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Preface

Welcome to the 2008 Conference on Empirical Methods in Natural Language Processing! The
conference is organized under the auspices of SIGDAT, the ACL Special Interest Group for linguistic
data and corpus-based approaches to natural language processing. It is co-located this year with AMTA
2008 and the International Workshop on Spoken Language Translation, in Honolulu, Hawaii.

EMNLP received 385 submissions. We were able to accept 116 papers in total (an acceptance rate of
30%). 81 of the papers (21%) were accepted for oral presentation, and 35 (9%) for poster presentation.
Two poster papers were subsequently withdrawn after acceptance. The papers were selected by a
program committee of 15 area chairs, from Asia, Europe, and North America, assisted by a panel of
339 reviewers. This year EMNLP introduced an author response period. Authors were able to read and
respond to the reviews of their paper before the program committee made a final decision. They were
asked to correct factual errors in the reviews and answer questions raised in the reviewer comments.
The intention was to help produce more accurate reviews. In some cases, reviewers changed their
scores in view of the authors’ response and the area chairs read all responses carefully prior to making
recommendations for acceptance.

First and foremost, we would like to thank the authors who submitted their work to EMNLP. The
sheer number of submissions reflects how broad and active our field is. We are deeply indebted to
the area chairs and the reviewers for their hard work. They enabled us to select an exciting program
and to provide valuable feedback to the authors. We are grateful to our invited speakers Oren Etzioni,
Tom Griffiths, and Fernando Pereira who graciously agreed to give talks at EMNLP. Additional thanks
to the Publications Chair, Sebastian Pad6, who put this volume together. Jason Eisner helped us
immensely by compiling a web site on “How to Serve as Program Chair of a Conference” (http:
//www.cs.Jjhu.edu/~jason/advice/how-to-chair-a-conference.html). Special
thanks to David Yarowsky and Ken Church of SIGDAT who provided much valuable advice and
assistance over the past months. David also helped raise important financial support for the conference.
We are most grateful to Priscilla Rasmussen who helped us with various logistic and organizational
aspects of the conference. Rich Gerber and the START team responded to our questions quickly, and
helped us manage the large number of submissions smoothly. Finally, thanks are due to our webmaster,
Francesco Figari, who revamped our conference website on very short notice.

We hope you enjoy the conference!

Mirella Lapata and Hwee Tou Ng
EMNLP 2008 Program Co-Chairs
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Abstract

Automatic processing of medical dictations
poses a significant challenge. We approach
the problem by introducing a statistical frame-
work capable of identifying types and bound-
aries of sections, lists and other structures
occurring in a dictation, thereby gaining ex-
plicit knowledge about the function of such
elements. Training data is created semi-
automatically by aligning a parallel corpus
of corrected medical reports and correspond-
ing transcripts generated via automatic speech
recognition. We highlight the properties of
our statistical framework, which is based on
conditional random fields (CRFs) and im-
plemented as an efficient, publicly available
toolkit. Finally, we show that our approach
is effective both under ideal conditions and
for real-life dictation involving speech recog-
nition errors and speech-related phenomena
such as hesitation and repetitions.

1 Introduction

It is quite common to dictate reports and leave the
typing to typists — especially for the medical domain,
where every consultation or treatment has to be doc-
umented. Automatic Speech Recognition (ASR) can
support professional typists in their work by provid-
ing a transcript of what has been dictated. However,
manual corrections are still needed. In particular,
speech recognition errors have to be corrected. Fur-
thermore, speaker errors, such as hesitations or rep-
etitions, and instructions to the transcriptionist have
to be removed. Finally, and most notably, proper
structuring and formatting of the report has to be

1

performed. For the medical domain, fairly clear
guidelines exist with regard to what has to be dic-
tated, and how it should be arranged. Thus, missing
headings may have to be inserted, sentences must be
grouped into paragraphs in a meaningful way, enu-
meration lists may have to be introduced, and so on.
The goal of the work presented here was to ease
the job of the typist by formatting the dictation ac-
cording to its structure and the formatting guide-
lines. The prerequisite for this task is the identifi-
cation of the various structural elements in the dic-
tation which will be be described in this paper.

complaint dehydration weakness and diarrhea
full stop Mr. Will Shawn is a 8l-year-old
cold Asian gentleman who came in with fever
and Persian diaper was sent to the emergency
department by his primary care physician due
him being dehydrated period ... neck physical
exam general alert and oriented times three
known acute distress vital signs are stable

. diagnosis is one chronic diarrhea with
hydration he also has hypokalemia neck number
thromboctopenia probably duty liver cirrhosis

. a plan was discussed with patient in
detail will transfer him to a nurse and
facility for further care ... end of dictation

Fig. 1: Raw output of speech recognition

Figure 1 shows a fragment of a typical report as
recognized by ASR, exemplifying some of the prob-
lems we have to deal with:

e Punctuation and enumeration markers may be
dictated or not, thus sentence boundaries and
numbered items often have to be inferred;

o the same holds for (sub)section headings;

o finally, recognition errors complicate the task.

Proceedings of the 2008 Conference on Empirical Methods in Natural Language Processing, pages 1-10,
Honolulu, October 2008. (©)2008 Association for Computational Linguistics



CHIEF COMPLAINT
Dehydration, weakness and diarrhea.

HISTORY OF PRESENT ILLNESS

Mr. Wilson is a 8l-year-old Caucasian
gentleman who came in here with fever and
persistent diarrhea. He was sent to the
emergency department by his primary care
physician due to him being dehydrated.

PHYSICAL EXAMINATION

GENERAL: He is alert and oriented times
three, not in acute distress.

VITAL SIGNS: Stable.

DIAGNOSIS

1. Chronic diarrhea with dehydration. He
also has hypokalemia.

2. Thromboctopenia, probably due to liver
cirrhosis.

PLAN AND DISCUSSION

The plan was discussed with the patient

in detail. Will transfer him to a nursing
facility for further care.

Fig. 2: A typical medical report

When properly edited and formatted, the same
dictation appears significantly more comprehensi-
ble, as can be seen in figure 2. In order to arrive
at this result it is necessary to identify the inherent
structure of the dictation, i.e. the various hierarchi-
cally nested segments. We will recast the segmenta-
tion problem as a multi-tiered tagging problem and
show that indeed a good deal of the structure of med-
ical dictations can be revealed.

The main contributions of our paper are as fol-
lows: First, we introduce a generic approach that can
be integrated seamlessly with existing ASR solu-
tions and provides structured output for medical dic-
tations. Second, we provide a freely available toolkit
for factorial conditional random fields (CRFs) that
forms the basis of aforementioned approach and is
also applicable to numerous other problems (see sec-
tion 6).

2 Related Work

The structure recognition problem dealt with here
is closely related to the field of linear text segmen-
tation with the goal to partition text into coherent

2

blocks, but on a single level. Thus, our task general-
izes linear text segmentation to multiple levels.

A meanwhile classic approach towards domain-
independent linear text segmentation, C99, is pre-
sented in Choi (2000). C99 is the baseline which
many current algorithms are compared to. Choi’s al-
gorithm surpasses previous work by Hearst (1997),
who proposed the Texttiling algorithm. The best re-
sults published to date are — to the best of our knowl-
edge — those of Lamprier et al. (2008).

The automatic detection of (sub)section fopics
plays an important role in our work, since changes
of topic indicate a section boundary and appropri-
ate headings can be derived from the section type.
Topic detection is usually performed using methods
similar to those of text classification (see Sebastiani
(2002) for a survey).

Matsuov (2003) presents a dynamic programming
algorithm capable of segmenting medical reports
into sections and assigning topics to them. Thus, the
aims of his work are similar to ours. However, he is
not concerned with the more fine-grained elements,
and also uses a different machinery.

When dealing with tagging problems, statistical
frameworks such as HMMs (Rabiner, 1989) or, re-
cently, CRFs (Lafferty et al., 2001) are most com-
monly applied. Whereas HMMs are generative
models, CRFs are discriminative models that can in-
corporate rich features. However, other approaches
to text segmentation have also been pursued. E.g.,
McDonald et al. (2005) present a model based on
multilabel classification, allowing for natural han-
dling of overlapping or non-contiguous segments.

Finally, the work of Ye and Viola (2004) bears
similarities to ours. They apply CRFs to the pars-
ing of hierarchical lists and outlines in handwritten
notes, and thus have the same goal of finding deep
structure using the same probabilistic framework.

3 Problem Representation

For representing our segmentation problem we use a
trick that is well-known from chunking and named
entity recognition, and recast the problem as a tag-
ging problem in the so-called BIO' notation. Since
we want to assign a type to every segment, OUTSIDE
labels are not needed. However, we perform seg-

'BEGIN - INSIDE - OUTSIDE
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Fig. 3: Multi-level segmentation as tagging problem

mentation on multiple levels, therefore multiple /a-
bel chains are required. Furthermore, we also want
to assign types to certain segments, thus the labels
need an encoding for the type of segment they rep-
resent. Figure 3 illustrates this representation: B-T;
denotes the beginning of a segment of type T;, while
I-T; indicates that the segment of type T; continues.
By adding label chains, it is possible to group the
segments of the previous chain into coarser units.
Tree-like structures of unlimited depth can be ex-
pressed this way?. The gray lines in figure 3 denote
dependencies between nodes. Node labels also de-
pend on the input token sequence in an arbitrarily
wide context window.

4 Data Preparation

The raw data available to us consists of two paral-
lel corpora of 2007 reports from the area of medi-
cal consultations, dictated by physicians. The first
corpus, C'rog, consists of the raw output of ASR
(figure 1), the other one, Ccop, contains the corre-
sponding corrected and formatted reports (figure 2).

In order to arrive at an annotated corpus in a for-

Note, that since we omit a redundant top-level chain, this
structure technically is a hedge rather than a rree.

mat suitable for the tagging problem, we first have
to analyze the report structure and define appropri-
ate labels for each segmentation level. Then, every
token has to be annotated with the appropriate begin
or inside labels. A report has 625 tokens on average,
so the manual annotation of roughly 1.25 million to-
kens seemed not to be feasible. Thus we decided
to produce the annotations programmatically and re-
strict manual work to corrections.

4.1 Analysis of report structure

When inspecting reports in Coor, @ human reader
can easily identify the various elements a report con-
sists of, such as headings — written in bold on a sepa-
rate line — introducing sections, subheadings — writ-
ten in bold followed by a colon — introducing sub-
sections, and enumerations starting with indented
numbers followed by a period. Going down further,
there are paragraphs divided into sentences. Using
these structuring elements, a hierarchic data struc-
ture comprising all report elements can be induced.

Sections and subsections are typed according to
their heading. There exist clear recommendations
on structuring medical reports, such as E2184-02
(ASTM International, 2002). However, actual med-
ical reports still vary greatly with regard to their
structure. Using the aforementioned standard, we
assigned the (sub)headings that actually appeared in
the data to the closest type, introducing new types
only when absolutely necessary. Finally we arrived
at a structure model with three label chains:

e Sentence level, with 4 labels: Heading,
Subheading, Sentence, Enummarker

e Subsection level, with 45 labels: Paragraph,
Enumelement, None and 42 subsection types
(e.g. VitalSigns, Cardiovascular ...)

e Section level, with 23 section types (e.g.
ReasonForEncounter, Findings, Plan ...)

4.2 Corpus annotation

Since the reports in Coor are manually edited they
are reliable to parse. We employed a broad-coverage
dictionary (handling also multi-word terms) and a
domain-specific grammar for parsing and layout in-
formation. A regular heading grammar was used for
mapping (sub)headings to the defined (sub)section
labels (for details see Jancsary (2008)). The output



Ccor oP Crca
B — Head CHIEF del
Head COMPLAINT sub complaint B — Head
B — Sent  Dehydration sub dehydration B — Sent
Sent s del
Sent weakness sub  weakness Sent
Sent and sub and Sent
Sent diarrhea sub  diarrhea Sent
Sent . sub fullstop Sent
B —Sent Mr sub Mr B — Sent
Sent Wilson sub  Will Sent
ins Shawn Sent
Sent is sub is Sent
Sent a sub a Sent
Sent 81-year-old sub 8l-year-old  Sent
Sent Caucasian sub cold Sent
Sent ins Asian Sent
Sent gentleman sub  gentleman Sent
Sent who sub  who Sent
Sent came sub came Sent
Sent in del
Sent here sub  here Sent
Sent with sub  with Sent
Sent fever sub fever Sent
Sent and sub and Sent
Sent persistent sub  Persian Sent
Sent diarrhea sub  diaper Sent
Sent . del

Fig. 4: Mapping labels via alignment

of the parser is a hedge data structure from which
the annotation labels can be derived easily.

However, our goal is to develop a model for rec-
ognizing the report structure from the dictation, thus
we have to map the newly created annotation of re-
ports in Ccor onto the corresponding reports in
Crog. The basic idea here is to align the tokens
of Ccopr with the tokens in Cro and to copy the
annotations (cf. figure 43). There are some peculiar-
ities we have to take care of during alignment:

1. non-dictated items in Copp (e.g. punctuation,
headings)

2. dictated words that do not occur in Coog (meta
instructions, repetitions)

3. non-identical but corresponding items (recog-
nition errors, reformulations)

Since it is particularly necessary to correctly align
items of the third group, standard string-edit dis-
tance based methods (Levenshtein, 1966) need to be
augmented. Therefore we use a more sophisticated

3This approach can easily be generalized to multiple label
chains.

cost function. It assigns tokens that are similar (ei-
ther from a semantic or phonetic point of view) a low
cost for substitution, whereas dissimilar tokens re-
ceive a prohibitively expensive score. Costs for dele-
tion and insertion are assigned inversely. Seman-
tic similarity is computed using Wordnet (Fellbaum,
1998) and UMLS (Lindberg et al., 1993). For pho-
netic matching, the Metaphone algorithm (Philips,
1990) was used (for details see Huber et al. (2006)).

4.3 Feature Generation

The annotation discussed above is the first step to-
wards building a training corpus for a CRF-based
approach. What remains to be done is to provide ob-
servations for each time step of the observed entity,
i.e. for each token of a report; these are expected to
give hints with regard to the annotation labels that
are to be assigned to the time step. The observa-
tions, associated with one or more annotation labels,
are usually called features in the machine learning
literature. During CRF training, the parameters of
these features are determined such that they indicate
the significance of the observations for a certain la-
bel or label combination; this is the basis for later
tagging of unseen reports.

We use the following features for each time step
of the reports in Coor and Creog:

o Lexical features covering the local context of
=+ 2 tokens (e.g., patient@O, the@-1, is@1)

e Syntactic features indicating the possible syn-
tactic categories of the tokens (e.g., NNQO,
JJ@O, DT@-1 and be+VBZ+aux@1)

e Bag-of-word (BOW) features intend to cap-
ture the topic of a text segment in a wider
context of £ 10 tokens, without encoding any
order. Tokens are lemmatized and replaced
by their UMLS concept IDs, if available, and
weighed by TF. Thus, different words describ-
ing the same concept are considered equal.

e Semantic type features as above, but using
UMLS semantic types instead of concept IDs
provide a coarser level of description.

o Relative position features: The report is di-
vided into eight parts corresponding to eight bi-
nary features; only the feature corresponding to
the part of the current time step is set.



S Structure Recognition with CRF's

Conditional random fields (Lafferty et al., 2001) are
conditional models in the exponential family. They
can be considered a generalization of multinomial
logistic regression to output with non-trivial internal
structure, such as sequences, trees or other graphical
models. We loosely follow the general notation of
Sutton and McCallum (2007) in our presentation.
Assuming an undirected graphical model G over
an observed entity = and a set of discrete, inter-
dependent random variables* y, a conditional ran-
dom field describes the conditional distribution:

ply|z;0) = Z(lm) I ¢woz:00 ()
ceG

The normalization term Z () sums over all possible
joint outcomes of y, i.e.,

Z(x) = p(y'|=;6) 2)

and ensures the probabilistic interpretation of
p(y|x). The graphical model G describes interde-
pendencies between the variables y; we can then
model p(y|x) via factors ¢, (+) that are defined over
cliques ¢ € G. The factors ¢,(-) are computed from
sufficient statistics { fox ()} of the distribution (cor-
responding to the features mentioned in the previous
section) and depend on possibly overlapping sets of
parameters 8. C 6 which together form the param-
eters 6 of the conditional distribution:

|6c|

DY w;:00) = exp | D Aepfer(x,y.) | (3)

k=1

In practice, for efficiency reasons, independence as-
sumptions have to be made about variables y € y,
so G is restricted to small cliques (say, (|c| < 3).
Thus, the sufficient statistics only depend on a lim-
ited number of variables y. C y; they can, however,
access the whole observed entity . This is in con-
trast to generative approaches which model a joint
distribution p(x, y) and therefore have to extend the
independence assumptions to elements z € .

“In our case, the discrete outcomes of the random variables
y correspond to the annotation labels described in the previous
section.

The factor-specific parameters 0. of a CRF are
typically tied for certain cliques, according to the
problem structure (i.e., 8., = 0., for two cliques
c1,co with tied parameters). E.g., parameters are
usually tied across time if G is a sequence. The
factors can then be partitioned into a set of clique
templates C = {C1,Cy,...Cp}, where each clique
template C), is a set of factors with tied parameters
0,, and corresponding sufficient statistics { fi(-)}.
The CRF can thus be rewritten as:

H H ¢c(ycvw§017) (4)

(ylz) !
plylr) = ——
Z(x) CpeC b,eC,y

Furthermore, in practice, the sufficient statistics
{fpk(+)} are computed from a subset . C « that
is relevant to a factor ¢.(-). In a sequence labelling
task, tokens € « that are in temporal proximity to
an output variable y € y are typically most useful.
Nevertheless, in our notation, we will let factors de-
pend on the whole observed entity x to denote that
all of x can be accessed if necessary.

For our structure recognition task, the graphical
model G exhibits the structure shown in figure 3,
i.e., there are multiple connected chains of variables
with factors defined over single-node cliques and
two-node cliques within and between chains; the pa-
rameters of factors are tied across time. This corre-
sponds to the factorial CRF structure described in
Sutton and McCallum (2005). Structure recognition
using conditional random fields then involves two
separate steps: parameter estimation, or training, is
concerned with selecting the parameters of a CRF
such that they fit the given training data. Prediction,
or testing, determines the best label assignment for
unknown examples.

5.1 Parameter estimation

Given IID training data D = {z¥, 4} N param-
eter estimation determines:

N
0" = argmax (Z p(ya; 0’)) )
4 p

i.e., those parameters that maximize the conditional
probability of the CRF given the training data.

In the following, we will not explicitly sum over
N |5 as Sutton and McCallum (2007) note, the train-
ing instances ), y® can be considered discon-
nected components of a single undirected model G.



We thus assume G and its factors ¢.(-) to extend
over all training instances. Unfortunately, (5) cannot
be solved analytically. Typically, one performs max-
imum likelihood estimation (MLE) by maximizing
the conditional log-likelihood numerically:

|65

6(0) = Z Z Z)\pszpk(a:vyc) - IOgZ(ZL')

CpeC p.€Cy k=1
(6)

Currently, limited-memory gradient-based methods
such as LBFGS (Nocedal, 1980) are most com-
monly employed for that purpose’. These require
the partial derivatives of (6), which are given by:

el DILCERED SUNCRARA

¢)(;ECP y/c
(N

and expose the intuitive form of a difference be-
tween the expectation of a sufficient statistic accord-
ing to the empiric distribution and the expectation
according to the model distribution. The latter term
requires marginal probabilities for each clique ¢, de-
noted by p(y.|x). Inference on the graphical model
G (see sec 5.2) is needed to compute these.

Depending on the structure of GG, inference can be
very expensive. In order to speed up parameter es-
timation, which requires inference to be performed
for every training example and for every iteration
of the gradient-based method, alternatives to MLE
have been proposed that do not require inference.
We show here a factor-based variant of pseudolike-
lihood as proposed by Sanner et al. (2007):

0(0)=>" > logp(y.lz, MB(¢,)) (8)

CpeC $.€Cy

where the factors are conditioned on the Markov
blanket, denoted by M B®. The gradient of (8) can
be computed similar to (7), except that the marginals
pe(yL|x) are also conditioned on the Markov blan-
ket, i.e., p.(yL|x, MB(¢,)). Due to its dependence
on the Markov blanket of factors, pseudolikelihood

SRecently, stochastic gradient descent methods such as On-
line LBFGS (Schraudolph et al., 2007) have been shown to per-
form competitively.

®Here, the Markov blanket of a factor @, denotes the set of
variables occurring in factors that share variables with ¢, non-
inclusive of the variables of ¢,

cannot be applied to prediction, but only to param-
eter estimation, where the “true” assignment of a
blanket is known.

5.1.1 Regularization

We employ a Gaussian prior for training of CRFs
in order to avoid overfitting. Hence, if f(0) is the
original objective function (e.g., log-likelihood or
log-pseudolikelihood), we optimize a penalized ver-
sion f’(0) instead, such that:

16|
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The tuning parameter o2 determines the strength of
the penalty; lower values lead to less overfitting.
Gaussian priors are a common choice for parame-
ter estimation of log-linear models (cf. Sutton and

McCallum (2007)).

5.2 Inference

Inference on a graphical model G is needed to ef-
ficiently compute the normalization term Z(x) and
marginals p.(y’.|x) for MLE, cf. equation (6).

Using belief propagation (Yedidia et al., 2003),
more precisely its sum-product variant, we can com-
pute the beliefs for all cliques ¢ € G. In a tree-
shaped graphical model G, these beliefs correspond
exactly to the marginal probabilities p.(y’.|x). How-
ever, if the graph contains cycles, so-called loopy
belief propagation must be performed. The mes-
sage updates are then re-iterated according to some
schedule until the messages converge. We use a TRP
schedule as described by Wainwright et al. (2002).
The resulting beliefs are then only approximations
to the true marginals. Moreover, loopy belief propa-
gation is not guaranteed to terminate in general — we
investigate this phenomenon in section 6.5.

With regard to the normalization term Z(x),
as equation (2) shows, naive computation requires
summing over all assignments of y. This is too ex-
pensive to be practical. Fortunately, belief propaga-
tion produces an alternative factorization of p(y|x);
i.e., the conditional distribution defining the CRF
can be expressed in terms of the marginals gained
during sum-product belief propagation. This repre-
sentation does not require any additional normaliza-
tion, so Z () need not be computed.



5.3 Prediction

Once the parameters € have been estimated from
training data, a CRF can be used to predict the la-
bels of unknown examples. The goal is to find:

y" = argmax (p(y'|z; 0)) ©)
y

i.e., the assignment of y that maximizes the condi-
tional probability of the CRF. Again, naive computa-
tion of (9) is intractable. However, the max-product
variant of loopy belief propagation can be applied to
approximately find the MAP assignment of y (max-
product can be seen as a generalization of the well-
known Viterbi algorithm to graphical models).

For structure recognition in medical reports, we
employ a post-processing step after label prediction
with the CRF model. As in Jancsary (2008), this step
enforces the constraints of the BIO notation and ap-
plies some trivial non-local heuristics that guarantee
a consistent global view of the resulting structure.

6 Experiments and Results

For evaluation, we generally performed 3-fold cross-
validation for all performance measures. We cre-
ated training data from the reports in Ccop so as
to simulate a scenario under ideal conditions, i.e.,
perfect speech recognition and proper dictation of
punctuation and headings, without hesitation or rep-
etitions. In contrast, the data from Crcg reflects
real-life conditions, with a wide variety of speech
recognition error rates and speakers frequently hes-
itating, repeating themselves and omitting punctua-
tion and/or headings.

Depending on the experiment, two different sub-
sets of the two corpora were considered:

e Cicor,rcay-arr: All 2007 reports were used,
resulting in 1338 training examples and 669
testing examples at each CV-iteration.

e Cicor,rca)-BEsT: The corpus was restricted
to those 1002 reports that yielded the lowest
word error rate during alignment (see section
4.2). Each CV-iteration hence amounts to 668
training examples and 334 testing examples.

From the crossvalidation runs, a 95%-confidence
interval for each measure was estimated as follows:
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Fig. 5: Accuracy vs. loss function on Crog-Arr

where Y is the sample mean, s is the sample stan-
dard deviation, NV is the sample size (3), « is the de-
sired significance level (0.05) and ¢, /2 y_1) is the
upper critical value of the ¢-distribution with N — 1
degrees of freedom. The confidence intervals are in-
dicated in the &+ column of tables 1, 2 and 3.

For CRF training, we minimized the penalized,
negative log-pseudolikelihood using LBFGS with
m = 3. The variance of the Gaussian prior was set
to 02 = 1000. All supported features were used for
univariate factors, while the bivariate factors within
chains and between chains were restricted to bias
weights. For testing, loopy belief propagation with
a TRP schedule was used in order to determine the
maximum a posteriori (MAP) assignment. We use
VieCRF, our own implementation of factorial CRFs,
which is freely available at the author’s homepage’.

6.1 Analysis of training progress

In order to determine the number of required train-
ing iterations, an experiment was performed that
compares the progress of the Accuracy measure on
a validation set to the progress of the loss function
on a training set. The data was randomly split into
a training set (2/3 of the instances) and a validation
set. Accuracy on the validation set was computed
using the intermediate CRF parameters 6; every 5
iterations of LBFGS. The resulting plot (figure 5)
demonstrates that the progress of the loss function
corresponds well to that of the Accuracy measure,

"http://www.ofai.at/” jeremy.jancsary/



Estimated Accuracies Estimated Accuracies

Acc. + Acc. +
Average 97.24%  0.33 Average 86.36%  0.80
Chain0  99.64%  0.04 Chain0  91.74%  0.16
Chain1  9548%  0.55 Chain1  8590% 1.25
Chain2  96.61%  0.68 Chain2  81.45% 2.14
Joint 92.51%  0.97 Joint 69.19%  1.93

(@) Ccor-ALL (b) CreG-ALL

Table 1: Accuracy on the full corpus

Estimated Accuracies Estimated Accuracies

Acc. + Acc. +
Average 96.48%  0.82 Average 87.73%  2.07
Chain0  99.55%  0.08 Chain0  93.77%  0.68
Chainl  94.64% 0.23 Chainl  87.59% 1.79
Chain2  95.25% 2.16 Chain2  81.81% 3.79
Joint 90.65%  2.15 Joint 7091%  4.50

(a) Ccor-BEST (b) CroG-BEST

Table 2: Accuracy on a high-quality subset

thus an “early stopping” approach might be tempt-
ing to cut down on training times. However, during
earlier stages of training, the CRF parameters seem
to be strongly biased towards high-frequency labels,
so other measures such as macro-averaged F'1 might
suffer from early stopping. Hence, we decided to
allow up to 800 iterations of LBFGS.

6.2 Accuracy of structure prediction

Table 1 shows estimated accuracies for Ccor-ArLL
and Crog-arr. Overall, high accuracy (> 97%)
can be achieved on Ccopr-ar1,, showing that the ap-
proach works very well under ideal conditions. Per-
formance is still fair on the noisy data (Crog-ArLL;
Accuracy > 86%). It should be noted that the la-
bels are unequally distributed, especially in chain 0
(there are very few BEGIN labels). Thus, the base-
line is substantially high for this chain, and other
measures may be better suited for evaluating seg-
mentation quality (cf. section 6.4).

6.3 On the effect of noisy training data

Measuring the effect of the imprecise reference an-
notation of C'rc( is difficult without a correspond-
ing, manually created golden standard. However, to
get a feeling for the impact of the noise induced
by speech recognition errors and sloppy dictation

Estimated WD Estimated WD
WD + WD +
Chain0  0.007  0.000 Chain0  0.193  0.008
Chain1  0.050 0.007 Chain 1  0.149  0.005
Chain2 0.015 0.001 Chain2 0.118 0.013

(@) Ccor-aLL (b) Crcg-ALL

Table 3: Per-chain WindowDiff on the full corpus

on the quality of the semi-automatically generated
annotation, we conducted an experiment with sub-
sets Coor-pest and Crog-gesT- The results are
shown in table 2. Comparing these results to ta-
ble 1, one can see that overall accuracy decreased
for Coor-BEsT, Whereas we see an increase for
Creg-Best- This effect can be attributed to two
different phenomena:

e In Coor-BEST, nO quality gains in the anno-
tation could be expected. The smaller number
of training examples therefore results in lower
accuracy.

e Fewer speech recognition errors and more con-
sistent dictation in C'roca-grsT allow for bet-
ter alignment and thus a better reference anno-
tation. This increases the actual prediction per-
formance and, furthermore, reduces the num-
ber of label predictions that are erroneously
counted as a misprediction.

Thus, it is to be expected that manual correction of
the automatically created annotation results in sig-
nificant performance gains. Preliminary annotation
experiments have shown that this is indeed the case.

6.4 Segmentation quality

Accuracy is not the best measure to assess segmen-
tation quality, therefore we also conducted experi-
ments using the WindowDiff measure as proposed
by Pevzner and Hearst (2002). WindowDiff re-
turns O in case of a perfect segmentation; 1 is the
worst possible score. However, it only takes into
account segment boundaries and disregards segment
types. Table 3 shows the WindowDiff scores for
Ccor-arnr and Crog-arr,. Overall, the scores are
quite good and are consistently below 0.2. Further-
more, Crog-Arr scores do not suffer as badly from
inaccurate reference annotation, since “near misses”
are penalized less strongly.



Converged (%) Iterations (9)
CcOR-ALL 0.999 15.4
CRrRoG-ALL 0.911 66.5
CcOR-BEST 0.999 14.2
CRrRcG-BEST 0.971 37.5

Table 4: Convergence behaviour of loopy BP

6.5 Convergence of loopy belief propagation

In section 5.2, we mentioned that loopy BP is not
guaranteed to converge in a finite number of itera-
tions. Since we optimize pseudolikelihood for pa-
rameter estimation, we are not affected by this limi-
tation in the training phase. However, we use loopy
BP with a TRP schedule during testing, so we must
expect to encounter non-convergence for some ex-
amples. Theoretical results on this topic are dis-
cussed by Heskes (2004). We give here an empir-
ical observation of convergence behaviour of loopy
BP in our setting; the maximum number of itera-
tions of the TRP schedule was restricted to 1,000.
Table 4 shows the percentage of examples converg-
ing within this limit and the average number of iter-
ations required by the converging examples, broken
down by the different corpora. From these results,
we conclude that there is a connection between the
quality of the annotation and the convergence be-
haviour of loopy BP. In practice, even though loopy
BP didn’t converge for some examples, the solutions
after 1,000 iterations where satisfactory.

7 Conclusion and Outlook

We have presented a framework which allows for
identification of structure in report dictations, such
as sentence boundaries, paragraphs, enumerations,
(sub)sections, and various other structural elements;
even if no explicit clues are dictated. Furthermore,
meaningful types are automatically assigned to sub-
sections and sections, allowing — for instance — to
automatically assign headings, if none were dic-
tated.

For the preparation of training data a mechanism
has been presented that exploits the potential of par-
allel corpora for automatic annotation of data. Us-
ing manually edited formatted reports and the cor-
responding raw output of ASR, reference annotation
can be generated that is suitable for learning to iden-
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tify structure in ASR output.

For the structure recognition task, a CRF frame-
work has been employed and multiple experiments
have been performed, confirming the practicability
of the approach presented here.

One result deserving further investigation is the
effect of noisy annotation. We have shown that
segmentation results improve when fewer errors are
present in the automatically generated annotation.
Thus, manual correction of the reference annotation
will yield further improvements.

Finally, the framework presented in this paper
opens up exciting possibilities for future work.
In particular, we aim at automatically transform-
ing report dictations into properly formatted and
rephrased reports that conform to the requirements
of the relevant domain. Such tasks are greatly facili-
tated by the explicit knowledge gained during struc-
ture recognition.

Acknowledgments

The work presented here has been carried out in
the context of the Austrian KNet competence net-
work COAST. We gratefully acknowledge funding
by the Austrian Federal Ministry of Economics and
Labour, and ZIT Zentrum fuer Innovation und Tech-
nologie, Vienna. The Austrian Research Institute
for Artificial Intelligence is supported by the Aus-
trian Federal Ministry for Transport, Innovation, and
Technology and by the Austrian Federal Ministry for
Science and Research.

Furthermore, we would like to thank our anony-
mous reviewers for many insightful comments that
helped us improve this paper.

References

ASTM International. 2002. ASTM E2184-02: Standard
specification for healthcare document formats.

Freddy Choi. 2000. Advances in domain independent
linear text segmentation. In Proceedings of the first
conference on North American chapter of the Associa-
tion for Computation Linguistics, pages 26—33.

C. Fellbaum. 1998. WordNet: an electronic lexical
database. MIT Press, Cambridge, MA.

Marti A. Hearst. 1997. Texttiling: Segmenting text into
multi-paragraph subtopic passages. Computational
Linguistics, 23(1):36-47.



Tom Heskes. 2004. On the uniqueness of loopy
belief propagation fixed points. Neural Comput.,
16(11):2379-2413.

