ) + log w
(

s
i−1

j1
, s

i
j

)

γi (sj) =

arg max
j1=1,...,M

βi−1 (sj1 ) + log w
(

s
i−1

j1
, s

i
j

)

Intuitively, βi (sj) represents the log-
probability of the most probable path through
the lattice that ends in state sj after i steps,
and γi (sj) represents the state just before sj

on that particular path.

• Having computed the (βi)i values, the algo-
rithm for finding the best path, which corre-
sponds to the solution of Equation (2) is

1. Identify ŝL
L = arg maxj=1...L βL (sj)

2. For i = L− 1 . . . 1, compute

ŝi
i = γi+1

(

ŝi+1
i+1

)

2For convenience, the index i associated with state
si

j is moved to β; the function βi (sj) is in fact β
(

si
j

)

.
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3. The solution for Equation (2) is given by

ŷ =
{

ŝ1
1[k], ŝ2

2[k], . . . , ŝL
L [k]

}

The runtime of the algorithm is Θ
(

|Y|
k
· L

)

, linear

in the size of the sentence L but exponential in the
size of the Markov dependency, k. To reduce the
search space, we use beam-search.

4.3 Features Employed

Within the MaxEnt framework, any type of fea-
tures can be used, enabling the system designer to
experiment with interesting feature types, rather
than worry about specific feature interactions. In
contrast, with a rule based system, the system de-
signer would have to consider how, for instance,
lexical derived information for a particular exam-
ple interacts with character context information.
That is not to say, ultimately, that rule-based sys-
tems are in some way inferior to statistical mod-
els – they are built using valuable insight which
is hard to obtain from a statistical-model-only ap-
proach. Instead, we are merely suggesting that the
output of such a rule-based system can be easily
integrated into the MaxEnt framework as one of
the input features, most likely leading to improved
performance.

Features employed in our system can be divided
into three different categories: lexical, segment-
based, and part-of-speech tag (POS) features. We
also use the previously assigned two diacritics as
additional features.

In the following, we briefly describe the different
categories of features:

• Lexical Features: we include the charac-
ter n-gram spanning the curent character xi,
both preceding and following it in a win-
dow of 7: {xi−3, . . . , xi+3}. We use the cur-
rent word wi and its word context in a win-
dow of 5 (forward and backward trigram):
{wi−2, . . . , wi+2}. We specify if the character
of analysis is at the beginning or at the end
of a word. We also add joint features between
the above source of information.

• Segment-Based Features : Arabic blank-
delimited words are composed of zero or more
prefixes, followed by a stem and zero or more
suffixes. Each prefix, stem or suffix will be
called a segment in this paper. Segments are
often the subject of analysis when processing
Arabic (Zitouni et al., 2005). Syntactic in-
formation such as POS or parse information
is usually computed on segments rather than
words. As an example, the Arabic white-space

delimited word Ñî �DÊK. A
��̄
contains a verb ÉK. A

��̄
, a

third-person feminine singular subject-marker

�H (she), and a pronoun suffix Ñë (them); it

is also a complete sentence meaning “she met
them.” To separate the Arabic white-space
delimited words into segments, we use a seg-
mentation model similar to the one presented
by (Lee et al., 2003). The model obtains an
accuracy of about 98%. In order to simulate
real applications, we only use segments gener-
ated by the model rather than true segments.
In the diacritization system, we include the
current segment ai and its word segment con-
text in a window of 5 (forward and backward
trigram): {ai−2, . . . , ai+2}. We specify if the
character of analysis is at the beginning or at
the end of a segment. We also add joint infor-
mation with lexical features.

• POS Features : we attach to the segment
ai of the current character, its POS: POS(ai).
This is combined with joint features that in-
clude the lexical and segment-based informa-
tion. We use a statistical POS tagging system
built on Arabic Treebank data with MaxEnt
framework (Ratnaparkhi, 1996). The model
has an accuracy of about 96%. We did not
want to use the true POS tags because we
would not have access to such information in
real applications.

5 Data

The diacritization system we present here is
trained and evaluated on the LDC’s Arabic Tree-
bank of diacritized news stories – Part 3 v1.0: cata-
log number LDC2004T11 and ISBN 1-58563-298-8.
The corpus includes complete vocalization (includ-
ing case-endings). We introduce here a clearly de-
fined and replicable split of the corpus, so that the
reproduction of the results or future investigations
can accurately and correctly be established. This
corpus includes 600 documents from the An Nahar
News Text. There are a total of 340,281 words. We
split the corpus into two sets: training data and de-
velopment test (devtest) data. The training data
contains 288,000 words approximately, whereas the
devtest contains close to 52,000 words. The 90
documents of the devtest data are created by tak-
ing the last (in chronological order) 15% of docu-
ments dating from “20021015 0101” (i.e., October
15, 2002) to “20021215 0045” (i.e., December 15,
2002). The time span of the devtest is intention-
ally non-overlapping with that of the training set,
as this models how the system will perform in the
real world.

Previously published papers use proprietary cor-
pus or lack clear description of the training/devtest
data split, which make the comparison to other
techniques difficult. By clearly reporting the split
of the publicly available LDC’s Arabic Treebank

581



corpus in this section, we want future comparisons
to be correctly established.

6 Experiments

Experiments are reported in terms of word error
rate (WER), segment error rate (SER), and di-
acritization error rate (DER). The DER is the
proportion of incorrectly restored diacritics. The
WER is the percentage of incorrectly diacritized
white-space delimited words: in order to be
counted as incorrect, at least one character in the
word must have a diacritization error. The SER
is similar to WER but indicates the proportion of
incorrectly diacritized segments. A segment can
be a prefix, a stem, or a suffix. Segments are often
the subject of analysis when processing Arabic (Zi-
touni et al., 2005). Syntactic information such as
POS or parse information is based on segments
rather than words. Consequently, it is important
to know the SER in cases where the diacritization
system may be used to help disambiguate syntactic
information.

Several modern Arabic scripts contains the con-
sonant doubling “shadda”; it is common for na-
tive speakers to write without diacritics except the
shadda. In this case the role of the diacritization
system will be to restore the short vowels, doubled
case ending, and the vowel absence “sukuun”. We
run two batches of experiments: a first experiment
where documents contain the original shadda and
a second one where documents don’t contain any
diacritics including the shadda. The diacritization
system proceeds in two steps when it has to pre-
dict the shadda: a first step where only shadda is
restored and a second step where other diacritics
(excluding shadda) are predicted.

To assess the performance of the system under dif-
ferent conditions, we consider three cases based on
the kind of features employed:

1. system that has access to lexical features only;

2. system that has access to lexical and segment-
based features;

3. system that has access to lexical, segment-
based and POS features.

The different system types described above use the
two previously assigned diacritics as additional fea-
ture. The DER of the shadda restoration step is
equal to 5% when we use lexical features only, 0.4%
when we add segment-based information, and 0.3%
when we employ lexical, POS, and segment-based
features.

Table 2 reports experimental results of the diacriti-
zation system with different feature sets. Using
only lexical features, we observe a DER of 8.2%
and a WER of 25.1% which is competitive to a

True shadda Predicted shadda
WER SER DER WER SER DER

Lexical features
24.8 12.6 7.9 25.1 13.0 8.2

Lexical + segment-based features
18.2 9.0 5.5 18.8 9.4 5.8

Lexical + segment-based + POS features
17.3 8.5 5.1 18.0 8.9 5.5

Table 2: The impact of features on the diacriti-
zation system performance. The columns marked
with “True shadda” represent results on docu-
ments containing the original consonant doubling
“shadda” while columns marked with “Predicted
shadda” represent results where the system re-
stored all diacritics including shadda.

state-of-the-art system evaluated on Arabic Tree-
bank Part 2: in (Nelken and Shieber, 2005) a DER
of 12.79% and a WER of 23.61% are reported.
The system they described in (Nelken and Shieber,
2005) uses lexical, segment-based, and morpholog-
ical information. Table 2 also shows that, when
segment-based information is added to our sys-
tem, a significant improvement is achieved: 25%
for WER (18.8 vs. 25.1), 38% for SER (9.4 vs.
13.0), and 41% for DER (5.8 vs. 8.2). Similar be-
havior is observed when the documents contain the
original shadda. POS features are also helpful in
improving the performance of the system. They
improved the WER by 4% (18.0 vs. 18.8), SER by
5% (8.9 vs. 9.4), and DER by 5% (5.5 vs. 5.8).

Case-ending in Arabic documents consists of the
diacritic attributed to the last character in a white-
space delimited word. Restoring them is the most
difficult part in the diacritization of a document.
Case endings are only present in formal or highly
literary scripts. Only educated speakers of mod-
ern standard Arabic master their use. Technically,
every noun has such an ending, although at the
end of a sentence no inflection is pronounced, even
in formal speech, because of the rules of ‘pause’.
For this reason, we conduct another experiment in
which case-endings were stripped throughout the
training and testing data without the attempt to
restore them.

We present in Table 3 the performance of the di-
acritization system on documents without case-
endings. Results clearly show that when case-
endings are omitted, the WER declines by 58%
(7.2% vs. 17.3%), SER is decreased by 52% (4.0%
vs. 8.5%), and DER is reduced by 56% (2.2% vs.
5.1%). Also, Table 3 shows again that a richer
set of features results in a better performance;
compared to a system using lexical features only,
adding POS and segment-based features improved
the WER by 38% (7.2% vs. 11.8%), the SER by
39% (4.0% vs. 6.6%), and DER by 38% (2.2% vs.
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True shadda Predicted shadda
WER SER DER WER SER DER

Lexical features
11.8 6.6 3.6 12.4 7.0 3.9

Lexical + segment-based features
7.8 4.4 2.4 8.6 4.8 2.7

Lexical + segment-based + POS features
7.2 4.0 2.2 7.9 4.4 2.5

Table 3: Performance of the diacritization system
based on employed features. System is trained
and evaluated on documents without case-ending.
Columns marked with “True shadda” represent re-
sults on documents containing the original con-
sonant doubling “shadda” while columns marked
with “Predicted shadda” represent results where
the system restored all diacritics including shadda.

3.6%). Similar to the results reported in Table 2,
we show that the performance of the system are
similar whether the document contains the origi-
nal shadda or not. A system like this trained on
non case-ending documents can be of interest to
applications such as speech recognition, where the
last state of a word HMM model can be defined to
absorb all possible vowels (Afify et al., 2004).

7 Comparison to other approaches

As stated in section 3, the most recent and ad-
vanced approach to diacritic restoration is the one
presented in (Nelken and Shieber, 2005): they
showed a DER of 12.79% and a WER of 23.61% on
Arabic Treebank corpus using finite state transduc-
ers (FST) with a Katz language modeling (LM) as
described in (Chen and Goodman, 1999). Because
they didn’t describe how they split their corpus
into training/test sets, we were not able to use the
same data for comparison purpose.

In this section, we want essentially to duplicate
the aforementioned FST result for comparison us-
ing the identical training and testing set we use for
our experiments. We also propose some new vari-
ations on the finite state machine modeling tech-
nique which improve performance considerably.

