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Preface by the General Chair

Welcome to the 2014 Conference on Empirical Methods in Natural Language Processing.

The EMNLP conference series is annually organized by SIGDAT, the Association for Computational
Linguistics’ special interest group on linguistic data and corpus-based approaches to NLP. This year the
conference is being held from October 25, 2014 (Sat.) to October 29, 2014 (Wed.) in Doha, Qatar.

In the past five years, the EMNLP conference attendance has been continuously growing, reaching just
over 500 paying attendees in 2013, and it is nowadays considered as one of the leading conferences in
Computational Linguistics and Natural Language Processing.

Given the growing trend, we believed it was the right time to lead EMNLP into an organization structure
typical of large and important conferences. Therefore, we proposed several novelties: first of all, a large
organization committee consisting of twenty (plus twenty-six area chairs) well-known members of the
ACL community, who carried out several tasks required by the new achieved scale.

Secondly, as this is the first conference edition spanning five days, in addition to six workshops, we also
selected and included for the first time an excellent selection of eight tutorials. We defined a registration
policy that allows the participants to attend any of the tutorials and workshops (held on October 25th and
29th) by just paying a low flat rate on top of the registration fee for the main conference. We believe this
can greatly increase the spread of advanced technology and promote a unified view of the techniques and
foundations of our research field.

Thirdly, as a standalone conference, EMNLP required the definition of new administrative procedures
and policies, regarding sponsorship booklets, double submission, scholarship assignment, and the joint
EACL-ACL-EMNLP call for workshop proposals.

Next, EMNLP is finding new ways to foster the dissemination of research work by facing the increasing
number of papers to be presented at the conference. Our new approach consisted in presenting posters
in nine sessions each proposing a small numbers of papers: this way poster presentations can receive the
space and consideration that they deserve. Then, we are adding a surprise in terms of paper presentation
and dissemination, which will be unveiled only few days before the start of the conference.

Finally, this is the first time that an ACL conference is largely supported by a government research
foundation. The Qatar National Research Foundation (QNRF) has included EMNLP 2014 as one of its
local funding events. This enabled EMNLP and SIGDAT to perform unprecedented student scholarship
support: more than 30 students were sponsored (partially or entirely) for participating in the conference.
The obtained funds also allowed for offering a social dinner free of charge to all the attendees and
still closing the conference budget in active, thus creating additional resources that SIGDAT can use to
support the upcoming conferences.

The novelties above as well as the traditional activities that the EMNLP conference series proposes to its
members could not have been organized without the work of our large commiittee. In this respect, [ would
like to thank our PC co-chairs Walter Daelemans and Bo Pang, who greatly used their large experience
with program committees of our community for selecting an excellent program.

Special thanks go to our publication chair Yuval Marton, who did a terrific job in organizing and
preparing the proceedings. As a side effect of his proactive action, workshop organizers and future
publication chairs using the SoftConf START/ACLPUB systems can now streamline the inclusion of
workshops and conference schedules in the proceedings, without heavy manual customization.

We are very grateful to Enrique Alfonseca and Eric Gaussier for selecting interesting and successful
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workshops and to Lucia Specia and Xavier Carreras, who, for the first time, carried out the new task of
selecting tutorials for an EMNLP conference. The workshops and tutorials nicely filled the additional
two days of EMNLP, making our conference even more valuable.

Many thanks are due to Katrin Erk and Sebastian Padd, who were challenged by the new activity (for
EMNLP) of defining policy for the selection and assignment of participation scholarships to the most
deserving students. The uncertainty over the final amount of funds and their diverse nature made this
task particularly difficult. Nevertheless, they were able to find appropriate and successful solutions.

As any large conference, we could count on the help of publicity co-chairs to advertise the old and new
EMNLP features. We give our gratitude to Mona Diab and Irina Matveeva for their professional work.

Fund hunting is a very important activity for conferences, in this respect, I would like to thank our
sponsorship co-chairs, Jochen Leidner, Veselin Stoyanov and Min Zhang, for helping us to look for
sponsors in three different continents.

Regarding the SIGDAT side, a special thank is devoted to Noah Smith, who promptly answered any
question I came out with. I am also grateful to the other SIGDAT officers (past and new): Eugene
Charniak, Mark Johnson, Philipp Koehn, Mark Steedman, who were always there to give suggestions
and solutions to critical issues that inevitably arise in any large event.

Many thanks also to Tim Baldwin, Anna Korhonen, Graeme Hirst and David Yarowsky who provided
much useful information from past conferences. Last but not least, I would like to thank Priscilla
Rasmussen for her help and advice, and her undoubtful qualities of soothsayer regarding the estimation
of conference numbers.

Coming back to the sponsor topic, we are enormously thankful to QNREF, for accepting our proposal
to fund EMNLP: this has made it possible to sponsor an unprecedented number of students and offer
a banquet free of charge to all participants (we needed to create a new level of sponsorship for them,
namely, Diamond). We are very grateful to The Qatar Computing Research Institute, which in addition to
providing the very valuable Platinum sponsorship, also provided the required man power for organizing
the event.

In particular, EMNLP could not be organized in Qatar without the work of Kareem Darwish, the local
organization chair. We are also very grateful to Kemal Oflazer, local co-chair and Francisco Guzman
Herrera, local sponsorship chair, whose work was determinant to obtain the QNRF sponsorship. We are
deeply in debt with the other local organizers, Lluis Marquez, who also edited the conference booklet,
Preslav Nakov, Fabrizio Sebastiani and Stephan Vogel for their help with the daily big and little issues.

Special thanks go to The Carnegie Mellon University in Qatar for helping us with the proposal
preparation and management of the QNRF funds and also for supporting us with a Gold sponsorship.
Additionally, many thanks go to our silver sponsors, Facebook and Yandex and our bronze sponsor
iHorizons, who show the increasing interest of industry in the technology of our community for the
design of real-world and high-societal impact applications. In this respect, we sincerely thank Google
Inc. and IBM Watson, New York, for supporting the student participation with their scholarships.

Finally, and foremost, thanks to all the authors and conference attendees who are the main actors of
this event, bringing the real value to it and determining its success. My personal thanks also go to the
entire SIGDAT committee, for choosing me as the chair of this fantastic conference, held in a fascinating
venue.

Alessandro Moschitti
General Chair of EMNLP 2014
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Preface by the Program Committee Co-Chairs

We welcome you to the 2014 Conference on Empirical Methods in Natural Language Processing.

As in the previous EMNLP, we invited both long and short papers with a single submission deadline.
Short papers encourage the submission of smaller and more preliminary contributions.

We received 790 submissions (after initial withdrawals of unfinished submissions and removal of
duplicates), of which 28 were rejected before review for not adhering to the instructions in the call for
papers regarding paper length or anonymity. The remaining 510 long and 252 short papers were allocated
to one of the fourteen areas. The most popular areas this year were Machine Translation, Semantics, and
Syntax (Tagging, Chunking, and Parsing).

Reviewing for a conference this size involves an army of dedicated professionals volunteering to donate
their valuable and scarce time to make sure that the highest possible reviewing standards are reached.
We are very grateful to our 26 area chairs and a programme committee of more than 500 for their efforts.
We accepted 155 long and 70 short papers, representing a global acceptance rate of just under 30%. Nine
papers accepted by the ACL journal TACL were added to the program.

Based on the reviews and on nominations by the area chairs, 5 long papers were shortlisted for the best
paper award. The best paper will be presented in a plenary best paper award ceremony. We would like to
thank Mark Johnson and Claire Cardie for their willingness to serve in the best paper award committee
that was set up and for providing excellent advice and motivation for their choice.

We are grateful to the authors for selecting EMNLP as the venue for their work. Congratulations to
the authors of accepted submissions. To the authors of rejected submissions we would like to offer as
consolation the fact that because of the competitive nature of the conference and the inevitable time and
space limitations, many worthwhile papers could not be included in the program. We hope the feedback
of the reviewers will be considered worthwhile by them and lead to successful future submissions.

We are very grateful to our invited speakers Thorsten Joachims and Salim Roukos. Thorsten Joachims
is professor at the Computer Science and Information Science departments at Cornell University and
shows how integrating microeconomic models of human behavior into the learning process leads to new
interaction models and learning algorithms, in turn leading to better performing systems. Salim Roukos is
senior manager of multilingual NLP and CTO of Translation Technologies at IBM T.J. Watson research
Center and addresses IBM’s approach to cognitive computing for building systems and solutions that
enable and support richer human-machine interactions, and remaining opportunities in this area for novel
statistical models for natural language processing. We thank them for their inspiring talks and presence
at the conference.

We would also like to thank our general chair Alessandro Moschitti for his leadership, advice,
encouragement, and support, Kareem Darwish and his colleagues for impeccable cooperation from local
organization, and Yuval Marton for doing an excellent job assembling these proceedings.

It was an honour to serve as Programme Chairs of EMNLP 2014, and we hope that you will enjoy the
conference and be able to think back later and remember a scientifically stimulating conference and a
pleasant time in Doha, Qatar.

Bo Pang and Walter Daelemans

EMNLP 2014 Program Chairs
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Reducing Dimensions of Tensors in Type-Driven Distributional Semantics
Tamara Polajnar, Luana Fagarasan and Stephen Clark

An Etymological Approach to Cross-Language Orthographic Similarity. Applica-
tion on Romanian
Alina Maria Ciobanu and Liviu P. Dinu

Efficient Non-parametric Estimation of Multiple Embeddings per Word in Vector
Space
Arvind Neelakantan, Jeevan Shankar, Alexandre Passos and Andrew McCallum

Session Sc: Information Retrieval and Question Answering
Tailor knowledge graph for query understanding: linking intent topics by propaga-
tion

Shi Zhao and Yan Zhang

Queries as a Source of Lexicalized Commonsense Knowledge
Marius Pasca

Question Answering over Linked Data Using First-order Logic
Shizhu He, Kang Liu, Yuanzhe Zhang, Liheng Xu and Jun Zhao

Knowledge Graph and Corpus Driven Segmentation and Answer Inference for Tele-

graphic Entity-seeking Queries
Mandar Joshi, Uma Sawant and Soumen Chakrabarti
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13:30-15:10

Session Sp: NLP for the Web, Social Media and Sentiment Analysis

Poster Session
Multiple presenters

A Regularized Competition Model for Question Difficulty Estimation in Community
Question Answering Services
Quan Wang, Jing Liu, Bin Wang and Li Guo

Vote Prediction on Comments in Social Polls
Isaac Persing and Vincent Ng

Exploiting Social Relations and Sentiment for Stock Prediction
Jianfeng Si, Arjun Mukherjee, Bing Liu, Sinno Jialin Pan, Qing Li and Huayi Li

Developing Age and Gender Predictive Lexica over Social Media
Maarten Sap, Gregory Park, Johannes Eichstaedt, Margaret Kern, David Stillwell,
Michal Kosinski, Lyle Ungar and Hansen Andrew Schwartz

Dependency Parsing for Weibo: An Efficient Probabilistic Logic Programming Ap-
proach
William Yang Wang, Lingpeng Kong, Kathryn Mazaitis and William W Cohen

Exploiting Community Emotion for Microblog Event Detection
Gaoyan Ou, Wei Chen, Tengjiao Wang, Zhongyu Wei, Binyang LI, Dongqing Yang
and Kam-Fai Wong

Detecting Disagreement in Conversations using Pseudo-Monologic Rhetorical
Structure
Kelsey Allen, Giuseppe Carenini and Raymond Ng

+/-EffectWordNet: Sense-level Lexicon Acquisition for Opinion Inference
Yoonjung Choi and Janyce Wiebe

A Sentiment-aligned Topic Model for Product Aspect Rating Prediction
Hao Wang and Martin Ester

Learning Emotion Indicators from Tweets: Hashtags, Hashtag Patterns, and
Phrases

Ashequl Qadir and Ellen Riloff

Fine-Grained Contextual Predictions for Hard Sentiment Words
Sebastian Ebert and Hinrich Schiitze
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15:10-15:40

15:40-16:05

16:05-16:30

16:30-16:55

16:55-17:20

15:40-16:05

16:05-16:30

16:30-16:55

16:55-17:20

An Iterative Link-based Method for Parallel Web Page Mining
Le Liu, Yu Hong, Jun Lu, Jun Lang, Heng Ji and Jianmin Yao

Exploiting Social Network Structure for Person-to-Person Sentiment Analysis
Robert West, Hristo Paskov, Jure Leskovec, Christopher Potts

Coffee Break

Session 6a: Machine Translation

Human Effort and Machine Learnability in Computer Aided Translation
Spence Green, Sida I. Wang, Jason Chuang, Jeffrey Heer, Sebastian Schuster and
Christopher D. Manning

Exact Decoding for Phrase-Based Statistical Machine Translation
Wilker Aziz, Marc Dymetman and Lucia Specia

Large-scale Expected BLEU Training of Phrase-based Reordering Models
Michael Auli, Michel Galley and Jianfeng Gao

Confidence-based Rewriting of Machine Translation Output
Benjamin Marie and Aurélien Max
Session 6b: Semantic Parsing

Learning Compact Lexicons for CCG Semantic Parsing
Yoav Artzi, Dipanjan Das and Slav Petrov

Morpho-syntactic Lexical Generalization for CCG Semantic Parsing
Adrienne Wang, Tom Kwiatkowski and Luke Zettlemoyer

Semantic Parsing Using Content and Context: A Case Study from Requirements
Elicitation

Reut Tsarfaty, Ilia Pogrebezky, Guy Weiss, Yaarit Natan, Smadar Szekely and David
Harel

Semantic Parsing with Relaxed Hybrid Trees
Wei Lu
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15:40-16:05

16:05-16:30

16:30-16:55

16:55-17:20

15:40-17:20

Session 6¢: NLP-Related Machine Learning

Low-dimensional Embeddings for Interpretable Anchor-based Topic Inference
David Mimno and Moontae Lee

Weakly-Supervised Learning with Cost-Augmented Contrastive Estimation
Kevin Gimpel and Mohit Bansal

Don’t Until the Final Verb Wait: Reinforcement Learning for Simultaneous Machine
Translation
Alvin Grissom II, He He, Jordan Boyd-Graber, John Morgan and Hal Daumé 11

PCFG Induction for Unsupervised Parsing and Language Modelling
James Scicluna and Colin de la Higuera

Session 6p: Computational Psycholinguistics, Text Mining and NLP Applica-
tions

Poster Session
Multiple presenters

Can characters reveal your native language? A language-independent approach to
native language identification
Radu Tudor Ionescu, Marius Popescu and Aoife Cahill

Formalizing Word Sampling for Vocabulary Prediction as Graph-based Active
Learning
Yo Ehara, Yusuke Miyao, Hidekazu Oiwa, Issei Sato and Hiroshi Nakagawa

Language Transfer Hypotheses with Linear SVM Weights
Shervin Malmasi and Mark Dras

Predicting Dialect Variation in Immigrant Contexts Using Light Verb Constructions
A. Seza Dogruoz and Preslav Nakov

Device-Dependent Readability for Improved Text Understanding
A-Yeong Kim, Hyun-Je Song, Seong-Bae Park and Sang-Jo Lee

Predicting Chinese Abbreviations with Minimum Semantic Unit and Global Con-

straints
Longkai Zhang, li li, Houfeng WANG and Xu Sun
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Using Structured Events to Predict Stock Price Movement: An Empirical Investiga-
tion
Xiao Ding, Yue Zhang, Ting Liu and Junwen Duan

Extracting Clusters of Specialist Terms from Unstructured Text
Aaron Gerow

Citation-Enhanced Keyphrase Extraction from Research Papers: A Supervised Ap-
proach

Cornelia Caragea, Florin Adrian Bulgarov, Andreea Godea and Sujatha Das Golla-
palli

Using Mined Coreference Chains as a Resource for a Semantic Task
Heike Adel and Hinrich Schiitze

Financial Keyword Expansion via Continuous Word Vector Representations
Ming-Feng Tsai and Chuan-Ju Wang

Intrinsic Plagiarism Detection using N-gram Classes
Imene Bensalem, Paolo Rosso and Salim Chikhi

Verifiably Effective Arabic Dialect Identification
Kareem Darwish, Hassan Sajjad and Hamdy Mubarak

Keystroke Patterns as Prosody in Digital Writings: A Case Study with Deceptive
Reviews and Essays
Ritwik Banerjee, Song Feng, Jun Seok Kang and Yejin Choi

Leveraging Effective Query Modeling Techniques for Speech Recognition and Sum-
marization

Kuan-Yu Chen, Shih-Hung Liu, Berlin Chen, Ea-Ee Jan, Hsin-Min Wang, Wen-
Lian Hsu and Hsin-Hsi Chen

Staying on Topic: An Indicator of Power in Political Debates
Vinodkumar Prabhakaran, Ashima Arora and Owen Rambow
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08:00-17:00

08:00-09:00

09:00-09:05

09:05-09:30

09:30-09:55

10:00-10:30

10:30-10:55

10:55-11:20

11:20-11:45

11:45-12:10

Registration

Refreshments

Plenary Session

Best Paper Award
Bo Pang and Walter Daelemans

Language Modeling with Power Low Rank Ensembles
Ankur P. Parikh, Avneesh Saluja, Chris Dyer and Eric Xing

Modeling Biological Processes for Reading Comprehension

Jonathan Berant, Vivek Srikumar, Pei-Chun Chen, Abby Vander Linden, Brittany
Harding, Brad Huang and Christopher D. Manning

Coffee Break

Session 7a: Semantics

Sensicon: An Automatically Constructed Sensorial Lexicon
Serra Sinem Tekiroglu, Gézde Ozbal and Carlo Strapparava

Word Semantic Representations using Bayesian Probabilistic Tensor Factorization
Jingwei Zhang, Jeremy Salwen, Michael Glass and Alfio Gliozzo

Glove: Global Vectors for Word Representation
Jeffrey Pennington, Richard Socher and Christopher Manning

Jointly Learning Word Representations and Composition Functions Using

Predicate-Argument Structures
Kazuma Hashimoto, Pontus Stenetorp, Makoto Miwa and Yoshimasa Tsuruoka
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10:30-10:55

10:55-11:20

11:20-11:45

11:45-12:10

10:30-10:55

10:55-11:20

11:20-11:45

11:45-12:10

Session 7b: Information Extraction

Combining Distant and Partial Supervision for Relation Extraction
Gabor Angeli, Julie Tibshirani, Jean Wu and Christopher D. Manning

Typed Tensor Decomposition of Knowledge Bases for Relation Extraction
Kai-Wei Chang, Wen-tau Yih, Bishan Yang and Christopher Meek

A convex relaxation for weakly supervised relation extraction
Edouard Grave

Knowledge Graph and Text Jointly Embedding
Zhen Wang, Jianwen Zhang, Jianlin Feng and Zheng Chen
Session 7c¢: Sentiment Analysis and NLP Applications

Abstractive Summarization of Product Reviews Using Discourse Structure
Shima Gerani, Yashar Mehdad, Giuseppe Carenini, Raymond T. Ng and Bita Nejat

Clustering Aspect-related Phrases by Leveraging Sentiment Distribution Consis-
tency
Li Zhao, Minlie Huang, Haigiang Chen, Junjun Cheng and Xiaoyan Zhu

Automatic Generation of Related Work Sections in Scientific Papers: An Optimiza-
tion Approach

Yue Hu and Xiaojun Wan

Fast and Accurate Misspelling Correction in Large Corpora
Octavian Popescu and Ngoc Phuoc An Vo
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10:30-12:10

Session 7p: Machine Translation and Machine Learning

Poster Session
Multiple presenters

Assessing the Impact of Translation Errors on Machine Translation Quality with
Mixed-effects Models
Marcello Federico, Matteo Negri, Luisa Bentivogli and Marco Turchi

Refining Word Segmentation Using a Manually Aligned Corpus for Statistical Ma-
chine Translation
Xiaolin Wang, Masao Utiyama, Andrew Finch and Eiichiro Sumita

Improving Pivot-Based Statistical Machine Translation by Pivoting the Co-
occurrence Count of Phrase Pairs

Xiaoning Zhu, Zhongjun He, Hua Wu, Conghui Zhu, Haifeng Wang and Tiejun
Zhao

Word Translation Prediction for Morphologically Rich Languages with Bilingual
Neural Networks
Ke M. Tran, Arianna Bisazza and Christof Monz

Dependency-Based Bilingual Language Models for Reordering in Statistical Ma-
chine Translation
Ekaterina Garmash and Christof Monz

Combining String and Context Similarity for Bilingual Term Alignment from Com-
parable Corpora

Georgios Kontonatsios, loannis Korkontzelos, Jun’ichi Tsujii and Sophia Anani-
adou

Random Manhattan Integer Indexing: Incremental L1 Normed Vector Space Con-
struction
Behrang Q. Zadeh and Siegfried Handschuh

Learning Phrase Representations using RNN Encoder—Decoder for Statistical Ma-
chine Translation

Kyunghyun Cho, Bart van Merrienboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi
Bougares, Holger Schwenk and Yoshua Bengio

Type-based MCMC for Sampling Tree Fragments from Forests
Xiaochang Peng and Daniel Gildea

Convolutional Neural Networks for Sentence Classification
Yoon Kim

Sometimes Average is Best: The Importance of Averaging for Prediction using
MCMC Inference in Topic Modeling
Viet-An Nguyen, Jordan Boyd-Graber and Philip Resnik
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12:10-13:30

13:30-13:50

13:50-14:10

14:10-14:30

14:30-14:50

14:50-15:10

Large-scale Reordering Model for Statistical Machine Translation using Dual
Multinomial Logistic Regression
Abdullah Alrajeh and Mahesan Niranjan

Dynamic Language Models for Streaming Text
Dani Yogatama, Chong Wang, Bryan Routledge, Noah A. Smith, Eric P. Xing

Improved Decipherment of Homophonic Ciphers
Malte Nuhn, Julian Schamper and Hermann Ney

Cipher Type Detection
Malte Nuhn and Kevin Knight

Lunch Break

Session 8sa: Segmentation and Tagging / Spoken Language / Semantics

Joint Learning of Chinese Words, Terms and Keywords
Ziqiang Cao, Sujian Li and Heng Ji

Cross-Lingual Part-of-Speech Tagging through Ambiguous Learning
Guillaume Wisniewski, Nicolas Pécheux, Souhir Gahbiche-Braham and Frangois

Yvon

Comparing Representations of Semantic Roles for String-To-Tree Decoding
Marzieh Bazrafshan and Daniel Gildea

Detecting Non-compositional MWE Components using Wiktionary
Bahar Salehi, Paul Cook and Timothy Baldwin

(Empty slot)
(No presentation)
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Session 8sb: Sentiment Analysis / Social / Computational Psycholinguistics /
Text Classification

13:30-13:50  Joint Emotion Analysis via Multi-task Gaussian Processes
Daniel Beck, Trevor Cohn and Lucia Specia

13:50-14:10  Detecting Latent Ideology in Expert Text: Evidence From Academic Papers in Eco-
nomics

Zubin Jelveh, Bruce Kogut and Suresh Naidu

14:10-14:30 A Model of Individual Differences in Gaze Control During Reading
Niels Landwehr, Sebastian Arzt, Tobias Scheffer and Reinhold Kliegl

14:30-14:50  Muli-label Text Categorization with Hidden Components
li li, Longkai Zhang and Houfeng WANG

14:50-15:10  #TagSpace: Semantic Embeddings from Hashtags
Jason Weston, Sumit Chopra and Keith Adams
Session 8sc: Summarization / Machine Translation / Information Extraction

13:30-13:50  Joint Decoding of Tree Transduction Models for Sentence Compression
Jin-ge Yao, Xiaojun Wan and Jianguo Xiao

13:50-14:10  Dependency-based Discourse Parser for Single-Document Summarization
Yasuhisa Yoshida, Jun Suzuki, Tsutomu Hirao and Masaaki Nagata

14:10-14:30  Improving Word Alignment using Word Similarity
Theerawat Songyot and David Chiang

14:30-14:50  Constructing Information Networks Using One Single Model
Qi Li, Heng Ji, Yu HONG and Sujian Li

14:50-15:10  Event Role Extraction using Domain-Relevant Word Representations
Emanuela Boros, Romaric Besancgon, Olivier Ferret and Brigitte Grau
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13:30-15:10

Session 8p: Information Extraction

Poster Session
Multiple presenters

Modeling Joint Entity and Relation Extraction with Table Representation
Makoto Miwa and Yutaka Sasaki

ZORE: A Syntax-based System for Chinese Open Relation Extraction
Likun Qiu and Yue Zhang

Coarse-grained Candidate Generation and Fine-grained Re-ranking for Chinese
Abbreviation Prediction
Longkai Zhang, Houfeng WANG and Xu Sun

Type-Aware Distantly Supervised Relation Extraction with Linked Arguments
Mitchell Koch, John Gilmer, Stephen Soderland and Daniel S. Weld

Automatic Inference of the Tense of Chinese Events Using Implicit Linguistic Infor-
mation
Yuchen Zhang and Nianwen Xue

Joint Inference for Knowledge Base Population
Liwei Chen, Yansong Feng, Jinghui Mo, Songfang Huang and Dongyan Zhao

Combining Visual and Textual Features for Information Extraction from Online Fly-
ers
Emilia Apostolova and Noriko Tomuro

CTPs: Contextual Temporal Profiles for Time Scoping Facts using State Change
Detection
Derry Tanti Wijaya, Ndapandula Nakashole and Tom M. Mitchell

Noisy Or-based model for Relation Extraction using Distant Supervision
Ajay Nagesh, Gholamreza Haffari and Ganesh Ramakrishnan

15:10-15:40 Coffee Break
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15:40-16:05

16:05-16:30

16:30-16:55

16:55-17:20

15:40-16:05

16:05-16:30

16:30-16:55

16:55-17:20

Session 9a: Machine Learning and Machine Translation

Search-Aware Tuning for Machine Translation
Lemao Liu and Liang Huang

Latent-Variable Synchronous CFGs for Hierarchical Translation
Avneesh Saluja, Chris Dyer and Shay B. Cohen

Dynamically Shaping the Reordering Search Space of Phrase-Based Statistical Ma-
chine Translation
Arianna Bisazza and Marcello Federico

(Empty slot)
(No presentation)

Session 9b: NLP for the Web and Social Media

Gender and Power: How Gender and Gender Environment Affect Manifestations of
Power
Vinodkumar Prabhakaran, Emily E. Reid and Owen Rambow

Online topic model for Twitter considering dynamics of user interests and topic
trends
Kentaro Sasaki, Tomohiro Yoshikawa and Takeshi Furuhashi

Self-disclosure topic model for classifying and analyzing Twitter conversations
JinYeong Bak, Chin-Yew Lin and Alice Oh

Major Life Event Extraction from Twitter based on Congratulations/Condolences
Speech Acts
Jiwei Li, Alan Ritter, Claire Cardie and Eduard Hovy
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15:40-16:05

16:05-16:30

16:30-16:55

16:55-17:20

15:40-17:20

Session 9¢: Semantics

Brighter than Gold: Figurative Language in User Generated Comparisons
Vlad Niculae and Cristian Danescu-Niculescu-Mizil

Classifying Idiomatic and Literal Expressions Using Topic Models and Intensity of
Emotions
Jing Peng, Anna Feldman and Ekaterina Vylomova

TREETALK: Composition and Compression of Trees for Image Descriptions
Polina Kuznetsova, Vicente Ordonez, Tamara Berg, Yejin Choi

Learning Spatial Knowledge for Text to 3D Scene Generation
Angel Chang, Manolis Savva and Christopher D. Manning
Session 9p: Discourse, Dialogue and Pragmatics

Poster Session
Multiple presenters

A Model of Coherence Based on Distributed Sentence Representation
Jiwei Li and Eduard Hovy

Discriminative Reranking of Discourse Parses Using Tree Kernels
Shafiq Joty and Alessandro Moschitti

Recursive Deep Models for Discourse Parsing
Jiwei Li, Rumeng Li and Eduard Hovy

Recall Error Analysis for Coreference Resolution
Sebastian Martschat and Michael Strube

A Rule-Based System for Unrestricted Bridging Resolution: Recognizing Bridging
Anaphora and Finding Links to Antecedents
Yufang Hou, Katja Markert and Michael Strube

Resolving Referring Expressions in Conversational Dialogs for Natural User Inter-

faces
Asli Celikyilmaz, Zhaleh Feizollahi, Dilek Hakkani-Tur and Ruhi Sarikaya
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17:20-17:40

Building Chinese Discourse Corpus with Connective-driven Dependency Tree
Structure
Yancui Li, wenhe feng, jing sun, Fang Kong and Guodong Zhou

Prune-and-Score: Learning for Greedy Coreference Resolution

Chao Ma, Janardhan Rao Doppa, J. Walker Orr, Prashanth Mannem, Xiaoli Fern,
Tom Dietterich and Prasad Tadepalli

Summarizing Online Forum Discussions — Can Dialog Acts of Individual Messages
Help?
Sumit Bhatia, Prakhar Biyani and Prasenjit Mitra

Closing Session

Final Thanks and EMNLP 2015 Preview
Alessandro Moschitti
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IBM Cognitive Computing - An NLP Renaissance!

Salim Roukos
Senior Manager of Multi-Lingual NLP and CTO for Translation Technologies

IBM T. J. Watson Research Center
roukos@us.ibm.com

Abstract

Electronically available multi-modal data
(primarily text and meta-data) is unprece-
dented in terms of its volume, variety, ve-
locity, (and veracity). The increased in-
terest and investment in cognitive comput-
ing for building systems and solutions that
enable and support richer human-machine
interactions presents a unique opportunity
for novel statistical models for natural lan-
guage processing.

In this talk, I will describe a journey at
IBM during the past three decades in de-
veloping novel statistical models for NLP
covering statistical parsing, machine trans-
lation, and question-answering systems.
Along with a discussion of some of the re-
cent successes, I will discuss some diffi-
cult challenges that need to be addressed to
achieve more effective cognitive systems
and applications.

About the Speaker

Salim Roukos is Senior Manager of Multi-Lingual
NLP and CTO for Translation Technologies at
IBM T. J. Watson Research Center. Dr. Roukos
received his B.E. from the American University
of Beirut, in 1976, his M.Sc. and Ph.D. from
the University of Florida, in 1978 and 1980, re-
spectively. He joined Bolt Beranek and Newman
from 1980 through 1989, where he was a Senior
Scientist in charge of projects in speech compres-
sion, time scale modification, speaker identifica-
tion, word spotting, and spoken language under-
standing. He was an Adjunct Professor at Boston
University in 1988 before joining IBM in 1989.
Dr. Roukos has served as Chair of the IEEE Digi-
tal Signal Processing Committee in 1988.

Salim Roukos currently leads a group at IBM
T.J. Watson research Center that focuses on vari-
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ous problems using machine learning techniques
for natural language processing. The group pi-
oneered many of the statistical methods for NLP
from statistical parsing, to natural language under-
standing, to statistical machine translation and ma-
chine translation evaluation metrics (BLEU met-
ric). Roukos has over a 150 publications in the
speech and language areas and over two dozen
patents. Roukos was the lead of the group which
introduced the first commercial statistical lan-
guage understanding system for conversational
telephony systems (IBM ViaVoice Telephony) in
2000 and the first statistical machine translation
product for Arabic-English translation in 2003.
He has recently lead the effort to create IBM’s
offering of IBM Real-Time Translation Services
(RTTS) a platform for enabling real-time transla-
tion applications such as multilingual chat and on-
demand document translation.
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Modeling Interestingness with Deep Neural Networks

Jianfeng Gao, Patrick Pantel, Michael Gamon, Xiaodong He, Li Deng
Microsoft Research
One Microsoft Way
Redmond, WA 98052, USA

{jfgao, ppantel, mgamon, xiaohe,deng}@microsoft.com

Abstract

This paper presents a deep semantic simi-
larity model (DSSM), a special type of
deep neural networks designed for text
analysis, for recommending target docu-
ments to be of interest to a user based on a
source document that she is reading. We
observe, identify, and detect naturally oc-
curring signals of interestingness in click
transitions on the Web between source and
target documents, which we collect from
commercial Web browser logs. The DSSM
is trained on millions of Web transitions,
and maps source-target document pairs to
feature vectors in a latent space in such a
way that the distance between source doc-
uments and their corresponding interesting
targets in that space is minimized. The ef-
fectiveness of the DSSM is demonstrated
using two interestingness tasks: automatic
highlighting and contextual entity search.
The results on large-scale, real-world da-
tasets show that the semantics of docu-
ments are important for modeling interest-
ingness and that the DSSM leads to signif-
icant quality improvement on both tasks,
outperforming not only the classic docu-
ment models that do not use semantics but
also state-of-the-art topic models.

1 Introduction

Tasks of predicting what interests a user based on
the document she is reading are fundamental to
many online recommendation systems. A recent
survey is due to Ricci et al. (2011). In this paper,
we exploit the use of a deep semantic model for
two such interestingness tasks in which document
semantics play a crucial role: automatic highlight-
ing and contextual entity search.

Automatic Highlighting. In this task we want
a recommendation system to automatically dis-
cover the entities (e.g., a person, location, organi-
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zation etc.) that interest a user when reading a doc-
ument and to highlight the corresponding text
spans, referred to as keywords afterwards. We
show in this study that document semantics are
among the most important factors that influence
what is perceived as interesting to the user. For
example, we observe in Web browsing logs that
when a user reads an article about a movie, she is
more likely to browse to an article about an actor
or character than to another movie or the director.

Contextual entity search. After identifying
the keywords that represent the entities of interest
to the user, we also want the system to recommend
new, interesting documents by searching the Web
for supplementary information about these enti-
ties. The task is challenging because the same key-
words often refer to different entities, and interest-
ing supplementary information to the highlighted
entity is highly sensitive to the semantic context.
For example, “Paul Simon” can refer to many peo-
ple, such as the singer and the senator. Consider
an article about the music of Paul Simon and an-
other about his life. Related content about his up-
coming concert tour is much more interesting in
the first context, while an article about his family
is more interesting in the second.

At the heart of these two tasks is the notion of
interestingness. In this paper, we model and make
use of this notion of interestingness with a deep
semantic similarity model (DSSM). The model,
extending from the deep neural networks shown
recently to be highly effective for speech recogni-
tion (Hinton et al., 2012; Deng et al., 2013) and
computer vision (Krizhevsky et al., 2012; Mar-
koff, 2014), is semantic because it maps docu-
ments to feature vectors in a latent semantic space,
also known as semantic representations. The
model is deep because it employs a neural net-
work with several hidden layers including a spe-
cial convolutional-pooling structure to identify
keywords and extract hidden semantic features at
different levels of abstractions, layer by layer. The
semantic representation is computed through a
deep neural network after its training by back-
propagation with respect to an objective tailored
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to the respective interestingness tasks. We obtain
naturally occurring “interest” signals by observ-
ing Web browser transitions, from a source docu-
ment to a target document, in Web usage logs of a
commercial browser. Our training data is sampled
from these transitions.

The use of the DSSM to model interestingness
is motivated by the recent success of applying re-
lated deep neural networks to computer vision
(Krizhevshy et al. 2012; Markoft, 2014), speech
recognition (Hinton et al. 2012), text processing
(Collobert et al. 2011), and Web search (Huang
et al. 2013). Among them, (Huang et al. 2013) is
most relevant to our work. They also use a deep
neural network to map documents to feature vec-
tors in a latent semantic space. However, their
model is designed to represent the relevance be-
tween queries and documents, which differs from
the notion of interestingness between documents
studied in this paper. It is often the case that a user
is interested in a document because it provides
supplementary information about the entities or
concepts she encounters when reading another
document although the overall contents of the sec-
ond documents is not highly relevant. For exam-
ple, a user may be interested in knowing more
about the history of University of Washington af-
ter reading the news about President Obama’s
visit to Seattle. To better model interestingness,
we extend the model of Huang et al. (2013) in two
significant aspects. First, while Huang et al. treat
a document as a bag of words for semantic map-
ping, the DSSM treats a document as a sequence
of words and tries to discover prominent key-
words. These keywords represent the entities or
concepts that might interest users, via the convo-
lutional and max-pooling layers which are related
to the deep models used for computer vision
(Krizhevsky et al., 2013) and speech recognition
(Deng et al., 2013a) but are not used in Huang et
al.’s model. The DSSM then forms the high-level
semantic representation of the whole document
based on these keywords. Second, instead of di-
rectly computing the document relevance score
using cosine similarity in the learned semantic
space, as in Huang et al. (2013), we feed the fea-
tures derived from the semantic representations of
documents to a ranker which is trained in a super-
vised manner. As a result, a document that is not
highly relevant to another document a user is read-
ing (i.e., the distance between their derived feature

! We stress here that, although the click signal is available to
form a dataset and a gold standard ranker (to be described in

vectors is big) may still have a high score of inter-
estingness because the former provides useful in-
formation about an entity mentioned in the latter.
Such information and entity are encoded, respec-
tively, by (some subsets of) the semantic features
in their corresponding documents. In Sections 4
and 5, we empirically demonstrate that the afore-
mentioned two extensions lead to significant qual-
ity improvements for the two interestingness tasks
presented in this paper.

Before giving a formal description of the
DSSM in Section 3, we formally define the inter-
estingness function, and then introduce our data
set of naturally occurring interest signals.

2 The Notion of Interestingness

Let D be the set of all documents. Following
Gamon et al. (2013), we formally define the inter-
estingness modeling task as learning the mapping
function:

0:DxD - R*

where the function (s, t) is the quantified degree
of interest that the user has in the target document
t € D after or while reading the source document
s €D.

Our notion of a document is meant in its most
general form as a string of raw unstructured text.
That is, the interestingness function should not
rely on any document structure such as title tags,
hyperlinks, etc., or Web interaction data. In our
tasks, documents can be formed either from the
plain text of a webpage or as a text span in that
plain text, as will be discussed in Sections 4 and 5.

2.1 Data

We can observe many naturally occurring mani-
festations of interestingness on the Web. For ex-
ample, on Twitter, users follow shared links em-
bedded in tweets. Arguably the most frequent sig-
nal, however, occurs in Web browsing events
where users click from one webpage to another
via hyperlinks. When a user clicks on a hyperlink,
it is reasonable to assume that she is interested in
learning more about the anchor, modulo cases of
erroneous clicks. Aggregate clicks can therefore
serve as a proxy for interestingness. That is, for a
given source document, target documents that at-
tract the most clicks are more interesting than doc-
uments that attract fewer clicks'.

Section 4), our task is to model interestingness between un-
structured documents, i.e., without access to any document
structure or Web interaction data. Thus, in our experiments,
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Figure 1: Illustration of the network architec-
ture and information flow of the DSSM

We collect a large dataset of user browsing
events from a commercial Web browser. Specifi-
cally, we sample 18 million occurrences of a user
click from one Wikipedia page to another during
a one year period. We restrict our browsing events
to Wikipedia since its pages tend to contain many
anchors (79 on average, where on average 42 have
a unique target URL). Thus, they attract enough
traffic for us to obtain robust browsing transition
data’. We group together all transitions originat-
ing from the same page and randomly hold out
20% of the transitions for our evaluation data
(EVAL), 20% for training the DSSM described in
Section 3.2 (TRAIN_1), and the remaining 60%
for training our task specific rankers described in
Section 3.3 (TRAIN_2). In our experiments, we
used different settings for the two interestingness
tasks. Thus, we postpone the detailed description
of these datasets and other task-specific datasets
to Sections 4 and 5.

3 A Deep Semantic Similarity Model
(DSSM)

This section presents the architecture of the
DSSM, describes the parameter estimation, and
the way the DSSM is used in our tasks.

we remove all structural information (e.g., hyperlinks and
XML tags) in our documents, except that in the highlighting
experiments (Section 4) we use anchor texts to simulate the
candidate keywords to be highlighted. We then convert each

3.1 Network Architecture

The heart of the DSSM is a deep neural network
with convolutional structure, as shown in Figure
1. In what follows, we use lower-case bold letters,
such as x, to denote column vectors, x(i) to de-
note the i*" element of X, and upper-case letters,
such as W, to denote matrices.

Input Layer X. It takes two steps to convert a doc-
ument d, which is a sequence of words, into a vec-
tor representation X for the input layer of the net-
work: (1) convert each word in d to a word vector,
and (2) build x by concatenating these word vec-
tors. To convert a word w into a word vector, we
first represent w by a one-hot vector using a vo-
cabulary that contains N high frequent words
(N = 150K in this study). Then, following Huang
etal. (2013), we map w to a separate tri-letter vec-
tor. Consider the word “#dog#”, where # is a word
boundary symbol. The nonzero elements in its tri-
letter vector are “#do”, “dog”, and “og#”. We then
form the word vector of w by concatenating its
one-hot vector and its tri-letter vector. It is worth
noting that the tri-letter vector complements the
one-hot vector representation in two aspects. First,
different OOV (out of vocabulary) words can be
represented by tri-letter vectors with few colli-
sions. Second, spelling variations of the same
word can be mapped to the points that are close to
each other in the tri-letter space. Although the
number of unique English words on the Web is
extremely large, the total number of distinct tri-
letters in English is limited (restricted to the most
frequent 30K in this study). As a result, incorpo-
rating tri-letter vectors substantially improves the
representation power of word vectors while keep-
ing their size small.

To form our input layer x using word vectors,
we first identify a text span with a high degree of
relevance, called focus, in d using task-specific
heuristics (see Sections 4 and 5 respectively). Sec-
ond, we form X by concatenating each word vec-
tor in the focus and a vector that is the summation
of all other word vectors, as shown in Figure 1.
Since the length of the focus is much smaller than
that of its document, X is able to capture the con-
textual information (for the words in the focus)

Web document into plain text, which is white-space to-
kenized and lowercased. Numbers are retained and no stem-
ming is performed.

2 We utilize the May 3, 2013 English Wikipedia dump con-
sisting of roughly 4.1 million articles from http://dumps.wiki-

media.org.



Figure 2: Toy example of (upper) a 5-word
document and its local feature vectors ex-
tracted using a convolutional layer, and (bot-
tom) the global feature vector of the document
generated after max-pooling.

useful to the corresponding tasks, with a manage-
able vector size.

Convolutional Layer u. A convolutional layer
extracts local features around each word w; in a
word sequence of length I as follows. We first
generate a contextual vector ¢; by concatenating
the word vectors of w; and its surrounding words
defined by a window (the window size is set to 3
in this paper). Then, we generate for each word a
local feature vector u; using a tanh activation
function and a linear projection matrix W,, which
is the same across all windows i in the word se-
quence, as:

u; = tanh(WCTci),wherei =1..1 (1)

Max-pooling Layer v. The size of the output u
depends on the number of words in the word se-
quence. Local feature vectors have to be com-
bined to obtain a global feature vector, with a
fixed size independent of the document length, in
order to apply subsequent standard affine layers.
We design v by adopting the max operation over
each “time” i of the sequence of vectors computed
by (1), which forces the network to retain only the
most useful, partially invariant local features pro-
duced by the convolutional layer:

v(j) = irzrii)fl{ui(/’)} (2)

where the max operation is performed for each di-
mension of u across i = 1, ..., I respectively.

That convolutional and max-pooling layers are
able to discover prominent keywords of a docu-
ment can be demonstrated using the procedure in
Figure 2 using a toy example. First, the convolu-
tional layer of (1) generates for each word in a 5-
word document a 4-dimensional local feature vec-
tor, which represents a distribution of four fopics.
For example, the most prominent topic of w,
within its three word context window is the first
topic, denoted by u, (1), and the most prominent
topic of ws is us(3). Second, we use max-pooling
of (2) to form a global feature vector, which rep-
resents the topic distribution of the whole docu-
ment. We see that v(1) and v(3) are two promi-
nent topics. Then, for each prominent topic, we
trace back to the local feature vector that survives
max-pooling:

v(1) = ignlg_{fs{ui(l)} =u,(1)

v(3) = iinlgfs{ui@)} = us(3).

Finally, we label the corresponding words of these
local feature vectors, w, and wg, as keywords of
the document.

Figure 3 presents a sample of document snip-
pets and their keywords detected by the DSSM ac-
cording to the procedure elaborated in Figure 2. It
is interesting to see that many names are identified
as keywords although the DSSM is not designed
explicitly for named entity recognition.

Fully-Connected Layers h and y. The fixed
sized global feature vector v of (2) is then fed to
several standard affine network layers, which are
stacked and interleaved with nonlinear activation
functions, to extract highly non-linear features y
at the output layer. In our model, shown in Figure
1, we have:

h = tanh(W{v) (3)

y = tanh(W; h) 4)

where W; and W, are learned linear projection matri-
ces.

3.2 Training the DSSM

To optimize the parameters of the DSSM of Fig-
ure 1, i.e., 8 = {W,, W;, W, }, we use a pair-wise
rank loss as objective (Yih et al. 2011). Consider
a source document s and two candidate target
documents t; and t,, where t; is more interesting
than t, to a user when reading s. We construct
two pairs of documents (s, t1) and (s, t,), where
the former is preferred and should have a higher



. the comedy festival formerly known as
the us comedy arts festival is a comedy
festival held each year in las vegas
nevada from its 1985 inception to 2008

it was held annually at the wheeler
opera house and other venues in aspen
colorado the primary sponsor of the
festival was hbo with co-sponsorship by
caesars palace the primary venue tbs
geico insurance twix candy bars and
smirnoff vodka hbo exited the festival
business in 2007 and tbs became the pri-
mary sponsor the festival includes
standup comedy performances appearances
by the casts of television shows..

. bad samaritans is an american comedy
series produced by walt becker kelly
hayes and ross putman . it premiered on
netflix on march 31 2013 cast and char-
acters . the show focuses on a community
service parole group and their parole
officer brian kubach as jake gibson an
aspiring professional starcraft player
who gets sentenced to 2000 hours of com-
munity service for starting a forest
fire during his breakup with drew prior
to community service he had no real am-
bition in life other than to be a pro-
fessional gamer and become wealthy
overnight 1like mark zuckerberg as in
life his goal during ..

Figure 3: A sample of document snippets and
the keywords (in bold) detected by the DSSM.

interestingness score. Let A be the difference of
their interestingness scores: A= og(s,t;) —
o(s,t;), where o is the interestingness score,
computed as the cosine similarity:

A7
o O
lysllllyell
where y, and y; are the feature vectors of s and ¢,
respectively, which are generated using the
DSSM, parameterized by 0. Intuitively, we want
to learn 0 to maximize A. That is, the DSSM is
learned to represent documents as points in a hid-
den interestingness space, where the similarity be-
tween a document and its interesting documents is
maximized.

We use the following logistic loss over A,
which can be shown to upper bound the pairwise
accuracy:

L(4;0) =log(1 + exp(—y4)) (6)

o(s,t) = simg(s,t) =

3 In our experiments, we observed better results by sampling
more negative training examples (e.g., up to 100) although
this makes the training much slower. An alternative approach

The loss function in (6) has a shape similar to the
hinge loss used in SVMs. Because of the use of
the cosine similarity function, we add a scaling
factor y that magnifies A from [-2, 2] to a larger
range. Empirically, the value of y makes no dif-
ference as long as it is large enough. In the exper-
iments, we set y = 10. Because the loss function
is differentiable, optimizing the model parameters
can be done using gradient-based methods. Due to
space limitations, we omit the derivation of the
gradient of the loss function, for which readers are
referred to related derivations (e.g., Collobert et
al. 2011; Huang et al. 2013; Shen et al. 2014).

In our experiments we trained DSSMs using
mini-batch Stochastic Gradient Descent. Each
mini-batch consists of 256 source-target docu-
ment pairs. For each source document s, we ran-
domly select from that batch four target docu-
ments which are not paired with s as negative
training samples®. The DSSM trainer is imple-
mented using a GPU-accelerated linear algebra li-
brary, which is developed on CUDA 5.5. Given
the training set (TRAIN 1 in Section 2), it takes
approximately 30 hours to train a DSSM as shown
in Figure 1, on a Xeon E5-2670 2.60GHz machine
with one Tesla K20 GPU card.

In principle, the loss function of (6) can be fur-
ther regularized (e.g. by adding a term of L2 norm)
to deal with overfitting. However, we did not find
a clear empirical advantage over the simpler early
stop approach in a pilot study, hence we adopted
the latter in the experiments in this paper. Our ap-
proach adjusts the learning rate 1 during the
course of model training. Starting with n = 1.0,
after each epoch (a pass over the entire training
data), the learning rate is adjusted asn = 0.5 X 7
if the loss on validation data (held-out from
TRAIN_1) is not reduced. The training stops if
either 1 is smaller than a preset threshold
(0.0001) or the loss on training data can no longer
be reduced significantly. In our experiments, the
DSSM training typically converges within 20
epochs.

3.3 Using the DSSM

We experiment with two ways of using the DSSM
for the two interestingness tasks. First, we use the
DSSM as a feature generator. The output layer of
the DSSM can be seen as a set of semantic fea-
tures, which can be incorporated in a boosted tree

is to approximate the partition function using Noise Contras-
tive Estimation (Gutmann and Hyvarinen 2010). We leave it
to future work.



# Models HEAD TORSO TAIL
@ @ @0 | @l @ @o| @ @ @10

1 RAND 0.041 0.062 0.081 | 0.036 0.076 0.109 | 0.062 0.195 0.258

2 1stK 0.010 0.177 0243 | 0.072 0.171 0240 | 0.091 0274 0.348
E LastK 0.170  0.022  0.027 | 0.022  0.044  0.062 | 0.058 0.166 _ 0.219
S|4 NSF 0215 0253 0295 | 0.139 0229 0.282 [ 0.109 0293  0.365
o|5| NSF+WCAT 0438 0424 0463 | 0.194 0290 0346 | 0.118 0317 0.386
“l6 NSF+JTT 0220 0302 0343 | 0.141 0241 0295 | 0.111 0300 0.369
7 INSF+DSSM_BOW | 0.312 0351 0391 | 0.162 0258 0313 | 0.110 0299 0372

8| NSF+DSSM 0362 0386 0421 | 0.178 0275 0330 | 0.116 0312  0.382
_[9] NsFrwcaT 0.505 0475 0501 | 0224 0304 0356 | 0.129 0324 0.391
£10|  NSFHTT 0345 0380 0418 | 0.183 0280 0332 | 0.131 0321  0.390
2|11|NSF+DSSM_BOW | 0.416 0393 0428 | 0.197 0274 0325 | 0.123 0311 0380
12|  NSF+DSSM 0.554 0.524 0.547 | 0.241 0317  0.367 | 0.135 0.329  0.398

Table 1: Highlighting task performance (NDCG @ K) of interest models over HEAD, TORSO and
TAIL test sets. Bold indicates statistical significance over all non-shaded results using ¢-test (p =

0.05).

based ranker (Friedman 1999) trained discrimina-
tively on the task-specific data. Given a source-
target document pair (s, t), the DSSM generates
600 features (300 from the output layers y, and y;
for each s and t, respectively).

Second, we use the DSSM as a direct imple-
mentation of the interestingness function o. Re-
call from Section 3.2 that in model training, we
measure the interestingness score for a document
pair using the cosine similarity between their cor-
responding feature vectors (y; and y;). Similarly
at runtime, we define 0 = simg(s, t) as (5).

4 Experiments on Highlighting

Recall from Section 1 that in this task, a system
must select k most interesting keywords in a doc-
ument that a user is reading. To evaluate our mod-
els using the click transition data described in Sec-
tion 2, we simulate the task as follows. We use the
set of anchors in a source document s to simulate
the set of candidate keywords that may be of in-
terest to the user while reading s, and treat the text
of'a document that is linked by an anchor in s as a
target document t. As shown in Figure 1, to apply
DSSM to a specific task, we need to define the fo-
cus in source and target documents. In this task,
the focus in s is defined as the anchor text, and the
Jfocus in t is defined as the first 10 tokens in ¢.

We evaluate the performance of a highlighting
system against a gold standard interestingness
function o’ which scores the interestingness of an
anchor as the number of user clicks on t from the
anchor in s in our data. We consider the ideal se-
lection to then consist of the k most interesting

anchors according to ¢’. A natural metric for this
task is Normalized Discounted Cumulative Gain
(NDCG) (Jarvelin and Kekalainen 2000).

We evaluate our models on the EVAL dataset
described in Section 2. We utilize the transition
distributions in EVAL to create three other test
sets, following the stratified sampling methodol-
ogy commonly employed in the IR community,
for the frequently, less frequently, and rarely
viewed source pages, referred to as HEAD,
TORSO, and TAIL, respectively. We obtain
these sets by first sorting the unique source docu-
ments according to their frequency of occurrence
in EVAL. We then partition the set so that HEAD
corresponds to all transitions from the source
pages at the top of the list that account for 20% of
the transitions in EVAL; TAIL corresponds to the
transitions at the bottom also accounting for 20%
of the transitions in EVAL; and TORSO corre-
sponds to the remaining transitions.

4.1 Main Results

Table 1 summarizes the results of various models
over the three test sets using NDCG at truncation
levels 1, 5, and 10.

Rows 1 to 3 are simple heuristic baselines.
RAND selects k random anchors, 1stK selects
the first k anchors and LastK the last k anchors.

The other models in Table 1 are boosted tree
based rankers trained on TRAIN_2 described in
Section 2. They vary only in their features. The
ranker in Row 4 uses Non-Semantic Features
(NSF) only. These features are derived from the



source document s and from user session infor-
mation in the browser log. The document features
include: position of the anchor in the document,
frequency of the anchor, and anchor density in the
paragraph.

The rankers in Rows 5 to 12 use the NSF and
the semantic features computed from source and
target documents of a browsing transition. We
compare semantic features derived from three dif-
ferent sources. The first feature source comes
from our DSSMs (DSSM and DSSM_BOW) us-
ing the output layers as feature generators as de-
scribed in Section 3.3. DSSM is the model de-
scribed in Section 3 and DSSM_BOW is the
model proposed by Huang et al. (2013) where
documents are view as bag of words (BOW) and
the convolutional and max-pooling layers are not
used. The two other sources of semantic features
are used as a point of comparison to the DSSM.
One is a generative semantic model (Joint Transi-
tion Topic model, or JTT) (Gamon et al. 2013).
JTT is an LDA-style model (Blei et al. 2003) that
is trained jointly on source and target documents
linked by browsing transitions. JTT generates a
total of 150 features from its latent variables, 50
each for the source topic model, the target topic
model and the transition model. The other seman-
tic model of contrast is a manually defined one,
which we use to assess the effectiveness of auto-
matically learned models against human model-
ers. To this effect, we use the page categories that
editors assign in Wikipedia as semantic features
(WCAT). These features number in the multiple
thousands. Using features such as WCAT is not a
viable solution in general since Wikipedia catego-
ries are not available for all documents. As such,
we use it solely as a point of comparison against
DSSM and JTT.

We also distinguish between two types of
learned rankers: those which draw their features
only from the source (sre only) document and
those that draw their features from both the source
and target (src+tar) documents. Although our
task setting allows access to the content of both
source and target documents, there are practical
scenarios where a system should predict what in-
terests the user without looking at the target doc-
ument because the extra step of identifying a suit-
able target document for each candidate concept
or entity of interest is computationally expensive.

4.2 Analysis of Results

As shown in Table 1, NSF+DSSM, which incor-
porates our DSSM, is the overall best performing

system across test sets. The task is hard as evi-
denced by the weak baseline scores. One reason is
the large average number of candidates per page.
On HEAD, we found an average of 170 anchors
(of which 95 point to a unique target URL). For
TORSO and TAIL, we found the average number
of anchors to be 94 (52 unique targets) and 41 (19
unique targets), respectively.

Clearly, the semantics of the documents form
important signals for this task: WCAT, JTT,
DSSM_BOW, and DSSM all significantly boost
the performance over NSF alone. There are two
interesting comparisons to consider: (a) manual
semantics vs. learned semantics; and (b) deep se-
mantic models vs. generative topic models. On
(a), we observe somewhat surprisingly that the
learned DSSM produces features that outperform
the thousands of features coming from manually
(editor) assigned Wikipedia category features
(WCAT), in all but the TAIL where the two per-
form statistically the same. In contrast, features
from the generative model (JTT) perform worse
than WCAT across the board except on TAIL
where JTT and WCAT are statistically tied. On
(b), we observe that DSSM outperforms a state-
of-the-art generative model (JTT) on HEAD and
TORSO. On TAIL, they are statistically indistin-
guishable.

We turn now to inspecting the scenario where
features are only drawn from the source document
(Rows 1-8 in Table 1). Again we observe that se-
mantic features significantly boost the perfor-
mance against NSF alone, however they signifi-
cantly deteriorate when compared to using fea-
tures from both source and target documents. In
this scenario, the manual semantics from WCAT
outperform all other models, but with a diminish-
ing effect as we move from HEAD through
TORSO to TAIL. DSSM is the best performing
learned semantic model.

Finally, we present the results to justify the two
modifications we made to extend the model of
Huang et al. (2013) to the DSSM, as described in
Section 1. First, we see in Table 1 that
DSSM_BOW, which has the same network struc-
ture of Huang et al.’s model, is much weaker than
DSSM, demonstrating the benefits of using con-
volutional and max-pooling layers to extract se-
mantic features for the highlighting task. Second,
we conduct several experiments by using the co-
sine scores between the output layers of DSSM
for s and t as features (following the procedure in
Section 3.3 for using the DSSM as a direct imple-
mentation of ). We found that adding the cosine



# Models @1 @3 AUC
1 [BM25 (entity) 0.133 0.195 0.583
2 BM25 0.142 0.227 0.675
3 WIM 0.191 0.287 0.678
4 BLTM 0.214 0.306 0.704
5 DSSM 0.259* 0.356" 0.711"
6 [DSSM_ BOW 0.223 0.322 0.699
7 |Baseline ranker 0.283 0.360 0.723
8 [7+DSSM(1) 0.301* 0.385* 0.758"
9 [7+DSSM(600) | 0.327% 0.402%%  (.782%

Table 2: Contextual entity search task perfor-
mance (NDCG @ K and AUC). * indicates sta-
tistical significance over all non-shaded single
model results (Rows 1 to 6) using #-test (p <
0.05). # indicates statistical significance over re-
sults in Row 7. ## indicates statistical signifi-
cance over results in Rows 7 and 8.

features to NSF+DSSM does not lead to any im-
provement. We also combined NSF with solely
the cosine features from DSSM (i.e., without the
other semantic features drawn from its output lay-
ers). But we still found no improvement over us-
ing NSF alone. Thus, we conclude that for this
task it is much more effective to feed the features
derived from DSSM to a supervised ranker than
directly computing the interestingness score using
cosine similarity in the learned semantic space, as
in Huang et al. (2013).

5 Experiments on Entity Search

We construct the evaluation data set for this sec-
ond task by randomly sampling a set of documents
from a traffic-weighted set of Web documents. In
a second step, we identify the entity names in each
document using an in-house named entity recog-
nizer. We issue each entity name as a query to a
commercial search engine, and retain up to the
top-100 retrieved documents as candidate target
documents. We form for each entity a source doc-
ument which consists of the entity text and its sur-
rounding text defined by a 200-word window. We
define the focus (as in Figure 1) in s as the entity
text, and the focus in t as the first 10 tokens in t.
The final evaluation data set contains 10,000
source documents. On average, each source docu-
ment is associated with 87 target documents. Fi-
nally, the source-target document pairs are labeled
in terms of interestingness by paid annotators. The
label is on a 5-level scale, 0 to 4, with 4 meaning
the target document is the most interesting to the

source document and 0 meaning the target is of no
interest.

We test our models on two scenarios. The first
is a ranking scenario where k interesting docu-
ments are displayed to the user. Here, we select
the top-k ranked documents according to their in-
terestingness scores. We measure the performance
via NDCG at truncation levels 1 and 3. The sec-
ond scenario is to display to the user all interesting
results. In this scenario, we select all target docu-
ments with an interestingness score exceeding a
predefined threshold. We evaluate this scenario
using ROC analysis and, specifically, the area un-
der the curve (AUC).

5.1 Main Results

The main results are summarized in Table 2. Rows
1 to 6 are single model results, where each model
is used as a direct implementation of the interest-
ingness function o. Rows 7 to 9 are ranker results,
where o is defined as a boosted tree based ranker
that incorporates different sets of features ex-
tracted from source and target documents, includ-
ing the features derived from single models. As in
the highlighting experiments, all the machine-
learned single models, including the DSSM, are
trained on TRAIN_1, and all the rankers are
trained on TRAIN_2.

5.2  Analysis of Results

BM25 (Rows 1 and 2 in Table 2) is the classic
document model (Robertson and Zaragoza 2009).
It uses the bag-of-words document representation
and the BM25 term weighting function. In our set-
ting, we define the interestingness score of a doc-
ument pair as the dot product of their BM25-
weighted term vectors. To verify the importance
of using contextual information, we compare two
different ways of forming the term vector of a
source document. The first only uses the entity
text (Row 1). The second (Row 2) uses both the
entity text and and its surrounding text in a 200-
word window (i.e., the entire source document).
Results show that the model using contextual in-
formation is significantly better. Therefore, all the
other models in this section use both the entity
texts and their surrounding text.