Martin Huber, Jeremy Jancsary, Alexandra Klein, Jo-
hannes Matiasek, and Harald Trost. 2006. Mismatch
interpretation by semantics-driven alignment. In Pro-
ceedings of KONVENS ’06.

Jeremy M. Jancsary. 2008. Recognizing structure in re-
port transcripts. Master’s thesis, Vienna University of
Technology.

John Lafferty, Andrew McCallum, and Fernando Pereira.
2001. Conditional Random Fields: Probabilistic mod-
els for segmenting and labeling sequence data. In Pro-
ceedings of the Eighteenth International Conference
on Machine Learning (ICML).

S. Lamprier, T. Amghar, B. Levrat, and F. Saubion.
2008. Toward a more global and coherent segmen-
tation of texts. Applied Artificial Intelligence, 23:208—
234, March.

Vladimir I. Levenshtein. 1966. Binary codes capable of
correcting deletions, insertions and reversals. Soviet
Physics Doklady, 10(8):707-710.

D. A. B. Lindberg, B. L. Humphreys, and A. T. McCray.
1993. The Unified Medical Language System. Meth-
ods of Information in Medicine, 32:281-291.

Evgeny Matsuov. 2003. Statistical methods for text
segmentation and topic detection.  Master’s the-
sis, Rheinisch-Westfilische Technische Hochschule
Aachen.

Ryan McDonald, Koby Crammer, and Fernando Pereira.
2005. Flexible text segmentation with structured
multilabel classification. In Proceedings of Human
Language Technology Conference and Conference on
Empirical Methods in Natural Language Processing
(HLT/EMNLP), pages 987-994.

Jorge Nocedal. 1980. Updating Quasi-Newton matri-
ces with limited storage. Mathematics of Computa-
tion, 35:773-782.

Lev Pevzner and Marti Hearst. 2002. A critique and
improvement of an evaluation metric for text segmen-
tation. Computational Linguistics, 28(1), March.

Lawrence Philips. 1990. Hanging on the metaphone.
Computer Language, 7(12).

L. R. Rabiner. 1989. A tutorial on hidden Markov mod-
els and selected applications in speech recognition.
Proceedings of the IEEE, 77:257-286, February.

Scott Sanner, Thore Graepel, Ralf Herbrich, and Tom
Minka. 2007. Learning CRFs with hierarchical fea-
tures: An application to go. International Conference
on Machine Learning ICML) workshop.

Nicol N. Schraudolph, Jin Yu, and Simon Giinter. 2007.
A stochastic Quasi-Newton Method for online convex
optimization. In Proceedings of 11th International
Conference on Artificial Intelligence and Statistics.

10

Fabrizio Sebastiani. 2002. Machine learning in auto-
mated text categorization. ACM Computing Surveys,
34(1):1-47.

Charles Sutton and Andrew McCallum. 2005. Composi-
tion of Conditional Random Fields for transfer learn-
ing. In Proceedings of Human Language Technologies
/ Empirical Methods in Natural Language Processing
(HLT/EMNLP).

Charles Sutton and Andrew McCallum. 2007. An intro-
duction to Conditional Random Fields for relational
learning. In Lise Getoor and Ben Taskar, editors,
Introduction to Statistical Relational Learning. MIT
Press.

Martin Wainwright, Tommi Jaakkola, and Alan S. Will-
sky. 2002. Tree-based reparameterization framework
for analysis of sum-product and related algorithms.
IEEFE Transactions on Information Theory, 49(5).

Ming Ye and Paul Viola. 2004. Learning to parse hi-
erarchical lists and outlines using Conditional Ran-
dom Fields. In Proceedings of the Ninth International
Workshop on Frontiers in Handwriting Recognition
(IWFHR’04), pages 154-159. IEEE Computer Soci-
ety.

Jonathan S. Yedidia, William T. Freeman, and Yair Weiss,
2003. Understanding Belief Propagation and its Gen-
eralizations, Exploring Artificial Intelligence in the
New Millennium, chapter 8, pages 236-239. Science
& Technology Books, January.



It’s a Contradiction—No, it’s Not:
A Case Study using Functional Relations

Alan Ritter, Doug Downey, Stephen Soderland and Oren Etzioni
Turing Center
Department of Computer Science and Engineering
University of Washington
Box 352350
Seattle, WA 98195, USA
{aritter,ddowney,soderlan,etzioni } @cs.washington.edu

Abstract

Contradiction Detection (CD) in text is a
difficult NLP task. = We investigate CD
over functions (e.g., BornIn(Person)=Place),
and present a domain-independent algorithm
that automatically discovers phrases denoting
functions with high precision. Previous work
on CD has investigated hand-chosen sentence
pairs. In contrast, we automatically harvested
from the Web pairs of sentences that appear
contradictory, but were surprised to find that
most pairs are in fact consistent. For example,
“Mozart was born in Salzburg” does not con-
tradict “Mozart was born in Austria” despite
the functional nature of the phrase “was born
in”. We show that background knowledge
about meronyms (e.g., Salzburg is in Austria),
synonyms, functions, and more is essential for
success in the CD task.

1 Introduction and Motivation

Detecting contradictory statements is an important
and challenging NLP task with a wide range of
potential applications including analysis of politi-
cal discourse, of scientific literature, and more (de
Marneffe et al.,, 2008; Condoravdi et al., 2003;
Harabagiu et al., 2006). De Marnefte ef al. present a
model of CD that defines the task, analyzes different
types of contradictions, and reports on a CD system.
They report 23% precision and 19% recall at detect-
ing contradictions in the RTE-3 data set (Voorhees,
2008). Although RTE-3 contains a wide variety of
contradictions, it does not reflect the prevalence of
seeming contradictions and the paucity of genuine
contradictions, which we have found in our corpus.
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1.1 Contradictions and World Knowledge

Our paper is motivated in part by de Marneffe et al.’s
work, but with some important differences. First,
we introduce a simple logical foundation for the CD
task, which suggests that extensive world knowl-
edge is essential for building a domain-independent
CD system. Second, we automatically generate a
large corpus of apparent contradictions found in ar-
bitrary Web text. We show that most of these appar-
ent contradictions are actually consistent statements
due to meronyms (Alan Turing was born in London
and in England), synonyms (George Bush is mar-
ried to both Mrs. Bush and Laura Bush), hypernyms
(Mozart died of both renal failure and kidney dis-
ease), and reference ambiguity (one John Smith was
born in 1997 and a different John Smith in 1883).
Next, we show how background knowledge enables
a CD system to discard seeming contradictions and
focus on genuine ones.

De Marneffe et al. introduced a typology of con-
tradiction in text, but focused primarily on contra-
dictions that can be detected from linguistic evi-
dence (e.g. negation, antonymy, and structural or
lexical disagreements). We extend their analysis to
a class of contradictions that can only be detected
utilizing background knowledge. Consider for ex-
ample the following sentences:

1) “Mozart was born in Salzburg.”

2) “Mozart was born in Vienna.”

3) “Mozart visited Salzburg.”

4) “Mozart visited Vienna.”
Sentences 1 & 2 are contradictory, but 3 & 4 are
not. Why is that? The distinction is not syntactic.
Rather, sentences 1 and 2 are contradictory because

Proceedings of the 2008 Conference on Empirical Methods in Natural Language Processing, pages 11-20,
Honolulu, October 2008. (©2008 Association for Computational Linguistics



the relation expressed by the phrase “was born in”
can be characterized here as a function from peo-
ple’s names to their unique birthplaces. In contrast,
“visited” does not denote a functional relation.

We cannot assume that a CD system knows, in
advance, all the functional relations that might ap-
pear in a corpus. Thus, a central challenge for a
function-based CD system is to determine which re-
lations are functional based on a corpus. Intuitively,
we might expect that “functional phrases” such as
“was born in” would typically map person names
to unique place names, making function detection
easy. But, in fact, function detection is surprisingly
difficult because name ambiguity (e.g., John Smith),
common nouns (e.g., “dad” or “mom”), definite de-
scriptions (e.g., “the president”), and other linguistic
phenomena can mask functions in text. For example,
the two sentences “John Smith was born in 1997.”
and “John Smith was born in 1883.” can be viewed
as either evidence that “was born in” does not de-
note a function or, alternatively, that “John Smith”
is ambiguous.

1.2 A CD System Based on Functions

We report on the AUCONTRAIRE CD system, which
addresses each of the above challenges. First, AU-
CONTRAIRE identifies “functional phrases” statis-
tically (Section 3). Second, AUCONTRAIRE uses
these phrases to automatically create a large cor-
pus of apparent contradictions (Section 4.2). Fi-
nally, AUCONTRAIRE sifts through this corpus to
find genuine contradictions using knowledge about
synonymy, meronymy, argument types, and ambi-
guity (Section 4.3).

Instead of analyzing sentences directly, AUCON-
TRAIRE relies on the TEXTRUNNER Open Informa-
tion Extraction system (Banko et al., 2007; Banko
and Etzioni, 2008) to map each sentence to one or
more tuples that represent the entities in the sen-
tences and the relationships between them (e.g.,
was_born_in(Mozart,Salzburg)). Using extracted tu-
ples greatly simplifies the CD task, because nu-
merous syntactic problems (e.g., anaphora, rela-
tive clauses) and semantic challenges (e.g., quantifi-
cation, counterfactuals, temporal qualification) are

! Although we focus on function-based CD in our case study,
we believe that our observations apply to other types of CD as
well.
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delegated to TEXTRUNNER or simply ignored. Nev-

ertheless, extracted tuples are a convenient approxi-

mation of sentence content, which enables us to fo-

cus on function detection and function-based CD.
Our contributions are the following:

e We present a novel model of the Contradiction
Detection (CD) task, which offers a simple log-
ical foundation for the task and emphasizes the
central role of background knowledge.

e We introduce and evaluate a new EM-style al-
gorithm for detecting whether phrases denote
functional relations and whether nouns (e.g.,
“dad”) are ambiguous, which enables a CD sys-
tem to identify functions in arbitrary domains.

e We automatically generate a corpus of seem-
ing contradictions from Web text, and report
on a set of experiments over this corpus, which
provide a baseline for future work on statistical
function identification and CD. 2

2 A Logical Foundation for CD

On what basis can a CD system conclude that two
statements 1" and H are contradictory? Logically,
contradiction holds when 7' = = H. As de Marneffe
et al. point out, this occurs when 7" and H contain
antonyms, negation, or other lexical elements that
suggest that 7" and H are directly contradictory. But
other types of contradictions can only be detected
with the help of a body of background knowledge
K In these cases, 7" and H alone are mutually con-
sistent. That is,

T}#—\H/\Hﬁg—\T

A contradiction between 7" and H arises only in
the context of K. That is:

(K AT) | =H)V (K AH) = ~T)

Consider the example of Mozart’s birthplace in
the introduction. To detect a contradiction, a CD
system must know that A) “Mozart” refers to the
same entity in both sentences, that B) “was born in”
denotes a functional relation, and that C) Vienna and
Salzburg are inconsistent locations.

>The corpus is available at http://www.cs.
washington.edu/research/aucontraire/



Of course, world knowledge, and reasoning about
text, are often uncertain, which leads us to associate
probabilities with a CD system’s conclusions. Nev-
ertheless, the knowledge base K is essential for CD.

We now turn to a probabilistic model that helps
us simultaneously estimate the functionality of re-
lations (B in the above example) and ambiguity of
argument values (A above). Section 4 describes the
remaining components of AUCONTRAIRE.

3 Detecting Functionality and Ambiguity

This section introduces a formal model for comput-
ing the probability that a phrase denotes a function
based on a set of extracted tuples. An extracted tuple
takes the form R(x,y) where (roughly) z is the sub-
ject of a sentence, y is the object, and R is a phrase
denoting the relationship between them. If the re-
lation denoted by R is functional, then typically the
object y is a function of the subject z. Thus, our dis-
cussion focuses on this possibility, though the anal-
ysis is easily extended to the symmetric case.

Logically, a relation R is functional in a vari-
able x if it maps it to a unique variable ¥:
Va,y1,y2 R(z,y1) A R(x,y2) = y1 = yo. Thus,
given a large random sample of ground instances of
R, we could detect with high confidence whether R
is functional. In text, the situation is far more com-
plex due to ambiguity, polysemy, synonymy, and
other linguistic phenomena. Deciding whether R is
functional becomes a probabilistic assessment based
on aggregated textual evidence.

The main evidence that a relation R(x, y) is func-
tional comes from the distribution of y values for
a given z value. If R denotes a function and z is
unambiguous, then we expect the extractions to be
predominantly a single y value, with a few outliers
due to noise. We aggregate the evidence that R is
locally functional for a particular = value to assess
whether R is globally functional for all x.

We refer to a set of extractions with the same
relation R and argument x as a contradiction set
R(z,-). Figure 1 shows three example contradic-
tion sets. Each example illustrates a situation com-
monly found in our data. Example A in Figure 1
shows strong evidence for a functional relation. 66
out of 70 TEXTRUNNER extractions for was_born_in
(Mozart, PLACE) have the same y value. An am-
biguous x argument, however, can make a func-

13

tional relation appear non-functional. Example B
depicts a distribution of y values that appears less
functional due to the fact that “John Adams” refers
to multiple, distinct real-world individuals with that
name. Finally, example C exhibits evidence for a
non-functional relation.

A. was_born_in(Mozart, PLACE):
Salzburg(66), Germany(3), Vienna(1)

B. was_born_in(John Adams, PLACE):
Braintree(12), Quincy(10), Worcester(8)

C. lived_in(Mozart, PLACE):
Vienna(20), Prague(13), Salzburg(5)

Figure 1: Functional relations such as example A have a
different distribution of y values than non-functional rela-
tions such as C. However, an ambiguous x argument as in
B, can make a functional relation appear non-functional.

3.1 Formal Model of Functions in Text

To decide whether R is functional in x for all z,
we first consider how to detect whether R is lo-
cally functional for a particular value of . The local
functionality of R with respect to x is the probabil-
ity that R is functional estimated solely on evidence
from the distribution of y values in a contradiction
set R(x, ).

To decide the probability that R is a function, we
define global functionality as the average local func-
tionality score for each x, weighted by the probabil-
ity that x is unambiguous. Below, we outline an EM-
style algorithm that alternately estimates the proba-
bility that R is functional and the probability that x
is ambiguous.

Let R}, indicate the event that the relation R is
locally functional for the argument x, and that z is
locally unambiguous for R. Also, let D indicate
the set of observed tuples, and define Dg(, . as the
multi-set containing the frequencies for extractions
of the form R(z,-). For example the distribution of
extractions from Figure 1 for example A is

DWas,bornJln(Mozart,-) = {66’ 3, 1}

Let 9}; be the probability that R(z,-) is locally
functional for a random z, and let ©7 be the vector
of these parameters across all relations R. Likewise,
0% represents the probability that x is locally unam-
biguous for random R, and ©" the vector for all x.



We wish to determine the maximum a pos-
teriori (MAP) functionality and ambiguity pa-
rameters given the observed data D, that is
arg maxgs gu P(©/,0%|D). By Bayes Rule:

P(D|6f, 0“)P(Of, 0v)
P(D)

P(©/,0%D) = €))
We outline a generative model for the data,
P(D|67,0%). Let us assume that the event R de-

pends only on 9}; and 6%, and further assume that
given these two parameters, local ambiguity and lo-
cal functionality are conditionally independent. We
obtain the following expression for the probability

of R}, given the parameters:
P(R;|67,0") = 0}6:

We assume each set of data Dp(, .y is gener-
ated independently of all other data and parameters,
given R},. From this and the above we have:

P(D|0!,0") = [ (P(Dr.|R;)0%0:
R,x

+P(Dpe | PR = 0402)) @

These independence assumptions allow us to ex-
press P(D|©/,0%) in terms of distributions over
Dp(s,) given whether or not R; holds. We use the
URNS model as described in (Downey et al., 2005)
to estimate these probabilities based on binomial
distributions. In the single-urn URNS model that we
utilize, the extraction process is modeled as draws of
labeled balls from an urn, where the labels are either
correct extractions or errors, and different labels can
be repeated on varying numbers of balls in the urn.

Let k = max Dp,,., and let n. = 3 Dp(; .3
we will approximate the distribution over Dp(,
in terms of k& and n. If R(z,-) is locally func-
tional and unambiguous, there is exactly one cor-
rect extraction label in the urn (potentially repeated
multiple times). Because the probability of correct-
ness tends to increase with extraction frequency, we
make the simplifying assumption that the most fre-
quently extracted element is correct.® In this case, k
is the number of correct extractions, which by the

3As this assumption is invalid when there is not a unique
maximal element, we default to the prior P(R}) in that case.
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URNS model has a binomial distribution with pa-
rameters n and p, where p is the precision of the ex-
traction process. If R(z,-) is not locally functional
and unambiguous, then we expect k to typically take
on smaller values. Empirically, the underlying fre-
quency of the most frequent element in the - R, case
tends to follow a Beta distribution.

Under the model, the probability of the evidence
given R, is:

* k n n—
P(Dra |R) ~ P(k,n|R}) = <k)pk<1 —p)y

And the probability of the evidence given - R, is:

tk+ap—1 nn+B8r—1—k
_(ny (e T Ap)" S
- (k) 0 B(af,,Bf) dp

_ (T (n—k+ BT (af + k) 3)
Blay, Bp)T (e + By +n)

where n is the sum over Dp(, ), I' is the Gamma
function and B is the Beta function. oy and [3; are
the parameters of the Beta distribution for the - R,
case. These parameters and the prior distributions
are estimated empirically, based on a sample of the
data set of relations described in Section 5.1.

/

3.2 Estimating Functionality and Ambiguity

Substituting Equation 3 into Equation 2 and apply-
ing an appropriate prior gives the probability of pa-
rameters ©/ and ©" given the observed data D.
However, Equation 2 contains a large product of
sums—with two independent vectors of coefficients,
©f and ©%—making it difficult to optimize analyti-
cally.

If we knew which arguments were ambiguous,
we would ignore them in computing the function-
ality of a relation. Likewise, if we knew which rela-
tions were non-functional, we would ignore them in
computing the ambiguity of an argument. Instead,
we initialize the ©/ and © arrays randomly, and
then execute an algorithm similar to Expectation-
Maximization (EM) (Dempster et al., 1977) to arrive
at a high-probability setting of the parameters.

Note that if ©“ is fixed, we can compute the ex-
pected fraction of locally unambiguous arguments z
for which R is locally functional, using Dy, ) and



Equation 3. Likewise, for fixed ©/, for any given
x we can compute the expected fraction of locally
functional relations R that are locally unambiguous
for z.

Specifically, we repeat until convergence:

1. Set 0 = L 3, P(R}|Dpyy.))0% for all R.
2. Set 0% = é >R P(R;]DR(%_))Q{Q for all z.

In both steps above, the sums are taken over only
those = or R for which Dp(, .y is non-empty. Also,
the normalizer sp = ) 0% and likewise s, =
SR 0.

As in standard EM, we iteratively update our pa-
rameter values based on an expectation computed
over the unknown variables. However, we alter-
nately optimize two disjoint sets of parameters (the
functionality and ambiguity parameters), rather than
just a single set of parameters as in standard EM.
Investigating the optimality guarantees and conver-
gence properties of our algorithm is an item of future
work.

By iteratively setting the parameters to the expec-
tations in steps 1 and 2, we arrive at a good setting
of the parameters. Section 5.2 reports on the perfor-
mance of this algorithm in practice.

4 System Overview

AUCONTRAIRE identifies phrases denoting func-
tional relations and utilizes these to find contradic-
tory assertions in a massive, open-domain corpus of
text.

AUCONTRAIRE begins by finding extractions of
the form R(x,y), and identifies a set of relations
R that have a high probability of being functional.
Next, AUCONTRAIRE identifies contradiction sets
of the form R(x,-). In practice, most contradiction
sets turned out to consist overwhelmingly of seem-
ing contradictions—assertions that do not actually
contradict each other for a variety of reasons that
we enumerate in section 4.3. Thus, a major chal-
lenge for AUCONTRAIRE is to tease apart which
pairs of assertions in R(x, -) represent genuine con-
tradictions.

Here are the main components of AUCONTRAIRE
as illustrated in Figure 2:

Extractor: Create a set of extracted assertions &
from a large corpus of Web pages or other docu-
ments. Each extraction R(z,y) has a probability p
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WordNet —

Detector
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(R(x. ). R(x, ;,)). p.

Figure 2: AUCONTRAIRE architecture

of being correct.

Function Learner: Discover a set of functional re-
lations F from among the relations in £. Assign to
each relation in F a probability p; that it is func-
tional.

Contradiction Detector: Query £ for assertions
with a relation R in F, and identify sets C of po-
tentially contradictory assertions. Filter out seeming
contradictions in C by reasoning about synonymy,
meronymy, argument types, and argument ambigu-
ity. Assign to each potential contradiction a proba-
bility p. that it is a genuine contradiction.

4.1 Extracting Factual Assertions

AUCONTRAIRE needs to explore a large set of
factual assertions, since genuine contradictions are
quite rare (see Section 5). We used a set of extrac-
tions £ from the Open Information Extraction sys-
tem, TEXTRUNNER (Banko et al., 2007), which was
run on a set of 117 million Web pages.
TEXTRUNNER does not require a pre-defined set
of relations, but instead uses shallow linguistic anal-
ysis and a domain-independent model to identify
phrases from the text that serve as relations and
phrases that serve as arguments to that relation.
TEXTRUNNER creates a set of extractions in a sin-
gle pass over the Web page collection and provides
an index to query the vast set of extractions.
Although its extractions are noisy, TEXTRUNNER
provides a probability that the extractions are cor-



rect, based in part on corroboration of facts from
different Web pages (Downey et al., 2005).

4.2 Finding Potential Contradictions

The next step of AUCONTRAIRE is to find contra-
diction sets in £.

We used the methods described in Section 3 to
estimate the functionality of the most frequent rela-
tions in £. For each relation R that AUCONTRAIRE
has judged to be functional, we identify contradic-
tion sets R(x, -), where a relation R and domain ar-
gument = have multiple range arguments .

4.3

For a variety of reasons, a pair of extractions
R(x,y1) and R(x,y2) may not be actually contra-
dictory. The following is a list of the major sources
of false positives—pairs of extractions that are not
genuine contradictions, and how they are handled
by AUCONTRAIRE. The features indicative of each
condition are combined using Logistic Regression,
in order to estimate the probability that a given pair,
{R(x,y1), R(x,y2)} is a genuine contradiction.

Handling Seeming Contradictions

Synonyms: The set of potential contradictions
died_from(Mozart,-) may contain assertions that
Mozart died from renal failure and that he died from
kidney failure. These are distinct values of ¥, but
do not contradict each other, as the two terms are
synonyms. AUCONTRAIRE uses a variety of knowl-
edge sources to handle synonyms. WordNet is a re-
liable source of synonyms, particularly for common
nouns, but has limited recall. AUCONTRAIRE also
utilizes synonyms generated by RESOLVER (Yates
and Etzioni, 2007)— a system that identifies syn-
onyms from TEXTRUNNER extractions. Addition-
ally, AUCONTRAIRE uses edit-distance and token-
based string similarity (Cohen et al., 2003) between
apparently contradictory values of y to identify syn-
onyms.

Meronyms: For some relations, there is no con-
tradiction when y; and gy share a meronym,
i.e. “part of” relation. For example, in the set
born_in(Mozart,-) there is no contradiction be-
tween the y values “Salzburg” and “Austria”, but
“Salzburg” conflicts with “Vienna”. Although this
is only true in cases where y occurs in an up-
ward monotone context (MacCartney and Manning,
2007), in practice genuine contradictions between
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y-values sharing a meronym relationship are ex-
tremely rare. We therefore simply assigned contra-
dictions between meronyms a probability close to
zero. We used the Tipster Gazetteer* and WordNet
to identify meronyms, both of which have high pre-
cision but low coverage.

Argument Typing: Two y values are not contra-
dictory if they are of different argument types. For
example, the relation born_in can take a date or a
location for the y value. While a person can be
born in only one year and in only one city, a per-
son can be born in both a year and a city. To avoid
such false positives, AUCONTRAIRE uses a sim-
ple named-entity tagger® in combination with large
dictionaries of person and location names to as-
sign high-level types (person, location, date, other)
to each argument. AUCONTRAIRE filters out ex-
tractions from a contradiction set that do not have
matching argument types.

Ambiguity: As pointed out in Section 3, false con-
tradictions arise when a single = value refers to mul-
tiple real-world entities. For example, if the con-
tradiction set born_in(John Sutherland, -) includes
birth years of both 1827 and 1878, is one of these a
mistake, or do we have a grandfather and grandson
with the same name? AUCONTRAIRE computes the
probability that an = value is unambiguous as part
of its Function Learner (see Section 3). An x value
can be identified as ambiguous if its distribution of
y values is non-functional for multiple functional re-
lations.

If a pair of extractions, { R(z,y1), R(x, y2) }, does
not fall into any of the above categories and R is
functional, then it is likely that the sentences under-
lying the extractions are indeed contradictory. We
combined the various knowledge sources described
above using Logistic Regression, and used 10-fold
cross-validation to automatically tune the weights
associated with each knowledge source. In addi-
tion, the learning algorithm also utilizes the follow-
ing features:

e Global functionality of the relation, 0{%
o Global unambiguity of z, 03

*nttp://crl.nmsu.edu/cgi-bin/Tools/CLR/
clrcat

Shttp://search.cpan.org/ simon/
Lingua-EN-NamedEntity-1.1/NamedEntity.pm



e Local functionality of R(z, -)

e String similarity (a combination of token-based
similarity and edit-distance) between g and yo

e The argument types (person, location, date, or
other)

The learned model is then used to estimate how
likely a potential contradiction { R(z, y1), R(z,y2)}
is to be genuine.

5 Experimental Results

We evaluated several aspects of AUCONTRAIRE:
its ability to detect functional relations and to de-
tect ambiguous arguments (Section 5.2); its preci-
sion and recall in contradiction detection (Section
5.3); and the contribution of AUCONTRAIRE’s key
knowledge sources (Section 5.4).

5.1 Data Set

To evaluate AUCONTRAIRE we used TEXTRUN-
NER’s extractions from a corpus of 117 million Web
pages. We restricted our data set to the 1,000 most
frequent relations, in part to keep the experiments
tractable and also to ensure sufficient statistical sup-
port for identifying functional relations.

We labeled each relation as functional or not,
and computed an estimate of the probability it is
functional as described in section 3.2. Section 5.2
presents the results of the Function Learner on this
set of relations. We took the top 2% (20 relations)
as F, the set of functional relations in our exper-
iments. Out of these, 75% are indeed functional.
Some examples include: was born in, died in, and
was founded by.

There were 1.2 million extractions for all thou-
sand relations, and about 20,000 extractions in 6,000
contradiction sets for all relations in F.

We hand-tagged 10% of the contradiction sets
R(z,-) where R € F, discarding any sets with over
20 distinct y values since the x argument for that
set is almost certainly ambiguous. This resulted in a
data set of 567 contradiction sets containing a total
of 2,564 extractions and 8,844 potentially contradic-
tory pairs of extractions.

We labeled each of these 8,844 pairs as contradic-
tory or not. In each case, we inspected the original
sentences, and if the distinction was unclear, con-
sulted the original source Web pages, Wikipedia ar-
ticles, and Web search engine results.

17

In our data set, genuine contradictions over func-
tional relations are surprisingly rare. We found only
110 genuine contradictions in the hand-tagged sam-
ple, only 1.2% of the potential contradiction pairs.

5.2 Detecting Functionality and Ambiguity

We ran AUCONTRAIRE’s EM algorithm on the
thousand most frequent relations. Performance con-
verged after 5 iterations resulting in estimates of the
probability that each relation is functional and each
x argument is unambiguous. We used these proba-
bilities to generate the precision-recall curves shown
in Figure 3.

The graph on the left shows results for function-
ality, while the graph on the right shows precision at
finding unambiguous arguments. The solid lines are
results after 5 iterations of EM, and the dashed lines
are from computing functionality or ambiguity with-
out EM (i.e. assuming uniform values of ©¢ when
computing ©F and vice versa). The EM algorithm
improved results for both functionality and ambigu-
ity, increasing area under curve (AUC) by 19% for
functionality and by 31% for ambiguity.

Of course, the ultimate test of how well AUCON-
TRAIRE can identify functional relations is how well
the Contradiction Detector performs on automati-
cally identified functional relations.

5.3 Detecting Contradictions

We conducted experiments to evaluate how well
AUCONTRAIRE distinguishes genuine contradic-
tions from false positives.

The bold line in Figure 4 depicts AUCONTRAIRE
performance on the distribution of contradictions
and seeming contradictions found in actual Web
data. The dashed line shows the performance of AU-
CONTRAIRE on an artificially “balanced” data set
that we constructed to contain 50% genuine contra-
dictions and 50% seeming ones.

Previous research in CD presented results on
manually selected data sets with a relatively bal-
anced mix of positive and negative instances. As
Figure 4 suggests, this is a much easier problem than
CD “in the wild”. The data gathered from the Web
is badly skewed, containing only 1.2% genuine con-
tradictions.
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Figure 3: After 5 iterations of EM, AUCONTRAIRE achieves a 19% boost to area under the precision-recall curve
(AUC) for functionality detection, and a 31% boost to AUC for ambiguity detection.
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Figure 4: Performance of AUCONTRAIRE at distinguish-
ing genuine contradictions from false positives. The bold
line is results on the actual distribution of data from the
Web. The dashed line is from a data set constructed to
have 50% positive and 50% negative instances.

5.4 Contribution of Knowledge Sources

We carried out an ablation study to quantify how
much each knowledge source contributes to AU-
CONTRAIRE’s performance. Since most of the
knowledge sources do not apply to numeric argu-
ment values, we excluded the extractions where y
is a number in this study. As shown in Figure 5,
performance of AUCONTRAIRE degrades with no
knowledge of synonyms (NS), with no knowledge
of meronyms (NM), and especially without argu-
ment typing (NT). Conversely, improvements to any
of these three components would likely improve the
performance of AUCONTRAIRE.

The relatively small drop in performance from
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no meronyms does not indicate that meronyms are
not essential to our task, only that our knowledge
sources for meronyms were not as useful as we
hoped. The Tipster Gazetteer has surprisingly low
coverage for our data set. It contains only 41% of
the y values that are locations. Many of these are
matches on a different location with the same name,
which results in incorrect meronym information. We
estimate that a gazetteer with complete coverage
would increase area under the curve by approxi-
mately 40% compared to a system with meronyms
from the Tipster Gazetteer and WordNet.

Percentage AUC

100
|

80
1

60
1

40

20
1

AuContraire NS NM NT

Figure 5: Area under the precision-recall curve for the
full AUCONTRAIRE and for AUCONTRAIRE with knowl-
edge removed. NS has no synonym knowledge; NM has
no meronym knowledge; NT has no argument typing.

To analyze the errors made by AUCONTRAIRE,
we hand-labeled all false-positives at the point of
maximum F-score: 29% Recall and 48% Precision.



Figure 6 reveals the central importance of world
knowledge for the CD task. About half of the errors
(49%) are due to ambiguous z-arguments, which we
found to be one of the most persistent obstacles to
discovering genuine contradictions. A sizable por-
tion is due to missing meronyms (34%) and missing
synonyms (14%), suggesting that lexical resources
with broader coverage than WordNet and the Tipster
Gazetteer would substantially improve performance.
Surprisingly, only 3% are due to errors in the extrac-
tion process.

Missing Meronyms (34%)

Missing Synonyms (14%)

Extraction Errors (3%)

Ambiguity (49%)

Figure 6: Sources of errors in contradiction detection.

All of our experimental results are based on the
automatically discovered set of functions F. We
would expect AUCONTRAIRE’s performance to im-
prove substantially if it were given a large set of
functional relations as input.

6 Related Work

Condoravdi et al. (2003) first proposed contradiction
detection as an important NLP task, and Harabagiu
et al. (2006) were the first to report results on con-
tradiction detection using negation, although their
evaluation corpus was a balanced data set built
by manually negating entailments in a data set
from the Recognizing Textual Entailment confer-
ences (RTE) (Dagan et al., 2005). De Marnefte et
al. (2008) reported experimental results on a contra-
diction corpus created by annotating the RTE data
sets.

RTE-3 included an optional task, requiring sys-
tems to make a 3-way distinction: {entails, contra-
dicts, neither} (Voorhees, 2008). The average per-
formance for contradictions on the RTE-3 was preci-
sion 0.11 at recall 0.12, and the best system had pre-
cision 0.23 at recall 0.19. We did not run AUCON-
TRAIRE on the RTE data sets because they contained
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relatively few of the “functional contradictions” that
AUCONTRAIRE tackles. On our Web-based data
sets, we achieved a precision of 0.62 at recall 0.19,
and precision 0.92 at recall 0.51 on the balanced data
set. Of course, comparisons across very different
data sets are not meaningful, but merely serve to un-
derscore the difficulty of the CD task.

In contrast to previous work, AUCONTRAIRE is
the first to do CD on data automatically extracted
from the Web. This is a much harder problem than
using an artificially balanced data set, as shown in
Figure 4.