The algorithm for FST based vowel restoration
could not be simpler: between every pair of char-
acters we insert diacritics if doing so improves
the likelihood of the sequence as scored by a sta-
tistical n-gram model trained upon the training
corpus. Thus, in between every pair of charac-
ters we propose and score all possible diacritical
insertions. Results reported in Table 4 indicate
the error rates of diacritic restoration (including
shadda). We show performance using both Kneser-
Ney and Katz LMs (Chen and Goodman, 1999)
with increasingly large n-grams. It is our opinion
that large n-grams effectively duplicate the use of
a lexicon. It is unfortunate but true that, even for

a rich resource like the Arabic Treebank, the choice
of modeling heuristic and the effects of small sam-
ple size are considerable. Using the finite state ma-
chine modeling technique, we obtain similar results
to those reported in (Nelken and Shieber, 2005): a
WER of 23% and a DER of 15%. Better perfor-
mance is reached with the use of Kneser-Ney LM.

These results still under-perform those obtained
by MaxEnt approach presented in Table 2. When
all sources of information are included, the Max-
Ent technique outperforms the FST model by 21%
(22% vs. 18%) in terms of WER and 39% (9% vs.
5.5%) in terms of DER.

The SER reported on Table 2 and Table 3 are based
on the Arabic segmentation system we use in the
MaxEnt approach. Since, the FST model doesn’t
use such a system, we found inappropriate to re-
port SER in this section.

Katz LM Kneser-Ney LM
n-gram size WER DER WER DER

3 63 31 55 28
4 54 25 38 19
5 51 21 28 13
6 44 18 24 11
7 39 16 23 11
8 37 15 23 10

Table 4: Error Rate in % for n-gram diacritic
restoration using FST.

We propose in the following an extension to the
aforementioned FST model, where we jointly de-
termines not only diacritics but segmentation into
affixes as described in (Lee et al., 2003). Table 5
gives the performance of the extended FST model
where Kneser-Ney LM is used, since it produces
better results. This should be a much more dif-
ficult task, as there are more than twice as many
possible insertions. However, the choice of diacrit-
ics is related to and dependent upon the choice of
segmentation. Thus, we demonstrate that a richer
internal representation produces a more powerful
model.

8 Conclusion

We presented in this paper a statistical model for
Arabic diacritic restoration. The approach we pro-
pose is based on the Maximum entropy framework,
which gives the system the ability to integrate dif-
ferent sources of knowledge. Our model has the ad-
vantage of successfully combining diverse sources
of information ranging from lexical, segment-based
and POS features. Both POS and segment-based
features are generated by separate statistical sys-
tems – not extracted manually – in order to sim-
ulate real world applications. The segment-based
features are extracted from a statistical morpho-
logical analysis system using WFST approach and
the POS features are generated by a parsing model
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True Shadda Predicted Shadda
n-gram size Kneser-Ney Kneser-Ney

WER DER WER DER
3 49 23 52 27
4 34 14 35 17
5 26 11 26 12
6 23 10 23 10
7 23 9 22 10
8 23 9 22 10

Table 5: Error Rate in % for n-gram dia-
critic restoration and segmentation using FST
and Kneser-Ney LM. Columns marked with “True
shadda” represent results on documents contain-
ing the original consonant doubling “shadda” while
columns marked with “Predicted shadda” repre-
sent results where the system restored all diacritics
including shadda.

that also uses Maximum entropy framework. Eval-
uation results show that combining these sources of
information lead to state-of-the-art performance.

As future work, we plan to incorporate Buckwalter
morphological analyzer information to extract new
features that reduce the search space. One idea will
be to reduce the search to the number of hypothe-
ses, if any, proposed by the morphological analyzer.
We also plan to investigate additional conjunction
features to improve the accuracy of the model.
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Abstract 

General information retrieval systems are 
designed to serve all users without con-
sidering individual needs. In this paper, 
we propose a novel approach to person-
alized search. It can, in a unified way, 
exploit and utilize implicit feedback in-
formation, such as query logs and imme-
diately viewed documents. Moreover, our 
approach can implement result re-ranking 
and query expansion simultaneously and 
collaboratively. Based on this approach, 
we develop a client-side personalized web 
search agent PAIR (Personalized Assis-
tant for Information Retrieval), which 
supports both English and Chinese. Our 
experiments on TREC and HTRDP col-
lections clearly show that the new ap-
proach is both effective and efficient. 

1 Introduction 

Analysis suggests that, while current information 
retrieval systems, e.g., web search engines, do a 
good job of retrieving results to satisfy the range 
of intents people have, they are not so well in 
discerning individuals’ search goals (J. Teevan et 
al., 2005). Search engines encounter problems 
such as query ambiguity and results ordered by 
popularity rather than relevance to the user’s in-
dividual needs. 

To overcome the above problems, there have 
been many attempts to improve retrieval accuracy 
based on personalized information. Relevance 
Feedback (G. Salton and C. Buckley, 1990) is the 
main post-query method for automatically im-
proving a system’s accuracy of a user’s individual 
need. The technique relies on explicit relevance 
assessments (i.e. indications of which documents 
contain relevant information). Relevance feed-
back has been proved to be quite effective for 

improving retrieval accuracy (G. Salton and C. 
Buckley, 1990; J. J. Rocchio, 1971). However, 
searchers may be unwilling to provide relevance 
information through explicitly marking relevant 
documents (M. Beaulieu and S. Jones, 1998). 

Implicit Feedback, in which an IR system un-
obtrusively monitors search behavior, removes 
the need for the searcher to explicitly indicate 
which documents are relevant (M. Morita and Y. 
Shinoda, 1994). The technique uses implicit 
relevance indications, although not being as ac-
curate as explicit feedback, is proved can be an 
effective substitute for explicit feedback in in-
teractive information seeking environments (R. 
White et al., 2002). In this paper, we utilize the 
immediately viewed documents, which are the 
clicked results in the same query, as one type of 
implicit feedback information. Research shows 
that relative preferences derived from immedi-
ately viewed documents are reasonably accurate 
on average (T. Joachims et al., 2005). 

Another type of implicit feedback information 
that we exploit is users’ query logs. Anyone who 
uses search engines has accumulated lots of click 
through data, from which we can know what 
queries were, when queries occurred, and which 
search results were selected to view. These query 
logs provide valuable information to capture us-
ers’ interests and preferences. 

Both types of implicit feedback information 
above can be utilized to do result re-ranking and 
query expansion, (J. Teevan et al., 2005; Xuehua 
Shen. et al., 2005) which are the two general ap-
proaches to personalized search. (J. Pitkow et al., 
2002) However, to the best of our knowledge, 
how to exploit these two types of implicit feed-
back in a unified way, which not only brings col-
laboration between query expansion and result 
re-ranking but also makes the whole system more 
concise, has so far not been well studied in the 
previous work. In this paper, we adopt HITS al-
gorithm (J. Kleinberg, 1998), and propose a 
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HITS-like iterative approach addressing such a 
problem. 

Our work differs from existing work in several 
aspects: (1) We propose a HITS-like iterative 
approach to personalized search, based on which, 
implicit feedback information, including imme-
diately viewed documents and query logs, can be 
utilized in a unified way. (2) We implement re-
sult re-ranking and query expansion simultane-
ously and collaboratively triggered by every 
click. (3) We develop and evaluate a client-side 
personalized web search agent PAIR, which 
supports both English and Chinese. 

The remaining of this paper is organized as 
follows. Section 2 describes our novel approach 
for personalized search. Section 3 provides the 
architecture of PAIR system and some specific 
techniques. Section 4 presents the details of the 
experiment. Section 5 discusses the previous 
work related to our approach. Section 6 draws 
some conclusions of our work. 

2 Iterative Implicit Feedback Approach 

We propose a HITS-like iterative approach for 
personalized search. HITS (Hyperlink-Induced 
Topic Search) algorithm, first described by (J. 
Kleinberg, 1998), was originally used for the 
detection of high-score hub and authority web 
pages. The Authority pages are the central web 
pages in the context of particular query topics. 
The strongest authority pages consciously do not 
link one another1 — they can only be linked by 
some relatively anonymous hub pages. The mu-
tual reinforcement principle of HITS states that a 
web page is a good authority page if it is linked by 
many good hub pages, and that a web page is a 
good hub page if it links many good authority 
pages. A directed graph is constructed, of which 
the nodes represent web pages and the directed 
edges represent hyperlinks. After iteratively 
computing based on the reinforcement principle, 
each node gets an authority score and a hub score. 

In our approach, we exploit the relationships 
between documents and terms in a similar way to 
HITS. Unseen search results, those results which 
are retrieved from search engine yet not been 
presented to the user, are considered as “authority 
pages”. Representative terms are considered as 
“hub pages”. Here the representative terms are the 
terms extracted from and best representing the 
implicit feedback information. Representative 
terms confer a relevance score to the unseen 
                                                           
1 For instance, There is hardly any other company’s Web 
page linked from “http://www.microsoft.com/” 

search results — specifically, the unseen search 
results, which contain more good representative 
terms, have a higher possibility of being relevant; 
the representative terms should be more repre-
sentative, if they occur in the unseen search re-
sults that are more likely to be relevant. Thus, 
also there is mutual reinforcement principle ex-
isting between representative terms and unseen 
search results. By the same token, we constructed 
a directed graph, of which the nodes indicate un-
seen search results and representative terms, and 
the directed edges represent the occurrence of the 
representative terms in the unseen search results. 
The following Table 1 shows how our approach 
corresponds to HITS algorithm. 
 

The Directed Graph 
Approaches

Nodes Edges 
HITS Authority Pages Hub Pages Hyperlinks
Our  

Approach
Unseen Search 

Results 
Representative 

Terms Occurrence2

Table 1. Our approach versus HITS. 
 

Because we have already known that the rep-
resentative terms are “hub pages”, and that the 
unseen search results are “authority pages”, with 
respect to the former, only hub scores need to be 
computed; with respect to the latter, only author-
ity scores need to be computed. 

Finally, after iteratively computing based on 
the mutual reinforcement principle we can 
re-rank the unseen search results according to 
their authority scores, as well as select the repre-
sentative terms with highest hub scores to ex-
pand the query. Below we present how to con-
struct a directed graph to begin with. 

2.1 Constructing a Directed Graph 

We can view the unseen search results and the 
representative terms as a directed graph G = (V, E). 
A sample directed graph is shown in Figure 1: 

 

 
Figure 1. A sample directed graph. 

 
The nodes V correspond to the unseen search 

results (the rectangles in Figure 1) and the repre-
                                                           
2 The occurrence of the representative terms in the unseen 
search results. 
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sentative terms (the circles in Figure 1); a di-
rected edge “p→q∈E” is weighed by the fre-
quency of the occurrence of a representative term 
p in an unseen search result q (e.g., the number 
put on the edge “t1→r2” indicates that t1 occurs 
twice in r2). We say that each representative term 
only has an out-degree which is the number of the 
unseen search results it occurs in, as well as that 
each unseen search result only has an in-degree 
which is the count of the representative terms it 
contains. Based on this, we assume that the un-
seen search results and the representative terms 
respectively correspond to the authority pages 
and the hub pages — this assumption is used 
throughout the proposed algorithm. 