WTM (Row 3) is our implementation of the
word translation model for IR (Berger and Laf-
ferty 1999; Gao et al. 2010). WTM defines the in-
terestingness score as:

o(s,t) = HwtetZwses P(w¢|wg)P(wsls),



where P(wg|s) is the unigram probability of word
wg in s, and P(w;|ws) is the probability of trans-
lating w into w;, trained on source-target docu-
ment pairs using EM (Brown et al. 1993). The
translation-based approach allows any pair of
non-identical but semantically related words to
have a nonzero matching score. As a result, it sig-
nificantly outperforms BM25.

BTLM (Row 4) follows the best performing
bilingual topic model described in Gao et al.
(2011), which is an extension of PLSA (Hofmann
1999). The model is trained on source-target doc-
ument pairs using the EM algorithm with a con-
straint enforcing a source document s and its tar-
get document t to not only share the same prior
topic distribution, but to also have similar frac-
tions of words assigned to each topic. BLTM de-
fines the interestingness score between s and t as:

a(s,t) = HthtZzP(Wt|¢z)P(Z|QS)-

The model assumes the following story of gener-
ating t from s. First, for each topic z a word dis-
tribution ¢, is selected from a Dirichlet prior with
concentration parameter . Second, given s, a
topic distribution 85 is drawn from a Dirichlet
prior with parameter a. Finally, t is generated
word by word. Each word w; is generated by first
selecting a topic z according to 6%, and then
drawing a word from ¢,. We see that BLTM
models interestingness by taking into account the
semantic topic distribution of the entire docu-
ments. Our results in Table 2 show that BLTM
outperforms WTM by a significant margin in
both NDCG and AUC.

DSSM (Row 5) outperforms all the competing
single models, including the state-of-the-art topic
model BLTM. Now, we inspect the difference be-
tween DSSM and BLTM in detail. Although both
models strive to generate the semantic representa-
tion of a document, they use different modeling
approaches. BLTM by nature is a generative
model. The semantic representation in BLTM is a
distribution of hidden semantic topics. Such a dis-
tribution is learned using Maximum Likelihood
Estimation in an unsupervised manner, i.e., max-
imizing the log-likelihood of the source-target
document pairs in the training data. On the other
hand, DSSM represents documents as points in a
hidden semantic space using a supervised learning
method, i.e., paired documents are closer in that
latent space than unpaired ones. We believe that
the superior performance of DSSM is largely due
to the fact that the model parameters are discrimi-
natively trained using an objective that is tailored
to the interestingness task.
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In addition to the difference in training meth-
ods, DSSM and BLTM also use different model
structures. BLTM treats a document as a bag of
words (thus losing some important contextual in-
formation such as word order and inter-word de-
pendencies), and generates semantic representa-
tions of documents using linear projection.
DSSM, on the other hand, treats text as a sequence
of words and better captures local and global con-
text, and generates highly non-linear semantic
features via a deep neural network. To further ver-
ify our analysis, we inspect the results of a variant
of DSSM, denoted as DSSM_BOW (Row 60),
where the convolution and max-pooling layers are
removed. This model treats a document as a bag
of words, just like BLTM. These results demon-
strate that the effectiveness of DSSM can also be
attributed to the convolutional architecture in the
neural network, in addition to being deep and be-
ing discriminative.

We turn now to discussing the ranker results in
Rows 7t0 9. The baseline ranker (Row 7) uses 158
features, including many counts and single model
scores, such as BM25 and WMT. DSSM (Row 5)
alone is quite effective, being close in perfor-
mance to the baseline ranker with non-DSSM fea-
tures. Integrating the DSSM score computed in (5)
as one single feature into the ranker (Row 8) leads
to a significant improvement over the baseline.
The best performing combination (Row 9) is ob-
tained by incorporating the DSSM feature vectors
of source and target documents (i.e., 600 features
in total) in the ranker.

We thus conclude that on both tasks, automatic
highlighting and contextual entity search, features
drawn from the output layers of our deep semantic
model result in significant gains after being added
to a set of non-semantic features, and in compari-
son to other types of semantic models used in the
past.

6 Related Work

In addition to the notion of relevance as described
in Section 1, related to interestingness is also the
notion of salience (also called aboutness) (Gamon
et al. 2013; 2014; Parajpe 2009; Yih et al. 2006).
Salience is the centrality of a term to the content
of a document. Although salience and interesting-
ness interact, the two are not the same. For exam-
ple, in a news article about President Obama’s
visit to Seattle, Obama is salient, yet the average
user would probably not be interested in learning
more about Obama while reading that article.



There are many systems that identify popular
content in the Web or recommend content (e.g.,
Bandari et al. 2012; Lerman and Hogg 2010;
Szabo and Huberman 2010), which is closely re-
lated to the highlighting task. In contrast to these
approaches, we strive to predict what term a user
is likely to be interested in when reading content,
which may or may not be the same as the most
popular content that is related to the current docu-
ment. It has empirically been demonstrated in
Gamon et al. (2013) that popularity is in fact a ra-
ther poor predictor for interestingness. The task of
contextual entity search, which is formulated as an
information retrieval problem in this paper, is also
related to research on entity resolution (Stefanidis
et al. 2013).

Latent Semantic Analysis (Deerwester et al.
1990) is arguably the earliest semantic model de-
signed for IR. Generative topic models widely
used for IR include PLSA (Hofmann 1990) and
LDA (Blei et al. 2003). Recently, these models
have been extended to handle cross-lingual cases,
where there are pairs of corresponding documents
in different languages (e.g., Dumais et al. 1997;
Gao et al. 2011; Platt et al. 2010; Yih et al. 2011).

By exploiting deep architectures, deep learning
techniques are able to automatically discover from
training data the hidden structures and the associ-
ated features at different levels of abstraction use-
ful for a variety of tasks (e.g., Collobert et al.
2011; Hinton et al. 2012; Socher et al. 2012;
Krizhevsky et al., 2012; Gao et al. 2014). Hinton
and Salakhutdinov (2010) propose the most origi-
nal approach based on an unsupervised version of
the deep neural network to discover the hierar-
chical semantic structure embedded in queries and
documents. Huang et al. (2013) significantly ex-
tends the approach so that the deep neural network
can be trained on large-scale query-document
pairs giving much better performance. The use of
the convolutional neural network for text pro-
cessing, central to our DSSM, was also described
in Collobert et al. (2011) and Shen et al. (2014)
but with very different applications. The DSSM
described in Section 3 can be viewed as a variant
of the deep neural network models used in these
previous studies.

7  Conclusions

Modeling interestingness is fundamental to many
online recommendation systems. We obtain natu-
rally occurring interest signals by observing Web
browsing transitions where users click from one
webpage to another. We propose to model this
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“interestingness” with a deep semantic similarity
model (DSSM), based on deep neural networks
with special convolutional-pooling structure,
mapping source-target document pairs to feature
vectors in a latent semantic space. We train the
DSSM using browsing transitions between docu-
ments. Finally, we demonstrate the effectiveness
of our model on two interestingness tasks: auto-
matic highlighting and contextual entity search.
Our results on large-scale, real-world datasets
show that the semantics of documents computed
by the DSSM are important for modeling interest-
ingness and that the new model leads to signifi-
cant improvements on both tasks. DSSM is shown
to outperform not only the classic document mod-
els that do not use (latent) semantics but also state-
of-the-art topic models that do not have the deep
and convolutional architecture characterizing the
DSSM.

One area of future work is to extend our
method to model interestingness given an entire
user session, which consists of a sequence of
browsing events. We believe that the prior brows-
ing and interaction history recorded in the session
provides additional signals for predicting interest-
ingness. To capture such signals, our model needs
to be extended to adequately represent time series
(e.g., causal relations and consequences of ac-
tions). One potentially effective model for such a
purpose is based on the architecture of recurrent
neural networks (e.g., Mikolov et al. 2010; Chen
and Deng, 2014), which can be incorporated into
the deep semantic model proposed in this paper.
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Abstract

This work presents two different trans-
lation models using recurrent neural net-
works. The first one is a word-based ap-
proach using word alignments. Second,
we present phrase-based translation mod-
els that are more consistent with phrase-
based decoding. Moreover, we introduce
bidirectional recurrent neural models to
the problem of machine translation, allow-
ing us to use the full source sentence in our
models, which is also of theoretical inter-
est. We demonstrate that our translation
models are capable of improving strong
baselines already including recurrent neu-
ral language models on three tasks:
IWSLT 2013 German—English, BOLT
Arabic—English and Chinese—English.
We obtain gains up to 1.6% BLEU
and 1.7% TER by rescoring 1000-best
lists.

1 Introduction

Neural network models have recently experienced
unprecedented attention in research on statistical
machine translation (SMT). Several groups have
reported strong improvements over state-of-the-art
baselines using feedforward neural network-based
language models (Schwenk et al., 2006; Vaswani
et al., 2013), as well as translation models (Le et
al., 2012; Schwenk, 2012; Devlin et al., 2014).
Different from the feedforward design, recurrent
neural networks (RNNs) have the advantage of be-
ing able to take into account an unbounded his-
tory of previous observations. In theory, this en-
ables them to model long-distance dependencies
of arbitrary length. However, while previous work
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on translation modeling with recurrent neural net-
works shows its effectiveness on standard base-
lines, so far no notable gains have been presented
on top of recurrent language models (Auli et al.,
2013; Kalchbrenner and Blunsom, 2013; Hu et al.,
2014).

In this work, we present two novel approaches
to recurrent neural translation modeling: word-
based and phrase-based. The word-based ap-
proach assumes one-to-one aligned source and
target sentences. We evaluate different ways of
resolving alignment ambiguities to obtain such
alignments. The phrase-based RNN approach is
more closely tied to the underlying translation
paradigm. It models actual phrasal translation
probabilities while avoiding sparsity issues by us-
ing single words as input and output units. Fur-
thermore, in addition to the unidirectional formu-
lation, we are the first to propose a bidirectional
architecture which can take the full source sen-
tence into account for all predictions. Our ex-
periments show that these models can improve
state-of-the-art baselines containing a recurrent
language model on three tasks. For our compet-
itive IWSLT 2013 German—English system, we
observe gains of up to 1.6% BLEU and 1.7% TER.
Improvements are also demonstrated on top of our
evaluation systems for BOLT Arabic—English
and Chinese—English, which also include recur-
rent neural language models.

The rest of this paper is structured as follows. In
Section 2 we review related work and in Section 3
an overview of long short-term memory (LSTM)
neural networks, a special type of recurrent neural
networks we make use of in this work, is given.
Section 4 describes our novel translation models.
Finally, experiments are presented in Section 5
and we conclude with Section 6.

Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 14-25,
October 25-29, 2014, Doha, Qatar. (©2014 Association for Computational Linguistics



2 Related Work

In this Section we contrast previous work to ours,
where we design RNNs to model bilingual depen-
dencies, which are applied to rerank n-best lists
after decoding.

To the best of our knowledge, the earliest at-
tempts to apply neural networks in machine trans-
lation (MT) are presented in (Castafio et al.,
1997; Castafio and Casacuberta, 1997; Castaifio
and Casacuberta, 1999), where they were used for
example-based MT.

Recently, Le et al. (2012) presented translation
models using an output layer with classes and
a shortlist for rescoring using feedforward net-
works. They compare between word-factored and
tuple-factored n-gram models, obtaining their best
results using the word-factored approach, which is
less amenable to data sparsity issues. Both of our
word-based and phrase-based models eventually
work on the word level. Kalchbrenner and Blun-
som (2013) use recurrent neural networks with
full source sentence representations. The continu-
ous representations are obtained by applying a se-
quence of convolutions, and the result is fed into
the hidden layer of a recurrent language model.
Rescoring results indicate no improvements over
the state of the art. Auli et al. (2013) also in-
clude source sentence representations built either
using Latent Semantic Analysis or by concatenat-
ing word embeddings. This approach produced
no notable gain over systems using a recurrent
language model. On the other hand, our pro-
posed bidirectional models include the full source
sentence relying on recurrency, yielding improve-
ments over competitive baselines already includ-
ing a recurrent language model.

RNNs were also used with minimum translation
units (Hu et al., 2014), which are phrase pairs un-
dergoing certain constraints. At the input layer,
each of the source and target phrases are mod-
eled as a bag of words, while the output phrase
is predicted word-by-word assuming conditional
independence. The approach seeks to alleviate
data sparsity problems that would arise if phrases
were to be uniquely distinguished. Our proposed
phrase-based models maintain word order within
phrases, but the phrases are processed in a word-
pair manner, while the phrase boundaries remain
implicitly encoded in the way the words are pre-
sented to the network. Schwenk (2012) proposed
a feedforward network that predicts phrases of a
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fixed maximum length, such that all phrase words
are predicted at once. The prediction is condi-
tioned on the source phrase. Since our phrase-
based model predicts one word at a time, it does
not assume any phrase length. Moreover, our
model’s predictions go beyond phrase boundaries
and cover unbounded history and future contexts.

Using neural networks during decoding re-
quires tackling the costly output normalization
step. Vaswani et al. (2013) avoid this step by
training feedforward neural language models us-
ing noise contrastive estimation, while Devlin et
al. (2014) augment the training objective function
to produce approximately normalized scores di-
rectly. The latter work makes use of translation
and joint models, and pre-computes the first hid-
den layer beforehand, resulting in large speedups.
They report major improvements over strong base-
lines. The speedups achieved by both works al-
lowed to integrate feedforward neural networks
into the decoder.

3 LSTM Recurrent Neural Networks

Our work is based on recurrent neural networks.
In related fields like e. g. language modeling, this
type of neural network has been shown to perform
considerably better than standard feedforward ar-
chitectures (Mikolov et al., 2011; Arisoy et al.,
2012; Sundermeyer et al., 2013; Liu et al., 2014).
Most commonly, recurrent neural networks are
trained with stochastic gradient descent (SGD),
where the gradient of the training criterion is com-
puted with the backpropagation through time al-
gorithm (Rumelhart et al., 1986; Werbos, 1990;
Williams and Zipser, 1995). However, the combi-
nation of RNN networks with conventional back-
propagation training leads to conceptual difficul-
ties which are known as the vanishing (or explod-
ing) gradient problem, described e. g. in (Bengio
et al., 1994). To remedy this problem, in (Hochre-
iter and Schmidhuber, 1997) it was suggested to
modify the architecture of a standard RNN in such
a way that vanishing and exploding gradients are
avoided during backpropagation. In particular, no
modification of the training algorithm is necessary.
The resulting architecture is referred to as long
short-term memory (LSTM) neural network.
Bidirectional recurrent neural networks
(BRNNs) were first proposed in (Schuster and
Paliwal, 1997) and applied to speech recognition
tasks. They have been since applied to different
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Figure 1: Example sentence from the German—English IWSLT data. The one-to-one alignment is
created by introducing € gjigneq and €ynatigned tokens.

tasks like parsing (Henderson, 2004) and spoken
language understanding (Mesnil et al., 2013).
Bidirectional long short-term memory (BLSTM)
networks are BRNNs using LSTM hidden layers
(Graves and Schmidhuber, 2005). This work
introduces BLSTMs to the problem of machine
translation, allowing powerful models that employ
unlimited history and future information to make
predictions.

While the proposed models do not make any as-
sumptions about the type of RNN used, all of our
experiments make use of recurrent LSTM neural
networks, where we include later LSTM exten-
sions proposed in (Gers et al., 2000; Gers et al.,
2003). The cross-entropy error criterion is used
for training. Further details on LSTM neural net-
works can be found in (Graves and Schmidhuber,
2005; Sundermeyer et al., 2012).

4 Translation Modeling with RNNs

In the following we describe our word- and
phrase-based translation models in detail. We also
show how bidirectional RNNs can enable such
models to include full source information.

4.1 Resolving Alignment Ambiguities

Our word-based recurrent models are only de-
fined for one-to-one-aligned source-target sen-
tence pairs. In this work, we always evaluate the
model in the order of the target sentence. How-
ever, we experiment with several different ways
to resolve ambiguities due to unaligned or mul-
tiply aligned words. To that end, we introduce
two additional tokens, €4igneqd and €ypnaiigned. Un-

16

dev test

BLEU TER BLEU TER
baseline 335 458 309 484
w/o € 342 453 31.8 477
W/0 €unaligned 344 448 3177 474
source identity  34.5 45,0 319 475
target identity 345 446 319 470
all 346 445 320 47.1

Table 1: Comparison of including different sets
of € tokens into the one-to-one alignment on the
IWSLT 2013 German—English task using the uni-
directional RNN translation model.

aligned words are either removed or aligned to an
€XIra €ypaligned token on the opposite side. If an
€unaligned 18 introduced on the target side, its posi-
tion is determined by the aligned source word that
is closest to the unaligned source word in question,
preferring left to right. To resolve one-to-many
alignments, we use an IBM-1 translation table to
decide for one of the alignment connections to be
kept. The remaining words are also either deleted
or aligned to additionally introduced €4jigneq to-
kens on the opposite side. Fig. 1 shows an ex-
ample sentence from the IWSLT data, where all €
tokens are introduced.

In a short experiment, we evaluated 5 differ-
ent setups with our unidirectional RNN translation
model (cf. next Section): without any e tokens,
without €,,qligned, SOUrce identity, target identity
and using all € tokens. Source identity means we



introduce no e tokens on source side, but all on
target side. Target identity is defined analogously.
The results can be found in Tab. 1. We use the
setup with all € tokens in all following experi-
ments, which showed the best BLEU performance.

4.2 Word-based RNN Models

Given a pair of source sequence f{ = fi...fr
and target sequence e! = e;...e;, where we as-
sume a direct correspondence between f; and e;,
we define the posterior translation probability by
factorizing on the target words:

I
plefl ) = [ pleilei™ ) (1)
=1
I
~ Hp 61’61 17 {—&-d) (2)
=1
I
~ [ [ plel fi) 3)
=1

We denote the formulation (1) as the bidirectional
joint model (BJM). This model can be simplified
by several independence assumptions. First, we
drop the dependency on the future source infor-
mation, receiving what we denote as the unidirec-
tional joint model (JM) in (2). Here, d € Ny is
a delay parameter, which is set to d = 0 for all
experiments, except for the comparative results re-
ported in Fig. 7. Finally, assuming conditional in-
dependence from the previous target sequence, we
receive the unidirectional translation model (TM)
in (3). Analogously, we can define a bidirectional
translation model (BTM) by keeping the depen-
dency on the full source sentence fll , but dropping

: i1,
the previous target sequence e} :

I
pleil i) = [ [ oteil ). @)
i=1

Fig. 2 shows the dependencies of the word-
based neural translation and joint models. The
alignment points are traversed in target order and
at each time step one target word is predicted.
The pure translation model (TM) takes only source
words as input, while the joint model (JM) takes
the preceding target words as an additional input.
A delay of d > 0 is implemented by shifting the
target sequence by d time steps and filling the first
d target positions and the last d source positions
with a dedicated €;444ing Symbol. The RNN archi-
tecture for the unidirectional word-based models
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Figure 2: Dependencies modeled within the word-
based RNN models when predicting the target
word ’know’. Directly processed information is
depicted with solid rectangles, and information
available through recurrent connections is marked
with dashed rectangles.

is illustrated in Fig. 3, which corresponds to the
following set of equations:

yi = AL fi + Agéi

zi = E(yis As,y 1)
plc(e)lel™", f1) = @e(e)(Aazi)
p(eilc(es) afl) = Pei(Acen)#i)
p(ezle /1) = p(eile (ez) et )

p(c(ei) |6§71, f{)

Here, by fz and é;_; we denote the one-hot en-
coded vector representations of the source and
target words f; and e;_;. The outgoing activa-
tion values of the projection layer and the LSTM
layer are y; and z;, respectively. The matrices A;
contain the weights of the neural network layers.
By &(-; A3, yi™!) we denote the LSTM formalism
that we plug in at the third layer. As the LSTM
layer is recurrent, we explicitly include the de-
pendence on the previous layer activations y’ L
Finally, ¢ is the widely-used softmax function to
obtain normalized probabilities, and ¢ denotes a
word class mapping from any target word to its
unique word class. For the bidirectional model,
the equations can be defined analogously.

Due to the use of word classes, the output
layer consists of two parts. The class probabil-
ity p(c(e;)|e}", fi) is computed first, and then
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Figure 3: Architecture of a recurrent unidirec-
tional translation model. By including the dashed
parts, a joint model is obtained.

the word probability p(e;|c(e;), e} ", fi) is ob-
tained given the word class. This trick helps avoid-
ing the otherwise computationally expensive nor-
malization sum, which would be carried out over
all words in the target vocabulary. In a class-
factorized output layer where each word belongs
to a single class, the normalization is carried out
over all classes, whose number is typically much
less than the vocabulary size. The other normal-
ization sum needed to produce the word probabil-
ity is limited to the words belonging to the same
class (Goodman, 2001; Morin and Bengio, 2005).

4.3 Phrase-based RNN Models

One of the conceptual disadvantages of word-
based modeling as introduced in the previous sec-
tion is that there is a mismatch between train-
ing and testing conditions: During neural network
training, the vocabulary has to be extended by ad-
ditional e tokens, and a one-to-one alignment is
used which does not reflect the situation in decod-
ing. In phrase-based machine translation, more
complex alignments in terms of multiple words
on both the source and the target sides are used,
which allow the decoder to make use of richer
short-distance dependencies and are crucial for the
performance of the resulting system.

From this perspective, it seems interesting to
standardize the alignments used in decoding, and
in training the neural network. However, it is dif-
ficult to use the phrases themselves as the vocab-
ulary of the RNN. Usually, the huge number of
potential phrases in comparison to the relatively
small amount of training data makes the learn-
ing of continuous phrase representations difficult
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Surfers || , for example, || know || this incredibly

Surfer zum Beispiel ||kennen|| das

zur Geniige

Figure 4: Example phrase alignment for a sen-
tence from the IWSLT training data.

due to data sparsity. This is confirmed by results
presented in (Le et al., 2012), which show that a
word-factored translation model outperforms the
phrase-factored version. Therefore, in this work
we continue relying on source and target word vo-
cabularies for building our phrase representations.
However, we no longer use a direct correspon-
dence between a source and a target word, as en-
forced in our word-based models.

Fig. 4 shows an example phrase alignment,
where a sequence of source words ﬁ is directly
mapped to a sequence of target words €; for 1 <
i < 1. By I, we denote the number of phrases in
the alignment. We decompose the target sentence
posterior probability in the following way:
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where the joint model in Eq. 5 would correspond
to a bidirectional RNN, and Eq. 6 only requires a
unidirectional RNN. By leaving out the condition-
ing on the target side, we obtain a phrase-based
translation model.

As there is no one-to-one correspondence be-
tween the words within a phrase, the basic idea of
our phrase-based approach is to let the neural net-
work learn the dependencies itself, and present the
full source side of the phrase to the network be-
fore letting it predict target side words. Then the
probability for the target side of a phrase can be
computed, in case of Eq. 6, by:

} |&;]

plaler™, ;) = [ p(@slE)i™ e f),
j=1

and analogously for the case of Eq. 5. Here, (€;);
denotes the j-th word of the i-th aligned target
phrase.

We feed the source side of a phrase into the neu-
ral network one word at a time. Only when the
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Figure 5: A recurrent phrase-based joint translation model, unfolded over time. Source words are printed
in normal face, while target words are printed in bold face. Dashed lines indicate phrases from the
example sentence. For brevity, we omit the precise handling of sentence begin and end tokens.

presentation of the source side is finished we start
estimating probabilities for the target side. There-
fore, we do not let the neural network learn a target
distribution until the very last source word is con-
sidered. In this way, we break up the conventional
RNN training scheme where an input sample is di-
rectly followed by its corresponding teacher sig-
nal. Similarly, the presentation of the source side
of the next phrase only starts after the prediction
of the current target side is completed.

To this end, we introduce a no-operation token,
denoted by e, which is not part of the vocabulary
(which means it cannot be input to or predicted by
the RNN). When the ¢ token occurs as input, it in-
dicates that no input needs to be processed by the
RNN. When the ¢ token occurs as a teacher signal
for the RNN, the output layer distribution is ig-
nored, and does not even have to be computed. In
both cases, all the other layers are still processed
during forward and backward passes such that the
RNN state can be advanced even without addi-
tional input or output.

Fig. 5 depicts the evaluation of a phrase-based
joint model for the example alignment from Fig. 4.
For a source phrase f;, we include (|é;]—1) many &
symbols at the end of the phrase. Conversely, for
a target phrase é;, we include (|f;] — 1) many &
symbols at the beginning of the phrase.

E.g., in the figure, the second dashed rectan-
gle from the left depicts the training of the English
phrase “, for example ,” and its German transla-
tion “zum Beispiel”. At the input layer, we feed in
the source words one at a time, while we present
€ tokens at the target side input layer and the out-
put layer (with the exception of the very first time
step, where we still have the last target word from
the previous phrase as input instead of €). With
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the last word of the source phrase “Beispiel” being
presented to the network, the full source phrase is
stored in the hidden layer, and the neural network
is then trained to predict the target phrase words
at the output layer. Subsequently, the source input
is €, and the target input is the most recent target
side history word.

To obtain a phrase-aligned training sequence for
the phrase-based RNN models, we force-align the
training data with the application of leave-one-out
as described in (Wuebker et al., 2010).

4.4 Bidirectional RNN Architecture

While the unidirectional RNNs include an un-
bounded sentence history, they are still limited in
the number of future source words they include.
Bidirectional models provide a flexible means to
also include an unbounded future context, which,
unlike the delayed unidirectional models, require
no tuning to determine the amount of delay.

Fig. 6 illustrates the bidirectional model archi-
tecture, which is an extension of the unidirectional
model of Fig. 3. First, an additional recurrent
hidden layer is added in parallel to the existing
one. This layer will be referred to as the back-
ward layer, since it processes information in back-
ward time direction. This hidden layer receives
source word input only, while target words in the
case of a joint model are fed to the forward layer
as in the unidirectional case. Due to the backward
recurrency, the backward layer will make the in-
formation fif available when predicting the target
word e;, while the forward layer takes care of the
source history fi. Jointly, the forward and back-
ward branches include the full source sentence f7,
as indicated in Fig. 2. Fig. 6 shows the “deep”
variant of the bidirectional model, where the for-
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Figure 6: Architecture of a recurrent bidirectional
translation model. By (+) and (—), we indicate
a processing in forward and backward time direc-
tions, respectively. The inclusion of the dashed
parts leads to a bidirectional joint model. One
source projection matrix is used for the forward
and backward branches.

ward and backward layers converge into a hidden
layer. A shallow variant can be obtained if the
parallel layers converge into the output layer di-
rectly’.

Due to the full dependence on the source se-
quence, evaluating bidirectional networks requires
computing the forward pass of the forward and
backward layers for the full sequence, before be-
ing able to evaluate the next layers. In the back-
ward pass of backpropagation, the forward and
backward recurrent layers are processed in de-
creasing and increasing time order, respectively.

5 Experiments

5.1 Setup

All translation experiments are performed with the
Jane toolkit (Vilar et al., 2010; Wuebker et al.,
2012). The largest part of our experiments is car-
ried out on the IWSLT 2013 German—English
shared translation task.”> The baseline system is
trained on all available bilingual data, 4.3M sen-
tence pairs in total, and uses a 4-gram LM with
modified Kneser-Ney smoothing (Kneser and Ney,
1995; Chen and Goodman, 1998), trained with
the SRILM toolkit (Stolcke, 2002). As additional

'In our implementation, the forward and backward layers
converge into an intermediate identity layer, and the aggre-
gate is weighted and fed to the next layer.

ttp://www.iwslt2013.0rg
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data sources for the LM we selected parts of the
Shuffled News and LDC English Gigaword cor-
pora based on cross-entropy difference (Moore
and Lewis, 2010), resulting in a total of 1.7 bil-
lion running words for LM training. The state-of-
the-art baseline is a standard phrase-based SMT
system (Koehn et al., 2003) tuned with MERT
(Och, 2003). It contains a hierarchical reorder-
ing model (Galley and Manning, 2008) and a 7-
gram word cluster language model (Wuebker et
al., 2013). Here, we also compare against a feed-
forward joint model as described by Devlin et al.
(2014), with a source window of 11 words and a
target history of three words, which we denote as
BBN-JM. Instead of POS tags, we predict word
classes trained with mkcls. We use a shortlist
of size 16K and 1000 classes for the remaining
words. All neural networks are trained on the TED
portion of the data (138K segments) and are ap-
plied in a rescoring step on 1000-best lists.

To confirm our results, we run additional
experiments on the Arabic—English and
Chinese—English tasks of the DARPA BOLT
project. In both cases, the neural network models
are added on top of our most competitive eval-
uation system. On Chinese—English, we use a
hierarchical phrase-based system trained on 3.7M
segments with 22 dense features, including an ad-
vanced orientation model (Huck et al., 2013). For
the neural network training, we selected a subset
of 9M running words. The Arabic—English
system is a standard phrase-based decoder trained
on 6.6M segments, using 17 dense features. The
neural network training was performed using a
selection amounting to 15.5M running words.
For both tasks we apply the neural networks by
rescoring 1000-best lists and evaluate results on
two data sets from the "discussion forum’ domain,
testl and test2. The sizes of the data sets
for the Arabic—English system are: 1219 (dev),
1510 (testl), and 1137 (test2) segments, and
for the Chinese—English system are: 5074 (dev),
1844 (testl), and 1124 (test?2) segments. All
results are measured in case-insensitive BLEU [%]
(Papineni et al., 2002) and TER [%] (Snover et al.,
2006) on a single reference.

5.2 Results

Our results on the IWSLT German—English task
are summarized in Tab. 2. At this point, we
do not include a recurrent neural network lan-



dev test

BLEU TER BLEU TER
baseline 335 458 309 484
™ 346 445 320 47.1
M 347 447 318 474
BTM 3477 449 323 47.0
BTM (deep) 348 443 325 46.7
BIM 347 445 32.1 47.0
BIM (deep) 349 441 322 46.6
PTM 343 449 32.1 475
PIM 343 450 32.0 475
PIM (10-best) 344 448 320 473
PIM (deep) 346 447 32.0 47.6
PBIM (deep) 348 449 319 475
BBN-IM 344 449 319 476

Table 2: Results for the IWSLT 2013

German—English task with different RNN
models. T: translation, J: joint, B: bidirectional,
P: phrase-based.

guage model yet. Here, the delay parameter d
from Equations 2 and 3 is set to zero. We ob-
serve that for all recurrent translation models, we
achieve substantial improvements over the base-
line on the test data, ranging from 0.9 BLEU
up to 1.6 BLEU. These results are also consistent
with the improvements in terms of TER, where we
achieve reductions by 0.8 TER up to 1.8 TER.

These numbers can be directly compared to the
case of feedforward neural network-based transla-
tion modeling as proposed in (Devlin et al., 2014)
which we include in the very last row of the table.
Nearly all of our recurrent models outperform the
feedforward approach, where the RNN model per-
forming best on the dev data is better on test
by 0.3 BLEU and 1.0 TER.

Interestingly, for the recurrent word-based mod-
els, on the test data it can be seen that TMs per-
form better than JMs, even though TMs do not
take advantage of the target side history words.
However, exploiting this extra information does
not always need to result in a better model, as the
target side words are only derived from the given
source side, which is available to both TMs and
JMs. On the other hand, including future source
words in a bidirectional model clearly improves
the performance further. By adding another LSTM
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Figure 7: BLEU scores on the IWSLT test set
with different delays for the unidirectional RNN-
TM and the bidirectional RNN-BTM.

layer that combines forward and backward time
directions (indicated as ‘deep’ in the table), we ob-
tain our overall best model.

In Fig. 7 we compare the word-based bidirec-
tional TM with a unidirectional TM that uses dif-
ferent time delays d = 0,...,4. For a delay d =
2, the same performance is obtained as with the
bidirectional model, but this comes at the price of
tuning the delay parameter.

In comparison to the unidirectional word-based
models, phrase-based models perform similarly.
In the tables, we include those phrase-based vari-
ants which perform best on the dev data, where
phrase-based JMs always are at least as good or
better than the corresponding TMs in terms of
BLEU. Therefore, we mainly report JM results
for the phrase-based networks. A phrase-based
model can also be trained on multiple variants for
the phrase alignment. For our experiments, we
tested 10-best alignments against the single best
alignment, which resulted in a small improvement
of 0.2 TER on both dev and test. We did not ob-
serve consistent gains by using an additional hid-
den layer or bidirectional models. To some ex-
tent, future information is already considered in
unidirectional phrase-based models by feeding the
complete source side before predicting the target
side.

Tab. 3 shows different model combination re-
sults for the IWSLT task, where a recurrent lan-
guage model is included in the baseline. Adding
a deep bidirectional TM or JM to the recur-
rent language model improves the RNN-LM base-
line by 1.2BLEU or 1.1 BLEU, respectively. A
phrase-based model substantially improves over



dev evalll test
BLeu” Ter™ Breu™ Ter"™ BrLeu™ TER™
baseline (w/ RNN-LM) 34.3 44.8 36.4 429 31.5 47.8
BTM (deep) 34.9 43.7 37.6 41.5 32.7 46.1
BJM (deep) 35.0 44 4 374 419 32.6 46.5
PBJM (deep) 34.8 44.6 36.9 42.6 32.3 47.2
4 RNN models 35.2 43.4 38.0 41.2 32.7 46.0

Table 3: Results for the IWSLT 2013 German—English task with different RNN models. All results
include a recurrent language model. T: translation, J: joint, B: bidirectional, P: phrase-based.

the RNN-LM baseline, but performs not as good
as its word-based counterparts. By adding four
different translation models, including models in
reverse word order and reverse translation direc-
tion, we are able to improve these numbers even
further. However, especially on the test data, the
gains from model combination saturate quickly.

Apart from the IWSLT track, we also ana-
lyze the performance of our translation models on
the BOLT Chinese—English and Arabic—English
translation tasks. Due to the large amount of train-
ing data, we concentrate on models of high perfor-
mance in the IWSLT experiments. The results can
be found in Tab. 4 and 5. In both cases, we see
consistent improvements over the recurrent neural
network language model baseline, improving the
Arabic—English system by 0.6 BLEU and 0.5 TER
on testl. This can be compared to the rescoring
results for the same task reported by (Devlin et al.,
2014), where they achieved 0.3 BLEU, despite the
fact that they used multiple references for scoring,
whereas in our experiments we rely on a single
reference only. The models are also able to im-
prove the Chinese—English system by 0.5 BLEU
and 0.5 TER on test2.

5.3 Analysis

To investigate whether bidirectional models ben-
efit from future source information, we compare
the single-best output of a system reranked with a
unidirectional model to the output reranked with
a bidirectional model. We choose the models
to be translation models in both cases, as they
predict target words independent of previous
predictions, given the source information (cf. Egs.
(3, 4)). This makes it easier to detect the effect
of including future source information or the lack
thereof. The examples are taken from the IWSLT
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testl test2

BLEU TER BLEU TER

baseline 252 574 268 573
BTM (deep) 256 56.6 268 56.7
BIM (deep) 259 569 274 56.7
RNN-LM 256 57.1 275 56.7
+BTM (deep) 259 567 273 56.8

+ BJM (deep) 26.2 566 279 56.5

Table 4: Results for the BOLT Arabic—English
task with different RNN models. The “+” sign in
the last two rows indicates that either of the corre-
sponding deep models (BTM and BJM) are added
to the baseline including the recurrent language
model (i.e. they are not applied at the same time).
T: translation, J: joint, B: bidirectional.

task, where we include the one-to-one source
information, reordered according to the target
side.

source: nicht so wie ich
reference: not like me
Hypothesis 1:

1-to-1 source: so ich € nicht wie
1-to-1 target: so 1 do n’t like
Hypothesis 2:

1-to-1 source: nicht so wie ich

1-to-1 target: not € like me

In this example, the German phrase “so wie”
translates to “like” in English. The bidirectional
model prefers hypothesis 2, making use of the
future word “wie” when translating the German
word “so” to e, because it has future insight that
this move will pay off later when translating



BLEU TER BLEU TER

baseline 183 63.6 167 63.0
BTM (deep) 18.7 633 171 626
BIM (deep) 185 631 172 623
RNN-LM 188 633 172 628
+BTM (deep) 189 63.1 17.7 623

+ BIM (deep) 188 633 175 625

Table 5: Results for the BOLT Chinese—English
task with different RNN models. The “+” sign in
the last two rows indicates that either of the corre-
sponding deep models (BTM and BJM) are added
to the baseline including the recurrent language
model (i.e. they are not applied at the same time).
T: translation, B: bidirectional.

the rest of the sentence. This information is
not available to the unidirectional model, which
prefers hypothesis 1 instead.

source: das taten wir dann auch und verschafften uns
so eine Zeit lang einen Wettbewerbs Vorteil .
reference: and we actually did that and it gave us a
competitive advantage for a while .

Hypothesis 1:
1-to-1 source: das e e e wir dann auch taten und
verschafften uns so eine Zeit lang einen Wettbewerbs
Vorteil .

1-to-1 target: that ’s just what we ¢ € did and gave us €
a time , a competitive advantage .

Hypothesis 2:
I-to-1 source: das € € € wir dann auch taten und
verschafften uns so einen Wettbewerbs Vorteil € eine
Zeit lang .

1-to-1 target: that ’s just what we € € did and gave us €

a competitive advantage for a € while .

Here, the German phrase “eine Zeit lang” trans-
lates to “for a while” in English. Bidirectional
scoring favors hypothesis 2, while unidirectional
scoring favors hypothesis 1. It seems that the uni-
directional model translates “Zeit” to “time” as the
object of the verb “give” in hypothesis 1, being
blind to the remaining part “lang” of the phrase
which changes the meaning. The bidirectional
model, to its advantage, has the full source infor-
mation, allowing it to make the correct prediction.
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6 Conclusion

We developed word- and phrase-based RNN trans-
lation models. The former is simple and performs
well in practice, while the latter is more consistent
with the phrase-based paradigm. The approach in-
herently evades data sparsity problems as it works
on words in its lowest level of processing. Our
experiments show the models are able to achieve
notable improvements over baselines containing a
recurrent LM.

In addition, and for the first time in statistical
machine translation, we proposed a bidirectional
neural architecture that allows modeling past and
future dependencies of any length. Besides its
good performance in practice, the bidirectional ar-
chitecture is of theoretical interest as it allows the
exact modeling of posterior probabilities.
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Abstract

This paper investigates the use of neural
networks for the acquisition of selectional
preferences. Inspired by recent advances
of neural network models for NLP applica-
tions, we propose a neural network model
that learns to discriminate between felici-
tous and infelicitous arguments for a par-
ticular predicate. The model is entirely un-
supervised — preferences are learned from
unannotated corpus data. We propose two
neural network architectures: one that han-
dles standard two-way selectional prefer-
ences and one that is able to deal with
multi-way selectional preferences. The
model’s performance is evaluated on a
pseudo-disambiguation task, on which it
is shown to achieve state of the art perfor-
mance.

1 Introduction

Predicates often have a semantically motivated pref-
erence for particular arguments. Compare for ex-
ample the sentences in (1) and (2).

)]
2

The vocalist sings a ballad.

The exception sings a tomato.

Most language users would have no problems ac-
cepting the first sentence as well-formed: a vocalist
can be expected to sing, and a ballad is something
that can be sung. The same language users, how-
ever, would likely consider the second sentence to
be ill-formed: an exception is not supposed to sing,
nor is a tomato something that is typically sung.
Within the field of natural language processing,
this inclination of predicates to select for particular
arguments is known as selectional preference.
The automatic acquisition of selectional prefer-
ences has been a popular research subject within
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the field of natural language processing. An auto-
matically acquired selectional preference resource
is a versatile tool for numerous NLP applications,
such as semantic role labeling (Gildea and Jurafsky,
2002), word sense disambiguation (McCarthy and
Carroll, 2003), and metaphor processing (Shutova
et al., 2013).

Models for selectional preference need to ade-
quately deal with the consequences of Zipf’s law:
language is inherently sparse, and the majority of
language utterances occur very infrequently. As
a consequence, models that are based on corpus
data need to properly generalize beyond the mere
co-occurrence frequencies of sparse corpus data,
taking into account the semantic similarity of both
predicates and arguments. Researchers have come
up with various approaches to this generalization
step. Earlier approaches to selectional preference
acquisition mostly rely on hand-crafted resources
such as WordNet (Resnik, 1996; Li and Abe, 1998;
Clark and Weir, 2001), while later approaches tend
to take advantage of unsupervised learning machin-
ery, such as latent variable models (Rooth et al.,
1999; o) Séaghdha, 2010) and distributional simi-
larity metrics (Erk, 2007; Padé et al., 2007).

This paper investigates the use of neural net-
works for the acquisition of selectional preferences.
Inspired by recent advances of neural network mod-
els for NLP applications (Collobert and Weston,
2008; Mikolov et al., 2013), we propose a neural
network model that learns to discriminate between
felicitous and infelicitous arguments for a particu-
lar predicate. The model is entirely unsupervised —
preferences are learned from unannotated corpus
data. Positive training instances are constructed
from attested corpus data, while negative instances
are constructed from randomly corrupted instances.
We propose two neural network architectures: one
that handles standard two-way selectional prefer-
ences and one that is able to deal with multi-way
selectional preferences, where the interaction be-
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tween multiple verb arguments is taken into ac-
count. The model’s performance is evaluated on a
pseudo-disambiguation task, on which it is shown
to achieve state of the art performance.

The contributions of this paper are twofold. First
of all, we apply and evaluate a neural network ap-
proach to the problem of standard (two-way) se-
lectional preference acquisition. Selectional pref-
erence acquisition using neural networks has not
yet been explored in the literature. Secondly, we
propose a novel network architecture and training
objective for the acquisition of multi-way selec-
tional preferences, where the interaction between
a verb and its various arguments is captured at the
same time.

The remainder of this paper is as follows. Sec-
tion 2 first discusses related work with respect to se-
lectional preference acquisition and neural network
modeling. Section 3 describes our neural network
architecture and its training procedure. Section 4
evaluates the model’s performance, comparing it
to other existing models for selectional preference
acquisition. Finally, section 5 concludes and indi-
cates a number of avenues for future work.

2 Related Work

2.1 Selectional preferences

One of the first approaches to the automatic induc-
tion of selectional preferences from corpora was
the one by Resnik (1996). Resnik (1996) relies
on WordNet synsets in order to generate gener-
alized noun clusters. The selectional preference
strength of a specific verb v in a particular relation
is calculated by computing the Kullback-Leibler
divergence between the cluster distribution of the
verb and the prior cluster distribution.

p(cly)

p(c)
where ¢ stands for a noun cluster, and R stands for a
given predicate-argument relation. The selectional
association of a particular noun cluster is then the
contribution of that cluster to the verb’s preference
strength.

Skiv) = Y_p(c|v)log (1)

p(e)
p(c|v)log ()

AR(ve) = (2)

Sk()

The model’s generalization relies entirely on Word-

Net, and there is no generalization among the verbs.
Other researchers have equally relied on Word-

Net in order to generalize over arguments. Li and
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Abe (1998) use the principle of Minimum Descrip-
tion Length in order to find a suitable generalization
level within the lexical WordNet hierarchy. A same
intuition is used by Clark and Weir (2001), but they
use hypothesis testing instead to find the appro-
priate level of generalization. A recent approach
that makes use of WordNet (in combination with
Bayesian modeling) is the one by 0 Séaghdha and
Korhonen (2012).

Most researchers, however, acknowledge the
shortcomings of hand-crafted resources, and fo-
cus on the acquisition of selectional preferences
from corpus data. Rooth et al. (1999) propose an
Expectation-Maximization (EM) clustering algo-
rithm for selectional preference acquisition based
on a probabilistic latent variable model. The idea
is that both predicate v and argument o are gen-
erated from a latent variable ¢, where the latent
variables represent clusters of tight verb-argument
interactions.

p(v,0) =} ple,v.0) =} p(e)p(vle)p(ole) (3)

ceC ceC

The use of latent variables allows the model to
generalize to predicate-argument tuples that have
not been seen during training. The latent variable
distribution — and the probabilities of predicates
and argument given the latent variables — are au-
tomatically induced from data using EM. We will
compare against their model for evaluation pur-
poses.

Erk (2007) and Erk et al. (2010) describe a
method that uses corpus-driven distributional simi-
larity metrics for the induction of selectional pref-
erences. The key idea is that a predicate-argument
tuple (v,0) is felicitous if the predicate v appears
in the training corpus with arguments o’ that are
similar to o, i.e.

S(v,0) = Z

0'e0,

wit(v,0')

Z0) “4)

-sim(0,0')
where O, represents the set of arguments that have
been attested with predicate v, wt(-) represents an
appropriate weighting function (such as the fre-
quency of the (v,0’) tuple), and Z is a normaliza-
tion factor. We equally compare to their model for
evaluation purposes.

Bergsma et al. (2008) present a discriminative
approach to selectional preference acquisition. Pos-
itive examples are taken from observed predicate-



argument pairs, while negative examples are con-
structed from unobserved combinations. An SVM
classifier is used to distinguish the positive from the
negative instances. The training procedure used in
their model is based on an intuition that is similar
to ours, although it is implemented using different
techniques.

A number of researchers presented models that
are based on the framework of topic modeling. O
Séaghdha (2010) describes three models for selec-
tional preference induction based on Latent Dirich-
let Allocation, which model the selectional pref-
erence of a predicate and a single argument. Rit-
ter et al. (2010) equally present a selectional pref-
erence model based on topic modeling, but they
tackle multi-way selectional preferences (of transi-
tive predicates, which take two arguments) instead.

Finally, in previous work (Van de Cruys, 2009)
we presented a model for multi-way selectional
preference induction based on tensor factorization.
Three-way co-occurrences of subjects, verbs, and
objects are represented as a three-way tensor (the
generalization of a matrix), and a latent factoriza-
tion model is applied in order to generalize to
unseen instances. We will compare our neural
network based-approach for multi-way selectional
preference acquisition to this tensor-based factor-
ization model.

2.2 Neural networks

In the last few years, neural networks have become
increasingly popular in NLP applications. In partic-
ular, neural language models (Bengio et al., 2003;
Mnih and Hinton, 2007; Collobert and Weston,
2008) have demonstrated impressive performance
at the task of language modeling. By incorporating
distributed representations for words that model
their similarity, neural language models are able
to overcome the problem of data sparseness that
standard n-gram models are confronted with. Also
related to our work is the approach by Tsubaki et
al. (2013), who successfully use a neural network
to model co-compositionality.

Our model for selectional preference acquisition
uses a network architecture that is similar to the
abovementioned models. Its training objective is
also similar to the ranking-loss training objective
proposed by Collobert and Weston (2008), but we
present a novel, modified version in order to deal
with multi-way selectional preferences.
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3 Methodology

3.1 Neural network architecture

Our model computes the score for a predicate i
and an argument j as follows. First, the selectional
preference tuple (i, j) is represented as the concate-
nation of the vectors v; and 0/, i.e.

®)
Vectors v; and o; are extracted from two embedding
matrices, V € RV*/ (the predicate matrix, where /
represents the number of elements in the predicate
vocabulary) and O € RV*/ (the argument matrix,
where J represents the number of elements in the
argument vocabulary). N is a parameter setting of
the model, representing the vector size of the em-
beddings. Matrices V and O will be automatically
learned during training.

Vector x then serves as input vector to our neural
network. We use a feed-forward neural network
architecture with one hidden layer:

X = [V,‘,Oj]

a f(Wix+by) (6)
y Wsa, (N

where x € R?" is our input vector, a; € R repre-
sents the activation of the hidden layer with H hid-
den nodes, W; € RE*?N and W, € R'# respec-
tively represent the first and second layer weights,
b, represents the first layer’s bias, f(-) represents
the element-wise activation function tanh, and y is
our final selectional preference score. The left-hand
picture of figure 1 gives a graphical representation
of our standard neural network architecture.

3.2 Training the network

A proper estimation of a neural network’s param-
eters requires a large amount of training data. To
be able to use non-annotated corpus data for train-
ing, we use the method proposed by Collobert and
Weston (2008). The authors present a method for
training a neural network language model from un-
labeled data by corrupting actual attested n-grams
with a random word. They then define a ranking-
type cost function, which allows the network to
learn to discriminate between good and bad word
sequences. We adopt the same method for our se-
lectional preference model as follows.

Let (i,j) be our proper, attested predicate-
argument tuple. The goal of our model is to dis-
criminate the correct tuple (i, j) from other, non-
attested tuples (i, j/), in which the correct predicate



Figure 1: Neural network architectures for selectional preference acquisition. The left-hand picture shows
the architecture for two-way selectional preferences, the right-hand picture shows the architecture for
three-way selectional preferences. In both cases, vector x is constructed from the appropriate predicate
and argument vectors from the embedding matrices, and fed forward through the network to yield a

preferenoe SCOore y.

J has been replaced with a random predicate j/. We
require the score for the correct tuple to be larger
than the score for the corrupt tuple by a margin
of one. For one tuple (i, j), this corresponds to
minimizing the objective function in (8)

Y max(0,1—g[(i, /)] +g[(i, j)])

jlel

®)

where J represents the predicate vocabulary, and
g|-] represents our neural network scoring function
presented in the previous section.

In line with Collobert and Weston (2008), the
gradient of the objective function is sampled by
randomly picking one corrupt argument j' from the
argument vocabulary for each attested predicate-
argument tuple (7, j). The derivative of the cost
with respect to the model’s parameters (weight ma-
trices Wy and W, bias vector b;, and embedding
matrices V and O) is computed, and the appropriate
parameters are updated through backpropagation.

3.3 Multi-way selectional preferences

The model presented in the previous section is
only able to deal with two-way selectional pref-
erences. In this section, we present an extension of
the model that is able to handle multi-way selec-
tional preferences.!

'We exemplify the model using three-way selectional pref-
erences for transitive predicates, but the model can be straight-
forwardly generalized to other multi-way selectional prefer-
ences.
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In order to model the selectional preference of a
transitive verb for its subject and direct object, we
start out in a similar fashion to the two-way case.
Instead of having only one embedding matrix, we
now have two embedding matrices S € RV*/ and
O € RV*X representing the two different argument
slots of a transitive predicate. Our input vector can
now be represented as

(©))

x = (v;,5;,0)

Note that x € R3N and W; € R”>3N_ The rest of
our neural network architecture stays exactly the
same. The right-hand picture of figure 1 presents a
graphical representation.

For the multi-way case, we present an adapted
version of the training objective. Given an attested
subject-verb-object tuple (i, j, k), the goal of our
network is now to discriminate this correct tuple
from other, corrupted tuples (i, j, k'), (i,,k) and
(i,j,k'), where the correct arguments have been
replaced by random subjects j” and random objects
k'. Note that we do not only want the network
to learn the infelicity of tuples in which both the
subject and object slot are corrupted; we also want
our network to learn the infelicity of tuples in which
either the subject or object slot is corrupt, while the
other slot contains the correct, attested argument.
This leads us to the objective function represented
in (10).



kz max (0,1 — g[(i, j, k)] + g[(i, j,k)])
'eK
+ Z’Jmax(o, 1—gl(i, j,k)] +2[(i, j,k)])

+ Y max(0,1—g[(i,j, k)] +¢[(i,/,&)]) (10)
jes
k'eK

As in the two-way case, the gradient of the objec-
tive function is sampled by randomly picking one
corrupted subject j” and one corrupted object k" for
each tuple (i, j, k). All of the model’s parameters
are again updated through backpropagation.

4 Evaluation

4.1 Implementational details

We evaluate our neural network approach to se-
lectional preference acquisition using verb-object
tuples for the two-way model, and subject-verb-
object tuples for the multi-way model.

Our model has been applied to English, using the
UKWac corpus (Baroni et al., 2009), which covers
about 2 billion words of web text. The corpus
has been part of speech tagged and lemmatized
with Stanford Part-Of-Speech Tagger (Toutanova
et al., 2003), and parsed with MaltParser (Nivre
et al., 2006), so that dependency tuples could be
extracted.

For the two-way model, we select all verbs and
objects that appear within a predicate-argument re-
lation with a frequency of at least 50. This gives
us a total of about 7K verbs and 30K objects. For
the multi-way model, we select the 2K most fre-
quent verbs, together with the 10K most frequent
subjects and the 10K most frequent objects (that
appear within a transitive frame).

All words are converted to lowercase. We use
the lemmatized forms, and only keep those forms
that contain alphabetic characters. Furthermore,
we require each tuple to appear at least three times
in the corpus.

We set N, the size of our embedding matrices, to
50, and H, the number of units in the hidden layer,
to 100. Following Huang et al. (2012), we use
mini-batch L-BFGS (Liu and Nocedal, 1989) with
1000 pairs of good and corrupt tuples per batch for
training, and train for 10 epochs.
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4.2 Evaluation Setup
4.2.1 Task

Our models are quantitatively evaluated using a
pseudo-disambiguation task (Rooth et al., 1999),
which bears some resemblance to our training pro-
cedure. The task provides an adequate test of the
generalization capabilities of our models. For the
two-way case, the task is to judge which object (o
or 0') is more likely for a particular verb v, where
(v,0) is a tuple attested in the corpus, and o' is a di-
rect object randomly drawn from the object vocab-
ulary. The tuple is considered correct if the model
prefers the attested tuple (v,0) over (v,0). For the
three-way case, the task is to judge which subject
(s or s") and direct object (o or o) are more likely
for a particular verb v, where (v,s,0) is the attested
tuple, and s” and o’ are a random subject and object
drawn from their respective vocabularies. The tu-
ple is considered correct if the model prefers the
attested tuple (v,s,0) over the alternatives (v,s,0’),
(v,5',0), and (v,s',0"). Tables 1 and 2 respectively
show a number of examples from the two-way and
three-way pseudo-disambiguation task.

/

Vv o o

perform  play geometry
buy wine renaissance
read introduction  peanut

Table 1: Pseudo-disambiguation examples for two-
way verb-object tuples

/! /

v S o N o

win team game diversity  egg
publish  government  document  grid priest
develop  company software breakfast  landlord

Table 2: Pseudo-disambiguation examples for
three-way subject-verb-object tuples

The models are evaluated using 10-fold cross
validation. All tuples from our corpus are randomly
divided into 10 equal parts. Next, for each fold, 9
parts are used for training, and the remaining part
is used for testing. In order to properly test the
generalization capability of our models, we make
sure that all instances of a particular tuple appear in
one part only. This way, we make sure that tuples
used for testing are never seen during training.

For the two-way model, our corpus consists of
about 70M tuple instances (1.9M types), so in each



fold, about 63M tuple instances are used for train-
ing and about 7M (190K types) are used for testing.
For the three-way model, our corpus consists of
about 5,5M tuple instances (750K types), so in
each fold, about 5SM tuples are used for training
and about 500K (75K types) are used for testing.
Note that our training procedure is instance-based,
while our evaluation is type-based: during training,
the neural network sees a tuple as many times as it
appears in the training set, while for testing each
individual tuple is only evaluated once.

4.2.2 Comparison models

We compare our neural network model to a number
of other models for selectional preference acquisi-
tion.

For the two-way case, we compare our model
to the EM-based clustering technique presented
by Rooth et al. (1999),? and to Erk et al.’s (2010)
similarity-based model. For Rooth et al.’s model,
we set the number of latent factors to 50. Us-
ing a larger number of latent factors does not in-
crease performance. For Erk et al.’s model, we
create a dependency-based similarity model from
the UKWac corpus using our 30K direct objects
as instances and 100K dependency relations as
features. The resulting matrix is weighted using
pointwise mutual information (Church and Hanks,
1990). Similarity values are computed using cosine.
Furthermore, we use a sampling procedure in the
testing phase: we sample 5000 predicate-argument
pairs for each fold, as testing Erk et al.’s model on
the complete test sets proved prohibitively expen-
sive.

For the three-way case, we compare our model
to the tensor factorization model we developed in
previous work (Van de Cruys, 2009). We set the
number of latent factors to 300.

4.3 Results
4.3.1 Two-way model

Table 3 compares the results of our neural network
architecture for two-way selectional preferences to
the results of Rooth et al.’s (1999) model and Erk
et al.’s (2010) model.

20ur own implementation of Rooth et al’s (1999) al-
gorithm is based on non-negative matrix factorization (Lee
and Seung, 2000). Non-negative matrix factorization with
Kullback-Leibler divergence has been shown to minimize the
same objective function as EM (Li and Ding, 2006).

3The best scoring model presented by Van de Cruys (2009)
also uses 300 latent factors; using more factors does not im-
prove the results.
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model accuracy (U + o)
Rooth et al. (1999) 720 £ .002
Erk et al. (2010) 887 £+ .004
2-way neural network .880 £ .001

Table 3: Comparison of model results for two-way
selectional preference acquisition — mean accuracy
and standard deviations of 10-fold cross-validation
results

The results indicate that our neural network ap-
proach outperforms Rooth et al.’s (1999) method
by a large margin (16%). Clearly, the neural net-
work architecture is able to model selectional pref-
erences more profoundly than Rooth et al.’s latent
variable approach. The difference between the
models is highly statistically significant (paired
t-test, p < .01), as the standard deviations already
indicate.

Erk et al.’s model reaches a slightly better score
than our model, and this result is also statistically
significant (paired t-test, p < .01). However, Erk et
al.’s model does not provide full coverage, whereas
the other two models are able to compute scores
for all pairs in the test set. In addition, Erk et al.’s
model is much more expensive to compute. Our
model computes selectional preference scores for
the test set in a matter of seconds, whereas for
Erk et al’s model, we ended up sampling from
the test set, as computing preference values for the
complete test set proved prohibitively expensive.

4.3.2 Three-way model

Table 4 compares the results of our neural network
architecture for three-way selectional preference
acquisition to the results of the tensor-based factor-
ization method (Van de Cruys, 2009).

model accuracy (U + o)
Van de Cruys (2009) .874 + .001
3-way neural network .889 + .001

Table 4: Comparison of model results for three-way
selectional preference acquisition — mean accuracy
and standard deviations of 10-fold cross-validation
results

The results indicate that the neural network ap-
proach slightly outperforms the tensor-based factor-
ization method. Again the model difference is sta-



tistically significant (paired t-test, p < 0.01). Using
our adapted training objective, the neural network
is clearly able to learn a rich model of three-way
selectional preferences, reaching state of the art
performance.

4.4 Examples

We conclude our results section by briefly present-
ing a number of examples that illustrate the kind
of semantics present in our models. Similar to neu-
ral language models, the predicate and argument
embedding matrices of our neural network con-
tain distributed word representations, that capture
the similarity of predicates and arguments to other
words.

Tables 5 and 6 contain a number of nearest neigh-
bour similarity examples for predicate and argu-
ments from our two-way neural network model.
The nearest neighbours were calculated using stan-
dard cosine similarity.

DRINK PROGRAM INTERVIEW FLOOD
SIP RECOMPILE RECRUIT INUNDATE

BREW UNDELETE PERSUADE RAVAGE

MINCE CODE INSTRUCT SUBMERGE
FRY IMPORT PESTER COLONIZE

Table 5: Nearest neighbours of 4 verbs, calculated
using the distributed word representations of em-
bedding matrix V from our two-way neural net-
work model

Table 5 indicates that the network is effectively
able to capture a semantics for verbs. The first
column — verbs similar to DRINK — all have to do
with food consumption. The second column con-
tains verbs related to computer programming. The
third column is related to human communication;
and the fourth column seems to illustrate the net-
work’s comprehension of FLOOD having to do with
invasion and water.

PAPER RASPBERRY SECRETARY DESIGNER

BOOK COURGETTE PRESIDENT PLANNER
JOURNAL LATTE MANAGER PAINTER
ARTICLE LEMONADE POLICE SPECIALIST

CODE OATMEAL EDITOR SPEAKER

Table 6: Nearest neighbours of 4 direct objects, cal-
culated using the distributed word representations
of embedding matrix O from our two way neural
network model

Similarly, table 6 shows the network’s ability to
capture the meaning of nouns that appear as direct
objects to the verbs. Column one contains things
that can be read. Column two contains things that
can be consumed. Column three seems to hint at
supervising professions, while column four seems
to capture creative professions.

A similar kind of semantics is present in the em-
bedding matrices of the three-way neural network
model. Tables 7, 8, and 9 again illustrate this using
word similarity calculations.

SEARCH DIMINISH CONFIGURE  PROSECUTE
CLICK LESSEN AUTOMATE CRITICISE
BROWSE DISTORT SCROLL URGE
SCROLL HEIGHTEN PROGRAM DEPLORE
UPLOAD DEGRADE INSTALL CONDEMN

Table 7: Nearest neighbours of 4 verbs, calculated
using the distributed word representations of em-
bedding matrix V from our three-way neural net-
work model

Table 7 shows the network’s verb semantics for
the three-way case. The first column is related to
internet usage, the second column contains verbs
of scalar change, column three is again related to
computer usage, and column four seems to capture
‘mending’ verbs.