Automatic discovery of functional relations has
been addressed in the database literature as Func-
tional Dependency Mining (Huhtala et al., 1999;
Yao and Hamilton, 2008). This focuses on dis-
covering functional relationships between sets of at-
tributes, and does not address the ambiguity inherent
in natural language.

7 Conclusions and Future Work

We have described a case study of contradiction de-
tection (CD) based on functional relations. In this
context, we introduced and evaluated the AUCON-
TRAIRE system and its novel EM-style algorithm
for determining whether an arbitrary phrase is func-
tional. We also created a unique “natural” data set
of seeming contradictions based on sentences drawn
from a Web corpus, which we make available to the
research community.

We have drawn two key lessons from our case
study. First, many seeming contradictions (approx-
imately 99% in our experiments) are not genuine
contradictions. Thus, the CD task may be much
harder on natural data than on RTE data as sug-
gested by Figure 4. Second, extensive background
knowledge is necessary to tease apart seeming con-
tradictions from genuine ones. We believe that these
lessons are broadly applicable, but verification of
this claim is a topic for future work.
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Abstract

Regular expressions have served as the dom-
inant workhorse of practical information ex-
traction for several years. However, there has
been little work on reducing the manual ef-
fort involved in building high-quality, com-
plex regular expressions for information ex-
traction tasks. In this paper, we propose Re-
LIE, a novel transformation-based algorithm
for learning such complex regular expressions.
We evaluate the performance of our algorithm
on multiple datasets and compare it against the
CRF algorithm. We show that ReLIE, in ad-
dition to being an order of magnitude faster,
outperforms CRF under conditions of limited
training data and cross-domain data. Finally,
we show how the accuracy of CRF can be im-
proved by using features extracted by ReLIE.

1 Introduction

A large class of entity extraction tasks can be ac-
complished by the use of carefully constructed reg-
ular expressions (regexes). Examples of entities
amenable to such extractions include email ad-
dresses and software names (web collections), credit
card numbers and social security numbers (email
compliance), and gene and protein names (bioinfor-
matics), etc. These entities share the characteristic
that their key representative patterns (features) are
expressible in standard constructs of regular expres-
sions. At first glance, it may seem that constructing

*Supported in part by NSF 0438909 and NIH 1-U54-
DA021519.
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a regex to extract such entities is fairly straightfor-
ward. In reality, robust extraction requires the use
of rather complex expressions, as illustrated by the
following example.

Example 1 (Phone number extraction). An obvious
pattern for identifying phone numbers is “blocks of
digits separated by hyphens” represented as R; =
(\d+\-) +\d+.! While Ry matches valid phone numbers
like 800-865-1125 and 725-1234, it suffers from both
“precision” and “recall” problems. Not only does Ry
produce incorrect matches (e.g., social security numbers
like 123-45-6789), it also fails to identify valid phone
numbers such as 800.865.1125, and (800)865-CARE. An
improved regex that addresses these problems is Ry =
(\A{3}[=-\ O1){1,2}[\dA-Z]{4}.

While multiple machine learning approaches have
been proposed for information extraction in recent
years (McCallum et al., 2000; Cohen and McCal-
lum, 2003; Klein et al., 2003; Krishnan and Man-
ning, 2006), manually created regexes remain a
widely adopted practical solution for information
extraction (Appelt and Onyshkevych, 1998; Fukuda
etal., 1998; Cunningham, 1999; Tanabe and Wilbur,
2002; Li et al., 2006; DeRose et al., 2007; Zhu et al.,
2007). Yet, with a few notable exceptions, which we
discuss later in Section 1.1, there has been very little
work in reducing this human effort through the use
of automatic learning techniques. In this paper, we
propose a novel formulation of the problem of learn-

"Throughout this paper, we use the syntax of the standard
Java regex engine (Java, 2008).
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ing regexes for information extraction tasks. We
demonstrate that high quality regex extractors can be
learned with significantly reduced manual effort. To
motivate our approach, we first discuss prior work
in the area of learning regexes and describe some of
the limitations of these techniques.

1.1 Learning Regular Expressions

The problem of inducing regular languages from
positive and negative examples has been studied in
the past, even outside the context of information
extraction (Alquezar and Sanfeliu, 1994; Dupont,
1996; Firoiu et al., 1998; Garofalakis et al., 2000;
Denis, 2001; Denis et al., 2004; Fernau, 2005;
Galassi and Giordana, 2005; Bex et al., 2006).
Much of this work assumes that the target regex
is small and compact thereby allowing the learn-
ing algorithm to exploit this information. Consider,
for example, the learning of patterns motivated by
DNA sequencing applications (Galassi and Gior-
dana, 2005). Here the input sequence is viewed
as multiple atomic events separated by gaps. Since
each atomic event is easily described by a small and
compact regex, the problem reduces to one of learn-
ing simple regexes. Similarly, in XML DTD infer-
ence (Garofalakis et al., 2000; Bex et al., 2006), it
is possible to exploit the fact that the XML docu-
ments of interest are often described using simple
DTDs. E.g., in an online books store, each book
has a title, one or more authors and price. This in-
formation can be described in a DTD as (book)
(title) (author) + (price). However, as shown in Ex-
ample 1, regexes for information extraction rely on
more complex constructs.

In the context of information extraction, prior
work has concentrated primarily on learning regexes
over relatively small alphabet sizes. A common
theme in (Soderland, 1999; Ciravegna, 2001; Wu
and Pottenger, 2005; Feldman et al., 2006) is the
problem of learning regexes over tagged tokens
produced by other text-processing steps such as
POS tagging, morphological analysis, and gazetteer
matching. Thus, the alphabet is defined by the space
of possible tags output by these analysis steps. A
similar approach has been proposed in (Brill, 2000)
for POS disambiguation. In contrast, our paper ad-
dresses extraction tasks that require “fine-grained”
control to accurately capture the structural features
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of the entity of interest. Consequently, the domain
of interest consists of all characters thereby dramat-
ically increasing the size of the alphabet. To enable
this scale-up, the techniques presented in this paper
exploit advanced syntactic constructs (such as char-
acter classes and quantifiers) supported by modern
regex languages.

Finally, we note that almost all of the above de-
scribed work define the learning problem over a
restricted class of regexes. Typically, the restric-
tions involve either disallowing or limiting the use of
Kleene disclosure and disjunction operations. How-
ever, our work imposes no such restrictions.

1.2 Contributions

In a key departure from prior formulations, the
learning algorithm presented in this work takes as
input not just labeled examples but also an initial
regular expression. The use of an initial regex has
two major advantages. First, this expression pro-
vides a natural mechanism for a domain expert to
provide domain knowledge about the structure of the
entity being extracted. Second, as we show in Sec-
tion 2, the space of output regular expressions un-
der consideration can be meaningfully restricted by
appropriately defining their relationship to the input
expression. Such a principled approach to restrict
the search space permits the learning algorithm to
consider complex regexes in a tractable manner. In
contrast, prior work defined a tractable search space
by placing restrictions on the target class of regular
expressions. Our specific contributions are:

e A novel regex learning problem consisting of learn-
ing an “improved” regex given an initial regex and
labeled examples

e Formulation of this learning task as an optimization
problem over a search space of regexes

e ReLIE, a regex learning algorithm that employs
transformations to navigate the search space

e Extensive experimental results over multiple
datasets to show the effectiveness of ReLIE and
a comparison study with the Conditional Random
Field (CRF) algorithm

e Finally, experiments that demonstrate the benefits
of using ReLIE as a feature extractor for CRF and
possibly other machine learning algorithms.



2 The Regex Learning Problem

Consider the task of identifying instances of some
entity £. Let Ry denote the input regex provided by
the user and let M (R, D) denote the set of matches
obtained by evaluating R, over a document col-
lection D. Let M,(Ry,D) = {z € M(Ry,D)

x instance of £} and M,,(Ry,D) = {z € M(Ry,D) :
z not an instance of £} denote the set of positive and
negative matches for Ry. Note that a match is pos-
itive if it corresponds to an instance of the entity of
interest and is negative otherwise. The goal of our
learning task is to produce a regex that is “better”
than R at identifying instances of £.

Given a candidate regex 12, we need a mechanism
to judge whether R is indeed a better extractor for
£ than Ry. To make this judgment even for just the
original document collection D, we must be able to
label each instance matched by R (i.e., each element
of M(R, D)) as positive or negative. Clearly, this
can be accomplished if the set of matches produced
by R are contained within the set of available labeled
examples, i.e., if M(R, D) C M(Ry, D). Based on
this observation, we make the following assumption:
Assumption 1. Given an input regex Ry over some al-
phabet 3, any other regex R over ¥ is a candidate for our
learning algorithm only if L(R) C L(Ry). (L(R) denotes
the language accepted by R).

Even with this assumption, we are left with a po-
tentially infinite set of candidate regexes from which
our learning algorithm must choose one. To explore
this set in a principled fashion, we need a mecha-
nism to move from one element in this space to an-
other, i.e., from one candidate regex to another. In
addition, we need an objective function to judge the
extraction quality of each candidate regex. We ad-
dress these two issues below.

Regex Transformations To systematically ex-
plore the search space, we introduce the concept of
regex transformations.

Definition 1 (Regex Transformation). Let Ry, denote
the set of all regular expressions over some alphabet .. A
regex transformation is a function T : Rs, — 27 such
thatVR' € T(R), L(R') C L(R).

For example, by replacing different occurrences
of the quantifier + in R; from Example 1 with
specific ranges (such as {1,2} or {3}), we obtain
expressions such as 3 = (\d+\-){1,2}\d+ and
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Ry = (\d{3}\-)+\d+. The operation of replacing
quantifiers with restricted ranges is an example of a
particular class of transformations that we describe
further in Section 3. For the present, it is sufficient
to view a transformation as a function applied to a
regex R that produces, as output, a set of regexes that
accept sublanguages of L(R). We now define the
search space of our learning algorithm as follows:
Definition 2 (Search Space). Given an input regex Ry
and a set of transformations T, the search space of our
learning algorithm is T (Ry), the set of all regexes ob-
tained by (repeatedly) applying the transformations in T
to Ry.

For instance, if the operation of restricting quanti-
fiers that we described above is part of the transfor-
mation set, then R3 and R4 are in the search space
of our algorithm, given R, as input.

Objective Function We now define an objective
function, based on the well known F-measure, to
compare the extraction quality of different candidate
regexes in our search space. Using M, (R, D) (resp.
M, (R, D)) to denote the set of positive (resp. nega-
tive) matches of a regex R, we define

N M, (R, D)
D) = .
precision(R, D) Mp (R, D) + M, (R, D)
M, (R, D)
recall(R, D) = —2—"—~
( ) Mp(RO;D)

2 - precision(R, D) - recall(R, D)
precision(R, D) + recall(R, D)

F(R,D) =

The regex learning task addressed in this paper

can now be formally stated as the following opti-
mization problem:
Definition 3 (Regex Learning Problem). Given
an input regex Ry, a document collection D, labeled
sets of positive and negative examples My(R,,D) and
My (R, D), and a set of transformations T, compute the
output regex Ry = argmaxper(p,) F (R, D).

3 Instantiating Regex Transformations

In this section, we describe how transformations
can be implemented by exploiting the syntactic con-
structs of modern regex engines. To help with our
description, we introduce the following task:

Example 2 (Software name extraction). Consider the
task of identifying names of software products in text.
A simple pattern for this task is: “one or more capital-
ized words followed by a version number”, represented
as Rs = ([A-2]\wx\s*)+[Vv]?2 (\d+\.?)+.



When applied to a collection of University web
pages, we discovered that Ry identified correct in-
stances such as Netscape 2.0, Windows 2000 and
Installation Designer vI.1. However, Ry also ex-
tracted incorrect instances such as course numbers
(e.g. ENGLISH 317), room numbers (e.g. Room
330), and section headings (e.g. Chapter 2.2). To
eliminate spurious matches such as ENGLISH 317,
let us enforce the condition that “each word is a
single upper-case letter followed by one or more
lower-case letters”. To accomplish this, we focus
on the sub-expression of 5 that identifies capital-
ized words, R5, = ([A-z]\w«\sx*)+, and replace it
with Rs,, = ([A-2] [a-z] +\s*) +. The regex result-
ing from R5 by replacing R5, with R5,  will avoid
matches such as ENGLISH 317.

An alternate way to improve Ry is by explicitly
disallowing matches against strings like ENGLISH,
Room and Chapter. To accomplish this, we can
exploit the negative lookahead operator supported
in modern regex engines. Lookaheads are special
constructs that allow a sequence of characters
to be checked for matches against a regex with-
out the characters themselves being part of the
match. As an example, (?!R,)R, (“?!” being
the negative lookahead operator) returns matches
of regex R, but only if they do not match R,.
Thus, by replacing Rs, in our original regex with
R51b — (?! ENGLISH|Room|Chapter) [A-Z]\w*\s%*,
we produce an improved regex for software names.

The above examples illustrate the general prin-
ciple of our transformation technique. In essence,
we isolate a sub-expression of a given regex R and
modify it such that the resulting regex accepts a sub-
language of R. We consider two kinds of modifica-
tions — drop-disjunct and include-intersect. In drop-
disjunct, we operate on a sub-expression that corre-
sponds to a disjunct and drop one or more operands
of that disjunct. In include-intersect, we restrict the
chosen sub-expression by intersecting it with some
other regex. Formally,

Definition 4 (Drop-disjunct Transformation). Let
R € Ry be a regex of the form R = Rup(X)Ry,
where p(X) denotes the disjunction Ry|Rs|...|Ry, of
any non-empty set of regexes X = {Ry,Ra,..., R}
The drop-disjunct transformation DD(R, X, Y) for some
Y C X, Y # 0 results in the new regex R,p(Y') Ry.

Definition 5 (Include-Intersect Transformation). Ler
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Figure 1: Sample Character Classes in Regex

R € Ry be a regex of the form R = R, X Ry, for some
X € Rs, X # 0. The include-intersect transformation
II(R, X,Y) for some Y € Ry, Y # 0 results in the new
regex R, (X NY)Ry.

We state the following proposition (proof omit-
ted in the interest of space) that guarantees that both
drop-disjunct and include-intersect restrict the lan-
guage of the resulting regex, and therefore are valid
transformations according to Definition 1.
Proposition 1. Given regexes R, X1,Y1, X5 and Y3
Sfrom Ry such that DD(R, X1,Y1) and 1I(R, X5,Y53)
are applicable, L(DD(R,X1,Y1)) C L(R) and
L(II(R, X5, Y3)) C L(R).

We now proceed to describe how we use differ-
ent syntactic constructs to apply drop-disjunct and
include-intersect transformations.

Character Class Restrictions Character
classes are short-hand notations for denoting
the disjunction of a set of characters (\d is
equivalent to (0[1...19); \w is equivalent to
(al...lzIAl...1Z10/1...19]); etc.).> Figure 1
illustrates a character class hierarchy in which
each node is a stricter class than its parent (e.g.,
\d is stricter than \w). A replacement of any of
these character classes by one of its descendants
is an instance of the drop-disjunct transformation.
Notice that in Example 2, when replacing R, with
Rs,,, we were in effect applying a character class
restriction.

Quantifier Restrictions Quantifiers are used to
define the range of valid counts of a repetitive se-
quence. For instance, a{m,n} looks for a sequence
of a’s of length at least m and at most n. Since
quantifiers are also disjuncts (e.g., a{1, 3} is equiv-
alent to a|aalaaa), the replacement of an expres-
sion R{m, n} with an expression R{m1,n;} (m <
my1 < n1 < n)is an instance of the drop-disjunct
transformation. For example, given a subexpres-
sion of the form a{1,3}, we can replace it with

“Note that there are two distinct character classes \W and \w



one of a{1,1},a{1,2},a{2,2},a{2,3},0ra{3,3}.
Note that, before applying this transformation, wild-
card expressions such as a+ and a+ are replaced by
a{0,maxCount} and a{l,maxCount} respectively,
where maxCount is a user configured maximum
length for the entity being extracted.

Negative Dictionaries Observe that the include-
intersect transformation (Definition 5) is applicable
for every possible sub-expression of a given regex
R. Note that a valid sub-expression in R is any
portion of R where a capturing group can be intro-
duced.®> Consider a regex R = R, X R}, with a sub-
expression X; the application of include-intersect
requires another regex Y to yield R,(X NY)R,. We
would like to construct Y such that R, (X NY') Ry is
“better” than R for the task at hand. Therefore, we
construct Y as =Y’ where Y is a regex constructed
from negative matches of R. Specifically, we look at
each negative match of R and identify the substring
of the match that corresponds to X. We then apply
a greedy heuristic (see below) to these substrings to
yield a negative dictionary Y'. Finally, the trans-
formed regex R, (X N—Y"') R, is implemented using
the negative lookahead expression R, (?! Y’ )XRy.
Greedy Heuristic for Negative Dictionaries Im-
plementation of the above procedure requires cer-
tain judicious choices in the construction of the neg-
ative dictionary to ensure tractability of this trans-
formation. Let S(X) denote the distinct strings
that correspond to the sub-expression X in the neg-
ative matches of R.* Since any subset of S(X)
is a candidate negative dictionary, we are left with
an exponential number of possible transformations.
In our implementation, we used a greedy heuris-
tic to pick a single negative dictionary consisting
of all those elements of S(X) that individually
improve the F-measure. For instance, in Exam-
ple 2, if the independent substitution of R, with
(? |ENGLISH) [A-Z]\wx\s*, (?!Room) [A-Z]
\wx\sx, and (?!Chapter) [A-Z]\wx\s+ each im-
proves the F-measure, we produce a nega-
tive dictionary consisting of ENGLISH, Room, and
Chapter.  This is precisely how the disjunct
ENGLISH|Room|Chapter is constructed in Rs,, .

3For instance, the sub-expressions of ab{1, 2}c are a,
ab{1,2},ab{1,2}c,b,b{1,2},b{1, 2}c,and c.

4S(X) can be obtained automatically by identifying the sub-
string corresponding to the group X in each entry in M, (R,D)
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Procedure ReLIE(M ., M a1, R0,7)

/I My set of labeled matches used as training data

Il Myqr: set of labeled matches used as validation data
/I Ro: user-provided regular expression

/I T: set of transformations

begin

1. Rncw = RO

2. do{

3. for each transformation t; € 7

4 Candidate;=ApplyTransformations(Rpew,ti)
5. let Candidates = | J, Candidate;

6. let R = argmax g cCandidates f(Rv Mt?“)

7 if (-7:(R/7 Mtr) <= f(Rnew;Mtr)) return Ryew

8 if (F(R', Mya1) < F(Rnew, Myaql)) return Ryeq
Rnew =R’

10. } while(true)

end

o ¢

Figure 2: ReLIE Search Algorithm
4 ReLIE Search Algorithm

Figure 2 describes the ReLIE algorithm for the
Regex Learning Problem (Definition 3) based on the
transformations described in Section 3. ReLIE is a
greedy hill climbing search procedure that chooses,
at every iteration, the regex with the highest F-
measure. An iteration in ReLIE consists of:

e Applying every transformation on the current regex
R, to obtain a set of candidate regexes

e From the candidates, choosing the regex R’ whose
F-measure over the training dataset is maximum

To avoid overfitting, ReLIE terminates when either
of the following conditions is true: (i) there is no
improvement in F-measure over the training set;
(ii) there is a drop in F-measure when applying R’
on the validation set.

The following proposition provides an upper
bound for the running time of the ReLIE algorithm.

Proposition 2. Given any valid set of inputs My,
Mai, Ro, and T, the ReLIE algorithm terminates in at
most | My, (Rg, My,)| iterations. The running time of the
algorithm TTotal(ROa th Mval) < ‘ Mn(R(h Mtr)| *
to, where tq is the time taken for the first iteration of the
algorithm.

Proof. With reference to Figure 2, in each iteration, the
F-measure of the “best” regex R’ is strictly better than
Rpew- Since L(R') C L(Rpew), R eliminates at least
one additional negative match compared to R,,.,,. Hence,
the maximum number of iterations is | My, (Rg, My.)|.
For a regular expression R, let n..(R) and ngy(R) de-
note, respectively, the number of character classes and
quantifiers in R. The maximum number of possible sub-
expressions in R is |R|?, where |R| is the length of R.
Let MaxQ(R) denote the maximum number of ways in



which a single quantifier appearing in R can be restricted
to a smaller range. Let F,. denote the maximum fanout’
of the character class hierarchy. Let Tregvai (D) denote
the average time taken to evaluate a regex over dataset D.

Let R; denote the regex at the beginning of iteration
1. The number of candidate regexes obtained by applying
the three transformations is

NumRE(R;, Myr) < nCC(Ri)*Fcc-ﬁ-nq(Ri)*MaxQ(Ri)HRi\2

The time taken to enumerate the character class and
quantifier restriction transformations is proportional to
the resulting number of candidate regexes. The time
taken for the negative dictionaries transformation is given
by the running time of the greedy heuristic (Section 3).
The total time taken to enumerate all candidate regexes is
given by (for some constant c)

TEnu'm (R27 Mtr) S C* (ncc(Rz) * Fcc + Ng (Rz) * MLUCQ(Rz)
+ ‘RZ‘Q * Mn(Riy Mt'r) * TReEval (Mt'r))

Choosing the best transformation involves evaluating
each candidate regex over the training and validation cor-
pus and the time taken for this step is

TPickBest (Ru th M’ual) - NumRE(Rq‘,, Mtr)

* (TReEval (M t'r) + TReEval (Mval))

The total time taken for an iteration can be written as
TI(Ri7 Mtr, Mval) :TEnum(Ri» Mtr)
+ TPickBest (RL7 Mtr: Mval)

It can be shown that the time taken in each iteration
decreases monotonically (details omitted in the interest of
space). Therefore, the total running time of the algorithm
is given by

TTotal(R(),Mtry Mval) = Z TI(Ri,Mt’I‘y Mval)
S ‘Mn(RayMtr” * t0~

where tg = T7(Rgp, My, Myq) is the running time
of the first iteration of the algorithm. O

5 Experiments

In this section, we present an empirical study of
the ReLIE algorithm using four extraction tasks over
three real-life data sets. The goal of this study is to
evaluate the effectiveness of ReLIE in learning com-
plex regexes and to investigate how it compares with
standard machine learning algorithms.

5.1 Experimental Setup
Data Set The datasets used in our experiments are:

e EWeb: A collection of 50,000 web pages crawled
from a corporate intranet.

SFanout is the number of ways in which a character class
may be restricted as defined by the hierarchy (e.g. Figure 1).
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e AWeb: A set of 50,000 web pages obtained from
the publicly available University of Michigan Web
page collection (Li et al., 2006), including a sub-
collection of 10,000 pages (AWeb-S).

e Email: A collection of 10,000 emails obtained
from the publicly available Enron email collec-
tion (Minkov et al., 2005).

Extraction Tasks SoftwareNameTask, CourseNum-
berTask and PhoneNumberTask were evaluated on
EWeb, AWeb and Email, respectively. Since web
pages have large number of URLs, to keep the la-
beling task manageable, URLTask was evaluated on
AWeb-S.

Gold Standard For each task, the gold standard
was created by manually labeling all matches for the
initial regex. Note that only exact matches with the
gold standard are considered correct in our evalua-
tions. ©

Comparison Study To evaluate ReLIE for entity
extraction vis-a-vis existing algorithms, we used the
popular conditional random field (CRF). Specifi-
cally, we used the MinorThird (Cohen, 2004) imple-
mentation of CRF to train models for all four extrac-
tion tasks. For training the CRF we provided it with
the set of positive and negative matches from the ini-
tial regex with a context of 200 characters on either
side of each match’. Since it is unlikely that useful
features are located far away from the entity, we be-
lieve that 200 characters on either side is sufficient
context. The CRF used the base features described
in (Cohen et al., 2005). To ensure fair compari-
son with ReLIE, we also included the matches corre-
sponding to the input regex as a feature to the CRF.
In practice, more complex features (e.g., dictionar-
ies, simple regexes) derived by domain experts are
often provided to CRFs. However, such features can
also be used to refine the initial regex given to ReLIE.
Hence, with a view to investigating the “raw” learn-
ing capability of the two approaches, we chose to
run all our experiments without any additional man-
ually derived features. In fact, the patterns learned
by ReLIE through transformations are often similar

The labeled data will be made publicly available at
http://www.eecs.umich.edu/db/regexLearning/.

"Ideally, we would have preferred to let MinorThird extract
appropriate features from complete documents in the training-
set but could not get it to load our large datasets.
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Figure 3: Extraction Quality”

“For SoftwareNameTask, with 80% training data we could not obtain results for CRF as the program

failed repeatedly during the training phase.

to the features that domain experts may provide to
CRF. We will revisit this issue in Section 5.4.

Evaluation We used the standard F-measure to
evaluate the effectiveness of ReLLIE and CRF. We di-
vided each dataset into 10 equal parts and used X%
of the dataset for training (X=10, 40 and 80), 10%
for validation, and remaining (90-X)% for testing.
All results are reported on the test set.

5.2 Results

Four extraction tasks were chosen to reflect the enti-
ties commonly present in the three datasets.

o SoftwareNameTask: Extracting software names such
as Lotus Notes 8.0, Open Office Suite 2007.

e CourseNumberTask: Extracting university course
numbers such as EECS 584, Pharm 101.

o PhoneNumberTask: Extracting phone numbers such
as 1-800-COMCAST, (425)123 5678.

e URLTusk: Extracting URLs  such
http:\ \www.abc.com and Isa.umich.edu/ foos.

as

This section summarizes the results of our empir-
ical evaluation comparing ReLIE and CRF.

8 URLTask may appear to be simplistic. However, extracting
URLSs without the leading protocol definitions (e.g. http) can
be challenging.
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Raw Extraction Quality The cross-validated re-
sults across all four tasks are presented in Figure 3.

e With 10% training data, ReLIE outperforms CRF
on three out of four tasks with a difference in F-
measure ranging from 0.1 to 0.2.

e As training data increases, both algorithms perform
better with the gap between the two reducing for
all the four tasks. For CourseNumberTask and URL-
Task, CRF does slightly better than ReLIE for larger
training dataset. For the other two tasks, ReLIE re-
tains its advantage over CRE.”

The above results indicate that ReLIE performs
comparably with CRF with a slight edge in condi-
tions of limited training data. Indeed, the capability
to learn high-quality extractors using a small train-
ing set is important because labeled data is often ex-
pensive to obtain. For precisely this same reason, we
would ideally like to learn the extractors once and
then apply them to other datasets as needed. Since
these other datasets may be from a different domain,
we next performed a cross-domain test (i.e., training

°For SoftwareNameTask, with 80% training data we could
not obtain results for CRF as the program failed repeatedly dur-
ing the training phase.



and testing on different domains).
Cross-domain Evaluation Table 1

Data for Training
Task(Training, Testing

10%
ReLIE| CRF

40%
ReLIE| CRF [ReLIE| CRF

80%

summarizes the results of training

SoftwareNameTask(EWeb,AWeb)

0.920(0.297(0.977(0.503{0.971| N/A

the algorithms on one data set and

URLTask(AWeb—

S,Email) |0.690(0.209/0.784|0.380/0.801|0.507

testing on another. The scenarios

PhoneNumberTask(Email,AWeb)

0.357/0.130{0.475|0.125{0.513|0.120

Table 1: Cross Domain Test (F-measure).

chosen are: (i) SoftwareNameTask

trained on EWeb and tested on Technique fo‘)ftw-aremei.Task tCo.ur?veNunzbetr.Taskt .U.RLY;askt. f’h{)n.eNunibe:-Task

AWeb, 11 URLTask tralned on Aleb raming| testing (traming| testing (traming|testing|training| testing
P ( 31 1 and (i ReLIE | 5117 | 20.6 | 693 | 184 | 738 | 7.7 | 394 | L1

and tested on Email, and (i) Pho- | CRE [7597.0] 23158 | 4325 | 754 | 438.7 | 538 | 4348 | 577

neNumberTusk trained on Email  TRIE 0067 [ 0,009 | 0.144 | 0.244 | 0.168 |0.143 ] 0.091 | 0.019

and tested on Aweb.!” We can
see that ReLIE significantly out-

Table 2: Average Training/Testing Time (sec)(with 40% data for training)

performs CRF for all three tasks,

Task(Extra Feature

10%
CRF |[C+RL

40%
CRF |C+RL

80%
CRF |[C+RL

Data for Training

even when provided with a large

CourseNumberTask(Negative Dictionary)

0.553]0.624 0.644|0.764 |0.854| 0.845

training dataset. Compared to test-

PhoneNumberTask(Quantifier)

0.695|0.893|0.820| 0.937|0.821|0.964

ing on the same dataset, there is a
reduction in F-measure (less than
0.1 in many cases) when the regex
learned by ReLIE is applied to a dif-
ferent dataset, while the drop for
CRF is much more significant (over 0.5 in many
cases).!!

Training Time Another issue of practical consid-
eration is the efficiency of the learning algorithm.
Table 2 reports the average training and testing time
for both algorithms on the four tasks. On average Re-
LIE is an order of magnitude faster than CRF in both
building the model and applying the learnt model.

Robustness to Variations in Input Regexes The
transformations done by ReLIE are based on the
structure of the input regex. Therefore given differ-
ent input regexes, the final regexes learned by ReLIE
will be different. To evaluate the impact of the struc-
ture of the input regex on the quality of the regex
learned by ReLIE, we started with different regexes'?

for the same task. We found that ReLIE is robust
to variations in input regexes. For instance, on Soft-
wareNameTask, the standard deviation in F-measure

%We do not report results for CourseNumberTask as course
numbers are specific to academic webpages and do not appear
in the other two domains

"Similar cross-domain performance deterioration for a ma-
chine learning approach has been observed by (Guo et al.,
2006).

12Recall that the search space of ReLIE is limited by L(Ro)
(Assumption 1). Thus to ensure meaningful comparison, for
the same task any two given input regexes Ro and R{, are cho-
sen in such a way that although their structures are different,
M, (Ro, D) = Mp(Ry, D) and M, (Ro, D) = My (Rg, D).
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Table 3: ReLIE as Feature Extractor (C+RL is CRF enhanced with
features learned by ReLIE).

of the final regexes generated from six different in-
put regexes was less than 0.05. Further details of this
experiment are omitted in the interest of space.

5.3 Discussion

The results of our comparison study (Figure 3) in-
dicates that for raw extraction quality ReLIE has a
slight edge over CRF for small training data. How-
ever, in cross-domain performance (Table 1) ReLIE
is significantly better than CRF (by 0.41 on aver-
age) . To understand this discrepancy, we examined
the final regex learned by ReLIE and compared that
with the features learned by CRF. Examples of ini-
tial regexes with corresponding final regexes learnt
by ReLIE with 10% training data are listed in Ta-
ble 4. Recall, from Section 3, that ReLIE transfor-
mations include character class restrictions, quanti-
fier restrictions and addition of negative dictionar-
ies. For instance, in the SoftwareNameTask, the final
regex listed was obtained by restricting [a-zA-Z]
to [a-z], \w to [a-zA-2Z], and adding the nega-
tive dictionary (Copyright|Falll---|Issue). Sim-
ilarly, for the PhoneNumberTask, the final regex
involved two negative dictionaries (expressed as
(2'0,1) and (2!'[,:1)) 13 and quantifier restric-
tions (e.g. the first [(a-z\d]{2, 4} was transformed

BTo obtain these negative dictionaries, ReLIE not only
needs to correctly identify the dictionary entries from negative
matches but also has to place the corresponding negative looka-
head expression at the appropriate place in the regex.



Ro \b ([A-Z] [a-zA-Z]1{1,10}\s) {1, 5} \s* \w{0,2}\d[\.12) {1, 4}\b

SoftwareNameTask
Rfinal

\b ((?! (Copyright|[Page[Physics|Question]---|Article[Issue)) [A-Z] [a-2z]{1,10}
\s) {1, 5}\s* ([a=zA=-21{0,2}\d[\.]12) {1, 4}\b

Ro  |\b (1\w+) 2\w2\d{3, 3}\W\sx\w2 [A-2\d] {2, 4}\s+\W? [A-2\d] {2, 4}\b

PhoneNumberTask
Rfinal

\b (1\w+) 2\w2\ad{3, 3} ((?'[, 1) \W=) \sx\wz [A-2\d]1{3,3}\s* ((?'[, : 1) \W?) [2-2\d]{3,4}\b

CourseNumberTask

Ro  |\b([A-Z] [a-zA-Z]+)\s+\d{3, 3}\b

Rfina \o (((?! (At[Between] - Contact|Some[Suite[Volume)) [A-Z] [a-zA-Z]+)) \s+\d{3,3}\b

URLTask

Ro \b (\w+://)7 (\w+\.) {0, 2 \w+\ . \w+ (/ ["\s]1+) {0,20}\b

R \b ((?! (Response_20010702_1607.csv[---)) ((\w+://)? (\w+\.) {0, 2 \w+\. (?! (ppt
final || doc) ) [a—zA-21{2,3})) (/["\s]+){0,20}\b

Table 4: Sample Regular Expressions Learned by ReLIE(Ry: input regex; Rjinqi: final regex learned; the parts of Ro
modified by ReLIE and the corresponding parts in Rf;nq; are highlighted.)

into [A-z\d1{3, 3}).