2.2 A HITS-like Iterative Algorithm 

In this section, we present how to initialize the 
directed graph and how to iteratively compute the 
authority scores and the hub scores. And then 
according to these scores, we show how to re-rank 
the unseen search results and expand the initial 
query. 

Initially, each unseen search result of the query 
are considered equally authoritative, that is, 

0 0 0

1 2 | |
1 | |

Y
Yy y y= …= =                  (1) 

Where vector Y indicates authority scores of the 
overall unseen search results, and |Y| is the size of 
such a vector. Meanwhile, each representative 
term, with the term frequency tfj in the history 
query logs that have been judged related to the 
current query, obtains its hub score according to 
the follow formulation: 

0
| |

1

X

j i
j itf tfx

=
= ∑                       (2) 

Where vector X indicates hub scores of the overall 
representative terms, and |X| is the size of the 
vector X. The nodes of the directed graph are 
initialized in this way. Next, we associate each 
edge with a weight: 

,( )ji i jw tft r→ =                     (3) 

Where tfi,j indicates the term frequency of the 
representative term ti occurring in the unseen 
search result rj; “w(ti→ rj)” is the weight of edge 
that link from ti to rj. For instance, in Figure 1, 
w(t1→ r2) = 2. 

After initialization, the iteratively computing of 
hub scores and authority scores starts. 

The hub score of each representative term is 
re-computed based on three factors: the authority 
scores of each unseen search result where this 

term occurs; the occurring frequency of this term 
in each unseen search result; the total occurrence 
of every representative term in each unseen search 
result. The formulation for re-computing hub 
scores is as follows: 

( 1)

:
:
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n

w
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t r
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→
=

→∑ ∑
    (4) 

Where x`i
(k+1) is the hub score of a representative 

term ti after (k+1)th iteration; yj
k is the authority 

score of an unseen search result rj after kth itera-
tion; “∀j: ti→rj” indicates the set of all unseen 
search results those ti occurs in; “∀n: tn→rj” in-
dicates the set of all representative terms those rj 
contains. 

The authority score of each unseen search re-
sult is also re-computed relying on three factors: 
the hub scores of each representative term that 
this search result contains; the occurring fre-
quency of each representative term in this search 
result; the total occurrence of each representative 
term in every unseen search results. The formu-
lation for re-computing authority scores is as 
follows: 

( 1)

:
:
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Where y`j
(k+1) is the authority score of an unseen 

search result rj after (k+1)th iteration; xi
k  is the 

hub score of a representative term ti after kth it-
eration; “∀i: ti→rj” indicates the set of all repre-
sentative terms those rj contains; “∀m: ti→rm” 
indicates the set of all unseen search results those 
ti occurs in. 

After re-computation, the hub scores and the 
authority scores are normalized to 1. The formu-
lation for normalization is as follows: 

| | | |

1 1

and
' '
' '

j i
iY Xj

kkk k

y xy x
y x

= =

=   =

∑ ∑

              (6) 

The iteration, including re-computation and 
normalization, is repeated until the changes of the 
hub scores and the authority scores are smaller 
than some predefined threshold θ (e.g. 10-6). 
Specifically, after each repetition, the changes in 
authority scores and hub scores are computed 
using the following formulation: 

2 2( 1) ( 1)
| | | |

1 1
( ) ( )

k k k k
i ij j

Y x

j i
c y y x x

+ +

= =
= − + −∑ ∑        (7) 

The iteration stops if c<θ. Moreover, the itera-
tion will also stop if repetition has reached a 
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predefined times k (e.g. 30). The procedure of the 
iteration is shown in Figure 2. 

As soon as the iteration stops, the top n unseen 
search results with highest authority scores are 
selected and recommended to the user; the top m 
representative terms with highest hub scores are 
selected to expand the original query. Here n is a 
predefined number (in PAIR system we set n=3, 
n is given a small number because using implicit 
feedback information is sometimes risky.) m is 
determined according to the position of the big-
gest gap, that is, if ti – ti+1 is bigger than the gap 
of any other two neighboring ones of the top half 
representative terms, then m is given a value i. 
Furthermore, some of these representative terms 
(e.g. top 50% high score terms) will be again used 
in the next time of implementing the iterative 
algorithm together with some newly incoming 
terms extracted from the just now click. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. The HITS-like iterative algorithm. 
 

3 Implementation 

3.1 System Design 

In this section, we present our experimental sys-
tem PAIR, which is an IE Browser Helper Object 
(BHO) based on the popular Web search engine 
Google. PAIR has three main modules: Result 
Retrieval module, User Interactions module, and 
Iterative Algorithm module. The architecture is 
shown in Figure 3. 

The Result Retrieval module runs in back-
grounds and retrieves results from search engine. 
When the query has been expanded, this module 
will use the new keywords to continue retrieving. 

The User Interactions module can handle three 
types of basic user actions: (1) submitting a query; 
(2) clicking to view a search result; (3) clicking 
the “Next Page” link. For each of these actions, 

the system responds with: (a) exploiting and ex-
tracting representative terms from implicit feed-
back information; (b) fetching the unseen search 
results via Results Retrieval module; (c) sending 
the representative terms and the unseen search 
results to Iterative Algorithm module. 

 

 
Figure 3. The architecture of PAIR. 

 
The Iterative Algorithm module implements 

the HITS-like algorithm described in section 2. 
When this module receives data from User In-
teractions module, it responds with: (a) iteratively 
computing the hub scores and authority scores; (b) 
re-ranking the unseen search results and expand-
ing the original query. 

Some specific techniques for capturing and 
exploiting implicit feedback information are de-
scribed in the following sections. 

3.2 Extract Representative Terms from 
Query Logs 

We judge whether a query log is related to the 
current query based on the similarity between the 
query log and the current query text. Here the 
query log is associated with all documents that 
the user has selected to view. The form of each 
query log is as follows 

<query text><query time> [clicked documents]* 
The “clicked documents” consist of URL, title 
and snippet of every clicked document. The rea-
son why we utilize the query text of the current 
query but not the search results (including title, 
snippet, etc.) to compute the similarity, is out of 
consideration for efficiency. If we had used the 
search results to determine the similarity, the 
computation could only start once the search en-
gine has returned the search results. In our method, 
instead, we can exploit query logs while search 
engine is doing retrieving. Notice that although 
our system only utilizes the query logs in the last 
24 hours; in practice, we can exploit much more 
because of its low computation cost with respect 
to the retrieval process performed in parallel.

Iterate (T, R, k, θ) 
T: a collection of m terms 
R: a collection of n search results 
k: a natural number 
θ: a predefined threshold 
Apply (1) to initialize Y. 
Apply (2) to initialize X. 
Apply (3) to initialize W. 
For i = 1, 2…, k 

Apply (4) to (Xi-1, Yi-1) and obtain X`i. 
Apply (5) to (Xi-1, Yi-1) and obtain Y`i. 
Apply (6) to Normalize X`i and Y`i, and respectively 

obtain Xi and Yi. 
Apply (7) and obtain c. 
If c<θ, then break. 

End 
Return (X, Y). 
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Table 2. Sample results of re-ranking. The search results in boldface are the ones that our system rec-
ommends to the user. “-3” and “-2” in the right side of some results indicate the how their ranks descend. 
 

We use the standard vector space retrieval 
model (G. Salton and M. J. McGill, 1983) to 
compute the similarity. If the similarity between 
any query log and the current query exceeds a 
predefined threshold, the query log will be con-
sidered to be related to current query. Our system 
will attempt to extract some (e.g. 30%) represen-
tative terms from such related query logs ac-
cording to the weights computed by applying the 
following formulation: 

( )i i i
w f idftt =                      (8) 

Where tfi and idfi respectively are the term fre-
quency and inverse document frequency of ti in 
the clicked documents of a related query log. 
This formulation means that a term is more rep-
resentative if it has a higher frequency as well as 
a broader distribution in the related query log. 

3.3 Extract Representative Terms from 
Immediately Viewed Documents 

The representative terms extracted from immedi-
ately viewed documents are determined based on 
three factors: term frequency in the immediately 
viewed document, inverse document frequency in 
the entire seen search results, and a discriminant 
value. The formulation is as follows:  

( ) ( )N
i ii i

r ddw d
x xtf idfx x= × ×             (9) 

Where tfxi
dr is the term frequency of term xi in the 

viewed results set dr; tfxi
dr is the inverse document 

frequency of xi in the entire seen results set dN. 
And the discriminant value d(xi) of xi is computed 
using the weighting schemes F2 (S. E. Robertson 
and K. Sparck Jones, 1976) as follows: 

( ) ln
( ) ( )i

r Rd
n r N Rx =

− −
                 (10) 

Where r is the number of the immediately viewed 
documents containing term xi; n is the number of 
the seen results containing term xi; R is the num-
ber of the immediately viewed documents in the 
query; N is the number of the entire seen results.  

3.4 Sample Results 

Unlike other systems which do result re-ranking 
and query expansion respectively in different 
ways, our system implements these two functions 
simultaneously and collaboratively —  Query 
expansion provides diversified search results 
which must rely on the use of re-ranking to be 
moved forward and recommended to the user. 

 

 
Figure 4. A screen shot for query expansion. 

 
After iteratively computing using our approach, 

the system selects some search results with top 
highest authority scores and recommends them to 
the user. In Table 2, we show that PAIR suc-
cessfully re-ranks the unseen search results of 
“jaguar” respectively using the immediately 

Google result PAIR result  

query = “jaguar” query = “jaguar” 
After the 4th result being clicked 

query = “jaguar” 
“car” ∈ query logs 

1 Jaguar 
www.jaguar.com/ 

Jaguar 
www.jaguar.com/ 

Jaguar UK - Jaguar Cars 
www.jaguar.co.uk/ 

2 Jaguar CA - Jaguar Cars 
www.jaguar.com/ca/en/ 

Jaguar CA - Jaguar Cars 
www.jaguar.com/ca/en/ 

Jaguar UK - R is for… 
www.jaguar-racing.com/ 

3 Jaguar Cars 
www.jaguarcars.com/ 

Jaguar Cars 
www.jaguarcars.com/ 

Jaguar 
www.jaguar.com/ 

4 Apple - Mac OS X 
www.apple.com/macosx/ 

Apple - Mac OS X 
www.apple.com/macosx/ 

Jaguar CA - Jaguar Cars 
www.jaguar.com/ca/en/                      -2 

5 Apple - Support … 
www.apple.com/support/... 

Amazon.com: Mac OS X 10.2… 
www.amazon.com/exec/obidos/... 