FLOWER COLLEGE PRESIDENT SONG
FISH UNIVERSITY BUSH FILM
BIRD INSTITUTE BLAIR ALBUM
SUN DEPARTMENT MP PLAY
TREE CENTRE CHAIRMAN MUSIC

Table 8: Nearest neighbours of 4 subjects, calcu-
lated using the distributed word representations of
embedding matrix S from our three way neural
network model

Table 8 illustrates the semantics for the subject
slot of our three-way model. The first column cap-
tures nature terms, the second column contains
university-related terms, the third column contains
politicians/government terms, and the fourth col-
umn contains art expressions.

Finally, table 9 demonstrates the semantics of
our three-way model’s object slot. Column one
generally contains housing terms, column two con-
tains various locations, column three contains din-
ing occasions, and column four contains textual
expressions.



WALL PARK LUNCH THESIS
FLOOR STUDIO DINNER QUESTIONNAIRE
CEILING  VILLAGE MEAL DISSERTATION

ROOF HALL BUFFET PERIODICAL
METRE MUSEUM  BREAKFAST DISCOURSE

Table 9: Nearest neighbours of 4 direct objects, cal-
culated using the distributed word representations
of embedding matrix O from our three way neural
network model

Note that the embeddings for the subject and
the object slot is different, although they mostly
contain the same words. This allows the model to
capture specific semantic characteristics for words
given their argument position. Virus, for example,
is in subject position more similar to active words
like animal, whereas in object position, it is more
similar to passive words like cell, device. Similarly,
mouse in subject position tends to be similar to
words like animal, rat whereas in object position it
is similar to words like web, browser.

These examples, although anecdotal, illustrate
that our neural network model is able to capture a
rich semantics for predicates and arguments, which
subsequently allows the network to make accurate
predictions with regard to selectional preference.

5 Conclusion and future work

In this paper, we presented a neural network ap-
proach to the acquisition of selectional preferences.
Inspired by recent work on neural language models,
we proposed a neural network model that learns
to discriminate between felicitous and infelicitous
arguments for a particular predicate. The model is
entirely unsupervised, as preferences are learned
from unannotated corpus data. Positive training
instances are constructed from attested corpus data,
while negative instances are constructed from ran-
domly corrupted instances. Using designated net-
work architectures, we are able to handle stan-
dard two-way selectional preferences as well as
multi-way selectional preferences. A quantitative
evaluation on a pseudo-disambiguation task shows
that our models achieve state of the art perfor-
mance. The results for our two-way neural network
are on a par with Erk et al.’s (2010) similarity-
based approach, while our three-way neural net-
work slightly outperforms the tensor-based factor-
ization model (Van de Cruys, 2009) for multi-way
selectional preference induction.
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We conclude with a number of issues for future
work. First of all, we would like to investigate how
our neural network approach might be improved by
incorporating information from other sources. In
particular, we think of initializing our embedding
matrices with distributed representations that come
from a large-scale neural language model (Mikolov
et al., 2013). We also want to further investigate
the advantages and disadvantages of having dif-
ferent embedding matrices for different argument
positions in our multi-way neural network. In our
results section, we demonstrated that such an ap-
proach allows for more flexibility, but it also adds
a certain level of redundancy. We want to inves-
tigate the benefit of our approach, compared to a
model that shares the distributed word representa-
tion among different argument positions. Finally,
we want to investigate more advanced neural net-
work architectures for the acquisition of selectional
preferences. In particular, neural tensor networks
(Yu et al., 2013) have recently demonstrated im-
pressive results in related fields like speech recogni-
tion, and might provide the necessary machinery to
model multi-way selectional preferences in a more
profound way.
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Abstract

We construct multi-modal concept repre-
sentations by concatenating a skip-gram
linguistic representation vector with a vi-
sual concept representation vector com-
puted using the feature extraction layers
of a deep convolutional neural network
(CNN) trained on a large labeled object
recognition dataset. This transfer learn-
ing approach brings a clear performance
gain over features based on the traditional
bag-of-visual-word approach. Experimen-
tal results are reported on the WordSim353
and MEN semantic relatedness evaluation
tasks. We use visual features computed us-
ing either ImageNet or ESP Game images.

1 Introduction

Recent works have shown that multi-modal se-
mantic representation models outperform uni-
modal linguistic models on a variety of tasks, in-
cluding modeling semantic relatedness and pre-
dicting compositionality (Feng and Lapata, 2010;
Leong and Mihalcea, 2011; Bruni et al., 2012;
Roller and Schulte im Walde, 2013; Kiela et al.,
2014). These results were obtained by combin-
ing linguistic feature representations with robust
visual features extracted from a set of images as-
sociated with the concept in question. This extrac-
tion of visual features usually follows the popular
computer vision approach consisting of comput-
ing local features, such as SIFT features (Lowe,
1999), and aggregating them as bags of visual
words (Sivic and Zisserman, 2003).

Meanwhile, deep transfer learning techniques
have gained considerable attention in the com-
puter vision community. First, a deep convolu-
tional neural network (CNN) is trained on a large

*This work was carried out while Douwe Kiela was an
intern at Microsoft Research, New York.
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labeled dataset (Krizhevsky et al., 2012). The
convolutional layers are then used as mid-level
feature extractors on a variety of computer vi-
sion tasks (Oquab et al., 2014; Girshick et al.,
2013; Zeiler and Fergus, 2013; Donahue et al.,
2014). Although transferring convolutional net-
work features is not a new idea (Driancourt and
Bottou, 1990), the simultaneous availability of
large datasets and cheap GPU co-processors has
contributed to the achievement of considerable
performance gains on a variety computer vision
benchmarks: “SIFT and HOG descriptors pro-
duced big performance gains a decade ago, and
now deep convolutional features are providing a
similar breakthrough” (Razavian et al., 2014).

This work reports on results obtained by using
CNN-extracted features in multi-modal semantic
representation models. These results are interest-
ing in several respects. First, these superior fea-
tures provide the opportunity to increase the per-
formance gap achieved by augmenting linguistic
features with multi-modal features. Second, this
increased performance confirms that the multi-
modal performance improvement results from the
information contained in the images and not the
information used to select which images to use
to represent a concept. Third, our evaluation re-
veals an intriguing property of the CNN-extracted
features. Finally, since we use the skip-gram ap-
proach of Mikolov et al. (2013) to generate our
linguistic features, we believe that this work rep-
resents the first approach to multimodal distribu-
tional semantics that exclusively relies on deep
learning for both its linguistic and visual compo-
nents.

2 Related work

2.1 Multi-Modal Distributional Semantics

Multi-modal models are motivated by parallels
with human concept acquisition. Standard se-
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October 25-29, 2014, Doha, Qatar. (©2014 Association for Computational Linguistics



mantic space models extract meanings solely from
linguistic data, even though we know that hu-
man semantic knowledge relies heavily on percep-
tual information (Louwerse, 2011). That is, there
exists substantial evidence that many concepts
are grounded in the perceptual system (Barsalou,
2008). One way to do this grounding in the context
of distributional semantics is to obtain represen-
tations that combine information from linguistic
corpora with information from another modality,
obtained from e.g. property norming experiments
(Silberer and Lapata, 2012; Roller and Schulte im
Walde, 2013) or from processing and extracting
features from images (Feng and Lapata, 2010;
Leong and Mihalcea, 2011; Bruni et al., 2012).
This approach has met with quite some success
(Bruni et al., 2014).

2.2 Multi-modal Deep Learning

Other examples that apply multi-modal deep
learning use restricted Boltzmann machines (Sri-
vastava and Salakhutdinov, 2012; Feng et al.,
2013), auto-encoders (Wu et al., 2013) or recur-
sive neural networks (Socher et al., 2014). Multi-
modal models with deep learning components
have also successfully been employed in cross-
modal tasks (Lazaridou et al., 2014). Work that is
closely related in spirit to ours is by Silberer and
Lapata (2014). They use a stacked auto-encoder
to learn combined embeddings of textual and vi-
sual input. Their visual inputs consist of vectors
of visual attributes obtained from learning SVM
classifiers on attribute prediction tasks. In con-
trast, our work keeps the modalities separate and
follows the standard multi-modal approach of con-
catenating linguistic and visual representations in
a single semantic space model. This has the advan-
tage that it allows for separate data sources for the
individual modalities. We also learn visual repre-
sentations directly from the images (i.e., we apply
deep learning directly to the images), as opposed
to taking a higher-level representation as a start-
ing point. Frome et al. (2013) jointly learn multi-
modal representations as well, but apply them to
a visual object recognition task instead of concept
meaning.

2.3 Deep Convolutional Neural Networks

A flurry of recent results indicates that image de-
scriptors extracted from deep convolutional neu-
ral networks (CNNs) are very powerful and con-
sistently outperform highly tuned state-of-the-art
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systems on a variety of visual recognition tasks
(Razavian et al., 2014). Embeddings from state-
of-the-art CNNs (such as Krizhevsky et al. (2012))
have been applied successfully to a number of
problems in computer vision (Girshick et al.,
2013; Zeiler and Fergus, 2013; Donahue et al.,
2014). This contribution follows the approach de-
scribed by Oquab et al. (2014): they train a CNN
on 1512 ImageNet synsets (Deng et al., 2009),
use the first seven layers of the trained network as
feature extractors on the Pascal VOC dataset, and
achieve state-of-the-art performance on the Pascal
VOC classification task.

3 Improving Multi-Modal
Representations

Figure 1 illustrates how our system computes
multi-modal semantic representations.

3.1 Perceptual Representations

The perceptual component of standard multi-
modal models that rely on visual data is often
an instance of the bag-of-visual-words (BOVW)
representation (Sivic and Zisserman, 2003). This
approach takes a collection of images associated
with words or tags representing the concept in
question. For each image, keypoints are laid out
as a dense grid. Each keypoint is represented by
a vector of robust local visual features such as
SIFT (Lowe, 1999), SURF (Bay et al., 2008) and
HOG (Dalal and Triggs, 2005), as well as pyra-
midal variants of these descriptors such as PHOW
(Bosch et al., 2007). These descriptors are sub-
sequently clustered into a discrete set of “visual
words” using a standard clustering algorithm like
k-means and quantized into vector representations
by comparing the local descriptors with the cluster
centroids. Visual representations are obtained by
taking the average of the BOVW vectors for the
images that correspond to a given word. We use
BOVW as a baseline.

Our approach similarly makes use of a collec-
tion of images associated with words or tags rep-
resenting a particular concept. Each image is pro-
cessed by the first seven layers of the convolu-
tional network defined by Krizhevsky et al. (2012)
and adapted by Oquab et al. (2014)'. This net-
work takes 224 x 224 pixel RGB images and ap-
plies five successive convolutional layers followed
by three fully connected layers. Its eighth and last

"http://www.di.ens.fr/willow/research/cnn/
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Figure 1: Computing word feature vectors.

layer produces a vector of 1512 scores associated
with 1000 categories of the ILSVRC-2012 chal-
lenge and the 512 additional categories selected by
Oquab et al. (2014). This network was trained us-
ing about 1.6 million ImageNet images associated
with these 1512 categories. We then freeze the
trained parameters, chop the last network layer,
and use the remaining seventh layer as a filter to
compute a 6144-dimensional feature vector on ar-
bitrary 224 x 224 input images.

We consider two ways to aggregate the feature
vectors representing each image.

1. The first method (CNN-Mean) simply com-
putes the average of all feature vectors.

. The second method (CNN-Max) computes
the component-wise maximum of all feature
vectors. This approach makes sense because
the feature vectors extracted from this par-
ticular network are quite sparse (about 22%
non-zero coefficients) and can be interpreted
as bags of visual properties.

3.2 Linguistic representations

For our linguistic representations we extract 100-
dimensional continuous vector representations us-
ing the log-linear skip-gram model of Mikolov
et al. (2013) trained on a corpus consisting of
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the 400M word Text8 corpus of Wikipedia text?
together with the 100M word British National
Corpus (Leech et al., 1994). We also experi-
mented with dependency-based skip-grams (Levy
and Goldberg, 2014) but this did not improve re-
sults. The skip-gram model learns high quality se-
mantic representations based on the distributional
properties of words in text, and outperforms stan-
dard distributional models on a variety of semantic
similarity and relatedness tasks. However we note
that Bruni et al. (2014) have recently reported an
even better performance for their linguistic com-
ponent using a standard distributional model, al-
though this may have been tuned to the task.

3.3 Multi-modal Representations

Following Bruni et al. (2014), we construct multi-
modal semantic representations by concatenating
the centered and Lo-normalized linguistic and per-
ceptual feature vectors ¥, and vy;s,

ey

Q_}::oncept = aX 77ling H (1 - 04) X 17m’57

where || denotes the concatenation operator and «
is an optional tuning parameter.

*http://mattmahoney.net/dc/textdata.html



Figure 3: Examples of golden retriever in ImageNet.

4 Experimental Setup

We carried out experiments using visual repre-
sentations computed using two canonical image
datasets. The resulting multi-modal concept rep-
resentations were evaluated using two well-known
semantic relatedness datasets.

4.1 Visual Data

We carried out experiments using two distinct
sources of images to compute the visual represen-
tations.

The ImageNet dataset (Deng et al., 2009) is
a large-scale ontology of images organized ac-
cording to the hierarchy of WordNet (Fellbaum,
1999). The dataset was constructed by manually
re-labelling candidate images collected using web
searches for each WordNet synset. The images
tend to be of high quality with the designated ob-
ject roughly centered in the image. Our copy of
ImageNet contains about 12.5 million images or-
ganized in 22K synsets. This implies that Ima-
geNet covers only a small fraction of the existing
117K WordNet synsets.

The ESP Game dataset (Von Ahn and Dabbish,
2004) was famously collected as a “game with
a purpose”, in which two players must indepen-
dently and rapidly agree on a correct word label
for randomly selected images. Once a word label
has been used sufficiently frequently for a given
image, that word is added to the image’s tags. This
dataset contains 100K images, but with every im-
age having on average 14 tags, that amounts to a
coverage of 20,515 words. Since players are en-
couraged to produce as many terms per image, the
dataset’s increased coverage is at the expense of
accuracy in the word-to-image mapping: a dog in
a field with a house in the background might be a
golden retriever in ImageNet and could have tags
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dog, golden retriever, grass, field, house, door in
the ESP Dataset. In other words, images in the
ESP dataset do not make a distinction between ob-
jects in the foreground and in the background, or
between the relative size of the objects (tags for
images are provided in a random order, so the top
tag is not necessarily the best one).

Figures 2 and 3 show typical examples of im-
ages belonging to these datasets. Both datasets
have attractive properties. On the one hand, Ima-
geNet has higher quality images with better labels.
On the other hand, the ESP dataset has an interest-
ing coverage because the MEN task (see section
4.4) was specifically designed to be covered by the
ESP dataset.

4.2 TImage Selection

Since ImageNet follows the WordNet hierarchy,
we would have to include almost all images in
the dataset to obtain representations for high-level
concepts such as entity, object and animal. Doing
so is both computationally expensive and unlikely
to improve the results. For this reason, we ran-
domly sample up to N distinct images from the
subtree associated with each concept. When this
returns less than N images, we attempt to increase
coverage by sampling images from the subtree of
the concept’s hypernym instead. In order to allow
for a fair comparison, we apply the same method
of sampling up to NV on the ESP Game dataset. In
all following experiments, N = 1.000. We used
the WordNet lemmatizer from NLTK (Bird et al.,
2009) to lemmatize tags and concept words so as
to further improve the dataset’s coverage.

4.3 Image Processing

The ImageNet images were preprocessed as de-
scribed by (Krizhevsky et al., 2012). The largest
centered square contained in each image is resam-



pled to form a 256 x 256 image. The CNN input
is then formed by cropping 16 pixels off each bor-
der and subtracting 128 to the image components.
The ESP Game images were preprocessed slightly
differently because we do not expect the objects
to be centered. Each image was rescaled to fit in-
side a 224 x 224 rectangle. The CNN input is then
formed by centering this image into the 224 x 224
input field, subtracting 128 to the image compo-
nents, and zero padding.

The BOVW features were obtained by comput-
ing DSIFT descriptors using VLFeat (Vedaldi and
Fulkerson, 2008). These descriptors were subse-
quently clustered using mini-batch k-means (Scul-
ley, 2010) with 100 clusters. Each image is then
represented by a bag of clusters (visual words)
quantized as a 100-dimensional feature vector.
These vectors were then combined into visual con-
cept representations by taking their mean.

4.4 Evaluation

We evaluate our multi-modal word representations
using two semantic relatedness datasets widely
used in distributional semantics (Agirre et al.,
2009; Feng and Lapata, 2010; Bruni et al., 2012;
Kiela and Clark, 2014; Bruni et al., 2014).

WordSim353 (Finkelstein et al., 2001) is a se-
lection of 353 concept pairs with a similarity rat-
ing provided by human annotators. Since this is
probably the most widely used evaluation dataset
for distributional semantics, we include it for com-
parison with other approaches. WordSim353 has
some known idiosyncracies: it includes named en-
tities, such as OPEC, Arafat, and Maradona, as
well as abstract words, such as antecedent and
credibility, for which it may be hard to find cor-
responding images. Multi-modal representations
are often evaluated on an unspecified subset of
WordSim353 (Feng and Lapata, 2010; Bruni et
al., 2012; Bruni et al., 2014), making it impossi-
ble to compare the reported scores. In this work,
we report scores on the full WordSim353 dataset
(W353) by setting the visual vector ;4 to zero for
concepts without images. We also report scores
on the subset (W353-Relevant) of pairs for which
both concepts have both ImageNet and ESP Game
images using the aforementioned selection proce-
dure.

MEN (Bruni et al., 2012) was in part designed
to alleviate the WordSim353 problems. It was con-
structed in such a way that only frequent words
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with at least 50 images in the ESP Game dataset
were included in the evaluation pairs. The MEN
dataset has been found to mirror the aggregate
score over a variety of tasks and similarity datasets
(Kiela and Clark, 2014). It is also much larger,
with 3000 words pairs consisting of 751 individual
words. Although MEN was constructed so as to
have at least a minimum amount of images avail-
able in the ESP Game dataset for each concept,
this is not the case for ImageNet. Hence, simi-
larly to WordSim353, we also evaluate on a subset
(MEN-Relevant) for which images are available
in both datasets.

We evaluate the models in terms of their Spear-
man p correlation with the human relatedness rat-
ings. The similarity between the representations
associated with a pair of words is calculated using
the cosine similarity:

V1 - V2

[[oa][ vl

2

cos(vy,v2) =

5 Results

We evaluate on the two semantic relatedness
datasets using solely linguistic, solely visual and
multi-modal representations. In the case of MEN-
Relevant and W353-Relevant, we report scores for
BOVW, CNN-Mean and CNN-Max visual repre-
sentations. For all datasets we report the scores
obtained by BOVW, CNN-Mean and CNN-Max
multi-modal representations. Since we have full
coverage with the ESP Game dataset on MEN, we
are able to report visual representation scores for
the entire dataset as well. The results can be seen
in Table 1.

There are a number of questions to ask. First
of all, do CNNs yield better visual representa-
tions? Second, do CNNs yield better multi-modal
representations? And third, is there a difference
between the high-quality low-coverage ImageNet
and the low-quality higher-coverage ESP Game
dataset representations?

5.1 Visual Representations

In all cases, CNN-generated visual representations
perform better or as good as BOVW representa-
tions (we report results for BOVW-Mean, which
performs slightly better than taking the element-
wise maximum). This confirms the motivation
outlined in the introduction: by applying state-of-
the-art approaches from computer vision to multi-
modal semantics, we obtain a signficant perfor-



Dataset Linguistic Visual Multi-modal
BOVW CNN-Mean CNN-Max | BOVW CNN-Mean CNN-Max

ImageNet visual features

MEN 0.64 - - - 0.64 0.70 0.67

MEN-Relevant 0.62 0.40 0.64 0.63 0.64 0.72 0.71

W353 0.57 - - - 0.58 0.59 0.60

W353-Relevant 0.51 0.30 0.32 0.30 0.55 0.56 0.57
ESP game visual features

MEN 0.64 0.17 0.51 0.20 0.64 0.71 0.65

MEN-Relevant 0.62 0.35 0.58 0.57 0.63 0.69 0.70

W353 0.57 - - - 0.58 0.59 0.60

W353-Relevant 0.51 0.38 0.44 0.56 0.52 0.55 0.61

Table 1: Results (see sections 4 and 5).

mance increase over standard multi-modal mod-
els.

5.2 Multi-modal Representations

Higher-quality perceptual input leads to better-
performing multi-modal representations. In all
cases multi-modal models with CNNs outperform
multi-modal models with BOVW, occasionally by
quite a margin. In all cases, multi-modal rep-
resentations outperform purely linguistic vectors
that were obtained using a state-of-the-art system.
This re-affirms the importance of multi-modal rep-
resentations for distributional semantics.

5.3 The Contribution of Images

Since the ESP Game images come with a multi-
tude of word labels, one could question whether
a performance increase of multi-modal models
based on that dataset comes from the images them-
selves, or from overlapping word labels. It might
also be possible that similar concepts are more
likely to occur in the same image, which encodes
relatedness information without necessarily tak-
ing the image data itself into account. In short,
it is a natural question to ask whether the perfor-
mance gain is due to image data or due to word
label associations? We conclusively show that the
image data matters in two ways: (a) using a dif-
ferent dataset (ImageNet) also results in a perfor-
mance boost, and (b) using higher-quality image
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features on the ESP game images increases the
performance boost without changing the associa-
tion between word labels.

5.4 Image Datasets

It is important to ask whether the source im-
age dataset has a large impact on performance.
Although the scores for the visual representa-
tion in some cases differ, performance of multi-
modal representations remains close for both im-
age datasets. This implies that our method is ro-
bust over different datasets. It also suggests that it
is beneficial to train on high-quality datasets like
ImageNet and to subsequently generate embed-
dings for other sets of images like the ESP Game
dataset that are more noisy but have better cover-
age. The results show the benefit of transfering
convolutional network features, corroborating re-
cent results in computer vision.

5.5 Semantic Similarity/Relatedness Datasets

There is an interesting discrepancy between the
two types of network with respect to dataset per-
formance: CNN-Mean multi-modal models tend
to perform best on MEN and MEN-Relevant,
while CNN-Max multi-modal models perform
better on W353 and W353-Relevant. There also
appears to be some interplay between the source
corpus, the evaluation dataset and the best per-
forming CNN: the performance leap on W353-



0.8 0.9 10

0.7 0.8 0.9

0.4 0.5 0.6

W353 Rel

— mean-bovw
— max-bovw

— mean-esp
—  max-esp

— mean-imgnet
max-imgnet

0'Z].l 0.2 0.3 0.4 0.5 0.6

alpha

0.7 0.8 0.9

Figure 4: Varying the v parameter for MEN, MEN-Relevant, WordSim353 and WordSim353-Relevant,

respectively.

Relevant for CNN-Max is much larger using ESP
Game images than with ImageNet images.

We speculate that this is because CNN-Max per-
forms better than CNN-Mean on a somewhat dif-
ferent type of similarity. It has been noted (Agirre
et al., 2009) that WordSim353 captures both sim-
ilarity (as in tiger-cat, with a score of 7.35) as
well as relatedness (as in Maradona-football, with
a score of 8.62). MEN, however, is explicitly de-
signed to capture semantic relatedness only (Bruni
et al., 2012). CNN-Max using sparse feature vec-
tors means that we treat the dominant components
as definitive of the concept class, which is more
suited to similarity. CNN-Mean averages over
all the feature components, and as such might be
more suited to relatedness. We conjecture that the
performance increase on WordSim353 is due to
increased performance on the similarity subset of
that dataset.

5.6 Tuning

The concatenation scheme in Equation 1 allows
for a tuning parameter o to weight the relative
contribution of the respective modalities. Previous
work on MEN has found that the optimal param-
eter for that dataset is close to 0.5 (Bruni et al.,
2014). We have found that this is indeed the case.
On WordSim353, however, we have found the pa-
rameter for optimal performance to be shifted to
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the right, meaning that optimal performance is
achieved when we include less of the visual input
compared to the linguistic input. Figure 4 shows
what happens when we vary alpha over the four
datasets. There are a number of observations to be
made here.

First of all, we can see that the performance
peak for the MEN datastes is much higher than
for the WordSim353 ones, and that its peak is rel-
atively higher as well. This indicates that MEN is
in a sense a more balanced dataset. There are two
possible explanations: as indicated earlier, Word-
Sim353 contains slightly idiosyncratic word pairs
which may have a detrimental effect on perfor-
mance; or, WordSim353 was not constructed with
multi-modal semantics in mind, and contains a
substantial amount of abstract words that would
not benefit at all from including visual informa-
tion.

Due to the nature of the datasets and the tasks
at hand, it is arguably much more important that
CNNs beat standard bag-of-visual-words repre-
sentations on MEN than on W353, and indeed we
see that there exists no o for which BOVW would
beat any of the CNN networks.

6 Error Analysis

Table 2 shows the top 5 best and top 5 worst scor-
ing word pairs for the two datasets using CNN-



W353-Relevant

ImageNet ESP Game
wordl word2 system score  gold standard || wordl word2 system score  gold standard
tiger tiger 1.00 1.00 tiger tiger 1.00 1.00
man governor | 0.53 0.53 man governor | 0.53 0.53
stock phone 0.15 0.16 stock phone 0.15 0.16
football tennis 0.68 0.66 football  tennis 0.68 0.66
man woman 0.85 0.83 man woman 0.85 0.83
cell phone 0.27 0.78 law lawyer 0.33 0.84
discovery  space 0.10 0.63 monk slave 0.58 0.09
closet clothes 0.22 0.80 gem jewel 0.41 0.90
king queen 0.26 0.86 stock market 0.33 0.81
wood forest 0.13 0.77 planet space 0.32 0.79
MEN-Relevant
ImageNet ESP Game
word1 word?2 system score  gold standard || wordl word?2 system score  gold standard
beef potatoes 0.35 0.35 beef potatoes | 0.35 0.35
art work 0.35 0.35 art work 0.35 0.35
grass stop 0.06 0.06 grass stop 0.06 0.06
shade tree 0.45 0.45 shade tree 0.45 0.45
blonde rock 0.07 0.07 blonde rock 0.07 0.07
bread potatoes 0.88 0.34 bread dessert 0.78 0.24
fruit potatoes 0.80 0.26 jacket shirt 0.89 0.34
dessert sandwich | 0.76 0.23 fruit nuts 0.88 0.33
pepper tomato 0.79 0.27 dinner lunch 0.93 0.37
dessert tomato 0.66 0.14 dessert  soup 0.81 0.23

Table 2: The top 5 best and top 5 worst scoring pairs with respect to the gold standard.

Mean multi-modal vectors. The most accurate
pairs are consistently the same across the two im-
age datasets. There are some clear differences
between the least accurate pairs, however. The
MEN words potatoes and tomato probably have
low quality ImageNet-derived representations, be-
cause they occur often in the bottom pairs for that
dataset. The MEN words dessert, bread and fruit
occur in the bottom 5 for both image datasets,
which implies that their linguistic representations
are probably not very good. For WordSim353, the
bottom pairs on ImageNet could be said to be sim-
ilarity mistakes; while the ESP Game dataset con-
tains more relatedness mistakes (king and queen
would evaluate similarity, while stock and market
would evaluate relatedness). It is difficult to say
anything conclusive about this discrepancy, but it
is clearly a direction for future research.

7 Image embeddings

To facilitate further research on image embed-
dings and multi-modal semantics, we publicly re-
lease embeddings for all the image labels occur-
ring in the ESP Game dataset. Please see the fol-
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lowing web page: http://www.cl.cam.ac.
uk/~dk427/imgembed.html

8 Conclusion

We presented a novel approach to improving
multi-modal representations using deep convo-
lutional neural network-extracted features. We
reported high results on two well-known and
widely-used semantic relatedness benchmarks,
with increased performance both in the separate
visual representations and in the combined multi-
modal representations. Our results indicate that
such multi-modal representations outperform both
linguistic and standard bag-of-visual-words multi-
modal representations. We have shown that our
approach is robust and that CNN-extracted fea-
tures from separate image datasets can succesfully
be applied to semantic relatedness.

In addition to improving multi-modal represen-
tations, we have shown that the source of this im-
provement is due to image data and is not simply a
result of word label associations. We have shown
this by obtaining performance improvements on
two different image datasets, and by obtaining



higher performance with higher-quality image fea-
tures on the ESP game images, without changing
the association between word labels.

In future work, we will investigate whether our
system can be further improved by including con-
creteness information or a substitute metric such
as image dispersion, as has been suggested by
other work on multi-modal semantics (Kiela et al.,
2014). Furthermore, a logical next step to increase
performance would be to jointly learn multi-modal
representations or to learn weighting parameters.
Another interesting possibility would be to exam-
ine multi-modal distributional compositional se-
mantics, where multi-modal representations are
composed to obtain phrasal representations.
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Abstract

In this paper, we present a novel ap-
proach for identifying argumentative dis-
course structures in persuasive essays. The
structure of argumentation consists of sev-
eral components (i.e. claims and premises)
that are connected with argumentative re-
lations. We consider this task in two
consecutive steps. First, we identify the
components of arguments using multiclass
classification. Second, we classify a pair
of argument components as either support
or non-support for identifying the struc-
ture of argumentative discourse. For both
tasks, we evaluate several classifiers and
propose novel feature sets including struc-
tural, lexical, syntactic and contextual fea-
tures. In our experiments, we obtain a
macro Fl-score of 0.726 for identifying
argument components and 0.722 for argu-
mentative relations.

1 Introduction

Argumentation is a crucial aspect of writing skills
acquisition. The ability of formulating persuasive
arguments is not only the foundation for convinc-
ing an audience of novel ideas but also plays a ma-
jor role in general decision making and analyzing
different stances. However, current writing sup-
port is limited to feedback about spelling, gram-
mar, or stylistic properties and there is currently no
system that provides feedback about written argu-
mentation. By integrating argumentation mining
in writing environments, students will be able to
inspect their texts for plausibility and to improve
the quality of their argumentation.

An argument consists of several components. It
includes a claim that is supported or attacked by at
least one premise. The claim is the central compo-
nent of an argument. It is a controversial statement
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that should not be accepted by the reader without
additional support.! The premise underpins the
validity of the claim. It is a reason given by an
author for persuading readers of the claim. Argu-
mentative relations model the discourse structure
of arguments. They indicate which argument com-
ponents are related and constitute the structure of
argumentative discourse. For example, the argu-
ment in the following paragraph contains four ar-
gument components: one claim (in bold face) and
three premises (underlined).

“(1) Museums and art galleries provide
a better understanding about arts than
Internet. (2) In most museums and art
galleries, detailed descriptions in terms
of the background, history and author
are provided. (3) Seeing an artwork on-
line is not the same as watching it with
our own eyes, as (4) the picture online
does not show the texture or three-di-
mensional structure of the art, which is
important to study.”

In this example, the premises (2) and (3) sup-
port the claim (1) whereas premise (4) is a support
for premise (3). Thus, this example includes three
argumentative support relations holding between
the components (2,1), (3,1) and (4,3) signaling that
the source component is a justification of the target
component. This illustrates two important proper-
ties of argumentative discourse structures. First,
argumentative relations are often implicit (not in-
dicated by discourse markers; e.g. the relation
holding between (2) and (1)). Indeed, Marcu and
Echihabi (2002) found that only 26% of the ev-
idence relations in the RST Discourse Treebank
(Carlson et al., 2001) include discourse markers.

'"We use the term claim synonymously to conclusion.
In our definition the differentiation between claims and
premises does not indicate the validity of the statements but

signals which components include the gist of an argument
and which are given by the author as justification.

Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 46-56,
October 25-29, 2014, Doha, Qatar. (©2014 Association for Computational Linguistics



Second, in contrast to Rhetorical Structure Theory
(RST) (Mann and Thompson, 1987), argumenta-
tive relations also hold between non-adjacent sen-
tences/clauses. For instance, in the corpus com-
piled by Stab and Gurevych (2014) only 37% of
the premises appear adjacent to a claim. There-
fore, existing approaches of discourse analysis,
e.g. based on RST, do not meet the require-
ments of argumentative discourse structure iden-
tification, since they only consider discourse re-
lations between adjacent sentences/clauses (Peld-
szus and Stede, 2013). In addition, there are no
distinct argumentative relations included in com-
mon approaches like RST or the Penn Discourse
Treebank (PDTB) (Prasad et al., 2008), since they
are focused on identifying general discourse struc-
tures (cp. section 2.2).

Most of the existing argumentation mining
methods focus solely on the identification of ar-
gument components. However, identifying argu-
mentative discourse structures is an important task
(Sergeant, 2013) in particular for providing feed-
back about argumentation. First, argumentative
discourse structures are essential for evaluating the
quality of an argument, since it is not possible
to examine how well a claim is justified without
knowing which premises belong to it. Second,
methods that recognize if a statement supports a
given claim enable the collection of additional ev-
idence from other sources. Third, the structure of
argumentation is needed for recommending better
arrangements of argument components and mean-
ingful usage of discourse markers. Both foster ar-
gument comprehension and recall (Britt and Lar-
son, 2003) and thus increase the argumentation
quality. To the best of our knowledge, there is
currently only one approach that aims at identi-
fying argumentative discourse structures proposed
by Mochales-Palau and Moens (2009). However,
it relies on a manually created context-free gram-
mar (CFG) and is tailored to the legal domain,
which follows a standardized argumentation style.
Therefore, it is likely that it will not achieve ac-
ceptable accuracy when applied to more general
texts in which discourse markers are missing or
even misleadingly used (e.g. student texts).

In this work, we present a novel approach
for identifying argumentative discourse structures
which includes two consecutive steps. In the first
step, we focus on the identification of argument
components using a multiclass classification ap-
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proach. In the second step, we identify argumen-
tative relations by classifying a pair of argument
components as either support or non-support. In
particular, the contributions of this work are the
following: First, we introduce a novel approach
for identifying argumentative discourse structures.
Contrary to previous approaches, our approach
is capable of identifying argumentative discourse
structures even if discourse markers are missing or
misleadingly used. Second, we present two novel
feature sets for identifying argument components
as well as argumentative relations. Third, we eval-
uate several classifiers and feature groups for iden-
tifying the best system for both tasks.

2 Related Work

2.1 Argumentation Mining

Previous research on argumentation mining spans
several subtasks, including (1) the separation of
argumentative from non-argumentative text units
(Moens et al., 2007; Florou et al., 2013), (2)
the classification of argument components or
argumentation schemes (Rooney et al.,, 2012;
Mochales-Palau and Moens, 2009; Teufel, 1999;
Feng and Hirst, 2011), and (3) the identification
of argumentation structures (Mochales-Palau and
Moens, 2009; Wyner et al., 2010).

The separation of argumentative from non-
argumentative text units is usually considered as
a binary classification task and constitutes one of
the first steps in an argumentation mining pipeline.
Moens et al. (2007) propose an approach for iden-
tifying argumentative sentences in the Araucaria
corpus (Reed et al., 2008). The argument an-
notations in Araucaria are based on a domain-
independent argumentation theory proposed by
Walton (1996). In their experiments, they ob-
tain the best accuracy (73.75%) using a combi-
nation of word pairs, text statistics, verbs, and a
list of keywords indicative for argumentative dis-
course. Florou et al. (2013) report a similar ap-
proach. They classify text segments crawled with
a focused crawler as either containing an argu-
ment or not. Their approach is based on several
discourse markers and features extracted from the
tense and mood of verbs. They report an F1-score
of 0.764 for their best performing system.

One of the first approaches focusing on the
identification of argument components is Argu-
mentative Zoning proposed by Teufel (1999). The
underlying assumption of this work is that argu-



ment components extracted from a scientific arti-
cle provide a good summary of its content. Each
sentence is classified as one of seven rhetorical
roles including claim, result or purpose. The ap-
proach obtained an Fl-score of 0.467 using struc-
tural, lexical and syntactic features. Rooney et
al. (2013) also focus on the identification of ar-
gument components but in contrast to the work of
Teufel (1999) their scheme is not tailored to a par-
ticular genre. In their experiments, they identify
claims, premises and non-argumentative text units
in the Araucaria corpus and report an overall ac-
curacy of 65%. Feng and Hirst (2011) also use
the Araucaria corpus for their experiments but fo-
cus on the identification of argumentation schemes
(Walton, 1996), which are templates for forms of
arguments (e.g. argument from example or argu-
ment from consequence). Since their approach is
based on features extracted from mutual informa-
tion of claims and premises, it requires that the ar-
gument components are reliably identified in ad-
vance. In their experiments, they achieve an accu-
racy between 62.9% and 97.9% depending on the
particular scheme and the classification setup.

In contrast to all approaches mentioned above,
the work presented in this paper focuses be-
sides the separation of argumentative from non-
argumentative text units and the classification of
argument components on the extraction of the ar-
gumentative discourse structure to identify which
components of the argument belong together for
achieving a more fine-grained and detailed analy-
sis of argumentation. We are only aware of one ap-
proach (Mochales-Palau and Moens, 2009; Wyner
et al., 2010) that also focuses on the identifica-
tion of argumentative discourse structures. How-
ever, this approach is based on a manually created
CFG that is tailored to documents from the legal
domain, which follow a standardized argumenta-
tion style. Therefore, it does not accommodate ill-
formatted arguments (Wyner et al., 2010), which
are likely in argumentative writing support. In ad-
dition, the approach relies on discourse markers
and is therefore not applicable for identifying im-
plicit argumentative discourse structures.

2.2 Discourse Relations

Identifying argumentative discourse structures is
closely related to discourse analysis. As illustrated

2Calculated from the precision and recall scores provided
for individual rhetorical roles in (Teufel, 1999, p. 225).
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in the initial example, the identification of argu-
mentative relations postulates the identification of
implicit as well as non-adjacent discourse rela-
tions. Marcu and Echihabi (2002) present the first
approach focused on identifying implicit discourse
relations. They exploit several discourse mark-
ers (e.g. ‘because’ or ‘but’) for collecting large
amounts of training data. For their experiments
they remove the discourse markers and discover
that word pair features are indicative for implicit
discourse relations. Depending on the utilized cor-
pus, they obtain accuracies between 64% and 75%
for identifying a cause-explanation-evidence rela-
tion (the most similar relation of their work com-
pared to argumentative relations).

With the release of the PDTB, the identifica-
tion of discourse relations gained a lot of interest
in the research community. The PDTB includes
implicit as well as explicit discourse relations of
different types, and there are multiple approaches
aiming at automatically identifying implicit rela-
tions. Pitler et al. (2009) experiment with polarity
tags, verb classes, length of verb phrases, modal-
ity, context and lexical features and found that
word pairs with non-zero Information Gain yield
best results. Lin et al. (2009) show that beside
lexical features, production rules collected from
parse trees yield good results, whereas Louis et
al. (2010) found that features based on named-
entities do not perform as well as lexical features.
However, current approaches to discourse analy-
sis like the RST or the PDTB are designed to ana-
lyze general discourse structures, and thus include
a large set of generic discourse relations, whereas
only a subset of those relations is relevant for ar-
gumentative discourse analysis. For instance, the
argumentation scheme proposed by Peldszus and
Stede (2013) includes three argumentative rela-
tions (support, attack and counter-attack), whereas
Stab and Gurevych (2014) propose a scheme in-
cluding only two relations (support and attack).
The difference between argumentative relations
and those included in general tagsets like RST and
PDTB is best illustrated by the work of Biran and
Rambow (2011), which is to the best of our knowl-
edge the only work that focuses on the identifica-
tion of argumentative relations. They argue that
existing definitions of discourse relations are only
relevant as a building block for identifying argu-
mentative discourse and that existing approaches
do not contain a single relation that corresponds to



a distinct argumentative relation. Therefore, they
consider a set of 12 discourse relations from the
RST Discourse Treebank (Carlson et al., 2001) as
a single argumentative relation in order to identify
justifications for a given claim. They first extract
a set of lexical indicators for each relation from
the RST Discourse Treebank and create a word
pair resource using the English Wikipedia. In their
experiments, they use the extracted word pairs as
features and obtain an F1-score of up to 0.51 using
two different corpora. Although the approach con-
siders non-adjacent relations, it is limited to the
identification of relations between premises and
claims and requires that claims are known in ad-
vance. In addition, the combination of several
general relations to a single argumentative relation
might lead to consistency problems and to noisy
corpora (e.g. not each instance of a contrast rela-
tion is relevant for argumentative discourse).

3 Data

For our experiments, we use a corpus of per-
suasive essays compiled by Stab and Gurevych
(2014). This corpus contains annotations of ar-
gument components at the clause-level as well
as argumentative relations. In particular, it in-
cludes annotations of major claims, claims and
premises, which are connected with argumentative
support and attack relations. Argumentative rela-
tions are directed (there is a specified source and
target component of each relation) and can hold
between a premise and another premise, a premise
and a (major-) claim, or a claim and a major claim.
Except for the last one, an argumentative relation
does not cross paragraph boundaries.

Three raters annotated the corpus with an inter-
annotator agreement of oy = 0.72 (Krippendorff,
2004) for argument components and o« = 0.81 for
argumentative relations. In total, the corpus com-
prises 90 essays including 1,673 sentences. Since
it only contains a low number of attack relations,
we focus in this work solely on the identification
of argument components and argumentative sup-
port relations. However, the proposed approach
can also be applied to identify attack relations in
future work.

4 Identifying Argument Components

We consider the identification of argument com-
ponents as a multiclass classification task. Each
clause in the corpus is either classified as major
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claim, claim, premise or non-argumentative. So
this task includes besides the classification of ar-
gument components also the separation of argu-
mentative and non-argumentative text units. We
label each sentence that does not contain an ar-
gument component as class ‘none’. Since many
argument components cover an entire sentence
(30%), this is not an exclusive feature of this class.
In total, the corpus contains 1,879 instances.

Table 1 shows the class distribution among the
instances. The corpus includes 90 major claims
(each essay contains exactly one), 429 claims and
1,033 premises. This proportion between claims
and premises is common in argumentation since
claims are usually supported by several premises
for establishing a stable standpoint.

None
327 (17.4%)

Premise
1,033 (55%)

Claim
129 (22.8%)

MajorClaim
90 (4.8%)

Table 1: Class distribution among the instances.
The corpus contains 1552 argument components
and 327 non-argumentative instances.

For our experiments, we randomly split the data
into a 80% training set and a 20% test set with
the same class distribution and determine the best
performing system using 10-fold cross-validation
on the training set only. In our experiments, we
use several classifiers (see section 4.2) from the
Weka data mining software (Hall et al., 2009).
For preprocessing the corpus, we use the Stanford
POS-Tagger (Toutanova et al., 2003) and Parser
(Klein and Manning, 2003) included in the DKPro
Framework (Gurevych et al., 2007). After these
steps, we use the DKPro-TC text classification
framework (Daxenberger et al., 2014) for extract-
ing the features described in the following section.

4.1 Features

Structural features: We define structural features
based on token statistics, the location and punc-
tuations of the argument component and its cov-
ering sentence. Since Biran and Rambow (2011)
found that premises are longer on the average than
other sentences, we add the number of tokens of
the argument component and its covering sentence
to our feature set. In addition, we define the num-
ber of tokens preceding and following an argument
component in the covering sentence, the token ra-
tio between covering sentence and argument com-
ponent, and a Boolean feature that indicates if the



argument component covers all tokens of its cov-
ering sentence as token statistics features.

For exploiting the structural properties of per-
suasive essays, we define a set of location-based
features. First, we define four Boolean features
that indicate if the argument component is present
in the introduction or conclusion of an essay and
if it is present in the first or the last sentence of
a paragraph. Second, we add the position of the
covering sentence in the essay as a numeric fea-
ture. Since major claims are always present in the
introduction or conclusion of an essay and para-
graphs frequently begin or conclude with a claim,
we expect that these features are good indicators
for classifying (major-) claims.

Further, we define structural features based on
the punctuation: the number of punctuation marks
of the covering sentence and the argument compo-
nent, the punctuation marks preceding and follow-
ing an argument component in its covering sen-
tence and a Boolean feature that indicates if the
sentence closes with a question mark.

Lexical features: We define n-grams, verbs,
adverbs and modals as lexical features. We con-
sider all n-grams of length 1-3 as a Boolean feature
and extract them from the argument component in-
cluding preceding tokens in the sentence that are
not covered by another argument component. So,
the n-gram features include discourse markers that
indicate certain argument components but which
are not included in the actual annotation of argu-
ment components.

Verbs and adverbs play an important role for
identifying argument components. For instance,
certain verbs like ‘believe’, ‘think’ or ‘agree’ of-
ten signal stance expressions which indicate the
presence of a major claim and adverbs like ‘also’,
‘often’ or ‘really’ emphasize the importance of a
premise. We model both verbs and adverbs as
Boolean features.

Modal verbs like ‘should’ and ‘could’ are fre-
quently used in argumentative discourse to signal
the degree of certainty when expressing a claim.
We use the POS tags generated during preprocess-
ing to identify modals and define a Boolean fea-
ture which indicates if an argument component
contains a modal verb.

Syntactic features: To capture syntactic prop-
erties of argument components, we define features
extracted from parse trees. We adopt two features
proposed by (Mochales-Palau and Moens, 2009):
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the number of sub-clauses included in the covering
sentence and the depth of the parse tree. In addi-
tion, we extract production rules from the parse
tree as proposed by Lin et al. (2009) to capture
syntactic characteristics of an argument compo-
nent. The production rules are collected for each
function tag (e.g. VP, NN, S, etc.) in the sub-
tree of an argument component. The feature set
includes e.g. rules like VP — VBG,NP or
PP — IN, NP. We model each production rule
as a Boolean feature and set it to true if it appears
in the subtree of an argument component.

Since premises often refer to previous events
and claims are usually in present tense, we capture
the tense of the main verb of an argument compo-
nent as proposed by Mochales-Palau and Moens
(2009) and define a feature that indicates if an ar-
gument component is in the past or present tense.

Indicators: Discourse markers often indicate
the components of an argument. For example,
claims are frequently introduced with ‘therefore’,
‘thus’ or ‘consequently’, whereas premises con-
tain markers like ‘because’, ‘reason’ or ‘further-
more’. We collected a list of discourse markers
from the Penn Discourse Treebank 2.0 Annotation
Manual (Prasad et al., 2007) and removed markers
that do not indicate argumentative discourse (e.g.
markers which indicate temporal discourse). In to-
tal, we collected 55 discourse markers and model
each as a Boolean feature set to true if the particu-
lar marker precedes the argumentative component.

In addition, we define five Boolean features
which denote a reference to the first person in the
covering sentence of an argument component: ‘I’,
‘me’, ‘my’, ‘mine’, and ‘myself’. An additional
Boolean feature indicates if one of them is present
in the covering sentence. We expect that those fea-
tures are good indicators of the major claim, since
it is often introduced with expressions referring to

the personal stance of the author.

Contextual features: The context plays a ma-
jor role for identifying argument components. For
instance, a premise can only be classified as such,
if there is a corresponding claim. Therefore, we
define the following features each extracted from
the sentence preceding and following the covering
sentence of an argument component: the number
of punctuations, the number of tokens, the number
of sub-clauses and a Boolean feature indicating the
presence of modal verbs.



4.2 Results and Analysis

For identifying the best performing system, we
conducted several experiments on the training set
using stratified 10-fold cross-validation. We de-
termine the evaluation scores by accumulating the
confusion matrices of each fold into one confusion
matrix, since it is the less biased method for evalu-
ating cross-validation studies (Forman and Scholz,
2010). In a comparison of several classifiers (Sup-
port Vector Machine, Naive Bayes, C4.5 Decision
Tree and Random Forest), we found that each of
the classifiers significantly outperforms a majority
baseline (McNemar Test (McNemar, 1947) with
p 0.05) and that a Support Vector Machine
(SVM) achieves the best results using 100 top fea-
tures ranked by Information Gain.? It achieves an
accuracy of 77.3% on the test set and outperforms
the majority baseline with respect to overall accu-
racy as well as Fl-score (table 2).

Baseline | Human | SVM
Accuracy 0.55 0.877 | 0.773
Macro F1 0.177 0.871 0.726
Macro Precision 0.137 0.864 0.773
Macro Recall 0.25 0.879 0.684
F1 MajorClaim 0 0.916 0.625
F1 Claim 0 0.841 0.538
F1 Premise 0.709 0.911 0.826
F1 None 0 0.812 0.884

Table 2: Results of an SVM for argument com-
ponent classification on the test set compared to a
majority baseline and human performance.

The upper bound for this task constitutes the
human performance which we determine by com-
paring each annotator to the gold standard. Since
the boundaries of an argument component in the
gold standard can differ from the boundaries iden-
tified by a human annotator (the annotation task
included the identification of argument component
boundaries), we label each argument component
of the gold standard with the class of the maximum
overlapping annotation of a human annotator for
determining the human performance. We obtain a
challenging upper bound of 87.7% (accuracy) by
averaging the scores of all three annotators on the
test set (table 2). So, our system achieves 88.1%
of human performance (accuracy).

Feature influence: In subsequent experiments,
we evaluate each of the defined feature groups on
the entire data set using 10-fold cross-validation to

3 Although the Naive Bayes classifier achieves lowest ac-
curacy, it exhibits a slightly higher recall compared to SVM.
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find out which features perform best for identify-
ing argument components. As assumed, structural
features perform well for distinguishing claims
and premises in persuasive essays. They also yield
high results for separating argumentative from
non-argumentative text units (table 3).

Feature group | MajorClaim | Claim | Premise | None
Structural 0.477 0.419 | 0.781 |0.897
Lexical 0.317 0.401 | 0.753 |0.275
Syntactic 0.094 0.292 | 0.654 |0.427
Indicators 0.286 0.265 | 0.730 0
Contextual 0 0 0.709 0

Table 3: Fl-scores for individual feature groups
and classes (SVM with 10-fold cross-validation on
the entire data set)

Interestingly, the defined indicators are not
useful for separating argumentative from non-
argumentative text units though they are helpful
for classifying argument components. A reason
for this could be that not each occurrence of an
indicator distinctly signals argument components,
since their sense is often ambiguous (Prasad et
al., 2008). For example ‘since’ indicates temporal
properties as well as justifications, whereas ‘be-
cause’ also indicates causal links. Syntactic fea-
tures also contribute to the identification of argu-
ment components. They achieve an Fl-score of
0.292 for claims and 0.654 for premises and also
contribute to the separation of argumentative from
non-argumentative text units. Contextual features
do not perform well. However, they increase the
accuracy by 0.7% in combination with other fea-
tures. Nevertheless, this difference is not signifi-
cant (p = 0.05).

Error analysis: The system performs well for
separating argumentative and non-argumentative
text units as well as for identifying premises.
However, the identification of claims and major
claims yields lower performance. The confusion
matrix (table 4) reveals that the most common er-
ror is between claims and premises. In total, 193
claims are incorrectly classified as premise. In
a manual assessment, we observed that many of
these errors occur if the claim is present in the first
paragraph sentence and exhibits preceding indica-
tors like ‘first(ly)’ or ‘second(ly)’ which are also
frequently used to enumerate premises. In these
cases, the author introduces the claim of the argu-
ment as support for the major claim and thus its
characteristic is similar to a premise. To prevent



this type of error, it might help to define features
representing the location of indicators or to disam-
biguate the function of indicators.

Predicted
MC | CI Pr No
~[MC[ 38 3@ [ 18 [ 0
S C [ 19 [210 [ 193 | 7
S| Pr [ 6 [ 104 [ 904 [ 19
No | 0 | 12 [ 23 [292

Table 4: Confusion matrix (SVM) for argument
component classification (MC = Major Claim; Cl
= Claim; Pr = Premise; No = None)

We also observed, that some of the misclassified
claims cover an entire sentence and don’t include
indicators. For example, it is even difficult for hu-
mans to classify the sentences ‘Competition helps
in improvement and evolution’ as a claim without
knowing the intention of the author. For prevent-
ing these errors, it might help to include more so-
phisticated contextual features.

5 Identifying Argumentative Relations

We consider the identification of argumentative re-
lations as a binary classification task of argument
component pairs and classify each pair as either
support or non-support. For identifying argumen-
tative relations, all possible combinations of argu-
ment components have to be tested. Since this re-
sults in a heavily skewed class distribution, we ex-
tract all possible combinations of argument com-
ponents from each paragraph of an essay.* So, we
omit argumentative relations between claims and
major claims which are the only relations in the
corpus that cross paragraph boundaries, but ob-
tain a better distribution between true (support)
and false (non-support) instances. In total, we ob-
tain 6,330 pairs, of which 15.6% are support and
84.4% are non-support relations (table 5).

Support
989 (15.6%)

Non-support
5341 (84.4%)

Table 5: Class distribution of argument component
pairs

Equivalent to the identification of argument
components, we randomly split the data in a 80%
training and a 20% test set and determine the best
performing system using 10-fold cross-validation

*Only 4.6% of 28,434 possible pairs are true instances
(support), if all combinations are considered.
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on the training set. We use the same preprocessing
pipeline as described in section 4 and DKPro-TC
for extracting the features described below.

5.1 Features

Structural features: We define structural fea-
tures for each pair based on the source and tar-
get components, and on the mutual information of
both. Three numeric features are based on token
statistics. Two features represent the number of
tokens of the source and target components and
the third one represents the absolute difference in
the number of tokens. Three additional numeric
features count the number of punctuation marks
of the source and target components as well as
the absolute difference between both. We extract
both types of features solely from the clause an-
notated as argument component and do not con-
sider the covering sentence. In addition, we de-
fine nine structural features based on the position
of both argument components: two of them repre-
sent the position of the covering sentences in the
essay, four Boolean features indicate if the argu-
ment components are present in the first or last
sentence of a paragraph, one Boolean feature for
representing if the target component occurs before
the source component, the sentence distance be-
tween the covering sentences, and a Boolean fea-
ture which indicates if both argument components
are in the same sentence.

Lexical features: We define lexical features
based on word pairs, first words and modals. It
has been shown in previous work that word pairs
are effective for identifying implicit discourse re-
lations (Marcu and Echihabi, 2002). We define
each pair of words between the source and target
components as a Boolean feature and investigate
word pairs containing stop words as well as stop
word filtered word pairs.

In addition, we adopt the first word features
proposed by Pitler et al. (2009). We extract the
first word either from the argument component
or from non-annotated tokens preceding the ar-
gument component in the covering sentence if
present. So, the first word of an argument com-
ponent is either the first word of the sentence con-
taining the argument component, the first word
following a preceding argument component in the
same sentence or the first word of the actual ar-
gument component if it commences the sentence
or directly follows another argument component.



So, we ensure that the first word of an argument
component includes important discourse markers
which are not included in the annotation. We de-
fine each first word of the source and target com-
ponents as a Boolean feature and also add the pairs
of first words to our feature set.

Further, we define a Boolean feature for the
source as well as for the target component that
indicates if they contain a modal verb and a nu-
merical feature that counts the number of common
terms of the two argument components.

Syntactic features: For capturing syntactic
properties, we extract production rules from the
source and target components. Equivalent to the
features extracted for the argument component
classification (section 4.1), we model each rule as
a Boolean feature which is true if the correspond-
ing argument component includes the rule.

Indicators: We use the same list of discourse
markers introduced above (section 4.1) as indi-
cator features. For each indicator we define a
Boolean feature for the source as well as for the
target component of the pair and set it to true if
it is present in the argument component or in its
preceding tokens.

Predicted type: The argumentative type (major
claim, claim or premise) of the source and target
components is a strong indicator for identifying ar-
gumentative relations. For example, there are no
argumentative relations from claims to premises.
Thus, if the type of the argument component is
reliably identified many potential pairs can be ex-
cluded. Therefore, we define two features that rep-
resent the argumentative type of the source and tar-
get components identified in the first experiment.

5.2 Results and Analysis

The comparison of several classifiers reveals that
an SVM achieves the best results. In our exper-
iments, all classifiers except the C4.5 Decision
Tree significantly outperform a majority baseline
which classifies all pairs as non-support (p =
0.05). We also conducted several experiments
using word pair features only and found in con-
trast to Pitler et al. (2009) that limiting the num-
ber of word pairs decreases the performance. In
particular, we compared the top 100, 250, 500,
1000, 2500, 5000 word pairs ranked by Informa-
tion Gain, non-zero Information Gain word pairs
and non-filtered word pairs. The results show
that non-filtered word pairs perform best (macro
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Fl1-score of 0.68). Our experiments also reveal
that filtering stop words containing word pairs de-
creases the macro F1-score to 0.60. We obtain the
best results using an SVM without any feature se-
lection method. Due to the class imbalance, the
SVM only slightly outperforms the accuracy of a
majority baseline on the test set (table 6). How-
ever, the macro Fl-score is more appropriate for
evaluating the performance if the data is imbal-
anced since it assigns equal weight to the classes
and not to the instances. The SVM achieves a
macro Fl-score of 0.722 and also outperforms the
baseline with respect to the majority class.

Baseline | Human | SVM
Accuracy 0.843 0.954 0.863
Macro F1 0.458 0.908 0.722
Macro Precision 0.422 0.937 0.739
Macro Recall 0.5 0.881 0.705
F1 Support 0 0.838 0.519
F1 Non-Support 0.915 0.973 0.92

Table 6: Results of an SVM for classifying argu-
mentative relations on the test set compared to a
majority baseline and human performance.

We determined the upper bound constituted by
the human performance by comparing the annota-
tions of all three annotators to the gold standard.
The scores in table 6 are the average scores of all
three annotators. Our system achieves 90.5% of
human performance (accuracy).

Feature influence: A comparison of the de-
fined feature groups using 10-fold cross-validation
on the entire data set shows that lexical features
perform best. They achieve an F1-score of 0.427
for support and 0.911 for non-support pairs (ta-
ble 7). The syntactic features also perform well
followed by the indicators. It turned out that struc-
tural features are not effective for identifying argu-
mentative relations though they are the most effec-
tive features for identifying argument components
(cp. section 4.2). However, when omitted from
the entire feature set the performance significantly
decreases by 0.018 macro F1-score (p = 0.05).

Interestingly, the predicted types from our first
experiment are not effective at all. Although the
argumentative type of the target component ex-
hibits the highest Information Gain in each fold
compared to all other features, the predicted type
does not yield a significant difference when com-
bined with all other features (p = 0.05). It only
improves the macro Fl-score by 0.001 when in-



cluded in the entire feature set.

Feature group | Support | Non-Support
Structural 0 0.915
Lexical 0.427 0.911
Syntactic 0.305 0.911
Indicators 0.159 0.916
Predicted types 0 0.915

Table 7: Fl-scores for individual feature groups
using an SVM and the entire data set

Error analysis: For identifying frequent er-
ror patterns, we manually investigated the mis-
takes of the classifier. Although our system identi-
fies 97.5% of the non-support pairs from claim to
premise correctly, there are still some false posi-
tives that could be prevented if the argument com-
ponents had been classified more accurately. For
instance, there are 18 non-support relations from
claim to another claim, 32 from claim to premise,
5 from major claim to premise and 4 from major
claim to claim among the false positives. How-
ever, the larger amount of errors is due to not iden-
tified support relations (false negatives). We found
that some errors might be related to missing con-
textual information and unresolved coreferences.
For instance, it might help to replace ‘It’ with ‘Ex-
ercising’ for classifying the pair ‘It helps relieve
tension and stress’ — ‘Exercising improves self-
esteem and confidence’ as support relation or to in-
clude contextual information for the premise ‘This
can have detrimental effects on health’ support-
ing the claim ‘There are some serious problems
springing from modern technology’.

6 Discussion

In our experiments, we have investigated the clas-
sification of argument components as well as the
identification of argumentative relations for recog-
nizing argumentative discourse structures in per-
suasive essays. Both tasks are closely related and
we assume that sharing mutual information be-
tween both tasks might be a promising direction
for future research. On the one hand, knowing the
type of argument components is a strong indica-
tor for identifying argumentative relations and on
the other hand, it is likely that information about
the argumentative structure facilitates the identi-
fication of argument components. However, our
experiments revealed that the current accuracy for
identifying argument components is not sufficient
for increasing the performance of argumentative
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relation identification. Nevertheless, we obtain
almost human performance when including the
types of argument components of the gold stan-
dard (macro F1-score >0.85) in our argument re-
lation identification experiment and when includ-
ing the number of incoming and outgoing support
relations for each argument component in our first
experiment (macro Fl-score >0.9). Therefore, it
can be assumed, that if the identification of argu-
ment components can be improved, the identifica-
tion of argumentative relations will achieve better
results and vice versa.

The results also show that the distinction be-
tween claims and premises is the major challenge
for identifying argument components. It turned
out that structural features are the most effective
ones for this task. However, some of those features
are unique to persuasive essays, and it is an open
question if there are general structural properties
of arguments which can be exploited for separat-
ing claims from premises.