After examining the features learnt by CREF, it was
clear that while CRF could learn features such as the
negative dictionary it is unable to learn character-
level features. This should not be surprising since
our CRF was trained with primarily tokens as fea-
tures (cf. Section 5.1). While this limitation was less
of a factor in experiments involving data from the
same domain (some effects were seen with smaller
training data), it does explain the significant differ-
ence between the two algorithms in cross-domain
tasks where the vocabulary can be significantly dif-
ferent. Indeed, in practical usage of CREF, the main
challenge is to come up with additional complex fea-
tures (often in the form of dictionary and regex pat-
terns) that need to be given to the CRF (Minkov et
al., 2005). Such complex features are largely hand-
crafted and thus expensive to obtain. Since the Re-
LIE transformations are operations over characters,
a natural question to ask is: “Can the regex learned
by ReLIE be used to provide features to CRF?” We
answer this question below.

5.4 ReLIE as Feature Extractor for CRF

To understand the effect of incorporating ReLIE-
identified features into CRF, we chose the two tasks
(CourseNumberTask and PhoneNumberTask) with the
least F-measure in our experiments to determine raw
extraction quality. We examined the final regex pro-
duced by ReLIE and manually extracted portions
to serve as features. For example, the negative
dictionary learned by ReLIE for the CourseNumber-
Task (nAt|Between|---|Volume) was incorporated as
a feature into CRF. To help isolate the effects, for
each task, we only incorporated features correspond-
ing to a single transformation: negative dictionar-
ies for CourseNumberTusk and quantifier restrictions
for PhoneNumberTask. The results of these experi-
ments are shown in Table 3. The first point worthy of
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note is that performance has improved in all but one
case. Second, despite the F-measure on CourseNum-
berTask being lower than PhoneNumberTask (presum-
ably more potential for improvement), the improve-
ments on PhoneNumberTask are significantly higher.
This observation is consistent with our conjecture
in Section 5.1 that CRF learns token-level features;
therefore incorporating negative dictionaries as extra
feature provides only limited improvement. Admit-
tedly more experiments are needed to understand the
full impact of incorporating ReLIE-identified fea-
tures into CRF. However, we do believe that this is
an exciting direction of future research.

6 Summary and Future Work

We proposed a novel formulation of the problem of
learning complex character-level regexes for entity
extraction tasks. We introduced the concept of regex
transformations and described how these could be
realized using the syntactic constructs of modern
regex languages. We presented ReLIE, a powerful
regex learning algorithm that exploits these ideas.
Our experiments demonstrate that ReLIE is very ef-
fective for certain classes of entity extraction, partic-
ularly under conditions of cross-domain and limited
training data. Our preliminary results also indicate
the possibility of using ReLIE as a powerful feature
extractor for CRF and other machine learning algo-
rithms. Further investigation of this aspect of ReLIE
presents an interesting avenue of future work.
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Abstract

A human annotator can provide hints to a machine learner
by highlighting contextual “rationales” for each of his
or her annotations (Zaidan et al., 2007). How can one
exploit this side information to better learn the desired
parameters 6?7 We present a generative model of how
a given annotator, knowing the true 6, stochastically
chooses rationales. Thus, observing the rationales helps
us infer the true §. We collect substring rationales for
a sentiment classification task (Pang and Lee, 2004) and
use them to obtain significant accuracy improvements for
each annotator. Our new generative approach exploits the
rationales more effectively than our previous “masking
SVM” approach. It is also more principled, and could be
adapted to help learn other kinds of probabilistic classi-
fiers for quite different tasks.

1 Background

Many recent papers aim to reduce the amount of an-
notated data needed to train the parameters of a sta-
tistical model. Well-known paradigms include ac-
tive learning, semi-supervised learning, and either
domain adaptation or cross-lingual transfer from ex-
isting annotated data.

A rather different paradigm is to change the ac-
tual task that is given to annotators, giving them a
greater hand in shaping the learned classifier. Af-
ter all, human annotators themselves are more than
just black-box classifiers to be run on training data.
They possess some introspective knowledge about
their own classification procedure. The hope is to
mine this knowledge rapidly via appropriate ques-
tions and use it to help train a machine classifier.
How to do this, however, is still being explored.

1.1 Hand-crafted rules

An obvious option is to have the annotators directly
express their knowledge by hand-crafting rules. This

“This work was supported by National Science Foundation
grant No. 0347822 and the JHU WSE/APL Partnership Fund.
Special thanks to Christine Piatko for many useful discussions.
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approach remains “data-driven” if the annotators re-
peatedly refine their system against a corpus of la-
beled or unlabeled examples. This achieves high
performance in some domains, such as NP chunk-
ing (Brill and Ngai, 1999), but requires more analyt-
ical skill from the annotators. One empirical study
(Ngai and Yarowsky, 2000) found that it also re-
quired more annotation time than active learning.

1.2 Feature selection by humans

More recent work has focused on statistical classi-
fiers. Training such classifiers faces the “credit as-
signment problem.” Given a training example x with
many features, which features are responsible for its
annotated class y? It may take many training exam-
ples to distinguish useful vs. irrelevant features.'

To reduce the number of training examples
needed, one can ask annotators to examine or pro-
pose some candidate features. This is possible even
for the very large feature sets that are typically used
in NLP. In document classification, Raghavan et al.
(2006) show that feature selection by an oracle could
be helpful, and that humans are both rapid and rea-
sonably good at distinguishing highly useful n-gram
features from randomly chosen ones, even when
viewing these n-grams out of context.

Druck et al. (2008) show annotators some features
f from a fixed feature set, and ask them to choose a
class label y such that p(y | f) is as high as possible.
Haghighi and Klein (2006) do the reverse: for each
class label y, they ask the annotators to propose a
few “prototypical” features f such that p(y | f) is as
high as possible.

1.3 Feature selection in context

The above methods consider features out of context.
An annotator might have an easier time examining

"Most NLP systems use thousands or millions of features,
because it is helpful to include lexical features over a large vo-
cabulary, often conjoined with lexical or non-lexical context.

Proceedings of the 2008 Conference on Empirical Methods in Natural Language Processing, pages 31-40,
Honolulu, October 2008. (©2008 Association for Computational Linguistics



features in context to recognize whether they appear
relevant. This is particularly true for features that
are only modestly or only sometimes helpful, which
may be abundant in NLP tasks.

Thus, Raghavan et al. (2006) propose an active
learning method in which, while classifying a train-
ing document, the annotator also identifies some fea-
tures of that document as particularly relevant. E.g.,
the annotator might highlight particular unigrams as
he or she reads the document. In their proposal, a
feature that is highlighted in any document is as-
sumed to be globally more relevant. Its dimension
in feature space is scaled by a factor of 10 so that
this feature has more influence on distances or inner
products, and hence on the learned classifier.

1.4 Concerns about marking features

Despite the success of the above work, we have
several concerns about asking annotators to identify
globally relevant features.

First, a feature in isolation really does not have a
well-defined worth. A feature may be useful only in
conjunction with other features,” or be useful only
to the extent that other correlated features are not
selected to do the same work.

Second, it is not clear how an annotator would
easily view and highlight features in context, ex-
cept for the simplest feature sets. In the phrase
Apple shares up 3%, there may be several fea-
tures that fire on the substring Apple—responding
to the string Apple, its case-invariant form apple,
its lemma apple- (which would also respond to ap-
ples), its context-dependent sense Apples, its part
of speech noun, etc. How does the annotator indi-
cate which of these features are relevant?

Third, annotating features is only appropriate
when the feature set can be easily understood by a
human. This is not always the case. It would be hard
for annotators to read, write, or evaluate a descrip-
tion of a complex syntactic configuration in NLP or
a convolution filter in machine vision.

Fourth, traditional annotation efforts usually try to
remain agnostic about the machine learning methods

?For example, a linear classifier can learn that most training
examples satisfy A — B by setting 04 = —5and Oanp = +5,
but this solution requires selecting both A and AA B as features.
More simply, a polynomial kernel can consider the conjunction
A A B only if both A and B are selected as features.
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and features to be used. The project’s cost is justi-
fied by saying that the annotations will be reused by
many researchers (perhaps in a “shared task™), who
are free to compete on how they tackle the learning
problem. Unfortunately, feature annotation commits
to a particular feature set at annotation time. Subse-
quent research cannot easily adjust the definition of
the features, or obtain annotation of new features.

2 Annotating Rationales

To solve these problems, we propose that annotators
should not select features but rather mark relevant
portions of the example. In earlier work (Zaidan et
al., 2007), we called these markings “rationales.”

For example, when classifying a movie review as
positive or negative, the annotator would also high-
light phrases that supported that judgment. Figure 1
shows two such rationales.

A multi-annotator timing study (Zaidan et al.,
2007) found that highlighting rationale phrases
while reading movie reviews only doubled annota-
tion time, although annotators marked 5-11 ratio-
nale substrings in addition to the simple binary class.
The benefit justified the extra time. Furthermore,
much of the benefit could have been obtained by giv-
ing rationales for only a fraction of the reviews.

In the visual domain, when classifying an im-
age as containing a zoo, the annotator might circle
some animals or cages and the sign reading “Zoo.”
The Peekaboom game (von Ahn et al., 2006) was in
fact built to elicit such approximate yet relevant re-
gions of images. Further scenarios were discussed in
(Zaidan et al., 2007): rationale annotation for named
entities, linguistic relations, or handwritten digits.

Annotating rationales does not require the anno-
tator to think about the feature space, nor even to
know anything about it. Arguably this makes an-
notation easier and more flexible. It also preserves
the reusability of the annotated data. Anyone is free
to reuse our collected rationales (section 4) to aid
in learning a classifier with richer features, or a dif-
ferent kind of classifier altogether, using either our
procedures or novel procedures.

3 Modeling Rationale Annotations

As rationales are more indirect than explicit features,
they present a trickier machine learning problem.



We wish to learn the parameters 6 of some classi-
fier. How can the annotator’s rationales help us to
do this without many training examples? We will
have to exploit a presumed relationship between the
rationales and the optimal value of 6 (i.e., the value
that we would learn on an infinite training set).

This paper exploits an explicit, parametric model
of that relationship. The model’s parameters ¢ are
intended to capture what that annotator is doing
when he or she marks rationales. Most importantly,
they capture how he or she is influenced by the true
6. Given this, our learning method will prefer values
of # that would adequately explain the rationales (as
well as the training classifications).

3.1 A generative approach

For concreteness, we will assume that the task is
document classification. Our training data consists
of n triples {(z1,y1,71), -+, (Tns Yn, Tn) }), where x;
is a document, y; is its annotated class, and r; is its
rationale markup. At test time we will have to pre-
dict yp1 from x4 1, without any 1.

We propose to jointly choose parameter vectors 6
and ¢ to maximize the following regularized condi-
tional likelihood:?

Hp(yi7 i ‘ x;, 0, ¢) : pprior(ev Qb) (D
=1

Ig
—=

Po(Yi | i) - (i | i, Y, 0) - Pprior (6, @)
1

.
Il

Here we are trying to model all the annotations, both
y; and r;. The first factor predicts y; using an ordi-
nary probabilistic classifier py, while the novel sec-
ond factor predicts 7; using a model py of how an-
notators generate the rationale annotations.

The crucial point is that the second factor depends
on @ (since r; is supposed to reflect the relation be-
tween x; and y; that is modeled by #). As a result,
the learner has an incentive to modify 6 in a way
that increases the second factor, even if this some-
what decreases the first factor on training data.*

31t would be preferable to integrate out ¢ (and even 6), but
more difficult.

“Interestingly, even examples where the annotation y; is
wrong or unhelpful can provide useful information about 6 via
the pair (y;,7;). Two annotators marking the same movie re-
view might disagree on whether it is overall a positive or nega-
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After training, one should simply use the first fac-
tor pp(y | x) to classify test documents x. The sec-
ond factor is irrelevant for test documents, since they
have not been annotated with rationales r.

The second factor may likewise be omitted for any
training documents ¢ that have not been annotated
with rationales, as there is no r; to predict in those
cases. In the extreme case where no documents are
annotated with rationales, equation (1) reduces to
the standard training procedure.

3.2 Noisy channel design of rationale models

Like ordinary class annotations, rationale annota-
tions present us with a “credit assignment problem,”
albeit a smaller one that is limited to features that fire
“in the vicinity” of the rationale r. Some of these
O-features were likely responsible for the classifica-
tion y and hence triggered the rationale. Other such
f-features were just innocent bystanders.

Thus, the interesting part of our model is py(r |
x,y, 0), which models the rationale annotation pro-
cess. The rationales r reflect 0, but in noisy ways.

Taking this noisy channel idea seriously, pe (7 |
x,y, 0) should consider two questions when assess-
ing whether 7 is a plausible set of rationales given
0. First, it needs a “language model” of rationales:
does r consist of rationales that are well-formed a
priori, i.e., before 0 is considered? Second, it needs
a “channel model”: does r faithfully signal the fea-
tures of @ that strongly support classifying x as y?

If a feature contributes heavily to the classification
of document x as class y, then the channel model
should tell us which parts of document x tend to be
highlighted as a result.

The channel model must know about the partic-
ular kinds of features that are extracted by f and
scored by 6. Suppose the feature not . .. gripping,’
with weight 0y, is predictive of the annotated class .
This raises the probabilities of the annotator’s high-
lighting each of various words, or combinations of
words, in a phrase like not the most gripping ban-
quet on film. The channel model parameters in ¢

tive review—but the second factor still allows learning positive
features from the first annotator’s positive rationales, and nega-
tive features from the second annotator’s negative rationales.
SOur current experiments use only unigram features, to
match past work, but we use this example to outline how our
approach generalizes to complex linguistic (or visual) features.



should specify how much each of these probabilities
is raised, based on the magnitude of 6, € R, the
class y, and the fact that the feature is an instance
of the template <Neg> ... <Adjective>. (Thus, ¢
has no parameters specific to the word gripping; it
is a low-dimensional vector that only describes the
annotator’s general style in translating ¢ into r.)

The language model, however, is independent of
the feature set #. It models what rationales tend to
look like in the input domain—e.g., documents or
images. In the document case, ¢ should describe:
How frequent and how long are typical rationales?
Do their edges tend to align with punctuation or ma-
jor syntactic boundaries in ? Are they rarer in the
middle of a document, or in certain documents?°

Thanks to the language model, we do not need to
posit high 6 features to explain every word in a ratio-
nale. The language model can “explain away” some
words as having been highlighted only because this
annotator prefers not to end a rationale in mid-
phrase, or prefers to sweep up close-together fea-
tures with a single long rationale rather than many
short ones. Similarly, the language model can help
explain why some words, though important, might
not have been included in any rationale of r.

If there are multiple annotators, one can learn dif-
ferent ¢ parameters for each annotator, reflecting
their different annotation styles.” We found this to
be useful (section 8.2).

We remark that our generative modeling approach
(equation (1)) would also apply if » were not ratio-
nale markup, but some other kind of so-called “side
information,” such as the feature annotations dis-
cussed in section 1. For example, Raghavan et al.
(2006) assume that if feature h is relevant—a bi-

®Qur current experiments do not model this last point. How-
ever, we imagine that if the document only has a few 0-features
that support the classification, the annotator will probably mark
most of them, whereas if such features are abundant, the anno-
tator may lazily mark only a few of the strongest ones. A simple
approach would equip ¢ with a different “bias” or “threshold”
parameter ¢, for each rationale training document z, to mod-
ulate the a priori probability of marking a rationale in x. By
fitting this bias parameter, we deduce how lazy the annotator
was (for whatever reason) on document x. If desired, a prior
on ¢, could consider whether = has many strong 6-features,
whether the annotator has recently had a coffee break, etc.

"Given insufficient rationale data to recover some annota-
tor’s ¢ well, one could smooth using data from other annotators.
But in our situation, ¢ had relatively few parameters to learn.
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nary distinction—iff it was selected in at least one
document. But it might be more informative to ob-
serve that h was selected in 3 of the 10 documents
where it appeared, and to predict this via a model
Py(3 of 10 | 6,), where ¢ describes (e.g.) how to de-
rive a binomial parameter nonlinearly from 6y,. This
approach would not how often h was marked and in-
fer how relevant is feature h (i.e., infer 6;). In this
case, py is a simple channel that transforms relevant
features into direct indicators of the feature. Our
side information merely requires a more complex
transformation—from relevant features into well-
formed rationales, modulated by documents.

4 Experimental Data: Movie Reviews

In Zaidan et al. (2007), we introduced the “Movie
Review Polarity Dataset Enriched with Annotator
Rationales.”® It is based on the dataset of Pang and
Lee (2004),” which consists of 1000 positive and
1000 negative movie reviews, tokenized and divided
into 10 folds (Fp—Fy). All our experiments use Fy
as their final blind test set.

The enriched dataset adds rationale annotations
produced by an annotator AO, who annotated folds
Fy—Fy of the movie review set with rationales (in the
form of textual substrings) that supported the gold-
standard classifications. We will use AO’s data to
determine the improvement of our method over a
(log-linear) baseline model without rationales. We
also use A0 to compare against the “masking SVM”
method and SVM baseline of Zaidan et al. (2007).

Since ¢ can be tuned to a particular annotator, we
would also like to know how well this works with
data from annotators other than AO. We randomly
selected 100 reviews (50 positive and 50 negative)
and collected both class and rationale annotation
data from each of six new annotators A3-A8,'° fol-
lowing the same procedures as (Zaidan et al., 2007).
We report results using only data from A3-AS, since
we used the data from A6-AS8 as development data
in the early stages of our work.

We use this new rationale-enriched dataset® to de-
termine if our method works well across annotators.
We will only be able to carry out that comparison

8 Available at http://cs.jhu.edu/~ozaidan/rationales.

Polarity dataset version 2.0.

'We avoid annotator names A1-A2, which were already
used in (Zaidan et al., 2007).



Original text: “51 weeks into '98, a champ has emerged. The Prince of
(from ay = +1 review) Egypt succeeds where other movies failed.”
FEs======= hl
7 o o ) o o I I I oI o ! . .
A ‘ ey » | Figure 1: Rationales as sequence an-
X 51 weeks into 'ag . a champ has emerged ,__.__: A A .
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some ¢-features. For instance, go(,)-r
g1 =2 9o 41 =0 oz 10 [Forrr =1 Gor =0 is a count of O—1I transitions that occur
— — - iy | — — . .
910 g Iri.r0 =0 9001721 10 =0 Fro,=0 with a comma as the left word. Notice
Yoo also that g is the sum of the under-
g1 = 0e;=0.19 .
lined values.

at small training set sizes, due to limited data from
A3-AS8. The larger A0 dataset will still allow us to
evaluate our method on a range of training set sizes.

5 Detailed Models
5.1

We define the basic classifier pg in equation (1) to be
a standard conditional log-linear model:

Modeling class annotations with py

—

) o exp(0 - f(w,y)) ar ulz,y)
Z@(w) Z@(:I})

po(y | = 2

where f{ (+) extracts a feature vector from a classified
document, @ are the corresponding weights of those
features, and Zp(x) = 3_, u(z,y) is a normalizer.

We use the same set of binary features as in pre-
vious work on this dataset (Pang et al., 2002; Pang
and Lee, 2004; Zaidan et al., 2007). Specifically, let
V = {1, ..., v17744} be the set of word types with
count > 4 in the full 2000-document corpus. Define
frn(x,y) to be y if vy, appears at least once in x, and
0 otherwise. Thus 6 € R'7744 and positive weights
in 0 favor class label y = +1 and equally discourage
y = —1, while negative weights do the opposite.

This standard unigram feature set is linguistically
impoverished, but serves as a good starting point for
studying rationales. Future work should consider
more complex features and how they are signaled by
rationales, as discussed in section 3.2.

def

5.2 Modeling rationale annotations with p,

The rationales collected in this task are textual seg-
ments of a document to be classified. The docu-
ment itself is a word token sequence & = 1, ..., T ).
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We encode its rationales as a corresponding tag se-
quence T = 7r1,...,7p, as illustrated in Figure 1.
Here r,, € {I,0} according to whether the token
Ty, 1s in a rationale (i.e., x,, was at least partly high-
lighted) or outside all rationales. z; and x,; are
special boundary symbols, tagged with O.

We predict the full tag sequence 7 at once using
a conditional random field (Lafferty et al., 2001). A
CRF is just another conditional log-linear model:

7 def exp(qf) i §(r7 T,Y, 0)) def U(T, T,Y, 9)
ps(r|z,y,0)= = = =
Zg(x,y,0) Zg(x,y,9)
where §(-) extracts a feature vector, ¢ are the
corresponding weights of those features, and
Zy(z,y, 5) o Yopulr,x,y, 5) is a normalizer.

As usual for linear-chain CRFs, ¢(+) extracts two
kinds of features: first-order “emission” features that
relate 7, to (z,y,0), and second-order “transi-
tion” features that relate r, to r,—1 (although some
of these also look at x).

These two kinds of features respectively capture
the “channel model” and “language model” of sec-
tion 3.2. The former says r,, is I because x,, is
associated with a relevant f-feature. The latter says
Tm 1S I simply because it is next to another I.

5.3 Emission ¢-features (‘channel model”)

Recall that our #-features (at present) correspond to
unigrams. Given (Z,y, 5), let us say that a unigram
w € Z is relevant, irrelevant, or anti-relevant if
y - By is respectively > 0, =~ 0, or < 0. That is, w
is relevant if its presence in x strongly supports the
annotated class y, and anti-relevant if its presence
strongly supports the opposite class —y.
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We would like to learn the extent ¢ to which
annotators try to include relevant unigrams in their
rationales, and the (usually lesser) extent @antirel tO
which they try to exclude anti-relevant unigrams.
This will help us infer 6 from the rationales.

The details are as follows. ¢re; and @angre are the
weights of two emission features extracted by g

M
) = ZI(Tm:

Ty

grel(fa Y, F? I) : Bl()(y ' me)

m=1
M
— — A\ def
gantirel($a y,r, 9) = Z I("”m = I) : B—lO(y : me)
m=1

Here I(-) denotes the indicator function, returning
1 or 0 according to whether its argument is true or
false. Relevance and negated anti-relevance are re-
spectively measured by the differentiable nonlinear
functions By and B_1g, which are defined by

By(a) = (log(1 + exp(a - s)) — log(2))/s

and graphed in Figure 2. Sample values of By and
Jrel are shown in Figure 1.

How does this work? The g, feature is a sum
over all unigrams in the document . It does not fire
strongly on the irrelevant or anti-relevant unigrams,
since By is close to zero there.'! But it fires posi-
tively on relevant unigrams w if they are tagged with
I, and the strength of such firing increases approxi-
mately linearly with 6,,. Since the weight ¢ > 01in
practice, this means that raising a relevant unigram’s
0, (f y = +1) will proportionately raise its log-
odds of being tagged with I. Symmetrically, since
QPantirel > 0 in practice, lowering an anti-relevant un-
igram’s 6,, (if y = +1) will proportionately lower

3)

"' Bio sets the threshold for relevance to be about 0. One
could also include versions of the gy feature that set a higher
threshold, using B1o(y - 0x,, — threshold).
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its log-odds of being tagged with I, though not nec-
essarily at the same rate as for relevant unigrams.'?

Should ¢ also include traditional CRF emis-
sion features, which would recognize that particular
words like great tend to be tagged as I? No! Such
features would undoubtedly do a better job predict-
ing the rationales and hence increasing equation (1).
However, crucially, our true goal is not to predict
the rationales but to recover the classifier parame-
ters 6. Thus, if great tends to be highlighted, then
the model should not be permitted to explain this
directly by increasing some feature ¢great, but only
indirectly by increasing Ogreat. We therefore permit
our rationale prediction model to consider only the
two emission features gre; and gantirel, Which see the
words in & only through their §-values.

5.4 Transition ¢-features (‘“language model”)

Annotators highlight more than just the relevant un-
igrams. (After all, they aren’t told that our current
f-features are unigrams.) They tend to mark full
phrases, though perhaps taking care to exclude anti-
relevant portions. ¢ models these phrases’ shape, via
weights for several “language model” features.

Most important are the 4 traditional CRF tag tran-
sition features go-o, go-1, g1-1, g1-0. FOr example,
go-1 counts the number of O-to-I transitions in 7
(see Figure 1). Other things equal, an annotator with
high ¢o_: is predicted to have many rationales per
1000 words. And if ¢r_7 is high, rationales are pre-
dicted to be long phrases (including more irrelevant
unigrams around or between the relevant ones).

We also learn more refined versions of these fea-
tures, which consider how the transition probabil-
ities are influenced by the punctuation and syntax
of the document & (independent of 5). These re-
fined features are more specific and hence more
sparsely trained. Their weights reflect deviations
from the simpler, “backed-off” transition features
such as go-1. (Again, see Figure 1 for examples.)

Conditioning on left word. A feature of the form
t1(v)-t, 18 specified by a pair of tag types 1,2 €
{I,0} and a vocabulary word type v. It counts the

21f the two rates are equal (Prel = Pantirel)s WE get a simpler
model in which the log-odds change exactly linearly with 6,, for
each w, regardless of w’s relevance/irrelevance/anti-relevance.
This follows from the fact that B, (a) + B_s(a) simplifies to a.



number of times an t;—t9 transition occurs in 7 con-
ditioned on v appearing as the first of the two word
tokens where the transition occurs. Our experiments
include g;, (,).¢, features that tie T-O and O-T tran-
sitions to the 4 most frequent punctuation marks v
(comma, period, ?, !).

Conditioning on right word. A feature g;,_,(,)
is similar, but v must appear as the second of the
two word tokens where the transition occurs. Again
here, we use g, ¢,(,) features that tie I-0 and O-I
transitions to the four punctuation marks mentioned
above. We also include five features that tie O-I
transitions to the words no, not, so, very, and quite,
since in our development data, those words were
more likely than others to start rationales. '3

Conditioning on syntactic boundary. We parsed
each rationale-annotated training document (no
parsing is needed at test time).'* We then marked
each word bigram x1-rs with three nonterminals:
NEgpq is the nonterminal of the largest constituent
that contains x1 and not x2, Nsiart 1S the nontermi-
nal of the largest constituent that contains x2 and
not x1, and Ncyoss 18 the nonterminal of the smallest
constituent that contains both x; and 5.

For a nonterminal N and pair of tag types (t1,t2),
we define three features, g;, s, /E=N> Gt;-t5/S=N>
and gy,.4,/c=n, Which count the number of times
a t1-ty transition occurs in 7 with /N matching the
NEnd> Nstarts O Neoposs nonterminal, respectively.
Our experiments include these features for 11 com-
mon nonterminal types N (DOC, TOP, S, SBAR,
FRAG, PRN, NP, VP, PP, ADJP, QP).

6 Training: Joint Optimization of 6 and ¢

To train our model, we use L-BFGS to locally max-
imize the log of the objective function (1):1

BThese are the function words with count > 40 in a random
sample of 100 documents, and which were associated with the
O-1I tag transition at more than twice the average rate. We do
not use any other lexical ¢-features that reference &, for fear that
they would enable the learner to explain the rationales without
changing 6 as desired (see the end of section 5.3).

4We parse each sentence with the Collins parser (Collins,
1999). Then the document has one big parse tree, whose root is
DOC, with each sentence being a child of DOC.

50ne might expect this function to be convex because py and
pg are both log-linear models with no hidden variables. How-
ever, log py(r; | i, y:, 0) is not necessarily convex in 6.
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- 1
> logpo(yi | =i) — FHGW
i=1 %
= 1
+C(Zlogp¢(m | 3, 9i,0)) — WWHQ “4)
=1 ¢
This defines pprior from (1) to be a standard diago-
nal Gaussian prior, with variances 03 and 03) for the
two sets of parameters. We optimize ag in our ex-
periments. As for 0(275, different values did not affect
the results, since we have a large number of {I,0}
rationale tags to train relatively few ¢ weights; so
we simply use o—g = 1 in all of our experiments.
Note the new C factor in equation (4). Our ini-
tial experiments showed that optimizing equation (4)
without C' led to an increase in the likelihood of the
rationale data at the expense of classification accu-
racy, which degraded noticeably. This is because
the second sum in (4) has a much larger magnitude
than the first: in a set of 100 documents, it predicts
around 74,000 binary {I,0} tags, versus the one
hundred binary class labels. While we are willing
to reduce the log-likelihood of the training classifi-
cations (the first sum) to a certain extent, focusing
too much on modeling rationales (the second sum)
is clearly not our ultimate goal, and so we optimize
C on development data to achieve some balance be-
tween the two terms of equation (4). Typical values
of C range from ﬁ to %.16
We perform alternating optimization on 6 and ¢:
1. Initialize 6 to maximize equation (4) but with
C = 0 (i.e. based only on class data).
2. Fix 0, and find ¢ that maximizes equation (4).
3. Fix ¢, and find 6 that maximizes equation (4).
4. Repeat 2 and 3 until convergence.

The L-BFGS method requires calculating the gra-
dient of the objective function (4). The partial
derivatives with respect to components of ¢ and ¢
involve calculating expectations of the feature func-
tions, which can be computed in linear time (with
respect to the size of the training set) using the
forward-backward algorithm for CRFs. The par-
tial derivatives also involve the derivative of (3),
to determine how changing 6 will affect the firing
strength of the emission features g and gaptirel-

18C also balances our confidence in the classifications y
against our confidence in the rationales 7; either may be noisy.



7 Experimental Procedures

We report on two sets of experiments. In the first
set, we use the annotation data that A3—AS provided
for the small set of 100 documents (as well as the
data from AO on those same 100 documents). In
the second set, we used AQ’s abundant annotation
data to evaluate our method with training set sizes up
to 1600 documents, and compare it with three other
methods: log-linear baseline, SVM baseline, and the
SVM masking method of (Zaidan et al., 2007).

7.1 Learning curves

The learning curves reported in section 8.1 are gen-
erated exactly as in (Zaidan et al., 2007). Each curve
shows classification accuracy at training set sizes
T=1,2..9folds (i.e. 200,400, ...,1600 training
documents). For a given size T, the reported accu-
racy is an average of 9 experiments with different
subsets of the entire training set, each of size 7™:

8
é > ace(Fy | Fiy1U...UFyr) ()
i=0
where F); denotes the fold numbered j mod 9, and
acc(Fy | Y) means classification accuracy on the
held-out test set Fy after training on set Y.
We use an appropriate paired permutation test, de-
tailed in (Zaidan et al., 2007), to test differences in
(5). We call a difference significant at p < 0.05.

7.2 Comparison to “masking SVM’’ method

We compare our method to the “masking SVM”
method of (Zaidan et al., 2007). Briefly, that method
used rationales to construct several so-called con-
trast examples from every training example. A con-
trast example is obtained by “masking out” one of
the rationales highlighted to support the training ex-
ample’s class. A good classifier should have more
trouble on this modified example. Hence, Zaidan et
al. (2007) required the learned SVM to classify each
contrast example with a smaller margin than the cor-
responding original example (and did not require it
to be classified correctly).

The masking SVM learner relies on a simple geo-
metric principle; is trivial to implement on top of an
existing SVM learner; and works well. However, we
believe that the generative method we present here is
more interesting and should apply more broadly.
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Figure 3: Classification accuracy curves for the 4 meth-
ods: the two baseline learners that only utilize class data,
and the two learners that also utilize rationale annota-
tions. The SVM curves are from (Zaidan et al., 2007).

First, the masking method is specific to improving
an SVM learner, whereas our method can be used to
improve any classifier by adding a rationale-based
regularizer (the second half of equation (4)) to its
objective function during training.

More important, there are tasks where it is unclear
how to generate contrast examples. For the movie
review task, it was natural to mask out a rationale
by pretending its words never occurred in the doc-
ument. After all, most word types do not appear in
most documents, so it is natural to consider the non-
presence of a word as a “default” state to which we
can revert. But in an image classification task, how
should one modify the image’s features to ignore
some spatial region marked as a rationale? There is
usually no natural “default” value to which we could
set the pixels. Our method, on the other hand, elim-
inates contrast examples altogether.

8 Experimental Results and Analysis
8.1 The added benefit of rationales

Fig. 3 shows learning curves for four methods. A
log-linear model shows large and significant im-
provements, at all training sizes, when we incor-
porate rationales into its training via equation (4).
Moreover, the resulting classifier consistently out-
performs!” prior work, the masking SVM, which
starts with a slightly better baseline classifier (an
SVM) but incorporates the rationales more crudely.