Jaguar Cars 
www.jaguarcars.com/                        -2 

6 Jaguar UK - Jaguar Cars 
www.jaguar.co.uk/ 

Mac OS X 10.2 Jaguar… 
arstechnica.com/reviews/os… 

Apple - Mac OS X 
www.apple.com/macosx/                     -2 

7 Jaguar UK - R is for… 
www.jaguar-racing.com/ 

Macworld: News: Macworld… 
maccentral.macworld.com/news/… 

Apple - Support … 
www.apple.com/support/...                    -2 

8 Jaguar 
dspace.dial.pipex.com/… 

Apple - Support… 
www.apple.com/support/...                -3 

Jaguar 
dspace.dial.pipex.com/… 

9 Schrödinger -> Home 
www.schrodinger.com/ 

Jaguar UK - Jaguar Cars 
www.jaguar.co.uk/                       -3 

Schrödinger -> Home 
www.schrodinger.com/ 

10 Schrödinger -> Site Map 
www.schrodinger.com/... 

Jaguar UK - R is for… 
www.jaguar-racing.com/                  -3 

Schrödinger -> Site Map 
www.schrodinger.com/... 
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viewed documents and the query logs. Simulta-
neously, some representative terms are selected 
to expand the original query. In the query of 
“jaguar” (without query logs), we click some 
results about “Mac OS”, and then we see that a 
term “Mac” has been selected to expand the 
original query, and some results of the new query 
“jaguar Mac” are recommended to the user under 
the help of re-ranking, as shown in Figure 4. 

4 Experiment 

4.1 Experimental Methodology 

It is a challenge to quantitatively evaluate the 
potential performance improvement of the pro-
posed approach over Google in an unbiased way 
(D. Hawking et al., 1999; Xuehua Shen et al., 
2005). Here, we adopt a similar quantitative 
evaluation as what Xuehua Shen et al. (2005) do 
to evaluate our system PAIR and recruit 9 stu-
dents who have different backgrounds to partici-
pate in our experiment. We use query topics from 
TREC 2005 and 2004 Hard Track, TREC 2004 
Terabyte track for English information retrieval,3 
and use query topics from HTRDP 2005 Evalua-
tion for Chinese information retrieval.4 The rea-
son why we utilize multiple TREC tasks rather 
than using a single one is that more queries are 
more likely to cover the most interesting topics 
for each participant. 

Initially, each participant would freely choose 
some topics (typically 5 TREC topics and 5 
HTRDP topics). Each query of TREC topics will 
be submitted to three systems: UCAIR 5 (Xue-
hua Shen et al., 2005), “PAIR No QE” (PAIR 
system of which the query expansion function is 
blocked) and PAIR. Each query of HTRDP topics 
needs only to be submitted to “PAIR No QE” and 
PAIR. We do not evaluate UCAIR using HTRDP 
topics, since it does not support Chinese. For each 
query topic, the participants use the title of the 
topic as the initial keyword to begin with. Also 
they can form some other keywords by them-
selves if the title alone fails to describe some de-
tails of the topic. There is no limit on how many 
queries they must submit. During each query 
process, the participant may click to view some 
results, just as in normal web search. 

Then, at the end of each query, search results 
from these different systems are randomly and 
anonymously mixed together so that every par-
                                                           
3 Text REtrieval Conference. http://trec.nist.gov/ 
4 2005 HTRDP Evaluation. http://www.863data.org.cn/ 
5 The latest version released on November 11, 2005. 

http://sifaka.cs.uiuc.edu/ir/ucair/ 

ticipant would not know where a result comes 
from. The participants would judge which of 
these results are relevant. 

At last, we respectively measure precision at 
top 5, top 10, top 20 and top 30 documents of 
these system. 

4.2 Results and Analysis 

Altogether, 45 TREC topics (62 queries in all) are 
chosen for English information retrieval. 712 
documents are judged as relevant from Google 
search results. The corresponding number of 
relevant documents from UCAIR, “PAIR No QE” 
and PAIR respectively is: 921, 891 and 1040. 
Figure 5 shows the average precision of these four 
systems at top n documents among such 45 TREC 
topics. 

 

 
Figure 5. Average precision for TREC topics. 
 
45 HTRDP topics (66 queries in all) are chosen 

for Chinese information retrieval. 809 documents 
are judged as relevant from Google search results. 
The corresponding number of relevant documents 
from “PAIR No QE” and PAIR respectively is: 
1198 and 1416. Figure 6 shows the average pre-
cision of these three systems at top n documents 
among such 45 HTRDP topics. 

 

 
Figure 6. Average precision for HTRDP topics. 

 

PAIR and “PAIR No QE” versus Google 

We can see clearly from Figure 5 and Figure 6 
that the precision of PAIR is improved a lot 
comparing with that of Google in all measure-
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ments. Moreover, the improvement scale in-
creases from precision at top 10 to that of top 30. 
One explanation for this is that the more implicit 
feedback information generated, the more repre-
sentative terms can be obtained, and thus, the 
iterative algorithm can perform better, leading to 
more precise search results. “PAIR No QE” also 
significantly outperforms Google in these meas-
urements, however, with query expansion, PAIR 
can perform even better. Thus, we say that result 
re-ranking and query expansion both play an 
important role in PAIR. 

Comparing Figure 5 with Figure 6, one can see 
that the improvement of PAIR versus Google in 
Chinese IR is even larger than that of English IR. 
One explanation for this is that: before imple-
menting the iterative algorithm, each Chinese 
search result, including title and snippet, is seg-
mented into words (or phrases). And only the 
noun, verb and adjective of these words (or 
phrases) are used in next stages, whereas, we only 
remove the stop words for English search result. 
Another explanation is that there are some Chi-
nese web pages with the same content. If one of 
such pages is clicked, then, occasionally some 
repetition pages are recommended to the user. 
However, since PAIR is based on the search re-
sults of Google and the information concerning 
the result pages that PAIR can obtained is limited, 
which leads to it difficult to avoid the replica-
tions. 

PAIR and “PAIR No QE” versus UCAIR 

In Figure 5, we can see that the precision of 
“PAIR No QE” is better than that of UCAIR 
among top 5 and top 10 documents, and is almost 
the same as that of UCAIR among top 20 and top 
30 documents. However, PAIR is much better 
than UCAIR in all measurements. This indicates 
that result re-ranking fails to do its best without 
query expansion, since the relevant documents in 
original query are limited, and only the re-ranking 
method alone cannot solve the “relevant docu-
ments sparseness” problem. Thus, the query ex-
pansion method, which can provide fresh and 
relevant documents, can help the re-ranking 
method to reach an even better performance. 

Efficiency of PAIR 

The iteration statistic in evaluation indicates that 
the average iteration times of our approach is 22 
before convergence on condition that we set the 
threshold θ = 10-6. The experiment shows that the 
computation time of the proposed approach is 
imperceptible for users (less than 1ms.) 

5 Related Work 

There have been many prior attempts to person-
alized search. In this paper, we focus on the re-
lated work doing personalized search based on 
implicit feedback information. 

Some of the existing studies capture users’ in-
formation need by exploiting query logs. For 
example, M. Speretta and S. Gauch (2005) build 
user profiles based on activity at the search site 
and study the use of these profiles to provide 
personalized search results. F. Liu et al. (2002) 
learn user's favorite categories from his query 
history. Their system maps the input query to a set 
of interesting categories based on the user profile 
and confines the search domain to these catego-
ries. Some studies improve retrieval performance 
by exploiting users’ browsing history (F. Tanud-
jaja and L. Mu, 2002; M. Morita and Y. Shinoda, 
1994) or Web communities (A. Kritikopoulos 
and M. Sideri, 2003; K. Sugiyama et al., 2004) 
Some studies utilize client side interactions, for 
example, K. Bharat (2000) automatically discov-
ers related material on behalf of the user by 
serving as an intermediary between the user and 
information retrieval systems. His system ob-
serves users interacting with everyday applica-
tions and then anticipates their information needs 
using a model of the task at hand. Some latest 
studies combine several types of implicit feed-
back information. J. Teevan et al. (2005) explore 
rich models of user interests, which are built 
from both search-related information, such as 
previously issued queries and previously visited 
Web pages, and other information about the user 
such as documents and email the user has read 
and created. This information is used to re-rank 
Web search results within a relevance feedback 
framework. 

Our work is partly inspired by the study of 
Xuehua Shen et al. (2005), which is closely re-
lated to ours in that they also exploit immediately 
viewed documents and short-term history queries, 
implement query expansion and re-ranking, and 
develop a client-side web search agents that per-
form eager implicit feedback. However, their 
work differs from ours in three ways: First, they 
use the cosine similarity to implement query ex-
pansion, and use Rocchio formulation (J. J. 
Rocchio, 1971) to re-rank the search results. 
Thus, their query expansion and re-ranking are 
computed separately and are not so concise and 
collaborative. Secondly, their query expansion is 
based only on the past queries and is imple-
mented before the query, which leads to that 
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their query expansion does not benefit from 
user’s click through data. Thirdly, they do not 
compute the relevance of search results and the 
relativity of expanded terms in an iterative fash-
ion. Thus, their approach does not utilize the re-
lation among search results, among expanded 
terms, and between search results and expanded 
terms. 

6 Conclusions 

In this paper, we studied how to exploit implicit 
feedback information to improve retrieval accu-
racy. Unlike most previous work, we propose a 
novel HITS-like iterative algorithm that can 
make use of query logs and immediately viewed 
documents in a unified way, which not only 
brings collaboration between query expansion 
and result re-ranking but also makes the whole 
system more concise. We further propose some 
specific techniques to capture and exploit these 
two types of implicit feedback information. Us-
ing these techniques, we develop a client-side 
web search agent PAIR. Experiments in English 
and Chinese collections show that our approach 
is both effective and efficient. 

However, there is still room to improve the 
performance of the proposed approach, such as 
exploiting other types of personalized informa-
tion, choosing some more effective strategies to 
extract representative terms, studying the effects 
of the parameters used in the approach, etc. 
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Abstract 

This paper explores the relationship be-
tween the translation quality and the re-
trieval effectiveness in Machine Transla-
tion (MT) based Cross-Language Infor-
mation Retrieval (CLIR). To obtain MT 
systems of different translation quality, 
we degrade a rule-based MT system by 
decreasing the size of the rule base and 
the size of the dictionary. We use the de-
graded MT systems to translate queries 
and submit the translated queries of vary-
ing quality to the IR system. Retrieval ef-
fectiveness is found to correlate highly 
with the translation quality of the queries. 
We further analyze the factors that affect 
the retrieval effectiveness. Title queries 
are found to be preferred in MT-based 
CLIR. In addition, dictionary-based deg-
radation is shown to have stronger impact 
than rule-based degradation in MT-based 
CLIR. 

1 Introduction 

Cross-Language Information Retrieval (CLIR) 
enables users to construct queries in one lan-
guage and search the documents in another lan-
guage. CLIR requires that either the queries or 
the documents be translated from a language into 
another, using available translation resources. 
Previous studies have concentrated on query 
translation because it is computationally less ex-
pensive than document translation, which re-
quires a lot of processing time and storage costs 
(Hull & Grefenstette, 1996). 

There are three kinds of methods to perform 
query translation, namely Machine Translation 
(MT) based methods, dictionary-based methods 

and corpus-based methods. Corresponding to 
these methods, three types of translation re-
sources are required: MT systems, bilingual 
wordlists and parallel or comparable corpora. 
CLIR effectiveness depends on both the design 
of the retrieval system and the quality of the 
translation resources that are used. 