Our experiments show that discourse markers
yield only low accuracies. Using only our defined
indicator features, we obtain an F1-score of 0.265
for identifying claims, whereas Mochales-Palau
and Moens (2009) achieve 0.673 for the same task
in legal documents using a CFG. This confirms our
initial assumption that approaches relying on dis-
course markers are not applicable for identifying
argumentative discourse structures in documents
which do not follow a standardized form. In ad-
dition, it shows that discourse markers are either
frequently missing or misleadingly used in student
texts and that there is a need for argumentative
writing support systems that assist students in em-
ploying discourse markers correctly.

7 Conclusion and Future Work

We presented a novel approach for identifying ar-
gumentative discourse structures in persuasive es-
says. Previous approaches on argument recog-
nition suffer from several limitations: Existing
approaches focus either solely on the identifica-
tion of argument components or rely on manu-
ally created rules which are not able to identify
implicit argumentative discourse structures. Our
approach is the first step towards computational
argument analysis in the educational domain and
enables the identification of implicit argumenta-
tive discourse structures. The presented approach
achieves 88.1% of human performance for identi-



fying argument components and 90.5% for identi-
fying argumentative relations.

For future work, we plan to extend our stud-
ies to larger corpora, to integrate our classifiers in
writing environments, and to investigate their ef-
fectiveness for supporting students.

Acknowledgements

This work has been supported by the Volk-
swagen Foundation as part of the Lichtenberg-
Professorship Program under grant No. 1/82806.
We thank Krish Perumal and Piyush Paliwal for
their valuable contributions and we thank the
anonymous reviewers for their helpful comments.

References

Or Biran and Owen Rambow. 2011. Identifying jus-
tifications in written dialogs by classifying text as
argumentative. [International Journal of Semantic
Computing, 05(04):363-381.

M. Anne Britt and Aaron A. Larson. 2003. Construct-
ing representations of arguments. Journal of Mem-
ory and Language, 48(4):794 — 810.

Lynn Carlson, Daniel Marcu, and Mary Ellen
Okurowski. 2001. Building a discourse-tagged cor-
pus in the framework of rhetorical structure theory.
In Proceedings of the Second SIGdial Workshop on
Discourse and Dialogue - Volume 16, SIGDIAL "01,
pages 1-10, Aalborg, Denmark.

Johannes Daxenberger, Oliver Ferschke, Iryna
Gurevych, and Torsten Zesch. 2014. DKPro TC:
A Java-based framework for supervised learning
experiments on textual data. In Proceedings of
the 52nd Annual Meeting of the Association for
Computational Linguistics. System Demonstrations,
pages 61-66, Baltimore, MD, USA.

Vanessa Wei Feng and Graeme Hirst. 2011. Classi-
fying arguments by scheme. In Proceedings of the
49th Annual Meeting of the Association for Com-
putational Linguistics: Human Language Technolo-
gies - Volume 1, HLT ’11, pages 987-996, Portland,
OR, USA.

Eirini Florou, Stasinos Konstantopoulos, Antonis
Koukourikos, and Pythagoras Karampiperis. 2013.
Argument extraction for supporting public policy
formulation. In Proceedings of the 7th Workshop
on Language Technology for Cultural Heritage, So-
cial Sciences, and Humanities, pages 49-54, Sofia,
Bulgaria.

George Forman and Martin Scholz. 2010. Apples-to-
apples in cross-validation studies: Pitfalls in clas-
sifier performance measurement. SIGKDD Explor.
Newsl., 12(1):49-57.

55

Iryna Gurevych, Max Miihlhduser, Christof Mueller,
Juergen Steimle, Markus Weimer, and Torsten
Zesch. 2007. Darmstadt Knowledge Processing
Repository based on UIMA. In Proceedings of the
First Workshop on Unstructured Information Man-
agement Architecture at Biannual Conference of
the Society for Computational Linguistics and Lan-
guage Technology, Tuebingen, Germany.

Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard
Pfahringer, Peter Reutemann, and Ian H. Witten.
2009. The weka data mining software: An update.
SIGKDD Explor. Newsl., 11(1):10-18.

Dan Klein and Christopher D. Manning. 2003. Ac-
curate unlexicalized parsing. In Proceedings of the
41st Annual Meeting on Association for Computa-
tional Linguistics - Volume 1, ACL °03, pages 423—
430, Sapporo, Japan.

Klaus Krippendorff. 2004. Measuring the Reliability
of Qualitative Text Analysis Data. Quality & Quan-
tity, 38(6):787-800.

Ziheng Lin, Min-Yen Kan, and Hwee Tou Ng. 2009.
Recognizing implicit discourse relations in the Penn
Discourse Treebank. In Proceedings of the 2009
Conference on Empirical Methods in Natural Lan-
guage Processing: Volume 1, EMNLP °09, pages
343-351, Stroudsburg, PA, USA.

Annie Louis, Aravind Joshi, Rashmi Prasad, and Ani
Nenkova. 2010. Using entity features to classify
implicit discourse relations. In Proceedings of the
11th Annual Meeting of the Special Interest Group
on Discourse and Dialogue, SIGDIAL 10, pages
59-62, Stroudsburg, PA, USA.

William C. Mann and Sandra A. Thompson. 1987.
Rhetorical structure theory: A theory of text orga-
nization. Technical Report ISI/RS-87-190, Informa-
tion Sciences Institute.

Daniel Marcu and Abdessamad Echihabi. 2002. An
unsupervised approach to recognizing discourse re-
lations. In Proceedings of the 40th Annual Meeting

on Association for Computational Linguistics, ACL
’02, pages 368-375.

Quinn McNemar. 1947. Note on the sampling error
of the difference between correlated proportions or
percentages. Psychometrika, 12(2):153-157.

Raquel Mochales-Palau and Marie-Francine Moens.
2009. Argumentation mining: The detection, classi-
fication and structure of arguments in text. In Pro-
ceedings of the 12th International Conference on Ar-
tificial Intelligence and Law, ICAIL 09, pages 98—
107, New York, NY, USA. ACM.

Marie-Francine Moens, Erik Boiy, Raquel Mochales
Palau, and Chris Reed. 2007. Automatic detection
of arguments in legal texts. In Proceedings of the
11th International Conference on Artificial Intelli-
gence and Law, ICAIL ’07, pages 225-230, Stan-
ford, California.



Andreas Peldszus and Manfred Stede. 2013. From
Argument Diagrams to Argumentation Mining in
Texts: A Survey. International Journal of Cogni-
tive Informatics and Natural Intelligence (IJCINI),
7(1):1-31.

Emily Pitler, Annie Louis, and Ani Nenkova. 2009.
Automatic sense prediction for implicit discourse re-
lations in text. In Proceedings of the Joint Confer-
ence of the 47th Annual Meeting of the ACL and the
4th International Joint Conference on Natural Lan-
guage Processing of the AFNLP, ACL °09, pages
683—-691, Suntec, Singapore. Association for Com-
putational Linguistics.

Rashmi Prasad, Eleni Miltsakaki, Nikhil Dinesh, Alan
Lee, Aravind Joshi, Livio Robaldo, and Bonnie L.
Webber. 2007. The Penn Discourse Treebank 2.0
annotation manual. Technical report, Institute for
Research in Cognitive Science, University of Penn-
sylvania.

Rashmi Prasad, Nikhil Dinesh, Alan Lee, Eleni Milt-
sakaki, Livio Robaldo, Aravind Joshi, and Bonnie
Webber. 2008. The Penn Discourse Treebank 2.0.
In Proceedings of the Sixth International Conference
on Language Resources and Evaluation (LREC’08),
Marrakech, Morocco.

Chris Reed, Raquel Mochales-Palau, Glenn Rowe, and
Marie-Francine Moens. 2008. Language resources
for studying argument. In Proceedings of the Sixth
International Conference on Language Resources
and Evaluation, LREC 08, pages 2613-2618, Mar-
rakech, Morocco.

Niall Rooney, Hui Wang, and Fiona Browne. 2012.
Applying kernel methods to argumentation min-
ing. In Proceedings of the Twenty-Fifth Interna-
tional Florida Artificial Intelligence Research So-
ciety Conference, FLAIRS ’12, pages 272-275,
Marco Island, FL, USA.

Alan Sergeant. 2013. Automatic argumentation ex-
traction. In Proceedings of the 10th European Se-
mantic Web Conference, ESWC *13, pages 656-660,
Montpellier, France.

Christian Stab and Iryna Gurevych. 2014. Annotat-
ing argument components and relations in persua-
sive essays. In Proceedings of the 25th International
Conference on Computational Linguistics (COLING
2014), pages 1501-1510, Dublin, Ireland, August.

Simone Teufel. 1999. Argumentative Zoning: Infor-
mation Extraction from Scientific Text. Ph.D. thesis,
University of Edinburgh.

Kristina Toutanova, Dan Klein, Christopher D. Man-
ning, and Yoram Singer. 2003. Feature-rich part-of-
speech tagging with a cyclic dependency network.
In Proceedings of the 2003 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics on Human Language Technology,
NAACL ’03, pages 173—180, Edmonton, Canada.

56

Douglas N Walton. 1996. Argumentation schemes for
presumptive reasoning. Routledge.

Adam Wyner, Raquel Mochales Palau, Marie-Francine
Moens, and David Milward. 2010. Approaches to
text mining arguments from legal cases. In Semantic
Processing of Legal Texts, volume 6036 of Lecture
Notes in Computer Science, pages 60-79.



Policy Learning for Domain Selection in an Extensible Multi-domain
Spoken Dialogue System

Zhuoran Wang
Mathematical & Computer Sciences
Heriot-Watt University
Edinburgh, UK
zhuoran.wang@hw.ac.uk

Abstract

This paper proposes a Markov Decision
Process and reinforcement learning based
approach for domain selection in a multi-
domain Spoken Dialogue System built on
a distributed architecture. In the proposed
framework, the domain selection prob-
lem is treated as sequential planning in-
stead of classification, such that confir-
mation and clarification interaction mech-
anisms are supported. In addition, it is
shown that by using a model parameter ty-
ing trick, the extensibility of the system
can be preserved, where dialogue com-
ponents in new domains can be easily
plugged in, without re-training the domain
selection policy. The experimental results
based on human subjects suggest that the
proposed model marginally outperforms a
non-trivial baseline.

1 Introduction

Due to growing demand for natural human-
machine interaction, over the last decade Spo-
ken Dialogue Systems (SDS) have been increas-
ingly deployed in various commercial applications
ranging from traditional call centre automation
(e.g. AT&T “Lets Go!” bus information sys-
tem (Williams et al., 2010)) to mobile personal
assistants and knowledge navigators (e.g. Ap-
ple’s Siri®, Google Now™ Microsoft Cortana,
etc.) or voice interaction for smart household ap-
pliance control (e.g. Samsung Evolution Kit for
Smart TVs). Furthermore, latest progress in open-
vocabulary Automatic Speech Recognition (ASR)
is pushing SDS from traditional single-domain in-
formation systems towards more complex multi-
domain speech applications, of which typical ex-
amples are those voice assistant mobile applica-
tions.
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Recent advances in SDS have shown that sta-
tistical approaches to dialogue management can
result in marginal improvement in both the nat-
uralness and the task success rate for domain-
specific dialogues (Lemon and Pietquin, 2012;
Young et al., 2013). State-of-the-art statistical
SDS treat the dialogue problem as a sequential
decision making process, and employ established
planning models, such as Markov Decision Pro-
cesses (MDPs) (Singh et al., 2002) or Partially Ob-
servable Markov Decision Processes (POMDPs)
(Thomson and Young, 2010; Young et al., 2010;
Williams and Young, 2007), in conjunction with
reinforcement learning techniques (Jur¢icek et al.,
2011; Jurcicek et al., 2012; Gasi¢ et al., 2013a)
to seek optimal dialogue policies that maximise
long-term expected (discounted) rewards and are
robust to ASR errors.

However, to the best of our knowledge, most of
the existing multi-domain SDS in public use are
rule-based (e.g. (Gruber et al., 2012; Mirkovic
and Cavedon, 2006)). The application of statistical
models in multi-domain dialogue systems is still
preliminary. Komatani et al. (2006) and Nakano
et al. (2011) utilised a distributed architecture (Lin
etal., 1999) to integrate expert dialogue systems in
different domains into a unified framework, where
a central controller trained as a data-driven clas-
sifier selects a domain expert at each turn to ad-
dress user’s query. Alternatively, Hakkani-Tiir et
al. (2012) adopted the well-known Information
State mechanism (Traum and Larsson, 2003) to
construct a multi-domain SDS and proposed a dis-
criminative classification model for more accurate
state updates. More recently, Gasic¢ et al. (2013b)
proposed that by a simple expansion of the kernel
function in Gaussian Process (GP) reinforcement
learning (Engel et al., 2005; Gasic et al., 2013a),
one can adapt pre-trained dialogue policies to han-
dle unseen slots for SDS in extended domains.

In this paper, we use a voice assistant applica-
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Figure 1: The distributed architecture of the voice assistant system (a simplified illustration).

tion (similar to Apple’s Siri but in Chinese lan-  experts (dialogue systems) can be flexibly plugged
guage) as an example to demonstrate a novel in without the need of re-training the central con-
MDP-based approach for central interaction man-  troller.

agement in a complex multi-domain dialogue sys- Comparing to the previous classification-based
tem. The voice assistant employs a distributed ar-  methods (Komatani et al., 2006; Nakano et al.,
chitecture similar to (Lin et al., 1999; Komatani et~ 2011), the proposed approach not only has the
al., 2006; Nakano et al., 2011), and handles mixed =~ advantage of action selection in consideration of
interactions of multi-turn dialogues across differ-  long-term rewards, it can also yield more robust
ent domains and single-turn queries powered by  policies that allow clarifications and confirmations
a collection of information access services (such  to mitigate ASR and Spoken Language Under-
as web search, Question Answering (QA), etc.).  standing (SLU) errors. Our human evaluation re-
In our system, the dialogues in each domain are  sults show that the proposed system with a trained
managed by an individual domain expert SDS,and ~ MDP policy achieves significantly better natural-
the single-turn services are used to handle those  ness in domain switching tasks than a non-trivial
so-called out-of-domain requests. We use fea-  baseline with a hand-crafted policy.

turised representations to summarise the current The remainder of this paper is organised as
dialogue states in each domain (see Section 3 for  follows. Section 2 defines the terminology used
more details), and let the central controller (the  throughout the paper. Section 3 briefly overviews
MDP model) choose one of the following system  the distributed architecture of our system. The
actions at each turn: (1) addressing user’s query ~ MDP model and the policy optimisation algorithm
based on a domain expert, (2) treating it as an are introduced in Section 4 and Section 5, respec-
out-of-domain request, (3) asking user to confirm  tively. After this, experimental settings and eval-
whether he/she wants to continue a domain ex-  uation results are described in Section 6. Finally,
pert’s dialogue or to switch to out-of-domain ser-  we discuss some possible improvements in Sec-

vices, and (4) clarifying user’s intention between  tion 7 and conclude ourselves in Section 8.

two domains. The Gaussian Process Temporal

Difference (GPTD) algorithm (Engel et al., 2005; 2 Terminology

Gasic et al., 2013a) is adopted here for policy op-

timisation based on human subjects, where a pa- A Voice assistant application provides a unified
rameter tying trick is applied to preserve the ex-  speech interface to a collection of individual infor-

tensibility of the system, such that new domain ~ Mmation access systems. It aims to collect and sat-
isfy user requests in an interactive manner, where
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different types of interactions can be involved.
Here we focus ourselves on two interaction scenar-
ios, i.e. task-oriented (multi-turn) dialogues and
single-turn queries.

According to user intentions, the dialogue inter-
actions in our voice assistant system can further be
categorised into different domains, of which each
is handled by a separate dialogue manager, namely
a domain expert. Example domains include travel
information, restaurant search, etc. In addition,
some domains in our system can be further de-
composed into sub-domains, e.g. the travel in-
formation domain consists of three sub-domains:
flight ticket booking, train ticket booking and hotel
reservation. We use an integrated domain expert to
address queries in all its sub-domains, so that rel-
evant information can be shared across those sub-
domains to allow intelligent induction in the dia-
logue flow.

For convenience of future reference, we call
those single-turn information access systems out-
of-domain services or simply services for short.
The services integrated in our system include web
search, semantic search, QA, system command ex-
ecution, weather report, chat-bot, and many more.

3 System Architecture

The voice assistant system introduced in this pa-
per is built on a distributed architecture (Lin et al.,
1999), as shown in Figure 1, where the dialogue
flow is processed as follows. Firstly, a user’s query
(either an ASR utterance or directly typed in text)
is passed to a user intention identifier, which la-
bels the raw query with a list of intention hypothe-
ses with confidence scores. Here an intention label
could be either a domain name or a service name.
After this, the central controller distributes the raw
query together with its intention labels and confi-
dence scores to all the domain experts and the ser-
vice modules, which will attempt to process the
query and return their results to the central con-
troller.

The domain experts in the current implementa-
tion of our system are all rule-based SDS follow-
ing the RavenClaw framework proposed in (Bo-
hus and Rudnicky, 2009). When receiving a query,
a domain expert will use its own SLU module to
parse the utterance or text input and try to update
its dialogue state in consideration of both the SLU
output and the intention labels. If the dialogue
state in the domain expert can be updated given
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the query, it will return its output, internal ses-
sion record and a confidence score to the central
controller, where the output can be either a natu-
ral language utterance realised by its Natural Lan-
guage Generation (NLG) module or a set of data
records obtained from its database (if a database
search operation is triggered), or both. If the do-
main expert cannot update its state using the cur-
rent query, it will just return an empty result with
a low confidence score. Similar procedures ap-
ply to those out-of-domain services as well, but
there are no session records or confidence scores
returned. Finally, given all the returned informa-
tion, the central controller chooses, according to
its policy, the module (either a domain expert or a
service) whose results will be provided to the user.

When the central controller decides to pass a
domain expert’s output to the user, we regard the
domain expert as being activated. Also note here,
the updated state of a domain expert in a turn will
not be physically stored, unless the domain expert
is activated in that turn. This is a necessary mech-
anism to prevent an inactive domain expert being
misled by ambiguous queries in other domains.

In addition, we use a well-engineered priority
ranker to rank the services based on the num-
bers of results they returned as well as some prior
knowledge about the quality of their data sources.
When the central controller decides to show user
the results from an out-of-domain service, it will
choose the top one from the ranked list.

4 MDP Modelling of the Central Control
Process

The main focus of this paper is to seek a policy for
robustly switching the control flow among those
domain experts and services (the service ranker in
practice) during a dialogue, where the user may
have multiple or compound goals (e.g. booking a
flight ticket, booking a restaurant in the destina-
tion city and checking the weather report of the
departure or destination city).

In order to make the system robust to ASR er-
rors or ambiguous queries, the central controller
should also have basic dialogue abilities for confir-
mation and clarification purposes. Here we define
the confirmation as an action of asking whether a
user wants to continue the dialogue in a certain do-
main. If the system receives a negative response at
this point, it will switch to out-of-domain services.
On the other hand, the clarification action is de-



fined between domains, in which case, the system
will explicitly ask the user to choose between two
domain candidates before continuing the dialogue.

Due to the confirmation and clarification mech-
anisms defined above, the central controller be-
comes a sequential decision maker that must take
the overall smoothness of the dialogue into ac-
count. Therefore, we propose an MDP-based ap-
proach for learning an optimal central control pol-
icy in this section.

The potential state space of our MDP is huge,
which in principle consists of the combinations of
all possible situations of the domain experts and
the out-of-domain services, therefore function ap-
proximation techniques must be employed to en-
able tractable computations. However, when de-
veloping such a complex application as the voice
assistant here, one also needs to take the extensi-
bility of the system into account, so that new do-
main experts can be easily integrated into the sys-
tem without major re-training or re-engineering of
the existing components. Essentially, it requires
the state featurisation and the central control pol-
icy learnt here to be independent of the number of
domain experts. In Section 4.3, we show that such
a property can be achieved by a parameter tying
trick in the definition of the MDP.

4.1 MDP Preliminaries

Let Px denote the set of probability distributions
over a set X. An MDP is defined as a five tuple
(S, A, T, R,~), where the components are defined
as follows. S and A are the sets of system states
and actions, respectively. 7' : S x A — Pg is the
transition function, and 7'(s'|s, a) defines the con-
ditional probability of the system transiting from
state s € S to state s’ € S after taking action
a€ A R:Sx A — Pgis the reward function
with R(s, a) specifying the distribution of the im-
mediate rewards for the system taking action a at
state s. In addition, 0 < ~ < 1 is the discount
factor on the summed sequence of rewards.

A finite-horizon MDP operates as follows. The
system occupies a state s and takes an action a,
which then will make it transit to a next state s’ ~
T(-|s,a) and receive a reward r ~ R(s,a). This
process repeats until a terminal state is reached.

For a given policy 7 : S — A, the value
function V'™ is defined to be the expected cumula-
tive reward, as V7 (so) = E [/ v'7tls, x(s0)] -
where sq is the starting state and n is the plan-
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ning horizon. The aim of policy optimisation is
to seek an optimal policy 7* that maximises the
value function. If T" and R are given, in conjunc-
tion with a @)-function, the optimal value V* can
be expressed by recursive equations as Q(s,a) =
R(s,a) + 7> scgT(s'|s,a)V*(s") and V*(s)
maxge4 Q(s,a) (here we assume R(s,a) is de-
terministic), which can be solved by dynamic pro-
gramming (Bellman, 1957). For problems with
unknown 7" or R, such as dialogue systems, the
@-values are usually estimated via reinforcement
learning (Sutton and Barto, 1998).

4.2 Problem Definition

Let D denote the set of the domain experts in our
voice assistant system, and s; be the current di-
alogue state of domain expert d € D at a certain
timestamp. We also define s, as an abstract state to
describe the current status of those out-of-domain
services. Then mathematically we can represent
the central control process as an MDP, where its
state s is a joint set of the states of all the domain
experts and the services, as s = {sg}dep U {So}-
Four types of system actions are defined as fol-
lows.

e present (d): presenting the output of do-
main expert d to user;

present_ood (null): presenting the re-
sults of the top-ranked out-of-domain service
given by the service ranker;

confirm(d): confirming whether user
wants to continue with domain expert d (or
to switch to out-of-domain services);

clarify(d,d'): asking user to clarify
his/her intention between domains d and d'.

For convenience of notations, we use a(x) to
denote a system action of our MDP, where a €

{present,present_ood,confirm,clarify},

null
(d,d)

T € {d, null, (d, dl)}d,d’eD,d;ﬁd” x
only applies to present_ood, and x
only applies to clarify actions.

4.3 Function Approximation

Function approximation is a commonly used tech-
nique to estimate the ()-values when the state
space of the MDP is huge. Concretely, in our case,
we assume that:

Q(s,a(x)) = f(o(s, a(x));0) (1)



where ¢ : S x A — R is a feature function
that maps a state-action pair to an K -dimensional
feature vector, and f : RX — R is a function of
o(s, a(zx)) parameterised by 0. A frequent choice
of f is the linear function, as:

Q(s,a(z)) = 0" ¢(s, a(x)) 2)

After this, the policy optimisation problem be-
comes learning the parameter § to approximate the
(Q-values based on example dialogue trajectories.

However, a crucial problem with the standard
formulation in Eq. (2) is that the feature function
¢ is defined over the entire state and action spaces.
In this case, when a new domain expert is inte-
grated into the system, both the state space and the
action space will be changed, therefore one will
have to re-define the feature function and conse-
quentially re-train the model. In order to achieve
an extensible system, we make some simplifica-
tion assumptions and decompose the feature func-
tion as follows. Firstly, we let:

¢(s,a(x)) = ¢a(sz) (3)

?or(Sq) if a(x) =present (d)
. ¢ood(50) if a(z) =present_ood ()
- Ges(8q) ifa(x) =confirm(d)
Gcr (84, Sqr) ifa(z) =clarify(d,d)

where the feature function is reduced to only de-
pend on the state of the action’s operand, instead
of the entire system state. Then, we make those ac-
tions a(x) that have a same action type (a) but op-
erate different domain experts (x) share the same
parameter, i.e.:

Q(s, a(x)) = 0, ¢a(sz)

This decomposition and parameter tying trick pre-
serves the extensibility of the system, because both
6 and ¢, are independent of z, when there is a
new domain expert d, we can directly substitute
its state s ; into Eq. (3) and (4) to compute its cor-
responding ()-values.

“4)

4.4 Features

Based on the problem formulation in Eq. (3) and
(4), we shall only select high-level summary fea-
tures to sketch the dialogue state and dialogue his-
tory of each domain expert, which must be ap-
plicable to all domain experts, regardless of their
domain-specific characteristics or implementation
differences. Suppose that the dialogue states of the
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Feature Range

the number of unfilled
1 | required slots of a domain
expert

[,...

the number of filled required
slots of a domain expert

(,...

the number of filled optional
slots of a domain expert

(,...

whether a domain expert has
executed a database search

{0,1}

the confidence score

returned by a domain expert [0,1.2]

the total number of turns that
a domain expert has been
activated during a dialogue

7+

e~te where t, denotes the
relative turn of a domain
expert being last activated,
or 0 if not applicable

e~ ' where t. denotes the
relative turn of a domain
expert being last confirmed,
or 0 if not applicable

the summed confidence
score from the user intention
identifier of a query being
for out-of-domain services

[0,1.2N]

Table 1: A list of all features used in our model.
M and L respectively denote the maximum num-
bers of required and optional slots for the domain
experts. N is the maximum number of hypotheses
that the intention identifier can return. Z* stands
for the non-negative integer set.

domain experts can be represented as slot-value
pairs!, and for each domain there are required slots
and optional slots, where all required slots must
be filled before the domain expert can execute a
database search operation. The features investi-
gated in the proposed framework are listed in Ta-
ble 1.

Detailed featurisation in Eq. (3) is explained
as follows. For ¢,,, we choose the first 8 fea-
tures plus a bias dimension that is always set to

!This is a rather general assumption. Informally speak-
ing, for most task-oriented SDS, one can extract a slot-value
representation from their dialogue models, of which exam-
ples include the RavenClaw architecture (Bohus and Rud-
nicky, 2009), the Information State dialogue engine (Traum
and Larsson, 2003), MDP-SDS (Singh et al., 2002) or
POMDP-SDS (Thomson and Young, 2010; Young et al.,
2010; Williams and Young, 2007).



—1. Whilst, feature #9 plus a bias is used to de-
fine ¢,.4. All the features are used in ¢.., as to
do a confirmation, one needs to consider the joint
situation in and out of the domain. Finally, the
feature function for a clarification action between
two domains d and d’ is defined as ¢.,(sq, Sq') =
exp{ |0 (54) — Byu(50)[}, Where we use | - |
to denote the element-wise absolute of a vector
operand. The intuition here is that the more dis-
tinguishable the (featurised) states of two domain
experts are, the less we tend to clarify them.

For those domain experts that have multiple
sub-domains with different numbers of required
and optional slots, the feature extraction procedure
only applies to the latest active sub-domain.

In addition, note that, the confidence scores pro-
vided by the user intention identifier are only used
as features for out-of-domain services. This is be-
cause in the current version of our system, the con-
fidence estimation of the intention identifier for
domain-dependent dialogue queries is less reliable
due to the lack of context information. In contrast,
the confidence scores returned by the domain ex-
perts will be more informative at this point.

5 Policy Learning with GPTD

In traditional statistical SDS, dialogue policies are
usually trained using reinforcement learning based
on simulated dialogue trajectories (Schatzmann
et al., 2007; Keizer et al., 2010; Thomson and
Young, 2010; Young et al., 2010). Although the
evaluation of the simulators themselves could be
an arguable issue, there are various advantages,
e.g. hundreds of thousands of data examples can
be easily generated for training and initial policy
evaluation purposes, and different reinforcement
learning models can be compared without incur-
ring notable extra costs.

However, for more complex multi-domain SDS,
particularly a voice assistant application like ours
that aims at handling very complicated (ideally
open-domain) dialogue scenarios, it would be dif-
ficult to develop a proper simulator that can rea-
sonably mimic real human behaviours. There-
fore, in this work, we learn the central control
policy directly with human subjects, for which
the following properties of the learning algorithm
are required. Firstly and most importantly, the
learner must be sample-efficient as the data collec-
tion procedure is costly. Secondly, the algorithm
should support batch reinforcement learning. This
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is because when using function approximation, the
learning process may not strictly converge, and the
quality of the sequence of generated policies tends
to oscillate after a certain number of improving
steps at the beginning (Bertsekas and Tsitsiklis,
1996). If online reinforcement learning is used,
we will be unable to evaluate the generated policy
after each update, and hence will not know which
policy to keep for the final evaluation. Therefore,
we do a batch policy update and iterate the learn-
ing process for a number of batches, such that the
data collection phase in a new iteration yields an
evaluation of the policy obtained from the previ-
ous iteration at the same time.

To fulfill the above two requirements, the Gaus-
sian Process Temporal Difference (GPTD) algo-
rithm (Engel et al., 2005) is a proper choice, due to
its sample efficiency (Fard et al., 2011) and batch
learning ability (Engel et al., 2005), as well as its
previous success in dialogue policy learning with
human subjects (Gasi¢ et al., 2013a). Note that,
GPTD can also admit recursive (online) compu-
tations, but here we focus ourselves on the batch
version.

A Gaussian Process (GP) is a generative model
of Bayesian inference that can be used for func-
tion regression, and has the superiority of obtain-
ing good posterior estimates with just a few obser-
vations (Rasmussen and Williams, 2006). GPTD
models the ()-function as a zero mean GP which
defines correlations in different parts of the fea-
turised state and action spaces through a kernel
function k, as:

Q(s, a(z)) ~ GP(0, £((82: ), (82,0)))  (5)

Given a sequence of ¢ state-action pairs X;
[(s°,a%(z?)), ..., (s',al(x!))] from a collection
of dialogues and their corresponding immedi-
ate rewards ry 0 ,7!], the posterior of

= [ ...
Q(s,a(x)) for an arbitrary new state-action pair

(s,a(z)) can be computed as:

Q(s, a(x))x, r,

~ N ( 7(s,a(x)),cov (s,a(m))) (6)
Q(s,a(z)) = ki(sy, a) ' H} G; 'r (7)
cov (s,a(x)) = k((sz,a), (sg,a))

— Kki(sg,a) "H G Hki(sg,a)  (8)
G, =H,KH/ + HH 9)



1 —y 0 0
0 1 0 0

H =] . . (10)
0 0 1 —xn

where K is the Gram matrix with elements
Kt(Z,j) = H((Siﬂ ai)7 (Si«j ) aj)>’ kt(swv a) =
[k((s!,,a"), (Sz,a))]i—y is a vector, and o is a
hyperparameter specifying the diagonal covari-
ance values of the zero-mean Gaussian noise. In
addition, we use cov (s, a(x)) to denote (for short)
the self-covariance cov (s, a(z), s, a(x)).

In our case, as different feature functions ¢, are
defined for different action types, the kernel func-
tion is defined to be:

/ﬁ;((Sm,G,), (S;/,CL/)) = [[a = CL/]]FLQ(SJ;,SZBJ (11

where [-] is an indicator function and x, is the ker-
nel function defined corresponding to the feature
function ¢,.

Given a state, a most straightforward policy is
to select the action that corresponds to the max-
imum mean J-value estimated by the GP. How-
ever, since the objective is to learn the )-function
associated with the optimal policy by interacting
directly with users, the policy must exhibit some
form of stochastic behaviour in order to explore
alternatives during the process of learning. In this
work, the strategy employed for the exploration-
exploitation trade-off is that, during exploration,
actions are chosen according to the variance of
the GP estimate for the ()-function, and during
exploitation, actions are chosen according to the

mean. That is:
) = { .
arg max, ;) cov (s, a(z)) : w.p. €
(12)
where 0 < € < 1 is a pre-defined exploration rate,
and will be exponentially reduced at each batch
iteration during our learning process.

arg max,(,) Q(s,a(r)) : wp. 1 —¢

Note that, in practice, not all the actions are
valid at every possible state. For example, if a do-
main expert d has never been activated during a
dialogue and can neither process the user’s current
query, the actions with an operand d will be re-
garded as invalid at this state. When executing the
policy, we only consider those valid actions for a
given state.
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’ Score ‘ Interpretation

The domain selections are totally
correct, and the entire dialogue flow
is fluent.

The domain selections are totally
correct, but the dialogue flow is
slightly redundant.

There are accidental domain
selections errors, or the dialogue
flow is perceptually redundant.
There are frequent domain selections
errors, or the dialogue flow is
intolerably redundant.

Most domain selections are

1 incorrect, or the dialogue is
incompletable.

Table 2: The scoring standard in our experiments.

6 Experimental Results

6.1 Training

We use the batch version of GPTD as described
in Section 5 to learn the central control policy
with human subjects. There are three domain ex-
perts available in our current system, but during
the training only two domains are used, which are
the travel information domain and the restaurant
search domain. We reserve a movie search domain
for evaluating the generalisation property of the
learnt policy (see Section 6.2). The learning pro-
cess started from a hand-crafted policy. Then 15
experienced users” volunteered to contribute dia-
logue examples with multiple or compound goals
(see Figure 4 for an instance), from whom we
collected around 50~70 dialogues per day for 5
days?. After each dialogue, the users were asked
to score the system from 5 to 1 according to a scor-
ing standard shown in Table 2. The scores were
taken as the (delayed) rewards to train the GPTD
model, where we set the rewards for intermediate
turns to 0. The working policy was updated daily
based on the data obtained up to that day. The
data collected on the first day was used for pre-
liminary experiments to choose the hyperparame-

2Overall user satisfactions may rely on various aspects of
the entire system, e.g. the data source quality of the services,
the performance of each domain expert, etc. It will be diffi-
cult to make non-experienced users to score the central con-
troller isolatedly.

3Not all the users participated the experiments everyday.
There were 311 valid dialogues received in total, with an av-
erage length of 9 turns.



Figure 2: Average scores and standard deviations
during policy iteration.
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Figure 3: Domain selection accuracies during pol-
icy iteration.

ters of the model, such as the kernel function, the
kernel parameters (if applicable), and o and +y in
the GPTD model. We initially experimented with
linear, polynomial and Gaussian kernels, with dif-
ferent configurations of o and -~y values, as well
as kernel parameter values. It was found that
the linear kernel in combination with o = 5 and
v = 0.99 works more appropriate than the other
settings. This configuration was then fixed for the
rest iterations.

The learning process was iterated for 4 days af-
ter the first one. On each day, we computed the
mean and standard deviation of the user scores
as an evaluation of the policy learnt on the pre-
vious day. The learning curve is illustrated in Fig-
ure 2. Note here, as we were actually executing a
stochastic policy according to Eq. (12), to calcu-
late the values in Figure 2 we ignored those dia-
logues that contain any actions selected due to the
exploration. We also manually labelled the cor-
rectness of domain selection at every turn of the
dialogues. The domain selection accuracies of the
obtained policy sequence are shown in Figure 3,
where similarly, those exploration actions as well
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Policy
Scenario Baseline | GPTD p-value
6)) 4.54+0.8 | 4.240.8 | 0.387
(i1) 34409 | 42408 | 0.018
(iii) 4.14+1.0 | 434+1.0 | 0.0821
@iv) 39£1.1 | 45£0.8 | 0.0440

Table 3: Paired comparison experiments between
the system with a trained GPTD policy and the
rule-based baseline.

as the clarification and confirmation actions were
excluded from the calculations. Although the do-
main selection accuracy is not the target that our
learning algorithm aims to optimise, it reflects the
quality of the learnt policies from a different angle
of view.

It can be found in Figure 2 that the best policy
was obtained in the third iteration, and after that
the policy quality oscillated. The same finding is
indicated in Figure 3 as well, when we use the do-
main selection accuracy as the evaluation metric.
Therefore, we kept the policy corresponding to the
peak point of the learning curve for the compari-
son experiments below.

6.2 Comparison Experiments

We conducted paired comparison experiments in
four scenarios to compare between the system
with the GPTD-learnt central control policy and a
non-trivial baseline. The baseline is a publicly de-
ployed version of the voice assistant application.
The central control policy of the baseline system is
handcrafted, which has a separate list of semantic
matching rules for each domain to enable domain
switching.

The first two scenarios aim to test the perfor-
mance of the two systems on (i) switching between
a domain expert and out-of-domain services, and
(ii) switching between two domain experts, where
only the two training domains (travel information
and restaurant search) were considered. Scenar-
ios (iii) and (iv) are similar to scenarios (i) and (ii)
respectively, but at this time, the users were re-
quired to carry out the tests surrounding the movie
search domain (which is addressed by a new do-
main expert not used in the training phase). There
were 13 users who participated this experiment.
In each scenario, every user was required to test
the two systems with an identical goal and similar
queries. After each test, the users were asked to



score the two systems separately according to the
scoring standard in Table 2.

The average scores received by the two systems
are shown in Table 3, where we also compute the
statistical significance (the p-values) of the results
based on paired t-tests. It can be found that the
learnt policy works significantly better than the
rule-based policy in scenarios (ii) and (iv), but in
scenarios (i) and (iii) the differences between two
systems are statistically insignificant. Moreover,
the learnt policy preserves the extensibility of the
entire system as expected, of which strong evi-
dences are given by the results in scenarios (iii)
and (iv).

6.3 Policy Analysis

To better understand the policy learnt by the
GPTD model, we look into the obtained weight
vectors, as shown in Table 4. It can be found that
confidence score (#5) is an informative feature for
all the system actions, while the relative turn of a
domain being last activated (#7) is an additional
strong evidence for a confirmation decision. In
addition, the similarity between the dialogue com-
pletion status (#1 & #2) of two ambiguous domain
experts and the relative turns of them being last
confirmed (#8) tend to be extra dominating fea-
tures for clarification decisions, besides the close-
ness of the confidence scores returned by the two
domain experts.

A less noticeable but important phenomenon is
observed for feature #6, i.e. the total number of
active turns of a domain expert during a dialogue.
Concretely, feature #6 has a small negative effect
on presentation actions but a small positive con-
tribution to confirmation actions. Such weights
could correspond to the discount factor’s penalty
to long dialogues in the value function. How-
ever, it implies an unexpected effect in extreme
cases, which we explain in detail as follows. Al-
though the absolute weights for feature #6 are tiny
for both presentation and confirmation actions, the
feature value will grow linearly during a dialogue.
Therefore, when a dialogue in a certain domain
last rather long, there tend to be very frequent con-
firmations. A possible solution to this problem
could be either ignoring feature #6 or twisting it to
some nonlinear function, such that its value stops
increasing at a certain threshold point. In addition,
to cover sufficient amount of those “extreme” ex-
amples in the training phase could also be an alter-
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Feature Weights

# present ‘ confirm ‘ clarify ‘

1 0.09 0.02 0.60

2 0.20 0.29 0.53 -

3 0.18 0.29 0.16 5

4 -0.10 0.16 0.25 %

5 0.75 0.57 0.54 ‘8

6 -0.02 0.11 0.13 o

7 0.25 1.19 0.36

8 -0.22 -0.19 0.69

9 - 0.20 - 0.47
Bias | -1.79 - - -2.42

Table 4: Feature weights learnt by GPTD. See Ta-
ble 1 for the meanings of the features.

native solution, as our current training set contains
very few examples that exhibit extraordinary long
domain persistence.

7 Further Discussions

The proposed approach is a rather general frame-
work to learn extensible central control policies
for multi-domain SDS based on distributed archi-
tectures. It does not rely on any internal represen-
tations of those individual domain experts, as long
as a unified featurisation of their dialogue states
can be achieved.

However, from the entire system point of view,
the current implementation is still preliminary.
Particularly, the confirmation and clarification
mechanisms are isolated, for which the surface re-
alisations sometimes may sound stiff. This phe-
nomenon explains one of the reasons that make
the proposed system slightly less preferred by the
users than the baseline in scenario (i), when the
interaction flows are relative simple. A possi-
ble improvement here could be associating the
confirmation and clarification actions in the cen-
tral controller to the error handling mechanisms
within each domain expert, and letting domain ex-
perts generate their own utterances on receiving a
confirmation/clarification request from the central
controller.

Online reinforcement learning with real user
cases will be another undoubted direction of fur-
ther improvement of our system. The key chal-
lenge here is to automatically estimate user’s satis-
factions, which will be transformed to the rewards
for the reinforcement learners. Strong feedbacks
such as clicks or actual order placements can be



collected. But to regress user’s true satisfaction,
other environment features must also be taken into
account. Practical solutions are still an open issue
at this stage, and are left to our future work.

8 Conclusion

In this paper, we introduce an MDP framework
for learning domain selection policies in a com-
plex multi-domain SDS. Standard problem for-
mulation is modified with tied model parameters,
so that the entire system is extensible and new
domain experts can be easily integrated without
re-training the policy. This expectation is con-
firmed by empirical experiments with human sub-
jects, where the proposed system marginally beats
a non-trivial baseline and demonstrates proper ex-
tensibility. Several possible improvements are dis-
cussed, which will be the central arc of our future
research.
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Abstract

Discourse parsing is a challenging task
and plays a critical role in discourse anal-
ysis. In this paper, we focus on label-
ing full argument spans of discourse con-
nectives in the Penn Discourse Treebank
(PDTB). Previous studies cast this task
as a linear tagging or subtree extraction
problem. In this paper, we propose a
novel constituent-based approach to argu-
ment labeling, which integrates the ad-
vantages of both linear tagging and sub-
tree extraction. In particular, the pro-
posed approach unifies intra- and inter-
sentence cases by treating the immediate-
ly preceding sentence as a special con-
stituent. Besides, a joint inference mech-
anism is introduced to incorporate glob-
al information across arguments into our
constituent-based approach via integer lin-
ear programming. Evaluation on PDT-
B shows significant performance improve-
ments of our constituent-based approach
over the best state-of-the-art system. It al-
so shows the effectiveness of our joint in-
ference mechanism in modeling global in-
formation across arguments.

1 Introduction

Discourse parsing determines the internal struc-
ture of a text and identifies the discourse rela-
tions between its text units. It has attracted in-
creasing attention in recent years due to its impor-
tance in text understanding, especially since the
release of the Penn Discourse Treebank (PDTB)
corpus (Prasad et al., 2008), which adds a layer of
discourse annotations on top of the Penn Treebank

"The research reported in this paper was carried out while
Fang Kong was a research fellow at the National University
of Singapore.
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(PTB) corpus (Marcus et al., 1993). As the largest
available discourse corpus, the PDTB corpus has
become the defacto benchmark in recent studies
on discourse parsing.

Compared to connective identification and dis-
course relation classification in discourse parsing,
the task of labeling full argument spans of dis-
course connectives is much harder and thus more
challenging. For connective identification, Lin et
al. (2014) achieved the performance of 95.76%
and 93.62% in F-measure using gold-standard and
automatic parse trees, respectively. For discourse
relation classification, Lin et al. (2014) achieved
the performance of 86.77% in F-measure on clas-
sifying discourse relations into 16 level 2 types.
However, for argument labeling, Lin et al. (2014)
only achieved the performance of 53.85% in F-
measure using gold-standard parse trees and con-
nectives, much lower than the inter-annotation a-
greement of 90.20% (Miltsakaki et al., 2004).

In this paper, we focus on argument labeling in
the PDTB corpus. In particular, we propose a nov-
el constituent-based approach to argument label-
ing which views constituents as candidate argu-
ments. Besides, our approach unifies intra- and
inter-sentence cases by treating the immediately
preceding sentence as a special constituent. Final-
ly, a joint inference mechanism is introduced to
incorporate global information across arguments
via integer linear programming. Evaluation on the
PDTB corpus shows the effectiveness of our ap-
proach.

The rest of this paper is organized as follows.
Section 2 briefly introduces the PDTB corpus.
Related work on argument labeling is reviewed
in Section 3. In Section 4, we describe our
constituent-based approach to argument labeling.
In Section 5, we present our joint inference mech-
anism via integer linear programming (ILP). Sec-
tion 6 gives the experimental results and analysis.
Finally, we conclude in Section 7.
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2 Penn Discourse Treebank

As the first large-scale annotated corpus that fol-
lows the lexically grounded, predicate-argument
approach in D-LTAG (Lexicalized Tree Adjoin-
ing Grammar for Discourse) (Webber, 2004), the
PDTB regards a connective as the predicate of a
discourse relation which takes exactly two text s-
pans as its arguments. In particular, the text span
that the connective is syntactically attached to is
called Arg2, and the other is called Argl.

Although discourse relations can be either ex-
plicitly or implicitly expressed in PDTB, this pa-
per focuses only on explicit discourse relations
that are explicitly signaled by discourse connec-
tives. Example (1) shows an explicit discourse re-
lation from the article wsj_2314 with connective
so underlined, Argl span ifalicized, and Arg2 s-
pan bolded.

(1) But its competitors have much broader busi-
ness interests and so are better cushioned
against price swings .

Note that a connective and its arguments can ap-
pear in any relative order, and an argument can be
arbitrarily far away from its corresponding con-
nective. Although the position of Arg2 is fixed
once the connective is located, Argl can occur in
the same sentence as the connective (SS), in a sen-
tence preceding that of the connective (PS), or in
a sentence following that of the connective (FS),
with proportions of 60.9%, 39.1%, and less than
0.1% respectively for explicit relations in the PDT-
B corpus (Prasad et al., 2008). Besides, out of
all PS cases where Argl occurs in some preced-
ing sentence, 79.9% of them are the exact imme-
diately preceding sentence. As such, in this paper,
we only consider the current sentence containing
the connective and its immediately preceding sen-
tence as the text span where Argl occurs, similar
to what was done in (Lin et al., 2014).

3 Related Work

For argument labeling in discourse parsing on the
PDTB corpus, the related work can be classified
into two categories: locating parts of arguments,
and labeling full argument spans.

As a representative on locating parts of argu-
ments, Wellner and Pustejovsky (2007) proposed
several machine learning approaches to identify
the head words of the two arguments for discourse
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connectives. Following this work, Elwell and
Baldridge (2008) combined general and connec-
tive specific rankers to improve the performance
of labeling the head words of the two arguments.
Prasad et al. (2010) proposed a set of heuristics to
locate the position of the Argl sentences for inter-
sentence cases. The limitation of locating parts of
arguments, such as the positions and head word-
s, is that it is only a partial solution to argument
labeling in discourse parsing.

In comparison, labeling full argument spans can
provide a complete solution to argument labeling
in discourse parsing and has thus attracted increas-
ing attention recently, adopting either a subtree
extraction approach (Dinesh et al. (2005), Lin et
al. (2014)) or a linear tagging approach (Ghosh et
al. (2011)).

As a representative subtree extraction approach,
Dinesh et al. (2005) proposed an automatic tree
subtraction algorithm to locate argument spans for
intra-sentential subordinating connectives. How-
ever, only dealing with intra-sentential subordinat-
ing connectives is not sufficient since they con-
stitute only 40.93% of all cases. Instead, Lin et
al. (2014) proposed a two-step approach. First, an
argument position identifier was employed to lo-
cate the position of Argl. For the PS case, it di-
rectly selects the immediately preceding sentence
as Argl. For other cases, an argument node iden-
tifier was employed to locate the Argl- and Arg2-
nodes. Next, a tree subtraction algorithm was used
to extract the arguments. However, as pointed out
in Dinesh et al. (2005), it is not necessarily the
case that a connective, Argl, or Arg2 is dominated
by a single node in the parse tree (that is, it can be
dominated by a set of nodes). Figure 1 shows the
gold-standard parse tree corresponding to Exam-
ple (1). It shows that Argl includes three nodes:
[cc But], [nyp its competitors], [y p have much
broader business interests], and Arg2 includes t-
wo nodes: [¢c¢ and], [y p are better cushioned a-
gainst price swings]. Therefore, such an argumen-
t node identifier has inherent shortcomings in la-
beling arguments. Besides, the errors propagat-
ed from the upstream argument position classifier
may adversely affect the performance of the down-
stream argument node identifier.

As a representative linear tagging approach,
Ghosh et al. (2011) cast argument labeling as a lin-
ear tagging task using conditional random fields.
Ghosh et al. (2012) further improved the perfor-
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Figure 1: The gold-standard parse tree corresponding to Example (1)

mance with integration of the n-best results.

While the subtree extraction approach locates
argument spans based on the nodes of a parse tree
and is thus capable of using rich syntactic informa-
tion, the linear tagging approach works on the to-
kens in a sentence and is thus capable of capturing
local sequential dependency between tokens. In
this paper, we take advantage of both subtree ex-
traction and linear tagging approaches by propos-
ing a novel constituent-based approach. Further-
more, intra- and inter-sentence cases are unified
by treating the immediately preceding sentence as
a special constituent. Finally, a joint inference
mechanism is proposed to add global information
across arguments.

4 A Constituent-Based Approach to
Argument Labeling

Our constituent-based approach works by first
casting the constituents extracted from a parse tree
as argument candidates, then determining the role
of every constituent as part of Argl, Arg2, or
NULL, and finally, merging all the constituents
for Argl and Arg2 to obtain the Argl and Arg2
text spans respectively. Obviously, the key to
the success of our constituent-based approach is
constituent-based argument classification, which
determines the role of every constituent argument
candidate.

As stated above, the PDTB views a connective
as the predicate of a discourse relation. Similar
to semantic role labeling (SRL), for a given con-
nective, the majority of the constituents in a parse
tree may not be its arguments (Xue and Palmer,
2004). This indicates that negative instances (con-
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stituents marked NULL) may overwhelm positive
instances. To address this problem, we use a
simple algorithm to prune out these constituents
which are clearly not arguments to the connective
in question.

4.1 Pruning

The pruning algorithm works recursively in pre-
processing, starting from the target connective n-
ode, i.e. the lowest node dominating the connec-
tive. First, all the siblings of the connective node
are collected as candidates, then we move on to
the parent of the connective node and collect it-
s siblings, and so on until we reach the root of
the parse tree. In addition, if the target connec-
tive node does not cover the connective exactly,
the children of the target connective node are also
collected.

For the example shown in Figure 1, we can lo-
cate the target connective node [rp so] and return
five constituents — [/ p have much broader busi-
ness interests], [cc and], [y p are better cushioned
against price swings], [cc But], and [ p its com-
petitors] — as argument candidates.

It is not surprising that the pruning algorithm
works better on gold parse trees than automatic
parse trees. Using gold parse trees, our pruning al-
gorithm can recall 89.56% and 92.98% (489 out of
546 Argls, 808 out of 869 Arg2s in the test data)
of the Argl and Arg?2 spans respectively and prune
out 81.96% (16284 out of 19869) of the nodes in
the parse trees. In comparison, when automatic
parse trees (based on the Charniak parser (Char-
niak, 2000)) are used, our pruning algorithm can
recall 80.59% and 89.87% of the Argl and Arg2
spans respectively and prune out 81.70% (16190



Feature Description ‘ Example

CON-Str The string of the given connective (case-sensitive) SO

CON-LStr The lowercase string of the given connective SO

CON-Cat Thej syr.ltactlc cat.egor.y of the. given connectlYe: sub- Subordinating
ordinating, coordinating, or discourse adverbial

CON-iLSib Number of left siblings of the connective 2

CON-iRSib Number of right siblings of the connective 1
The context of the constituent. We use POS combi-

NT-Cix n.atlon.of. the constituent, its parent, left sibling aqd VP-VP-NULL-CC
right sibling to represent the context. When there is
no parent or siblings, it is marked NULL.

CON-NT-Path The path from the pgrent node of the connective to RBTVP | VP
the node of the constituent

CON-NT-Position The position of the constituent relative to the connec- left

tive: left, right, or previous

CON-NT-Path-iLsib

The path from the parent node of the connective to
the node of the constituent and whether the number
of left siblings of the connective is greater than one

RBTVP | VP:>1

Table 1: Features employed in argument classification.

out of 19816) of the nodes in the parse trees.

4.2 Argument Classification

In this paper, a multi-category classifier is em-
ployed to determine the role of an argument can-
didate (i.e., Argl, Arg2, or NULL). Table 1 lists
the features employed in argument classification,
which reflect the properties of the connective and
the candidate constituent, and the relationship be-
tween them. The third column of Table 1 shows
the features corresponding to Figure 1, consider-
ing [rp so] as the given connective and [y p have
much broader business interests] as the constituent
in question.

Similar to Lin et al. (2014), we obtained the syn-
tactic category of the connectives from the list pro-
vided in Knott (1996). However, different from
Lin et al. (2014), only the siblings of the root path
nodes (i.e., the nodes occurring in the path of the
connective to root) are collected as the candidate
constituents in the pruning stage, and the value of
the relative position can be left or right, indicat-
ing that the constituent is located on the left- or
right-hand of the root path respectively. Besides,
we view the root of the previous sentence as a spe-
cial candidate constituent. For example, the value
of the feature CON-NT-Position is previous when
the current constituent is the root of the previous
sentence. Finally, we use the part-of-speech (POS)
combination of the constituent itself, its parent n-
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ode, left sibling node and right sibling node to rep-
resent the context of the candidate constituent. In-
tuitively, this information can help determine the
role of the constituent.

For the example shown in Figure 1, we first em-
ploy the pruning algorithm to get the candidate
constituents, and then employ our argument clas-
sifier to determine the role for every candidate.
For example, if the five candidates are labeled as
Argl, Arg2, Arg2, Argl, and Argl, respectively,
we merge all the Argl constituents to obtain the
Argl text span (i.e., But its competitors have much
broader business interests). Similarly, we merge
the two Arg2 constituents to obtain the Arg?2 text s-
pan (i.e., and are better cushioned against price
swings).

S Joint Inference via Integer Linear
Programming

In the above approach, decisions are always made
for each candidate independently, ignoring global
information across candidates in the final output.
For example, although an argument span can be
split into multiple discontinuous segments (e.g.,
the Arg2 span of Example (1) contains two dis-
continuous segments, and, are better cushioned
against price swings), the number of discontinu-
ous segments is always limited. Statistics on the
PDTB corpus shows that the number of discontin-



uous segments for both Argl and Arg2 is generally
(>= 99%) at most 2. For Example (1), from left
to right, we can obtain the list of constituent can-
didates: [cc But], [ p its competitors], [y p have
much broader business interests], [c¢c and], [y p
are better cushioned against price swings]. If our
argument classifier wrongly determines the roles
as Argl, Arg2, Argl, Arg2, and Argl respectively,
we can find that the achieved Argl span contains
three discontinuous segments. Such errors may be
corrected from a global perspective.

In this paper, a joint inference mechanism is in-
troduced to incorporate various kinds of knowl-
edge to resolve the inconsistencies in argumen-
t classification to ensure global legitimate predic-
tions. In particular, the joint inference mechanism
is formalized as a constrained optimization prob-
lem, represented as an integer linear programming
(ILP) task. It takes as input the argument classi-
fiers’ confidence scores for each constituent can-
didate along with a list of constraints, and outputs
the optimal solution that maximizes the objective
function incorporating the confidence scores, sub-
ject to the constraints that encode various kinds of
knowledge.

In this section, we meet the requirement of ILP
with focus on the definition of variables, the objec-
tive function, and the problem-specific constraints,
along with ILP-based joint inference integrating
multiple systems.

5.1 Definition of Variables

Given an input sentence, the task of argumen-
t labeling is to determine what labels should be
assigned to which constituents corresponding to
which connective. It is therefore natural that en-
coding the output space of argument labeling re-
quires various kinds of information about the con-
nectives, the argument candidates corresponding
to a connective, and their argument labels.

Given an input sentence s, we define following
variables:

(1) P: the set of connectives in a sentence.
(2) p € P: aconnective in P.

(3) C(p): the set of argument candidates corre-
sponding to connective p. (i.e., the parse tree
nodes obtained in the pruning stage).

(4) ¢ € C(p): an argument candidate.
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(5) L: the set of argument labels {Argl, Arg2,
NULL }.

(6) [ € L: an argument label in L.

In addition, we define the integer variables as
follows:

Z,€{0,1} (1)

If Zép = 1, the argument candidate ¢, which
corresponds to connective p, should be assigned
the label [. Otherwise, the argument candidate c is
not assigned this label.

5.2 The Objective Function

The objective of joint inference is to find the best
arguments for all the connectives in one sentence.
For every connective, the pruning algorithm is first
employed to determine the set of corresponding
argument candidates. Then, the argument classifi-
er is used to assign a label to every candidate. For
an individual labeling Z é’p, we measure the quality
based on the confidence scores, f; ., returned by
the argument classifier. Thus, the objective func-

tion can be defined as

1
max Z fl,c,ch,p

l,e,p

2

5.3 Constraints

As the key to the success of ILP-based joint infer-
ence, the following constraints are employed:

Constraint 1: The arguments corresponding
to a connective cannot overlap with the connec-
tive. Let c1,cs..., c; be the argument candidates
that correspond to the same connective and over-
lap with the connective in a sentence.! Then this
constraint ensures that none of them will be as-
signed as Argl or Arg2.

k
NULL __
Zciap =k

3)

=1

Constraint 2: There are no overlapping or em-
bedding arguments. Let cq,co..., ¢ be the argu-
ment candidates that correspond to the same con-
nective and cover the same word in a sentence.’

'Only when the target connective node does not cover the
connective exactly and our pruning algorithm collects all the
children of the target connective node as part of constituent
candidates, such overlap can be introduced.

This constraint only works in system combination of
Section 5.4, where additional phantom candidates may intro-
duce such overlap.



Then this constraint ensures that at most one of
the constituents can be assigned as Argl or Arg2.
That is, at least £ — 1 constituents should be as-
signed the special label NULL.

k
>z s ko
=1

4)

Constraint 3: For a connective, there is at least
one constituent candidate assigned as Arg2.

:5:: ZzzirgQ > 1

Constraint 4: Since we view the previous com-
plete sentence as a special Argl constituent candi-
date, denoted as m, there is at least one candidate
assigned as Argl for every connective.

Yozt zpet > 1

C

)

(6)

Constraint 5: The number of discontinuous
constituents assigned as Argl or Arg2 should be at
most 2. That is, if argument candidates cy, cs..., cg
corresponding to the same connective are discon-
tinuous, this constraint ensures that at most two
of the constituents can be assigned the same label
Argl or Arg2.

Z Z4r9t < 2 andz Zir9? <2
=1

(7)

5.4 System Combination

Previous work shows that the performance of ar-
gument labeling heavily depends on the quality of
the syntactic parser. It is natural that combining
different argument labeling systems on differen-
t parse trees can potentially improve the overall
performance of argument labeling.

To explore this potential, we build two argu-
ment labeling systems — one using the Berke-
ley parser (Petrov et al., 2006) and the other the
Charniak parser (Charniak, 2000). Previous s-
tudies show that these two syntactic parsers tend
to produce different parse trees for the same sen-
tence (Zhang et al., 2009). For example, our pre-
liminary experiment shows that applying the prun-
ing algorithm on the output of the Charniak parser
produces a list of candidates with recall of 80.59%
and 89.87% for Argl and Arg2 respectively, while
achieving recall of 78.6% and 91.1% for Argl and
Arg2 respectively on the output of the Berkeley
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al

its competitors have much broader business interests

bl b2

its competitors have much broader business interests

Figure 2: An example on unifying different candi-
dates.

parser. It also shows that combining these two can-
didate lists significantly improves recall to 85.7%
and 93.0% for Argl and Arg?2, respectively.

In subsection 5.2, we only consider the con-
fidence scores returned by an argument classifier.
Here, we proceed to combine the probabilities pro-
duced by two argument classifiers. There are two
remaining problems to resolve:

e How do we unify the two candidate lists?
In principle, constituents spanning the same
sequence of words should be viewed as the
same candidate. That is, for different can-
didates, we can unify them by adding phan-
tom candidates. This is similar to the ap-
proach proposed by Punyakanok et al. (2008)
for the semantic role labeling task. For exam-
ple, Figure 2 shows the candidate lists gen-
erated by our pruning algorithm based on t-
wo different parse trees given the segment
“its competitors have much broader business
interests”. Dashed lines are used for phan-
tom candidates and solid lines for true can-
didates. Here, system A produces one can-
didate al, with two phantom candidates a2
and a3 added. Analogously, phantom can-
didate b3 is added to the candidate list out-
put by System B. In this way, we can get the
unified candidate list: “its competitors have
much broader business interests”, “its com-
petitors”, “have much broader business inter-
ests”.

How do we compute the confidence score for
every decision? For every candidate in the
unified list, we first determine whether it is
a true candidate based on the specific parse
tree. Then, for a true candidate, we extrac-
t the features from the corresponding parse



tree. On this basis, we can determine the
confidence score using our argument classi-
fier. For a phantom candidate, we set the
same prior distribution as the confidence s-
core. In particular, the probability of the
"NULL?” class is set to 0.55, following (Pun-
yakanok et al., 2008), and the probabilities of
Argl and Arg?2 are set to their occurrence fre-
quencies in the training data. For the example
shown in Figure 2, since System A return-
s “its competitors have much broader busi-
ness interests” as a true candidate, we can ob-
tain its confidence score using our argumen-
t classifier. For the two phantom candidates
— “its competitors” and “have much broader
business interests” — we use the prior dis-
tributions directly. This applies to the candi-
dates for System B. Finally, we simply aver-
age the estimated probabilities to determine
the final probability estimate for every candi-
date in the unified list.