Differences are not significant at sizes 200, 1000, and 1600.



size | AO | A3 | A4 | AS

SVM baseline 100 | 72.0 | 72.0 | 72.0 | 70.0
SVM-+contrasts 100 | 75.0 | 73.0 | 74.0 | 72.0
Log-linear baseline | 100 | 71.0 | 73.0 | 71.0 | 70.0
Log-linear+rats 100 | 76.0 | 76.0 | 77.0 | 74.0
SVM baseline 20 | 63.4 | 62.2 | 60.4 | 62.6
SVM-+contrasts 20 | 654 | 634 | 624 | 64.8
Log-linear baseline | 20 | 63.0 | 62.2 | 60.2 | 62.4
Log-linear+rats 20 | 65.8 | 63.6 | 63.4 | 64.8

Table 1: Accuracy rates using each annotator’s data. In a
given column, a value in ifalics is not significantly differ-
ent from the highest value in that column, which is bold-
faced. The size=20 results average over 5 experiments.

To confirm that we could successfully model an-
notators other than A0, we performed the same
comparison for annotators A3—AS; each had pro-
vided class and rationale annotations on a small 100-
document training set. We trained a separate ¢ for
each annotator. Table 1 shows improvements over
baseline, usually significant, at 2 training set sizes.

8.2 Analysis

Examining the learned weights 5 gives insight into
annotator behavior. High weights include I-0 and
O-1I transitions conditioned on punctuation, e.g.,
b1()-0 = 3.55,!% as well as rationales ending at the
end of a major phrase, e.g., ¢r.g/p—vp = 1.88.

The large emission feature weights, e.g., ¢ =
14.68 and @Puniirel = 15.30, tie rationales closely to
0 values, as hoped. For example, in Figure 1, the
word w = succeeds, with §,, = 0.13, drives up
p(I)/p(0) by a factor of 7 (in a positive document)
relative to a word with 8,, = 0.

In fact, feature ablation experiments showed that
almost all the classification benefit from rationales
can be obtained by using only these 2 emission
¢-features and the 4 unconditioned transition ¢-
features. Our full ¢ (115 features) merely improves
our ability to predict the rationales (whose likeli-
hood does increase significantly with more features).

We also checked that annotators’ styles differ
enough that it helps to tune ¢ to the “target” annota-
tor A who gave the rationales. Table 3 shows that a ¢
model trained on A’s own rationales does best at pre-
dicting new rationales from A. Table 2 shows that as

"$When trained on folds F4—Fy with AOQ’s rationales.
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Pao  Paz  Pas  Pas | Baseline
040 | 76,0 73.0 74.0 73.0 71.0
045 | 73.0 760 74.0 73.0 73.0
Oas | 75.0 730 770 74.0 71.0
045 | 740 71.0 720 74.0 70.0

Table 2: Accuracy rate for an annotator’s 6 (rows) ob-
tained when using some other annotator’s ¢ (columns).
Notice that the diagonal entries and the baseline column
are taken from rows of Table 1 (size=100).

Trivial

da0  Paz Pas  ¢as | model

“L(rao) | 0073 0086 0.077 0.088 | 0.135
—L(ras) | 0.084 0.068 0.071 0.068 | 0.130
“L(ras) | 0.088 0084 0.075 0085 | 0.153
“L(ras) | 0.058 0.044 0.047 0.044 | 0.111

Table 3: Cross-entropy per tag of rationale annotations
7 for each annotator (rows), when predicted from that
annotator’s & and § via a possibly different annotator’s
¢ (columns). For comparison, the trivial model is a bi-
gram model of 7, which is trained on the target annotator
but ignores & and g. 5-fold cross-validation on the 100-
document set was used to prevent testing on training data.

a result, classification performance on the test set is
usually best if it was A’s own ¢ that was used to help
learn 6 from A’s rationales. In both cases, however,
a different annotator’s ¢ is better than nothing.

9 Conclusions

We have demonstrated a effective method for elic-
iting extra knowledge from naive annotators, in
the form of lightweight “rationales” for their an-
notations. By explicitly modeling the annotator’s
rationale-marking process, we are able to infer a bet-
ter model of the original annotations.

We showed that our method performs signifi-
cantly better than two strong baseline classifiers,
and also outperforms our previous discriminative
method for exploiting rationales (Zaidan et al.,
2007). We also saw that it worked across four anno-
tators who have different rationale-marking styles.

In future, we are interested in new domains that
can adaptively solicit rationales for some or all
training examples. Our new method, being essen-
tially Bayesian inference, is potentially extensible to
many other situations—other tasks, classifier archi-
tectures, and more complex features.
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Abstract

Having seen a news title “Alba denies wedding
reports”, how do we infer that it is primar-
ily about Jessica Alba, rather than about wed-
dings or reports? We probably realize that, in a
randomly driven sentence, the word “Alba” is
less anticipated than “wedding” or “reports”,
which adds value to the word “Alba” if used.
Such anticipation can be modeled as a ratio
between an empirical probability of the word
(in a given corpus) and its estimated proba-
bility in general English. Aggregated over all
words in a document, this ratio may be used
as a measure of the document’s topicality. As-
suming that the corpus consists of on-topic
and off-topic documents (we call them the
core and the noise), our goal is to determine
which documents belong to the core. We pro-
pose two unsupervised methods for doing this.
First, we assume that words are sampled i.i.d.,
and propose an information-theoretic frame-
work for determining the core. Second, we
relax the independence assumption and use
a simple graphical model to rank documents
according to their likelihood of belonging to
the core. We discuss theoretical guarantees of
the proposed methods and show their useful-
ness for Web Mining and Topic Detection and
Tracking (TDT).

1 Introduction

Many intelligent applications in the text domain aim
at determining whether a document (a sentence, a
snippet etc.) is on-topic or off-topic. In some appli-
cations, topics are explicitly given. In binary text
classification, for example, the topic is described
in terms of positively and negatively labeled docu-
ments. In information retrieval, the topic is imposed
by a query. In many other applications, the topic
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is unspecified, however, its existence is assumed.
Examples of such applications are within text sum-
marization (extract the most topical sentences), text
clustering (group documents that are close topi-
cally), novelty detection (reason whether or not test
documents are on the same topic as training docu-
ments), spam filtering (reject incoming email mes-
sages that are too far topically from the content of a
personal email repository), etc.

Under the (standard) Bag-Of-Words (BOW) rep-
resentation of a document, words are the functional
units that bear the document’s topic. Since some
words are topical and some are not, the problem of
detecting on-topic documents has a dual formulation
of detecting topical words. This paper deals with the
following questions: (a) Which words can be con-
sidered topical? (b) How can topical words be de-
tected? (c) How can on-topic documents be detected
given a set of topical words?

The BOW formalism is usually translated into
the generative modeling terms by representing doc-
uments as multinomial word distributions. For the
on-topic/off-topic case, we assume that words in a
document are sampled from a mixture of two multi-
nomials: one over topical words and another one
over general English (i.e. the background). Obyvi-
ously enough, the support of the “topic” multinomial
is significantly smaller than the support of the back-
ground. A document’s topicality is then determined
by aggregating the topicality of its words (see below
for details). Note that by introducing the background
distribution we refrain from explicitly modeling the
class of off-topic documents—a document is sup-
posed to be off-topic if it is “not topical enough”.

Such a formulation of topicality prescribes us-

ing the one-class modeling paradigm, as opposed
to sticking to the binary case. Besides being much

Proceedings of the 2008 Conference on Empirical Methods in Natural Language Processing, pages 41-50,
Honolulu, October 2008. (©)2008 Association for Computational Linguistics



Figure 1: The problem of hyperspherical decision bound-
aries in one-class models for text, as projected on 2D:
(left) a too small portion of the core is captured; (right)
too much space around the core is captured.

less widely studied and therefore much more attrac-
tive from the scientific point of view, one-class mod-
els appear to be more adequate for many real-world
tasks, where negative examples are not straightfor-
wardly observable. One-class models separate the
desired class of data instances (the core) from other
data instances (the noise). Structure of noise is either
unknown, or too complex to be explicitly modeled.

One-class problems are traditionally approached
using vector-space methods, where a convex deci-
sion boundary is built around the data instances of
the desired class, separating it from the rest of the
universe. In the text domain, however, those vector-
space models are questionably applicable—unlike
effective binary vector-space models. In binary
models, decision boundaries are linear', whereas in
(vector-space) one-class models, the boundaries are
usually hyperspherical. Intuitively, since core docu-
ments tend to lie on a lower-dimensional manifold
(Lebanon, 2005), inducing hyperspherical bound-
aries may be sub-optimal as they tend to either cap-
ture just a portion of the core, or capture too much
space around it (see illustration in Figure 1). Here
we propose alternative ways for detecting the core,
which work well in text.

One-class learning problems have been studied as
either outlier detection or identifying a small coher-
ent subset. In one-class outlier detection (Tax and
Duin, 2001; Scholkopf et al., 2001), the goal is to
identify a few outliers from the given set of exam-
ples, where the vast majority of the examples are
considered relevant. Alternatively, a complementary
goal is to distill a subset of relevant examples, in the
space with many outliers (Crammer and Chechik,

'As such, or after applying the kernel trick (Cristianini and
Shawe-Taylor, 2000)
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2004; Gupta and Ghosh, 2005; Crammer et al.,
2008). Most of the one-class approaches employ ge-
ometrical concepts to capture the notion of relevancy
(or irrelevancy) using either hyperplanes (Scholkopf
et al., 2001) or hyperspheres (Tax and Duin, 2001;
Crammer and Chechik, 2004; Gupta and Ghosh,
2005). In this paper we adopt the latter approach:
we formulate one-class clustering in text as an opti-
mization task of identifying the most coherent subset
(the core) of k documents drawn from a given pool
of n > k documents.”

Given a collection D of on-topic and off-topic
documents, we assume that on-topic documents
share a portion of their vocabulary that consists of
“relatively rare” words, i.e. words that are used in D
more often than they are used in general English. We
call them fopical words. For example, if some doc-
uments in D share words such as “Bayesian”, “clas-
sifier”, “reinforcement” and other machine learning
terms (infrequent in general English), whereas other
documents do not seem to share any subset of words
(besides stopwords), then we conclude that the ma-
chine learning documents compose the core of D,
while non-machine learning documents are noise.

We express the level of topiczal)ity of a word w
plw

q(w)’
w’s empirical probability (in D), and g(w) is its es-

timated probability in general English. We discuss
an interesting characteristic of p(w): if D is large
enough, then, with high probability, p(w) values are
greater for topical words than for non-topical words.
Therefore, p(w) can be used as a mean to measure
the topicality of w.

Obviously, the quality of this measure depends on
the quality of estimating ¢(w), i.e. the general En-
glish word distribution, which is usually estimated
over a large text collection. The larger the collec-
tion is, the better would be the estimation. Recently,
Google has released the Web 1T dataset? that pro-
vides ¢(w) estimated on a text collection of one tril-
lion tokens. We use it in our experimentation.

We propose two methods that use the p ratio to

in terms of the ratio p(w) = where p(w) is

The parameter k is analogous to the number of clusters in
(multi-class) clustering, as well as to the number of outliers (Tax
and Duin, 2001) or the radius of Bregmanian ball (Crammer and
Chechik, 2004)—in other formulations of one-class clustering.

*http://www.ldc.upenn.edu/Catalog/
CatalogEntry. jsp?catalogId=LDC2006T13
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Figure 2: (left) A simple generative model; (right) Latent
Topic/Background model (Section 4).

solve the one-class clustering problem. First, we ex-
press documents’ topicality in terms of aggregating
their words’ p ratios into an information-theoretic
“topicality measure”. The core is then composed
of k documents with the highest topicality measure.
We show that the proposed measure is optimal for
constructing the core cluster among documents of
equal length. However, our method is not useful
in a setup where some long documents have a top-
ical portion: such documents should be considered
on-topic, but their heavy tail of background words
overcomes the topical words’ influence. We gener-
alize our method to non-equally-long documents by
first extracting words that are supposed to be topi-
cal and then projecting documents over those words.
Such projection preserves the optimality characteris-
tic and results in constructing a more accurate core
cluster in practice. We call such a method of choos-
ing both topical words and core documents One-
Class Co-Clustering (OCCC).

It turns out that our OCCC method’s performance
depends heavily on choosing the number of topical
words. We propose a heuristic for setting this num-
ber. As another alternative, we propose a method
that does not require tuning this parameter: we
use words’ p ratios to initialize an EM algorithm
that computes the likelihood of documents to be-
long to the core—we then choose k documents of
maximal likelihood. We call this model the Latent
Topic/Background (LTB) model. LTB outperforms
OCCC in most of our test cases.

Our one-class clustering models have interesting
cross-links with models applied to other Informa-
tion Retrieval tasks. For example, a model that
resembles our OCCC, is proposed by Zhou and
Croft (2007) for query performance prediction. Tao
and Zhai (2004) describe a pseudo-relevance feed-
back model that is similar to our LTB. These types
of cross-links are common for the models that are
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Figure 3: (left) Words” p(w) values when sorted by their
q(w) values; (right) words’ p(w) values.
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general enough and relatively simple. In this paper
we put particular emphasis on the simplicity of our
models, such that they are feasible for theoretical
analysis as well as for efficient implementation.

2 Motivation for using p ratios

Recall that we use the p(w) = % ratios to express
the level of our “surprise” of seeing the word w. A
high value of p(w) means that w is used in the cor-
pus more frequently than in general English, which,
we assume, implies that w is topical. The more top-
ical words a document contains, the more “topical”
it is—k most topical documents compose the core
Dk C D.

An important question is whether or not the p ra-
tios are sufficient to detecting the actually topical
words. To address this question, let us model the
corpus D using a simple graphical model (Figure 2
left). In this model, the word distribution p(w) is
represented as a mixture of two multinomial distri-
butions: p, over a set R of topical words, and p,
over all the words G O R in D. For each word w;;
in a document d;, we toss a coin Z;;, such that, if
Z;j = 1, then w;; is sampled from p,, otherwise it
is sampled from p,. Define 7 £ p(Z;; = 1).

If |G| > |R| > 0, and if 7 > 0, then top-
ical words would tend to appear more often than
non-topical words. However, we cannot simply base
our conclusions on word counts, as some words are
naturally more frequent than others (in general En-
glish). Figure 3 (left) illustrates this observation: it
shows words’ p(w) values sorted by their ¢(w) val-
ues. It is hard to fit a curve that would separate be-
tween R and G \ R. We notice however, that we can
“flatten” this graph by drawing p(w) values instead
(see Figure 3 right). Here, naturally frequent words
are penalized by the ¢ factor, so we can assume that,
when re-normalized, p(w) behaves as a mixture of
two discrete uniform distributions. A simple thresh-
old can then separate between R and G \ R.



Proposition 1 Under the uniformity assumption, it
is sufficient to have a log-linear size sample (in |G|)
in order to determine the set R with high probability.

See Bekkerman (2008) for the proof. The proposi-
tion states that in corpora of practical size* the set of
topical words can be almost perfectly detected, sim-
ply by taking words with the highest p ratios. Con-
sequently, the core D* will consist of & documents,
each of which contains more topical words than any
document from D \ DF.

To illustrate this theoretical result, we followed
the generative process as described above, and con-
structed an artificial dataset with characteristics sim-
ilar to those of our WAD dataset (see Section 5.1).
In particular, we fixed the size of the artificial dataset
to be equal to the size of the WAD dataset (N =
330,000). We set the ratio of topical words to 0.2
and assumed uniformity of the p values. In this
setup, we were able to detect the set of topical words
with a 98.5% accuracy.

2.1 Max-KL Algorithm

In this section, we propose a simple information-
theoretic algorithm for identifying the core D*, and
show that it is optimal under the uniformity assump-
tion. Given the p ratios of words, the aggregated
topicality of the corpus D can be expressed in terms
of the KL-divergence:

3 plw)1og 22

weg q(w)

= Z p(d, w) log

deD,weg

KL(pllg) =

p(w)
q(w)’

A document d’s contribution to the aggregated topi-
cality measure will assess the topicality of d:

KLapllg) = 3 pld w)og 22 1)
weg q(w)

The core D* will be composed of documents with
the highest topicality scores. A simple, greedy algo-
rithm for detecting D is then:

1. Sort documents according to their topicality
value (1), in decreasing order.
2. Select the first £ documents.

*N = O(mlogm), where N is the number of word tokens
in D, and m = |G| is the size of the vocabulary.
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Since the algorithm chooses documents with high
values of the KL divergence we call it the Max-KL
algorithm. We now argue that it is optimal under
the uniformity assumption. Indeed, if the corpus
D is large enough, then according to Proposition 1
(with high probability) any topical word w has a
lower p ratio than any non-topical word. Assume
that all documents are of the same length (|d| is con-
stant). The Max-KL algorithm chooses documents
that contain more topical words than any other doc-
ument in the corpus—which is exactly the definition
of the core, as presented in Section 1. We summarize
this observation in the following proposition:

Proposition 2 If the corpus D is large enough, and
all the documents are of the same length, then the
Max-KL algorithm is optimal for the one-class clus-
tering problem under the uniformity assumption.

In contrast to the (quite natural) uniformity assump-
tion, the all-the-same-length assumption is quite re-
strictive. Let us now propose an algorithm that over-
comes this issue.

3 One-Class Co-Clustering (OCCC)

As accepted in Information Retrieval, we decide that
a document is on-topic if it has a topical portion, no
matter how long its non-topical portion is. There-
fore, we decide about documents’ topicality based
on topical words only—non-topical words can be
completely disregarded. This observation leads us to
proposing a one-class co-clustering (OCCC) algo-
rithm: we first detect the set R of topical words, rep-
resent documents over R, and then detect D¥ based
on the new representation.’

We reexamine the document’s topicality score (1)
and omit non-topical words. The new score is then:

p(w)

q(w)

KLy(pllg) = Y_ p/(dw)log ==, (2)

wER

where p'(d,w) = p(d,w)/(},crp(d,w)) is a
joint distribution of documents and (only) topical
words. The OCCC algorithm first uses p(w) to

SOCCC is the simplest, sequential co-clustering algorithm,
where words are clustered prior to clustering documents (see,
e.g., Slonim and Tishby (2000)). In OCCC, word clustering is
analogous to feature selection. More complex algorithms can
be considered, where this analogy is less obvious.



choose the most topical words, then it projects doc-
uments on these words and apply the Max-KL algo-
rithm, as summarized below:

1. Sort words according to their p ratios, in de-
creasing order.

2. Select a subset R of the first m,. words.

3. Represent documents as bags-of-words over R
(delete counts of words from G \ R).

4. Sort documents according to their topicality
score (2), in decreasing order.

5. Select a subset D¥ of the first k documents.

Considerations analogous to those presented in Sec-
tion 2.1, lead us to the following result:

Proposition 3 If the corpus D is large enough, the
OCCC algorithm is optimal for one-class clustering
of documents, under the uniformity assumption.

Despite its simplicity, the OCCC algorithm shows
excellent results on real-world data (see Section 5).
OCCC’s time complexity is particularly appealing:
O(N), where N is the number of word tokens in D.

3.1 Choosing size m, of the word cluster

The choice of m, = |R| can be crucial. We propose
a useful heuristic for choosing it. We assume that
the distribution of p ratios for w € R is a Gaussian
with a mean g1, > 1 and a variance o2, and that the
distribution of p ratios for w € G \ R is a Gaussian
with a mean g, = 1 and a variance o2,. We also
assume that all the words with p(w) < 1 are non-
topical. Since Gaussians are symmetric, we further
assume that the number of non-topical words with
p(w) < 1 equals the number of non-topical words
with p(w) > 1. Thus, our estimate of |G\ R| is twice
the number of words with p(w) < 1, and then the
number of topical words can be estimated as m, =
|G| — 2 - #{words with p(w) < 1}.

4 Latent Topic/Background (LTB) model

Instead of sharply thresholding topical and non-
topical words, we can have them all, weighted with a
probability of being topical. Also, we notice that our
original generative model (Figure 2 left) assumes
that words are i.i.d. sampled, which can be relaxed
by deciding on the document topicality first. In our
new generative model (Figure 2 right), for each doc-
ument d;, Y; is a Bernoulli random variable where
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Algorithm 1 EM algorithm for one-class clustering
using the LTB model.

Input:
D — the dataset
plw) = SEE; — p scores for each word w; |2,

T — number of EM iterations
Output: Posteriors p(Y; = 1|d;, ©F) for each doc d;|1,

Initialization:
for each document d; initialize 7;
for each word w; initialize py(w;) = Q- p(w;);

p}](wl) = p(ﬂlj”, s.t. Q. and Q4 are normalization factors

Main loop:

forallt=1,...,Tdo
E-step:
for each document d; compute o} = p(Y; = 1|d;, ©")
for each word token w;; compute

Bi; = p(Zij = 1|Y; = 1,w;5,0")

M-step:
for each document d; update 7'*! = \dl‘| >, B
for each word w; update '

LAy 6(wig = w) B
2002 By

ptﬂ(wz) _ Ny =3, ai Z]' §(wij = wi) Bi;
! NﬁZiaEZjﬁfj

t4+1

Dr (“)l)

Y; = 1 corresponds to d; being on-topic. As be-
fore, Z;; decides on the topicality of a word token
w;j, but now given Y;. Since not all words in a
core document are supposed to be topical, then for
each word of a core document we make a separate
decision (based on Z;;) whether it is sampled from
pr(W) or ps(W). However, if a document does not
belong to the core (Y; = 0), each its word is sampled
from py (W), i.e. p(Z;; = 0]Y; =0) = 1.

Inspired by Huang and Mitchell (2006), we use
the Expectation-Maximization (EM) algorithm to
exactly estimate parameters of our model from the
dataset. We now describe the model parameters O.
First, the probability of any document to belong to
the core is denoted by p(Y; = 1) = % = py (this
parameter is fixed and will not be learnt from data).
Second, for each document d;, we maintain a proba-
bility of each its word to be topical given that the
document is on-topic, p(Z;; = 1|Y; = 1) = =
for ¢ = 1,...,n. Third, for each word w; (for
k = 1..m), we let p(w;|Z; = 1) = p,(w;) and
p(w|Z; = 0) = py(w;). The overall number of pa-



rameters is n + 2m + 1, one of which (py) is preset.
The dataset likelihood is then:

n

p(D) = ]lpap(dl¥s=1)+ (1 - pa)p(di]y; = 0)]
; |di|
= H {pd H[ﬂ'ipr(wij) + (1 = 73)pg(wij)]

Id;]
+(1 = pa) Hpg(wij)] :

Jj=1

At each iteration ¢ of the EM algorithm, we first
perform the E-step, where we compute the poste-
rior distribution of hidden variables {Y;} and {Z;;}
given the current parameter values ©' and the data
D. Then, at the M-step, we compute the new pa-
rameter values ©'*! that maximize the model log-
likelihood given ©f, D and the posterior distribution.

The initialization step is crucial for the EM al-
gorithm. Our pilot experimentation showed that if
distributions p, (W) and py(W) are initialized as
uniform, the EM performance is close to random.
Therefore, we decided to initialize word probabili-
ties using normalized p scores. We do not propose
the optimal way to initialize 7; parameters, however,
as we show later in Section 5, our LTB model ap-
pears to be quite robust to the choice of 7;.

The EM procedure is presented in Algorithm 1.
For details, see Bekkerman (2008). After T itera-
tions, we sort the documents according to «y; in de-
creasing order and choose the first £ documents to
be the core. The complexity of Algorithm 1 is lin-
ear: O(T'N). To avoid overfitting, we set 7" to be a
small number: in our experiments we fix 7" = 5.

S Experimentation

We evaluate our OCCC and LTB models on two ap-
plications: a Web Mining task (Section 5.1), and a
Topic Detection and Tracking (TDT) (Allan, 2002)
task (Section 5.2).

To define our evaluation criteria, let C' be the con-
structed cluster and let C). be its portion consisting
of documents that actually belong to the core. We
define precision as Prec = |C..|/|C|, recall as Rec =
|C|/k and F-measure as (2 Prec Rec)/(Prec+Rec).
Unless stated otherwise, in our experiments we fix
|C'| = k, such that precision equals recall and is then
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called one-class clustering accuracy, or just accu-
racy.

We applied our one-class clustering methods in
four setups:

e OCCC with the heuristic to choose m,. (from
Section 3.1).

e OCCC with optimal m,.. We unfairly choose
the number m,. of topical words such that the
resulting accuracy is maximal. This setup
can be considered as the upper limit of the
OCCC'’s performance, which can be hypotheti-
cally achieved if a better heuristic for choosing
m, is proposed.

e LTB initialized with =; = 0.5 (for each 7).
As we show in Section 5.1 below, the LTB
model demonstrates good performance with
this straightforward initialization.

e LTB initialized with m; = py. Quite naturally,
the number of topical words in a dataset de-
pends on the number of core documents. For
example, if the core is only 10% of a dataset, it
is unrealistic to assume that 50% of all words
are topical. In this setup, we condition the ratio
of topical words on the ratio of core documents.

We compare our methods with two existing al-
gorithms: (a) One-Class SVM clustering6 (Tax and
Duin, 2001); (b) One-Class Rate Distortion (OC-
RD) (Crammer et al., 2008). The later is considered
a state-of-the-art in one-class clustering. Also, to es-
tablish the lowest baseline, we show the result of a
random assignment of documents to the core D*.

The OC-RD algorithm is based on rate-distortion
theory and expresses the one-class problem as a
lossy coding of each instance into a few possible
instance-dependent codewords. Each document is
represented as a distribution over words, and the KL-
divergence is used as a distortion function (gener-
ally, it can be any Bregman function). The algo-
rithm also uses an “inverse temperature” parameter
(denoted by () that represents the tradeoff between
compression and distortion. An annealing process
is employed, in which the algorithm is applied with
a sequence of increasing values of (3, when initial-
ized with the result obtained at the previous itera-

%We used Chih-Jen Lin’s LibSVM with the —s 2 parame-
ter. We provided the core size using the —n parameter.



Method WAD T™™W

Random assignment 38.7% 349+ 3.1%
One-class SVM 46.3%  45.2 +3.2%
One-class rate distortion 48.8%  63.6 + 3.5%
OCCC with the m, heuristic ~ 80.2% 61.4 +4.5%
OCCC with optimal m 82.4%  68.3 +3.6%
LTB initialized with m; = 0.5 79.8% 65.3 +7.3%
LTB initialized with m; = ps  78.3%  68.0 = 5.9%

Table 1: One-class clustering accuracy of our OCCC and
LTB models on the WAD and the TW detection tasks, as
compared to OC-SVM and OC-RD. For TW, the accura-
cies are macro-averaged over the 26 weekly chunks, with
the standard error of the mean presented after the + sign.

tion. The outcome is a sequence of cores with de-
creasing sizes. The annealing process is stopped
once the largest core size is equal to k.

5.1 Web appearance disambiguation

Web appearance disambiguation (WAD) is proposed
by Bekkerman and McCallum (2005) as the problem
of reasoning whether a particular mention of a per-
son name in the Web refers to the person of interest
or to his or her unrelated namesake. The problem is
solved given a few names of people from one social
network, where the objective is to construct a cluster
of Web pages that mention names of related people,
while filtering out pages that mention their unrelated
namesakes.

WAD is a classic one-class clustering task, that
is tackled by Bekkerman and McCallum with simu-
lated one-class clustering: they use a sophisticated
agglomerative/conglomerative clustering method to
construct multiple clusters, out of which one cluster
is then selected. They also use a simple link struc-
ture (LS) analysis method that matches hyperlinks
of the Web pages in order to compose a cloud of
pages that are close to each other in the Web graph.
The authors suggest that the best performance can
be achieved by a hybrid of the two approaches.

We test our models on the WAD dataset,” which
consists of 1085 Web pages that mention 12 people
names of Al researchers, such as Tom Mitchell and
Leslie Kaelbling. Out of the 1085 pages, 420 are
on-topic, so we apply our algorithms with k£ = 420.
At a preprocessing step, we binarize document vec-
tors and remove low frequent words (both in terms

"http://www.cs.umass.edu/~ronb/name_
disambiguation.html
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# 0OCCC LTB

1 cheyer artificial

2 kachites learning

3 quickreview cs

4  adddoc intelligence

5  aaai98 machine

6  kaelbling edu

7  mviews algorithms

8  mlittman proceedings

9  hardts computational
10 meuleau reinforcement
11 dipasquo papers

12 shakshuki cmu
13 xevil aaai
14 sangkyu workshop
15 gorfu kaelbling

Table 2: Most highly ranked words by OCCC and LTB,
on the WAD dataset.

of p(w) and ¢(w)). The results are summarized in
the middle column of Table 1. We can see that both
OCCC and LTB dramatically outperform their com-
petitors, while showing practically indistinguishable
results compared to each other. Note that when the
size of the word cluster in OCCC is unfairly set to
its optimal value, m, = 2200, the OCCC method
is able to gain a 2% boost. However, for obvious
reasons, the optimal value of m, may not always be
obtained in practice.

Table 2 lists a few most topical words according
to the OCCC and LTB models. The OCCC algo-
rithm sorts words according to their p scores, such
that words that often occur in the dataset but rarely in
the Web, are on the top of the list. These are mostly
last names or login names of researchers, venues etc.
The EM algorithm of LTB is the given p scores as an
input to initialize p}(w) and py(w), which are then
updated at each M-step. In the LTB columns, words
are sorted by p2(w). High quality of the LTB list
is due to conditional dependencies in our generative
model (via the Y; nodes).

Solid lines in Figure 4 demonstrate the robustness
of our models to tuning their main parameters (m,.
for OCCC, and the 7; initialization for LTB). As can
be seen from the left panel, OCCC shows robust
performance: the accuracy above 80% is obtained
when the word cluster is of any size in the 1000—
3000 range. The heuristic from Section 3.1 suggests
a cluster size of 1000. The LTB is even more robust:
practically any value of m; (besides the very large
ones, m; ~ 1) can be chosen.
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Figure 4: Web appearance disambiguation: (left)
OCCC accuracy as a function of the word cluster size;
(right) LTB accuracy over various initializations of 7; pa-
rameters. The red dotted lines show the accuracy of each
method’s results combined with the Link Structure model
results. On the absolute scale, OCCC outperforms LTB,
however LTB shows more robust behavior than OCCC.

To perform a fair comparison of our results
with those obtained by Bekkerman and McCal-
lum (2005), we construct hybrids of their link struc-
ture (LS) analysis model with our OCCC and LTB,
as follows. First, we take their LS core cluster,
which consists of 360 documents. Second, we pass
over all the WAD documents in the order as they
were ranked by either OCCC or LTB, and enlarge
the LS core with 60 most highly ranked documents
that did not occur in the LS core. In either case, we
end up with a hybrid core of 420 documents.

Dotted lines in Figure 4 show accuracies of the
resulting models. As the F-measure of the hy-
brid model proposed by Bekkerman and McCal-
lum (2005) is 80.3%, we can see that it is signifi-
cantly inferior to the results of either OCCC+LS or
LTB+LS, when their parameters are set to a small
value (m, < 3000 for OCCC, m; < 0.06 for
LTB). Such a choice of parameter values can be
explained by the fact that we need only 60 docu-
ments to expand the LS core cluster to the required
size k = 420. When the values of m, and m; are
small, both OCCC and LTB are able to build very
small and very precise core clusters, which is exactly
what we need here. The OCCC+LS hybrid is par-
ticularly successful, because it uses non-canonical
words (see Table 2) to compose a clean core that al-
most does not overlap with the LS core. Remark-
ably, the OCCC+LS model obtains 86.4% accuracy
with m,. = 100, which is the state-of-the-art result
on the WAD dataset.
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Figure 5: Web appearance disambiguation: F-measure
as a function of document cluster size: a vertical line in-
dicates the point where precision equals recall (and there-
fore equals accuracy). “OCC” refers to the OCCC model
where all the words are taken as the word cluster (i.e. no
word filtering is done).

To answer the question how much our models are
sensitive to the choice of the core size k, we com-
puted the F-measure of both OCCC and LTB as a
function of k (Figure 5). It turns out that our meth-
ods are quite robust to tuning k: choosing any value
in the 300-500 range leads to good results.

5.2 Detecting the topic of the week

Real-world data rarely consists of a clean core and
uniformly distributed noise. Usually, the noise has
some structure, namely, it may contain coherent
components. With this respect, one-class clustering
can be used to detect the largest coherent compo-
nent in a dataset, which is an integral part of many
applications. In this section, we solve the problem of
automatically detecting the Topic of the Week (TW)
in a newswire stream, i.e. detecting all articles in a
weekly news roundup that refer to the most broadly
discussed event.

We evaluate the TW detection task on the bench-
mark TDT-5 dataset®, which consists of 250 news
events spread over a time period of half a year, and
9,812 documents in English, Arabic and Chinese
(translated to English), annotated by their relation-
ship to those events.” The largest event in TDT-5
dataset (#55106, titled “Bombing in Riyadh, Saudi
Arabia”) has 1,144 documents, while 66 out of the
250 events have only one document each. We split
the dataset to 26 weekly chunks (to have 26 full

$http://projects.ldc.upenn.edu/TDT5/
“We take into account only labeled documents, while ignor-
ing unlabeled documents that can be found in the TDT-5 data.
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Figure 6: “Topic of the week” detection task: Accuracies of two OCCC methods and two LTB methods.

weeks, we delete all the documents dated with the
last day in the dataset, which decreases the dataset’s
size t0 9,781 documents). Each chunk contains from
138 to 1292 documents.