In this paper, we explore the relationship be-
tween the translation quality of the MT system 
and the retrieval effectiveness. The MT system 
involved in this research is a rule-based English-
to-Chinese MT (ECMT) system. We degrade the 
MT system in two ways. One is to degrade the 
rule base of the system by progressively remov-
ing rules from it. The other is to degrade the dic-
tionary by gradually removing word entries from 
it. In both methods, we observe successive 
changes on translation quality of the MT system. 
We conduct query translation with the degraded 
MT systems and obtain translated queries of 
varying quality. Then we submit the translated 
queries to the IR system and evaluate the per-
formance. Retrieval effectiveness is found to be 
strongly influenced by the translation quality of 
the queries. We further analyze the factors that 
affect the retrieval effectiveness. Title queries are 
found to be preferred in MT-based query transla-
tion. In addition, the size of the dictionary is 
shown to have stronger impact on retrieval effec-
tiveness than the size of the rule base in MT-
based query translation. 

The remainder of this paper is organized as 
follows. In section 2, we briefly review related 
work. In section 3, we introduce two systems 
involved in this research: the rule-based ECMT 
system and the KIDS IR system. In section 4, we 
describe our experimental method.  Section 5 and 
section 6 reports and discusses the experimental 
results. Finally we present our conclusion and 
future work in section 7. 

593



2 Related Work 

2.1 Effect of Translation Resources 

Previous studies have explored the effect of 
translation resources such as bilingual wordlists 
or parallel corpora on CLIR performance. 

Xu and Weischedel (2000) measured CLIR 
performance as a function of bilingual dictionary 
size. Their English-Chinese CLIR experiments 
on TREC 5&6 Chinese collections showed that 
the initial retrieval performance increased 
sharply with lexicon size but the performance 
was not improved after the lexicon exceeded 
20,000 terms. Demner-Fushman and Oard (2003) 
identified eight types of terms that affected re-
trieval effectiveness in CLIR applications 
through their coverage by general-purpose bilin-
gual term lists. They reported results from an 
evaluation of the coverage of 35 bilingual term 
lists in news retrieval application. Retrieval ef-
fectiveness was found to be strongly influenced 
by term list size for lists that contain between 
3,000 and 30,000 unique terms per language. 

Franz et al. (2001) investigated the CLIR per-
formance as a function of training corpus size for 
three different training corpora and observed ap-
proximately logarithmically increased perform-
ance with corpus size for all the three corpora. 
Kraaij (2001) compared three types of translation 
resources for bilingual retrieval based on query 
translation: a bilingual machine-readable diction-
ary, a statistical dictionary based on a parallel 
web corpus and the Babelfish MT service. He 
drew a conclusion that the mean average preci-
sion of a run was proportional to the lexical cov-
erage. McNamee and Mayfield (2002) examined 
the effectiveness of query expansion techniques 
by using parallel corpora and bilingual wordlists 
of varying quality. They confirmed that retrieval 
performance dropped off as the lexical coverage 
of translation resources decreased and the rela-
tionship was approximately linear. 

Previous research mainly focused on studying 
the effectiveness of bilingual wordlists or parallel 
corpora from two aspects: size and lexical cover-
age. Kraaij (2001) examined the effectiveness of 
MT system, but also from the aspect of lexical 
coverage. Why lack research on analyzing effect 
of translation quality of MT system on CLIR 
performance? The possible reason might be the 
problem on how to control the translation quality 
of the MT system as what has been done to bi-
lingual wordlists or parallel corpora. MT systems 
are usually used as black boxes in CLIR applica-
tions. It is not very clear how to degrade MT 

software because MT systems are usually opti-
mized for grammatically correct sentences rather 
than word-by-word translation. 

2.2 MT-Based Query Translation 

MT-based query translation is perhaps the most 
straightforward approach to CLIR. Compared 
with dictionary or corpus based methods, the 
advantage of MT-based query translation lies in 
that technologies integrated in MT systems, such 
as syntactic and semantic analysis, could help to 
improve the translation accuracy (Jones et al., 
1999). However, in a very long time, fewer ex-
periments with MT-based methods have been 
reported than with dictionary-based methods or 
corpus-based methods. The main reasons include: 
(1) MT systems of high quality are not easy to 
obtain; (2) MT systems are not available for 
some language pairs; (3) queries are usually 
short or even terms, which limits the effective-
ness of MT-based methods. However, recent re-
search work on CLIR shows a trend to adopt 
MT-based query translation. At the fifth NTCIR 
workshop, almost all the groups participating in 
Bilingual CLIR and Multilingual CLIR tasks 
adopt the query translation method using MT 
systems or machine-readable dictionaries (Ki-
shida et al., 2005). Recent research work also 
proves that MT-based query translation could 
achieve comparable performance to other meth-
ods (Kishida et al., 2005; Nunzio et al., 2005). 
Considering more and more MT systems are be-
ing used in CLIR, it is of significance to care-
fully analyze how the performance of MT system 
may influence the retrieval effectiveness. 

3 System Description 

3.1 The Rule-Based ECMT System 

The MT system used in this research is a rule-
based ECMT system. The translation quality of 
this ECMT system is comparable to the best 
commercial ECMT systems. The basis of the 
system is semantic transfer (Amano et al., 1989). 

Translation resources comprised in this system 
include a large dictionary and a rule base. The 
rule base consists of rules of different functions 
such as analysis, transfer and generation. 

3.2 KIDS IR System 

KIDS is an information retrieval engine that is 
based on morphological analysis (Sakai et al., 
2003). It employs the Okapi/BM25 term weight-
ing scheme, as fully described in (Robertson & 
Walker, 1999; Robertson & Sparck Jones, 1997). 
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To focus our study on the relationship between 
MT performance and retrieval effectiveness, we 
do not use techniques such as pseudo-relevance 
feedback although they are available and are 
known to improve IR performance. 

4 Experimental Method 

To obtain MT systems of varying quality, we 
degrade the rule-based ECMT system by impair-
ing the translation resources comprised in the 
system. Then we use the degraded MT systems 
to translate the queries and evaluate the transla-
tion quality. Next, we submit the translated que-
ries to the KIDS system and evaluate the re-
trieval performance. Finally we calculate the cor-
relation between the variation of translation qual-
ity and the variation of retrieval effectiveness to 
analyze the relationship between MT perform-
ance and CLIR performance. 

4.1 Degradation of MT System 

In this research, we degrade the MT system in 
two ways. One is rule-based degradation, which 
is to decrease the size of the rule base by ran-
domly removing rules from the rule base. For 
sake of simplicity, in this research we only con-
sider transfer rules that are used for transferring 
the source language to the target language and 
keep other kinds of rules untouched. That is, we 
only consider the influence of transfer rules on 
translation quality1. We first randomly divide the 
rules into segments of equal size. Then we re-
move the segments from the rule base, one at 
each time and obtain a group of degraded rule 
bases. Afterwards, we use MT systems with the 
degraded rule bases to translate the queries and 
get groups of translated queries, which are of 
different translation quality. 

The other is dictionary-based degradation, 
which is to decrease the size of the dictionary by 
randomly removing a certain number of word 
entries from the dictionary iteratively. Function 
words are not removed from the dictionary. Us-
ing MT systems with the degraded dictionaries, 
we also obtain groups of translated queries of 
different translation quality. 

4.2 Evaluation of Performance 

We measure the performance of the MT system 
by translation quality and use NIST score as the 
evaluation measure (Doddington, 2002). The 

                                                 
1 In the following part of this paper, rules refer to transfer 
rules unless explicitly stated. 

NIST scores reported in this paper are generated 
by NIST scoring toolkit2. 

For retrieval performance, we use Mean Aver-
age Precision (MAP) as the evaluation measure 
(Voorhees, 2003). The MAP values reported in 
this paper are generated by trec_eval toolkit 3 , 
which is the standard tool used by TREC for 
evaluating an ad hoc retrieval run. 

5 Experiments 

5.1 Data 

The experiments are conducted on the TREC5&6 
Chinese collection. The collection consists of 
document set, topic set and the relevance judg-
ment file. 

The document set contains articles published 
in People's Daily from 1991 to 1993, and news 
articles released by the Xinhua News Agency in 
1994 and 1995. It includes totally 164,789 
documents. The topic set contains 54 topics. In 
the relevance judgment file, a binary indication 
of relevant (1) or non-relevant (0) is given. 

<top> 
<num> Number: CH41 
<C-title> 京九铁路的桥梁隧道工程 
<E-title> Bridge and Tunnel Construction for 
 the Beijing-Kowloon Railroad  
<C-desc> Description: 
京九铁路，桥梁，隧道，贯通，特大桥， 
<E-desc> Description: 
Beijing-Kowloon Railroad, bridge, tunnel, 
connection, very large bridge 
<C-narr> Narrative: 
相关文件必须提到京九铁路的桥梁隧道工 
程，包括地点、施工阶段、长度． 
<E-narr> Narrative: 
A relevant document discusses bridge and  
tunnel construction for the Beijing-Kowloon  
Railroad, including location, construction  
status, span or length. 
</top> 

Figure 1. Example of TREC Topic 

5.2 Query Formulation & Evaluation 

For each TREC topic, three fields are provided: 
title, description and narrative, both in Chinese 
and English, as shown in figure 1. The title field 
is the statement of the topic. The description 

                                                 
2 The toolkit could be downloaded from: 
http://www.nist.gov/speech/tests/mt/resources/scoring.htm 
3 The toolkit could be downloaded from: 
http://trec.nist.gov/trec_eval/trec_eval.7.3.tar.gz 
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field lists some terms that describe the topic. The 
narrative field provides a complete description 
of document relevance for the assessors. In our 
experiments, we use two kinds of queries: title 
queries (use only the title field) and desc queries 
(use only the description field). We do not use 
narrative field because it is the criteria used by 
the assessors to judge whether a document is 
relevant or not, so it usually contains quite a 
number of unrelated words. 

Title queries are one-sentence queries. When 
use NIST scoring tool to evaluate the translation 
quality of the MT system, reference translations 
of source language sentences are required. NIST 
scoring tool supports multi references. In our 
experiments, we introduce two reference transla-
tions for each title query. One is the Chinese title 
(C-title) in title field of the original TREC topic 
(reference translation 1); the other is the transla-
tion of the title query given by a human transla-
tor (reference translation 2). This is to alleviate 
the bias on translation evaluation introduced by 
only one reference translation. An example of 
title query and its reference translations are 
shown in figure 2. Reference 1 is the Chinese 
title provided in original TREC topic. Reference 
2 is the human translation of the query. For this 
query, the translation output generated by the 
MT system is "在中国的机器人技术研究". If 
only use reference 1 as reference translation, the 
system output will not be regarded as a good 
translation. But in fact, it is a good translation for 
the query. Introducing reference 2 helps to alle-
viate the unfair evaluation. 