6 Experiments

In this section, we systematically evaluate our
constituent-based approach with a joint inference
mechanism to argument labeling on the PDTB
corpus.

6.1 Experimental settings

All our classifiers are trained using the OpenNLP
maximum entropy package® with the default pa-
rameters (i.e. without smoothing and with 100
iterations). As the PDTB corpus is aligned with
the PTB corpus, the gold parse trees and sentence
boundaries are obtained from PTB. Under the au-
tomatic setting, the NIST sentence segmenter* and
the Charniak parser are used to segment and parse
the sentences, respectively. Ip_solve® is used for
our joint inference.

This paper focuses on automatically labeling
the full argument spans of discourse connec-
tives. For a fair comparison with start-of-the-
art systems, we use the NUS PDTB-style end-
to-end discourse parser’ to perform other sub-
tasks of discourse parsing except argument label-
ing, which includes connective identification, non-

3http://maxent.sourceforge.net/
*http://duc.nist.gov/duc2004/software/duc2003
.breakSent.tar.gz
Sftp://ftp.cs.brown.edu/pub/nlparser/
Shttp://lpsolve.sourceforge.net/
"http://wing.comp.nus.edu.sg/ linzihen/parser/
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explicit discourse relation identification and clas-
sification.

Finally, we evaluate our system on two aspects:
(1) the dependence on the parse trees (GS/Auto,
using gold standard or automatic parse trees and
sentence boundaries); and (2) the impact of errors
propagated from previous components (noEP/EP,
using gold annotation or automatic results from
previous components). In combination, we have
four different settings: GS+noEP, GS+EP, Au-
to+noEP and Auto+EP. Same as Lin et al. (2014),
we report exact match results under these four set-
tings. Here, exact match means two spans match
identically, except beginning or ending punctua-
tion symbols.

6.2 Experimental results

We first evaluate the effectiveness of our
constituent-based approach by comparing our sys-
tem with the state-of-the-art systems, ignoring
the joint inference mechanism. Then, the con-
tribution of the joint inference mechanism to our
constituent-based approach, and finally the contri-
bution of our argument labeling system to the end-
to-end discourse parser are presented.
Effectiveness of our constituent-based ap-
proach

By comparing with two state-of-the-art argu-
ment labeling approaches, we determine the effec-
tiveness of our constituent-based approach.
Comparison with the linear tagging approach

As a representative linear tagging approach,
Ghosh et al. (2011; 2012; 2012) only reported the
exact match results for Argl and Arg2 using the
evaluation script for chunking evaluation® under
GS+noEP setting with Section 02-22 of the PDTB
corpus for training, Section 23-24 for testing, and
Section 00-01 for development. It is also worth
mentioning that an argument span can contain
multiple discontinuous segments (i.e., chunks), so
chunking evaluation only shows the exact match
of every argument segment but not the exact match
of every argument span. In order to fairly compare
our system with theirs, we evaluate our system us-
ing both the exact metric and the chunking eval-
uation. Table 2 compares the results of our sys-
tem without joint inference and the results report-
ed by Ghosh et al. (2012) on the same data split.
We can find that our system performs much bet-

8http://www.cnts.ua.ac.be/conll2000/chunking/
conlleval.txt



ter than Ghosh’s on both Argl and Arg2, even on
much stricter metrics.

Systems [ Argl [ Arg2
ours using exact match 65.68 | 84.50
ours using chunking evaluation | 67.48 | 88.08
reported by Ghosh et al. (2012) | 59.39 | 79.48

Table 2: Performance (F1) comparison of our ar-
gument labeling approach with the linear tagging
approach as adopted in Ghosh et al. (2012)

Comparison with the subtree extracting ap-
proach

For a fair comparison, we also conduct our
experiments on the same data split of Lin et
al. (2014) with Section 02 to 21 for training, Sec-
tion 22 for development, and Section 23 for test-
ing. Table 3 compares our labeling system without
joint inference with Lin et al. (2014), a representa-
tive subtree extracting approach. From the results,
we find that the performance of our argument la-
beling system significantly improves under all set-
tings. This is because Lin et al. (2014) considered
all the internal nodes of the parse trees, whereas
the pruning algorithm in our approach can effec-
tively filter out those unlikely constituents when
determining Argl and Arg2.

[ Setting [ Argl [ Arg2 [ Argl&2
GS+noEP | 62.84 | 84.07 55.69

ours | GS+EP 61.46 | 81.30 54.31
Auto+EP | 56.04 | 76.53 48.89
GS+noEP | 59.15 | 82.23 53.85

Lin’s | GS+EP 57.64 | 79.80 52.29
Auto+EP | 47.68 | 70.27 40.37

Table 3: Performance (F1) comparison of our ar-
gument labeling approach with the subtree extrac-
tion approach as adopted in Lin et al. (2014)

As justified above, by integrating the advan-
tages of both linear tagging and subtree extraction,
our constituent-based approach can capture both
rich syntactic information from parse trees and
local sequential dependency between tokens. The
results show that our constituent-based approach
indeed significantly improves the performance
of argument labeling, compared to both linear
tagging and subtree extracting approaches.

Contribution of Joint Inference

Same as Lin et al. (2014), we conduct our ex-
periments using Section 02 to 21 for training, Sec-
tion 22 for development, and Section 23 for test-
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ing. Table 4 lists the performance of our argumen-
t labeling system without and with ILP inference
under four different settings, while Table 5 reports
the contribution of system combination. It shows
the following:

e On the performance comparison of Argl and
Arg2, the performance on Arg2 is much bet-
ter than that on Argl with the performance
gap up to 8% under different settings. This is
due to the fact that the relationship between
Arg?2 and the connective is much closer. This
result is also consistent with previous studies
on argument labeling.

On the impact of error propagation from con-
nective identification, the errors propagated
from connective identification reduce the per-
formance of argument labeling by less than
2% in both Argl and Arg2 F-measure under
different settings.

On the impact of parse trees, using automat-
ic parse trees reduces the performance of ar-
gument labeling by about 5.5% in both Argl
and Arg2 F-measure under different settings.
In comparison with the impact of error prop-
agation, parse trees have much more impact
on argument labeling.

On the impact of joint inference, it improves
the performance of argument labeling, espe-
cially on automatic parse trees by about 2%.°

On the impact of system combination, the
performance is improved by about 1.5%.

| Setting [ Argl | Arg2 | Argl&2
without GS+noEP 62.84 | 84.07 55.69
Joint GS+EP 61.46 | 81.30 54.31
Inference Auto+noEP | 57.75 | 79.85 50.27
Auto+EP 56.04 | 76.53 48.89
with GS+noEP 65.76 | 83.86 58.18
Joint GS+EP 63.96 | 81.19 56.37
Inference Auto+noEP | 60.24 | 79.74 52.55
Auto+EP 58.10 | 76.53 50.73

Table 4: Performance (F1) of our argument label-
ing approach.

Contribution to the end-to-end discourse pars-
er

Unless otherwise specified, all the improvements in this
paper are significant with p < 0.001.



Systems | Setting | Argl | Arg2 [ Argl&2
Charniak noEP 60.24 | 79.74 52.55
EP 58.10 | 76.53 50.73
Berkeley noEP 60.78 | 80.07 52.98
EP 58.80 | 77.21 51.43
Combined noEP 61.97 | 80.61 54.50
EP 59.72 | 77.55 52.52

Table 5: Contribution of System Combination in
Joint Inference.

Lastly, we focus on the contribution of our ar-
gument labeling approach to the overall perfor-
mance of the end-to-end discourse parser. This
is done by replacing the argument labeling mod-
el of the NUS PDTB-style end-to-end discourse
parser with our argument labeling model. Table 6
shows the results using gold parse trees and auto-
matic parse trees, respectively.'? From the results,
we find that using gold parse trees, our argument
labeling approach significantly improves the per-
formance of the end-to-end system by about 1.8%
in F-measure, while using automatic parse trees,
the improvement significantly enlarges to 6.7% in
F-measure.

Setting | New d-parser | Lin et al.’s 2014)

GS 34.80 33.00
Auto 27.39 20.64

Table 6: Performance (F1) of the end-to-end dis-
course parser.

7 Conclusion

In this paper, we focus on the problem of auto-
matically labeling the full argument spans of dis-
course connectives. In particular, we propose a
constituent-based approach to integrate the advan-
tages of both subtree extraction and linear tagging
approaches. Moreover, our proposed approach in-
tegrates inter- and intra-sentence argument label-
ing by viewing the immediately preceding sen-
tence as a special constituent. Finally, a join-
t inference mechanism is introduced to incorpo-
rate global information across arguments into our

OFurther analysis found that the error propagated from
sentence segmentation can reduce the performance of the
end-to-end discourse parser. Retraining the NIST sentence
segmenter using Section 02 to 21 of the PDTB corpus, the
original NUS PDTB-style end-to-end discourse parser can
achieve the performance of 25.25% in F-measure, while the
new version (i.e. replace the argument labeling model with
our argument labeling model) can achieve the performance
of 30.06% in F-measure.
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constituent-based approach via integer linear pro-
gramming.
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Abstract

We present STIR (STrongly Incremen-
tal Repair detection), a system that de-
tects speech repairs and edit terms on
transcripts incrementally with minimal la-
tency. STIR uses information-theoretic
measures from n-gram models as its prin-
cipal decision features in a pipeline of
classifiers detecting the different stages of
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function efficiently within an incremental frame-
work. However, such left-to-right operability on
its own is not sufficient: in line with the princi-
ple of strong incremental interpretation (Milward,
1991), a repair detector should gitlee best re-
sults possible as early as possiblé/ith one ex-
ception (Zwarts et al., 2010), there has been no
focus on evaluating or improving thecremental
performanceof repair detection.

In this paper we present STIR (Strongly In-

repairs. Results on the Switchboard dis-
fluency tagged corpus show utterance-final
accuracy on a par with state-of-the-art in-
cremental repair detection methods, but
with better incremental accuracy, faster
time-to-detection and less computational
overhead. We evaluate its performance us-
ing incremental metrics and propose new
repair processing evaluation standards.

cremental Repair detection), a system which ad-
dresses the challenges of incremental accuracy,
computational complexity and latency in self-
repair detection, by making local decisions based
on relatively simple measures of fluency and sim-
ilarity. Section 2 reviews state-of-the-art methods;
Section 3 summarizes the challenges and explains
our general approach; Section 4 explains STIR in
detail; Section 5 explains our experimental set-up
and novel evaluation metrics; Section 6 presents

1 Introduction and discusses our results and Section 7 concludes.

Self-repairs in spontaneous speech are annotat
according to a well established three-phase struc-

ture from (Shriberg, 1994) onwards, and as deqQian and Liu (2013) achieve the state of the art in
scribed in Meteer et al. (1995)'s Switchboard cor-Switchboard corpus self-repair detection, with an
pus annotation handbook: F-score for detecting reparandum words of 0.841
using a three-step weighted Max-Margin Markov
network approach. Similarly, Georgila (2009)
uses Integer Linear Programming post-processing
of a CRF to achieve F-scores over 0.8 for reparan-
From a dialogue systems perspective, detecting retum start and repair start detection. However nei-
pairs and assigning them the appropriate structurther approach can operate incrementally.
is vital for robust natural language understanding Recently, there has been increased interest
(NLU) in interactive systems. Downgrading thein left-to-right repair detection: Rasooli and
commitment ofreparandumphases and assigning Tetreault (2014) and Honnibal and Johnson (2014)
appropriaténterregnumandrepair phases permits present dependency parsing systems with reparan-
computation of the user’s intended meaning. dum detection which perform similarly, the latter
Furthermore, the recent focus amcremental equalling Qian and Liu (2013)'s F-score at 0.841.
dialogue systems (see e.g. (Rieser and SchlangeHpwever, while operating left-to-right, these sys-
2011)) means that repair detection should opertems are not designed or evaluated for thire-
ate without unnecessary processing overhead, amdentalperformance. The use of beam search over

Previous work

John [likes + {uh} loves]Mary

S—— S~ >
reparandum interregnum repair

1)

78

Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 78-89,
October 25-29, 2014, Doha, Qatar. (©2014 Association for Computational Linguistics



different repair hypotheses in (Honnibal and John+ic of time-to-detectiorfor correctly identified re-
son, 2014) is likely to lead to unstable repair labelpairs, achieving an average of 7.5 words from the
sequences, and they report repair hypothesis ‘jitstart of the reparandum and 4.6 from the start of
ter'. Both of these systems use a non-monotonithe repair phase. They also introdudelayed ac-
dependency parsing approach that immediately rezuracy, a word-by-word evaluation against gold-
moves the reparandum from the linguistic anal-standard disfluency tags up to the word before the
ysis of the utterance in terms of its dependencyurrent word being consumed (in their terms, the
structure and repair-reparandum correspondencerefix boundary, giving a measure of the stability
which from a downstream NLU module’s perspec-of the repair hypotheses. They report an F-score
tive is undesirable. Heeman and Allen (1999) andf 0.578 at one word back from the current prefix
Miller and Schuler (2008) present earlier left-to- boundary, increasing word-by-word until 6 words
right operational detectors which are less accuback where it reaches 0.770. These results are the
rate and again give no indication of the incremen-point-of-departure for our work.

tal performance of their systems. While Heeman

and Allen (1999) rely on repair structure template3 Challenges and Approach

detection coupled with a multi-knowledge-source . . .
P g In this section we summarize the challenges for

language model, the rarity of the tail of repair. . o .
. incremental repair detection: computational com-
structures is likely to be the reason for lower per-

formance: Hough and Purver (2013) show tha{JIeXlty’ repair hypothesis stability, latency of de-

L ection and repair structure identification. In 3.1
only 39% of repair alignment structures appearWe explain how we address these
at least twice in Switchboard, supported by the P '

29% reported by Heeman and Allen (1999) oncomputational complexity Approaches to de-
the smaller TRAINS corpus. Miller and Schuler tecting repair structures often use chart storage
(2008)'s encoding of repairs into a grammar alsozwarts et al., 2010; Johnson and Charniak, 2004;
causes sparsity in training: repair is a general projeeman and Allen, 1999), which poses a com-
cessing strategy not restricted to certain lexicabytational overhead: if considering all possible
items or POS tag sequences. boundary points for a repair structure’s 3 phases

) ) _ beginning on any word, for prefixes of length
The model we consider most suitable for in-ye nymber of hypotheses can grow in the order
cremental dialogue systems so far is Zwarts eb(n4)_ Exploring a subset of this space is nec-

al. (2010)'s incre,men_tal version of Johnson andyggary for assigning entire repair structures as in
Charniak (2004)’s noisy channel repair detector(l) above, rather than just detecting reparanda:
as it incrementally applies structural repair anal{p,q (Johnson and Charniak, 2004; Zwarts et al.
yses (rather than just identifying reparanda) angy0) noisy-channel detector is the only system
is evaluated for its incremental properties. Folynat applies such structures but the potential run-
lowing (Johnson and Charniak, 2004), their sySyime complexity in decoding these with their S-
tem uses an n-gram language model tralneq OfAG repair parser i€)(n®). In their approach,
roughly 100K utterances of reparandum-exmseqmmplexity is mitigated by imposing a maximum

(‘cleaned’) Switchboard data. Its channel model isrepair length (12 words), and also by using beam

a statistically-trained S-TAG parser whose gramearch with re-ranking (Lease et al., 2006; Zwarts

mar has simple reparandum-repair alignment rul%nd Johnson, 2011). If we wish to include full
categories for its non-terminals (copy, delete, in'decoding of the repair's structure (as argued by
sert, substitute) f':lnd words fqr its terminals. TheHough and Purver (2013) as necessary for full in-
parser hypothesises all possible repair structureg,retation) whilst taking a strictly incremental
for the string consumed so far in a chart, beforeyy time_critical perspective, reducing this com-

pruning the unlikely ones. It performs equally yiexity by minimizing the size of this search space
well to the non-incremental model by the end ofjq <y cial.

each utterance (F-score = 0.778), and can make

detections early via the addition of a speculativeStability of repair hypotheses and latency Us-
next-word repair completion category to their S-ing a beam search of n-best hypotheses on a word-
TAG non-terminals. In terms of incremental per-by-word basis can cause ‘jitter’ in the detector’s
formance, they report the novel evaluation met-output. While utterance-final accuracy is desired,
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for a truly incremental system good intermedi-ing) an underlying ‘clean’ string — much as sim-
ate results are equally important. Zwarts et alilar spelling correction models are word-global —
(2010)’s time-to-detection results show their sys-we instead take a very local perspective here.
tem is only certain about a detection after process- In accordance with psycholinguistic evidence
ing the entire repair. This may be due to the string Brennan and Schober, 2001), we assume charac-
alignment-inspired S-TAG that matches repair anderistics of the repair onset allow hearers to detect
reparanda: a ‘rough copy’ dependency only beit very quickly and solve theontinuation prob-
comes likely once the entire repair has been conlem (Levelt, 1983) of integrating the repair into
sumed. The latency of 4.6 words to detection andheir linguistic context immediately, before pro-
arelatively slow rise to utterance-final accuracy upcessing or even hearing the end of the repair phase.
to 6 words back is undesirable given repairs hav&Vhile repair onsets may take the form of inter-
a mean reparandum lengthfL.5 words (Hough regna, this is not a reliable signal, occurring in
and Purver, 2013; Shriberg and Stolcke, 1998). only ~15% of repairs (Hough and Purver, 2013;

. e o . Heeman and Allen, 1999). Our repair onset de-
Structural' |dent|f|f:at|on . Classufyl_ng rePAIS tection is therefore driven by departures from flu-
has been |gno_re_d N repair processing, despite thgncy, via information-theoretic features derived
presence of distinct .cate.gorles €g. repeats, SUt?ﬁcrementally from a language model in line with
stitutions, deletes) with dn‘fer('an't pragmatic eﬁeCtSrecent psycholinguistic accounts of incremental
(Hough anq P_urver,_ 2_913)Th|s is perhaps due to parsing — see (Keller, 2004; Jaeger and Tily, 2011).
lack of clarity in definition: even for human anno-

. . . Considering the time-linear way a repair is pro-
tators, verbatim repeats withstanding, agreemenétessed and the fact speakers are exponentially less
is often poor (Hough and Purver, 2013; S.hriberg1i P P y

1994). Assigning and evqluatmg repar -(not JUStutterance length increases (Shriberg and Stolcke,
reparandum) structures will allow repair interpre-

L 1998), backwards search seems to be the most ef-
tation in future; however, work to date evaluates.. . .
: ficient reparandum extent detection metideea-
only reparandum detection. L :
tures determining the detection of the reparan-
3.1 Ourapproach dum extent in the backwards search can also be

To address the above, we propose an altemativi(r?]formation-theoretic: entropy measures of dis-
' tFibutional parallelism can characterize not onl
to (Johnson and Charniak, 2004; Zwarts et al P y

, . . ‘rough copy dependencies, but distributionally sim-
2010)'s noisy channel model. While the mOdelilar or dissimilar correspondences between se-

eleggntly captures_intuitions algout _parallelism inquences. Finally, when detecting the repair end
repars and mpdellmg flue_nc_y, it relies on Strlng'and structure, distributional information allows

matc_hlng, motl\{ated n a similar way to autom at'ccomputation of the similarity between reparan-
spelling correction (Brill and Moore, 2000): it as- dum and repair. We argue a local-detection-

ﬁﬁth-backtracking approach is more cognitively
plausible than string-based left-to-right repair la-
gelling, and using this insight should allow an im-

Eofy }; ac;o;sllr;? tg_ chznr}el mogeﬂ’(Y |dXd)-t provement in incremental accuracy, stability and
stimating P(Y"| X) directly from observed data time-to-detection over string-alignment driven ap-

is difficult dye to' sparsity of repair mstanc_es, S0 a?roaches in repair detection.
transducer is trained on the rough copy alignment
between reparandum an_d. repair. ThIS approa_cn STIR: Strongly Incremental Repair
succeeds because repetition and simple substitu- yatection
tion repairs are very common; but repair as a psy-
chological process is not driven by string align-Our system, STIR (Strongly Incremental Repair
ment, and deletes, restarts and rarer substitutiodetection), therefore takes a local incremental ap-
forms are not captured. Furthermore, the noisyﬁI J | tion-based model f

. € acknowledge a purely position-pased moael tor
channel model assumes ?‘n inherently Uttera.nC(?éparandum extent detection under-estimates prepasition
global process for generating (and therefore findwhich speakers favour as the retrace start and over-esmat

verbs, which speakers tend to avoid retracing back to, prefe

Though see (Germesin et al., 2008) for one approachring to begin the utterance again, as (Healey et al., 2011)’s
albeit using idiosyncratic repair categories. experiments also demonstrate.

kely to trace one word further back in repair as

X according to some prior distributioR(X), but
a noisy channel causes them instead to utter

80



| “John” | “likes”

i 7 >

G——E

TO
| “John” | “likes” | “uh” |
—_—— —— *_ [ — [ —
| | | |
ed
ed
Cr——(-~>
T1
I “Johnﬂ I ulikesn I Huhn I “loVesH I
it et mithe winih
ed TPstart
IS TPstart
ed \
——r -~
T2
| “John” | “likes” | *“uh” | “loves”
T O T
TMstart "M end ed TPstart
TPstart
(mstarf
N
TMepd ed
OSSO 3
I “John" I “likesll I uuh” I “loVesH I
St et el it
TMstart "M end ed TPstart TSty
TDstart
{Mestart pSub
Qo o, -
TMend ed 7
OS] T4
| uJOhnn | ulikesn | uuhn | ulovesn | “Mary |
____+___ [ — [ — [ —
| | | |
TMstart "M end ed TPstart TPy
TPstart
(mstw‘t r sub .
N pend/

d

TS

7.men>i ed
JOS=O]

Figure 1: Strongly Incremental Repair Detection
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proach to detecting repairs and isolated edit terms,
assigning words the structures in (2). We in-
clude interregnum recognition in the process, due
to the inclusion of interregnum vocabulary within
edit term vocabulary (Ginzburg, 2012; Hough and
Purver, 2013), a useful feature for repair detection
(Lease et al., 2006; Qian and Liu, 2013).

{

Rather than detecting the repair structure in its
left-to-right string order as above, STIR functions
as in Figure 1: first detecting edit terms (possibly
interregna) at step T1; then detecting repair onsets
rpstart @t T2; if one is found, backwards searching
to find rmg.+ at T3; then finally finding the re-
pair endrp.,q at T4. Step T1 relies mainly on
lexical probabilities from an edit term language
model; T2 exploits features of divergence from a
fluent language model; T3 uses fluency of hypoth-
esised repairs; and T4 the similarity between dis-
tributions after reparandum and repair. However,
each stage integrates these basic insights via mul-
tiple related features in a statistical classifier.

o [rmstart..rMena + {€d}rDstart.-.TPend]. ..

{ed}... (2)

4.1 Enriched incremental language models

We derive the basic information-theoretic features
required using n-gram language models, as they
have a long history of information theoretic anal-
ysis (Shannon, 1948) and provide reproducible re-
sults without forcing commitment to one partic-
ular grammar formalism. Following recent work
on modelling grammaticality judgements (Clark
et al., 2013), we implement several modifications
to standard language models to develop our basic
measures of fluency and uncertainty.

For our main fluent language models we train
a trigram model with Kneser-Ney smoothing
(Kneser and Ney, 1995) on the words and POS
tags of the standard Switchboard training data
(all files with conversation numbers beginning
sw2*,sw3* in the Penn Treebank Ill release), con-
sisting of~100K utterancesx600K words. We
follow (Johnson and Charniak, 2004) by clean-
ing the data of disfluencies (i.e. edit terms and
reparanda), to approximate a ‘fluent’ language

_ pos
Imoci,el. We call these probabilitieg’”, p;,~ be-
ow.

3We suppress th&* and'®® superscripts below where we
refer to measures from either model.



We then derivesurprisalas our principal default  Gjven entropy estimates, we can also sim-
lexical uncertainty measuremen{equation 3) in ilarly approximate the Kullback-Leibler (KL)
both models; and, following (Clark et al., 2013), givergence (relative entropy) between distribu-
the (unigram) Weighted Mean Log trigram prob-tions in two different contexts:; and ¢, i.e.
ability (WML, eq. 4)- the trigram logprob of the O(wlc;) and (w|cy), by pair-wise computing
sequence divided by the inverse summed IogproB(w‘cl) 10g2(p(w\01)) only for words w € w., N

i i p(wlez) / =
of the component unigrams (apart from the flrstw@ then approxfmatmg unseen values by assum-

two words in the sequence, which serve as the,niform distributions. Usingy,,, smoothed es-
first trigram history). As here we use a local ap-jmates rather than raw maximum likelihood es-

proach we restrict the WML measures 10 singlemations avoids infinite KL divergence values.
trigrams (weighted by the inverse logprob of theAgain, we found this approximation sufficiently

final word). While use of standard n-gram prob-¢,qe 1 the real values for our purposes. All such
ability conflates syntactic with lexical probability, probability and distribution values are stored in

WML gives us an approximation tmcremental i erementally constructed directed acyclic graph
syntactic probabilityby factoring out lexical fre- (DAG) structures (see Figure 1), exploiting the

quency. Markov assumption of n-gram models to allow ef-
s(wi_z ... w;) = — logy Prn (Wi | Wi—2, wi_1) @) ficient calculation by avoiding re-computation.
WML(wo . .. wy) = 22 1082 Pn(Wi | Wiz, win1) 4.2 Individual classifiers

— 2= 1085 Prn (w)) _ . : —
(4)  This section details the features used by the 4 indi-

vidual classifiers. To investigate the utility of the

Distributional measures To approximate un- features used in each classifier we obtain values
certainty, we also derive the entrogy(w |c) of  on the standard Switchboard heldout data (PTB IlI
the possible word continuations given a context files sw4[5-9]*: 6.4K utterances, 49K words).
¢, from p(w; | ¢) for all wordsw; in the vocabu-
lary — see (5). Calculating distributions over the4.2.1 Edit term detection
entire lexicon incrementally is costly, so we ap-in the first component, we utilise the well-known
proximate this by constraining the calculation toppservation that edit terms have a distinctive
words which are observed at least once in conteXjocabulary (Ginzburg, 2012), training a bigram
cin training,w. = {w|count(c,w) > 1}, assum- model on a corpus of all edit words annotated in
ing a uniform distribution over the unseen suffixesswitchboard’s training data. The classifier simply
by using the appropriate smoothing constant, angises the surprisale* from this edit word model,
subtracting the latter from the former —see eq. (6)and the trigram surprisai’*® from the standard

Manual inspection showed this approximationfluent model of Section 4.1. At the current position
to be very close, and the trie structure of our n-,,  one, both or none of words,, andw,,_; are
gram models allows efficient calculation. We alsoclassified as edits. We found this simple approach
make use of the Zipfian distribution of n-grams effective and stable, although some delayed deci-
in corpora by storing entropy values for the 20%sjons occur in cases whes&* and WML"® are
most common trigram contexts observed in trainhigh in both models before the end of the edit, e.g.
ing, leaving entropy values of rare or unseen con¢| like” — “I {like} want...". Words classified as
texts to be computed at decoding time with little ¢q are removed from the incremental processing

search cost due to their small or empty sets. graph (indicated by the dotted line transition in
Figure 1) and the stack updated if repair hypothe-
H =— n 1 n 5 .
(wie wgg‘mb”’“ (wlelogapini ) () ses are cancelled due to a delayed edit hypothesis
of w,,_1.
H(w| )~ = Y prn(w | c)log, pen(w | ) 4.2.2 Repair start detection

wEWe

Repair onset detection is arguably the most crucial
component: the greater its accuracy, the better the
input for downstream components and the lesser
the overhead of filtering false positives required.

— [n x Alog, A (6)
wheren = |Vocab| — |w.|

— 2wew, Prn(w | €)
n

1
and)\ =
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i havent had any good really very good experience with child care

Figure 2: WML'* values for trigrams for a repaired utterance exhibitingdt@p at the repair onset

We use Section 4.1's information-theoretic fea-ance “I haven’t had any [ good + really very good
turess, WML, H for words and POS, and intro- ] experience with child care” can be seen in Fig-
duce 5 additional information-theoretic features:ure 2. The steep drop at the repair onset shows the
AWML is the difference between the WML val- usefulness oW ML features for fluency measures.
ues atw,,_; andw,; AH is the difference in en-  To compare n-gram measures against other lo-
tropy betweenw,,_1 andw,; InformationGain  cal features, we ranked the features by Informa-
is the difference between expected entropy ation Gain using 10-fold cross validation over the
w,—1 and observeds at w,, a measure that Switchboard heldout data— see Table 1. The lan-
factors out the effect of naturally high entropy guage model features are far more discriminative
contexts; BestEntropyReduce is the best reduc- than the alignment features, showing the potential
tion in entropy possible by an early rough hy-of a general information-theoretic approach.
pothesis of reparandum onsets within 3 words
and BestWMLBoost similarly speculates on the ) - )
best improvement oML possible by positing " detectingrm,,; positions given a hypothe-
FM.ssar: POSItiONs Up to 3 words back. We also in- SIS€d7Psier: (Stage T3 in Figure 1), we use the
clude simple alignment features: binary featured10iSy channel intuition that removing the reparan-
which indicate if the wordy; _, is identical to the ~dUmM (oM r7iart 10 rpsiart) increases fluency
current wordw; for z € {1,2,3}. With 6 align- of thel utterance, expressed heremMLboost as
ment features, 16 N-gram features and a Singlgescrlbed above. When using gold standard in-

logical featureedit which indicates the presence PUt We found this was the case on th_e heldout
of an edit word at position; 1, rpa detection data, with a meamV’M Lboost of 0.223 (sd=0.267)

uses 23 features— see Table 1. for reparandum onsets and -0.058 (sd=0.224) for
other words in the 6-word history- the negative
We hypothesised repair onsetg*'** would boost for non-reparandum words captures the in-
have significantly lowerp'e® (lower lexical- tuition that backtracking from those points would
syntactic probability) andVML!** (lower syntac- make the utterance less grammatical, and con-
tic probability) than other fluent trigrams. This versely the boost afforded by the correct ;4.
was the case in the Switchboard heldout dataetection helps solve the continuation problem for
for both measures, with the biggest differencethe listener (and our detector).
obtained for WML'** (non-repair-onsets: -0.736  Parallelism in the onsets Ofpyq+ and
(sd=0.359); repair onsets: -1.457 (sd=0.359)). In'mg.+ Can also help solve the continuation
the POS model, entropy of continuatiéff°®* was problem, and in fact the KL divergence be-
the strongest feature (non-repair-onsets: 3.14fween 0P (w | rmsiart, TMstart—1) and 67°%(w |
(sd=0.769); repair onsets: 3.444 (sd=0.899)). Thepstart, rPstart—1) 1S the second most useful fea-
trigram WML'* measure for the repaired utter- ture with average merit 0.429 (+- 0.010) in cross-

%4.2.3 Reparandum start detection
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validation. The highest ranked featureAVML 4.3 Classifier pipeline

(0.437 (+- 0.003)) which here encodes the drop in o - o
the WMLboost from one backtracked position to S 1!R €ffects a pipeline of classifiers as in Fig-
the next. In ranking the 32 features we use, agaitf™® 3. Where thexd classifier only permits non

information-theoretic ones are higher ranked tharf¢ Words to be passed on i@y, classification
the logical features. and for rp.,q classification of the active repair

hypotheses, maintained in a stack. Th&.+
classifier passes positive repair hypotheses to the

average merit | average rank attribute . .
0.139 (+- 0.002)| 1 (+-0.00) 7S rmgere Classifier, which backwards searches up
0.131 (+-0.001)| 2 (+-0.00) WML’I’“ to 7 words back in the utterance. Ifran g IS
8-}%2 g 8-883 34',4(S_10ig()5) Wé‘fL classified, the output is passed on for,,,; clas-
0.122 (+-0.001)| 5.9 (+- 0.94) i1 = w; sification at the end of the pipeline, and if not re-
0.122 (+-0.001)| 5.9 (+-0.70) | BestWMLBoost* jected this is pushed onto the repair stack. Repair

0.122 (+- 0.002)| 5.9 (+-1.22) | InformationGairi®* hypotheses are are popped off when the string is
0.119 (+- 0.001)| 7.9 (+-0.30) | BestWMLBoost** yp bopp 9

0.098 (+-0.002)| 9 (+- 0.00) les 7 words beyond it$p,,,; position. Putting limits
0.08 (+- 0.001) | 10.4 (+- 0.49) AWMLF® on the stack’s storage space is a way of controlling
0.08 (+- 0.003) | 10.6 (+- 0.49) AHP* i : i
0.072 (+-0.001)| 12 (+- 0.00) POS,-. = POS, for processing overhead ar_1d f:omp_lexny. Em?ed
0.066 (+-0.003)| 13.1 (+- 0.30) glew ded repairs whosem . coincide with another’s
0.059 (+- 0.000)| 14.2 (+- 0.40) AWML rpstart are easily dealt with as they are added to

0.058 (+- 0.005)| 14.7 (+- 0.64) | BestEntropyReduég’ the stack as separate hypothe‘kes_
0.049 (+- 0.001)| 16.3 (+-0.46)| InformationGairf®
0.047 (+- 0.004)| 16.7 (+- 0.46)| BestEntropyReduc®

0.035 (+- 0.004)| 18 (+- 0.00) AH'® Classifiers Classifiers are implemented using
0.024 (+- 0.000)| 19 (+- 0.00) Wi—2 = w; Random Forests (Breiman, 2001) and we use dif-
0.013 (+- 0.000)| 20 (+- 0.00) POS;_2 = POS; : .

0.01 (+-0.000) | 21 (+-0.00) Wi_s = w; ferent error functions for each stage using Meta-
0.009 (+- 0.000)| 22 (+- 0.00) edit Cost (Domingos, 1999). The flexibility afforded

0.006 (+-0.000)| 23(+-0.00) | POSis=POSi | py implementing adjustable error functions in a
_ _ pipelined incremental processor allows control of
Table 1. Feature ranker (Information Gain) forthe trade-off of immediate accuracy against run-

rPstare detection- 10-fold x-validation on Switch- time and stability of the sequence classification.
board heldout data.

Processing complexity This pipeline avoids an
exhaustive search all repair hypotheses. If we limit
4.2.4 Repair end detection and structure the search to within thé"mq,t, rDstar) POSSibil-
classification ities, this number of repairs grows approximately
in the triangular number series— w@ a

For rp.,q detection, using the notion of paral- tod | ) q i
lelism, we hypothesise an effect of divergence pel€Sted 100p OVET Previous Words agets incre-

tween ' at the reparandum-final worchn .,q mente(;j _t.WOh'Chz n tﬁrms o1;|a comp|e>f[|rt]y class is
and the repair-final wordp.,4: for repetition re- a quadraticO("). we allow more than one

pairs, KL divergence will trivially be 0; for substi- <7[m?t“Tt7Tp St“Tt>ngpgthES's per \.NOLd’ the c%m-
tutions, it will be higher; for deletes, even higher. plexity goes up t@(n”), however in the tests that

Upon inspection of our feature ranking this KL ;/vett_jescrlbeltbelo_\t/\r/], Wf are a.kt)tl_e totﬁf:h'e\;e good dﬁ i
measure ranked 5th out of 23 features (merit=ec on TesUTLs without permitiing this extra searc
space. Under our assumption that reparandum on-
0.258 (+- 0.002)). o : .

) ] set detection is only triggered after repair onset de-
We introduce another feature er.1cod|n_g Paraliection, and repair extent detection is dependent
lelism ReparandumRepairDifference: the differ- o ositive reparandum onset detection, a pipeline

ence in probability between an utterance cleanegi accurate components will allow us to limit

of the reparandum and the utterance with itS,cessing to a small subset of this search space.
repair phase substituting its reparandum. In

both the POS (merit=0.366 (+- 0.003)) and wordﬁ_ " o ¢ 1o includ bedded

o . e constrain the problem not to include embedde
(me”_t_p'35_2 (+- 0.002)) LMs, this was the most deletes which may share theip.:.» word with another re-
discriminative feature. pair — these are in practice very rare.
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output

Figure 3: Classifier pipeline

5 Experimental set-up potheses of the sequence and extra downstream

. , _ rocessing in pruning false positives.
We train STIR on the Switchboard data descrlbecfJ We also experiment with the number of repair

above, and test it on the standard Switchboard teﬂypotheses permitted per word, using limits of 1-

data (PTB Il files 4[0-1]*). In order to avoid over- best and 2-best hypotheses. We expect that allow-

fitting of cIaSS|f|efrsidto th_e_ba5|c Iangusge mgpl_ecljsing 2 hypotheses to be explored pet;,.; should
We US€ a Cross-1o training approach: we divide, ., greater final accuracy, but with the trade-off
the corpus into 10 folds and use language mod

. ) of greater decoding and training complexity, and
els trained on 9 folds to obtain feature values for, g g g P y

the 10th fold ting for all 10. Classifi possible incremental instability.
€ old, repealing for a - IasSINers are: aq\ve wish to explore the incrementality versus

then trained as standard on the resulting featureﬁnal accuracy trade-off that STIR can achieve we

annotated corpus. This resulted in better featur?IOW describe the evaluation metrics we employ.
utility for n-grams and better F-score results for '

detection in all components in the order of 5-8%. 5.1 Incremental evaluation metrics

Training the classifiers Each Random Forest Following (Baumann et al., 2011) we divide our
classifier was limited to 20 trees of maximum €valuation metrics intsimilarity metrics (mea-
depth 4 nodes, putting a ceiling on decoding timeSures of equality with or similarity to a gold stan-
In making the classifiers cost-sensitive, MetaCosflard), iming metrics(measures of the timing of
resamples the data in accordance with the codglévant phenomena detected from the gold stan-
functions: we found using 10 iterations over a re-dard) anddiachronic metrics(evolution of incre-
sample of 25% of the training data gave the mosfnental hypotheses over time).

effective trade-off between training time and accu-gjmilarity metrics For direct comparison to

6 . - . .
racy.” We use 8 different cost functions ibsart  previous approaches we use the standard measure

with differing costs for false negatives and posi-of overall accuracy, the F-score over reparandum
tives of the form below, wheré is a repair ele- \ords, which we abbreviate,,, (see 7):

ment word and is a fluent onset:

correct

Rhvp phup precision= %
RgOld 0 2 T;Z(erect
F9old 1 0 recall= ———— (7
rm9e
.. . . . precisionx recall
F'rm = —_ . .
We adopt a similar technique in g4+ USING 5 precision recall

different cost functions and inp.,q using 8 dif- . . .
) : . . We are also interested in repair structural clas-
ferent settings, which when combined gives a to-

; ) . . sification, we also measure F-score ocakmrepair
tal of 320 different cost function configurations. )
) . ; . components(m words, ed words as interregna
We hypothesise that higher recall permitted in the . . ;
AR . andrp words), a metric we abbreviate;. This
pipeline’s first components would result in better.

is not measured in standard repair detection on
overall accuracy as these hypotheses become "Switchboard. To investigate incremental accurac
fined, though at the cost of the stability of the hy- ' g y

we evaluate thdelayed accuracyDA) introduced
5zwarts and Johnson (2011) take a similar approach oy (Zwarts et al., 2010), as described in section

Switchboard data to train a re-ranker of repair analyses. 2 against the utterance-final gOId standard disflu-
As (Domingos, 1999) demonstrated, there are only rela- tati d th fthe 6 d

tively small accuracy gains when using more than this, with€NCYy annatations, and use the mean or (ne 5 wor

training time increasing in the order of the re-sample size. F-scores.
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Input and current repair labels  edits 0.800

0.750 -
F-score on
reparandum  0.650
John likes
(@rm) (&rp) words 0,600 ,///

0.550 ——

rm Tp
= 1 2 3 4 5 6

. == Best delayed acc. | 0.587 0.710 0.747 0.755 0.757 0.754
John likes uh loves
ed

&rm &rp Best rm F-score | 0.550 | 0.671 | 0.726 | 0.743 | 0.749 | 0.752
m P
| John | | likes | | loves | | Mary |
rm ed rp

Zwarts et al. 2010| 0.578 0.633 0.697 0.725 0.758 0.770
Figure 4: Edit Overhead- 4 unnecessary edits

N-words back from prefix boundary

Figure 6: Delayed Accuracy Curves

Timing and resource metrics Again for com-

parative purposes we use Zwarts et d@ifse-to-  the final@rm is not counted as a bad edit for the
detectionmetrics, that is the two average distanceseasons just given.

(in numbers of words) consumed before first de-

tection of gold standard repairs, one frem ., 6 Results and Discussion

TDym and one from psiars, TDrp. InOUr 1-bESL \\ ) oo o the Switchboard test data; Ta-

detection system, before evaluation we know a prl-ble 2 shows results of the best performing settings
ori TD,,, will be 1 token, and T, will be 1 more P 9 9

than the average length ot ; — s FEPAIr for each of the metrics described above, together

spans correctly detected. However when we inywth the setting achieving the highest total score

troduce a beam where multiplen,,s are pos- (TS)- the average % achieved of the best per-

sible perrpua With the most likely hypothesis forming system’s result in each metficThe set-

committed as the current output, the latency ma;}mgs found to achieve the highest (the metric

begin to increase: the initially most probable hy_standardly used in disfluency detection), and that
pothesis may not- be the correct one. In additio found to achieve the highest TS for each stage in

. . R I’}he pipeline are shown in Figure 5.
to output timing metrics, we account for intrinsic : :
. i . . : Our experiments showed that different system
processing complexity with the metrprocessing settings perform better in different metrics, and
overhead(PO), which is the number of classifica- gs p '

tions made by all components per word of input no individual setting achieved the best result in
" all of them. Our best utterance-final.,F reaches

Diachronic metrics To measure stability of re- 0-779, marginally though not significantly exceed-
pair hypotheses over time we use (Baumann et alind (Zwarts et al., 2010)'s measure and STIR
2011)'sedit overhead EO) metric. EO measures achieves 0.736 on the previously unevaluated F
the proportion of edits (add, revoke, substitute) apT N€ setting with the best DA improves on (Zwarts

plied to a processor’s output structure that are unét al., 2010)'s result significantly in terms of mean
necessary. STIR’s output is the repair label sevalues (0.718 vs. 0.694), and also in terms of the

quence shown in Figure 1, however rather tharsteepness of the curves (Figure 6). The fastest av-
evaluating its EO against the current gold stan£rage time to detection is 1 word for Tpand 2.6
dard labels, we use a new mark-up we termithe Words for T, (Table 3), improving dramatically
cremental repair gold standarcthis does not pe- ©n the noisy channel model's 4.6 and 7.5 words.
nalise lack of detection of a reparandum werd |, rementality versus accuracy trade-off We

as a bad edit until the correspondings.« 0f that  gimeqd to investigate how well a system could do
rm has been consumed. While.f; Fs and DA i, terms of achieving both good final accuracy and
evaluate against what Baumann et al. (2011) call,.remental performance, and while the best, F
the current gold standardthe incremental gold setting had a large PO and relatively slow DA in-

standard reflects the repair processing approac&ease’ we find STIR can find a good trade-off set-
we setoutin 3. An example of arepaired utterance___

with an EO of 44% g) can be seen in Figure 4: of "We do not include time-to-detection scores in TS as it
did not vary enough between settings to be significant, how-

the 9 edits (7 repair annotations and 2 correct ﬂuéverthere was a difference in this measure between thetl-bes
ent words), 4 are unnecessary (bracketed). Notstack condition and the 2-best stack condition — see below.
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rp?tyaprt thp rm?é’aprt thp Tp:gs thp
ld ld ld
Tpgfladrt 0 64 T 0 8 Tpgog 0 2 Stack depth = 2
F9° 1 0 oot 1 0 ol 1 0
rp?tyaprt thp rm?é’aprt thp Tp:gs thp
ld ld ld
V“ngladrt 0 2 r m‘glto rt 0 16 rpg%g 0 8 Stack depth = 1
F9° 1 0 F9° 1 0 F9° 1 0

Figure 5: The cost function settings for the MetaCost cfessi for each component, for the best,F
setting (top row) and best total score (TS) setting (bottowm)r

Frm Fs DA EO PO

Best Finalrm F-score (F,,) 0.779 0.735 0.698 3.946 1.733
Best Final repair structure F-score,JF 0.772 0.736 0.707 4.477 1.659
Best Delayed Accuracy afm (DA) 0.767 0.721 0.718 1.483 1.689
Best (lowest) Edit Overhead (EO) 0.718 0.674 0.67864 1.230
Best (lowest) Processing Overhead (PO) 0.716 0.671 0.678750.1.229

Best Total Score (mean % of best scores) (T$)754 0.708 0.711 0.931 1.255

Table 2: Comparison of the best performing system settisgeyuifferent measures

Fom Fs DA EO PO TD, TDym
1-bestrmga, 0.745 0.707 0.699 3.780 1.650 1.0 26
2-bestrmgg,; 0.758 0.721 0.701 4.319 1.665 1.1 2.7

Table 3: Comparison of performance of systems with diffestaick capacities

ting: the highest TS scoring setting achieves ar¥ Conclusion

F... of 0.754 whilst also exhibiting a very good _ _
DA (0.711) — over 98% of the best recorded score//€ have presented STIR, an incremental repair
—and low PO and EO rates — over 96% of the besfietector that can be used to experiment with in-
recorded scores. See the bottom row of Table 2remental performance and accuracy trade-offs. In
As can be seen in Figure 5, the cost functions fofuturé work we plan to include probabilistic and
these winning settings are different in nature. Thélistributional features from a top-down incremen-
best non-incremental, |, measure setting requires 1@/ Parser e.g. Roark et al. (2009), and use STIR’s
high recall for the rest of the pipeline to work on, distributional features to classify repair type.

using the highest cost, 64, for false negatiyg, ..

words and the highest stack depth of 2 (similar to éA\cknowledgements

wider beam); but the best overall TS scoring sySyyg thank the three anonymous EMNLP review-
tem uses a less permissive setting to increase i g for their helpful comments. Hough is sup-
cremental performance. ported by the DUEL project, financially supported

We make a preliminary investigation into the by the Agence Nationale de la Research (grant
effect of increasing the stack capacity by com-number ANR-13-FRAL-0001) and the Deutsche
paring stacks with 1-bestm;.+ hypotheses per Forschungsgemainschaft. Much of the work was
rpstart @Nd 2-best stacks. The average differencesarried out with support from an EPSRC DTA
between the two conditions is shown in Table 3.scholarship at Queen Mary University of Lon-
Moving to the 2-stack condition results in gain in don. Purver is partly supported by ConCreTe:
overall accuracy in F, and F, but at the cost of the project ConCreTe acknowledges the financial
EO and also time-to-detection scores,J;,Dand support of the Future and Emerging Technologies
TD,,. The extent to which the stack can be in-(FET) programme within the Seventh Framework
creased without increasing jitter, latency and comProgramme for Research of the European Com-
plexity will be investigated in future work. mission, under FET grant number 611733.
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Semi-Supervised Chinese Word Segmentation Using Partial-Label
Learning With Conditional Random Fields
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Abstract

There is rich knowledge encoded in on-
line web data. For example, punctua-
tion and entity tags in Wikipedia data
define some word boundaries in a sen-
tence. In this paper we adopt partial-label
learning with conditional random fields to
make use of this valuable knowledge for
semi-supervised Chinese word segmenta-
tion. The basic idea of partial-label learn-
ing is to optimize a cost function that
marginalizes the probability mass in the
constrained space that encodes this knowl-
edge. By integrating some domain adap-
tation techniques, such as EasyAdapt, our
result reaches an F-measure of 95.98% on
the CTB-6 corpus, a significant improve-
ment from both the supervised baseline
and a previous proposed approach, namely
constrained decode.

1 Introduction

A general approach for supervised Chinese word
segmentation is to formulate it as a character se-
quence labeling problem, to label each charac-
ter with its location in a word. For example,
Xue (2003) proposes a four-label scheme based on
some linguistic intuitions: ‘B’ for the beginning
character of a word, ‘I’ for the internal characters,
‘E’ for the ending character, and ‘S’ for single-
character word. Thus the word sequence “7& k&
1R B3 can be turned into a character sequence
with labels as ¥&\B R\l 2\E 1B\S \B ZJ\E.
A machine learning algorithm for sequence label-
ing, such as conditional random fields (CRF) (Laf-
ferty et al., 2001), can be applied to the labelled
training data to learn a model.

Labelled data for supervised learning of Chi-
nese word segmentation, however, is usually ex-
pensive and tends to be of a limited amount. Re-
searchers are thus interested in semi-supervised
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learning, which is to make use of unlabelled data
to further improve the performance of supervised
learning. There is a large amount of unlabelled
data available, for example, the Gigaword corpus
in the LDC catalog or the Chinese Wikipedia on
the web.

Faced with the large amount of unlabelled data,
an intuitive idea is to use self-training or EM, by
first training a baseline model (from the supervised
data) and then iteratively decoding the unlabelled
data and updating the baseline model. Jiao et al.
(2006) and Mann and McCallum (2007) further
propose to minimize the entropy of the predicted
label distribution on unlabeled data and use it as
a regularization term in CRF (i.e. entropy reg-
ularization). Beyond these ideas, Liang (2005)
and Sun and Xu (2011) experiment with deriv-
ing a large set of statistical features such as mu-
tual information and accessor variety from un-
labelled data, and add them to supervised dis-
criminative training. Zeng et al. (2013b) experi-
ment with graph propagation to extract informa-
tion from unlabelled data to regularize the CRF
training. Yang and Vozila (2013), Zhang et al.
(2013), and Zeng et al. (2013a) experiment with
co-training for semi-supervised Chinese word seg-
mentation. All these approaches only leverage
the distribution of the unlabelled data, yet do not
make use of the knowledge that the unlabelled data
might have integrated in.

There could be valuable information encoded
within the unlabelled data that researchers can take
advantage of. For example, punctuation creates
natural word boundaries (Li and Sun, 2009): the
character before a comma can only be labelled
as either ‘S’ or ‘E’, while the character after a
comma can only be labelled as ‘S’ or ‘B’. Fur-
thermore, entity tags (HTML tags or Wikipedia
tags) on the web, such as emphasis and cross refer-
ence, also provide rich information for word seg-
mentation: they might define a word or at least

Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 90-98,
October 25-29, 2014, Doha, Qatar. (©2014 Association for Computational Linguistics



Figure 1: Sausage constraint (partial labels) from natural annotations and punctuation

give word boundary information similar to punc-
tuation. Jiang et al. (2013) refer to such structural
information on the web as natural annotations, and
propose that they encode knowledge for NLP. For
Chinese word segmentation, natural annotations
and punctuation create a sausage' constraint for
the possible labels, as illustrated in Figure 1. In
the sentence “IT K, A LFREFIHLAS 21l
JE R . 7, the first character ¥T can only be la-
belled with ‘S’ or ‘B’; and the characters >k before
the comma and f& before the Chinese period can
only be labelled as ‘S’ or ‘E’. “ N . fig” and “#L

Ae
2822 2]” are two Wikipedia entities, and so they
define the word boundaries before the first char-
acter and after the last character of the entities as
well. The single character Al between these two
entities has only one label ‘S’. This sausage con-
straint thus encodes rich information for word seg-
mentation.

To make use of the knowledge encoded in the
sausage constraint, Jiang et al. (2013) adopt a con-
strained decode approach. They first train a base-
line model with labelled data, and then run con-
strained decode on the unlabelled data by binding
the search space with the sausage; and so the de-
coded labels are consistent with the sausage con-
straint. The unlabelled data, together with the
labels from constrained decode, are then selec-
tively added to the labelled data for training the
final model. This approach, using constrained de-
code as a middle step, provides an indirect way
of leaning the knowledge. However, the middle
step, constrained decode, has the risk of reinforc-
ing the errors in the baseline model: the decoded
labels added to the training data for building the
final model might contain errors introduced from
the baseline model. The knowledge encoded in

! Also referred to as confusion network.
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the data carrying the information from punctuation
and natural annotations is thus polluted by the er-
rorful re-decoded labels.

A sentence where each character has exactly
one label is fully-labelled; and a sentence where
each character receives all possible labels is zero-
labelled. A sentence with sausage-constrained la-
bels can be viewed as partially-labelled. These
partial labels carry valuable information that re-
searchers would like to learn in a model, yet the
normal CREF training typically uses fully-labelled
sentences. Recently, Tickstrom et al. (2013) pro-
pose an approach to train a CRF model directly
from partial labels. The basic idea is to marginal-
ize the probability mass of the constrained sausage
in the cost function. The normal CRF training us-
ing fully-labelled sentences is a special case where
the sausage constraint is a linear line; while on
the other hand a zero-labelled sentence, where the
sausage constraint is the full lattice, makes no con-
tribution in the learning since the sum of proba-
bilities is deemed to be one. This new approach,
without the need of using constrained re-decoding
as a middle step, provides a direct means to learn
the knowledge in the partial labels.

In this research we explore using the partial-
label learning for semi-supervised Chinese word
segmentation. We use the CTB-6 corpus as the
labelled training, development and test data, and
use the Chinese Wikipedia as the unlabelled data.
We first train a baseline model with labelled data
only, and then selectively add Wikipedia data with
partial labels to build a second model. Because
the Wikipedia data is out of domain and has dis-
tribution bias, we also experiment with two do-
main adaptation techniques: model interpolation
and EasyAdapt (Daumé III, 2007). Our result
reaches an F-measure of 95.98%, an absolute im-
provement of 0.72% over the very strong base-



line (corresponding to 15.19% relative error re-
duction), and 0.33% over the constrained decode
approach (corresponding to 7.59% relative error
reduction). We conduct a detailed error analy-
sis, illustrating how partial-label learning excels
constrained decode in learning the knowledge en-
coded in the Wikipedia data. As a note, our result
also out-performs (Wang et al., 2011) and (Sun
and Xu, 2011).

2 Partial-Label Learning with CRF

In this section, we review in more detail the
partial-label learning algorithm with CRF pro-
posed by (Tackstrom et al., 2013). CRF is an
exponential model that expresses the conditional
probability of the labels given a sequence, as
Equation 1, where y denotes the labels, x denotes
the sequence, ®(z,y) denotes the feature func-
tions, and € is the parameter vector. Z(z)
>y exp(07 ®(z,v)) is the normalization term.

exp(07®(z, y))
Z(x)

In full-label training, where each item in the se-
quence is labelled with exactly one tag, maximum
likelihood is typically used as the optimization tar-
get. We simply sum up the log-likelihood of the n
labelled sequences in the training set, as shown in
Equation 2.

po(ylz) = (1)

L(0) = log pe(ylz)
z‘? )
- Z(0T<I>(aji,y@-) —log Z(x;))
=1

The gradient is calculated as Equation 3, in
which the first term 2" | ®; is the empirical
expectation of feature function ®;, and the second
term E[®;] is the model expectation. Typically a
forward-backward process is adopted for calculat-
ing the latter.

d 1
a5 1O = ; o~ E[®;] (3
In partial-label training, each item in the se-
quence receives multiple labels, and so for each
sequence we have a sausage constraint, denoted as
Y (, 7). The marginal probability of the sausage
is defined as Equation 4.
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po(Y(x,)lz) = Y pelyle) @

yeY (z.9)

The optimization target thus is to maximize the
probability mass of the sausage, as shown in Equa-
tion 5.

L(0) = logpe(Y (s, §i)|a:) (5)
i=1

A gradient-based approach such as L-BFGS
(Liu and Nocedal, 1989) can be employed to op-
timize Equation 5. The gradient is calculated as
Equation 6, where Ey; ) [®;] is the empirical ex-
pectation of feature function ®; constrained by the
sausage, and E[®;] is the same model expectation
as in standard CRF. Ey. , -, [®;] can be calculated
via a forward-backward process in the constrained
sausage.

O 1(0) = By ()] — EI0)]

09, ©

For fully-labelled sentences, EYy., - [@;] =

%Z?:l ®;, and so the standard CRF is actually
a special case of the partial-label learning.

3 Experiment setup

In this section we describe the basic setup for
our experiments of semi-supervised Chinese word
segmentation.

3.1 Data

We use the CTB-6 corpus as the labelled data. We
follow the official CTB-6 guideline in splitting the
corpus into a training set, a development set, and a
test set. The training set has 23420 sentences; the
development set has 2079 sentences; and the test
set has 2796 sentences. These are fully-labelled
data.

For unlabelled data we use the Chinese
Wikipedia. The Wikipedia data is quite noisy
and asks for a lot of cleaning. We first filter out
references and lists etc., and sentences with ob-
viously bad segmentations, for example, where
every character is separated by a space. We
also remove sentences that contain mostly En-
glish words. We then convert all characters into
full-width. We also convert traditional Chinese
characters into simplified characters using the tool



mediawiki-zhconverter?. We then randomly select
7737 sentences and reserve them as the test set.

To create the partial labels in the Wikipedia
data, we use the information from cross-reference,
emphasis, and punctuation. In our pilot study we
found that it’s beneficial to force a cross-reference
or emphasis entity as a word when the item has
2 or 3 characters. That is, if an entity in the
Wikipedia has three characters it receives the la-
bels of “BIE”; and if it has two characters it is la-
belled as “BE”.3

3.2 Supervised baseline model

We create the baseline supervised model by using
an order-1 linear CRF with L2 regularization, to
label a character sequence with the four candidate
labels “BIES”. We use the tool wapiti (Lavergne
etal., 2010).

Following Sun et al. (2009), Sun (2010), and
Low et al. (2005), we extract two types of fea-
tures: character-level features and word-level fea-
tures. Given a character ¢ in the character se-
quence ...c_2C_1€¢pC1C2...:

Character-level features :

Character unigrams: c_s, c_1, Cg, C1, C2

e Character bigrams: c_sc_1, c_ic—_o,
CoC1, C1C2

e Consecutive character equivalence:
7672 = C-1, ?071 = C_0 , ?Co = (1,
?Cl = C9

e Separated  character  equivalence:
76_3 = C_-1, ?C_Q = (o, ?C_l = (i1,

Tcog =9, 7c1 = c3
Whether the current character is a punc-
tuation: ? Punct(co)

Character sequence pattern:
T(C_2)T(C-1)T(Co)T(C)T(Cy).

We classify all characters into four
types. Type one has three characters
“4F’ (year) ‘A’ (month) ‘H’ (date).
Type two includes number characters.
Type three includes English characters.
All others are Type four characters.
Thus “Z% 4 = HS” would generate the
character sequence pattern “41213”.

2https://github.com/tszming/mediawiki-zhconverter
3 Another possibility is to label it as “SS” but we find that
it’s very rare the case.
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Word-level features :

The identity of the string c[s : ] (i—6 <
s < 1), if it matches a word from the
list of word unigrams; multiple features
could be generated.

The identity of the string c[i : €] (i <
e < 146), if it matches a word; multiple
features could be generated.

The identity of the bi-gram c[s : i —
leli - €] i —6 < s,e < i+ 6), if
it matches a word bigram; multiple fea-
tures could be generated.

The identity of the bi-gram c[s : i]c[i +
1:e](i—6 < s,e < i+6), if it matches
a word bigram; multiple features could
be generated.

Idiom. We use the idiom list from (Sun
and Xu, 2011). If the current character
co and its surrounding context compose
an idiom, we generate a feature for cg of
its position in the idiom. For example, if
c_1cpcice is an idiom, we generate fea-
ture “Idiom-2” for cg.

The above features together with label bigrams
are fed to wapiti for training. The supervised base-
line model is created with the CTB-6 corpus with-
out the use of Wikipedia data.

3.3 Partial-label learning

The overall process of applying partial-label learn-
ing to Wikipedia data is shown in Algorithm 1.
Following (Jiang et al., 2013), we first train the
supervised baseline model, and use it to estimate
the potential contribution for each sentence in the
Wikipedia training data. We label the sentence
with the baseline model, and then compare the
labels with the constrained sausage. For each
character, a consistent label is defined as an ele-
ment in the constrained labels. For example, if
the constrained labels for a character are “SB”,
the label ‘S’ or ‘B’ is consistent but ‘I’ or ‘E’ is
not. The number of inconsistent labels for each
sentence is then used as its potential contribution
to the partial-label learning: higher number indi-
cates that the partial-labels for the sentence con-
tain more knowledge that the baseline system does
not integrate, and so have higher potential contri-
bution. The Wikipedia training sentences are then
ranked by their potential contribution, and the top
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Figure 2: Encoded knowledge: inconsistency ratio
and label reduction

K sentences together with their partial labels are
then added to the CTB-6 training data to build a
new model, using partial-label learning.* In our
experiments, we try six data points with K
100k, 200k, 300k, 400k, 500k, 600k. Figure 2
gives a rough idea of the knowledge encoded in
Wikipedia for these data points with inconsistency
ratio and label reduction. Inconsistency ratio is the
percentage of characters that have inconsistent la-
bels; and label reduction is the percentage of the
labels reduced in the full lattice.

We modify wapiti to implement the partial-label
learning as described in Section 2. Same as base-
line, L2 regularization is adopted.