The one-class clustering accuracies,
averaged over the 26 weekly chunks, are presented
in the right column of Table 1. As we can see, both
LTB models, as well as OCCC with the optimal m,,,
outperform our baselines. Interestingly, even the op-
timal choice of m, does not lead OCCC to signif-
icantly superior results while compared with LTB.
The dataset-dependent initialization of LTB’s 7; pa-
rameters (m; = pg) appears to be preferable over the
dataset-independent one (m; = 0.5).

macro-

Accuracies per week are shown in Figure 6. These
results reveal two interesting observations. First,
OCCC tends to outperform LTB only on data chunks
where the results are quite low in general (less than
60% accuracy). Specifically, on weeks 2, 4, 11,
and 16 the LTB models show extremely poor per-
formance. While investigating this phenomenon, we
discovered that in two of the four cases LTB was
able to construct very clean core clusters, however,
those clusters corresponded to the second largest
topic, while we evaluate our methods on the first
largest topic.!® Second, the (completely unsuper-

"For example, on the week-4 data, topic #55077 (“River
ferry sinks on Bangladeshi river”) was discovered by LTB as
the largest and most coherent one. However, in that dataset,
topic #55077 is represented by 20 documents, while topic
#55063 (“SARS Quarantined medics in Taiwan protest”) is
represented by 27 documents, such that topic #55077 is in fact
the second largest one.
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vised) LTB model can obtain very good results on
some of the data chunks. For example, on weeks 5,
8, 19,21, 23, 24, and 25 the LTB’s accuracy is above
90%, with a striking 100% on week-23.

6 Conclusion

We have developed the theory and proposed practi-
cal methods for one-class clustering in the text do-
main. The proposed algorithms are very simple,
very efficient and still surprisingly effective. More
sophisticated algorithms (e.g. an iterative'! version
of OCCC) are emerging.
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Abstract

We propose a new approach to language mod-
eling which utilizes discriminative learning
methods. Our approach is an iterative one:
starting with an initial language model, in
each iteration we generate 'false' sentences
from the current model, and then train a clas-
sifier to discriminate between them and sen-
tences from the training corpus. To the extent
that this succeeds, the classifier is incorpo-
rated into the model by lowering the probabil-
ity of sentences classified as false, and the
process is repeated. We demonstrate the effec-
tiveness of this approach on a natural lan-
guage corpus and show it provides an 11.4%
improvement in perplexity over a modified
kneser-ney smoothed trigram.

1 Introduction

Language modeling is a fundamental task in natu-
ral language processing and is routinely employed
in a wide range of applications, such as speech
recognition, machine translation, etc’. Tradition-
ally, a language model is a probabilistic model
which assigns a probability value to a sentence or a
sequence of words. We refer to these as generative
language models. A very popular example of a
generative language model is the n-gram, which
conditions the probability of the next word on the
previous (n-1)-words.

Although simple and widely-applicable, it has
proven difficult to allow n-grams, and other forms
of generative language models as well, to take ad-
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vantage of non-local and overlapping features.'
These sorts of features, however, pose no problem
for standard discriminative learning methods, e.g.
large-margin classifiers. For this reason, a new
class of language model, the discriminative lan-
guage model, has been proposed recently to aug-
ment generative language models (Gao et al,
2005; Roark et al., 2007). Instead of providing
probability values, discriminative language models
directly classify sentences as either correct or in-
correct, where the definition of correctness de-
pends on the application (e.g. grammatical /
ungrammatical, correct translation / incorrect trans-
lation, etc').

Discriminative  learning methods require
negative samples. Given that the corpora used for
training language models contain only real
sentences, i.e. positive samples, obtaining these
can be problematic. In most work on
discriminative language modeling this was not a
major issue as the work was concerned with
specific applications, and these provided a natural
definition of negative samples. For instance,
(Roark et al., 2007) proposed a discriminative
language model for a speech recognition task.
Given an acoustic sequence, a baseline recognizer
was used to generate a set of possible
transcriptions. The correct transcription was taken
as a positive sample, while the rest were taken as
negative samples. More recently, however,
Okanohara and Tsujii (2007) showed that a

! Conditional maximum entropy models (Rosenfeld, 1996)
provide somewhat of a counter-example, but there, too, many
kinds of global and non-local features are difficult to use
(Rosenfeld, 1997).
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discriminative language model can be trained
independently of a specific application by using a
generative language model to obtain the negative
samples. Using a non-linear large-margin learning
algorithm, they successfully trained a classifier to
discriminate real sentences from sentences
generated by a trigram.

In this paper we extend this line of work to
study the extent to which discriminative learning
methods can lead to better gemerative language
models per-se. The basic intuition is the following:
if a classifier can be used to discriminate real sen-
tences from 'false' sentences generated by a lan-
guage model, then it can also be used to improve
that language model by taking probability mass
away from sentences classified as false and trans-
ferring it to sentences classified as real. If the re-
sulting language model can be efficiently sampled
from, then this process can be repeated, until gen-
erated sentences can no longer be distinguished
from real ones.

The remainder of the paper is structured as
follows: In the next section we formally develop
this intuition, providing a quick overview of the
whole-sentence maximum-entropy model and of
self-supervised boosting, two previous works on
which we rely. We also present the method we use
for sampling from the current model, which for the
present work is far more efficient than the classical
Gibbs sampling. Our experimental results are
presented in section 3, and section 4 concludes
with a discussion and a future outlook.

2 Learning Framework

2.1 Whole-sentence maximum-entropy model

The vast majority of statistical language models
estimate the probability of a given sentence as a
product of conditional probabilities via the chain
rule:

def def _n
P(s) = P(w,..w,) = [ P(w, I h) (1)

def
where h, = w,..w, | is called the history of the

word w;. Most work on language modeling
therefore is directed at the estimation of

P(w, | h;). While this is theoretically correct, it
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makes it difficult to incorporate global information
about the sentence into the model, e.g. length,
grammaticality, etc'. For this reason, the whole-
sentence maximum-entropy model was proposed
in (Rosenfeld, 1997). In the WSME model the
probability of a sentence is defined directly as:

PO)=— B (L ALE) @

Where some baseline model,

F(s) is

def
Z =Y P(s)-exp(D 2 f,(s)) is a normalization

constant and the {f;}'s are features encoding some
information about the sentence. Most generally, a
feature is a function from the set of word
sequences to R, the set of real numbers. However,
in most applications, as in our work, the features
are taken to be binary. Lastly, the {)A;}'s are real
coefficients encoding the relative importance of
their corresponding features. In the WSME
framework the set of features {f;} is given ahead of
training by the modeler, and learning consists of
estimating the coefficients {A;}. This is done by
stipulating the constraints

def N
E(D=EH=2206) 6

where p is the empirical distribution defined by

the training set {sj, ... sN}.2 If these constraints are
consistent then there is a unique solution in {A;}
that satisfies them. This solution is guaranteed to
be the one closest to P, in the Kullback-Leblier
sense among all solutions satisfying (3). It is also
guaranteed to be the maximum likelihood solution
for the exponential family. For more details, see
(Chen and Rosenfeld, 1999a).

2.2 Self-supervised boosting

A different approach to learning the same sort
of model as in (2) was proposed in (Welling et al.,
2003). Here, instead of having all the features pre-
given, they are learned one at a time along with
their corresponding coefficients. Welling et al.
show that adding a new feature to (2) can be

2 Sometimes a smoothed version of (3) is used instead (e.g.
Chen and Rosenfeld, 1999b).



interpreted as gradient ascent on the log-likelihood
function, and show that the optimal feature is the
one that best discriminates real data from data
sampled from the current model. To see this, let

E®) =B+ Y AN @

denote the energy associated with sentence s.’
Equation (2) can now be rewritten as -

P(s) = %exp(E(s)) )

where Z is a normalization constant as before. The
derivative of the log-likelihood with respect to an
arbitrary parameter £ is then —

+> (s )aE(S) ©)

ses

oL _ __Z]: OE(s;)

where {s;, ... SN} 1S once again the training corpus,
and the second sum runs over the set of all word
sequences.

Now, suppose we change the energy function by
adding an infinitesimal multiple of a new feature
f". The log-likelihood after adding the feature can
be approximated by —

L(E(s)+ £ () ~ L(E(s)) + e% @

where the derivative of L is taken at £=0.
Because the optimal feature is the one that
maximizes the increase in log-likelihood, we are
searching for a feature that maximizes this
derivative. Using equation (6) and noting that

OE .
—=f we have —

oe

%:_—Zf )+ PO ®

This expression cannot be computed in practice,
because the set of all word sequences S is infinite.
The second term however can approximated using
samples {u;} from the current model —

iz—%if"(gh%if(u» )

3 In (Welling et al., 2003) the term for P, does not appear,
which is equivalent to taking the uniform distribution as the
baseline model.
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In other words, given a set of N samples {u;}
from the model, the optimal feature to add is one
that gives high scores to sampled sentences and
low ones to real sentences. By labeling real
sentences with 0 and sampled sentences with 1, the
task of learning the feature translates into the task
of training a classifier to discriminate between
these two classes of sentences.

In the remainder of the paper we will use feature
and classifier interchangeably.

2.3 Rejection sampling

Self-supervised boosting was presented as a
general method for density estimation, and was not
tested in the context of language modeling. Rather,
Welling at al. demonstrated its effectiveness in
modeling hand-written digits and on synthetic data.
In both cases essentially linear classifiers were
used as features. As these are computationally very
efficient, the authors could use a variant of Gibbs
sampling for generating negative samples.
Unfortunately, as shown in (Okanohara and Tsujii,
2007), with the represetation of sentences that we
use, linear classifiers cannot discriminate real
sentences from sentences sampled from a trigram,
which is the model we use as a baseline, so here
we resort to a non-linear large-margin classifier
(see section 3 for details). While large-margin
classifiers consistently out-perform other learning
algorithms in many NLP tasks, their non-linear
variations are also notoriously slow when it comes
to computing their decision function — taking time
that can be linear in the size of their training data.
This means that MCMC techniques like Gibbs
sampling quickly become intractable, even for
small corpora, as they require performing very
large numbers of classifications. For this reason we
use a different sampling scheme which we refer to
as rejection sampling. This allows us to sample
from the true model distribution while requiring a
drastically smaller number of classifications, as
long as the current model isn't too far removed
from the baseline.

We will start by describing the sampling
process, and then show that the probability
distribution it samples from has the form of
equation (2). To sample a sentence from the cur-
rent model, we generate one from the baseline
model, and then pass it through each of the classi-
fiers in the model. If a given classifier classifies the



sentence as a model sentence, then it is rejected
with a certain probability associated with this clas-
sifier. Only if a sentence is accepted by all classifi-
ers is it taken as a sample sentence. Otherwise, the
sampling process is restarted.

Let us derive an expression for the probability of
a sentence s generated in this manner. To simplify
notation, assume that at this point we added but a
single feature f to the baseline model P, and

letp,,; the
associated with it. Furthermore, let p. stand for the

accuracy of f in classifying sentences sampled
from P, (negative samples). Formally,

p-=E, (f) (10)
First let's assume that f(s)=1. The probability

for generating s is a sum of the probabilities of two
disjoint outcomes — the probability of generating s
as the first sentence and having it survive the
rejection, plus the probability of generating in the
first iteration some sentence s' such that f(s") =1,

stand for rejection  probability

rejecting that, and then generating s in one of the
subsequent iterations. Formally, this means that —

B(s)=(-p)B(s)+p.p,Pls) (D)
Rearranging, we have —
1 - pre‘
R(s)=—"—FR(s) (12)
- —prej

Similarly, the probability for a sentence s for
which f(s) =0 is the probability of generating s
as the first sentence, plus the probability of
generating some other sentence s' for which
f(s") =1, rejecting it, and then generating s in a
future iteration. Formally,

B(s)=F(s)+p_p,,B(s) (13)
and hence —
1
R(s)=——F,(s) (14)
1_ — 17 rej

Letting Z=1-pp,. and letting

A=In(1-p,,), we have, for all s -

1

E(s)=EE)(s)-exp(/1-f(s)) (15)

54

This process can be trivially generalized for N
features. Let —

pL=E, (f) (16)
stand for f's accuracy in classifying sentences
generated from P;;, and let piej be the rejection

probability associated with the i'th feature.
Sampling from the model then proceeds by
sampling a sentence s from P,. Foreach 1<i< N,

in order, if f;(s)=1, then we attempt to reject s

with probability piej. If s survives all the rejection

attempts, it is returned as the next sample. Using

similar arguments as before it's possible to show
. i

that if we take 4, = In(1— p,,;) and -

N
z=11a-p'p,)
i=1

then the probability of a sentence s sampled by this
process is given by equation (2). Conversely, this
shows that rejection sampling can be used for
obtaining negative samples from the model given

A7)

in (2) by taking piej =1-exp(4), as long as
0 <exp(4)<1. In section 3 we show that in our

experimental setup,
about enormous savings in
classifications necessary during
compared with Gibbs sampling.

rejection sampling brings
the number of
training, as

2.4 Adding a new feature

Given the current model P; and a new feature
fis1, we wish to find the optimal Ay, or

equivalently its optimal rejection probability pi:j] .

In the WSME framework, the weights of the
features are set in such a way that the expected
value of the features on sentences sampled from
the model equals their expected value on real
sentences. A possible way to set the weight of a

new feature is therefore to set pi:jl such that the

constraint:

Ep, (fin)=E;(fin) (18)
is satistfied, where p is once again the empirical
distribution defined by the training set. Intuitively,
this means that the new feature could no longer be

used to discriminate between sentences sampled
from Py, and real sentences. However, setting



pi; in this manner may violate the constraints (18)

associated with the features already existing in the
model, thus hampering the model's performance.
Therefore, we set the new feature's rejection
probability by directly searching for the one that
minimizes an estimate of P;,;'s perplexity on a set
of held out real sentences. To do this, we first
sample a new set of sentences from P,
independently of the set that was used for training

. . i+l
fin, and use it to estimate p’". For any

arbitrarily determined pi:jl, this enables us to

calculate an estimate for the normalization constant
Z (equation 17), and therefore an estimate for P;,;.

We do this for a range of possible values for p:jl
and pick the one that leads to the largest reduction

in perplexity on the held out data.*

3 Experimental work

We tested our approach on the ATIS natural
language corpus (Hemphill et al., 1990). We split
the corpus into a training set of 11,000 sentences, a
held-out set containing 1,045 sentences, and a test
set containing 1,000 sentences which were
reserved for measuring perplexity. The corpus was
pre-processed so that every word appearing less
than three times was replaced by a special UNK
symbol. The resulting lexicon contained 603 word
types.

Our learning framework leaves open a number
of design choices:

1. Baseline language model: For P, we used a
trigram with modified kneser-ney smoothing
[Chen and Goodman, 1998], which is still
considered one of the best smoothing methods for
n-gram language models.

2. Sentence representation: Each sentence was
represented as the collection of unigrams, bigrams
and trigrams it contained. A coordinate was
reserved for each such n-gram which appeared in
the data, whether real or sampled. The value of the
n'th coordinate in the vector representation of

# Interestingly, in practice both methods result in near identical
rejection probabilities, within a precision of 0.0001. This
indicates that satisfying the constraint (18) for the new feature
is more important, in terms of perplexity, than preserving the
constraints of the previous features, insofar as those get
violated.
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sentence s was set to the number of times the
corresponding n-gram appeared in s.

3. Type of classifiers: For our features we used
large-margin classifiers trained using the online
algorithm described in (Crammer et al., 2006). The
code for the classifier was generously provided by
Daisuke Okanohara. This code was extensively
optimized to take advantage of the very sparse
sentence representation described above. As shown
in (Okanohara and Tsujii, 2007), using this
representation, a linear classifier cannot distinguish
sentences sampled from a trigram and real
sentences. Therefore, we used a 3rd order
polynomial kernel, which was found to give good
results. No special effort was otherwise made in
order to optimize the parameters of the classifiers.

4. Stopping criterion: The process of adding
features to the model was continued until the
classification performance of the next feature was
within 2% of chance performance.

We refer to the language model obtained by this
approach as the boosted model to distinguish it
from the baseline model. To estimate the boosted
model's perplexity we needed to estimate the
normalization constant Z in equation (2). Since this

constant is equal to E A (exp(z A.f.)) it can be

estimated from a large-enough sample from P,. We
used 10,000,000 sentences generated from the
baseline trigram and took the upper bound of the
95% confidence interval of the sample mean as an
upper bound for Z. This means the perplexity
estimates we report are upper bounds for the real
model perplexity with 95% confidence.’

The algorithm converged after 21 features were
added to the model. Figure 1 presents the model's
perplexity on the test set estimated after each
iteration. The perplexity of the final model is 9.02.
In comparison, the perplexity of the modified
kneser-ney smoothed trigram on this corpus is
10.18. This is an 11.4% improvement relative to
the baseline model.

3 Alternatively we could have used our estimate for Py(s) de-
scribed in section 2.4. A large sample of sentences would still
be necessary though, to get a good estimate for equation (16).
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Figure 1. Model perplexity during training. The x-
axis denotes the number of features added to the
model. The final perplexity after 21 features is 9.02.
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Figure 2. Classifier accuracy during training,
assessed on held-out data. 0.5 signifies chance
performance.

Figure 2 shows the accuracy of the trained
features on held-out data. The held-out data was
composed of equal parts real and model sentences,
s0 50% accuracy is chance performance. As might
have been expected, the classifiers start out with a
relatively high accuracy of 68%, which dwindles
down to little over 50% as more features are added
to the model. Not surprisingly, there is a strong
correlation between the accuracy of a feature and
the reduction in perplexity it engenders (spearman
correlation coefficient r=0.89, p<107~.)

In tables 1 and 2 we show a representative
sample of sentences from the baseline model and
from the final model. As the baseline model is a
trigram, it cannot capture dependencies that span a
range longer than two words. Hence sentences that
start out seemingly in one topic and then veer off
to another are common. The global information
available to the features used by the boosted model
greatly reduces this phenomenon. To get a
quantitative sense of this, we generated 200
sentences from each model and submitted them for
grammaticality testing by a proficient (though non-
native) English speaker. Of the trigram-generated
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please list costs in at pittsburgh

what type of airplane is have an early morning

what types of aircraft is that a meal

what not nineteen forty two

between boston and atlanta on august fifteenth

which airlines fly american flying on

what is the flight leaving pittsburgh after six p m

Table 1. A sample of sentences generated by the

= baseline model, a trigram smoothed with modified

kneser-ney smoothing.

what is the cost of flight d 1 three seventeen
sixty five

what time does flight at eight thirty eight a m
and six p m

what does fare code q w mean

what kind of aircraft will i be flying on

flights from philadelphia on saturday

what is the fare for flight two nine six

what is the cost of coach transcontinental flight
u a three oh two from denver to san francisco

Table 2. A sample of sentences generated by the final
model

sentences, 86 were deemed grammatical (43%),
while of those generated by the boosted model 132
were grammatical (66%). This difference is
statistically significant with p<10~.

Finally, let us quantify the computational
savings obtained from using rejection sampling.
Let IVl stand for the lexicon size (here [VI=603)
and ILI for the average sentence length (ILI=14). In
Gibbs sampling, a sentence is sampled by starting
out with a random sequence of words. For each
word position, the current word is replaced with
each word in the lexicon, and the probability of the
resulting sentence is calculated. Then one of the
words is randomly selected for this position in
proportion to the calculated probabilities. The
sentence has to be scanned in this manner several
times for the sample to approximate the model
distribution. Assuming we perform only 3 scans
for each sentence, Gibbs sampling would have thus
required us to classify 31V Il LI~ 25,000

sentences per sampled sentence. Given that in each
iteration we generate 12,045 sentences, and that in
the n'th iteration each sentence has to be classified
by n features, this gives a total of roughly




7-10" classifications after 21 iterations. In
contrast, using rejection sampling, we used only

6.7-107 classifications in total — a difference of
over three orders of magnitude.

4 Discussion

In this work we presented a method that enables
using discriminative learning methods for refining
generative language models. Utilizing large-
margin classifiers that are trained to discriminate
real sentences from model sentences we showed
that sizeable improvements in perplexity over a
state-of-the-art smoothed trigram are possible.

Our method bears some similarity to the recently
developed Contrastive Estimation method (Smith
and Eisner, 2004). Contrastive estimation (CE) was
proposed as a means for training log-linear prob-
abilistic models. As all training methods, contras-
tive estimation pushes probability mass unto
positive samples. Unlike other methods, CE takes
this probability mass from the 'meighborhood' of
each positive sample. For example, given a real
sentence s, CE might give it more probability by
taking away probability from similar sentences
which are likely to be ungrammatical, for instance
sentences that are formed by taking s and switch-
ing the order of two adjacent words in it. This is
intuitively similar to our approach — effectively,
our model gives probability mass to positive sam-
ples, taking it away from sentences classified as
model sentences. A major difference between the
two approaches, however, is that in CE the defini-
tion of the sentence's neighborhood must be speci-
fied in advance by the modeler. In our work, the
‘neighborhood' is determined automatically and
dynamically as learning proceeds, according to the
capabilities of the classifiers used.

The sentence representation we chose for this
work is rather simple, and was intended primarily
to demonstrate the efficacy of our approach. In
future work we plan to experiment with richer
representations, e.g. including long-range n-grams
(Rosenfeld, 1996), class n-grams (Brown et al.,
1992), grammatical features (Amaya and Benedy,
2001), etc'.

The main computational bottleneck in our
approach is the generation of negative samples
from the current model. Rejection sampling
allowed us to use computationally intensive
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classifiers as our features by reducing the number
of classifications that had to be performed during
the sampling process. However, if the boosted
model strays too far from the baseline P, these
savings will be negated by the very large sentence
rejection probabilities that will ensue. This is likely
to be the case when richer representations as
suggested above are used, necessitating a return to
Gibbs sampling. Therefore, in future work we plan
to experiment with classifiers whose decision
function is cheaper to compute, such as neural
networks and decision trees. Another possible
direction would be using the recently proposed
Deep Belief Network formalism (Hinton et al.,
2006). DBNSs utilize semi-linear features which are
stacked recursively and thus very efficiently model
non-linearities in their data. These have been used
in the past for language modeling (Mnih and
Hinton, 2007), but not within the whole-sentence
framework.
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Abstract

We present a discriminative method for learn-
ing selectional preferences from unlabeled
text. Positive examples are taken from ob-
served predicate-argument pairs, while nega-
tives are constructed from unobserved combi-
nations. We train a Support Vector Machine
classifier to distinguish the positive from the
negative instances. We show how to parti-
tion the examples for efficient training with
57 thousand features and 6.5 million training
instances. The model outperforms other re-
cent approaches, achieving excellent correla-
tion with human plausibility judgments. Com-
pared to Mutual Information, it identifies 66%
more verb-object pairs in unseen text, and re-
solves 37% more pronouns correctly in a pro-
noun resolution experiment.

Introduction
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for example, we finaat with nachos, burritos, and
tacos, but not with the equally tastguesadillas,
chimichangas, or tostadas. Rather than solely re-
lying on co-occurrence counts, we would like to use
them to generalize to unseen pairs.

In particular, we would like to exploit a number
of arbitrary and potentially overlapping properties
of predicates and arguments when we assign SPs.
We do this by representing these properties as fea-
tures in a linear classifier, and training the weights
using discriminative learning. Positive examples
are taken from observed predicate-argument pairs,
while pseudo-negatives are constructed from unob-
served combinations. We train a Support Vector Ma-
chine (SVM) classifier to distinguish the positives
from the negatives. We refer to our model’s scores
as Discriminative Selectional Preferences{. By
creating training vectors automatically,sP enjoys
all the advantages of supervised learning, but with-

Selectional preferences (SPs) tell us which argu2ut the need for manual annotation of examples.
ments are plausible for a particular predicate. For We evaluate BpP on the task of assigning verb-
example, Table 2 (Section 4.4) lists plausible andbject selectional preference. We encode a noun’s

implausible direct objects (arguments) for particutextual distribution as feature information.

The

lar verbs (predicates). SPs can help resolve syntdearned feature weights are linguistically interesting,
tic, word sense, and reference ambiguity (Clark angielding high-quality similar-word lists as latent in-
Weir, 2002), and so gathering them has received farmation. Despite its representational powegm
lot of attention in the NLP community.

scales to real-world data sizes: examples are parti-

One way to determine SPs is from co-occurrencefoned by predicate, and a separate SVM is trained

of predicates and arguments in text. Unfortunatelfor each partition. This allows us to efficiently learn
no matter how much text we use, many acceptablgith over 57 thousand features and 6.5 million ex-
pairs will be missing. Bikel (2004) found that only amples. BrPoutperforms recently proposed alterna-
1.49% of the bilexical dependencies considered hiyves in a range of experiments, and better correlates
Collins’ parser during decoding were observed dumwith human plausibility judgments. It also shows

ing training.
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In our parsed corpus (Section 4.1)strong gains over a Mutual Information-based co-
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occurrence model on two tasks: identifying objectsnentsX andY. We follow Pantel et al. (2007) in us-
of verbs in an unseen corpus and finding pronominahg automatically-extracted semantic classes to help

antecedents in coreference data. characterize plausible arguments.
Discriminative techniques are widely used in NLP
2 Related Work and have been applied to the related tasks of word

Most approaches to SPs generalize from observéjediction and Ianguagg_modeling._ Even-Zohar and
predicate-argument pairs to semantically similaROth (2000) use a classifier to predict the most likely
ones by modeling the semantic class of the argytord to fill a position in a sentence (in their ex-
ment, following Resnik (1996). For example, webPeriments: a yerb) fr_om a set of candidates (sets
might have a clasMexican Food and learn that the of verbs), by inspecting the context of the target
entire class is suitable for eating. Usually, the classd@ken (€.g., the presence or absence of a particu-
are from WordNet (Miller et al., 1990), althoughIar nearby word in the_ sentengg). This approach
they can also be inferred from clustering (Rooth efan therefore learn which specific arguments occur
al., 1999). Brockmann and Lapata (2003) compar‘é“th a particular predicate. In comparison, our fea-
a number of WordNet-based approaches, includiny"es are second-order: we learmn wkiads of argu-
Resnik (1996), Li and Abe (1998), and Clark andnents occur with a predicate .by .encodlng features
Weir (2002), and found that the more sophisticateﬂf the arguments. Recent distributed and latent-

class-based approaches do not always outperfoHﬁriable models also represent words with feature
simple frequency-based models. vectors (Bengio et al., 2003; Blitzer et al., 2005).

Another line of research generalizes using simiMany of these approaches learn both the feature
lar words. Suppose we are calculating the probé(yelghts and the fea'ture representaju_on. Veptors must
bility of a particular nouny, occurring as the ob- _be kept I_ow—dlmen3|onal fortractab_lllt_y, whlle_learn—
ject argument of a given verbal predicate, Let "9 gr\d |_nference on larger scales_ls impractical. By
Pr(n|v) be the empirical maximum-likelihood esti- Partitioning our examples by predicate, we can effi-

mate from observed text. Dagan et al. (1999) defingi€ntly use high-dimensional, sparse vectors.

the similarity-weighted probability, R, to be: Our technique of generating negative examples
is similar to the approach of Okanohara and Tsujii

Prsim(n|v) = Z Sm(v, v)Pr(njv’) (1) (2007). They learn a classifier to disambiguate ac-
V' E€SIMS(v) tual sentences from pseudo-negative examples sam-
pled from an N-gram language model. Smith and
whereSm(v', v) returns a real-valued similarity be- Eisner (2005) also automatically generate negative
tween two verbs’ andv (normalized over all pair examples. They perturb their input sequence (e.g.
similarities in the sum). In contrast, Erk (2007)the sentence word order) to create a neighborhood of
generalizes by substituting similarguments, while  implicit negative evidence. We create negatives by
Wang et al. (2005) use the cross-product of simisubstitution rather than perturbation, and use corpus-
lar pairs. One key issue is how to define the satide statistics to choose our negative instances.
of similar words, $vs(w). Erk (2007) compared a
number of techniques for creating similar-word set8 Methodology
and found that both the Jaccard coefficient and Lin ]
(1998a)’s information-theoretic metric work best.3'l Creating Examples
Similarity-smoothed models are simple to comput€eTo learn a discriminative model of selectional pref-
potentially adaptable to new domains, and requirerence, we create positive and negative training ex-
no manually-compiled resources such as WordNetamples automatically from raw text. To create the
Selectional Preferences have also been a recepusitives, we automatically parse a large corpus, and
focus of researchers investigating the learning ahen extract the predicate-argument pairs that have
paraphrases and inference rules (Pantel et al., 20Q¥ ;statistical association in this data. We measure
Roberto et al., 2007). Inferences such aX #jins this association using pointwise Mutual Information
Y] = [X plays Y]’ are only valid for certain argu- (MI) (Church and Hanks, 1990). The MI between a
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verb predicatey, and its object argument, is: assign high plausibility to observeesf,n) pairs.
Similarity-smoothed models can make use of the
Pr(v,n) Pr(n|v) L . :
Ml (v,n) = log Prv)PI(n) = log Prn) (2) regularities across similar verbs, but not the finer-
grained string- and token-based features.
If MI >0, the probabilityv andn occur together is  Our training examples are similar to the data cre-
greater than if they were independently distributed.ated for pseudodisambiguation, the usual evalua-
We create sets of positive and negative examplei®n task for SP models (Erk, 2007; Keller and La-
separately for each predicate,First, we extract all pata, 2003; Rooth et al., 1999). This data con-
pairs where M{v, n)>7 as positives. For each pos-sists of triples(v,n,n’) wherewv,n is a predicate-
itive, we create pseudo-negative examples,’), argument pair observed in the corpus and’ has
by pairingv with a new argument;’, that either has not been observed. The models score correctly
MI below the threshold or did not occur withinthe  if they rank observed (and thus plausible) argu-
corpus. We require each negativeto have a similar ments above corresponding unobserved (and thus
frequency to its corresponding This prevents our likely implausible) ones. We refer to this #sir-
learning algorithm from focusing on any accidentaivise Disambiguation. Unlike this task, we classify
frequency-based bias. We mix i negatives for each predicate-argument pair independently as plau-
each positive, sampling without replacement to cresible/implausible. We also use MI rather than fre-
ate all the negatives for a particular predicate. Fauency to define the positive pairs, ensuring that the
eachw, ﬁ of its examples will be positive. The positive pairs truly have a statistical association, and
thresholdr represents a trade-off between capturingre not simply the result of parser error or notse.
a large number of positive pairs and ensuring these
pairs have good association. Similarly,is atrade- 3.2 Partitioning for Efficient Training

off bgtween t_h(_a number _Of examples and the conge, creating our positive and negative training

putational eﬁlplgncy. Ultimately, these parameterﬁairs’ we must select a feature representation for our

should be optimized for task performance. examples. Letb be a mapping from a predicate-
Of course, some negatives will actually be plauérgument pair(v,n) to a feature vector,®

sible arguments that were unobserved due to sparse- n) — <¢1~-¢l::>- Predictions are made based

ness. Fortunately, modern discriminative methodsg '

like sof _ | in the f f label n a weighted combination of the features,=
lke soft-margin SVMs can learn in the face of labely . ®(v,n), where is our learned weight vector.

error by allowing slack, subject to a tunable regular- We can make training significantly more efficient

Ization penalty (Cortes gnd Vapnik, 1995). by using a special form of attribute-value features.
If Ml is a sparse and imperfect model of SP, WhaLet every feature); be of the forme; (v, n) — (v

can Dsp gain by training on .MI S Scores: W? Can@/\f(n)>. That is, every feature is an intersection of
regard Dsp as learning a view of SP that is or-

: - he occurrence of a particular predicateand some
thogonal to MI, in a co-training sense (Blum an P P ea

. eature of the argumenf(n). For example, a fea-
Mitchell, 1998). MI labels the data based solely, for a verb-object pair might be, “the verbeat
on co-occurrence; BpP uses these labels to iden-

: - and the object is lower-case.” In this representation,
tify other regularities — ones that extend beyond oy