Title Query: CH27 
<query> 
Robotics Research in China 
<reference 1> 
中国在机器人方面的研制 
<reference 2> 
中国的机器人技术 

Figure 2. Example of Title Query 

A desc query is not a sentence but a string of 
terms that describes the topic. The term in the 
desc query is either a word, a phrase or a string 
of words. A desc query is not a proper input for 
the MT system. But the MT system still works. It 
translates the desc query term by term. When the 
term is a word or a phrase that exists in the dic-
tionary, the MT system looks up the dictionary 
and takes the first translation in the entry as the 
translation of the term without any further analy-
sis. When the term is a string of words such as 

"number(数量) of(的) infections(感染)", the sys-
tem translates the term into "感染数量". Besides 
using the Chinese description (C-desc) in the 
description field of the original TREC topic as 
the reference translation of each desc query, we 
also have the human translator give another ref-
erence translation for each desc query. Compari-
son on the two references shows that they are 
very similar to each other. So in our final ex-
periments, we use only one reference for each 
desc query, which is the Chinese description (C-
desc) provided in the original TREC topic. An 
example of desc query and its reference transla-
tion is shown in figure 3. 

Desc Query: CH22 
<query> 
malaria, number of deaths, number of infections
<reference> 
疟疾，死亡人数，感染病例 

Figure 3. Example of Desc Query 

5.3 Runs 

Previous studies (Kwok, 1997; Nie et al., 2000) 
proved that using words and n-grams indexes 
leads to comparable performance for Chinese IR. 
So in our experiments, we use bi-grams as index 
units. 

We conduct following runs to analyze the rela-
tionship between MT performance and CLIR 
performance: 

• rule-title: MT-based title query transla-
tion with degraded rule base 

• rule-desc: MT-based desc query transla-
tion with degraded rule base 

• dic-title: MT-based title query translation 
with degraded dictionary 

• dic-desc: MT-based desc query transla-
tion with degraded dictionary 

For baseline comparison, we conduct Chinese 
monolingual runs with title queries and desc que-
ries. 

5.4 Monolingual Performance 

The results of Chinese monolingual runs are 
shown in Table 1. 

Run MAP 
title-cn1 0.3143 
title-cn2 0.3001 
desc-cn 0.3514 

Table 1. Monolingual Results 
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title-cn1: use reference translation 1 of each ti-
tle query as Chinese query 

title-cn2: use reference translation 2 of each ti-
tle query as Chinese query 

desc-cn: use reference translation of each desc 
query as Chinese query 

Among all the three monolingual runs, desc-cn 
achieves the best performance. Title-cn1 
achieves better performance than title-cn2, which 
indicates directly using Chinese title as Chinese 
query performs better than using human transla-
tion of title query as Chinese query. 

5.5 Results on Rule-Based Degradation 

There are totally 27,000 transfer rules in the rule 
base. We use all these transfer rules in the ex-
periment of rule-based degradation. The 27,000 
rules are randomly divided into 36 segments, 
each of which contains 750 rules. To degrade the 
rule base, we start with no degradation, then we 
remove one segment at each time, up to a com-
plete degradation with all segments removed. 
With each of the segment removed from the rule 
base, the MT system based on the degraded rule 
base produces a group of translations for the in-
put queries. The completely degraded system 

with all segments removed could produce a 
group of rough translations for the input queries. 

Figure 4 and figure 5 show the experimental 
results on title queries (rule-title) and desc que-
ries (rule-desc) respectively. 

Figure 4(a) shows the changes of translation 
quality of the degraded MT systems on title que-
ries. From the result, we observe a successive 
change on MT performance. The fewer rules, the 
worse translation quality achieves. The NIST 
score varies from 7.3548 at no degradation to 
5.9155 at complete degradation. Figure 4(b) 
shows the changes of retrieval performance by 
using the translations generated by the degraded 
MT systems as queries. The MAP varies from 
0.3126 at no degradation to 0.2810 at complete 
degradation. Comparison on figure 4(a) and 4(b) 
indicates similar variations between translation 
quality and retrieval performance. The better the 
translation quality, the better the retrieval per-
formance is. 

Figure 5(a) shows the changes of translation 
quality of the degraded MT systems on desc que-
ries. Figure 5(b) shows the corresponding 
changes of retrieval performance. We observe a 
similar relationship between MT performance 
and retrieval performance as to the results based 
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on title queries. The NIST score varies from 
5.0297 at no degradation to 4.8497 at complete 
degradation. The MAP varies from 0.2877 at no 
degradation to 0.2759 at complete degradation. 

5.6 Results on Dictionary-Based Degrada-
tion 

The dictionary contains 169,000 word entries. To 
make the results on dictionary-based degradation 
comparable to the results on rule-based degrada-
tion, we degrade the dictionary so that the varia-
tion interval on translation quality is similar to 
that of the rule-based degradation. We randomly 
select 43,200 word entries for degradation. These 
word entries do not include function words. We 
equally split these word entries into 36 segments. 
Then we remove one segment from the diction-
ary at each time until all the segments are re-
moved and obtain 36 degraded dictionaries. We 
use the MT systems with the degraded dictionar-
ies to translate the queries and observe the 
changes on translation quality and retrieval per-
formance. The experimental results on title que-
ries (dic-title) and desc queries (dic-desc) are 
shown in figure 6 and figure 7 respectively. 
From the results, we also observe a similar rela-
tionship between translation quality and retrieval 

performance as what we have observed in the 
rule-based degradation. For both title queries and 
desc queries, the larger the dictionary size, the 
better the NIST score and MAP is. For title que-
ries, the NIST score varies from 7.3548 at no 
degradation to 6.0067 at complete degradation. 
The MAP varies from 0.3126 at no degradation 
to 0.1894 at complete degradation. For desc que-
ries, the NIST score varies from 5.0297 at no 
degradation to 4.4879 at complete degradation. 
The MAP varies from 0.2877 at no degradation 
to 0.2471 at complete degradation. 

5.7 Summary of the Results 

Here we summarize the results of the four runs in 
Table 2. 

Run NIST Score MAP 
title queries 
No degradation 7.3548 0.3126
Complete: rule-title 5.9155 0.2810
Complete: dic-title 6.0067 0.1894
desc queries 
No degradation 5.0297 0.2877
Complete: rule-desc 4.8497 0.2759
Complete: dic-desc 4.4879 0.2471

Table 2. Summary of Runs 
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6 Discussion 

Based on our observations, we analyze the corre-
lations between NIST scores and MAPs, as listed 
in Table 3. In general, there is a strong correla-
tion between translation quality and retrieval ef-
fectiveness. The correlations are above 95% for 
all of the four runs, which means in general, a 
better performance on MT will lead to a better 
performance on retrieval. 

Run Correlation 
rule-title 0.9728 
rule-desc 0.9500 
dic-title 0.9521 
dic-desc 0.9582 

Table 3. Correlation Between Translation Qual-
ity & Retrieval Effectiveness 

6.1 Impacts of Query Format 

For Chinese monolingual runs, retrieval based on 
desc queries achieves better performance than 
the runs based on title queries. This is because a 
desc query consists of terms that relate to the 
topic, i.e., all the terms in a desc query are pre-
cise query terms. But a title query is a sentence, 
which usually introduces words that are unre-
lated to the topic. 

Results on bilingual retrieval are just contrary 
to monolingual ones. Title queries perform better 
than desc queries. Moreover, MAP at no degra-
dation for title queries is 0.3126, which is about 
99.46% of the performance of monolingual run 
title-cn1, and outperforms the performance of 
title-cn2 run. But MAP at no degradation for 
desc queries is 0.2877, which is just 81.87% of 
the performance of the monolingual run desc-cn. 
Comparison on the results shows that the MT 
system performs better on title queries than on 
desc queries. This is reasonable because desc 
queries are strings of terms, however the MT 
system is optimized for grammatically correct 
sentences rather than word-by-word translation. 
Considering the correlation between translation 
quality and retrieval effectiveness, it is rational 
that title queries achieve better results on re-
trieval than desc queries. 

6.2 Impacts of Rules and Dictionary 

Table 4 shows the fall of NIST score and MAP at 
complete degradation compared with NIST score 
and MAP achieved at no degradation. 

Comparison on the results of title queries 
shows that similar variation of translation quality 
leads to quite different variation on retrieval ef-

fectiveness. For rule-title run, 19.57% reduction 
in translation quality results in 10.11% reduction 
in retrieval effectiveness. But for dic-title run, 
18.33% reduction in translation quality results in 
39.41% reduction in retrieval effectiveness. This 
indicates that retrieval effectiveness is more sen-
sitive to the size of the dictionary than to the size 
of the rule base for title queries. Why dictionary-
based degradation has stronger impact on re-
trieval effectiveness than rule-based degradation? 
This is because retrieval systems are typically 
more tolerant of syntactic than semantic transla-
tion errors (Fluhr, 1997). Therefore although 
syntactic errors caused by the degradation of the 
rule base result in a decrease of translation qual-
ity, they have smaller impacts on retrieval effec-
tiveness than the word translation errors caused 
by the degradation of dictionary. 

For desc queries, there is no big difference be-
tween dictionary-based degradation and rule-
based degradation. This is because the MT sys-
tem translates the desc queries term by term, so 
degradation of rule base mainly results in word 
translation errors instead of syntactic errors. 
Thus, degradation of dictionary and rule base has 
similar effect on retrieval effectiveness. 

Run NIST Score Fall MAP Fall 
title queries 
rule-title 19.57% 10.11% 
dic-title 18.33% 39.41% 
desc queries 
rule-desc 3.58% 4.10% 
dic-desc 10.77% 14.11% 

Table 4. Fall on Translation Quality & Retrieval 
Effectiveness 

7 Conclusion and Future Work 

In this paper, we investigated the effect of trans-
lation quality in MT-based CLIR. Our study 
showed that the performance of MT system and 
IR system correlates highly with each other. We 
further analyzed two main factors in MT-based 
CLIR. One factor is the query format. We con-
cluded that title queries are preferred for MT-
based CLIR because MT system is usually opti-
mized for translating sentences rather than words. 
The other factor is the translation resources com-
prised in the MT system. Our observation 
showed that the size of the dictionary has a 
stronger effect on retrieval effectiveness than the 
size of the rule base in MT-based CLIR. There-
fore in order to improve the retrieval effective-
ness of a MT-based CLIR application, it is more 
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effective to develop a larger dictionary than to 
develop more rules. This introduces another in-
teresting question relating to MT-based CLIR. 
That is how CLIR can benefit further from MT. 
Directly using the translations generated by the 
MT system may not be the best choice for the IR 
system. There are rich features generated during 
the translation procedure. Will such features be 
helpful to CLIR? This question is what we would 
like to answer in our future work. 
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Abstract 

The trend in information retrieval sys-
tems is from document to sub-document 
retrieval, such as sentences in a summari-
zation system and words or phrases in 
question-answering system. Despite this 
trend, systems continue to model lan-
guage at a document level using the in-
verse document frequency (IDF). In this 
paper, we compare and contrast IDF with 
inverse sentence frequency (ISF) and in-
verse term frequency (ITF). A direct 
comparison reveals that all language 
models are highly correlated; however, 
the average ISF and ITF values are 5.5 
and 10.4 higher than IDF. All language 
models appeared to follow a power law 
distribution with a slope coefficient of 
1.6 for documents and 1.7 for sentences 
and terms. We conclude with an analysis 
of IDF stability with respect to random, 
journal, and section partitions of the 
100,830 full-text scientific articles in our 
experimental corpus.  