Algorithm 1 Partial-label learning
1. Train supervised baseline model M
2. For each sentence x in Wiki-Train:

3. y «— Decode(x, Mp)

4. diff — Inconsistent(y, Y (, §))
5. ifdiff > 0:

6. C — CU (Y (x,7), diff)

7. Sort(C, diff, reverse)
8. Train model MP with CTB-6 and top K sen-
tences in C using partial-label learning

3.4 Constrained decode

Jiang et al. (2013) implement the constrained de-
code algorithm with perceptron. However, CRF
is generally believed to out-perform perceptron,
yet the comparison of CRF vs perceptron is out

“Knowledge is sparsely distributed in the Wikipedia data.
Using the Wikipedia data without the CTB-6 data for partial-
label learning does not necessarily guarantee convergence.
Also the CTB-6 training data helps to learn that certain la-
bel transitions, such as “B B” or “E E”, are not legal.
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of the scope of this paper. Thus for fair compar-
ison, we re-implement the constrained decode al-
gorithm with CRF.

Algorithm 2 shows the constrained decode im-
plementation. We first train the baseline model
with the CTB-6 data. We then use this baseline
model to run normal decode and constrained de-
code for each sentence in the Wikipedia training
set. If the normal decode and constrained decode
have different labels, we add the constrained de-
code together with the number of different labels
to the filtered Wikipedia training corpus. The fil-
tered Wikipedia training corpus is then sorted us-
ing the number of different labels, and the top K
sentences with constrained decoded labels are then
added to the CTB-6 training data for building a
new model using normal CRF.

Algorithm 2 Constrained decode
1. Train supervised baseline model M
2. For each sentence x in Wiki-Train:

3. y «— Decode(x, M)

4, 1) «— ConstrainedDecode(x, M)
5. diff < Difference(y, ¥)

6. if diff > 0O:

7. C — C U (y, diff)

8. Sort(C, diff, reverse)
9. Train model M/¢¢ with CTB-6 and top K sen-
tences in C using normal CRF

4 Evaluation on Wikipedia test set

In order to determine how well the models learn
the encoded knowledge (i.e. partial labels) from
the Wikipedia data, we first evaluate the mod-
els against the Wikipedia test set. The Wikipedia
test set, however, is only partially-labelled. Thus
the metric we use here is consistent label accu-
racy, similar to how we rank the sentences in Sec-
tion 3.3, defined as whether a predicted label for
a character is an element in the constrained la-
bels. Because partial labels are only sparsely dis-
tributed in the test data, a lot of characters receive
all four labels in the constrained sausage. Eval-
uating against characters with all four labels do
not really represent the models’ difference as it is
deemed to be consistent. Thus beyond evaluating
against all characters in the Wikipedia test set (re-
ferred to as Full measurement), we also evaluate
against characters that are only constrained with
less than four labels (referred to as Label mea-
surement). The Label measurement focuses on en-



coded knowledge in the test set and so can better
represent the model’s capability of learning from
the partial labels.

Results are shown in Figure 3 with the Full
measurement and in Figure 4 with the Label mea-
surement. The x axes are the size of Wikipedia
training data, as explained in Section 3.3. As
can be seen, both constrained decode and partial-
label learning perform much better than the base-
line supervised model that is trained from CTB-6
data only, indicating that both of them are learning
the encoded knowledge from the Wikipedia train-
ing data. Also we see the trend that the perfor-
mance improves with more data in training, also
suggesting the learning of encoded knowledge.
Most importantly, we see that partial-label learn-
ing consistently out-performs constrained decode
in all data points. With the Label measurement,
partial-label learning gives 1.7% or higher abso-
lute improvement over constrained decode across
all data points. At the data point of 600k, con-
strained decode gives an accuracy of 97.14%,
while partial-label learning gives 98.93% (base-
line model gives 87.08%). The relative gain (from
learning the knowledge) of partial-label learning
over constrained decode is thus 18% ((98.93 —
97.14)/(97.14 — 87.08)). These results suggest
that partial-label learning is more effective in
learning the encoded knowledge in the Wikipedia
data than constrained decode.

5 CTB evaluation

5.1 Model adaptation

Our ultimate goal, however, is to determine
whether we can leverage the encoded knowledge
in the Wikipedia data to improve the word seg-
mentation in CTB-6. We run our models against
the CTB-6 test set, with results shown in Fig-
ure 5. Because we have fully-labelled sentences
in the CTB-6 data, we adopt the F-measure as
our evaluation metric here. The baseline model
achieves 95.26% in F-measure, providing a state-
of-the-art supervised performance. Constrained
decode is able to improve on this already very
strong baseline performance, and we see the nice
trend of higher performance with more unlabeled
data for training, indicating that constrained de-
code is making use of the encoded knowledge in
the Wikipedia data to help CTB-6 segmentation.
When we look at the partial-label model, how-
ever, the results tell a totally different story.
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First, it actually performs worse than the base-
line model, and the more data added to train-
ing, the worse the performance is. In the previ-
ous section we show that partial-label learning is
more effective in learning the encoded knowledge
in Wikipedia data than constrained decode. So,
what goes wrong? We hypothesize that there is
an out-of-domain distribution bias in the partial la-
bels, and so the more data we add, the worse the
in-domain performance is. Constrained decode
actually helps to smooth out the out-of-domain
distribution bias by using the re-decoded labels
with the in-domain supervised baseline model.
For example, both the baseline model and con-
strained decode correctly give the segmentation
“Seft/ 1 s/ AN/ HE K/ /M, while partial-
label learning gives incorrect segmentation ‘4
BT 138 f/ A5 1HE K12 187, Looking at the
Wikipedia training data, HE7K is tagged as an en-
tity 13 times; and %3 #{F /K, although occurs 13
times in the data, is never tagged as an entity.
Partial-label learning, which focuses on the tagged
entities, thus overrules the segmentation of %3
7K. Constrained decode, on the other hand, by us-
ing the correctly re-decoded labels from the base-
line model, observes enough evidence to correctly
segment £ HE7K as a word.

To smooth out the out-of-domain distribution
bias, we experiment with two approaches: model
interpolation and EasyAdapt (Daumé 111, 2007).

5.1.1 Model interpolation

We linearly interpolate the model of partial-label
learning MP" with the baseline model M to create
the final model M ﬁl, as shown in Equation 7. The
interpolation weight is optimized via a grid search
between 0.0 and 1.0 with a step of 0.1, tuned on
the CTB-6 development set. Again we modify
wapiti so that it takes two models and an interpo-
lation weight as input. For each model it creates
a search lattice with posteriors, and then linearly
combines the two lattices using the interpolation
weight to create the final search space for decod-
ing. As shown in Figure 5, model Mﬁl consis-
tently out-performs constrained decode in all data
points. We also see the trend of better performance
with more training data.

MP' = Xx My + (1 — X) % MP (7)

96

5.1.2 EasyAdapt

EasyAdapt is a straightforward technique but has
been shown effective in many domain adaptation
tasks (Daumé III, 2007). We train the model
Mé’é with feature augmentation. For each out-of-
domain training instance < x,,¥y, >, where x,
is the input features and y, is the (partial) labels,
we copy the features and file them as an additional
feature set, and so the training instance becomes <
Zo, Lo, Yo >. The in-domain training data remains
the same. Consistent with (Daumé III, 2007),
EasyAdapt gives us the best performance, as show
in Figure 5. Furthermore, unlike in (Jiang et al.,
2013) where they find a plateau, our results show
no harm adding more training data for partial-label
learning when integrated with domain adaptation,
although the performance seems to saturate after
400k sentences.

Finally, we search for the parameter setting of
best performance on the CTB-6 development set,
which is to use EasyAdapt with K = 600k sen-
tences of Wikipedia data. With this setting, the
performance on the CTB-6 test set is 95.98%
in F-measure. This is 0.72% absolute improve-
ment over supervised baseline (corresponding to
15.19% relative error reduction), and 0.33% ab-
solute improvement over constrained decode (cor-
responding to 7.59% relative error reduction); the
differences are both statistically significant (p <
0.001).° As a note, this result out-performs (Sun
and Xu, 2011) (95.44%) and (Wang et al., 2011)
(95.79%), and the differences are also statistically
significant (p < 0.001).

5.2 Analysis with examples

To better understand why partial-label learning is
more effective in learning the encoded knowledge,
we look at cases where My and M°? have the in-
correct segmentation while /P (and its domain
adaptation variance Mﬁl and MP!) have the cor-
rect segmentation. We find that the majority is
due to the error in re-decoded labels outside of en-
coded knowledge. For example, M and M give
the segmentation “}i =/ A/ B/1G/6.9/ 27, yet the
correct segmentation given by partial-label learn-
ing is “E/ /B IK/6.9/ 2. Looking at the
Wikipedia training data, there are 38 tagged enti-
ties of H X, but there are another 190 mentions of

>Statistical significance is evaluated with z-test using the

standard deviation of /F * (1 — F')/N, where F is the F-

measure and N is the number of words.



H IX that are not tagged as an entity. Thus for con-
strained decode it sees 38 cases of “H\B [K\E”
and 190 cases of “H\S [K\S” in the Wikipedia
training data. The former comes from the encoded
knowledge while the latter comes from re-decoded
labels by the baseline model. The much bigger
number of incorrect labels from the baseline re-
decoding badly pollute the encoded knowledge.
This example illustrates that constrained decode
reinforces the errors from the baseline. On the
other hand, the training materials for partial-label
learning are purely the encoded knowledge, which
is not impacted by the baseline model error. In this
example, partial-label learning focuses only on the
38 cases of “H\B [K\E” and so is able to learn
that H [ is a word.

As a final remark, we want to make a point that,
although the re-decoded labels serve to smooth out
the distribution bias, the Wikipedia data is indeed
not the ideal data set for such a purpose, because
it itself is out of domain. The performance tends
to degrade when we apply the baseline model to
re-decode the out-of-domain Wikipedia data. The
errorful re-decoded labels, when being used to
train the model M<?, could lead to further er-
rors. For example, the baseline model M is able
to give the correct segmentation “H fi¥i/JG #% 14
in the CTB-6 test set. However, when it is ap-
plied to the Wikipedia data for constrained de-
code, for the seven occurrences of JL#F{f, three of
which are correctly labelled as “JG\B #%\I 4\E”,
but the other four have incorrect labels. The fi-
nal model M trained from these labels then
gives incorrect segmentation “P/Ti/2E 7=/ [P/ H
i/ TG 8% AR B/ 4H AT/ 5% in the CTB-
6 test set. On the other hand, model interpolation
or EasyAdapt with partial-label learning, focusing
only on the encoded knowledge and not being im-
pacted by the errorful re-decoded labels, performs
correctly in this case. For a more fair comparison
between partial-label learning and constrained de-
code, we have also plotted the results of model in-
terpolation and EasyAdapt for constrained decode
in Figure 5. As can be seen, they improve on con-
strained decode a bit but still fall behind the cor-
respondent domain adaptation approach of partial-
label learning.

6 Conclusion and future work

There is rich information encoded in online web
data. For example, punctuation and entity tags de-
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fine some word boundaries. In this paper we show
the effectiveness of partial-label learning in digest-
ing the encoded knowledge from Wikipedia data
for the task of Chinese word segmentation. Unlike
approaches such as constrained decode that use
the errorful re-decoded labels, partial-label learn-
ing provides a direct means to learn the encoded
knowledge. By integrating some domain adap-
tation techniques such as EasyAdapt, we achieve
an F-measure of 95.98% in the CTB-6 corpus, a
significant improvement from both the supervised
baseline and constrained decode. Our results also
beat (Wang et al., 2011) and (Sun and Xu, 2011).

In this research we employ a sausage constraint
to encode the knowledge for Chinese word seg-
mentation. However, a sausage constraint does
not reflect the legal label sequence. For exam-
ple, in Figure 1 the links between label ‘B’ and
label ‘S’, between ‘S’ and ‘E’, and between ‘E’
and ‘I’ are illegal, and can confuse the machine
learning. In our current work we solve this issue
by adding some fully-labelled data into training.
Instead we can easily extend our work to use a lat-
tice constraint by removing the illegal transitions
from the sausage. The partial-label learning stands
the same, by executing the forward-backward pro-
cess in the constrained lattice. In future work we
will examine partial-label learning with this more
enforced lattice constraint in depth.
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Abstract
Microblogs  have recently received
widespread interest from NLP re-
searchers. However, current tools for

Japanese word segmentation and POS
tagging still perform poorly on microblog
texts. We developed an annotated corpus
and proposed a joint model for over-
coming this situation. Our annotated
corpus of microblog texts enables not
only training of accurate statistical models
but also quantitative evaluation of their
performance. Our joint model with lexical
normalization handles the orthographic
diversity of microblog texts. We con-
ducted an experiment to demonstrate
that the corpus and model substantially
contribute to boosting accuracy.

1 Introduction

Microblogs, such as Twitter! and Weibo?, have re-
cently become an important target of NLP tech-
nology. Since microblogs offer an instant way of
posting textual messages, they have been given
increasing attention as valuable sources for such
actions as mining opinions (Jiang et al., 2011)
and detecting sudden events such as earthquake
(Sakaki et al., 2010).

However, many studies have reported that cur-
rent NLP tools do not perform well on microblog
texts (Foster et al., 2011; Gimpel et al., 2011). In
the case of Japanese text processing, the most se-
rious problem is poor accuracy of word segmen-
tation and POS tagging. Since these two tasks
are positioned as the fundamental step in the text
processing pipeline, their accuracy is vital for all
downstream applications.

Thttps://twitter.com
“https://www.weibo.com
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1.1 Development of annotated corpus

The main obstacle that makes word segmentation
and POS tagging in the microblog domain chal-
lenging is the lack of annotated corpora. Because
current annotated corpora are from other domains,
such as news articles, it is difficult to train models
that perform well on microblog texts. Moreover,
system performance cannot be evaluated quantita-
tively.

We remedied this situation by developing an an-
notated corpus of Japanese microblogs. We col-
lected 1831 sentences from Twitter and manually
annotated these sentences with word boundaries,
POS tags, and normalized forms of words (c.f.,
Section 1.2).

We, for the first time, present a comprehen-
sive empirical study of Japanese word segmenta-
tion and POS tagging on microblog texts by us-
ing this corpus. Specifically, we investigated how
well current models trained on existing corpora
perform in the microblog domain. We also ex-
plored performance gains achieved by using our
corpus for training, and by jointly performing lex-
ical normalization (c.f., Section 1.2).

1.2 Joint modeling with lexical normalization

Orthographic diversity in microblog texts causes a
problem when training a statistical model for word
segmentation and POS tagging. Microblog texts
frequently contain informal words that are spelled
in a non-standard manner, e.g., “oredi (already)”,
“b4 (before)”, and “talkin (talking)” (Han and
Baldwin, 2011). Such words, hereafter referred
to as ill-spelled words, are so productive that they
considerably increase the vocabulary size. This
makes training of statistical models difficult.

We address this problem by jointly conducting
lexical normalization. Although a wide variety
of ill-spelled words are used in microblog texts,
many can be normalized into well-spelled equiva-
lents, which conform to standard rules of spelling.

Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 99-109,
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A joint model with lexical normalization is able
to handle orthographic diversity by exploiting in-
formation obtainable from the well-spelled equiv-
alents.

The proposed joint model was empirically eval-
uated on the microblog corpus we developed. Our
experiment demonstrated that the proposed model
can perform word segmentation and POS tag-
ging substantially better than current state-of-the-
art models.

1.3 Summary

Contributions of this paper are the following:

e We developed a microblog corpus that en-
ables not only training of accurate models but
also quantitative evaluation for word segmen-
tation and POS tagging in the microblog do-
main.?

We propose a joint model with lexical nor-

malization for better handling of ortho-

graphic diversity in microblog texts. In par-
ticular, we present a new method of training
the joint model using a partially annotated

corpus (c.f., Section 7.4).

We, for the first time, present a comprehen-
sive empirical study of word segmentation
and POS tagging for microblogs. The experi-
mental results demonstrated that both the mi-
croblog corpus and joint model greatly con-
tributes to training accurate models for word
segmentation and POS tagging.

The remainder of this paper is organized as fol-
lows. Section 2 reviews related work. Section 3
discusses the task of lexical normalization and in-
troduces terminology. Section 4 presents our mi-
croblog corpus and results of our corpus analysis.
Section 5 presents an overview of our joint model
with lexical normalization, and Sections 6 and 7
provide details of the model. Section 8 presents
experimental results and discussions, and Section
9 presents concluding remarks.

2 Related Work

Researchers have recently developed various mi-
croblog corpora annotated with rich linguistic in-
formation. Gimpel et al. (2011) and Foster et
al. (2011) annotated English microblog posts with

3Please contact the first author for this corpus.
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POS tags. Han and Baldwin (2011) released a mi-
croblog corpus annotated with normalized forms
of words. A Chinese microblog corpus annotated
with word boundaries was developed for SIGHAN
bakeoff (Duan et al., 2012). However, there are
no microblog corpora annotated with word bound-
aries, POS tags, and normalized sentences.

There has been a surge of interest in lexical nor-
malization with the advent of microblogs (Han and
Baldwin, 2011; Liu et al., 2012; Han et al., 2012;
Wang and Ng, 2013; Zhang et al., 2013; Ling et
al., 2013; Yang and Eisenstein, 2013; Wang et al.,
2013). However, these studies did not address en-
hancing word segmentation.

Wang et al. (2013) proposed a method of joint
ill-spelled word recognition and word segmenta-
tion. With their method, informal spellings are
merely recognized and not normalized. Therefore,
they did not investigate how to exploit the infor-
mation obtainable from well-spelled equivalents
to increase word segmentation accuracy.

Some studies also explored integrating the lexi-
cal normalization process into word segmentation
and POS tagging (Ikeda et al., 2009; Sasano et al.,
2013). A strength of our joint model is that it uses
rich character-level and word-level features used
in state-of-the-art models of joint word segmenta-
tion and POS tagging (Kudo et al., 2004; Neubig
et al., 2011; Kaji and Kitsuregawa, 2013). Thanks
to these features, our model performed much bet-
ter than Sasano et al.’s system, which is the only
publicly available system that jointly conducts lex-
ical normalization, in the experiments (see Section
8). Another advantage is that our model can be
trained on a partially annotated corpus. Further-
more, we present a comprehensive evaluation in
terms of precision and recall on our microblog cor-
pus. Such an evaluation has not been conducted in
previous work due to the lack of annotated cor-

pora.*

3 Lexical Normalization Task

This section explains the task of lexical normal-
ization addressed in this paper. Since lexical nor-
malization is a relatively new research topic, there
are no precise definitions of a lexical normaliza-
tion task that are widely accepted by researchers.

*Very recently, Saito et al. (2014) conducted similar em-
pirical evaluation on microblog corpus. However, they used
biased dataset, in which every sentence includes at least one
ill-spelled words.



Table 1: Examples of our target ill-spelled words
and their well-spelled equivalents. Phonemes are
shown between slashes. English translations are
provided in parentheses.

Ill-spelled word Well-spelled equivalent
JUF % Isugee/ J 2\ /sugoi/ (great)
&% /modoro/ A 9 /modorou/ (going to return)

2 F VNN fumaiiii/ D F VY /umai/ (yummy)

Therefore, it is important to clarify our task setting
before discussing our joint model.

3.1 Target ill-spelled words

Many studies on lexical normalization have
pointed out that phonological factors are deeply
involved in the process of deriving ill-spelled
words. Xia et al. (2006) investigated a Chi-
nese chat corpus and reported that 99.2% of the
ill-spelled words were derived by phonetic map-
ping from well-spelled equivalents. Wang and
Ng (2013) analyzed 200 Chinese messages from
Weibo and 200 English SMS messages from the
NUS SMS corpus (How and Kan, 2005). Their
analysis revealed that most ill-spelled words were
derived from well-spelled equivalents based on
pronunciation similarity.

On top of these investigations, we focused on
ill-spelled words that are derived by phonologi-
cal mapping from well-spelled words by assum-
ing that such ill-spelled words are dominant in
Japanese microblogs as well. We also assume
that these ill-spelled words can be normalized into
well-spelled equivalents on a word-to-word basis,
as assumed in a previous study (Han and Baldwin,
2011). The validity of these two assumptions is
empirically assessed in Section 4.

Table 1 lists examples of our target ill-spelled
words, their well-spelled equivalents, and their
phonemes. The ill-spelled word in the first row
is formed by changing the continuous two vowels
from /oi/ to /ee/. This type of change in pronun-
ciation is often observed in Japanese spoken lan-
guage. The second row presents contractions. The
last vowel character “2” /u/ of the well-spelled
word is dropped. The third row illustrates word
lengthening. The ill-spelled word is derived by re-
peating the vowel character “V” /i/.

3.2 Terminology

We now introduce the terminology that will be
used throughout the remainder of this paper. The

term word surface form (or surface form for short)
is used to refer to the word form observed in an
actual text, while word normal form (or normal
form) refers to the normalized word form. Note
that surface forms of well-spelled words are al-
ways identical to their normal forms.

It is possible that the word surface form and nor-
mal form have distinct POS tags, although they are
identical in most cases. Take the ill-spelled word
F=A” /modoro/ as an example (the second row of
Table 1). According to the JUMAN POS tag set,’
POS of its surface form is CONTRACTED VERB,
while that of its normal form is VERB.® To handle
such a case, we strictly distinguish between these
two POS tags by referring to them as surface POS
tags and normal POS tags, respectively.

Given these terms, the tasks addressed in this
paper can be stated as follows. Word segmenta-
tion is a task of segmenting a sentence into a se-
quence of word surface forms, and POS tagging
is a task of providing surface POS tags. The task
of joint lexical normalization, word segmentation,
and POS tagging is to map a sentence into a se-
quence of quadruplets: word surface form, surface
POS tag, normal form, and normal POS tag.

4 Microblog Corpus

This section introduces our microblog corpus. We
first explain the process of developing the corpus
then present the results of our agreement study and
corpus analysis.

4.1 Data collection and annotation

The corpus was developed by manually annotating
text messages posted to Twitter.

The posts to be annotated were collected as fol-
lows. 171,386 Japanese posts were collected using
the Twitter API” on December 6, 2013. Among
these, 1000 posts were randomly selected then
manually split into sentences. As a result, we ob-
tained 1831 sentences as a source of the corpus.

Two human participants annotated the 1831
sentences with surface forms and surface POS
tags. Since much effort has already been done to
annotate corpora with this information, the anno-
tation process here follows the guidelines used to

Shttp://nlp.ist.i.kyoto-u.ac.jp/index.php?JUMAN

®In this paper, we use simplified POS tags for explana-
tion purposes. Remind that these tags are different from the
original ones defined in JUMAN POS tag set.

"https://stream.twitter.com/1.1/statuses/sample.json
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develop such corpora in previous studies (Kuro-
hashi and Nagao, 1998; Hashimoto et al., 2011).

The two participants also annotated ill-spelled
words with their normal forms and normal POS
tags. Although this paper targets only infor-
mal phonological variations (c.f:, Section 3),
other types of ill-spelled words were also anno-
tated to investigate their frequency distribution
in microblog texts. Specifically, besides infor-
mal phonological variations, spelling errors and
Twitter-specific abbreviations were annotated. As
a result, 833 ill-spelled words were identified (Ta-
ble 2). They were all annotated with normal forms
and normal POS tags.

4.2 Agreement study

We investigated the inter-annotator agreement to
check the reliability of the annotation. During the
annotation process, the two participants collabo-
ratively annotated around 90% of the sentences
(specifically, 1647 sentences) with normal forms
and normal POS tags, and elaborated an annota-
tion guideline through discussion. They then inde-
pendently annotated the remaining 184 sentences
(1431 words), which were used for the agreement
study. Our annotation guideline is shown in the
supplementary material.

We first explored the extent to which the
two participants agreed in distinguishing between
well-spelled words and ill-spelled words. For this
task, we observed Cohen’s kappa of 0.96 (almost
perfect agreement). This results show that it is
easy for humans to distinguish between these two
types of words.

Next, we investigated whether the two partici-
pants could give ill-spelled words with the same
normal forms and normal POS tags. For this pur-
pose, we regarded the normal forms and normal
POS tags annotated by one participant as goldstan-
dards and calculated precision and recall achieved
by the other participant. We observed moder-
ate agreement between the two participants: 70%
(56/80) precision and 73% (56/76) recall. We
manually analyzed the conflicted examples and
found that there were more than one acceptable
normal form in many of these cases. Therefore,
we would like to note that the precision and recall
reported above are rather pessimistic estimations.

4.3 Analysis

We conducted corpus analysis to confirm the fea-
sibility of our approach.
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Table 2: Frequency distribution over three types of
ill-spelled words in corpus.

Type Frequency
Informal phonological variation 804 (92.9%)
Spelling error 27 (3.1%)
Twitter-specific abbreviation 34 (3.9%)

Total 865 (100%)

Table 2 illustrates that phonological variations
constitute a vast majority of ill-spelled words in
Japanese microblog texts. In addition, analysis
of the 804 phonological variations showed that
793 of them can be normalized into single words.
These represent the validity of the two assump-
tions we made in Section 3.1.

We then investigated whether lexical normaliza-
tion can decrease the number of out-of-vocabulary
words. For the 793 ill-spelled words, we counted
how many of their surface forms and normal
forms were not registered in the JUMAN dictio-
nary.® The result suggests that 411 (51.8%) and
74 (9.3%) are not registered in the dictionary. This
indicates the effectiveness of lexical normalization
for decreasing out-of-vocabulary words.

5 Opverview of Joint Model

This section gives an overview of our joint model
with lexical normalization for accurate word seg-
mentation and POS tagging.

5.1 Lattice-based approach

A lattice-based approach has been commonly
adopted to perform joint word segmentation and
POS tagging (Jiang et al., 2008; Kudo et al., 2004;
Kaji and Kitsuregawa, 2013). In this approach, an
input sentence is transformed into a word lattice
in which the edges are labeled with surface POS
tags (Figure 1). Given such a lattice, word seg-
mentation and POS tagging can be performed at
the same time by traversing the lattice. A discrim-
inative model is typically used for the traversal.

An advantage of this approach is that, while the
lattice can represent an exponentially large num-
ber of candidate analyses, it can be quickly tra-
versed using dynamic programming (Kudo et al.,
2004; Kaji and Kitsuregawa, 2013) or beam search
(Jiang et al., 2008). In addition, a discriminative
model allows the use of rich word-level features
to find the correct analysis.

8http://nlp.ist.i.kyoto-u.ac.jp/index. php?JUMAN



Input sentence: B R ARIZ{EL> (To live in Tokyo metropolis)
Word lattice:

Noun

Suffix

Particle

Figure 1: Example lattice (Kudo et al., 2004; Kaji
and Kitsuregawa, 2013). Circle and arrow repre-
sent node and edge, respectively. Bold edges rep-
resent correct analysis.

Input sentence: Zi&4 M A13% (Not to understand English)

Word lattice:
Noun Noun Suffix Particle
(358, Noun)  (FN3X, Noun) (%ALY, Suffix) (43, Particle)
\ o ) A

Verb
(I HMB, Verb)

Suffix
(%20, Suffix)

.

\
\

M v v
Normalized sentence: & tHHM i ALY

Figure 2: Lattice used to perform joint task. Nor-
mal forms and normal POS tags are shown in
parentheses. As indicated by dotted arrows, nor-
malized sentence can be obtained by concatenat-
ing normal forms associated with edges in correct
analysis.

We propose extending the lattice-based ap-
proach to jointly perform lexical normalization,
word segmentation, and POS tagging. We trans-
form an input sentence into a word lattice in which
the edges are labeled with not only surface POS
tags but normal forms and normal POS tags (Fig-
ure 2). By traversing such a lattice, the three
tasks can be performed at the same time. This ap-
proach can not only exploit rich information ob-
tainable from word normal forms, but also achieve
efficiency similar to the original lattice-based ap-
proach.

5.2 Issues

Issues on how to develop this lattice-based ap-
proach is detailed in Sections 6 and 7.

Section 6 describes how to generate a word lat-
tice from an input sentence. This is done us-
ing a hybrid approach that combines a statistical
model and normalization dictionary. The normal-
ization dictionary is specifically a list of quadru-
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Table 3: Normalization dictionary. Columns rep-
resent entry ID, surface form, surface POS, normal
form, and normal POS, respectively.

ID Surf. Surf. POS Norm. Norm. POS
A TV ADIJECTIVE J U ADIECTIVE
B Tz ADIECTIVE 92V ADJECTIVE
C KA VERB A9 VERB
D RBA CONTR. VERB =5 9 VERB
E 2Fwn ADJECTIVE 9 F\  ADIECTIVE
F 9 FWV U ADIECTIVE 9 F\) ADIECTIVE
Table 4: Tag dictionary.

ID Surf. form Surf. POS

a F T\ (great) ADIECTIVE

b J®A 9 (going toreturn) VERB

c =5 (gonna return) CONTR. VERB

d 2 F 1 (yummy) ADJECTIVE

plets: word surface form, surface POS tag, normal
form, and normal POS tag (Table 3).

Section 7 describes a discriminative model for
the lattice traversal. Our feature design as well as
two training methods are presented.

6 Word Lattice Generation

In this section, we first describe a method of con-
structing a normalization dictionary then present a
method of generating a word lattice from an input
sentence.

6.1 Construction of normalization dictionary

Although large-scale normalization dictionaries
are difficult to obtain, tag dictionaries, which list
pairs of word surface forms and their surface POS
tags (Table 4), are widely available in many lan-
guages including Japanese. Therefore, we use an
existing tag dictionary to construct the normaliza-
tion dictionary.

Due to space limitations, we give only a brief
overview of our construction method, omitting its
details. We note that our method uses hand-crafted
rules similar to those used in (Sasano et al., 2013);
hence, the proposal of this method is not an im-
portant contribution. To make our experimental
results reproducible, our normalization dictionary,
as well as a tool for constructing it, is released as
supplementary material.

Our method of constructing the normalization
dictionary takes three steps. The following ex-
plains each step using Tables 3 and 4 as running
examples.



Step 1 A tag dictionary generally contains a
small number of ill-spelled words, although well-
spelled words constitute a vast majority. We iden-
tify such ill-spelled words by using a manually-
tailored list of surface POS tags indicative of in-
formal spelling (e.g., CONTRACTED VERB). For
example, entry (c) in Table 4 is identified as an
ill-spelled word in this step.

Step 2 The tag dictionary is augmented with
normal forms and normal POS tags to construct
a small normalization dictionary. For ill-spelled
words identified in step 1, the normal forms and
normal POS tags are determined by hand-crafted
rules. For example, the normal form is derived by
appending the vowel character “ 9 /u/ to the sur-
face form, if the surface POS tag is CONTRACTED
VERB. This rule derives entry (D) in Table 3 from
entry (c) in Table 4. For well-spelled words, on
the other hand, the normal forms and normal POS
tags are simply set the same as the surface forms
and surface POS tags. For example, entries (A),
(C), and (E) in Table 3 are generated from entries
(a), (b), and (d) in Table 4, respectively.

Step 3 Because the normalization dictionary
constructed in step 2 contains only a few ill-
spelled words, it is expanded in this step. For this
purpose, we use hand-crafted rules to derive ill-
spelled words from the entries already registered
in the normalization dictionary. Some rules are
taken from (Sasano et al., 2013), while the others
are newly tailored. In Table 3, for example, entry
(B) is derived from entry (A) by applying the rule
that substitutes “Z V" /goi/ with “IF %.” /geel.

A small problem that arises in step 3 is how to
handle lengthened words, such as entry (F) in Ta-
ble 3. While lengthened words can be easily de-
rived using simple rules (Brody and Diakopoulos,
2011; Sasano et al., 2013), such rules infinitely
increase the number of entries because an unlim-
ited number of lengthened words can be derived
by repeating characters. To address this problem,
no lengthened words are added to the normaliza-
tion dictionary in step 3. We instead use rules
to skip repetitive characters in an input sentence
when performing dictionary match.

6.2 A hybrid approach

A word lattice is generated using both a statisti-
cal method (Kaji and Kitsuregawa, 2013) and the
normalization dictionary.
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We begin by generating a word lattice which en-
codes only word surface forms and surface POS
tags (c.f., Figure 1) using the statistical method
proposed by Kaji and Kitsuregawa (2013). Inter-
ested readers may refer to their paper for details.

Each edge in the lattice is then labeled with nor-
mal forms and normal POS tags. Note that a sin-
gle edge can have more than one candidate normal
form and normal POS tag. In such a case, new
edges are accordingly added to the lattice.

The edges are labeled with normal forms and
normal POS tags in the following manner. First,
every edge is labeled with a normal form and
normal POS tag that are identical with the sur-
face form and surface POS tag. This is based on
our observation that most words are well-spelled
ones. The edge is not provided with further nor-
mal forms and normal POS tags, if the normaliza-
tion dictionary contains a well-spelled word that
has the same surface form as the edge. Otherwise,
we allow the edge to have all pairs of normal forms
and normal POS tags that are obtained by using the
normalization dictionary.

7 Discriminative Lattice Traversal

This section explains a discriminative model for
traversing the word lattice. The lattice traversal
with a discriminative model can formally be writ-
ten as

(w,t,v,s) = argmax f(z,w,t,v,s)- 0.

(w,t,v,s)eL(x)

Here, x denotes an input sentence, w, t, v, and s
denote a sequence of word surface forms, surface
POS tags, normal forms, and normal POS tags, re-
spectively, £(x) represents a set of candidate anal-
yses represented by the word lattice, and f(-) and
0 are feature and weight vectors.

We now describe features, a decoding method,
and two training methods.

7.1 Features

We use character-level and word-level features
used for word segmentation and POS tagging in
(Kaji and Kitsuregawa, 2013). To take advan-
tage of joint model with lexical normalization, the
word-level features are extracted from not only
surface forms but also normal forms. See (Kaji
and Kitsuregawa, 2013) for the original features.
In addition, several new features are introduced
in this paper. We use the quadruplets (w;, t;, v;, $;)



and pairs of surface and normal POS tags (t;, s;)
as binary features to capture probable mappings
between ill-spelled words and their well-spelled
equivalents. We use another binary feature indi-
cating whether a quadruplet (w;, t;, v;, S;) 1S reg-
istered in the normalization dictionary. Also, we
use a bigram language model feature, which pre-
vents sentences from being normalized into un-
grammatical and/or incomprehensible ones. The
language model features are associated with nor-
malized bigrams, (v;—1,s;—1,;, S;), and take as
the values the logarithmic frequency log;q(f + 1),
where f represents the bigram frequency (Kaji and
Kitsuregawa, 2011). Since it is difficult to obtain
a precise value of f, it is approximated by the fre-
quency of the surface bigram, (w;_1,t;—1,w;, t;),
calculated from a large raw corpus automatically
analyzed using a system of joint word segmenta-
tion and POS tagging. See Section 8.1 for the raw
corpus and system used in the experiments.

7.2 Decoding

It is easy to find the best analysis (w,t,v,s)
among the candidates represented by the word lat-
tice. Although we use several new features, we
can still locate the best analysis by using the same
dynamic programming algorithm as in previous
studies (Kudo et al., 2004; Kaji and Kitsuregawa,
2013).

7.3 Training on a fully annotated corpus

It is straightforward to train the joint model pro-
vided with a fully annotated corpus, which is la-
beled with word surface forms, surface POS tags,
normal forms, and normal POS tags.

We use structured perceptron (Collins, 2002)
for the training (Algorithm 1). The training be-
gins by initializing @ as a zero vector (line 1).
It then reads the annotated corpus C (line 2-9).
Given a training example, (z,w,t,v,s) € C, the
algorithm locates the best analysis, (w,%,d, 3),
based on the current weight vector (line 4). If
the best analysis differs from the oracle analy-
sis, (w, t, v, s), the weight vector is updated (line
5-7). After going through the annotated corpus
m times (m=10 in our experiment), the averaged
weight vector is returned (line 10).

7.4 Training on a partially annotated corpus

Although the training with the perceptron algo-
rithm requires a fully annotated corpus, it is labor-
intensive to fully annotate sentences. This consid-
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Algorithm 1 Perceptron training

1: 80

2: fori=1... mdo

3:  for (z,w,t,v,s) € Cdo

4; (w,t,,8) — DECODING(z, 0)

5: if (w, t,v,8) # (w,t,0,5) then

6: 0<—0+f(‘r7w7t7v73)_f(x71i)7£71}7‘§)
7: end if

8:  end for

9: end for

10: return AVERAGE(O)

Algorithm 2 Latent perceptron training

1: 6 —0

2: fori=1... mdo

3:  for (z,w,t) € C' do

4; (w, £, 9, 8) — DECODING(z, 6)

5: (w,t,v,8) <« CONSTRAINEDDECODING(z, 0)
6: ifw # wort # t then

7: 0<—9+f(l',w,t,17,§)—f(l’,’(i},f,’{],é)
8: end if

9:  end for

10: end for

11: return AVERAGE(Q)

eration motivates us to explore training our model
with less supervision. We specifically explore us-
ing a corpus annotated with only word boundaries
and POS tags.

We use the latent perceptron algorithm (Sun et
al., 2013) to train the joint model from such a par-
tially annotated corpus (Algorithm 2). In this sce-
nario, a training example is a sentence x paired
with a sequence of word surface forms w and sur-
face POS tags t (c.f., line 3). Similarly to the
perceptron algorithm, we locate the best analy-
sis (w, t, 9, §) for a given training example, (line
4). We also locate the best analysis, (w,t,v,s),
among those having the same surface forms w and
surface POS tags t as the training example (line
5). If the surface forms and surface POS tags of
the former analysis differ from the annotations of
the training example, parameter is updated by re-
garding the latter analysis as an oracle (line 6-8).

8 Experiments

We conducted experiments to investigate how the
microblog corpus and joint model contribute to
improving accuracy of word segmentation and
POS tagging in the microblog domain.

8.1 Setting

We constructed the normalization dictionary from
the JUMAN dictionary 7.0.” While JUMAN dic-

*http://nlp.ist.i.kyoto-u.ac.jp/EN/index.php?JUMAN



tionary contains 750,156 entries, the normaliza-
tion dictionary contains 112,458,326 entries.

Some features taken from the previous study
(Kaji and Kitsuregawa, 2013) are induced using a
tag dictionary. For this we used two tag dictionar-
ies. One is JUMAN dictionary 7.0 and the other
is a tag dictionary constructed by listing surface
forms and surface POS tags in the normalization
dictionary.

To compute the language model features, one
billion sentences from Twitter posts were analyzed
using MeCab 0.996.!1° We used all bigrams ap-
pearing at least 10 times in the auto-analyzed sen-
tences.

8.2 Results of word segmentation and POS
tagging

We first investigated the performance of models
trained on an existing annotated corpus form news
texts. For this experiment, our joint model as
well as three state-of-the-art models (Kudo et al.,
2004)“(Neubig et al., 2011)12(Kaji and Kitsure-
gawa, 2013) were trained on Kyoto University
Text corpus 4.0 (Kurohashi and Nagao, 1998).
Since this training corpus is not annotated with
normal forms and normal POS tags, our model
was trained using the latent perceptron. Table
5 summarizes the word-level F;-scores (Kudo et
al., 2004) on our microblog corpus. The two
columns represent the results for word segmenta-
tion (Seg) and joint word segmentation and POS
tagging (Seg+Tag), respectively.

We also conducted 5-fold crossvalidation on
our microblog corpus to evaluate performance im-
provement when these models are trained on mi-
croblog texts (Table 6). In addition to the models
in Table 5, results of a rule-based system (Sasano
et al., 2013)"3 and our joint model trained using
the perceptron algorithm are also presented. No-
tice that Proposed and Proposed (latent) repre-
sent our model trained using perceptron and latent
perceptron, respectively.

From Tables 5 and 6, as expected, we see that
the models trained on news texts performed poorly
on microblog texts, while their performance sig-
nificantly boosted when trained on the microblog
texts. This demonstrates the importance of corpus
annotation. An exception was Kudo04. Its perfor-

"https://code.google.com/p/mecab
https://code.google.com/p/mecab
Phttp://www.phontron.com/kytea/
Bhttp://mlp.ist.i.kyoto-u.ac.jp/index.php?JUMAN
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Table 5: Performance of models trained on the
news articles.

Seg Seg+Tag
Kudo04 81.8 71.0
Neubigll 80.5 69.1
Kajil3 83.2 73.1
Proposed (latent) 83.0 73.9

mance improved only slightly, even when it was
trained on the microblog texts. We believe this is
because their model uses dictionary-based rules to
prune candidate analyses; thus, it could not per-
form well in the microblog domain, where out-of-
vocabulary words are abundant.

Table 6 also illustrates that our joint models
achieved Fj-score better than the state-of-the-art
models trained on the microblog texts. This
shows that modeling the derivation process of ill-
spelled words makes training easier. We con-
ducted bootstrap resampling (with 1000 samples)
to investigate the significance of the improvements
achieved with our joint model. The results showed
that all improvements over the baselines were sta-
tistically significant (p < 0.01). The difference
between Proposed and Proposed (latent) were
also statistically significant (p < 0.01).

The results of Proposed (latent) are interest-
ing. Table 5 illustrates that our joint model per-
forms well even when it is trained on a news cor-
pus that rarely contains ill-spelled words and is
not at all annotated with normal forms and nor-
mal POS tags. This indicates the robustness of our
training method and the importance of modeling
word derivation process in the microblog domain.
In Table 6, we observed that Proposed (latent),
which uses less supervision, performed better than
Proposed. The reason for this will be examined
later.

In summary, we can conclude that both the mi-
croblog corpus and joint model significantly con-
tribute to training accurate models for word seg-
mentation and POS tagging in the microblog do-
main.

8.3 Results of lexical normalization

While the main goal with this study was to en-
hance word segmentation and POS tagging in the
microblog domain, it is interesting to explore how
well our joint model can normalize ill-spelled
words.

Table 7 illustrates precision, recall, and Fi-
score for the lexical normalization task. To put



Table 6: Results of 5-fold cross-validation on mi-
croblog corpus.

Seg Seg+Tag
Kudo(4 82.7 71.7
Neubigll 88.6 75.9
Kajil3 90.9 82.1
Sasanol3 82.7 73.3
Proposed 91.3 83.2
Proposed (latent) 91.4 83.7

Table 7: Results of lexical normalization task in
terms of precision, recall, and F;-score.

Precision Recall Fi
Neubigll 69.2 359 473
Proposed 77.1 44.6 56.6
Proposed (latent) 53.7 247 339

the results into context, we report on the baseline
results of a tagging model proposed by Neubig et
al. (2011). This baseline conducts lexical normal-
ization by regarding it as two independent tagging
tasks (i.e., tasks of tagging normal forms and nor-
mal POS tags). The result of the baseline model is
also obtained using 5-fold crossvalidation.

Table 7 illustrates that Proposed performed sig-
nificantly better than the simple tagging model,
Neubigll. This suggests the effectiveness of our
joint model. On the other hand, Proposed (latent)
performed poorly in this task. From this result, we
can argue that Proposed (latent) can achieve su-
perior performance in word segmentation and POS
tagging (Table 6) because it gave up correctly nor-
malizing ill-spelled words, focusing on word seg-
mentation and POS tagging.

The experimental results so far suggest the fol-
lowing strategy for training our joint model. If ac-
curacy of word segmentation and POS tagging is
the main concern, we can use the latent percep-
tron. This approach has the advantage of being
able to use a partially annotated corpus. On the
other hand, if performance of lexical normaliza-
tion is crucial, we have to use the standard percep-
tron algorithm.

8.4 Error analysis

We manually analyzed erroneous outputs and ob-
served several tendencies.

We found that a word lattice sometimes missed
the correct output. Such an error was, for example,
observed in a sentence including many ill-spelled
words, e.g., ‘EFHDOHN, F¥=FU~<Z 1! (be
nervous about what other people think!)’, where
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the part ‘% =7~ U <~ A’ is in ill-spelled words.
Improving the lattice generation algorithm is con-
sidered necessary to achieve further performance
gain.

Even if the correct analysis appears in the word
lattice, our model sometimes failed to handle
ill-spelled words, incorrectly analyzing them as
out-of-vocabulary words. For example, the pro-
posed method treated the phrase ‘33<°27-—\ ip
(snack time)’ as a single out-of-vocabulary word,
even though the correct analysis was found in the
word lattice. More sophisticated features would
be required to accurately distinguish between ill-
spelled and out-of-vocabulary words.

9 Conclusion and Future Work

We presented our attempts towards developing an
accurate model for word segmentation and POS
tagging in the microblog domain. To this end, we,
for the first time, developed an annotated corpus
of microblogs. We also proposed a joint model
with lexical normalization to handle orthographic
diversity in the microblog text. Intensive exper-
iments demonstrated that we could successfully
improve the performance of word segmentation
and POS tagging on microblog texts. We believe
this study will have a large practical impact on a
various research areas that target microblogs.

One limitation of our approach is that it cannot
handle certain types of ill-spelled words. For ex-
ample, the current model cannot handle the cases
in which there are no one-to-one-mappings be-
tween well-spelled and ill-spelled words. Also,
our model cannot handle spelling errors, which
are considered relatively frequent in the microblog
than news domains. The treatment of these prob-
lems would require further research.

Another future research is to speed-up our
model. Since the joint model with lexical normal-
ization significantly increases the search space,
it is much slower than the original lattice-based
model for word segmentation and POS tagging.
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Abstract

Recent work has shown success in us-
ing continuous word embeddings learned
from unlabeled data as features to improve
supervised NLP systems, which is re-
garded as a simple semi-supervised learn-
ing mechanism. However, fundamen-
tal problems on effectively incorporating
the word embedding features within the
framework of linear models remain. In
this study, we investigate and analyze three
different approaches, including a new pro-
posed distributional prototype approach,
for utilizing the embedding features. The
presented approaches can be integrated
into most of the classical linear models in
NLP. Experiments on the task of named
entity recognition show that each of the
proposed approaches can better utilize the
word embedding features, among which
the distributional prototype approach per-
forms the best. Moreover, the combination
of the approaches provides additive im-
provements, outperforming the dense and
continuous embedding features by nearly
2 points of F1 score.

1 Introduction

Learning generalized representation of words is
an effective way of handling data sparsity caused
by high-dimensional lexical features in NLP sys-
tems, such as named entity recognition (NER)
and dependency parsing. As a typical low-
dimensional and generalized word representa-
tion, Brown clustering of words has been stud-
ied for a long time. For example, Liang (2005)
and Koo et al. (2008) used the Brown cluster
features for semi-supervised learning of various
NLP tasks and achieved significant improvements.

*Email correspondence.
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Recent research has focused on a special fam-
ily of word representations, named “word embed-
dings”. Word embeddings are conventionally de-
fined as dense, continuous, and low-dimensional
vector representations of words. Word embed-
dings can be learned from large-scale unlabeled
texts through context-predicting models (e.g., neu-
ral network language models) or spectral methods
(e.g., canonical correlation analysis) in an unsu-
pervised setting.

Compared with the so-called one-hot represen-
tation where each word is represented as a sparse
vector of the same size of the vocabulary and only
one dimension is on, word embedding preserves
rich linguistic regularities of words with each di-
mension hopefully representing a latent feature.
Similar words are expected to be distributed close
to one another in the embedding space. Conse-
quently, word embeddings can be beneficial for
a variety of NLP applications in different ways,
among which the most simple and general way is
to be fed as features to enhance existing supervised
NLP systems.

Previous work has demonstrated effectiveness
of the continuous word embedding features in sev-
eral tasks such as chunking and NER using gener-
alized linear models (Turian et al., 2010)." How-
ever, there still remain two fundamental problems
that should be addressed:

o Are the continuous embedding features fit for
the generalized linear models that are most
widely adopted in NLP?

e How can the generalized linear models better
utilize the embedding features?

According to the results provided by Turian et

!Generalized linear models refer to the models that de-
scribe the data as a combination of linear basis functions,
either directly in the input variables space or through some
transformation of the probability distributions (e.g., log-
linear models).
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al. (2010), the embedding features brought signif-
icantly less improvement than Brown clustering
features. This result is actually not reasonable be-
cause the expressing power of word embeddings
is theoretically stronger than clustering-based rep-
resentations which can be regarded as a kind of
one-hot representation but over a low-dimensional
vocabulary (Bengio et al., 2013).

Wang and Manning (2013) showed that linear
architectures perform better in high-dimensional
discrete feature space than non-linear ones,
whereas non-linear architectures are more effec-
tive in low-dimensional and continuous feature
space. Hence, the previous method that directly
uses the continuous word embeddings as features
in linear models (CRF) is inappropriate. Word
embeddings may be better utilized in the linear
modeling framework by smartly transforming the
embeddings to some relatively higher dimensional
and discrete representations.

Driven by this motivation, we present three
different approaches: binarization (Section 3.2),
clustering (Section 3.3) and a new proposed distri-
butional prototype method (Section 3.4) for better
incorporating the embeddings features. In the bi-
narization approach, we directly binarize the con-
tinuous word embeddings by dimension. In the
clustering approach, we cluster words based on
their embeddings and use the resulting word clus-
ter features instead. In the distributional prototype
approach, we derive task-specific features from
word embeddings by utilizing a set of automati-
cally extracted prototypes for each target label.

We carefully compare and analyze these ap-
proaches in the task of NER. Experimental results
are promising. With each of the three approaches,
we achieve higher performance than directly using
the continuous embedding features, among which
the distributional prototype approach performs the
best. Furthermore, by putting the most effective
two of these features together, we finally outper-
form the continuous embedding features by nearly
2 points of F1 Score (86.21% vs. 88.11%).

The major contribution of this paper is twofold.
(1) We investigate various approaches that can bet-
ter utilize word embeddings for semi-supervised
learning. (2) We propose a novel distributional
prototype approach that shows the great potential
of word embedding features. All the presented ap-
proaches can be easily integrated into most of the
classical linear NLP models.
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2 Semi-supervised Learning with Word
Embeddings

Statistical modeling has achieved great success
in most NLP tasks. However, there still remain
some major unsolved problems and challenges,
among which the most widely concerned is the
data sparsity problem. Data sparsity in NLP is
mainly caused by two factors, namely, the lack
of labeled training data and the Zipf distribution
of words. On the one hand, large-scale labeled
training data are typically difficult to obtain, espe-
cially for structure prediction tasks, such as syn-
tactic parsing. Therefore, the supervised mod-
els can only see limited examples and thus make
biased estimation. On the other hand, the nat-
ural language words are Zipf distributed, which
means that most of the words appear a few times
or are completely absent in our texts. For these
low-frequency words, the corresponding parame-
ters usually cannot be fully trained.

More foundationally, the reason for the above
factors lies in the high-dimensional and sparse lex-
ical feature representation, which completely ig-
nores the similarity between features, especially
word features. To overcome this weakness, an ef-
fective way is to learn more generalized represen-
tations of words by exploiting the numerous un-
labeled data, in a semi-supervised manner. After
which, the generalized word representations can
be used as extra features to facilitate the super-
vised systems.

Liang (2005) learned Brown clusters of
words (Brown et al., 1992) from unlabeled data
and use them as features to promote the supervised
NER and Chinese word segmentation. Brown
clusters of words can be seen as a generalized
word representation distributed in a discrete and
low-dimensional vocabulary space. Contextually
similar words are grouped in the same cluster. The
Brown clustering of words was also adopted in de-
pendency parsing (Koo et al., 2008) and POS tag-
ging for online conversational text (Owoputi et al.,
2013), demonstrating significant improvements.

Recently, another kind of word representation
named “word embeddings” has been widely stud-
ied (Bengio et al., 2003; Mnih and Hinton, 2008).
Using word embeddings, we can evaluate the sim-
ilarity of two words straightforward by comput-
ing the dot-product of two numerical vectors in the
Hilbert space. Two similar words are expected to



be distributed close to each other.?

Word embeddings can be useful as input to an
NLP model (mostly non-linear) or as additional
features to enhance existing systems. Collobert
et al. (2011) used word embeddings as input to a
deep neural network for multi-task learning. De-
spite of the effectiveness, such non-linear models
are hard to build and optimize. Besides, these ar-
chitectures are often specialized for a certain task
and not scalable to general tasks. A simple and
more general way is to feed word embeddings as
augmented features to an existing supervised sys-
tem, which is similar to the semi-supervised learn-
ing with Brown clusters.

As discussed in Section 1, Turian et al. (2010)
is the pioneering work on using word embedding
features for semi-supervised learning. However,
their approach cannot fully exploit the potential
of word embeddings. We revisit this problem
in this study and investigate three different ap-
proaches for better utilizing word embeddings in
semi-supervised learning.

3 Approaches for Utilizing Embedding
Features

3.1 Word Embedding Training

In this paper, we will consider a context-
predicting model, more specifically, the Skip-gram
model (Mikolov et al., 2013a; Mikolov et al.,
2013b) for learning word embeddings, since it is
much more efficient as well as memory-saving
than other approaches.

Let’s denote the embedding matrix to be learned
by Cyx n, where N is the vocabulary size and d is
the dimension of word embeddings. Each column
of C represents the embedding of a word. The
Skip-gram model takes the current word w as in-
put, and predicts the probability distribution of its
context words within a fixed window size. Con-
cretely, w is first mapped to its embedding v,, by
selecting the corresponding column vector of C'
(or multiplying C' with the one-hot vector of w).
The probability of its context word c is then com-
puted using a log-linear function:

ea:p(v;rvw)
ey exp(ve Tuy)

where V' is the vocabulary. The parameters 6 are
Vw,» V¢; for w,c € Vand ¢ = 1,...,d. Then, the

P(clhw; 0) = (1)

2The term similar should be viewed depending on the spe-
cific task.
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log-likelihood over the entire training dataset D
can be computed as:

JO)= > logp(clw;0)

(w,c)eD

2

The model can be trained by maximizing J(6).

Here, we suppose that the word embeddings
have already been trained from large-scale unla-
beled texts. We will introduce various approaches
for utilizing the word embeddings as features for
semi-supervised learning. The main idea, as in-
troduced in Section 1, is to transform the continu-
ous word embeddings to some relatively higher di-
mensional and discrete representations. The direct
use of continuous embeddings as features (Turian
et al., 2010) will serve as our baseline setting.

3.2 Binarization of Embeddings

One fairly natural approach for converting the
continuous-valued word embeddings to discrete
values is binarization by dimension.

Formally, we aim to convert the continuous-
valued embedding matrix Czx n, to another matrix
M« n which is discrete-valued. There are various
conversion functions. Here, we consider a sim-
ple one. For the i*" dimension of the word em-
beddings, we divide the corresponding row vector
C; into two halves for positive (C;4) and nega-
tive (C;_), respectively. The conversion function
is then defined as follows:

Uy, if Cij > mean(Ciy)
B_, if Ciyj < mean(C;-)
0,

Mij = ¢(Cij) =

otherwise

where mean(v) is the mean value of vector v, U,
is a string feature which turns on when the value
(Cj;) falls into the upper part of the positive list.
Similarly, B_ refers to the bottom part of the neg-
ative list. The insight behind ¢ is that we only con-
sider the features with strong opinions (i.e., posi-
tive or negative) on each dimension and omit the
values close to zero.

3.3 Clustering of Embeddings

Yu et al. (2013) introduced clustering embeddings
to overcome the disadvantage that word embed-
dings are not suitable for linear models. They sug-
gested that the high-dimensional cluster features
make samples from different classes better sepa-
rated by linear models.



In this study, we again investigate this ap-
proach. Concretely, each word is treated as a sin-
gle sample. The batch k-means clustering algo-
rithm (Sculley, 2010) is used,? and each cluster
is represented as the mean of the embeddings of
words assigned to it. Similarities between words
and clusters are measured by Euclidean distance.

Moreover, different number of clusters n con-
tain information of different granularities. There-
fore, we combine the cluster features of different
ns to better utilize the embeddings.

3.4 Distributional Prototype Features

We propose a novel kind of embedding features,
named distributional prototype features for su-
pervised models. This is mainly inspired by
prototype-driven learning (Haghighi and Klein,
2006) which was originally introduced as a pri-
marily unsupervised approach for sequence mod-
eling. In prototype-driven learning, a few pro-
totypical examples are specified for each target
label, which can be treated as an injection of
prior knowledge. This sparse prototype informa-
tion is then propagated across an unlabeled corpus
through distributional similarities.

The basic motivation of the distributional pro-
totype features is that similar words are supposed
to be tagged with the same label. This hypothesis
makes great sense in tasks such as NER and POS
tagging. For example, suppose Michael is a pro-
totype of the named entity (NE) type PER. Using
the distributional similarity, we could link similar
words to the same prototypes, so the word David
can be linked to Michael because the two words
have high similarity (exceeds a threshold). Using
this link feature, the model will push David closer
to PER.

To derive the distributional prototype features,
first, we need to construct a few canonical exam-
ples (prototypes) for each target annotation label.
We use the normalized pointwise mutual informa-
tion (NPMI) (Bouma, 2009) between the label and
word, which is a smoothing version of the standard
PMLI, to decide the prototypes of each label. Given
the annotated training corpus, the NPMI between
a label and word is computed as follows:

A(label, word)

An(label, word) = — Inp(label, word)

3)

3code.google.com/p/sofia-ml
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NE Type | Prototypes

B-PER Mark, Michael, David, Paul
I-PER Akram, Ahmed, Khan, Younis
B-ORG | Reuters, U.N., Ajax, PSV

I-ORG Newsroom, Inc, Corp, Party
B-LOC U.S., Germany, Britain, Australia
I-LOC States, Republic, Africa, Lanka
B-MISC | Russian, German, French, British
I-MISC Cup, Open, League, OPEN

0] ., », the, to

Table 1: Prototypes extracted from the CoNLL-
2003 NER training data using NPMI.

where,

p(label, word)

Alabel d) =1
({abel, word) np(label)p(word)

“4)

is the standard PML.

For each target label [ (e.g., PER, ORG, LOC),
we compute the NPMI of [ and all words in the
vocabulary, and the top m words are chosen as the
prototypes of [. We should note that the proto-
types are extracted fully automatically, without in-
troducing additional human prior knowledge.

Table 1 shows the top four prototypes extracted
from the NER training corpus of CoNLL-2003
shared task (Tjong Kim Sang and De Meul-
der, 2003), which contains four NE types, namely,
PER, ORG, LOC, and MISC. Non-NEs are denoted
by O. We convert the original annotation to the
standard BIO-style. Thus, the final corpus con-
tains nine labels in total.

Next, we introduce the prototypes as features to
our supervised model. We denote the set of pro-
totypes for all target labels by .S),. For each proto-
type z € Sp, we add a predicate proto = z, which
becomes active at each w if the distributional sim-
ilarity between z and w (DistSim(z,w)) is above
some threshold. DistSim(z,w) can be efficiently
calculated through the cosine similarity of the em-
beddings of z and w. Figure 1 gives an illustra-
tion of the distributional prototype features. Un-
like previous embedding features or Brown clus-
ters, the distributional prototype features are task-
specific because the prototypes of each label are
extracted from the training data.

Moreover, each prototype word is also its own
prototype (since a word has maximum similarity
to itself). Thus, if the prototype is closely related
to a label, all the words that are distributionally



ﬁ;} C{Q f(y,_,,¥;) = O AB-LOC
\O/ \ / f(Xi’yi)=
word = Hague
pos = NNP

proto = Britain ;A B-LOC

(0 N

[ | [ H |

N/ e/

Figure 1: An example of distributional prototype
features for NER.

proto = England

similar to that prototype are pushed towards that
label.

4 Supervised Evaluation Task

Various tasks can be considered to compare and
analyze the effectiveness of the above three ap-
proaches. In this study, we partly follow Turian
et al. (2010) and Yu et al. (2013), and take NER as
the supervised evaluation task.

NER identifies and classifies the named entities
such as the names of persons, locations, and orga-
nizations in text. The state-of-the-art systems typ-
ically treat NER as a sequence labeling problem,
where each word is tagged either as a BIO-style
NE or a non-NE category.

Here, we use the linear chain CRF model, which
is most widely used for sequence modeling in the
field of NLP. The CoNLL-2003 shared task dataset
from the Reuters, which was used by Turian et
al. (2010) and Yu et al. (2013), was chosen as
our evaluation dataset. The training set contains
14,987 sentences, the development set contains
3,466 sentences and is used for parameter tuning,
and the test set contains 3,684 sentences.

The baseline features are shown in Table 2.

4.1 Embedding Feature Templates

In this section, we introduce the embedding fea-
tures to the baseline NER system, turning the su-
pervised approach into a semi-supervised one.