. ) features for one predicate will be completely inde-
occurring words. For example, many instances o .
pendent from those for every other predicate. Thus
n where Ml(eat, n)>7 also have M(buy, n)>7 and

rather than a single training procedure, we can actu-
MI (cook,n)>7. Also, compared to other nouns, o . )
. . ally partition the examples by predicate, and train a
a disproportionate number @t-nouns are lower-

case, single-token words, and they rarely contain iror a fixed verb, Mi is proportional to Keller and Lapata
digits, hyphens, or begin with a human first namg2003)’s conditional probability scores for pseudodisambigua-

like Bob. Dsp encodes these interdependent propion of (v n, n') triples: Pv|n) = Pr(v, n)/Pr(n), which was
hown to be a better measure of association than co-occurrence

erties as features in a linear classifier. This classfr-equencyf(vvn)' Normalizing by Ptv) (yielding MI) allows

fier can score any noun as a plausible argument gf o use a constant threshold across all verbs. MI was also
eat if indicative features are present; M| can onlyrecently used for inference-rule SPs by Pantel et al. (2007).
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classifier for each predicate independently. The prexternal similarity algorithm, but are optimized to
diction becomeg’ = A" - ®Y(n), where\” are the discriminate the positive and negative training ex-
learned weights corresponding to predicatnd all amples. We need not restrict ourselves to a short list
features®”(n)=f(n) depend on the argument only. of similar verbs; we include By;(n|v’) features for
Some predicate partitions may have insufficiengvery verb that occurs more than 10 times in our cor-
examples for training. Also, a predicate may ocpus. A}, may be positive or negative, depending on
cur in test data that was unseen during training. Tthe relation between’ andv. We also include fea-
handle these instances, we decided to cluster lowures for the probability of the noun occurring as the
frequency predicates. In our experiments assignirgibject of other verbs, Rr,;(n|v"). For example,
SP to verb-object pairs, we cluster all verbs that haveouns that can be the objectest will also occur as
less than 250 positive examples, using clusters gethe subject ofaste andcontain. Other contexts, such
erated by the CBC algorithm (Pantel and Lin, 2002)as adjectival and nominal predicates, could also aid
For example, the low-frequency verbxarcerate, the prediction, but have not yet been investigated.
parole, andcourt-martial are all mapped to the same The advantage of tuning similarity to the appli-
partition, while more-frequent verbs likerest and cation of interest has been shown previously by
execute each have their own partition. About 5.5%Weeds and Weir (2005). They optimize a few meta-
of examples are clustered, corresponding to 30% @iarameters separately for the tasks of thesaurus gen-
the 7367 total verbs. 40% of verbs (but only 0.6% oération and pseudodisambiguation. Our approach,
examples) were not in any CBC cluster; these weren the other hand, discriminatively sets millions of
mapped to a single backoff partition. individual similarity values. Like Weeds and Weir
The parameters for each partition”, can be (2005), our similarity values are asymmetric.
trained with any supervised learning technigue. We ,
use SVM (Section 4.1) because itis effective in simi?"3'2 String-based
lar high-dimensional, sparse-vector settings, and hasWe include several simple character-based fea-
an efficient implementation (Joachims, 1999). Ifures of the noun string: the number of tokens, the
SVM, the sign ofy” gives the classification. We cancase, and whether it contains digits, hyphens, an
also use the scalg? as our DsPscore (i.e. the posi- apostrophe, or other punctuation. We also include a

tive distance from the separating SVM hyperplane)feature for the first and last token, and fire indicator
features if any token in the noun occurs on in-house

3.3 Features lists of given names, family names, cities, provinces,

This section details our argument featurgs,), for ~ countries, corporations, languages, etc. We also fire
assigning verb-object selectional preference. For&@feature if a token is a corporate designation (like
verb predicate (or partition) and object argument inc. orItd.) or a human one (likr. or Sheik).

n, the form of our classifier ig” = >, A fi(n). 333 Semantic classes

3.3.1 Verb co-occurrence Motivated by previous SP models that make use
We provide features for the empirical probabilityof semantic classes, we generated word clusters us-
of the noun occurring as the object argument of othéng CBC (Pantel and Lin, 2002) on a 10 GB corpus,
verbs, P(n|v’). If we were to only use these featuresgiving 3620 clusters. If a noun belongs in a cluster,
(indexing the feature weights by each verb, the a corresponding feature fires. If a noun is in none of
form of our classifier would be: the clusters, ao-class feature fires.
As an example, CBC cluster 1891 contains:
y' =D APrnfv) 3)
o

sidewalk, driveway, roadway, footpath,
bridge, highway, road, runway, street, alley,

Note the similarity between Equation (3) and Equa- path, Interstate, . ..

tion (1). Now the feature weights, ), take the role
of the similarity function,Sm(v’, v). Unlike Equa- In our training data, we have examples likiéden
tion (1), however, these weights are not set by ahighway, widen road and widen motorway. If we
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see that we can widen a highway, we learn that wioned in Section 3.3. Feature values are normalized
can also widen a sidewalk, bridge, runway, etc.  within each feature type. We train our (linear kernel)

We also made use of the person-namef/instandéscriminative models using SV#"* (Joachims,
pairs automatically extracted by Fleischman et all999) on each partition, but set meta-parameteérs
(2003)? This data provides counts for pairs suchregularization) andj (cost of positive vs. nega-
as “Edwin Moseshurdler” and “William Farley,in-  tive misclassifications: max gt=2) on the macro-
dustrialist.” We have features for altoncepts and averaged score across all development partitions.
therefore learn their association with each verb.  Note that we can not use the development set to op-

_ timize - and K because the development examples

4 Experiments and Results are obtainedfter setting these values.

4.1 Setup 4.2 Feature weights

We parsed the 3 GB AQUAINT corpus (Voorheesy; js interesting to inspect the feature weights re-
2002) using Minipar (Lin, 1998b), and collectedy,med by our system. In particular, the weights
verb-object and verb-subject frequencies, buildingp, the verb co-occurrence features (Section 3.3.1)
an empirical Ml model from this data. Verbs andyqyide a high-quality, argument-specific similarity-
nouns were c_:onverted to their (possibly multl—_tokensjt,;mking of other verb contexts. ThesB parameters
root, and string case was preserved. Passive SURy eat for example, place high weight on features
jects ¢he car was bought) were converted to objects ;o Pr(n|braise), Pr(n|ration), and Pfn|garnish).
(bougnt car). We set the MI-thresholds, to be 0, | i (1998a)'s similar word list foreat misses these
and the negative-to-positive ratiy, to be 2. but includessleep (ranked 6) andit (ranked 14), be-
Numerous previous pseudodisambiguation evalys, ;se these have similaubjects to eat. Discrimina-
ations only include arguments that occur between e, context-specific training seems to yield a bet-

and 3000 times (Erk, 2007; Keller and Lapata, 2003g; get of similar predicates, e.g. the highest-ranked
Rooth et al., 1999). Presumably the lower bound isyntexts for 3P, On the verkjoin,3

to help ensure the negative argument is unobserved

because it is unsuitable, not because of data sparse- lead 1.42, rejoin 1.39, form 1.34, belong to
ness. We wish to use our model on arguments of  1.31, found 1.31, quit 1.29, guide 1.19, induct
any frequency, including those that never occurred  1.19, launchgubj) 1.18, work at 1.14

in the training corpus (and therefore have empty Cogive a better S4s(join) for Equation (1) than the

occurrence features (Section 3.3.1)). We proceed ?tf‘p similarities returned by (Lin, 1998a):
follows: first, we exclude pairs whenever the noun

occurs less than 3 times in our corpus, removing  participate 0.164, lead 0.150, return to 0.148,
many misspellings and other noun noise. Next, we say 0.143, rejoin 0.142, sign 0.142, meet
omit verb co-occurrence features for nouns that oc-  0.142, include 0.141, leave 0.140, work 0.137
cur less than 10 times, and instead fire a low-count
feature. When we move to a new corpus, previouslyth

unseen nouns are treated like these low-count tra'?dr example the weight on being lower-case is high

ing nouns. . )
This processing results in a set of 6.8 miIIionfor become (0.972) andaat (0.505), but highly nega

pairs, divided into 2318 partitions (192 of which Ve for accuse (-0.675) ancembroil (-0.573) which

. often take names of people and organizations.
are verb clusters (Section 3.2)). For each parti- peop g

tion, we take 95% of the examples for training4.3 Pseudodisambiguation

2.5% for development and 2.5% for a final unseegy . fi<t evaluate BP on disambiguating posi-

test set. We provide full results for two models:tives from pseudo-negatives, comparing to recently-
a-

DsP..oc Which only uses the verb co-occurrence fea-
tures, and BP,; which uses all the features men- 3Which all correspond to nouns occurring in the object po-
sition of the verb (e.g. Br;(n|lead)), except “launch gubj)”
2Available at http://www.mit.edu/"mbf/instances.txt.gz which corresponds to B, (n|launch).

Other features are also weighted intuitively. Note
at case is a strong indicator for some arguments,
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MacroAvg MicroAvg Pairwise
P R F P R F | Acc Cov

Dagan et al. (1999) 0.36 0.90 0.51|0.68 0.92 0.78| 0.58 0.98

System

Erk (2007) 049 0.66 0.56 0.70 0.82 0.76 0.72 0.83
Keller and Lapata (2003) 0.72 0.34 0.46| 0.80 0.50 0.62| 0.80 0.57
DSPeooc 0.53 0.72 0.61 0.73 0.94 0.82|0.77 1.00
DsP.; 0.60 0.71 0.65|0.77 0.90 0.83| 0.81 1.00

Table 1: Pseudodisambiguation results averaged acrobegample lacroAvg), weighted by word frequencyMi-
croAvg), plus coverage and accuracy of pairwise competitfeair(vise).

proposed systems that also require no manuallytot be able to provide a score for each example.
compiled resources like WordNet. We convert DaThe similarity-smoothed examples will be undefined
gan et al. (1999)’s similarity-smoothed probabilityif Sims(w) is empty. Also, the Keller and Lapata
to Ml by replacing the empirical Pr|v) in Equa- (2003) approach will be undefined if the pair is un-
tion (2) with the smoothed Bf, from Equation (1). observed on the web. As a reasonable default for
We also test an Ml model inspired by Erk (2007): these cases, we assign them a negative decision.
P , We evaluate disambiguation using precision (P),
Mlgm(n,v) = log Z gm(n’m)FM recall (R), and their harmonic mean, F-Score (F).
eSms(n) (w)Pr(n')  Taple 1 gives the results of our comparison. In the

o _ _ ~ MacroAvg results, we weight each example equally.
We gather similar words using Lin (1998a), miningg, MicroAvg, we weight each example by the fre-

similar verbs from a comparable-sized parsed COKuency of the noun. To more directly compare with

pus, and collecting similar nouns from a broader 19revious work, we also reproduc®dirwise Disam-

GB corpus of English text. 1 biguation by randomly pairing each positive with
We also use Keller and Lapata (2003)’s approachne of the negatives and then evaluating each system

to obtaining web-counts. Rather than mining parsgy the percentage it ranks correctly (Acc). For the

trees, this technique retrieves counts for the patte%mparison approaches, if one score is undefined

“V Det N in raw online text, whereV is any in- \ye choose the other one. If both are undefined, we

flection of the verb,Det is the, a, or the empty gpsiain from a decision. Coverage (Cov) is the per-

string, andN is the singular or plural form of the .gnt of pairs where a decision was méde.

noun. We compute a web-based MI by collecting oy simple system with only verb co-occurrence

Pr(n,v), P(n), and Ptv) using all inflections, ex- features, Bp,,., outperforms all comparison ap-
cept we only use the root form of the noun. Ratheﬁroaches. Using the richer feature set irsmp;

than using a search engine, we obtain counts frofg ts in a statistically significant gain in perfor-

the Google Web 5-gram Corpds. mance, up to an F-Score of 0.65 and a pairwise
_All systems are thresholded at zero to make a clagisampiguation accuracy of 0.81Dsp,; has both
sification. Unlike Dsp, the comparison systems maypgader coverage and better accuracy than all com-

“For both the similar-noun and similar-verb smoothing, wepeting approaches. In the remainder of the experi-
only smooth over similar pairthat occurred in the corpus.  ments, we use BpP,; and refer to it simply as Br.

While averaging over all similar pairs tends to underestimate Some errors are because of plausible but unseen
the probability, averaging over only the observed pairs tends to

overestimate it. We tested both and adopt the latter becauseai{gumentS being used as test-set pseudo-negatives.
resulted in better performance on our development set. For example, for the verdamage, DsPs three most
°Available from the LDC as LDC2006T13. This collection high-scoring false positives are the noyesiner,

was generated from approximately 1 tri”ion tokens Of Onlinecarpet, andg%_r Whlle none occur Wltfdan'la.ge |n
text. Unfortunately, tokens appearing less than 200 times have

been mapped to th@NK) symbol, and only N-grams appear-  °l.e. we use the “half coverage” condition from Erk (2007).
ing more than 40 times are included. Unlike results from search "The differences betweendp,;; and all comparison sys-
engines, however, experiments with this corpus are replicabletems are statistically significant (McNemar’s test,(p01).
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S — L Unseen Verb-Object Freq.
os | ] Seen Criteria Al ‘ — ‘ —5 ‘ —3 ‘ >3
0.7 MI > 0 0.44 0.33| 0.57] 0.70| 0.82

o 0L I Freq>0 | 0.57|0.45| 0.76| 0.89| 0.96

S 05 P -

& oal xX ] Dsp> 0 0.73] 0.69| 0.80| 0.85| 0.88

s
03 f X i
02 DSPy —— - Table 3: Recall on identification of Verb-Object pairs
o.é ;@;ﬁl el and L.apg;gggg P from an unseen corpus (divided by pair frequency).

10 100 1000 10000 100000 1e+06
Noun Frequency The other comparison approaches also make a num-

ber of mistakes, which can often be traced to a mis-
Figure 1: Disambiguation results by noun frequency. guided choice of similar word to smooth with.
We also compare to our empirical Ml model,
our corpus, all intuitively satisfy the verb's SPs.  trained on our parsed corpus. Although Resnik
MacroAvg performance is worse thaMicroAvg  (1996) reported that 10 of the 16 plausible pairs did
because all systems perform better on frequemfot occur in his training corpus, all of them occurred
nouns. When we plot F-Score by noun frequenciy ours and hence MI gives very reasonable scores
(Figure 1), we see that&Poutperforms comparison on the plausible objects. It has no statistics, however,
approaches across all frequencies, but achieves fi§ many of the implausible ones. 9p can make
biggest gains on the low-frequency nouns. A richefiner decisions than MI, recognizing that “warning
feature set allows BPto make correct inferences on an engine” is more absurd than “udging a climate.”
examples that provide minimal co-occurrence data.
These are also the examples for which we would ext.5 Unseen Verb-Object Identification

pect co-occurrence models like MI to fail. We next compare Ml and §Pon a much larger set
As a further experiment, we re-trainedsBbut ¢ 15 isible examples, and also test how well the
with only the string-based features removed. Overal|,qe|s generalize across data sets. We took the MI
macro-averaged F-score dropped from 0.65 to 0.64,4 nsp systems trained on AQUAINT and asked
(a statistically significant reduction in performance)inam to rate observed (and thus likely plausible)

The system scored nearly identically teBon the e ghiect pairs taken from an unseen corpus. We
high-frequency nouns, but performed roughly 15%,, 5 cted the pairs by parsing the San Jose Mercury
worse on the nouns that occurred less than ten timgge, s (SIM) section of the TIPSTER corpus (Har-

This shows that the string-based features are impqrﬁan' 1992). Each unique verb-object pair is a single
tant for selectional preference, and particularly helpr,ctance in this evaluation.

ful for low-frequency nouns. Table 3 gives recall across all paifall) and

grouped by pair-frequency in the unseen corpus (1,
2, 3, >3). DspP accepts far more pairs than Ml

Table 2 compares some of our _syst(_ams on data us%% VS. 44%), even far more than a system that
by Resnik (1996) ("_’“?9 Appendix 2 n Holmgs_ ,et alaccepts any previously observed verb-object combi-
_(1989»' The plausibility of t_hese pairs was InItIaIIynation as plausible (57%). Recall is higher on more
judged bgsed on the experlmentgrs' mtumgns, anﬁiequent verb-object pairs, but 70% of the pairs oc-
later confirmed in a human experiment. We 'nCIUd%urred only once in the corpus. Even if we smooth
the scores of Resnik’s system, and note that its errofg, by smoothing Pfn|v) in Equation 2 using modi-

were attributed to sense ambiguity and other "m'fied KN-smoothing (Chen and Goodman, 1998), the
tations of class-based approaches (Resnik, l§)96?(acall of MI>0 on SJM only increases from 44.1%

8For examplewarn-engine scores highly because enginesto 44.9%, still far below BpP. Frequency-based

are in the clasentity, and physical entities (e.g. people) aremodels have fundamentally low coverage. As fur-
often objects ofvarn. Unlike Dsp, Resnik’s approach cannot
learn that forwarn, “the property of being a person is more important than the property of being an entity” (Resnik, 1996).

4.4 Human Plausibility
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| Verb Plaus./Implaus. || Resnik [ Dagan etal] Erk [ M | DsP \
see friend/method 5.79/-0.01 | 0.20/1.40* | 0.46/-0.07 || 1.11/-0.57| 0.98/0.02
read article/fashion 6.80/-0.20 | 3.00/0.11 | 3.80/1.90 || 4.00/— 2.12/-0.65
find label/fever 1.10/0.22 | 1.50/2.20* | 0.59/0.01 || 0.42/0.07 | 1.61/0.81
hear story/issue 1.89/1.89* | 0.66/1.50* | 2.00/2.60* || 2.99/-1.03| 1.66/0.67
write letter/market 7.26/0.00 | 2.50/-0.43 | 3.60/-0.24 || 5.06/-4.12| 3.08/-1.31
urge daughter/contrast 1.14/1.86* | 0.14/1.60* | 1.10/3.60* || -0.95/— | -0.34/-0.62
warn driver/engine 4.73/3.61 | 1.20/0.05 | 2.30/0.62 | 2.87/— 2.00/-0.99
judge contest/climate | 1.30/0.28 | 1.50/1.90* | 1.70/1.70* || 3.90/— 1.00/0.51
teach language/distangel.87/1.86 | 2.50/1.30 | 3.60/2.70 || 3.53/— 1.86/0.19
show sample/travel 1.44/0.41 | 1.60/0.14 | 0.40/-0.82| 0.53/-0.49| 1.00/-0.83
expect visit/mouth 0.59/5.93* | 1.40/1.50* | 1.40/0.37 || 1.05/-0.65| 1.44/-0.15
answer request/tragedy || 4.49/3.88 | 2.70/1.50 | 3.10/-0.64 | 2.93/— 1.00/0.01
recognize  author/pocket 0.50/0.50* | 0.03/0.37* | 0.77/1.30* || 0.48/— 1.00/0.00
repeat comment/journal| 1.23/1.23* | 2.30/1.40 | 2.90/— 2.59/— 1.00/-0.48
understand concept/session| 1.52/1.51 | 2.70/0.25 | 2.00/-0.28 || 3.96/— 2.23/-0.46
remember  reply/smoke 1.31/0.20 | 2.10/1.20 | 0.54/2.60* || 1.13/-0.06| 1.00/-0.42

Table 2: Selectional ratings for plausible/implausibleedi objects (Holmes et al., 1989). Mistakes are marked with
an asterisk (*), undefined scores are marked with a dash (—y. @sPris completely defined and completely correct.

pronoun is the direct object of a verb predicateA

0.8 , .
c orl pronoun’s antecedent must obgy selectional pref-
;§ 06 L erences. If we have a better model of SP, we should
2 sl be able to better select pronoun antecedents.
é 0.4 I We parsed the MUC-7 (1997) coreference corpus
g o3f and extracted all pronouns in a direct object rela-
g o2r tion. For each pronoum, modified by a verby, we

0'(1) i . . . . extracted all preceding nouns within the current or

0 0.2 0.4 0.6 0.8 1 previous sentence. Thirty-nine anaphoric pronouns

had an antecedent in this window and are used in
the evaluation. For each let N(p)™ by the set of
Figure 2: Pronoun resolution precision-recall on MUC. preceding nouns coreferent with and letN (p)~

] ] ) be the remaining non-coreferent nouns. We take
ther evidence, if we build a model of Ml on the SJMa” (v,n*) wherent € N(p)* as positive, and all

corpus and use it in our pseudodisambiguation e ar pairgv,n~), n~ € N(p)~ as negative.
periment (Section 4.3), NH0 gets aMacroAvg pre- ’ ’
cision of 86% but avlacroAvg recall of only 129

Recall

We compare MI and Bp on this set, classifying
every (v,n) with MI>T (or DSP>T) as positive.
4.6 Pronoun Resolution By varying T, we get a precision-recall curve (Fig-
Finally, we evaluate BpPon a common application ure 2). Precision is low because, of course, there
of selectional preferences: choosing the correct ag€ many nouns that satisfy the predicate’s SPs that
tecedent for pronouns in text (Dagan and Itai, 199@re not coreferent. BP>0 has both a higher recall

Kehler et al., 2004). We study the cases where @&d higher precision than accepting every pair pre-
viously seen in text (the right-most point on MT").

°Recall that even the Keller and Lapata (2003) system, bui . . .
on the world’s largest corpus, achieves only 34% recall (Table 1;he Dsp>T s_ystem achieves hlgher precision than
I >T for points where recall is greater than 60%

(with only 48% of positives and 27% of all pairs previously
observed, but see Footnote 5). (where Mk0). Interestingly, the recall of M0 is
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| System | Acc | occurrence features, including co-occurrence counts

Most-Recent Noun 17.9% across more grammatical relations and using counts
Maximum Ml 28.2% from external, unparsed corpora like the world wide
Maximum Dsp 38.5% web. We could also reverse the role of noun and verb

in our training, having verb-specific features and
Table 4: Pronoun resolution accuracy on nouns in curregtiscriminating separately for each argument noun.

or previous sentence in MUC. The latent information would then be lists of similar

nouns.

higher here than it is for general verb-objects (Sec- Finally, note that while we focused on word-word
tion 4.5). On the subset of pairs with strong empirg:o-occurrences, sense-sense SPs can also be learned
with our algorithm. If our training corpus was sense-
Dspat equivalent recall values. labeled, we could run our algorithm over the senses

We next compare MI and §pas stand-alone pro- rather than the words. The resulting model would

noun resolution systems (Table 4). As a standat@en require sense-tagged input if it were to be used
baseline, for each pronoun, we choose the mog{ithin an application like parsing or coreference res-
recent noun in text as the,pronoun’s antecederf!ution. Also, like other models of SP, our technique
achieving 17.9% resolution accuracy. This baselin§@n 8ls0 be used for sense disambiguations: the
is quite low because many of the most-recent nouﬂgelghtlngs on our semantic class features indicate,

are subjects of the pronoun’s verb phrase, and theri®! @ Particular noun, which of its senses (classes) is
fore resolution violates syntactic coreference conMSt compatible with each verb.

straints. If instead we choose the previous noun Witﬂcknowledgments

the highest Ml as antecedent, we get an accuracy of

28.2%, while choosing the previous noun with the'Ve gratefully acknowledge support from the Natu-

highest Dsp achieves 38.5%. BP resolves 37% ral Sciences and Engineerilng Research Council of
more pronouns correctly than MI. We leave as fu_Canada,'the Alberta Ingenuity Fund, and the Alberta
ture work a full-scale pronoun resolution system thaltnformatlcs Circle of Research Excellence.
incorporates both MI and €p as backed-off, inter-

polated, or separate semantic features. References
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Abstract

We present a PropBank semantic role label-
ing system for English that is integrated with
a dependency parser. To tackle the problem
of joint syntactic—semantic analysis, the sys-
tem relies on a syntactic and a semantic sub-
component. The syntactic model is a projec-
tive parser using pseudo-projective transfor-
mations, and the semantic model uses global
inference mechanisms on top of a pipeline of
classifiers. The complete syntactic—semantic
output is selected from a candidate pool gen-
erated by the subsystems.

We evaluate the system on the CoNLL-
2005 test sets using segment-based and
dependency-based metrics. Using the
segment-based CoNLL-2005 metric, our
system achieves a near state-of-the-art F1
figure of 77.97 on the WSJ+Brown test set,
or 78.84 if punctuation is treated consistently.
Using a dependency-based metric, the F1
figure of our system is 84.29 on the test
set from CoNLL-2008. Our system is the
first dependency-based semantic role labeler
for PropBank that rivals constituent-based
systems in terms of performance.

1 Introduction

Automatic semantic role labeling (SRL), the task
of determining who does what to whom, is a use-
ful intermediate step in NLP applications perform-
ing semantic analysis. It has obvious applications
for template-filling tasks such as information extrac-
tion and question answering (Surdeanu et al., 2003;
Moschitti et al., 2003). It has also been used in
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prototypes of NLP systems that carry out complex
reasoning, such as entailment recognition systems
(Haghighi et al., 2005; Hickl et al., 2006). In addi-
tion, role-semantic features have recently been used
to extend vector-space representations in automatic
document categorization (Persson et al., 2008).

The NLP community has recently devoted much
attention to developing accurate and robust methods
for performing role-semantic analysis automatically,
and a number of multi-system evaluations have been
carried out (Litkowski, 2004; Carreras and Marquez,
2005; Baker et al., 2007; Surdeanu et al., 2008).
Following the seminal work of Gildea and Juraf-
sky (2002), there have been many extensions in ma-
chine learning models, feature engineering (Xue and
Palmer, 2004), and inference procedures (Toutanova
et al., 2005; Surdeanu et al., 2007; Punyakanok et
al., 2008).

With very few exceptions (e.g. Collobert and
Weston, 2007), published SRL methods have used
some sort of syntactic structure as input (Gildea and
Palmer, 2002; Punyakanok et al., 2008). Most sys-
tems for automatic role-semantic analysis have used
constituent syntax as in the Penn Treebank (Marcus
et al., 1993), although there has also been much re-
search on the use of shallow syntax (Carreras and
Marquez, 2004) in SRL.

In comparison, dependency syntax has received
relatively little attention for the SRL task, despite
the fact that dependency structures offer a more
transparent encoding of predicate—argument rela-
tions. Furthermore, the few systems based on de-
pendencies that have been presented have generally
performed much worse than their constituent-based
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counterparts. For instance, Pradhan et al. (2005) re-
ported that a system using a rule-based dependency
parser achieved much inferior results compared to a
system using a state-of-the-art statistical constituent
parser: The F-measure on WSJ section 23 dropped
from 78.8 to 47.2, or from 83.7 to 61.7 when using
a head-based evaluation. In a similar vein, Swanson
and Gordon (2006) reported that parse tree path fea-
tures extracted from a rule-based dependency parser
are much less reliable than those from a modern con-
stituent parser.

In contrast, we recently carried out a de-
tailed comparison (Johansson and Nugues, 2008b)
between constituent-based and dependency-based
SRL systems for FrameNet, in which the results of
the two types of systems where almost equivalent
when using modern statistical dependency parsers.
We suggested that the previous lack of progress in
dependency-based SRL was due to low parsing ac-
curacy. The experiments showed that the grammat-
ical function information available in dependency
representations results in a steeper learning curve
when training semantic role classifiers, and it also
seemed that the dependency-based role classifiers
were more resilient to lexical problems caused by
change of domain.

The recent CoNLL-2008 Shared Task (Surdeanu
et al., 2008) was an attempt to show that SRL can be
accurately carried out using only dependency syn-
tax. However, these results are not easy to compare
to previously published results since the task defini-
tions and evaluation metrics were different.

This paper compares the best-performing sys-
tem in the CoNLL-2008 Shared Task (Johans-
son and Nugues, 2008a) with previously published
constituent-based SRL systems. The system carries
out joint dependency-syntactic and semantic anal-
ysis. We first describe its implementation in Sec-
tion 2, and then compare the system with the best
system in the CoNLL-2005 Shared Task in Section
3. Since the outputs of the two systems are differ-
ent, we carry out two types of evaluations: first by
using the traditional segment-based metric used in
the CoNLL-2005 Shared Task, and then by using
the dependency-based metric from the CoNLL-2008
Shared Task. Both evaluations require a transforma-
tion of the output of one system: For the segment-
based metric, we have to convert the dependency-
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based output to segments; and for the dependency-
based metric, a head-finding procedure is needed to
select heads in segments. For the first time for a sys-
tem using only dependency syntax, we report results
for PropBank-based semantic role labeling of En-
glish that are close to the state of the art, and for
some measures even superior.

2 Syntactic-Semantic Dependency
Analysis

The training corpus that we used is the dependency-
annotated Penn Treebank from the 2008 CoNLL
Shared Task on joint syntactic—semantic analysis
(Surdeanu et al., 2008). Figure 1 shows a sentence
annotated in this framework. The CoNLL task in-
volved semantic analysis of predicates from Prop-
Bank (for verbs, such as plan) and NomBank (for
nouns, such as investment); in this paper, we report
the performance on PropBank predicates only since
we compare our system with previously published
PropBank-based SRL systems.

ROOT
OoBJ PMOD

=

Chrysler plans new investment in Latin America

NN

plan.01 investment.O1

Figure 1: An example sentence annotated with syntactic
and semantic dependency structures.

We model the problem of constructing a syntac-
tic and a semantic graph as a task to be solved
jointly. Intuitively, syntax and semantics are highly
interdependent and semantic interpretation should
help syntactic disambiguation, and joint syntactic—
semantic analysis has a long tradition in deep-
linguistic formalisms. Using a discriminative model,
we thus formulate the problem of finding a syntactic
tree §syn, and a semantic graph g, for a sentence
x as maximizing a function F),;,; that scores the
complete syntactic—semantic structure:

<gsyn7 ysem> = arg max Fjoint(wa Ysyn» ysem)
Ysyn,Ysem

The dependencies in the feature representation used
to compute Fjj,;,; determine the tractability of the



Semantic pipeline

Global semantic model

Syntactic—semantic

|| Sense Argument Argument | [Linguistic Pred—arg

disambig. | |identification | | labeling [~ [ | constraints| | reranking
Syntactic
dependency
parsing

reranking

Figure 2: The architecture of the syntactic—semantic analyzer.

search procedure needed to perform the maximiza-
tion. To be able to use complex syntactic features
such as paths when predicting semantic structures,
exact search is clearly intractable. This is true even
with simpler feature representations — the problem
is a special case of multi-headed dependency analy-
sis, which is NP-hard even if the number of heads is
bounded (Chickering et al., 1994).

This means that we must resort to a simplifica-
tion such as an incremental method or a rerank-
ing approach. We chose the latter option and thus
created syntactic and semantic submodels. The
joint syntactic—semantic prediction is selected from
a small list of candidates generated by the respective
subsystems. Figure 2 shows the architecture.

2.1 Syntactic Submodel

We model the process of syntactic parsing of a
sentence x as finding the parse tree gsy, =
argmaxy, . Foyn (2, Ysyn) that maximizes a scoring
function Fj,,,. The learning problem consists of fit-
ting this function so that the cost of the predictions is
as low as possible according to a cost function pgyy,.
In this work, we consider linear scoring functions of
the following form:

Fsyn(mv ysyn) = ‘Ilsyn(ma ysyn) sw

where W, (2, ysyn) is a numeric feature represen-
tation of the pair (x, ys,n) and w a vector of feature
weights. We defined the syntactic cost pg,,, as the
sum of link costs, where the link cost was O for a
correct dependency link with a correct label, 0.5 for
a correct link with an incorrect label, and 1 for an
incorrect link.

A widely used discriminative framework for fit-
ting the weight vector is the max-margin model
(Taskar et al., 2003), which is a generalization of
the well-known support vector machines to gen-
eral cost-based prediction problems. Since the large
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number of training examples and features in our
case make an exact solution of the max-margin op-
timization problem impractical, we used the on-
line passive—aggressive algorithm (Crammer et al.,
2006), which approximates the optimization process
in two ways:

e The weight vector w is updated incrementally,
one example at a time.

e For each example, only the most violated con-
straint is considered.

The algorithm is a margin-based variant of the per-
ceptron (preliminary experiments show that it out-
performs the ordinary perceptron on this task). Al-
gorithm 1 shows pseudocode for the algorithm.

Algorithm 1 The Online PA Algorithm

input Training set 7 = {(z+, y¢) }1—,
Number of iterations N
Regularization parameter C

Initialize w to zeros

repeat N times

for (x4, y:) in T
let §; = arg max, F(z+,y) + p(yt,y)

. F(x,5¢)—F (s ,ye)+p(ys ,9¢)
let 7, = min (C, FepI)-Feon togn) )

w—w+ 7(P(x,y,) — ¥(x, 7))
return Waverage

We used a C value of 0.01, and the number of
iterations was 6.

2.1.1 Features and Search

The feature function W, is a factored represen-
tation, meaning that we compute the score of the
complete parse tree by summing the scores of its
parts, referred to as factors:

fey



We used a second-order factorization (McDonald
and Pereira, 2006; Carreras, 2007), meaning that
the factors are subtrees consisting of four links: the
governor—dependent link, its sibling link, and the
leftmost and rightmost dependent links of the depen-
dent.

This factorization allows us to express useful fea-
tures, but also forces us to adopt the expensive
search procedure by Carreras (2007), which ex-
tends Eisner’s span-based dynamic programming al-
gorithm (1996) to allow second-order feature depen-
dencies. This algorithm has a time complexity of
O(n*), where n is the number of words in the sen-
tence. The search was constrained to disallow mul-
tiple root links.

To evaluate the arg max in Algorithm 1 during
training, we need to handle the cost function py;, in
addition to the factor scores. Since the cost function
Psyn 1s based on the cost of single links, this can
easily be integrated into the factor-based search.