1 Introduction 

The vector based information retrieval model 
identifies relevant documents by comparing 
query terms with terms from a document corpus. 
The most common corpus weighting scheme is 
the term frequency (TF) x inverse document fre-
quency (IDF), where TF is the number of times a 
term appears in a document, and IDF reflects the 
distribution of terms within the corpus (Salton 
and Buckley, 1988). Ideally, the system should 
assign the highest weights to terms with the most 
discriminative power. 

One component of the corpus weight is the 
language model used. The most common lan-
guage model is the Inverse Document Fre-
quency (IDF), which considers the distribution 
of terms between documents (see equation (1)). 
IDF has played a central role in retrieval systems 
since it was first introduced more than thirty 
years ago (Sparck Jones, 1972).  
IDF(ti)=log2(N)–log2(ni)+1   (1) 

N is the total number of corpus 
documents; ni is the number of docu-
ments that contain at least one oc-
currence of the term ti; and ti is a 
term, which is typically stemmed. 
 

Although information retrieval systems are 
trending from document to sub-document re-
trieval, such as sentences for summarization and 
words, or phrases for question answering, sys-
tems continue to calculate corpus weights on a 
language model of documents. Logic suggests 
that if a system identifies sentences rather than 
documents, it should use a corpus weighting 
scheme based on the number of sentences rather 
than the number documents.  That is, the system 
should replace IDF with the Inverse Sentence 
Frequency (ISF), where N in (1) is the total 
number of sentences and ni is the number of sen-
tences with term i. Similarly, if the system re-
trieves terms or phrases then IDF should be re-
placed with the Inverse Term Frequency (ITF), 
where N in (1) is the vocabulary size, and ni is 
the number of times a term or phrases appears in 
the corpus. The challenge is that although docu-
ment language models have had unprecedented 
empirical success, language models based on a 
sentence or term do not appear to work well 
(Robertson, 2004).  

Our goal is to explore the transition from the 
document to sentence and term spaces, such that 
we may uncover where the language models start 
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to break down. In this paper, we explore this goal 
by answering the following questions: How cor-
related are the raw document, sentence, and term 
spaces? How correlated are the IDF, ISF, and 
ITF values? How well does each language mod-
els conform to Zipf’s Law and what are the slope 
coefficients? How sensitive is IDF with respect 
to sub-sets of a corpus selected at random, from 
journals, or from document sections including 
the abstract and body of an article?  

This paper is organized as follows: Section 2 
provides the theoretical and practical implica-
tions of this study; Section 3 describes the ex-
perimental design we used to study document, 
sentence, and term, spaces in our corpora of 
more than one-hundred thousand full-text docu-
ments; Section 4 discusses the results; and Sec-
tion 5 draws conclusions from this study. 

2 Background and Motivation 

The transition from document to sentence to 
term spaces has both theoretical and practical 
ramifications. From a theoretical standpoint, the 
success of TFxIDF is problematic because the 
model combines two different event spaces – the 
space of terms in TF and of documents in IDF. In 
addition to resolving the discrepancy between 
event spaces, the foundational theories in infor-
mation science, such as Zipf’s Law (Zipf, 1949) 
and Shannon’s Theory (Shannon, 1948) consider 
only a term event space. Thus, establishing a di-
rect connection between the empirically success-
ful IDF and the theoretically based ITF may en-
able a connection to previously adopted informa-
tion theories.  
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Figure 1. Synthetic data showing IDF trends 
for different sized corpora and vocabulary. 

Understanding the relationship among docu-
ment, sentence and term spaces also has practical 
importance. The size and nature of text corpora 
has changed dramatically since the first IDF ex-

periments. Consider the synthetic data shown in 
Figure 1, which reflects the increase in both vo-
cabulary and corpora size from small (S), to me-
dium (M), to large (L). The small vocabulary 
size is from the Cranfield corpus used in Sparck 
Jones (1972), medium is from the 0.9 million 
terms in the Heritage Dictionary (Pickett 2000) 
and large is the 1.3 million terms in our corpus. 
The small number of documents is from the 
Cranfield corpus in Sparck Jones (1972), me-
dium is 100,000 from our corpus, and large is 1 
million 

As a document corpus becomes sufficiently 
large, the rate of new terms in the vocabulary 
decreases. Thus, in practice the rate of growth on 
the x-axis of Figure 1 will slow as the corpus size 
increases. In contrast, the number of documents 
(shown on the y-axis in Figure 1) remains un-
bounded. It is not clear which of the two compo-
nents in equation (1), the log2(N), which re-
flects the number of documents, or the 
log2(ni),which reflects the distribution of 
terms between documents within the corpus will 
dominate the equation. Our strategy is to explore 
these differences empirically. 

In addition to changes in the vocabulary size 
and the number of documents, the average num-
ber of terms per document has increased from 
7.9, 12.2 and 32 in Sparck Jones (1972), to 20 
and 32 in Salton and Buckley (1988), to 4,981 in 
our corpus. The transition from abstracts to full-
text documents explains the dramatic difference 
in document length; however, the impact with 
respect to the distribution of terms and motivates 
us to explore differences between the language 
used in an abstract, and that used in the body of a 
document.  

One last change from the initial experiments is 
a trend towards an on-line environment, where 
calculating IDF is prohibitively expensive. This 
suggests a need to explore the stability of IDF so 
that system designers can make an informed de-
cision regarding how many documents should be 
included in the IDF calculations. We explore the 
stability of IDF in random, journal, and docu-
ment section sub-sets of the corpus.   

3 Experimental Design 

Our goal in this paper is to compare and contrast 
language models based on a document with those 
based on a sentence and term event spaces. We 
considered several of the corpora from the Text 
Retrieval Conferences (TREC, trec.nist.gov); 
however, those collections were primarily news 
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articles. One exception was the recently added 
genomics track, which considered full-text scien-
tific articles, but did not provide relevance judg-
ments at a sentence or term level. We also con-
sidered the sentence level judgments from the 
novelty track and the phrase level judgments 
from the question-answering track, but those 
were news and web documents respectively and 
we had wanted to explore the event spaces in the 
context of scientific literature. 

Table 1 shows the corpus that we developed 
for these experiments. The American Chemistry 
Society provided 103,262 full-text documents, 
which were published in 27 journals from 2000-
20041. We processed the headings, text, and ta-
bles using Java BreakIterator class to identify 
sentences and a Java implementation of the Por-
ter Stemming algorithm (Porter, 1980) to identify 
terms. The inverted index was stored in an Ora-
cle 10i database.  

 
 Docs Avg Tokens  

Journal # % Length Million   %  
ACHRE4 548 0.5 4923 2.7 1 
ANCHAM 4012 4.0 4860 19.5 4 
BICHAW 8799 8.7 6674 58.7 11 
BIPRET 1067 1.1 4552 4.9 1 
BOMAF6 1068 1.1 4847 5.2 1 
CGDEFU 566 0.5 3741 2.1 <1 
CMATEX 3598 3.6 4807 17.3 3 
ESTHAG 4120 4.1 5248 21.6 4 
IECRED 3975 3.9 5329 21.2 4 
INOCAJ 5422 5.4 6292 34.1 6 
JACSAT 14400  14.3 4349 62.6 12 
JAFCAU 5884 5.8 4185 24.6 5 
JCCHFF 500 0.5 5526 2.8 1 
JCISD8 1092 1.1 4931 5.4 1 
JMCMAR 3202 3.2 8809 28.2 5 
JNPRDF 2291 2.2 4144 9.5 2 
JOCEAH 7307 7.2 6605 48.3 9 
JPCAFH 7654 7.6 6181 47.3 9 
JPCBFK 9990 9.9 5750 57.4 11 
JPROBS 268 0.3 4917 1.3 <1 
MAMOBX 6887 6.8 5283 36.4 7 
MPOHBP 58 0.1 4868 0.3 <1 
NALEFD 1272 1.3 2609 3.3 1 
OPRDFK 858 0.8 3616 3.1 1 
ORLEF7 5992 5.9 1477 8.8 2 
Total 100,830    526.6  
Average 4,033 4.0 4,981 21.1
Std Dev 3,659 3.6 1,411 20.3

Table 1. Corpus summary. 
 

                                                 
1 Formatting inconsistencies precluded two journals and 
reduced the number of documents by 2,432. 

We made the following comparisons between 
the document, sentence, and term event spaces. 

(1) Raw term comparison 
A set of well-correlated spaces would enable 

an accurate prediction from one space to the 
next. We will plot pair-wise correlations between 
each space to reveal similarities and differences.  

This comparison reflects a previous analysis 
comprising a random sample of 193 words from 
a 50 million word corpus of 85,432 news articles 
(Church and Gale 1999). Church and Gale’s 
analysis of term and document spaces resulted in 
a p value of -0.994. Our work complements their 
approach by considering full-text scientific arti-
cles rather than news documents, and we con-
sider the entire stemmed term vocabulary in a 
526 million-term corpus. 

(2) Zipf Law comparison  
Information theory tells us that the frequency 

of terms in a corpus conforms to the power law 
distribution K/jθ (Baeza-Yates and Ribeiro-Neto 
1999). Zipf’s Law is a special case of the power 
law, where θ is close to 1 (Zipf, 1949). To pro-
vide another perspective of the alternative 
spaces, we calculated the parameters of Zipf’s 
Law, K and θ for each event space and journal 
using the binning method proposed in (Adamic 
2000). By accounting for K, the slope as defined 
by θ will provide another way to characterize 
differences between the document, sentence and 
term spaces. We expect that all event spaces will 
conform to Zipf’s Law. 

(3) Direct IDF, ISF, and ITF comparison 
The log2(N) and  log2(ni) should allow a 

direct comparison between IDF, ISF and ITF. 
Our third experiment was to provide pair-wise 
comparisons among these the event spaces. 

(4) Abstract versus full-text comparison 
Language models of scientific articles often 

consider only abstracts because they are easier to 
obtain than full-text documents. Although his-
torically difficult to obtain, the increased avail-
ability of full-text articles motivates us to under-
stand the nature of language within the body of a 
document. For example, one study found that 
full-text articles require weighting schemes that 
consider document length (Kamps, et al, 2005). 
However, controlling the weights for document 
lengths may hide a systematic difference be-
tween the language used in abstracts and the lan-
guage used in the body of a document. For ex-
ample, authors may use general language in an 
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abstract and technical language within a docu-
ment. 

Transitioning from abstracts to full-text docu-
ments presents several challenges including how 
to weigh terms within the headings, figures, cap-
tions, and tables. Our forth experiment was to 
compare IDF between the abstract and full text 
of the document. We did not consider text from 
headings, figures, captions, or tables. 

(5) IDF Sensitivity 
In a dynamic environment such as the Web, it 

would be desirable to have a corpus-based 
weight that did not change dramatically with the 
addition of new documents. An increased under-
standing of IDF stability may enable us to make 
specific system recommendations such as if the 
collection increases by more than n% then up-
date the IDF values. 