Dense embedding features. The dense con-
tinuous embedding features can be fed directly to
the CRF model. These embedding features can
be seen as heterogeneous features from the exist-
ing baseline features, which are discrete. There is
no effective way for dense embedding features to
be combined internally or with other discrete fea-
tures. So we only use the unigram embedding fea-
tures following Turian et al. (2010). Concretely,
the embedding feature template is:

114

Baseline NER Feature Templates

00: wipg, —2< k<2

01: wipk 0o Wiy, —2<k <1

02: tisp, —2<k<2

03: ti—i—k o ti+k+17 —2 < k < 1

04: chkiyp, —2< k<2

05: Chki+k o Chkii_,_k_;,_l, —2 < k < 1

06: Prefir(witg,l),—2<k<2,1<[<4
07: Suffiz(witg, 1), —2<k<2,1<1<4
08: Type(wiyk), —2 < k <2

Unigram Features

y; 0 00 — 08

Bigram Features

Yi—1°0Yi

Table 2: Features used in the NER system. t is
the POS tag. chk is the chunking tag. Prefiz
and Suffiz are the first and last [ characters of a
word. Type indicates if the word is all-capitalized,
is-capitalized, all-digits, etc.

e dejix[d], =2 < k < 2, d ranges over the
dimensions of the dense word embedding de.

Binarized embedding features. The binarized
embedding feature template is similar to the dense
one. The only difference is that the feature val-
ues are discrete and we omit dimensions with zero
value. Therefore, the feature template becomes:

o bijii[d], =2 < k < 2, where bi;[d] # 0,
d ranges over the dimensions of the binarized
vector bi of word embedding.

In this way, the dimension of the binarized em-
bedding feature space becomes 2 x d compared
with the originally d of the dense embeddings.

Compound cluster features. The advantage of
the cluster features is that they can be combined
internally or with other features to form compound
features, which can be more discriminative. Fur-
thermore, the number of resulting clusters n can
be tuned, and different ns indicate different granu-
larities. Concretely, the compound cluster feature
template for each specific n is:

® Citk, -2 S k’ S 2.
® CitkOCiyk1,—2< k<L
® Ci—19Ci41.

Distributional prototype features. The set of
prototypes is again denoted by S),, which is de-



cided by selecting the top m (NPMI) words as pro-
totypes of each label, where m is tuned on the de-
velopment set. For each word w; in a sequence,
we compute the distributional similarity between
w; and each prototype in S, and select the proto-
types zs that DistSim(z,w) > 0. We set 6 = 0.5
without manual tuning. The distributional proto-
type feature template is then:

o {proto; =z | DistSim(w;;x,z) > 6 & z €
S, }.—2<k<2.

We only use the unigram features, since the
number of active distributional prototype features
varies for different words (positions). Hence,
these features cannot be combined effectively.

4.2 Brown Clustering

Brown clustering has achieved great success in
various NLP applications. At most time, it
provides a strong baseline that is difficult to
beat (Turian et al., 2010). Consequently, in our
study, we conduct comparisons among the embed-
ding features and the Brown clustering features,
along with further investigations of their combina-
tion.

The Brown algorithm is a hierarchical cluster-
ing algorithm which optimizes a class-based bi-
gram language model defined on the word clus-
ters (Brown et al., 1992). The output of the Brown
algorithm is a binary tree, where each word is
uniquely identified by its path from the root. Thus
each word can be represented as a bit-string with
a specific length.

Following the setting of Owoputi et al. (2013),
we will use the prefix features of hierarchical clus-
ters to take advantage of the word similarity in dif-
ferent granularities. Concretely, the Brown cluster
feature template is:

o beiyg, —2< k<2

o prefir(beiik,p), p € {2,4,6,..,16}, =2 <
k < 2. prefiz takes the p-length prefix of
the Brown cluster coding bc; .

S Experiments

5.1 Experimental Setting

We take the English Wikipedia until August 2012
as our unlabeled data to train the word embed-
dings.* Little pre-processing is conducted for the

‘download.wikimedia. org.
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training of word embeddings. We remove para-
graphs that contain non-roman characters and all
MediaWiki markups. The resulting text is tok-
enized using the Stanford tokenizer,’ and every
word is converted to lowercase. The final dataset
contains about 30 million sentences and 1.52 bil-
lion words. We use a dictionary that contains
212,779 most common words (frequency > 80) in
the dataset. An efficient open-source implementa-
tion of the Skip-gram model is adopted.® We ap-
ply the negative sampling’ method for optimiza-
tion, and the asynchronous stochastic gradient de-
scent algorithm (Asynchronous SGD) for parallel
weight updating. In this study, we set the dimen-
sion of the word embeddings to 50. Higher di-
mension is supposed to bring more improvements
in semi-supervised learning, but its comparison is
beyond the scope of this paper.

For the cluster features, we tune the number
of clusters n from 500 to 3000 on the develop-
ment set, and finally use the combination of n =
500, 1000, 1500, 2000, 3000, which achieves the
best results. For the distributional prototype fea-
tures, we use a fixed number of prototype words
(m) for each target label. m is tuned on the devel-
opment set and is finally set to 40.

We induce 1,000 brown clusters of words, the
setting in prior work (Koo et al., 2008; Turian et
al., 2010). The training data of brown clustering is
the same with that of training word embeddings.

5.2 Results

Table 3 shows the performances of NER on the
test dataset. Our baseline is slightly lower than
that of Turian et al. (2010), because they use
the BILOU encoding of NE types which outper-
forms BIO encoding (Ratinov and Roth, 2009).8
Nonetheless, our conclusions hold. As we can see,
all of the three approaches we investigate in this
study achieve better performance than the direct
use of the dense continuous embedding features.
To our surprise, even the binarized embedding
features (BinarizedEmb) outperform the continu-
ous version (DenseEmb). This provides clear evi-
dence that directly using the dense continuous em-
beddings as features in CRF indeed cannot fully

‘nlp.stanford.edu/software/tokenizer.
shtml.

®code.google.com/p/word2vec/.

"More details are analyzed in (Goldberg and Levy, 2014).

8We use BIO encoding here in order to compare with most
of the reported benchmarks.



] Setting \ F1 ‘
Baseline 83.43
+DenseEmbf 86.21
+BinarizedEmb 86.75
+ClusterEmb 86.90
+DistPrototype 87.44
+BinarizedEmb+ClusterEmb 87.56
+BinarizedEmb+DistPrototype 87.46
+ClusterEmb+DistPrototype 88.11
+Brown 87.49
+Brown+ClusterEmb 88.17
+Brown+DistPrototype 88.04
+Brown+ClusterEmb+DistPrototype | 88.58
Finkel et al. (2005) 86.86
Krishnan and Manning (2006) 87.24
Ando and Zhang (2005) 89.31
Collobert et al. (2011) 88.67

Table 3: The performance of semi-supervised
NER on the CoNLL-2003 test data, using vari-
ous embedding features. 7 DenseEmb refers to the
method used by Turian et al. (2010), i.e., the direct
use of the dense and continuous embeddings.

exploit the potential of word embeddings. The
compound cluster features (ClusterEmb) also out-
perform the DenseEmb. The same result is also
shown in (Yu et al., 2013). Further, the distribu-
tional prototype features (DistPrototype) achieve
the best performance among the three approaches
(1.23% higher than DenseEmb).

We should note that the feature templates used
for BinarizedEmb and DistPrototype are merely
unigram features. However, for ClusterEmb, we
form more complex features by combining the
clusters of the context words. We also consider
different number of clusters n, to take advantage
of the different granularities. Consequently, the
dimension of the cluster features is much higher
than that of BinarizedEmb and DistPrototype.

We further combine the proposed features to see
if they are complementary to each other. As shown
in Table 3, the cluster and distributional prototype
features are the most complementary, whereas the
binarized embedding features seem to have large
overlap with the distributional prototype features.
By combining the cluster and distributional pro-
totype features, we further push the performance
to 88.11%, which is nearly two points higher than
the performance of the dense embedding features
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(86.21%).°

We also compare the proposed features with
the Brown cluster features. As shown in Table 3,
the distributional prototype features alone achieve
comparable performance with the Brown clusters.
When the cluster and distributional prototype fea-
tures are used together, we outperform the Brown
clusters. This result is inspiring because we show
that the embedding features indeed have stronger
expressing power than the Brown clusters, as de-
sired. Finally, by combining the Brown cluster
features and the proposed embedding features, the
performance can be improved further (88.58%).
The binarized embedding features are not included
in the final compound features because they are al-
most overlapped with the distributional prototype
features in performance.

We also summarize some of the reported
benchmarks that utilize unlabeled data (with no
gazetteers used), including the Stanford NER tag-
ger (Finkel et al. (2005) and Krishnan and Man-
ning (2006)) with distributional similarity fea-
tures. Ando and Zhang (2005) use unlabeled data
for constructing auxiliary problems that are ex-
pected to capture a good feature representation of
the target problem. Collobert et al. (2011) adjust
the feature embeddings according to the specific
task in a deep neural network architecture. We
can see that both Ando and Zhang (2005) and Col-
lobert et al. (2011) learn task-specific lexical fea-
tures, which is similar to the proposed distribu-
tional prototype method in our study. We suggest
this to be the main reason for the superiority of
these methods.

Another advantage of the proposed discrete fea-
tures over the dense continuous features is tag-
ging efficiency. Table 4 shows the running time
using different kinds of embedding features. We
achieve a significant reduction of the tagging time
per sentence when using the discrete features. This
is mainly due to the dense/sparse battle. Al-
though the dense embedding features are low-
dimensional, the feature vector for each word is
much denser than in the sparse and discrete feature
space. Therefore, we actually need much more
computation during decoding. Similar results can
be observed in the comparison of the DistProto-
type and ClusterEmb features, since the density of
the DistPrototype features is higher. It is possible

?Statistical significant with p-value < 0.001 by two-tailed
t-test.



Setting \ Time (ms) / sent ‘

Baseline 1.04
+DenseEmb 4.75
+BinarizedEmb 1.25
+ClusterEmb 1.16
+DistPrototype 2.31

Table 4: Running time of different features on a
Intel(R) Xeon(R) E5620 2.40GHz machine.

to accelerate the DistPrototype, by increasing the
threshold of DistSim(z,w). However, this is in-
deed an issue of trade-off between efficiency and
accuracy.

5.3 Analysis

In this section, we conduct analyses to show the
reasons for the improvements.

5.3.1 Rare words

As discussed by Turian et al. (2010), much of the
NER F1 is derived from decisions regarding rare
words. Therefore, in order to show that the three
proposed embedding features have stronger abil-
ity for handling rare words, we first conduct anal-
ysis for the tagging errors of words with differ-
ent frequency in the unlabeled data. We assign the
word frequencies to several buckets, and evaluate
the per-token errors that occurred in each bucket.
Results are shown in Figure 2. In most cases, all
three embedding features result in fewer errors on
rare words than the direct use of dense continuous
embedding features.

Interestingly, we find that for words that are
extremely rare (0-256), the binarized embedding
features incur significantly fewer errors than other
approaches. As we know, the embeddings for the
rare words are close to their initial value, because
they received few updates during training. Hence,
these words are not fully trained. In this case,
we would like to omit these features because their
embeddings are not even trustable. However, all
embedding features that we proposed except Bi-
narizedEmb are unable to handle this.

In order to see how much we have utilized
the embedding features in BinarizedEmb, we cal-
culate the sparsity of the binarized embedding
vectors, i.e., the ratio of zero values in each
vector (Section 3.2). As demonstrated in Fig-
ure 3, the sparsity-frequency curve has good prop-
erties: higher sparsity for very rare words and
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very frequent words, while lower sparsity for mid-
frequent words. It indicates that for words that are
very rare or very frequent, BinarizedEmb just omit
most of the features. This is reasonable also for
the very frequent words, since they usually have
rich and diverse context distributions and their
embeddings cannot be well learned by our mod-
els (Huang et al., 2012).

Sparsity
0.65 0.70

0.60

0.55

0.50

T T T
256 1k 4k 16k 64k
Frequency of word in unlabeled data

Figure 3: Sparsity (with confidence interval) of the
binarized embedding vector w.r.t. word frequency
in the unlabeled data.

Figure 2(b) further supports our analysis. Bina-
rizedEmb also reduce much of the errors for the
highly frequent words (32k-64k).

As expected, the distributional prototype fea-
tures produce fewest errors in most cases. The
main reason is that the prototype features are task-
specific. The prototypes are extracted from the
training data and contained indicative information
of the target labels. By contrast, the other em-
bedding features are simply derived from general
word representations and are not specialized for
certain tasks, such as NER.

5.3.2 Linear Separability

Another reason for the superiority of the proposed
embedding features is that the high-dimensional
discrete features are more linear separable than
the low-dimensional continuous embeddings. To
verify the hypothesis, we further carry out experi-
ments to analyze the linear separability of the pro-
posed discrete embedding features against dense
continuous embeddings.

We formalize this problem as a binary classi-
fication task, to determine whether a word is an
NE or not (NE identification). The linear support
vector machine (SVM) is used to build the clas-
sifiers, using different embedding features respec-
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Figure 2: The number of per-token errors w.r.t. word frequency in the unlabeled data. (a) For rare words
(frequency < 2k). (b) For frequent words (frequency > 4k).

| Setting | Acc. | #features |
DenseEmb 95.46 250
BinarizedEmb 94.10 500
ClusterEmb 97.57 482,635
DistPrototype 96.09 1,700
DistPrototype-binary | 96.82 4,530

Table 5: Performance of the NE/non-NE classi-
fication on the CoNLL-2003 development dataset
using different embedding features.

tively. We use the LIBLINEAR tool (Fan et al.,
2008) as our SVM implementation. The penalty
parameter C' is tuned from 0.1 to 1.0 on the devel-
opment dataset. The results are shown in Table 5.
As we can see, NEs and non-NEs can be better
separated using ClusterEmb or DistPrototype fea-
tures. However, the BinarizedEmb features per-
form worse than the direct use of word embedding
features. The reason might be inferred from the
third column of Table 5. As demonstrated in Wang
and Manning (2013), linear models are more ef-
fective in high-dimensional and discrete feature
space. The dimension of the BinarizedEmb fea-
tures remains small (500), which is merely twice
the DenseEmb. By contrast, feature dimensions
are much higher for ClusterEmb and DistProto-
type, leading to better linear separability and thus
can be better utilized by linear models.

We notice that the DistPrototype features per-
form significantly worse than ClusterEmb in NE
identification. As described in Section 3.4, in
previous experiments, we automatically extracted
prototypes for each label, and propagated the in-
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formation via distributional similarities. Intu-
itively, the prototypes we used should be more ef-
fective in determining fine-grained NE types than
identifying whether a word is an NE. To verify
this, we extract new prototypes considering only
two labels, namely, NE and non-NE, using the
same metric in Section 3.4. As shown in the last
row of Table 5, higher performance is achieved.

6 Related Studies

Semi-supervised learning with generalized word
representations is a simple and general way of im-
proving supervised NLP systems. One common
approach for inducing generalized word represen-
tations is to use clustering (e.g., Brown clustering)
(Miller et al., 2004; Liang, 2005; Koo et al., 2008;
Huang and Yates, 2009).

Aside from word clustering, word embeddings
have been widely studied. Bengio et al. (2003)
propose a feed-forward neural network based lan-
guage model (NNLM), which uses an embedding
layer to map each word to a dense continuous-
valued and low-dimensional vector (parameters),
and then use these vectors as the input to predict
the probability distribution of the next word. The
NNLM can be seen as a joint learning framework
for language modeling and word representations.

Alternative models for learning word embed-
dings are mostly inspired by the feed-forward
NNLM, including the Hierarchical Log-Bilinear
Model (Mnih and Hinton, 2008), the recurrent
neural network language model (Mikolov, 2012),
the C&W model (Collobert et al., 2011), the log-
linear models such as the CBOW and the Skip-



gram model (Mikolov et al., 2013a; Mikolov et
al., 2013b).

Aside from the NNLMs, word embeddings can
also be induced using spectral methods, such as
latent semantic analysis and canonical correlation
analysis (Dhillon et al., 2011). The spectral meth-
ods are generally faster but much more memory-
consuming than NNLMs.

There has been a plenty of work that exploits
word embeddings as features for semi-supervised
learning, most of which take the continuous fea-
tures directly in linear models (Turian et al., 2010;
Guo et al., 2014). Yu et al. (2013) propose com-
pound k-means cluster features based on word em-
beddings. They show that the high-dimensional
discrete cluster features can be better utilized by
linear models such as CRF. Wu et al. (2013) fur-
ther apply the cluster features to transition-based
dependency parsing.

7 Conclusion and Future Work

This paper revisits the problem of semi-supervised
learning with word embeddings. We present three
different approaches for a careful comparison and
analysis. Using any of the three embedding fea-
tures, we obtain higher performance than the di-
rect use of continuous embeddings, among which
the distributional prototype features perform the
best, showing the great potential of word embed-
dings. Moreover, the combination of the proposed
embedding features provides significant additive
improvements.

We give detailed analysis about the experimen-
tal results. Analysis on rare words and linear sep-
arability provides convincing explanations for the
performance of the embedding features.

For future work, we are exploring a novel and a
theoretically more sounding approach of introduc-
ing embedding kernel into the linear models.
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Abstract

Punctuation prediction and disfluency pre-
diction can improve downstream natural
language processing tasks such as ma-
chine translation and information extrac-
tion. Combining the two tasks can poten-
tially improve the efficiency of the over-
all pipeline system and reduce error prop-
agation. In this work!, we compare var-
ious methods for combining punctuation
prediction (PU) and disfluency prediction
(DF) on the Switchboard corpus. We com-
pare an isolated prediction approach with
a cascade approach, a rescoring approach,
and three joint model approaches. For
the cascade approach, we show that the
soft cascade method is better than the hard
cascade method. We also use the cas-
cade models to generate an n-best list, use
the bi-directional cascade models to per-
form rescoring, and compare that with the
results of the cascade models. For the
joint model approach, we compare mixed-
label Linear-chain Conditional Random
Field (LCRF), cross-product LCRF and 2-
layer Factorial Conditional Random Field
(FCRF) with soft-cascade LCRF. Our re-
sults show that the various methods link-
ing the two tasks are not significantly dif-
ferent from one another, although they
perform better than the isolated predic-
tion method by 0.5-1.5% in the F1 score.
Moreover, the clique order of features also
shows a marked difference.

1 Introduction

The raw output from automatic speech recogni-
tion (ASR) systems does not have sentence bound-
!The research reported in this paper was carried out as

part of the PhD thesis research of Xuancong Wang at the NUS
Graduate School for Integrated Sciences and Engineering.
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aries or punctuation symbols. Spontaneous speech
also contains a significant proportion of disflu-
ency. Researchers have shown that splitting input
sequences into sentences and adding in punctua-
tion symbols improve machine translation (Favre
et al., 2008; Lu and Ng, 2010). Moreover, dis-
fluencies in speech also introduce noise in down-
stream tasks like machine translation and informa-
tion extraction (Wang et al., 2010). Thus, punc-
tuation prediction (PU) and disfluency prediction
(DF) are two important post-processing tasks for
automatic speech recognition because they im-
prove not only the readability of ASR output, but
also the performance of downstream Natural Lan-
guage Processing (NLP) tasks.

The task of punctuation prediction is to insert
punctuation symbols into conversational speech
texts. Punctuation prediction on long, unseg-
mented texts also achieves the purpose of sentence
boundary prediction, because sentence boundaries
are identified by sentence-end punctuation sym-
bols: periods, question marks, and exclamation
marks. Consider the following example,

How do you feel about the Viet Nam War ? Yeah ,
I saw that as well .

The question mark splits the sequence into two
sentences. This paper deals with this task which is
more challenging than that on text that has already
been split into sentences.

The task of disfluency prediction is to identify
word tokens that are spoken incorrectly due to
speech disfluency. There are two main types of

disfluencies: filler words and edit words. Filler
words mainly include filled pauses (e.g., ‘uh’,
‘um’) and discourse markers (e.g., “l mean”, “you

know”). As they are insertions in spontaneous
speech to indicate pauses or mark boundaries in
discourse, they do not convey useful content in-
formation. Edit words are words that are spoken
wrongly and then corrected by the speaker. For
example, consider the following utterance:

Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 121-130,
October 25-29, 2014, Doha, Qatar. (©2014 Association for Computational Linguistics



Edit
L T
I want a flight te-Bester uh I mean to Denver

Filler Repair

The phrase “to Boston” forms the edit region to be
replaced by “to Denver”. The words “uh I mean”
are filler words that serve to cue the listener about
the error and subsequent corrections.

The motivation of combining the two tasks can
be illustrated by the following two utterances:
femuh I am not going with you .
I am sorry . I am not going with you .

Notice that the bi-gram “I am” is repeated in
both sentences. For the first utterance, if punctu-
ation prediction is performed first, it might break
the utterance both before and after “uh” so that the
second-stage disfluency prediction will treat the
whole utterance as three sentences, and thus may
not be able to detect any disfluency because each
one of the three sentences is legitimate on its own.
On the other hand, for the second utterance, if dis-
fluency prediction is performed first, it might mark
“I am sorry” as disfluent in the first place and re-
move it before passing into the second-stage punc-
tuation prediction. Therefore, no matter which
task is performed first, certain utterances can al-
ways cause confusion.

There are many ways to combine the two tasks.
For example, we can perform one task first fol-
lowed by another, which is called the cascade ap-
proach. We can also mix the labels, or take the
cross-product of the labels, or use joint prediction
models. In this paper, we study the mutual influ-
ence between the two tasks and compare a variety
of common state-of-the-art joint prediction tech-
niques on this joint task.

In Section 2, we briefly introduce previous work
on the two tasks. In Section 3, we describe our
baseline system which performs punctuation and
disfluency prediction separately (i.e., in isolation).
In Section 4, we compare the soft cascade ap-
proach with the hard cascade approach. We also
examine the effect of task order, i.e., performing
which task first benefits more. In Section 5, we
compare the cascade approach with bi-directional
n-best rescoring. In Section 6, we compare the 2-
layer Factorial CRF (Sutton et al., 2007) with the
cross-product LCRF (Ng and Low, 2004), mixed-
label LCRF (Stolcke et al., 1998), the cascade ap-
proach, and the baseline isolated prediction. Sec-
tion 7 gives a summary of our overall findings.
Section 8 gives the conclusion.
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2 Previous Work

There were many works on punctuation prediction
or disfluency prediction as an isolated task. For
punctuation prediction, Huang and Zweig (2002)
used maximum entropy model; Christensen et al.
(2001) used finite state and multi-layer perceptron
method; Liu et al. (2005) used conditional ran-
dom fields; Lu and Ng (2010) proposed using dy-
namic conditional random fields for joint sentence
boundary type and punctuation prediction; Wang
et al. (2012) has added prosodic features for the
dynamic conditional random field approach and
Zhang et al. (2013) used transition-based parsing.

For disfluency prediction, Shriberg et al. (1997)
uses purely prosodic features to perform the task.
Johnson and Charniak (2004) proposed a TAG-
based (Tree-Adjoining Grammar) noisy channel
model. Maskey et al. (2006) proposed a phrase-
level machine translation approach for this task.
Georgila (2009) used integer linear programming
(ILP) which can incorporate local and global con-
straints. Zwarts and Johnson (2011) has inves-
tigated the effect of using extra language mod-
els as features in the reranking stage. Qian and
Liu (2013) proposed using weighted Max-margin
Markov Networks (M3N) to balance precision and
recall to further improve the F1-score. Wang et al.
(2014) proposed a beam-search decoder which in-
tegrates M3N and achieved further improvements.

There were also some works that addressed both
tasks. Liu et al. (2006) and Baron et al. (1998)
carried out sentence unit (SU) and disfluency pre-
diction as separate tasks. The difference between
SU prediction and punctuation prediction is only
in the non-sentence-end punctuation symbols such
as commas. Stolcke et al. (1998) mixed sen-
tence boundary labels with disfluency labels so
that they do not predict punctuation on disfluent
tokens. Kim (2004) performed joint SU and In-
terruption Point (IP) prediction, deriving edit and
filler word regions from predicted IPs using a rule-
based system as a separate step.

In this paper, we treat punctuation prediction
and disfluency prediction as a joint prediction task,
and compare various state-of-the-art joint predic-
tion methods on this task.



3 The Baseline System

3.1 Experimental Setup

We use the Switchboard corpus (LDC99T42) in
our experiment with the same train/develop/test
split as (Qian and Liu, 2013) and (Johnson and
Charniak, 2004). The corpus statistics are shown
in Table 1. Since the proportion of exclamation
marks and incomplete SU boundaries is too small,
we convert all exclamation marks to periods and
remove all incomplete SU boundaries (treat as no
punctuation). In the Switchboard corpus, the ut-
terances of each speaker have already been seg-
mented into short sentences when used in (Qian
and Liu, 2013; Johnson and Charniak, 2004). In
our work, we concatenate the utterances of each
speaker to form one long sequence of words for
use as the input to punctuation prediction and dis-
fluency prediction. This form of input where,
utterances are not pre-segmented into short sen-
tences, better reflects the real-world scenarios and
provides a more realistic test setting for punctu-
ation and disfluency prediction. Punctuation pre-
diction also gives rise to sentence segmentation in
this setting.

Data set train | develop test
# of tokens 1.3M | 859K | 65.5K
# of sentences 173.7K | 10.1K 7.9K
# of sequences* 1854 174 134
# of edit words 63.6K 47K 3.7K
# of filler words 137.1K 9.6K 7.3K
# of Commas 52.7K 1.8K 2.1K
# of Periods 97.6K 6.5K 4.5K
# of Questions 6.8K 363 407
# of Exclamations 67 4 1
# of Incomplete 189 2 0

Table 1: Corpus statistics for all the experiments.
*: each conversation produces two long/sentence-
joined sequences, one from each speaker.

Our baseline system uses M3N (Taskar et al.,
2004), one M3N for punctuation prediction and
the other for disfluency prediction. We use the
same set of punctuation and disfluency labels (as
shown in Table 2) throughout this paper. To com-
pare the various isolated, cascade, and joint pre-
diction models, we use the same feature templates
for both tasks as listed in Table 3. Since some of
the feature templates require predicted filler labels
and part-of-speech (POS) tags, we have trained a
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POS tagger and a filler predictor both using CRF
(i.e., using the same approach as that in Qian and
Liu (2013)). The same predicted POS tags and
fillers are used for feature extraction in all the
experiments in this paper for a fair comparison.
The degradation on disfluency prediction due to
the concatenation of utterances of each speaker
is shown in Table 4. The pause duration fea-
tures are extracted by running forced alignment
on the corresponding Switchboard speech corpus
(LDC97S62).

Task Label Meaning
. E edit word
Il))rl:;il;::;y F filler word
o otherwise / fluent
Comma comma
Punctuation | Period full-stop
prediction OMark question mark
None no punctuation

Table 2: Labels for punctuation prediction and dis-
fluency prediction.

3.2 Features

We use the standard NLP features such as
F(w_jwp="so that’), i.e., the word tokens at
the previous and current node position are
‘so’ and ‘that’ respectively. Each feature is
associated with a cliqgue order. For example,
since the clique order of this feature template
is 2 (see Table 3), its feature functions can be
f(w,lw():‘so that’,yO:‘F’,y,lz‘O’,t). The
example has a value of 1 only when the words
at node t — 1 and ¢ are ‘so that’, and the labels
at node ¢t and ¢t — 1 are ‘F’ and ‘O’ respectively.
The maximum length of the y history is called the
clique order of the feature (in this feature func-
tion, it is 2 since only g and y_; are covered).
The feature templates are listed in Table 3. w;
refers to the word at the i™ position relative to
the current node; window size is the maximum
span of words centered at the current word that
the template covers, e.g., w_jwy with a window
size of 9 means w_4w_3, W_3W_9, ..., W3W4; P;
refers to the POS tag at the i position relative
to the current node; w;~; refers to any word
from the " position to the j™ position relative to
the current node, this template can capture word
pairs which can potentially indicate a repair, e.g.,

“was ... is ...”, the speaker may have spoken any



word(s) in between and it is very difficult for the
standard n-gram features to capture all possible
variations; w; »p refers to the i non-filler word
with respect to the current position, this template
can extract n-gram features skipping filler words;
the multi-pair comparison function I(a,b,c,...)
indicates whether each pair (a and b, b and ¢, and

1998; Christensen et al., 2001) apart from pause
durations. However, since in this work we focus
on model-level comparison, we do not use other
prosodic features for simplicity.

3.3 Evaluation and Results

50 01.1) is identical, for example, if a= b#c=d, Experiment F1 F1
it will output “101” (‘1’ for being equal, ‘0’ (PU) | (DF)
for being unequal), this feature template can Short sentences, with preci-
capture consecutive word/POS repetitions which sion/recall balancing, clique or- NA | 847
can further improve upon the standard repetition der of features up to 3, and la- o )
features; and ngram-score features are the nat- bels {E, O}
ural logarithm of the following 8 probabilities: Short sentences, with preci-
P(w_g,w_g,w_1,wp), Plwo|lw_g,w_g,w_1), sion/recall balancing, clique or- NA. | 843
P(w_3,w_g9,w_1), P((/s)|w_3,w_2,w_1), der of features up to 3, and la- o '
P(w_3), P(w_2), P(w_1) and P(wg) (where bels {E,0}
“(/s)” denotes sentence-end). Join utterances into long sen- 711 | 792
tences
Feature Template Window| Clique Join utterances into long sen-
Size Order tences + remove precision/recall | 71.1 | 78.2
wo 9 1 balancing
W_1Wo 9 2 Join utterances into long sen-
W_2W_1Wo 9 2 tences + remove precision/recall
. . 68.5 | 76.4
Do 9 1 balancing + reduce clique order
P—1P0 9 2 of all features
i;jf:gf:, WW Lt ? ? Table 4: Baseline results showing the degradation
I(w;, w;) 21 ) py joinin.g.utterances into IF)ng sentences, remov-
I(w;, Wi, Wis1, w]+1) 21 ) mg precision/recall balancing, and reducmg. the
I(w;, ;) (w; if wi=w;) 21 ) chgue order of features. All models are trained
I(pi,p;) 21 3 using M3N.
I(p pj7p2+17pj+1) 21 3 .
I(pi, p;)(pi if pi=p;) 21 3 We use the standard F1 score as our evaluation
p_1wo 5 2 metric and this is similar to that in Qian and Liu
w_1po 3 2 (2013). For training, we set the frequency prun-
W_9 LFW_1 LF 1 2 ing threshold to 5 to control the number of pa-
W_3 LFW_9 tFW_1 LF 1 2 rameters. The regularization parameter is tuned
D9 £FD_14F 1 2 on the development set. Since the toolkits used
D3 4FD—24FD—14F 1 ) to run different experiments have slightly differ-
ngram-score features 1 3 ent limitations, in order to make fair comparisons
pause duration before w 1 3 across different toolkits, we do not use weighting
pause duration after wy 1 3 to balance precision and recall when training M3N
transitions 1 3 and we have reduced the clique order of transi-

Table 3: Feature templates for disfluency predic-
tion, or punctuation prediction, or joint prediction
for all the experiments in this paper.

The performance of the system can be fur-
ther improved by adding additional prosodic fea-
tures (Savova and Bachenko, 2003; Shriberg et al.,
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tion features to two and all the other features to
one in some of our experiments. Since the per-
formance of filler word prediction on this dataset
is already very high, (>97%), we only focus on
the F1 score of edit word prediction in this pa-
per when reporting the performance of disfluency
prediction. Table 4 shows our baseline results.
Our preliminary study shows the following gen-



eral trends: (i) for disfluency prediction: joining
utterances into long sentences will cause a 5-6%
drop in F1 score; removing precision/recall bal-
ance in M3N will cause about 1% drop in F1 score;
and reducing the clique order in Table 3 will cause
about 1-2% drop in F1 score; and (ii) for punctua-
tion prediction: removing precision/recall balance
in M3N will cause negligible drop in F1 score; and
reducing clique order will cause about 2—3% drop
in F1 score. Conventionally, the degradation from
reducing the clique orders can be mostly compen-
sated by using the BIES (Begin, Inside, End, and
Single) labeling scheme. In this work, for con-
sistency and comparability across various experi-
ments, we will stick to the same set of labels in
Table 2.

4 The Cascade Approach

Instead of decomposing the joint prediction of
punctuation and disfluency into two independent
tasks, the cascade approach considers one task to
be conditionally dependent on the other task such
that the predictions are performed in sequence,
where the results from the first step is used in the
second step. In this paper, we compare two types
of cascade: hard cascade versus soft cascade.

4.1 Hard Cascade

For the hard cascade, we use the output from the
first step to modify the input sequence before ex-
tracting features for the second step. For PU—DF
(PUnctuation prediction followed by DisFluency
prediction), we split the input sequence into sen-
tences according to the sentence-end punctuation
symbols predicted by the first step, and then per-
form the DF prediction on the short/sentence-split
sequences in the second step. For DF—PU, we
remove the edit and filler words predicted by the
first step, and then predict the punctuations using
the cleaned-up input sequence. The hard cascade
method may be helpful because the disfluency pre-
diction on short/sentence-split sequences is better
than on long/sentence-joined sequences (see the
second and third rows in Table 4). On the other
hand, the punctuation prediction on fluent text is
more accurate than that on non-fluent text based
on our preliminary study.

For this experiment, four models are trained
using M3N without balancing precision/recall.
For the first step, two models are trained on
long/sentence-joined sequences with disfluent to-
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kens - one for PU prediction and the other for DF
prediction. These are simply the isolated base-
line systems. For the second step, the DF predic-
tion model is trained on the short/sentence-split se-
quences with disfluent tokens while the PU predic-
tion model is trained on the long/sentence-joined
sequences with disfluent tokens removed. Note
that in the second step of DF—PU, punctuation la-
bels are predicted only for the fluent tokens since
the disfluent tokens predicted by the first step has
already been removed. Therefore, during evalua-
tion, if the first step makes a false positive by pre-
dicting a fluent token as an edit or filler, we set its
punctuation label to the neutral label, None. All
the four models are trained using the same feature
templates as shown in Table 3. The regularization
parameter is tuned on the development set.

4.2 Soft Cascade

For the soft cascade method, we use the labels pre-
dicted from the first step as additional features for
the second step. For PU—DEF, we model the joint
probability as:

P(DF,PU|x) = P(PU|x) x P(DF|PU,x) (1)

Likewise, we model the joint probability for
DF—PU as:

P(DF,PUJx) = P(DF|x) x P(PU|DF,x) (2)

For this experiment, four models are trained us-
ing M3N without balancing precision/recall. As
with the case of hard cascade, the two models
used in the first step are simply the isolated base-
line systems. For the second step, in addition to
the feature templates in Table 3, we also pass on
the labels (at the previous, current and next posi-
tion) predicted by the first step as three third-order-
clique features. We also tune the regularization pa-
rameter on the development set to obtain the best
model.

4.3 Experimental Results

Table 5 compares the performance of the hard
and soft cascade methods with the isolated base-
line systems. In addition, we have also included
the results of using the true labels in place of
the labels predicted by the first step to indicate
the upper-bound performance of the cascade ap-
proaches. The results show that both the hard and
soft cascade methods outperform the baseline sys-
tems, with the latter giving a better performance



Experiment F1 for PU | F1 for DF
isolated baseline 71.1 78.2
hard cascade 71.2 79.1
hard cascade

(using true labels) 726 83.5
soft cascade 71.6 79.6
soft cascade

(using true labels) 721 82.7

Table 5: Performance comparison between the
hard cascade method and the soft cascade method
with respect to the baseline isolated prediction.
All models are trained using M3N without balanc-
ing precision and recall.

(statistical significance at p=0.01). However, hard
cascade has a higher upper-bound than soft cas-
cade. This observation can be explained as fol-
lows.

For hard cascade, the input sequence is modi-
fied prior to feature extraction. Therefore, many
of the features generated by the feature templates
given in Table 3 will be affected by these modi-
fications. So, provided that the modifications are
based on the correct information, the resulting fea-
tures will not contain unwanted artefacts caused
by the absence of the sentence boundary informa-
tion for the presence of disfluencies. For exam-
ple, in “do you do you feel that it was worthy”,
the punctuation prediction system tends to insert a
sentence-end punctuation after the first “do you”
because the speaker restarts the sentence.

If the disfluency was correctly predicted in the
first step, then the hard cascade method would
have removed the first “do you” and eliminated
the confusion. Similarly, in “I 'm sorry . I 'm not
going with you tomorrow . ”, the first “I 'm”

m’” is
likely to be incorrectly detected as disfluent tokens
since consecutive repetitions are a strong indica-
tion of disfluency. In the case of hard cascade,
PU—DF, the input sequence would have been split
into sentences and the repetition feature would not
be activated. However, since the hard cascade
method has a greater influence on the features for
the second step, it is also more sensitive to the pre-
diction errors from the first step.

Another observation from Table 5 is that the
improvement of the soft cascade over the isolate
baseline is much larger on DF (1.4% absolute)
than that on PU (only 0.5% absolute). The same
holds true for the hard cascade, despite the fact
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that there are more DF labels than PU labels in this
corpus (see Table 1) and the first step prediction is
more accurate on DF than on PU. This suggests
that their mutual influence is not symmetrical, in
the way that the output from punctuation predic-
tion provides more useful information for disflu-
ency prediction than the other way round.

S The Rescoring Approach

In Section 4, we have described that the two tasks
can be cascaded in either order, i.e., PU—DF and
DF—PU. However, the performance of the sec-
ond step greatly depends on that of the first step.
In order to reduce sensitivity to the errors made
in the first step, one simple approach is to prop-
agate multiple hypotheses from the first step to
the second step to obtain a list of joint hypothe-
ses (with both the DF and PU labels). We then
rerank these hypotheses based on the joint proba-
bility and pick the best. We call this the rescoring
approach. From (1) and (2), the joint probabilities
can be expressed in terms of the probabilities gen-
erated by four models: P(PU|x), P(DF|PU,x),
P(DF|x), and P(PU|DF, x). We can combine the
four models to form the following joint probability
function for rescoring:

P(DF,PU|x) = P(DF|x)** x P(PU|DF,x)"2
x P(PU|x)"* x P(DF|PU, x)%

where a1, as, (1, and (B2 are used to weight
the relative importance between (1) and (2); and
between the first and second steps. In practice,
the probabilities are computed in the log domain
where the above expression becomes a weighted
sum of the log probabilities. A similar rescoring
approach using two models is described in Shi and
Wang (2007).

The experimental framework is shown in Fig-
ure 1. For PU—DF, we first use P(PU|x) to gen-
erate an n-best list. Then, for each hypothesis in
the n-best list, we use P(DF|PU, x) to obtain an-
other n-best list. So we have n?-best joint hy-
potheses. We do the same for DF—PU to ob-
tain another n?-best joint hypotheses. We rescore
the 2n2-best list using the four models. The four
weights a1, a9, (1, and (o are tuned to opti-
mize the overall F1 score on the development set.
We used the MERT (minimum-error-rate training,
(Och, 2003)) algorithm to tune the weights. We
also vary the size of n.



2 n-best

- PU-hypo-1 — P(DFPU,x) —
P(PU[x) - : .
Input L
S
equence ~ DF-hypo-1 — P(PU|DEx) —
P(DF[x) - : :

— DF-hypo-n

2 n’-best
 joint-hypo-1—

joint-hypo-2
: Rescore using:
a, -logP(PU|x)
—+a, - logP(DF|PU, x)
+pB; - logP(DF|x)
+, - logP(PU|DF, x)

— joint-hypo-1

joint-hypo-2

Figure 1: Illustration of the rescoring pipeline framework using the four M3N models used in the soft-
cascade method: P(PU|x), P(DF|PU, x), P(DF|x) and P(PU|DF, x)

The results shown in Table 6 suggest that the
rescoring method does not improve over the soft-
cascade baseline. This can be due to the fact that
we are using the same four models for the soft-
cascade and the rescoring methods. It may be
possible that the information contained in the two
models for the soft-cascade PU—DF mostly over-
laps with the information contained in the other
two models for the soft-cascade DF—PU since all
the four models are trained using the same fea-
tures. Thus, no additional information is gained
by combining the four models.

6 The Joint Approach

In this section, we compare 2-layer FCRF (Lu and
Ng, 2010) with mixed-label LCRF (Stolcke et al.,
1998) and cross-product LCRF on the joint predic-
tion task. For the 2-layer FCRF, we use punctua-
tion labels for the first layer and disfluency labels
for the second layer (see Table 2). For the mixed-
label LCRF, we split the neutral label {O} into
{Comma, Period, QMark, None} so that we have
six labels in total, {E, F, Comma, Period, QMark,
None}. In this approach, disfluent tokens do not
have punctuation labels because in real applica-
tions, if we just want to get the cleaned-up/fluent
text with punctuations, we do not need to predict
punctuations on disfluent tokens as they will be
removed during the clean-up process. Since this
approach does not predict punctuation labels on
disfluent tokens, its punctuation F1 score is only
evaluated on those fluent tokens. For the cross-
product LCRF, we compose each of the three dis-
fluency labels with the four punctuation labels to
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get 12 PU-DF-joint labels (Ng and Low, 2004).
Figure 2 shows a comparison of these three models
in the joint prediction of punctuation and disflu-
ency. All the LCRF and FCRF models are trained
using the GRMM toolkit (Sutton, 2006). We use
the same feature templates (Table 3) to generate
all the features for the toolkit. However, to reduce
the training time, we have set clique order to 2 for
the transitions and 1 for all other features. We tune
the Gaussian prior variance on the development set
for all the experiments to obtain the best model for
testing.

Table 7 shows the comparison of results. On
DF alone, the improvement of the cross-product
LCRF over the mixed-label LCRF, and the im-
provement of the mixed-label LCRF over the
isolated baseline are not statistically significant.
However, if we test the statistical significance on
the overall performance of both PU and DF, both
the 2-layer FCRF and the cross-product LCRF
perform better than the mixed-label LCRF. And
we also obtain the same conclusion as Stolcke
et al. (1998) that mixed-label LCRF performs
better than isolated prediction. However, for the
comparison between the 2-layer FCRF and the
cross-product LCRF, although the 2-layer FCRF
performs better than the cross-product LCRF on
disfluency prediction, it does worse on punctua-
tion prediction. Overall, the two methods perform
about the same, their difference is not statistically
significant. In addition, both the 2-layer FCRF
and the cross-product LCRF slightly outperform
the soft cascade method (statistical significance at
p=0.04).



Experiment F1 for PU F1 for DF
isolated baseline 71.1 78.2

soft-cascade 71.6 79.6

rescore n=1 71.5(72.5) | 79.3 (81.1)
rescore n=2 71.2 (73.0) 79.3 (81.8)
rescore n=3 71.2(73.3) 79.9 (82.6)
rescore n=4 71.2 (73.6) 79.8 (82.8)
rescore n=>5 71.2 (73.9) 79.4 (83.3)
rescore n=6 71.1 (74.0) 79.6 (83.5)
rescore n=8 71.2 (74.2) 79.8 (84.0)
rescore n=10 * 71.2(74.4) 79.8 (84.3)
rescore n=12 71.1 (74.5) 79.7 (84.6)
rescore n=15 71.2 (74.8) 79.8 (84.9)
rescore n=18 71.1(74.9) 79.7 (85.1)
rescore n=25 70.7 (75.2) 79.3 (85.5)

Table 6: Performance comparison between the
rescoring method and the soft-cascade method
with respect to the baseline isolated prediction.
The rescoring is done on 2n? hypotheses. All
models are trained using M3N without balancing
precision and recall. Figures in the bracket are the
oracle F1 scores of the 2n? hypotheses. *:on the
development set, the best overall result is obtained
atn = 10.

7 Discussion

In this section, we will summarise our observa-
tions based on the empirical studies that we have
conducted in this paper.

Firstly, punctuation prediction and disfluency
prediction do influence each other. The output
from one task does provide useful information that
can improve the other task. All the approaches
studied in this work, which link the two tasks
together, perform better than their corresponding

Experiment F1 for PU | F1 for DF
isolated baseline 68.7 77.0
soft cascade 69.0 77.5
mixed-label LCRF 69.0 717.2
cross-product LCRF 69.9 77.3
2-layer FCRF 69.2 77.8

Table 7: Performance comparison among 2-
layer FCREF, mixed-label LCRF and cross-product
LCREF, with respect to the soft-cascade and the iso-
lated prediction baseline. All models are trained
using GRMM (Sutton, 2006), with reduced clique
orders.

Ref:

Token:

(a)

Mixed-
label
LCRF

(b)

Cross-
product
LCRF

(c)

2-layer
FCRF
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edit

ﬁlxler
) -
it was n’t, you know , it was never announced .

it was n’t you  know it was

PU: None None  Period

None None Comma None Comma None

239385238

DF:

Figure 2: Illustration using (a) mixed-label LCRF;
(b) cross-product LCRF; and (c) 2-layer FCREF, for
joint punctuation (PU) and disfluency (DF) predic-
tion. Shaded nodes are observations and unshaded
nodes are variables to be predicted.

isolated prediction baseline.

Secondly, as compared to the soft cascade, the
hard cascade passes more information from the
first step into the second step, and thus is much
more sensitive to errors in the first step. In prac-
tice, unless the first step has very high accuracy,
soft cascade is expected to do better than hard cas-
cade.

Thirdly, if we train a model using a fine-grained
label set but test it on the same coarse-grained la-
bel set, we are very likely to get improvement. For
example:

o The edit word F1 for mixed edit and filler pre-
diction using {E, F, O} is better than that for
edit prediction using {E, O} (see the second
and third rows in Table 4). This is because the
former actually splits the O in the latter into
F and O. Thus, it has a finer label granularity.

Disfluency prediction using mixed-label
LCRF (using label set {E, F, Comma, Pe-
riod, Question, None}) performs better than
that using isolated LCRF (using label set {E,
F, 0}) (see the second and fourth rows in
Table 7). This is because the former dis-

never announced



tinguishes between different punctuations for
fluent tokens and thus has a finer label granu-
larity.

Both the cross-product LCRF and 2-layer
FCREF perform better than mixed-label LCRF
because the former two distinguish between
different punctuations for edit, filler and flu-
ent tokens while the latter distinguishes be-
tween different punctuations only for fluent
tokens. Thus, the former has a much finer la-
bel granularity.

From the above comparisons, we can see that
increasing the label granularity can greatly im-
prove the accuracy of a model. However, this
may also increase the model complexity dramat-
ically, especially when higher clique order is used.
Although the joint approach (2-layer FCRF and
cross-product LCRF) are better than the soft-
cascade approach, they cannot be easily scaled up
to using higher order cliques, which greatly limits
their potential. In practice, the soft cascade ap-
proach offers a simpler and more efficient way to
achieve a joint prediction of punctuations and dis-
fluencies.

8 Conclusion

In general, punctuation prediction and disfluency
prediction can improve downstream NLP tasks.
Combining the two tasks can potentially improve
the efficiency of the overall framework and mini-
mize error propagation. In this work, we have car-
ried out an empirical study on the various methods
for combining the two tasks. Our results show that
the various methods linking the two tasks perform
better than the isolated prediction. This means
that punctuation prediction and disfluency predic-
tion do influence each other, and the prediction
outcome in one task can provide useful informa-
tion that helps to improve the other task. Specifi-
cally, we compare the cascade models and the joint
prediction models. For the cascade approach, we
show that soft cascade is less sensitive to predic-
tion errors in the first step, and thus performs bet-
ter than hard cascade. For joint model approach,
we show that, when clique order of one is used, all
the three joint model approaches perform signifi-
cantly better than the isolated prediction baseline.
Moreover, the 2-layer FCRF and the cross-product
LCRF perform slightly better than the mix-label
LCRF and the soft-cascade approach, suggesting
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that modelling at a finer label granularity is po-
tentially beneficial. However, the soft cascade ap-
proach is more efficient than the joint approach
when a higher clique order is used.

Acknowledgments

This research is supported by the Singapore Na-
tional Research Foundation under its International
Research Centre @ Singapore Funding Initiative
and administered by the IDM Programme Office.

References

Don Baron, Elizabeth Shriberg, and Andreas Stolcke.
2002. Automatic punctuation and disfluency detec-
tion in multi-party meetings using prosodic and lex-
ical cues. In Proc. of ICSLP.

Heidi Christensen, Yoshihiko Gotoh, and Steve Re-
nals. 2001. Punctuation annotation using statisti-
cal prosody models. In ISCA Tutorial and Research
Workshop (ITRW) on Prosody in Speech Recognition
and Understanding.

Benoit Favre, Ralph Grishman, Dustin Hillard, Heng
Ji, Dilek Hakkani-Tur, and Mari Ostendorf. 2008.
Punctuating speech for information extraction. In
Proc. of ICASSP.

Kallirroi Georgila. 2009. Using integer linear pro-
gramming for detecting speech disfluencies. In
Proc. of NAACL.

Jing Huang and Geoffrey Zweig. 2002. Maximum en-
tropy model for punctuation annotation from speech.
In Proc. of INTERSPEECH.

Mark Johnson and Eugene Charniak. 2004. A TAG-
based noisy-channel model of speech repairs. In
Proc. of ACL.

Joungbum Kim. 2004. Automatic detection of sen-
tence boundaries, disfluencies, and conversational
fillers in spontaneous speech. Master dissertation of
University of Washington.

Yang Liu, Andreas Stolcke, Elizabeth Shriberg, and
Mary Harper. 2005. Using conditional random
fields for sentence boundary detection in speech. In
Proc. of ACL.

Yang Liu, Elizabeth Shriberg, Andreas Stolcke, Dustin
Hillard, Mari Ostendorf, and Mary Harper. 2006.
Enriching speech recognition with automatic detec-
tion of sentence boundaries and disfluencies. IEEE
Transactions on Audio, Speech, and Language Pro-
cessing, 14(5):1526-1540.

Wei Lu and Hwee Tou Ng. 2010. Better punctuation
prediction with dynamic conditional random fields.
In Proc. of EMNLP.



Sameer Maskey, Bowen Zhou, and Yuqing Gao. 2006.
A phrase-level machine translation approach for dis-
fluency detection using weighted finite state trans-
ducers. In Proc. of INTERSPEECH.

Hwee Tou Ng and Jin Kiat Low. 2004. Chi-
nese part-of-speech tagging: One-at-a-time or all-at-
once? Word-based or character-based? In Proc. of
EMNLP.

Franz Josef Och. 2003. Minimum error rate training in
statistical machine translation. In Proc. of ACL.

Xian Qian and Yang Liu. 2013. Disfluency detec-
tion using multi-step stacked learning. In Proc. of
NAACL.

Guergana Savova, Joan Bachenko. 2003. Prosodic fea-
tures of four types of disfluencies. In ISCA Tuto-
rial and Research Workshop on Disfluency in Spon-
taneous Speech.

Yanxin Shi and Mengqiu Wang. 2007. A dual-layer
CRFs based joint decoding method for cascaded seg-
mentation and labeling tasks. In Proc. of IJCAL

Elizabeth Shriberg, Rebecca Bates and Andreas Stol-
cke. 1997. A prosody-only decision-tree model for
disfluency detection. In Proc. of Eurospeech.

Elizabeth Shriberg, Andreas Stolcke, Daniel Jurafsky,
Noah Coccaro, Marie Meteer, Rebecca Bates, Paul
Taylor, Klaus Ries, Rachel Martin, and Carol Van
Ess-Dykema. 1998. Can prosody aid the auto-
matic classification of dialog acts in conversational
speech? In Language and speech 41, no. 3-4: 443-
492.

Andreas Stolcke, FElizabeth Shriberg, Rebecca A.
Bates, Mari Ostendorf, Dilek Hakkani, Madelaine
Plauche, Gokhan Tur, and Yu Lu. 1998. Auto-
matic detection of sentence boundaries and disfluen-
cies based on recognized words. In Proc. of ICSLP.

Charles Sutton. 2006. GRMM: GRaphical Models in
Mallet. http://mallet.cs.umass.edu/grmm/

Charles Sutton, Andrew McCallum, and Khashayar
Rohanimanesh. 2007. Dynamic conditional random
fields: factorized probabilistic models for labeling
and segmenting sequence data. In Journal of Ma-
chine Learning Research, 8: 693-723.

Ben Taskar, Carlos Guestrin, and Daphne Koller. 2004.
Max-margin Markov networks. In Proc. of NIPS.

Wen Wang, Gokhan Tur, Jing Zheng, and Necip Fazil
Ayan. 2010. Automatic disfluency removal for im-
proving spoken language translation. In Proc. of
ICASSP.

Xuancong Wang, Hwee Tou Ng, and Khe Chai Sim.
2012. Dynamic conditional random fields for joint
sentence boundary and punctuation prediction. In
Proc. of Interspeech.

130

Xuancong Wang, Hwee Tou Ng, and Khe Chai Sim.
2014. A beam-search decoder for disfluency detec-
tion. In Proc. of COLING.

Dongdong Zhang, Shuangzhi Wu, Nan Yang, and Mu
Li. 2013. Punctuation prediction with transition-
based parsing. In Proc. of ACL.

Simon Zwarts and Mark Johnson. 2011. The impact
of language models and loss functions on repair dis-
fluency detection. In Proc. of ACL.



Submodularity for Data Selection in Statistical Machine Translation

Katrin Kirchhoff
Department of Electrical Engineering
University of Washington
Seattle, WA, USA
kk2@u.washington.edu

Abstract

We introduce submodular optimization
to the problem of training data subset
selection for statistical machine translation
(SMT). By explicitly formulating data
selection as a submodular program, we ob-
tain fast scalable selection algorithms with
mathematical performance guarantees, re-
sulting in a unified framework that clarifies
existing approaches and also makes both
new and many previous approaches easily
accessible. We present a new class of
submodular functions designed specifically
for SMT and evaluate them on two differ-
ent translation tasks. Our results show that
our best submodular method significantly
outperforms several baseline methods,
including the widely-used cross-entropy
based data selection method. In addition,
our approach easily scales to large data sets
and is applicable to other data selection
problems in natural language processing.

1 Introduction

SMT has made significant progress over the last
decade, not least due to the availability of increas-
ingly larger data sets. Large-scale SMT systems
are now routinely trained on millions of sentences
of parallel data, and billions of words of mono-
lingual data for language modeling. Large data
sets are often beneficial, but they do create certain
other problems. First, they place higher demands
on computational resources (storage and compute).
Hence, existing software infrastructure may need
to be adapted and optimized to handle such large
data sets. Second, experimental turn-around time
is increased as well, making it more difficult to
quickly train, fine-tune, and evaluate novel model-
ing approaches. Most importantly, however, SMT
performance does not increase linearly with the
training data size but levels off after a certain point.
This is because the additional training data may be
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noisy, irrelevant to the task at hand, or inherently
redundant. Thus, a linear increase in the amount of
training data typically leads to a sublinear increase
in performance, an effect known as diminishing
returns. Several recent papers (Bloodgood and
Callison-Burch, 2010; Turchi et al., 2012a; Turchi
et al., 2012b) have amply demonstrated this effect.

A way to counteract this is to perform data sub-
set selection, 1.e., choose a subset of the available
training data to optimize a particular quality cri-
terion. One scheme is to select a subset that ex-
presses as much of the information in the original
data set as possible - i.e., the data set should be
“summarized” by excluding redundant information.
Another scheme, popular in the context of SMT, is
to subselect the original training set to match the
properties of a particular test set.

In this paper, we introduce submodularity for
subselecting SMT training data, a methodology
that follows both of the above schemes.! Sub-
modular functions (Fujishige, 2005) are a class
of discrete set functions having the property of di-
minishing returns. They occur naturally in a wide
range of problems in a diverse set of fields includ-
ing economics, game theory, operations research,
circuit theory, and more recently machine learn-
ing. Submodular functions share certain properties
with convexity (e.g., naturalness and mathematical
tractability) although submodularity is still quite
distinct from convexity.

We present a novel class of submodular func-
tions particularly suited for SMT subselection and
evaluate it against state-of-the-art baseline meth-
ods on two different translation tasks, showing that
our method outperforms them significantly in most
cases. While many approaches to SMT data se-
lection have been developed previously (a detailed
overview is provided in Section 3), many of them
are heuristic and do not offer performance guaran-
tees. Certain previous approaches, however, have

! As far as we know, submodularity has not before been
explicitly utilized for SMT subset selection.
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inadvertently made use of submodular methods.
This, in addition to our own positive results, pro-
vides strong evidence that submodularity is a natu-
ral and practical framework for data subset selec-
tion in SMT and related fields.

An additional advantage of this framework is
that many submodular programs (e.g., the greedy
procedure reviewed in Section 2) are fast and
scalable to large data sets. By contrast, trying
to solve a submodular problem using, say, an
integer-linear programming (ILP) procedure,
would lead to impenetrable scalability problems.

r("U ((.'U

Initial value f(X) = 2 colors in urn. Initial value f(Y) = 3 colors in urn.
Updated value f(XU{v}) = 3 with Updated value f(YU{v}) = 3 with
added blue ball. added blue ball.

Figure 1: f(Y) measures the number of distinct col-
ors in the set of balls Y, and hence is submodular.

This paper makes several contributions: First, we
present a brief overview of submodular functions
(Section 2) and their potential application to natural
language processing (NLP). Next we review pre-
vious approaches to MT data selection (Section 3)
and analyze them with respect to their submodular
properties. We find that some previous approaches
are submodular in nature although this connection
was not heretofore made explicit. Section 4 details
our new approach. We discuss desirable properties
of an SMT data selection objective and present a
new class of submodular functions tailored towards
this problem. Section 5 presents the data and
systems used for the experiments, and results are
reported in Section 6. Section 7 then concludes.

2 Submodular Functions/Optimization

Submodular functions (Edmonds, 1970; Fujishige,
2005), are widely used in mathematics, economics,
circuit theory (Narayanan, 1997), and operations
research. More recently, they have attracted much
interest in machine learning (e.g., (Narasimhan
and Bilmes, 2004; Kolmogorov and Zabih, 2004;
Krause et al., 2008; Krause and Guestrin, 2011;
Jegelka and Bilmes, 2011; Iyer and Bilmes, 2013)),
where they have been applied to a variety of prob-
lems. In natural language and speech processing,
they have been applied to document summariza-
tion (Lin and Bilmes, 2011; Lin and Bilmes, 2012)
and speech data selection (Wei et al., 2013).

We are given a finite size-n set of objects V (i.e.,
|V| = n). A valuation function f: 2V — R, is de-
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fined that returns a non-negative real value for any
subset X C V. The function f is said to be submodu-
lar if it satisfies the property of diminishing returns:
namely, for all X C Y and v ¢ Y, we must have:

FXUPH - fX) =y u{vh) - ). @

This means that the incremental value (or gain) of
element v decreases when the context in which v
is considered grows from X to Y O X. We define
the “gain” as f(v|X) £ f(XU{v}) — f(X). Hence,
f is submodular if f(v|X) > f(v|Y). We note that
a function m : 2¥ — R, is said to be modular
if it satisfies the above with equality, meaning
m(v|X) =m(|Y) foral X CY CV\{v}. Ifm
is modular and m(@) = 0, it can be written as
m(X) = Y ex m(x) and, moreover, is seen simply
as a n-dimensional vector m € RY.

As an example, suppose we have a set V of balls
and f(X) counts the number of colors present
in any subset X C V. In Figure 1, |[X| =5 and
fX)=2,|Y|=7and f(Y) =3, and X C Y.
Adding v (a blue ball) to X has a unity gain
f(v|X) = 1 but since a blue ball exists in ¥, we
have f(v|Y) =0 < f(v|X) = 1.

Submodularity is a natural model for data subset
selection in SMT. In this case, each v € V is a
distinct training data sentence and V corresponds
to a training set. An important characteristic of
any good model for this problem is that we wish
to decrease the “value” of a sentence v € V based
on how much that sentence has in common with
those sentences, say X, that have already been
chosen. The value f(v|X) of a given sentence
v in a context of previously chosen sentences
X C V further diminishes as the context grows
Y O X. When, for example, a sentence’s value is
represented as the value of its set of features (e.g.,
n-grams), it is natural for those features’ values to
be discounted based on how much representation
of those features already exists in a previously
chosen subset. This corresponds to submodularity,
which can easily be expressed mathematically by
functions such as Eqn. (4) below.

Not only are submodular functions natural for
SMT subset selection, they can also be optimized
efficiently and scalably such that the result has
mathematical performance guarantees. In the re-
mainder of this paper we will assume that f is not
only submodular, but also non-negative (f(X) >0
for all X), and monotone non-decreasing (f(X) <
f(Y) for all X CY). Such functions are trivial to
uselessly maximize, since f(V) is the largest possi-
ble valuation. Typically, however, we wish to have



Algorithm 1: The Greedy Algorithm

1 Input: Submodular function f:2¥ — R,
cost vector m, budget b, finite set V.

2 Qutput: X; where k is the number of
iterations.

3SetXp«—0;i<—0;

4 while m(X;) < b do

5 Choose v; as follows:

vi € {argmax,cy A0 |

6 Xis1 = XiU{vi}si—i+1;

a valuable subset of bounded and small cost, where
cost is measured based on a modular function m(X).
For example, the cost m(v) of a sentence v € V
might be its length, so m(X) = Y . cx m(x) is a sum
of sentence lengths. This leads to the following
optimization problem:

X* € argmax f(X), (2)
XCVm(X)<b

where b is a known budget. Solving this problem
exactly is NP-complete (Feige, 1998), and express-
ing it as an ILP procedure renders it impractical for
large data sizes. When f is submodular the cost is
just size (m(X) = |X|), then the simple greedy algo-
rithm (detailed below) will have a worst-case guar-
antee of f(X) > (1—1/€)f(Xop)) & 0.63f (Xop)
where X is the optimal and X™ is the greedy so-
lution (Nemhauser et al., 1978).