To explore the sensitivity we compared the 
amount of change in IDF values for various sub-
sets of the corpus. IDF values were calculated 
using samples of 10%, 20%, …, 90% and com-
pared with the global IDF. We stratified sam-
pling such that the 10% sample used term fre-
quencies in 10% of the ACHRE4 articles, 10% 
of the BICHAW articles, etc. To control for 
variations in the corpus, we repeated each sample 
10 times and took the average from the 10 runs. 
To explore the sensitivity we compared the 
global IDF in Equation 1 with the local sample, 
where N was the average number of documents 

in the sample and ni was the average term fre-
quency for each stemmed term in the sample. 

In addition to exploring sensitivity with re-
spect to a random subset, we were interested in 
learning more about the relationship between the 
global IDF and the IDF calculated on a journal 
sub-set. To explore these differences, we com-
pared the global IDF with local IDF where N 
was the number of documents in each journal 
and ni was the number of times the stemmed 
term appears in the text of that journal. 

4 Results and Discussion 

The 100830 full text documents comprised 
2,001,730 distinct unstemmed terms, and 
1,391,763 stemmed terms. All experiments re-
ported in this paper consider stemmed terms. 

4.1 Raw frequency comparison 
The dimensionality of the document, sentence, 

and terms spaces varied greatly, with 100830 
documents, 16.5 million sentences, and 2.0 mil-
lion distinct unstemmed terms (526.0 million in 
total), and 1.39 million distinct stemmed terms. 
Figure 2A shows the correlation between the fre-
quency of a term in the document space (x) and 
the average frequency of the same set of terms in 
the sentence space (y). For example, the average 
number of sentences for the set of terms that ap-
pear in 30 documents is 74.6. Figure 2B com-
pares the document (x) and average term freq- 
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Figure 2. Raw frequency correlation between document, sentence, and term spaces. 
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Figure 3. Zipf’s Law comparison. A through C show the power law distribution for the journal JAC-

SAT in the document (A), sentence (B), and term (C) event spaces. Note the predicted slope coeffi-
cients of 1.6362, 1.7138 and 1.7061 respectively). D shows the document, sentence, and term slope 

coefficients for each of the 25 journals when fit to the power law K=jm, where j is the rank. 
 
quency (y) These figures suggest that the docu-
ment space differs substantially from the sen-
tence and term spaces. Figure 2C shows the sen-
tence frequency (x) and average term frequency 
(y), demonstrating that the sentence and term 
spaces are highly correlated.  

Luhn proposed that if terms were ranked by 
the number of times they occurred in a corpus, 
then the terms of interest would lie within the 
center of the ranked list (Luhn 1958). Figures 
2D, E and F show the standard deviation be-
tween the document and sentence space, the 
document and term space and the sentence and 
term space respectively. These figures suggest 
that the greatest variation occurs for important 
terms.  

4.2 Zipf’s Law comparison 

Zipf’s Law states that the frequency of terms 
in a corpus conforms to a power law distribution 
K/jθ where θ is close to 1 (Zipf, 1949). We calcu-
lated the K and θ coefficients for each journal 
and language model combination using the 
binning method proposed in (Adamic, 2000). 
Figures 3A-C show the actual frequencies, and 

the power law fit for the each language model in 
just one of the 25 journals (jacsat). These and the 
remaining 72 figures (not shown) suggest that 
Zipf’s Law holds in all event spaces.  

Zipf Law states that θ should be close to -1. In 
our corpus, the average θ in the document space 
was -1.65, while the average θ in both the sen-
tence and term spaces was -1.73.  

Figure 3D compares the document slope (x) 
coefficient for each of the 25 journals with the 
sentence and term spaces coefficients (y). These 
findings are consistent with a recent study that 
suggested θ should be closer to 2 (Cancho 2005). 
Another study found that term frequency rank 
distribution was a better fit Zipf’s Law when the 
term space comprised both words and phrases 
(Ha et al, 2002). We considered only stemmed 
terms. Other studies suggest that a Poisson mix-
ture model would better capture the frequency 
rank distribution than the power model (Church 
and Gale, 1995). A comprehensive overview of 
using Zipf’s Law to model language can be 
found in (Guiter and Arapov, 1982). 
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4.3 Direct IDF, ISF, and ITF comparison 

Our third experiment was to compare the three 
language models directly. Figure 4A shows the 
average, minimum and maximum ISF value for 
each rounded IDF value. After fitting a regres-
sion line, we found that ISF correlates well with 
IDF, but that the average ISF values are 5.57 
greater than the corresponding IDF. Similarly, 
ITF correlates well with IDF, but the ITF values 
are 10.45 greater than the corresponding IDF. 
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Figure 4. Pair-wise IDF, ISF, and ITF com-
parisons. 

It is little surprise that Figure 4C reveals a 
strong correlation between ITF and ISF, given 
the correlation between raw frequencies reported 
in section 4.1. Again, we see a high correlation 
between the ISF and ITF spaces but that the ITF 
values are on average 4.69 greater than the 
equivalent ISF value. These findings suggests 
that simply substituting ISF or ITF for IDF 
would result in a weighting scheme where the 

corpus weights would dominate the weights as-
signed to query in the vector based retrieval 
model. The variation appears to increase at 
higher IDF values. 

Table 2 (see over) provides example stemmed 
terms with varying frequencies, and their corre-
sponding IDF, ISF and ITF weights. The most 
frequent term “the”, appears in 100717 docu-
ments, 12,771,805 sentences and 31,920,853 
times. In contrast, the stemmed term “electro-
chem” appeared in only six times in the corpus, 
in six different documents, and six different sen-
tences. Note also the differences between ab-
stracts, and the full-text IDF (see section 4.4).  

4.4 Abstract vs full text comparison 

Although abstracts are often easier to obtain, the 
availability of full-text documents continues to 
increase. In our fourth experiment, we compared 
the language used in abstracts with the language 
used in the full-text of a document. We com-
pared the abstract and non-abstract terms in each 
of the three language models.  

Not all of the documents distinguished the ab-
stract from the body. Of the 100,830 documents, 
92,723 had abstracts and 97,455 had sections 
other than an abstract. We considered only those 
documents that differentiated between sections. 
Although the number of documents did not differ 
greatly, the vocabulary size did. There were 
214,994 terms in the abstract vocabulary and 
1,337,897 terms in the document body, suggest-
ing a possible difference in the distribution of 
terms, the log(ni) component of IDF. 

Figure 5 suggests that language used in an ab-
stract differs from the language used in the body 
of a document. On average, the weights assigned 
to stemmed terms in the abstract were higher 
than the weights assigned to terms in the body of 
a document (space limitations preclude the inclu-
sion of the ISF and ITF figures).  
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Figure 5. Abstract and full-text IDF compared 

with global IDF. 

606



 Document (IDF) Sentence (ISF) Term (ITF) 
Word Abs NonAbs All Abs NonAbs All Abs NonAbs All 

the 1.014 1.004 1.001 1.342 1.364 1.373 4.604 9.404 5.164
chemist 11.074 5.957 5.734 13.635 12.820 12.553 22.838 17.592 17.615
synthesis 14.331 11.197 10.827 17.123 18.000 17.604 26.382 22.632 22.545
eletrochem 17.501 15.251 15.036 20.293 22.561 22.394 29.552 26.965 27.507

Table 2. Examples of IDF, ISF and ITF for terms with increasing IDF. 
 

4.5 IDF sensitivity 

The stability of the corpus weighting scheme is 
particularly important in a dynamic environment 
such as the web. Without an understanding of 
how IDF behaves, we are unable to make a prin-
cipled decision regarding how often a system 
should update the corpus-weights.  

To measure the sensitivity of IDF we sampled 
at 10% intervals from the global corpus as out-
lined in section 3. Figure 6 compares the global 
IDF with the IDF from each of the 10% samples. 
The 10% samples are almost indiscernible from 
the global IDF, which suggests that IDF values 
are very stable with respect to a random subset of 
articles. Only the 10% sample shows any visible 
difference from the global IDF values, and even 
then, the difference is only noticeable at higher 
global IDF values (greater than 17 in our cor-
pus).  
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Figure 6 – Global IDF vs random sample IDF. 
 

In addition to a random sample, we compared 
the global based IDF with IDF values generated 
from each journal (in an on-line environment, it 
may be pertinent to partition pages into academic 
or corporate URLs or to calculate term frequen-
cies for web pages separately from blog and 
wikis). In this case, N in equation (1) was the 
number of documents in the journal and ni was 
the distribution of terms within a journal. 

If the journal vocabularies were independent, 
the vocabulary size would be 4.1 million for un-

stemmed terms and 2.6 million for stemmed 
terms. Thus, the journals shared 48% and 52% of 
their vocabulary for unstemmed and stemmed 
terms respectively. 

Figure 7 shows the result of this comparison 
and suggests that the average IDF within a jour-
nal differed greatly from the global IDF value, 
particularly when the global IDF value exceeds 
five. This contrasts sharply with the random 
samples shown in Figure 6. 
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Figure 7 – Global IDF vs local journal IDF. 
 
At first glance, the journals with more articles 

appear to correlated more with the global IDF 
than journals with fewer articles. For example, 
JACSAT has 14,400 documents and is most cor-
related, while MPOHBP with 58 documents is 
least correlated. We plotted the number of arti-
cles in each journal with the mean squared error 
(figure not shown) and found that journals with 
fewer than 2,000 articles behave differently to 
journals with more than 2,000 articles; however, 
the relationship between the number of articles in 
the journal and the degree to which the language 
in that journal reflects the language used in the 
entire collection was not clear. 

5 Conclusions  

We have compared the document, sentence, and 
term spaces along several dimensions. Results 
from our corpus of 100,830 full-text scientific 
articles suggest that the difference between these 
alternative spaces is both theoretical and practi-
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cal in nature. As users continue to demand in-
formation systems that provide sub-document 
retrieval, the need to model language at the sub-
document level becomes increasingly important. 
The key findings from this study are:  

(1) The raw document frequencies are con-
siderably different to the sentence and 
term frequencies. The lack of a direct 
correlation between the document and 
sub-document raw spaces, in particular 
around the areas of important terms, sug-
gest that it would be difficult to perform 
a linear transformation from the docu-
ment to a sub-document space. In con-
trast, the raw term frequencies correlate 
well with the sentence frequencies. 

(2) IDF, ISF and ITF are highly correlated; 
however, simply replacing IDF with the 
ISF or ITF would result in a weighting 
scheme where the corpus weight domi-
nated the weights assigned to query and 
document terms.  

(3) IDF was surprisingly stable with respect 
to random samples at 10% of the total 
corpus. The average IDF values based on 
only a 20% random stratified sample 
correlated almost perfectly to IDF values 
that considered frequencies in the entire 
corpus. This finding suggests that sys-
tems in a dynamic environment, such as 
the Web, need not update the global IDF 
values regularly (see (4)).  

(4) In contrast to the random sample, the 
journal based IDF samples did not corre-
late well to the global IDF. Further re-
search is required to understand these 
factors that influence language usage. 

(5) All three models (IDF, ISF and ITF) sug-
gest that the language used in abstracts is 
systematically different from the lan-
guage used in the body of a full-text sci-
entific document. Further research is re-
quired to understand how well the ab-
stract tested corpus-weighting schemes 
will perform in a full-text environment.  
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