This constant factor guarantee has practical im-
portance. First, a constant factor guarantee stays
the same as n grows, so the relative worst-case qual-
ity of the solution is the same for small and for big
problem instances. Second, the worst-case result
is achieved only by very contrived and unrealistic
function instances — the typical case is almost al-
ways much better. Third, the worst-case guarantee
improves depending on the “curvature” k € [0, 1]
of the submodular function (Conforti and Cornue-
jols, 1984). When the submodular function is not
fully curved (x < 1, something true of the func-
tions used in this paper), the worst case guarantee
is better, namely < (1—e~¥) (e.g., a function f with
kK = 0.2 has a worst-case guarantee of 0.91). Lastly,
when the cost m is not just cardinality but an arbi-
trary non-negative modular function, a greedy al-
gorithm has similar guarantees (Sviridenko, 2004),
and a scalable variant has a worst-case guarantee
of 1 —1/4/e (Lin and Bilmes, 2010).

The basic greedy algorithm has a very simple
form. Starting with X < @, we repeat the operation
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X — X Uargmax,cy\x fg(ljg) until the budget is

exceeded (m(X) > b) and then backoff to the
previous iteration (complete details are given in
Algorithm 1). While the algorithm has complexity
O(n?), there is an accelerated instance of this
algorithm (Minoux, 1978; Leskovec et al., 2007)
that has empirical computational complexity of
O(nlogn) where n = |V|. The greedy algorithm,
therefore, scales practically to very large n.
Recently, still much faster (Wei et al., 2014) and
also parallel distributed (Mirzasoleiman et al.,
2013) greedy procedures have been advanced
offering still better scalability.

There are many submodular functions that
are appropriate for subset selection (Lin and
Bilmes, 2011; Lin and Bilmes, 2012). Some
of them are graph-based, where we are given a
non-negative weighted graph G = (V,E,w) and
w: E — Ry is a set of edge weights (i.e., w(x,y) is
a non-negative similarity score between sentences
x and y). A submodular function is obtained via
a graph cut function f(X) = Yiex yev\x W(x,)
or via a monotone truncated graph cut
function f(X) = Y,cymin(C,(X),aC,(V))
where o € (0,1) is a scalar parameter and
C(X) = Y,exw(v,x) is a v-specific modular
function. Alternatively, the class of facility loca-
tion functions f(X) = Y, cy maxyex w(x,v) have
been widely and successfully used in the field of
operations research, and are also applicable here.

In the worse case, the required graph construc-
tion has a worst-case complexity of O(n?). While
sparse graphs can be used, this can be prohibitive
when n = |V| gets large. Another class of sub-
modular functions that does not have this prob-
lem is based on a weighted bipartite graph G =
(V,U,E,w) where V are the left vertices, U are the
right vertices, E C V x U is a set of edges, and
w:U — R, is a set of non-negative weights on the
vertices U. For X C V, the bipartite neighborhood
function is defined as:

fX)=w({ueU:3IxeX with (x,u) €E}) (3)

This function is interesting for NLP applications
since U can be seen as a set of “features” of the ele-
ments v €V (i.e., if V is a set of sentences, U can be
the collective set of n-grams for multiple values of
n, and f(X) is the weight of the n-grams contained
collectively in sentences X).> Given aset X C V,

2To be consistent with standard notation in previous liter-
ature, we overload the use of n in “n-grams” and the size of
our set “n = |V|”, even though the two ns have no relationship
with each other.



we get value from the features of the elements
x € X, but we get credit for each feature only one
time — once a given object x € X has a given fea-
ture 4 € U, any additions to X by elements also hav-
ing feature u offer no further credit via that feature.

Another interesting class of submodular func-
tions, allowing additional credit from an element
even when its features already exist in X, are what
we call feature-based submodular functions. They
involve sums of non-decreasing concave functions
applied to modular functions (Stobbe and Krause,
2010) and take the following form:

FX) =Y wudu(mu(X)) 4)

uclU

where w, > 0 is a feature weight, m,(X) =
Y .cxmyu(x) is a non-negative modular function
specific to feature u, m,(x) is a relevance score (a
non-negative scalar score indicating the relevance
of feature u in object x), and ¢, is a u-specific
non-negative non-decreasing concave function.

The gain is f(v]X) = ey (0(m(X U {})) -
¢)(mu(X))>, and thanks to ¢,’s concavity, the

term ¢ (m, (X U{v})) — ¢ (m,(X)) for each feature
u € U is decaying as X grows. The rate of decay,
and hence the degree of diminishing returns and
ultimately the measure of redundancy of the
information provided by the feature, is controlled
by the concave function. The rate of decay is
also related to the curvature k of the submodular
function (c.f. §2), with more aggressive decay
having higher curvature (and a worse worst-case
guarantee). The decay is a modeling choice that
should be decided based on a given application.

Feature-based functions have the advantage that
they do not require the construction of a pairwise
graph; they have a cost of only O(n|U]|), which is
linear in the data size and therefore scalable to
large data set sizes.

We utilize this class for our subset selection ex-
periments described in Section 4, where we use one
global concave function ¢, = ¢ for all u € U. In
this work we chose one particular set of features U.
However, given the large body of research into NLP
feature engineering (Jurafsky and Martin, 2009),
this class is extensible beyond just this set, which
makes it suitable for many other NLP applications.

Before describing our SMT-specific functions in

detail, we review previous work on subset selection
for SMT in the context of submodularity.

3 Previous Approaches

There have been many previous approaches to data
subset selection in SMT. In this section, we show
that some of them in fact correspond to submodular
methods, thus introducing a connection between
submodularity and the practical problem of SMT
data selection. The fact that submodularity is
implicitly and unintentionally used in previous
work suggests that it is natural for this problem.

A currently widely-used data selection method in
SMT (which we also use as a baseline in Section 6)
uses the cross-entropy between two language mod-
els (Moore and Lewis, 2010), one trained on the
test set of interest, and another trained on a large set
of generic or out-of-domain training data. We call
this the cross-entropy method. This method trains
a test-set specific (or in-domain) language model,
LM;,, and a generic (out-of- or mixed-domain) lan-
guage model, LMy. Each sentence x € V in the
training data is given a probability score with both
language models and then ranked in descending
order based on the log ratio

Mee(x) = E(lx)log[Pr(x\LMin)/Pr(x|LMout)] Q)
where /(x) is the length of sentence x. Finally, the
top N sentences are chosen. In (Axelrod et al.,
2011) this method is extended to take both sides
of the parallel corpus into account rather than just
the source side. The cross-entropy approach values
each sentence individually, without regard to any in-
teraction with already selected sentences. This ap-
proach, therefore, is modular (a special case of sub-
modular) and values a set X viam(X) =Y cx m(x).
Moreover, the thresholding method for choosing
a subset corresponds exactly to the optimization
problem in Eqn. (2) where f < m and the budget
b is set to the sum of the top N sentence scores.
Thanks to modularity, the problem is no longer NP-
complete, and the threshold method solves Eqn. (2)
exactly. On the other hand, a modular function
does not have the diminishing returns property, and
thus has no chance to represent interaction or re-
dundancy between sentences. The chosen subset,
therefore, might have an enormous overrepresenta-
tion of one aspect of the training data while having
minimal or no representation of another aspect, a
major vulnerability of this approach.

Other methods use information retrieval (Hilde-
brand et al., 2005; Lii et al., 2007) which can also
be described as modular function optimization
(e.g., take the top k scoring sentences). Duplicate
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sentence removal is easily represented by a feature-
based submodular function, Equation (4), where
there is one sentence-specific feature per sentence
and where ¢, (m, (X)) = min(|X N{u}|,1) — once
a sentence is chosen, its contribution is saturated
so any duplicate sentence has a gain of zero. Also,
the unseen n-gram function of (Eck et al., 2005;
Bloodgood and Callison-Burch, 2010) corresponds
to a bipartite neighborhood submodular function,
with a weight function defined based on n-gram
counts. Moreover their functions are optimized
using the greedy algorithm; hence they in fact
have a 1 — 1/e guarantee. Other methods have
noted and dealt with the existence of redundancy
in phrase-based systems (Ittycheriah and Roukos,
2007) by limiting the set of phrases — submodular
optimization inherently removes redundancy. Also,
(Callison-Burch et al., 2005; Lopez, 2007) involve
modular functions but where selection is over
subsets of phrases (rather than sentences as in our
current work) and where multiple selections occur,
each specific to an individual test set sentence
rather than the entire test set.

In the feature-decay method, presented in (Bigici,
2011; Bigici and Yuret, 2011; Bicici, 2013), the
value of a sentence is based on its decomposition
into a set of feature values. As sentences are added
to a set, the feature decay approach in general di-
minishes the value of each feature depending on
how much of that feature has already been covered
by those sentences previously chosen — the pa-
pers define a set of feature decay functions for this
purpose.

Our analysis of (Bigici, 2011; Bigici and Yuret,
2011; Bigici, 2013), from the perspective of sub-
modularity, has revealed an interesting connection.
The feature decay functions used in these papers
turn out to be derivatives of non-decreasing con-
cave functions. For example, in one case ¢'(a) =
1/(1+a) which is the derivative of the concave
function ¢ (a) = In(1+a). We are given a constant
initialization w,, for feature u € U — in the papers,
they set either w;, < 1, or w,, < log(m(V') /m,(V)),
or w, < log(m(V)/(14+m,(V))), where m(V) =
Y..my,(V), and where m,(X) = ¥ .cx my,(x) is the
count of feature u# within the set of sentences
X CV. This yields the submodular feature function
Sfu(X) =w, ¢ (m,(X)). The value of sentence v as
measured by feature u in the context of X is the gain
fu(v|X), which is a discrete derivative correspond-
ing to w, /(1 +m,(X U{v})). An alternative decay
function they define is given as ¢'(a) = 1/(1+4b%)
for a base b (they set b «— 2) which is the derivative
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of the following non-decreasing concave function:

0(a) = [1 - m(lb)ln<l +exp(—aln(b)))} ©)

We note that this function is saturating, meaning
that it quickly reaches its asymptote at its maxi-
mum possible value. We can, once again, define
a function specific for feature u € U as f,(X) =
wyu @ (m, (X)) with a gain f,(v|X) being a discrete
derivative corresponding to w, /(1 + b XD,

The connection between this work and submod-
ularity is not complete, however, without consider-
ing the method used for optimization. In fact, Algo-
rithm 1 of (Bicici and Yuret, 2011) is precisely the
accelerated greedy algorithm of (Minoux, 1978)
applied to the submodular function corresponding
to f(X) = Yuev fu(X), and Algorithm 1 of (Bigici,
2013) is the cost-normalized variant of this greedy
algorithm corresponding to a knapsack constraint
(Sviridenko, 2004). Thus, our analysis shows that
these methods also have a 1 — 1/e performance
guarantee and also the O(nlogn) empirical com-
plexity mentioned in Section 2. This is an impor-
tant connection, as it furthers the evidence that
submodularity is natural for the problem of SMT
subset selection. This also increases the accessibil-
ity of this method since we may view it as a special
case of Equation (4).

Another class of approaches focuses on active
learning. In (Haffari et al., 2009) a large corpus
of noisy parallel data is created automatically; a
smaller set of samples is then selected from this
set that receive human translations. A combination
of several “informativeness” scores is computed
on a sentence-level basis, and samples are selected
via hierarchical adaptive sampling (Dasgupta and
Hsu, 2008). In (Mandal et al., 2008) a measure
of disagreement between different MT systems, as
well as an entropy-based criterion are used to select
additional data for annotation. In (Bloodgood and
Callison-Burch, 2010) and (Ambati et al., 2010),
active learning is combined with crowd-sourced an-
notations to produce large, human-translated data
sets that are as informative as possible. In (Cao
and Khudanpur, 2012), samples are selected for
discriminative training of an MT system accord-
ing to a greedy algorithm that tries to maximize
overall quality. These methods address a differ-
ent scenario (data selection for annotation or dis-
criminative training) than the one considered here;
however, we also note that the actual selection tech-
niques employed in these papers do not appear to
be submodular.



4 Novel Submodular Functions for SMT

In this section, we design a parameterized class
of submodular functions useful for SMT training
data subset selection. By staying within the realm
of submodularity, we retain the advantages of the
greedy algorithm, its theoretical performance as-
surances, and its scalability properties. At the same
time this opens the door to a general framework for
quickly exploring a much larger class of functions
(with the same desirable properties) than before.

It is important to note that we are using sub-
modularity as a “model” of the selection process,
and the submodular objective acts as a surrogate
for the actual SMT objective function. Thus, the
mathematical guarantee we have is in terms of the
surrogate objective rather than the true SMT ob-
jective. Evaluating one point of the actual SMT
objective would require the complete training and
testing of an SMT system, so even an algorithm as
efficient as Algorithm 1 would be infeasible, even
on small data. It is therefore important to design a
natural and scalable surrogate objective.

We do not consider the graph-based functions
discussed in Section 2 here since they require a
pairwise similarity matrix over all training sen-
tences and thus have O(n?) worst-case complexity.
For large tasks with millions or even billions of
sentences, this eventually becomes impractical.
Instead we focus on feature-based functions of the
type presented in Eqn. (4), where each sentence
is represented as a set of features rather than as a
vertex in a graph. In this function there are four
components to specify: 1) U, the linguistic feature
set; 2) my,(x), the relevance scores for each feature
u and sentence x; 3) w,, the feature weights; and
4) @, the concave function (we use one concave
function, so ¢, = ¢ for all u € U).

Feature set: U is the set of n-grams from either
the source language U™, or from both the source
and target language US® U U'¢" (see Section 6);
since we are interested in selecting a training set
that matches a given test set, we use the set of n-
grams that occur both in the training set and in
the development/test data (for target features, only
development set features are used). le., U =
(Usey VU N Ui, and U'e = Ugg, NV,
Relevance scores: A feature u within a sentence
x should be valued based on how salient that fea-
ture is within the “document” in which it occurs;
here, the “document” is the set of training sen-
tences. This is a task well suited to TFIDF. As
an alternative to raw feature counts we thus also
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consider scores of the form m,, (x) « tfidf(u,x) =
tf(u,x) x idf"™ (u), where tf(u,x) and idf"™ (u) are
defined as usual.

Feature weights: We wish to select those training
samples that contain features occurring frequently
in the test data while avoiding the over-selection
of features that are very frequent in the training
data because those are likely to be translated
correctly anyway. This is similar to the approach
in (Moore and Lewis, 2010) (see Equation (5)),
where a log-probability ratio of in-domain to
out-of-domain language model is utilized. In the
present case, we need a value that is specific to
feature u € U; a natural approach is to use the ratio
of counts ¢®'(u)/c"™(u) where ¢"'(u) is the raw
count of u in the development/test data, and ¢"™ (u)
is its raw count in the training data (note that
"™ (u) is never zero due to the way U is defined).
As an additional factor we allow feature length
to have an influence. In general, longer n-grams
might be considered more valuable since they
typically lead to better translations and are more
relevant for BLEU. Thus, we include a reward
term for longer n-grams in the form of B/ where
B > 1 and |u| is the length of feature u. This gives
greater weight to longer n-grams when 8 > 1.

Concave function: It is imperative to find the right
form of concave function since, as described in Sec-
tion 2, the concave shape determines the degree to
which redundancy and diminishing returns are rep-
resented. Intuitively, when the shape of the concave
function for a feature becomes “flat” rapidly, that
feature quickly looses its ability to provide addi-
tional value to a candidate subset. Many different
concave functions were tested for ¢, including one
of the two functions implicit in (Bigici and Yuret,
2011) and derived in Section 3, and a variety of
roots of the form ¢(a) =a% for 0 < o < 1. In
Table 2, for example, we find evidence that the
simple square root ¢(a) = /a performs slightly
better than the log function. The square root is
much less curved and decays much more gradually
than either of the two functions implicit in (Bigici
and Yuret, 2011), of which one is a log form and
the other is even more curved and quickly satu-
rates (see §3). The square root function yields a
less curved submodular function, in the sense of
(Conforti and Cornuejols, 1984), resulting in better
worst-case guarantees. Indeed, Table 1 in (Bicici
and Yuret, 2011) corroborates by showing that the
more curved saturating function does worse than
the less curved log function.

Four Components Together: Different instantia-



tions of the four components discussed above will
result in different submodular functions of the gen-
eral class defined in Eqn. (4). Particular settings
of these general parameters produce the methods
considered in (Bigici and Yuret, 2011), thus mak-
ing that approach easily accessible once the general
submodular framework is set up. As a very special
case, this is also true of the cross-entropy method
(Moore and Lewis, 2010), where |U| = 1, m, (x) «—
exp(mee (x)) of Equation (5) *, w, +— 1, and ¢ (a) =
a is the identity function. In Section 6, we specify
the parameter settings used in our experiments.

] Task \ Train \ Dev \ Test H LM ‘
NIST 189M 48k 49k || 2.5B
Europarl | 52.8M | 57.7k | 58.1k || 53M

Table 1: Data set sizes (number of source-side
words) for MT tasks. LM = language model data.

5 Data and Systems

We evaluate our approach on the NIST Arabic-
English translation task, using the NIST 2006 set
for development and the NIST 2009 set for eval-
uation. The training data consists of all Modern
Standard Arabic-English parallel LDC corpora per-
mitted in the NIST evaluations (minus the restricted
time periods). Together these sets form a mixed-
domain training set containing relevant in-domain
data similar to the NIST data sets but also less rele-
vant data (e.g., the UN parallel corpora); we thus
expect data selection to work well on this task. Ad-
ditional English language modeling data was drawn
from several other LDC corpora (English Giga-
word, AQUAINT, HARD, ANC/DCI and the Amer-
ican National Corpus). Preprocessing included con-
version of the Arabic data to Buckwalter format,
tokenization, spelling normalization, and morpho-
logical segmentation using MADA (Habash et al.,
2009). Numbers and URLs were replaced with
variables. The English data was tokenized and
lowercased. Postprocessing involved recasing the
translation output, replacing variable names with
their original corresponding tokens, and normal-
izing spelling and stray punctuation marks. The
recasing model is an SMT system without reorder-
ing, trained on parallel cased and lowercased ver-
sions of the training data. The recasing model re-
mains fixed for all experiments and is not retrained

3Due to modularity, any monotone increasing transforma-
tion from mce (x) to my, (x) that ensures my, (x) > 0 is equivalent.
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for different sizes of the training data. Evalua-
tion follows the NIST guidelines and was done by
computing BLEU scores using the official NIST
evaluation tool mteval-v13a.pl with the —c flag
for case-sensitive scoring. In addition to the NIST
task we also applied our method to the Europarl
German-English translation task. The training data
comes from the Europarl-v7 collection*; the devel-
opment set is the 2006 dev set, and the test set is the
2007 test set. The number of reference translations
is 1. The German data was preprocessed by tok-
enization, lower-casing, splitting noun compounds
and lemmatization to address morphological vari-
ation in German. The English side was tokenized
and lowercased. Evaluation was done by comput-
ing BLEU on the lowercased versions of the data.
Since test and training data for this task come from
largely the same domain we expect the training
data to be less redundant or irrelevant; nevertheless
it will be interesting to see how much different data
selection methods can contribute even to in-domain
translation tasks. The sizes of the various data sets
are shown in Table 1.

All translation systems were trained using the
GIZA++/Moses infrastructure (Koehn et al., 2007).
The translation model is a standard phrase-based
model with a maximum phrase length of 7. Since a
large number of experiments had to be run for this
study, more complex hierarchical or syntax-based
translation models were deliberately excluded in
order to limit the experimental turn-around time
needed for each experiment. The reordering model
is a hierarchical model according to (Galley and
Manning, 2008). The feature weights in the log-
linear function were optimized on the development
set BLEU score using minimum error-rate training.
The language models for the NIST task (5-grams)
were trained on three different data sources (Gi-
gaword, GALE data, and all remaining corpora),
which were then interpolated into a single model.
The interpolation weights were optimized sepa-
rately for the two different genres present in the
NIST task (newswire and web text). All models
used Witten-Bell discounting and interpolation of
higher-order and lower-order models. Language
models remain fixed for all experiments, i.e., the
language model training data is not subselected
since we were interested in the effect of data subset
selection on the translation model only. The lan-
guage model for the Europarl system was a 5-gram
trained on Europarl data only.

“http://http://www.statmt.org/europarl/



Method Data Subset Sizes
10% 20% 30% 40%

Rand 0.3991 (£ 0.004) | 0.4142 (£ 0.003) | 0.4205 (£ 0.002) | 0.4220 (4 0.002)
Xent 0.4235 (£ 0.004) | 0.4292 (£ 0.002) | 0.4290 (£ 0.003) | 0.4292 (£ 0.001)
SM-1 0.4309 (+ 0.000) | 0.4367 (£ 0.001) | 0.4330 (£ 0.004) | 0.4351 (4 0.002)
SM-2 0.4330* (4 0.001) | 0.4395* (+ 0.003) | 0.4333 (4 0.001) | 0.4366* (£ 0.003)
SM-3 0.4313* (£ 0.002) | 0.4338 (+ 0.002) | 0.4361* (& 0.002) | 0.4351 (+ 0.003)
SM-4 0.4276 (+ 0.003) | 0.4303 (+0.002) | 0.4324 (+0.002) | 0.4329 (4 0.000)
SM-5 0.4285 (£ 0.004) | 0.4356 (+ 0.002) | 0.4333 (£ 0.003) | 0.4324 (4 0.002)
SM-6 0.4302* (& 0.004) | 0.4334 (4+0.003) | 0.4371* (& 0.002) | 0.4349 (+ 0.003)
SM-7 0.4295 (+ 0.002) | 0.4374 (£ 0.002) | 0.4344 (+ 0.001) | 0.4314 (4 0.0004)
SM-8 0.4304* (+ 0.002) | 0.4323 (£ 0.000) | 0.4358 (4 0.003) | 0.4337 (£ 0.001)
100% 0.4257

Table 2: BLEU scores (standard deviations) on the NIST 2009 (Ara-En) test set for random (Rand),
cross-entropy (Xent), and submodular (SM) data selection methods defined in Table 4. 100% = system
using all of the training data. Boldface numbers indicate a statistically significant improvement (p < 0.05)
over the median Xent system. Starred scores are also significantly better than SM-5.

Method Data Subset Sizes
10% 20% 30% 40%
Rand 0.2590 (£ 0.003) | 0.2652 (£ 0.001) | 0.2677 (£ 0.002) | 0.2697 (& 0.001)
Xent 0.2639 (£ 0.002) | 0.2687 (£ 0.002) | 0.2704 (£ 0.001) | 0.2723 (4 0.001)
SM-5 0.2653 (£ 0.001) | 0.2727 (£ 0.000) | 0.2697 (£ 0.002) | 0.2720 (£ 0.002)
SM-6 0.2697x (+ 0.001) | 0.2700 (£ 0.002) | 0.2740x (£ 0.002) | 0.2723 (& 0.000)
(100% || 0.2651 |

Table 3: BLEU scores (standard deviation) on the Europarl translation task for random (Rand), cross-
entropy (Xent), and submodular (SM) data selection methods. 100% = system using all of the training
data. Boldface numbers indicate a statistically significant improvement (p < 0.05) over the median Xent

system. Starred scores are significantly better than SM-5.

6 Experiments

Function parameters
w(u) | ¢(a) | my(x) | U

SM-1 || Sapll | va tidf(u,x) | U
sM2 || /g | Va thidf(ux) | U LU
sM3 || Geaplt | va cux) | U
SMA || ™ (u) Ja thdf(ux) | U
SM-5 [ 1 In(1+a) | c(ux) U™
sM-6 || /5 NG tfidf(ux) | U

ST
SM-7 || G Vi) | thdfux) | USUU

BT
SM-8 LC,,,,,((Z; In(1+a) | thdf(ux) | USCUU'E

Table 4: Different instantiations of the general sub-
modular function in Eq. 4 (8 = 1.5 in all cases).

We first trained a baseline system on 100% of
the training data. Different data selection methods
were then used to select subsets of 10%, 20%, 30%
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and 40% of the data. While not reported in the
tables, above 40%, the performance slowly drops
to the 100% performance.

The first baseline selection method utilizes ran-
dom data selection, for which 3 different data sets
of the specified size were drawn randomly from
the training data. Individual systems were trained
on all random subsets of the same size, and their
scores were averaged. The second baseline is
the cross-entropy method by (Moore and Lewis,
2010). In-domain language models were trained on
the combined development and test data, and out-
of-domain models were trained on an equivalent
amount of data drawn randomly from the training
set. Sentences were ranked by the function in Eq. 5,
and the top k percent were chosen. The order of the
n-gram models was optimized on the development
set and was found to be 3. Larger model orders
resulted in worse performance, possibly due to the



limited size of the data used for their training. Since
this method also involves random data selection,
we report the average BLEU score over 5 different
trials. For the submodular selection method, Ta-
ble 4 shows the different values that were tested for
the four components listed in Section 4. The combi-
nation was optimized on the development set. The
selection algorithm (Alg. 1) runs within a few min-
utes on our complete training set of 189M words.

Results on the NIST 2009 test set are shown in
Table 2. The scores for the submodular systems
are averages over 3 different runs of MERT tuning.
Random data subset selection (Row 1) falls short
of the baseline system using 100% of the training
data. The cross-entropy method (Row 2) surpasses
the performance of the baseline system at about
20% of the data, demonstrating that data subset
selection is a suitable technique for such mixed-
domain translation tasks. The following rows show
results for the various submodular functions shown
in Table 4. Out of these, SM-5 corresponds to the
best approach in (Bigici and Yuret, 2011). SM-6
is our own best-performing function, beating the
cross-entropy method by a statistically significant
margin (p < 0.05) under all conditions.” SM-6 is
also significantly better than SM-5 in two cases.
Finally, it surpasses the performance of the all-data
system at only 10% of the training data; possibly,
even smaller training data sets could be used
but this option was not investigated. While the
bilingual submodular functions SM-2 and SM-7)
yield an improvement of up to 0.015 BLEU points
on the dev set (not shown in the table), they do not
consistently outperform the monolingual functions
on the test set. Since test set target features cannot
be used in our scenario, bilingual features are
only helpful to the extent that the development set
closely matches the test set. However, target fea-
tures should be quite helpful when selecting data
from an out-of-domain set to match an in-domain
training set (as in e.g. (Axelrod et al., 2011)). We
found no gain from the length reward f8 Jul,

The Europarl results (Table 3) show a similar
pattern. Although the differences in BLEU scores
are smaller overall (as expected on an in-domain
translation task), data subset selection improves
over the all-data baseline system in this case as
well. The cross-entropy method again outperforms
random data selection. On this task we only tested
our submodular function that worked best on the

SStatistical significance was measured using the paired
bootstrap resampling test of (Koehn, 2004), applied to the
systems with the median BLEU scores.
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NIST task; again we find that it outperforms the
cross-entropy method. In two conditions (10% and
30%) these differences are statistically significant.
10% of the training data suffices to outperform the
all-data system, and up to a full BLEU point can be
gained on this task using 20-30% of the data and a
submodular data selection method.

7 Conclusions

We have introduced submodularity to SMT data
subset selection, generalizing previous approaches
to this problem. Our method has theoretical perfor-
mance guarantees, comes with scalable algorithms,
and significantly improves over current, widely-
used data selection methods on two different trans-
lation tasks. There are many possible extensions
to this work. One strategy would be to extend the
feature set U with features representing different
types of linguistic information - e.g., when using
a syntax-based system it might be advantageous
to select training data that covers the set of syn-
tactic structures seen in the test data. Secondly,
the selected data was test data specific. In some
contexts, it is not possible to train test data spe-
cific systems dynamically; in that case, different
submodular functions could be designed to select
a representative “summary” of the training data.
Finally, the use of submodular functions for subset
selection is applicable to other data sets that can
be represented as features or as a pairwise similar-
ity graph. Submodularity thus can be applied to a
wide range of problems in NLP beyond machine
translation.
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Abstract

We investigate how to improve bilingual
embedding which has been successfully
used as a feature in phrase-based sta-
tistical machine translation (SMT). De-
spite bilingual embedding’s success, the
contextual information, which is of criti-
cal importance to translation quality, was
ignored in previous work. To employ
the contextual information, we propose
a simple and memory-efficient model for
learning bilingual embedding, taking both
the source phrase and context around the
phrase into account. Bilingual translation
scores generated from our proposed bilin-
gual embedding model are used as features
in our SMT system. Experimental results
show that the proposed method achieves
significant improvements on large-scale
Chinese-English translation task.

1 Introduction

In Statistical Machine Translation (SMT) sys-
tem, it is difficult to determine the translation of
some phrases that have ambiguous meanings.For
example, the phrase “ % X jieguo” can be trans-
lated to either “results”, “eventually” or “fruit”,
depending on the context around it. There are two
reasons for the problem: First, the length of phrase
pairs is restricted due to the limitation of model
size and training data. Another reason is that SMT
systems often fail to use contextual information
in source sentence, therefore, phrase sense disam-
biguation highly depends on the language model
which is trained only on target corpus.

To solve this problem, we present to learn
context-sensitive bilingual semantic embedding.
Our methodology is to train a supervised model
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where labels are automatically generated from
phrase-pairs. For each source phrase, the aligned
target phrase is marked as the positive label
whereas other phrases in our phrase table are
treated as negative labels. Different from previ-
ous work in bilingual embedding learning(Zou et
al., 2013; Gao et al., 2014), our framework is a
supervised model that utilizes contextual informa-
tion in source sentence as features and make use
of phrase pairs as weak labels. Bilingual seman-
tic embeddings are trained automatically from our
supervised learning task.

Our learned bilingual semantic embedding
model is used to measure the similarity of phrase
pairs which is treated as a feature in decoding. We
integrate our learned model into a phrase-based
translation system and experimental results indi-
cate that our system significantly outperform the
baseline system. On the NISTO8 Chinese-English
translation task, we obtained 0.68 BLEU improve-
ment. We also test our proposed method on much
larger web dataset and obtain 0.49 BLEU im-
provement against the baseline.

2 Related Work

Using vectors to represent word meanings is
the essence of vector space models (VSM). The
representations capture words’ semantic and syn-
tactic information which can be used to measure
semantic similarities by computing distance be-
tween the vectors. Although most VSMs represent
one word with only one vector, they fail to cap-
ture homonymy and polysemy of word. Huang
et al. (2012) introduced global document context
and multiple word prototypes which distinguishes
and uses both local and global context via a joint
training objective. Much of the research focus
on the task of inducing representations for sin-
gle languages. Recently, a lot of progress has
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been made at representation learning for bilin-
gual words. Bilingual word representations have
been presented by Peirsman and Padé (2010) and
Sumita (2000). Also unsupervised algorithms
such as LDA and LSA were used by Boyd-Graber
and Resnik (2010), Tam et al. (2007) and Zhao and
Xing (2006). Zou et al. (2013) learn bilingual em-
beddings utilizes word alignments and monolin-
gual embeddings result, Le et al. (2012) and Gao et
al. (2014) used continuous vector to represent the
source language or target language of each phrase,
and then computed translation probability using
vector distance. Vuli¢ and Moens (2013) learned
bilingual vector spaces from non-parallel data in-
duced by using a seed lexicon. However, none
of these work considered the word sense disam-
biguation problem which Carpuat and Wu (2007)
proved it is useful for SMT. In this paper, we learn
bilingual semantic embeddings for source content
and target phrase, and incorporate it into a phrase-
based SMT system to improve translation quality.

3 Context-Sensitive Bilingual Semantic
Embedding Model

We propose a simple and memory-efficient
model which embeds both contextual information
of source phrases and aligned phrases in target cor-
pus into low dimension. Our assumption is that
high frequent words are likely to have multiple
word senses; therefore, top frequent words are se-
lected in source corpus. We denote our selected
words as focused phrase. Our goal is to learn a
bilingual embedding model that can capture dis-
criminative contextual information for each fo-
cused phrase. To learn an effective context sensi-
tive bilingual embedding, we extract context fea-
tures nearby a focused phrase that will discrimi-
nate focused phrase’s target translation from other
possible candidates. Our task can be viewed as
a classification problem that each target phrase is
treated as a class. Since target phrases are usu-
ally in very high dimensional space, traditional
linear classification model is not suitable for our
problem. Therefore, we treat our problem as a
ranking problem that can handle large number of
classes and optimize the objectives with scalable
optimizer stochastic gradient descent.

3.1 Bilingual Word Embedding

We apply a linear embedding model for bilin-
gual embedding learning. Cosine similarity be-

143

tween bilingual embedding representation is con-
sidered as score function. The score function
should be discriminative between target phrases
and other candidate phrases. Our score function
is in the form:

Fxyi W, U) = cos(W'x, Uly) (1)
where x is contextual feature vector in source sen-
tence, and y is the representation of target phrase,
W e REXIXk U e RIYIXF are low rank ma-
trix. In our model, we allow y to be bag-of-words
representation. Our embedding model is memory-
efficient in that dimensionality of x and y can be
very large in practical setting. We use | X| and |Y|
means dimensionality of random variable x and y,
then traditional linear model such as max-entropy
model requires memory space of O(|X||Y]). Our
embedding model only requires O (k(|X| + |Y]))
memory space that can handle large scale vocabu-
lary setting. To score a focused phrase and target
phrase pair with f(x,y), context features are ex-
tracted from nearby window of the focused phrase.
Target words are selected from phrase pairs. Given
a source sentence, embedding of a focused phrase
is estimated from W7 'x and target phrase embed-
ding can be obtained through U”'y.

3.2 Context Sensitive Features

Context of a focused phrase is extracted from
nearby window, and in our experiment we choose
window size of 6 as a focused phrase’s con-
text. Features are then extracted from the focused
phrase’s context. We demonstrate our feature
extraction and label generation process from the
Chinese-to-English example in figure 1. Window
size in this example is three. Position features
and Part-Of-Speech Tagging features are extracted
from the focused phrase’s context. The word fruit

Pre Context Focused word Post Context

- o

‘ﬁ@

=
POSTAG-feature

‘H%

i ‘ =)

POSITION-feature | % pre3

</s>_Post3

| E&E _Pre2

| FFik,_Prel

| BY_Postl

| o _Post2

the outcome in the end results

eventually

Aligned phra;g Random selected from ph;’ésetab\s

Positive Label Negative Label m

Figure 1: Feature extraction and label generation



is the aligned phrase of our focused phrase and is
treated as positive label. The phrase results is a
randomly selected phrase from phrase table results
of & R. Note that feature window is not well de-
fined near the beginning or the end of a sentence.
To conquer this problem, we add special padding
word to the beginning and the end of a sentence to
augment sentence.

3.3 Parameter Learning

To learn model parameter W and U, we ap-
ply a ranking scheme on candidates selected from
phrase table results of each focused phrase. In par-
ticular, given a focus phrase w, aligned phrase is
treated as positive label whereas phrases extracted
from other candidates in phrase table are treated
as negative label. A max-margin loss is applied in
this ranking setting.

m
10) = 30— Flaiui ©) — (i O)+
i=1
(2)
Where f(xj,yi) is previously defined, © =
{W,U} and + means max-margin hinge loss. In
our implementation, a margin of § = 0.15 is used
during training. Objectives are minimized through
stochastic gradient descent algorithm. For each
randomly selected training example, parameters
are updated through the following form:

RIG)

@ZG)—@W

3)
where © = {W, U}. Given an instance with pos-
itive and negative label pair {x,y,y’}, gradients
of parameter W and U are as follows:

ol(W,U

(8VV) = gsx(WIx)T — pgs®x(UTy) (4)

ol(W,U

%U) = ¢sy(UTy)" = pgs’y(W'x) (5)
Where we set p = (WTx)T(UTy), g = m
and s = m To initialize our model param-

eters with strong semantic and syntactic informa-
tion, word vectors are pre-trained independently
on source and target corpus through word2vec
(Mikolov et al., 2013). And the pre-trained word
vectors are treated as initial parameters of our
model. The learned scoring function f(x,y) will
be used during decoding phase as a feature in log-
linear model which we will describe in detail later.

4 Integrating Bilingual Semantic
Embedding into Phrase-Based SMT
Architectures

To incorporate the context-sensitive bilingual
embedding model into the state-of-the-art Phrase-
Based Translation model, we modify the decoding
so that context information is available on every
source phrase. For every phrase in a source sen-
tence, the following tasks are done at every node
in our decoder:

e Get the focused phrase as well as its context in the
source sentence.

e Extract features from the focused phrase’s context.

e Get translation candidate extracted from phrase pairs of
the focused phrase.

e Compute scores for any pair of the focused phrase and
a candidate phrase.

We get the target sub-phrase using word align-
ment of phrase, and we treat NULL as a common
target word if there is no alignment for the focused
phrase. Finally we compute the matching score for
source content and target word using bilingual se-
mantic embedding model. If there are more than
one word in the focus phrase, then we add all score
together. A penalty value will be given if target is
not in translation candidate list. For each phrase in
a given SMT input sentence, the Bilingual Seman-
tic score can be used as an additional feature in
log-linear translation model, in combination with
other typical context-independent SMT bilexicon
probabilities.

5 Experiment

Our experiments are performed using an in-
house phrase-based system with a log-linear
framework. Our system includes a phrase trans-
lation model, an n-gram language model, a lexi-
calized reordering model, a word penalty model
and a phrase penalty model, which is similar to
Moses (Koehn et al., 2007). The evaluation metric
is BLEU (Papineni et al., 2002).

5.1 Data set

We test our approach on LDC corpus first. We
just use a subset of the data available for NIST
OpenMTO08 task! . The parallel training corpus

'LDC2002E18, LDC2002L27, LDC2002TO01,
LDC2003E07, LDC2003E14, LDC2004T07, LDC2005E83,
LDC2005T06, LDC2005T10, LDC2005T34, LDC2006E24,
LDC2006E26, LDC2006E34, LDC2006E86, LDC2006E92,
LDC2006E93, LDC2004T0O8(HK News, HK _Hansards )
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OpenMT08 WebData
Method BLEU BLEU
Our Baseline 26.24 29.32
LOC 26.78%* 29.62%
LOC+POS 26.82%* 29.81%

Table 1: Results of lowercase BLEU on NIST08
task. LOC is the location feature and POS is
the Part-of-Speech feature * or ** equals to sig-
nificantly better than our baseline(p < 0.05 or
p < 0.01, respectively)

contains 1.5M sentence pairs after we filter with
some simple heuristic rules, such as sentence be-
ing too long or containing messy codes. As mono-
lingual corpus, we use the XinHua portion of the
English GigaWord. In monolingual corpus we fil-
ter sentence if it contain more than 100 words
or contain messy codes, Finally, we get mono-
lingual corpus containing 369M words. In order
to test our approach on a more realistic scenario,
we train our models with web data. Sentence
pairs obtained from bilingual website and com-
parable webpage. Monolingual corpus is gained
from some large website such as WiKi. There are
50M sentence pairs and 10B words monolingual
corpus.

5.2 Results and Analysis

For word alignment, we align all of the train-
ing data with GIZA++ (Och and Ney, 2003), us-
ing the grow-diag-final heuristic to improve recall.
For language model, we train a 5-gram modified
Kneser-Ney language model and use Minimum
Error Rate Training (Och, 2003) to tune the SMT.
For both OpenMTO08 task and WebData task, we
use NISTO6 as the tuning set, and use NISTO08 as
the testing set. Our baseline system is a standard
phrase-based SMT system, and a language model
is trained with the target side of bilingual corpus.
Results on Chinese-English translation task are re-
ported in Table 1. Word position features and part-
of-speech tagging features are both useful for our
bilingual semantic embedding learning. Based on
our trained bilingual embedding model, we can
easily compute a translation score between any
bilingual phrase pair. We list some cases in table
2 to show that our bilingual embedding is context
sensitive.

Contextual features extracted from source sen-
tence are strong enough to discriminate different
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Source Sentence 4 Nearest Neighbor from
bilingual embedding
AR R T ORELIN,
JE AL R EE
A & . (Investors
can only get down to
business in a stable so-
cial environment)
ERREZAET, FH
BAEARTT LY
R F 4 & - (In compe-
titions, the Chinese Dis-
abled have shown ex-
traordinary athletic abil-
ities)
EFEGBRIKT
HAXLEEEF AR
% R & . (In the natu-
ral environment of Costa
Rica, grapes do not nor-
mally yield fruit.)
X, FERENE
B - E . (As
a result, Eastern District
Council passed a pro-
posal)

will be, can only, will, can

skills, ability, abilities, tal-
ent

fruit, outcome of, the out-
come, result

in the end, eventually, as a
result, results

Table 2: Top ranked focused phrases based on
bilingual semantic embedding

word senses. And we also observe from the word
“#: X jieguo” that Part-Of-Speech Tagging fea-
tures are effective in discriminating target phrases.

6 Conlusion

In this paper, we proposed a context-sensitive
bilingual semantic embedding model to improve
statistical machine translation. Contextual infor-
mation is used in our model for bilingual word
sense disambiguation. We integrated the bilingual
semantic model into the phrase-based SMT sys-
tem. Experimental results show that our method
achieves significant improvements over the base-
line on large scale Chinese-English translation
task. Our model is memory-efficient and practical
for industrial usage that training can be done on
large scale data set with large number of classes.
Prediction time is also negligible with regard to
SMT decoding phase. In the future, we will ex-
plore more features to refine the model and try to
utilize contextual information in target sentences.
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Abstract

We present a novel approach to im-
prove word alignment for statistical ma-
chine translation (SMT). Conventional
word alignment methods allow discontin-
uous alignment, meaning that a source
(or target) word links to several target (or
source) words whose positions are dis-
continuous. However, we cannot extrac-
t phrase pairs from this kind of align-
ments as they break the alignment con-
sistency constraint. In this paper, we use
a weighted vote method to transform dis-
continuous word alignment to continuous
alignment, which enables SMT system-
s extract more phrase pairs. We carry
out experiments on large scale Chinese-
to-English and German-to-English trans-
lation tasks. Experimental results show
statistically significant improvements of
BLEU score in both cases over the base-
line systems. Our method produces a gain
of +1.68 BLEU on NIST OpenMT04 for
the phrase-based system, and a gain of
+1.28 BLEU on NIST OpenMTO06 for the
hierarchical phrase-based system.

1 Introduction

Word alignment, indicating the correspondence
between the source and target words in bilingual
sentences, plays an important role in statistical
machine translation (SMT). Almost all of the SMT
models, not only phrase-based (Koehn et al.,
2003), but also syntax-based (Chiang, 2005; Liu
et al., 2006; Huang et al., 2006), derive translation
knowledge from large amount bilingual text anno-
tated with word alignment. Therefore, the quality
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of the word alignment has big impact on the qual-
ity of translation output.

Word alignments are usually automatically ob-
tained from a large amount of bilingual training
corpus. The most widely used toolkit for word
alignment in SMT community is GIZA++ (Och
and Ney, 2004), which implements the well known
IBM models (Brown et al., 1993) and the HM-
M model (Vogel and Ney, 1996). Koehn et al.
(2003) proposed some heuristic methods (e.g. the
“grow-diag-final” method) to refine word align-
ments trained by GIZA++. Another group of word
alignment methods (Liu et al., 2005; Moore et
al., 2006; Riesa and Marcu, 2010) define feature
functions to describe word alignment. They need
manually aligned bilingual texts to train the mod-
el. However, the manually annotated data is too
expensive to be available for all languages. Al-
though these models reported high accuracy, the
GIZA++ and “grow-diag-final” method are domi-
nant in practice.

However, automatic word alignments are usu-
ally very noisy. The example in Figure 1 shows
a Chinese and English sentence pair, with word
alignment automatically trained by GIZA++ and
the “grow-diag-final” method. We find many er-
rors (dashed links) are caused by discontinuous
alignment (formal definition is described in Sec-
tion 2), a source (or target) word linking to sev-
eral discontinuous target (or source) words. This
kind of errors will result in the loss of many use-
ful phrase pairs that are learned based on bilingual
word alignment. Actually, according to the defini-
tion of phrases in a standard phrase-based model,
we cannot extract phrases from the discontinuous
alignment. The reason is that this kind of align-
ment break the alignment consistency constrain-
t (Koehn et al., 2003). For example, the Chi-

Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 147-152,
October 25-29, 2014, Doha, Qatar. (©2014 Association for Computational Linguistics



1 2 3 4 5 6 7 8 9 10 11
ES K& kit U & T =33) = i) x z—
meiguo shi shaoshu jige tou  xia fandui piao de guojia  zhiyi
The United States was among tl;e handful of nations that cast a nay note
1 2 3 4 5 6 7 8 9 10 11 12 13 14

Figure 1: An example of word alignment between a Chinese and English sentence pair. The dashed links

are incorrect alignments.

nese word “shiy”! is aligned to the English words

“wasy” and “that,y”. However, these two English
words are discontinuous, and we cannot extract the
phrase pair “(shi, was)”.

In this paper, we propose a simple weighed vote
method to deal with the discontinuous word align-
ment. Firstly, we split the discontinuous align-
ment into several continuous alignment group-
s, and consider each continuous alignment group
as a bucket. Secondly, we vote for each buck-
et with alignment score measured by word trans-
lation probabilities. Finally, we select the buck-
et with the highest score as the final alignment.
The strength of our method is that we refine word
alignment without using any external knowledge,
as the word translation probabilities can be esti-
mated from the bilingual corpus with the original
word alignment.

We notice that the discontinuous alignment is
helpful for hierarchical phrase-based model, as the
model allows discontinuous phrases. Thus, for
the hierarchical phrase-based model, our method
may lost some discontinuous phrases. To solve
the problem, we keep the original discontinuous
alignment in the training corpus.

We carry out experiment with the state-of-the-
art phrase-based and hierarchical phrase-based
(Chiang, 2005) SMT systems implemented in
Moses (Koehn et al., 2007). Experiments on large
scale Chinese-to-English and German-to-English
translation tasks demonstrate significant improve-
ments in both cases over the baseline systems.

2 The Weighted Vote Method

To refine the discontinuous alignment, we propose
a weighted vote method to transform discontinu-
ous alignment to continuous alignment by discard-
ing noisy links. We split discontinuous alignment

!"The subscript denotes the word position.
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into several continuous groups, and select the best
group with the highest score computed by word
translation probabilities as the final alignment.

For further understanding, we first describe
some definitions. Given a word-aligned sentence
pair (F{, E{, A), an alignment set A (i) is the
set of target word positions that aligned to the
source word Fii:

Aset(i) - {]‘(Zvj) € A} (1)
For example, in Figure 1, the alignment set
for the Chinese word “shaoshus” is Age(3) =
{5,7,8,10}. We define an alignment s-
pan Agpan (i) as [min(Age(i)), max(Aset(i))).
Thus, the alignment span for the Chinese word
“shaoshug” is Aspan(3) = [5, 10].

The alignment for Ff is discontinuous if there
exist some target words in Agpqy, (¢) linking to an-
other source word, i.e. 3(i’, j') € A, where i’ # i,
J' € Agpan(i). Otherwise, the alignment is contin-
uous. According to the definition, the alignment
for “shaoshus” is discontinuous. Because the tar-
get words “theg” and “nationsg” in the alignmen-
t span link to another Chinese words “deg” and
“guojiaig”, respectively. For a target word E, the
definition is similar.

If the alignment for Fii is discontinuous, we
can split the alignment span Agpq,(i) = [J1, J2]
into m continuous spans {[;¥, j*]}, where k =

1,2,...,m, and j*

p,j(’; € [j1, j2]- Our goal is to se-
lect the best continuous span for the word F}. To
do this, we score each continuous span with word
translation probabilities:

S(lig.5)) = D _(Pr(E;|F) + Pr(Fi|E;))
h @)

where,

Pr(fle) = count(f,e)

B > count(f',e)

3



&
S
§

/DX shaoshu | 0.1 0.1

Figure 2: An example of weighted voted method
for selecting the best continuous alignment from
the discontinuous alignment. The heavy shading
area is selected as the final alignment.

the
of

count(e, f)
> count(f,e’)

The word translation probabilities can be comput-
ed from the bilingual corpus with the initial word
alignment. Finally, we select the span with the
highest score as the final alignment, and discard
all other alignments.

We illustrate our method in Figure 2, which
shows the source word “shaoshu” and its align-
ment in Figure 1. We split the alignments into
three continuous alignment spans and compute s-
core for each span. Finally, the span with highest
score (heavy shading area) is selected as the final
alignment.

We conduct the procedure for each source and
target word, the improved alignment (solid links)
is shown in Figure 1.

Pr(e|f) = “4)

3 Experiment

To demonstrate the effect of the proposed method,
we use the state-of-the-art phrase-based system
and hierarchical phrase-based system implement-
ed in Moses (Koehn et al., 2007). The phrase-
based system uses continuous phrase pair as the
main translation knowledge. While the hierarchi-
cal phrase-based system uses both continuous and
discontinuous phrase pairs, which has an ability to
capture long distance phrase reordering.

we carried out experiments on two translation
tasks: the Chinese-to-English task comes from the
NIST Open MT Evaluation, and the German-to-
English task comes from the Workshop on Ma-
chine Translation (WMT) shared task.

3.1 Training

The training data we used are listed in Table 1. For
the Chinese-English task, the bilingual data are s-
elected from LDC. We used NIST MTO03 as the
development set and tested our system on NIST
MT evaluation sets from 2004 to 2008. For the
German-English task, the bilingual data are from
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Task Src. Words | Tgt. Words
Chinese-to-English 5M 78M
German-to- English 107TM 113M

Table 1: Bilingual data for our experiments.

System | NO4 | NO5S | NO6 | NOS8
Baseline | 34.53 | 33.02 | 30.43 | 23.29
Refined | 36.21 | 33.99 | 31.59 | 24.36

Table 2: Chinese-to-English translation quality of
the phrase-based system.

System | W10 | W11 | W12 | W13
Baseline | 20.71 | 20.26 | 20.52 | 23.26
Refined | 21.46 | 20.95 | 21.11 | 23.77

Table 3: German-to-English translation quality of
the phrase-based system.

the shared translation task 2013. We used WMTO08
as the development set and tested our system on
WMT test sets from 2010 to 2013.

The baseline systems are trained on the training
corpus with initial word alignment, which was ob-
tained via GIZA++ and “grow-diag-final” method.
Based on the initial word alignment, we comput-
ed word translation probabilities and used the pro-
posed method to obtain a refined word alignment.
Then we used the refined word alignment to train
our SMT systems.

The translation results are evaluated by case-
insensitive BLEU-4  (Papineni et al., 2002).
The feature weights of the translation system
are tuned with the standard minimum-error-rate-
training (Och, 2003) to maximize the systems
BLEU score on the development set.

3.2 Results
3.2.1 Phrase-based System

Table 2 shows Chinese-to-English translation
quality of the phrase-based system. We ob-
served that our refined method significantly out-
performed the baseline word alignment on all test
sets. The improvements are ranged from 0.97 to
1.68 BLEU%.

Table 3 shows German-to-English translation
quality of the phrase-based system. The improve-
ments are ranged from 0.51 to 0.75 BLEU%.

These results demonstrate that the proposed
method improves the translation quality for



System NO4 | NO5 | NO6 | NOS8

Baseline | 37.33 | 34.81 | 32.20 | 25.33

Refined | 3791 | 35.36 | 32.75 | 25.40
Combined | 38.13 | 35.63 | 33.48 | 25.66

Table 4: Chinese-to-English translation quality of
the hierarchical phrase-based system.

System W10 | W11 | W12 | W13
Baseline | 21.22 | 19.77 | 20.53 | 23.51
Refined | 21.34 | 20.64 | 20.88 | 23.82
Combined | 21.65 | 20.87 | 21.16 | 24.04

Table 5: German-to-English translation quality of
the hierarchical phrase-based system.

phrase-based system. The reason is that by dis-
carding noisy word alignments from the discon-
tinuous alignments, the phrase pairs constrained
by the noisy alignments can be extracted. Thus the
system utilized more phrase pairs than the baseline
did.

3.2.2 Hierarchical Phrase-based System

The hierarchical phrase-based system utilizes dis-
continuous phrase pairs for long distance phrase
reordering. Some of the discontinuous phrase
pairs are extracted from the discontinuous align-
ments. By transforming the discontinuous align-
ments to continuous alignments, on the one hand,
we may lost some discontinuous phrase pairs. On
the other hand, we may extract additional contin-
uous and discontinuous phrase pairs as the align-
ment restriction is loose.

See Figure 3 for illustration. From the initial
alignment, we can extract a hierarchical phrase
pair “(dang X1 shi, when X1)” from the discon-
tinuous alignment of the English word “when”.
However, the hierarchical phrase pair cannot be
extracted from our refined alignment, because our
method discards the link between the Chinese
word “dang” and the English word “when”. In-
stead, we can extract another hierarchical phrase
pair “(X; shi, when X1)”.

Does our method still obtain improvements on
the hierarchical phrase-based system? Table 4 and
Table 5 shows Chinese-to-English and German-
to-English translation quality of the hierarchical
phrase-based system, respectively. For Chinese-
to-English translation, the refined alignment ob-
tained improvements ranged from 0.07 to 0.58
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4 Hil KA i
dang shigu fasheng shi

when the accident happend

Figure 3: Example of word alignment between a
Chinese and English sentence pair. The dashed
initial link is discarded by our method.

BLEU% on the test set ( the row “Refined”).
While for German-to-English translation, the im-
provements ranged from 0.12 to 0.59 BLEU% on
the test set (the row “Refined”).

We find that the improvements are less than
that of the phrase-based system. As discussed
above, our method may lost some hierarchical
phrase pairs that extracted from the discontinuous
alignments. To solve the problem, we combine 2
the initial alignments and the refined alignments
to train the SMT system. The results are shown
in the row “Combined” in Table 4 and Table 5.
For Chinese-to-English translation, we obtained
an improvements of 1.28 BLEU% on NIST06 over
the baseline. While for German-to-English trans-
lation, the greatest improvements is 1.10 BLEU%
on WMTT11.

4 Analyses

In order to further study the performance of the
proposed method, we analyze the word alignment
and the phrase table for Chinese-to-English trans-
lation. We find that our method improves the qual-
ity of word alignment. And as a result, more useful
phrase pairs are extracted from the refined word
alignment.

4.1 Word Alignment

The Chinese-to-English training corpus contains
4.5M sentence pairs. By applying GIZA++ and
the “grow-diag-final” method, we obtained initial
alignments. We find that 4.0M (accounting for
89%) sentence pairs contain discontinuous align-
ments. We then used the proposed method to dis-
card noisy links. By doing this, the total links
between words in the training corpus are reduced
from 99.6M to 78.9M, indicating that 21% links
are discarded.

2We do not perform combination for phrase-based sys-
tem, because the phrase table extracted from the initial align-
ment is a subset of that extracted from the refined alignment.



Alignment | Precision | Recall | AER
Initial 62.94 89.55 | 26.07
Refined 73.43 87.82 | 20.01

Table 6: Precision, Recall and AER on Chinese-
to-English alignment.

Alignment | StandPhr | HierPhr
Initial 29M 86M
Refined 104M 436M

Table 7: The phrase number extracted from the
initial and refined alignment for the hierarchical
phrase-based system on Chinese-to-English trans-
lation. StandPhr is standard phrase, HierPhr is hi-
erarchical phrase.

We evaluated the alignment quality on 200 sen-
tence pairs. Results are shown in Table 6. It is
observed that our method improves the precision
and decreases the AER, while keeping a high re-
call. This means that our method effectively dis-
cards noisy links in the initial word alignments.

4.2 Phrase Table

According to the standard definition of phrase in
SMT, phrase pairs cannot be extracted from the
discontinuous alignments. By transforming dis-
continuous alignments into continuous alignmen-
t, we can extract more phrase pairs. Table 7
shows the number of standard phrases and hier-
archical phrases extracted from the initial and re-
fined word alignments. We find that the number of
both phrases and hierarchical phrases grows heav-
ily. This is because that the word alignment con-
straint for phrase extraction is loosed by removing
noisy links. Although the phrase table becomes
larger, fortunately, there are some methods (John-
son et al., 2007; He et al., 2009) to prune phrase
table without hurting translation quality.

For further illustration, we compare the phrase
pairs extracted from the initial alignment and re-
fined alignment in Figure 1. From the initial align-
ments, we extracted only 3 standard phrase pairs
and no hierarchical phrase pairs (Table 8). After
discarding noisy alignments (dashed links) by us-
ing the proposed method, we extracted 21 standard
phrase pairs and 36 hierarchical phrases. Table 9
and Table 10 show selected phrase pairs and hier-
archical phrase pairs, respectively.
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Chinese English

meiguo  The United States
guojia nations

piao note

Table 8: Phrase pairs extracted from the initial
alignment of Figure 1.

Chinese English

shi was

fandui piao  a nay note
shaoshu jige the handful of

Table 9: Selected phrase pairs extracted from the
refined alignment of Figure 1.

Chinese
X1 zhiyi
X de guojia

English
among X

nations that X3

X fandui piao X2 X9 X; a nay note

Table 10: Selected hierarchical phrase pairs ex-
tracted from the refined alignment of Figure 1.

5 Conclusion and Future Work

In this paper, we proposed a novel method to im-
prove word alignment for SMT. The method re-
fines initial word alignments by transforming dis-
continuous alignment to continuous alignment. As
a result, more useful phrase pairs are extracted
from the refined word alignment. Our method is
simple and efficient, since it uses only the word
translation probabilities obtained from the initial
alignments to discard noisy links. Our method
is independent of languages and can be applied
to most SMT models. Experimental results show
significantly improvements for the state-of-the-art
phrase-based and hierarchical phrase-based sys-
tems on all Chinese-to-English and German-to-
English translation tasks.

In the future, we will refine the method by con-
sidering neighbor words and alignments when dis-
carding noisy links.
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Abstract

Generative word alignment models, such
as IBM Models, are restricted to one-
to-many alignment, and cannot explicitly
represent many-to-many relationships in
a bilingual text. The problem is par-
tially solved either by introducing heuris-
tics or by agreement constraints such that
two directional word alignments agree
with each other. In this paper, we fo-
cus on the posterior regularization frame-
work (Gancheyv et al., 2010) that can force
two directional word alignment models
to agree with each other during train-
ing, and propose new constraints that can
take into account the difference between
function words and content words. Ex-
perimental results on French-to-English
and Japanese-to-English alignment tasks
show statistically significant gains over the
previous posterior regularization baseline.
We also observed gains in Japanese-to-
English translation tasks, which prove the
effectiveness of our methods under gram-
matically different language pairs.

1 Introduction

Word alignment is an important component in sta-
tistical machine translation (SMT). For instance
phrase-based SMT (Koehn et al., 2003) is based
on the concept of phrase pairs that are automat-
ically extracted from bilingual data and rely on
word alignment annotation. Similarly, the model
for hierarchical phrase-based SMT is built from
exhaustively extracted phrases that are, in turn,
heavily reliant on word alignment.

The Generative word alignment models, such as
the IBM Models (Brown et al., 1993) and HMM
(Vogel et al., 1996), are popular methods for au-
tomatically aligning bilingual texts, but are re-
stricted to represent one-to-many correspondence
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of each word. To resolve this weakness, vari-
ous symmetrization methods are proposed. Och
and Ney (2003) and Koehn et al. (2003) propose
various heuristic methods to combine two direc-
tional models to represent many-to-many relation-
ships. As an alternative to heuristic methods, fil-
tering methods employ a threshold to control the
trade-off between precision and recall based on
a score estimated from the posterior probabili-
ties from two directional models. Matusov et al.
(2004) proposed arithmetic means of two mod-
els as a score for the filtering, whereas Liang et
al. (2006) reported better results using geometric
means. The joint training method (Liang et al.,
2006) enforces agreement between two directional
models. Posterior regularization (Ganchev et al.,
2010) is an alternative agreement method which
directly encodes agreement during training. DeN-
ero and Macherey (2011) and Chang et al. (2014)
also enforce agreement during decoding.

However, these agreement models do not take
into account the difference in language pairs,
which is crucial for linguistically different lan-
guage pairs, such as Japanese and English: al-
though content words may be aligned with each
other by introducing some agreement constraints,
function words are difficult to align.

We focus on the posterior regularization frame-
work and improve upon the previous work by
proposing new constraint functions that take into
account the difference in languages in terms of
content words and function words. In particular,
we differentiate between content words and func-
tion words by frequency in bilingual data, follow-
ing Setiawan et al. (2007).

Experimental results show that the proposed
methods achieved better alignment qualities on the
French-English Hansard data and the Japanese-
English Kyoto free translation task (KFTT) mea-
sured by AER and F-measure. In translation eval-
uations, we achieved statistically significant gains
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in BLEU scores in the NTCIR10.

2 Statistical word alignment with
posterior regularization framework

Given a bilingual sentence = (x*, ') where =*
and 2! denote a source and t