2.1.2 Handling Nonprojective Links

Although only 0.4% of the links in the training
set are nonprojective, 7.6% of the sentences con-
tain at least one nonprojective link. Many of these
links represent long-range dependencies — such as
wh-movement — that are valuable for semantic pro-
cessing. Nonprojectivity cannot be handled by
span-based dynamic programming algorithms. For
parsers that consider features of single links only, the
Chu-Liu/Edmonds algorithm can be used instead.
However, this algorithm cannot be generalized to the
second-order setting — McDonald and Pereira (2006)
proved that this problem is NP-hard, and described
an approximate greedy search algorithm.

To simplify implementation, we instead opted for
the pseudo-projective approach (Nivre and Nilsson,
2005), in which nonprojective links are lifted up-
wards in the tree to achieve projectivity, and spe-
cial trace labels are used to enable recovery of the
nonprojective links at parse time. The use of trace
labels in the pseudo-projective transformation leads
to a proliferation of edge label types: from 69 to 234
in the training set, many of which occur only once.
Since the running time of our parser depends on the
number of labels, we used only the 20 most frequent
trace labels.
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2.2 Semantic Submodel

Our semantic model consists of three parts:

e A SRL classifier pipeline that generates a list of
candidate predicate—argument structures.

e A constraint system that filters the candidate
list to enforce linguistic restrictions on the
global configuration of arguments.

e A global reranker that assigns scores to
predicate—argument structures in the filtered
candidate list.

Rather than training the models on gold-standard
syntactic input, we created an automatically parsed
training set by 5-fold cross-validation. Training
on automatic syntax makes the semantic classifiers
more resilient to parsing errors, in particular adjunct
labeling errors.

2.2.1 SRL Pipeline

The SRL pipeline consists of classifiers for pred-
icate disambiguation, argument identification, and
argument labeling. For the predicate disambigua-
tion classifiers, we trained one subclassifier for each
lemma. All classifiers in the pipeline were L2-
regularized linear logistic regression classifiers, im-
plemented using the efficient LIBLINEAR package
(Lin et al., 2008). For multiclass problems, we used
the one-vs-all binarization method, which makes it
easy to prevent outputs not allowed by the PropBank
frame.

Since our classifiers were logistic, their output
values could be meaningfully interpreted as prob-
abilities. This allowed us to combine the scores
from subclassifiers into a score for the complete
predicate—argument structure. To generate the can-
didate lists used by the global SRL models, we ap-
plied beam search based on these scores using a
beam width of 4.

The argument identification classifier was pre-
ceded by a pruning step similar to the constituent-
based pruning by Xue and Palmer (2004).

The features used by the classifiers are listed in
Table 1, and are described in Appendix A. We se-
lected the feature sets by greedy forward subset se-
lection.



Feature PredDis
PREDWORD .
PREDLEMMA
PREDPARENTWORD/POS
CHILDDEPSET
CHILDWORDSET
CHILDWORDDEPSET
CHILDPOSSET
CHILDPOSDEPSET
DEPSUBCAT
PREDRELTOPARENT
PREDPARENTWORD/POS
PREDLEMMASENSE
VOICE

POSITION
ARGWORD/POS
LEEFTWORD/POS
RIGHTWORD/POS
LEFTSIBLINGWORD/POS
PREDPOS

RELPATH
VERBCHAINHASSUBJ
CONTROLLERHASOBJ
PREDRELTOPARENT
FUNCTION .

Argld  ArgLab

Table 1: Classifier features in predicate disambiguation
(PredDis), argument identification (Argld), and argument
labeling (ArgLab).

2.2.2 Linguistically Motivated Global
Constraints
The following three global constraints were used
to filter the candidates generated by the pipeline.

CORE ARGUMENT CONSISTENCY. Core argu-
ment labels must not appear more than once.

DISCONTINUITY CONSISTENCY. If there is a la-
bel C-X, it must be preceded by a label X.

REFERENCE CONSISTENCY. If there is a label R-
X and the label is inside an attributive relative
clause, it must be preceded by a label X.

2.2.3 Predicate-Argument Reranker

Toutanova et al. (2005) have showed that a global
model that scores the complete predicate—argument
structure can lead to substantial performance gains.
We therefore created a global SRL classifier using
the following global features in addition to the fea-
tures from the pipeline:

CORE ARGUMENT LABEL SEQUENCE. The com-
plete sequence of core argument labels. The
sequence also includes the predicate and voice,
for instance AO+break.01/Active+A1.
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MISSING CORE ARGUMENT LABELS. The set of
core argument labels declared in the PropBank
frame that are not present in the predicate—
argument structure.

Similarly to the syntactic submodel, we trained
the global SRL model using the online passive—
aggressive algorithm. The cost function p was
defined as the number of incorrect links in the
predicate—argument structure. The number of iter-
ations was 20 and the regularization parameter C
was 0.01. Interestingly, we noted that the global
SRL model outperformed the pipeline even when
no global features were added. This shows that the
global learning model can correct label bias prob-
lems introduced by the pipeline architecture.

2.3 Syntactic—-Semantic Reranking

As described previously, we carried out reranking
on the candidate set of complete syntactic—semantic
structures. To do this, we used the top 16 trees from
the syntactic module and applied a linear model:

Fjoint(xa Ysyn, ysem) = ‘I’joint(wa Ysyn, ysem) Cw

Our baseline joint feature representation W ;¢ con-
tained only three features: the log probability of the
syntactic tree and the log probability of the seman-
tic structure according to the pipeline and the global
model, respectively. This model was trained on the
complete training set using cross-validation. The
probabilities were obtained using the multinomial
logistic function (‘“‘softmax”).

We carried out an initial experiment with a more
complex joint feature representation, but failed to
improve over the baseline. Time prevented us from
exploring this direction conclusively.

3 Comparisons with Previous Results

To compare our results with previously published
results in SRL, we carried out an experiment com-
paring our system to the top system (Punyakanok et
al., 2008) in the CoNLL-2005 Shared Task. How-
ever, comparison is nontrivial since the output of
the CoNLL-2005 systems was a set of labeled seg-
ments, while the CoNLL-2008 systems (including
ours) produced labeled semantic dependency links.
To have a fair comparison of our link-based sys-
tem against previous segment-based systems, we



carried out a two-way evaluation: In the first eval-
uation, the dependency-based output was converted
to segments and evaluated using the segment scorer
from CoNLL-2005, and in the second evaluation, we
applied a head-finding procedure to the output of a
segment-based system and scored the result using
the link-based CoNLL-2008 scorer.

It can be discussed which of the two metrics is
most correlated with application performance. The
traditional metric used in the CoNLL-2005 task
treats SRL as a bracketing problem, meaning that
the entities scored by the evaluation procedure are
labeled snippets of text; however, it is questionable
whether this is the proper way to evaluate a task
whose purpose is to find semantic relations between
logical entities. We believe that the same criticisms
that have been leveled at the PARSEVAL metric
for constituent structures are equally valid for the
bracket-based evaluation of SRL systems. The in-
appropriateness of the traditional metric has led to
a number of alternative metrics (Litkowski, 2004,
Baker et al., 2007; Surdeanu et al., 2008).

3.1 Segment-based Evaluation

To be able to score the output of a dependency-based
SRL system using the segment scorer, a conversion
step is needed. Algorithm 2 shows how a set of seg-
ments is constructed from an argument dependency
node. For each argument node, the algorithm com-
putes the yield Y of the argument node, i.e. the set of
dependency nodes to include in the bracketing. This
set is then partitioned into contiguous parts, from
which the segments are computed. In most cases,
the yield is just the subtree dominated by the argu-
ment node. However, if the argument dominates the
predicate, then the branch containing the predicate
is removed.

Table 2 shows the performance figures of our
system on the WSJ and Brown corpora: preci-
sion, recall, Fj-measure, and complete proposition
accuracy (PP). These figures are compared to the
best-performing system in the CoNLL-2005 Shared
Task (Punyakanok et al., 2008), referred to as Pun-
yakanok in the table, and the best result currently
published (Surdeanu et al., 2007), referred to as Sur-
deanu. To validate the sanity of the segment cre-
ation algorithm, the table also shows the result of ap-
plying segment creation to gold-standard syntactic—
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Algorithm 2 Segment creation from an argument
dependency node.

input Predicate node p, argument node a
if a does not dominate p
Y « {n: a dominates n}
else
c « the child of a that dominates p
Y <« {n: adominates n} \ {n : c dominates n}
end if
S« partition of Y into contiguous subsets
return {(min-index s, max-index s) : s € S}

WSJ P R F1 PP

Our system 82.22 7772 79.90 57.24
Punyakanok 82.28 76.78 79.44 53.79
Surdeanu 8747 74.67 80.56 51.66
Gold standard 97.38 96.77 97.08 93.20
Brown P R F1 PP

Our system 68.79 61.87 65.15 32.34
Punyakanok  73.38 62.93 67.75 32.34
Surdeanu 81.75 61.32 70.08 34.33
Gold standard 97.22 96.55 96.89 92.79
WSJ+Brown P R F1 PP

Our system 80.50 75.59 77.97 53.94
Punyakanok 81.18 7492 77.92 50.95
Surdeanu 86.78 72.88 79.22 49.36
Gold standard 97.36 96.75 97.05 93.15

Table 2: Evaluation with unnormalized segments.

semantic trees. We see that the two conversion pro-
cedures involved (constituent-to-dependency con-
version by the CoNLL-2008 Shared Task organizers,
and our dependency-to-segment conversion) work
satisfactorily although the process is not completely
lossless.

During inspection of the output, we noted that
many errors arise from inconsistent punctuation at-
tachment in PropBank/Treebank. We therefore nor-
malized the segments to exclude punctuation at the
beginning or end of a segment. The results of this
evaluation is shown in Table 3. This table does not
include the Surdeanu system since we did not have



access to its output.

WSJ P R F1 PP

Our system 8295 78.40 80.61 58.65
Punyakanok 82.67 77.14 79.81 54.55
Gold standard 97.85 97.24 97.54 94.34
Brown P R F1 PP

Our system 70.84 63.71 67.09 36.94
Punyakanok 74.29 63.71 68.60 34.08
Gold standard 97.46 96.78 97.12 93.41
WSJ+Brown P R F1 PP

Our system 81.39 7644 78.84 55.77
Punyakanok 81.63 7534 7836 51.84
Gold standard 97.80 97.18 97.48 94.22

Table 3: Evaluation with normalized segments.

The results on the WSJ test set clearly show
that dependency-based SRL systems can rival
constituent-based systems in terms of performance
— it clearly outperforms the Punyakanok system, and
has a higher recall and complete proposition accu-
racy than the Surdeanu system. We interpret the high
recall as a result of the dependency syntactic repre-
sentation, which makes the parse tree paths simpler
and thus the arguments easier to find.

For the Brown test set, on the other hand, the
dependency-based system suffers from a low pre-
cision compared to the constituent-based systems.
Our error analysis indicates that the domain change
caused problems with prepositional attachment for
the dependency parser — it is well-known that prepo-
sitional attachment is a highly lexicalized problem,
and thus sensitive to domain changes. We believe
that the reason why the constituent-based systems
are more robust in this respect is that they utilize a
combination strategy, using inputs from two differ-
ent full constituent parsers, a clause bracketer, and
a chunker. However, caution is needed when draw-
ing conclusions from results on the Brown test set,
which is only 7,585 words, compared to the 59,100
words in the WSJ test set.

3.2 Dependency-based Evaluation

It has previously been noted (Pradhan et al., 2005)
that a segment-based evaluation may be unfavorable
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to a dependency-based system, and that an evalua-
tion that scores argument heads may be more indica-
tive of its true performance. We thus carried out an
evaluation using the evaluation script of the CoNLL-
2008 Shared Task. In this evaluation method, an ar-
gument is counted as correctly identified if its head
and label are correct. Note that this is not equivalent
to the segment-based metric: In a perfectly identi-
fied segment, we may still pick out the wrong head,
and if the head is correct, we may infer an incorrect
segment. The evaluation script also scores predicate
disambiguation performance; we did not include this
score since the 2005 systems did not output predi-
cate sense identifiers.

Since CoNLL-2005-style segments have no in-
ternal tree structure, it is nontrivial to extract a
head. It is conceivable that the output of the parsers
used by the Punyakanok system could be used to
extract heads, but this is not recommendable be-
cause the Punyakanok system is an ensemble sys-
tem and a segment does not always exactly match
a constituent in a parse tree. Furthermore, the
CoNLL-2008 constituent-to-dependency conversion
method uses a richer structure than just the raw con-
stituents: empty categories, grammatical functions,
and named entities. To recreate this additional infor-
mation, we would have to apply automatic systems
and end up with unreliable results.

Instead, we thus chose to find an upper bound
on the performance of the segment-based system.
We applied a simple head-finding procedure (Algo-
rithm 3) to find a set of head nodes for each seg-
ment. Since the CoNLL-2005 output does not in-
clude dependency information, the algorithm uses
gold-standard dependencies and intersects segments
with the gold-standard segments. This will give us
an upper bound, since if the segment contains the
correct head, it will always be counted as correct.

The algorithm looks for dependencies leaving the
segment, and if multiple outgoing edges are found,
a couple of simple heuristics are applied. We found
that the best performance is achieved when selecting
only one outgoing edge. “Small clauses,” which are
split into an object and a predicative complement in
the dependency framework, are the only cases where
we select two heads.

Table 4 shows the results of the dependency-
based evaluation. In the table, the output of the



Algorithm 3 Finding head nodes in a segment.

input Argument segment a
if a overlaps with a segment in the gold standard
a «— intersection of a and gold standard
F — {n : governor of n outside a }
if|[F| =1
return F
remove punctuation nodes from F’
if|F|]=1
return F
if F' = {ny,ns,...} where n; is an object and ns is
the predicative part of a small clause
return {ni,ny}
if I contains a node n that is a subject or an object
return {n}
else
return {n}, where n is the leftmost node in F

dependency-based system is compared to the seman-
tic dependency links automatically extracted from
the segments of the Punyakanok system.

WSJ P R F1 PP
Our system  88.46 83.55 8593 61.97
Punyakanok 87.25 81.59 84.32 58.17
Brown P R F1 PP
Our system  77.67 69.63 73.43 41.32
Punyakanok 80.29 68.59 73.98 37.28
WSJ+Brown P R F1 PP
Our system  87.07 81.68 84.29 59.22
Punyakanok 86.94 80.21 83.45 55.39

Table 4: Dependency-based evaluation.

In this evaluation, the dependency-based system
has a higher F1-measure than the Punyakanok sys-
tem on both test sets. This suggests that the main ad-
vantage of using a dependency-based semantic role
labeler is that it is better at finding the heads of
semantic arguments, rather than finding segments.
The results are also interesting in comparison to
the multi-view system described by Pradhan et al.
(2005), which has a reported head F1 measure of
85.2 on the WSJ test set. The figure is not exactly
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compatible with ours, however, since that system
used a different head extraction mechanism.

4 Conclusion

We have described a dependency-based system' for
semantic role labeling of English in the PropBank
framework. Our evaluations show that the perfor-
mance of our system is close to the state of the
art. This holds regardless of whether a segment-
based or a dependency-based metric is used. In-
terestingly, our system has a complete proposition
accuracy that surpasses other systems by nearly 3
percentage points. Our system is the first semantic
role labeler based only on syntactic dependency that
achieves a competitive performance.

Evaluation and comparison is a difficult issue
since the natural output of a dependency-based sys-
tem is a set of semantic links rather than segments,
as is normally the case for traditional systems. To
handle this situation fairly to both types of systems,
we carried out a two-way evaluation: conversion of
dependencies to segments for the dependency-based
system, and head-finding heuristics for segment-
based systems. However, the latter is difficult since
no structure is available inside segments, and we
had to resort to computing upper-bound results using
gold-standard input; despite this, the dependency-
based system clearly outperformed the upper bound
of the performance of the segment-based system.
The comparison can also be slightly misleading
since the dependency-based system was optimized
for the dependency metric and previous systems for
the segment metric.

Our evaluations suggest that the dependency-
based SRL system is biased to finding argument
heads, rather than argument text snippets, and this
is of course perfectly logical. Whether this is an ad-
vantage or a drawback will depend on the applica-
tion — for instance, a template-filling system might
need complete segments, while an SRL-based vector
space representation for text categorization, or a rea-
soning application, might prefer using heads only.

In the future, we would like to further investigate
whether syntactic and semantic analysis could be in-
tegrated more tightly. In this work, we used a sim-

'Our system is freely available for download at
http://nlp.cs.lth.se/lth_srl.



plistic loose coupling by means of reranking a small
set of complete structures. The same criticisms that
are often leveled at reranking-based models clearly
apply here too: The set of tentative analyses from the
submodules is too small, and the correct analysis is
often pruned too early. An example of a method to
mitigate this shortcoming is the forest reranking by
Huang (2008), in which complex features are evalu-
ated as early as possible.

A Classifier Features

Features Used in Predicate Disambiguation

PREDWORD, PREDLEMMA. The lexical form and
lemma of the predicate.

PREDPARENTWORD and PREDPARENTPOS.
Form and part-of-speech tag of the parent node
of the predicate.

CHILDDEPSET, CHILDWORDSET, CHILD-
WORDDEPSET, CHILDPOSSET, CHILD-
POSDEPSET. These features represent the set
of dependents of the predicate using combina-
tions of dependency labels, words, and parts of
speech.

DEPSUBCAT. Subcategorization frame: the con-
catenation of the dependency labels of the pred-
icate dependents.

PREDRELTOPARENT. Dependency relation be-
tween the predicate and its parent.

Features Used in Argument Identification and
Labeling
PREDLEMMASENSE. The lemma and sense num-
ber of the predicate, e.g. give.Ol.
VOICE. For verbs, this feature is Active or Passive.
For nouns, it is not defined.
POSITION. Position of the argument with respect
to the predicate: Before, After, or On.
ARGWORD and ARGPOS. Lexical form and part-
of-speech tag of the argument node.
LEFTWORD, LEFTPOS, RIGHTWORD, RIGHT-
POS. Form/part-of-speech tag of the left-
most/rightmost dependent of the argument.
LEFTSIBLINGWORD, LEFTSIBLINGPOS.
Form/part-of-speech tag of the left sibling of
the argument.
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PREDPOS. Part-of-speech tag of the predicate.

RELPATH. A representation of the complex gram-
matical relation between the predicate and the
argument. It consists of the sequence of de-
pendency relation labels and link directions in
the path between predicate and argument, e.g.
IMTOPRDTOBJ].

VERBCHAINHASSUBJ. Binary feature that is set
to true if the predicate verb chain has a subject.
The purpose of this feature is to resolve verb
coordination ambiguity as in Figure 3.

CONTROLLERHASOBJ. Binary feature that is true
if the link between the predicate verb chain and
its parent is OPRD, and the parent has an ob-
ject. This feature is meant to resolve control
ambiguity as in Figure 4.

FUNCTION. The grammatical function of the argu-
ment node. For direct dependents of the predi-
cate, this is identical to the RELPATH.

ROOT
ROOT CONY 00
SBJ | COORD SBJ SBJ |COORD CONJ
I eat and you drink I eat and drink

Figure 3: Coordination ambiguity: The subject / is in an
ambiguous position with respect to drink.

ROOT
SBJ

ROOT
OPRD
OBJ IM SBJ |OPRD IM

M

I want him to sleep

I want to sleep

Figure 4: Subject/object control ambiguity: / is in an am-
biguous position with respect to sleep.
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Abstract

Most Web-based Q/A systems work by find-
ing pages that contain an explicit answer to
a question. These systems are helpless if the
answer has to be inferred from multiple sen-
tences, possibly on different pages. To solve
this problem, we introduce the HOLMES sys-
tem, which utilizes textual inference (T1) over
tuples extracted from text.

Whereas previous work on TI (e.g., the lit-
erature on textual entailment) has been ap-
plied to paragraph-sized texts, HOLMES uti-
lizes knowledge-based model construction to
scale TI to a corpus of 117 million Web pages.
Given only a few minutes, HOLMES doubles
recall for example queries in three disparate
domains (geography, business, and nutrition).
Importantly, HOLMES’s runtime is linear in
the size of its input corpus due to a surprising
property of many textual relations in the Web
corpus—they are “approximately” functional
in a well-defined sense.

1 Introduction and Motivation

Numerous researchers have identified the Web as
a rich source of answers to factual questions, e.g.,
(Kwok et al., 2001; Brill et al., 2002), but often the
desired information is not stated explicitly even in a
textual corpus as massive as the Web. Consider the
question “What vegetables help prevent osteoporo-
sis?” Since there is likely no sentence on the Web
directly stating “Kale prevents osteoporosis”, a sys-
tem must infer that kale is an answer by combining
facts from multiple sentences, possibly from differ-
ent pages, which justify that conclusion: i.e., that
kale is a vegetable, kale contains calcium, and cal-
cium helps prevent osteoporosis.
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Figure 1: The architecture of HOLMES.

Textual Inference (T1) methods have advanced in
recent years. For example, textual entailment tech-
niques aim to determine whether one textual frag-
ment (the hypothesis) follows from another (the text)
(Dagan et al., 2005). While most TI researchers have
focused on high-quality inferences from a small
source text, we seek to utilize sizable chunks of the
Web corpus as our source text. In order to do this,
we must confront two major challenges. The first is
uncertainty: TI is an imperfect process, particularly
when applied to the Web corpus, hence probabilistic
methods help to assess the confidence in inferences.
The second challenge is scalability: how does infer-
ence time scale given increasingly large corpora as
input?

1.1 HOLMES: A Scalable TI System

This paper describes HOLMES, an implemented sys-
tem, which addresses both challenges by carrying
out scalable, probabilistic inference over ground
assertions extracted from the Web. The input to
HOLMES is a conjunctive query, a set of inference
rules expressed as Horn clauses, and large sets of
ground assertions extracted from the Web, WordNet,
and other knowledge bases. As shown in Figure 1,
HOLMES chains backward from the query, using the
inference rules to construct a forest of proof trees
from the ground assertions. This forest is converted
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into a Markov network (a form of Knowledge-
Based Model Construction (KBMC) (Wellman et
al., 1992)) and evaluated using approximate prob-
abilistic inference. HOLMES operates in an anytime
fashion — if desired it can keep iterating: search-
ing for more proofs, and elaborating the Markov net-
work.

HOLMES makes some important simplifying as-
sumptions.  Specifically, we use simple ground
tuples to represent extracted assertions (e.g.,
contains (kale, calcium)). Syntactic prob-
lems (e.g., anaphora, relative clauses) and seman-
tic challenges (e.g., quantification, counterfactuals,
temporal qualification) are delegated to the extrac-
tion system or simply ignored. This paper focuses
on scalability for this subset of the TI task.

1.2 Summary of Experimental Results

We tested HOLMES on 183 million distinct ground
assertions extracted from the Web by the TEX-
TRUNNER system (Banko et al., 2007), coupled
with 159 thousand ground assertions from Word-
Net (Miller et al., 1990), and a compact set of hand-
coded inference rules. Given a total of 55 to 145
seconds, HOLMES was able to produce high-quality
inferences that doubled the number of answers to
example queries in three disparate domains: geog-
raphy, business, and nutrition.

We also evaluated how the speed of HOLMES
scaled with the size of its input corpus. In the
general case, logical inference over a Horn theory
(needed in order to produce the probabilistic net-
work) is polynomial in the number of ground asser-
tions, and hence in the size of the textual corpus.!
Unfortunately, this is prohibitive, since even low-
order polynomial growth is fatal on a 117 million-
page corpus, let alone the full Web.

1.3 Why HOLMES Scales Linearly

Fortunately, the Web’s long tail works in our favor.
The relations we extract from text are approximately
pseudo-functional (APF), as we formalize in Sec-
tion 3, and this property leads to runtime that scales
linearly with the corpus. To see the underlying in-
tuition, consider the APF relation denoted by the
phrase “is married to;” most of the time it maps a
person’s name to a small number of spousal names

'In fact, it is P-complete — as hard as any polynomial-time
problem.
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so this relation is APF. Section 3 shows why this
APF property ensures linear scaling, and Section 4
demonstrates linear scaling in practice.

2 An Overview of HOLMES

HOLMES is a system designed to answer complex
queries over large, noisy knowledge bases. As a mo-
tivating example, we consider the question “What
vegetables help prevent osteoporosis?”’ As of this
writing, Google has no pages explicitly stating ‘kale
helps prevent osteoporosis’, making it challenging
to return “kale” as an answer. However, there are
numerous web pages stating that “kale is high in cal-
cium” and others declaring that “calcium helps pre-
vent osteoporosis”. If we could combine those facts
we could easily infer that “kale” is an answer to the
question “What vegetables help prevent osteoporo-
sis?”” HOLMES was designed to make such infer-
ences while accounting for uncertainty in the pro-
cess.

Given a query, expressed as a conjunctive
Datalog rule, HOLMES generates a probabilistic
model using knowledge-based model construction
(KBMC) (Wellman et al., 1992). Specifically,
HOLMES utilizes fast, logical inference to find the
subset of ground assertions and inference rules that
may influence the answers to the query — enabling
the construction of a small and focused Markov net-
work. Since this graphical model is much smaller
than one incorporating all ground assertions, prob-
abilistic inference will be much faster than if naive
compilation were used.

Figure 1 summarizes the operation of HOLMES.
As with many theorem provers or KBMC systems,
HOLMES takes three inputs:

1. A set of knowledge bases — databases of
ground relational assertions, each with an
estimate of its probability, which can be
generated by TextRunner (Banko et al.,
2007) or Kylin (Wu and Weld, 2007). In
our example, we would extract the as-
sertions  IsHighIn (kale, and

from

calcium)

Prevents (calcium, osteoporosis)
those sentences.

2. A domain theory — A set of probabilis-
tic inference rules written as Markov logic
Horn clauses, which can be used to de-
rive new assertions. The weight associ-

ated with each clause specifies its reliability.



kale matches the query ]
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Figure 2: Partial proof ‘tree’ (DAG) for the query “What
vegetables help prevent osteoporosis?” Rectangles de-
pict ground assertions from a knowledge base, rounded
boxes are inferred assertions, and shaded squared repre-
sent the application of inference rules. HOLMES converts
this DAG into a Markov network in order to estimate the
probability of each node.

In Section 2.3 we identify several domain-
independent rules, but a user may (optionally)
specify additional, domain-specific rules if de-
sired. In our example, we assume we are given
the domain-specific rule: Prevents(x,2z) :-
IsHighIn(X,Y) A Prevents(Y,2Z)

3. A conjunctive query is specified as a Datalog
rule. For example, the question “What vegeta-
bles help prevent osteoporosis?” could be writ-
ten as: query (X) :— IS-A(X,Vegetable)

N Prevents (X, osteoporosis)

and returns a set of answers to the query, each with
an associated probability.

2.1 Basic Operation

To find these answers and their associated proba-
bilities, HOLMES first finds all ground assertions in
the knowledge bases that are potentially relevant to
the query. This is efficiently done using the infer-
ence rules to chain backwards from the query. Note
that the generated candidate answers, themselves,
are less important than the associated proof trees.
Furthermore, since HOLMES uses these ‘trees’ (ac-
tually, DAGs) to generate a probabilistic graphical
model, HOLMES seeks to find as many proof trees
as possible for each query result — each may influ-
ence the final belief in that result. Figure 2 shows a
partial proof tree for our example query.

To handle uncertainty, HOLMES now constructs a
ground Markov network from the proof trees and the
Markov-logic-encoded inference rules. Markov net-
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works (Pearl, 1988) model the joint distribution of a
set of variables by creating an undirected graph with
one node for each random variable, and represent-
ing dependencies between variables with cliques in
the graph. Each clique has a corresponding poten-
tial function ¢y, which returns a non-negative value
based on the state of variables in the clique. The
probability of a state, x, is given by

Pa) = o I oelog)

where the partition function Z is a normalizing term,
and z(;y denotes the state of all the variables in
clique k.

HOLMES converts the proof trees into a Markov
network in a manner pioneered by the Markov Logic
framework of Richardson and Domingos (2006). A
Boolean variable is created to represent the truth of
each assertion in the proof forest. Next, HOLMES
adds edges to the Markov network to create a clique
corresponding to each application of an inference
rule in the proof forest.

Following the Markov Logic framework, the po-
tential function of a clique has form ¢(x) = e* if all
member nodes are true (w denotes the weight of the
inference rule), and ¢(x) = 1 otherwise. The proba-
bilities of leaf nodes are derived from the underlying
knowledge base,” and inferred nodes are biased with
an exponential prior.

Finallyy, HOLMES computes the approximate
probability of each answer by running a variant
of loopy belief propagation (Pearl, 1988) over the
Markov network. In our experience this method
performs well on networks derived from our Horn
clause proof forest, but one could use Monte Carlo
techniques or even exact methods if desired.

Note that this architecture allows HOLMES to
combine information from multiple web pages to in-
fer assertions not explicitly seen in the textual cor-
pus. Because this inference is done using a Markov
network, it correctly handles uncertain extractions
and probabilistic dependencies. By using KBMC to
create a custom, focused network for each query, the

’In our experiments, ground assertions from WordNet get
a uniformly high probability of correctness (0.9), but those ex-
tracted from the Web are assigned probabilities derived from
redundancy statistics, following the intuition that frequently ex-
tracted facts are more likely to be true (Etzioni et al., 2005).



amount of probabilistic inference is reduced to man-
ageable proportions.

2.2 Anytime, Incremental Expansion

Because exact probabilistic inference is #P-
complete, HOLMES uses approximate methods, but
even these techniques have problems if the Markov
network gets too large. As a result, HOLMES creates
the network incrementally. After the first proof trees
are generated, HOLMES creates the model and per-
forms approximate probabilistic inference. If more
time is available then HOLMES searches for addi-
tional proof trees and updates the network (Fig-
ure 1). This incremental process allows HOLMES
to return initial results (with preliminary probability
estimates) as soon as they are discovered.

For efficiency, HOLMES exploits standard Data-
log optimizations (e.g., it only expands proofs of re-
cently added nodes and it uses an approximation to
magic sets (Ullman, 1989), rather than simple back-
wards chaining). For tractability, we also allow the
user to limit the number of transitive inference steps
for any inference rule.

HOLMES also includes a few enhancements for
dealing with information extracted from natural lan-
guage. For example, HOLMES’s inference rules sup-
port substring/regex matching of ground assertions,
to accommodate simple variations in text. HOLMES
also can be restricted to only operate over proper
nouns, which is useful for queries involving named
entities.

2.3 Markov Logic Inference Rules

HOLMES is given the following set of six domain-
independent rules, which are similar to the up-
ward monotone rules introduced by (MacCartney
and Manning, 2007).

1. Observed relations are likely to be true:
R(X,Y) :- ObservedInCorpus (X, R, Y)
2. Synonym substitution preserves meaning:

Rr (X' ,Y) :— Rmr(X,Y) A Synonym(X, X")
3. Rr (X,Y") :- R (X,Y) A Synonym(Y, Y’)
4. Generalizations preserve meaning:

R (X' ,Y) :— Rmrr(X,Y) AIS-A(X, X')

5. R (X,Y") :— Rm(X,Y) AIS-A(Y, Y')
6. Transitivity of Part Meronyms:
Rr (X,Y’) :— R (X,Y) APart-0Of(Y, Y’)

where rRrr matches “* in’ (e.g., ‘born in’).
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For example, if Q(x):-BornIn(X, ‘France’),
and we know from WordNet that Paris is in
France, then by inference rule 6, we know that
BornIn (X, ‘Paris’) will yield valid results for
0 (x). Although all of these rules contain at most
two relations in the body, HOLMES allows an
arbitrary number of relations in the query and rule
bodies. However, we have found that even simple
rules can dramatically improve some queries.

We set the rule weights to capture the intuition
that deeper inferences decrease the likelihood (as
there are more chances to make mistakes), whereas
additional, independent proof trees increase the
likelihood (as there is more supporting evidence).
Specifically, in our experiments we set the prior on
inferred facts to -0.75, the weight on rule 1 to 1.5,
and the weights on all other rules to 0.6.

At present, we define these weights manually, but
we expect to learn the parameter values in the future.

3 Scaling Inference to the Web

If TI is applied to a corpus containing hundreds of
millions or even billions of pages, its run time has to
be at most linear in the size of the corpus. This sec-
tion shows that under some reasonable assumptions
inference does scale linearly.

We start our analysis with two simplifications.
First, we assume that the number of distinct, ground
assertions in the KBs, |A|, grows at most linearly
with the size of the textual corpus. This is cer-
tainly true for assertions extracted by TextRunner
and Kylin, and follows from our exclusion of texts
with complex quantified sentences. Our analysis
now proceeds to consider scaling with respect to | A|
for a fixed query and set of inference rules.

Our second assumption is that the size of every
proof tree is bounded by some constant, m. This
is a strong assumption and one that depends on the
precise set of inference rules and pattern of ground
assertions. However, it holds in our experience, and
if necessary could be enforced by terminating the
search for proof trees at a certain depth, e.g., log(m).

HOLMES’s knowledge-based model construction
has two parts: construction of the proof forest and
conversion of the forest into a Markov network.
Since the Markov network is essentially isomorphic
to the proof forest, the conversion will be O(|A|) if
the forest is linear in size, which is ensured if the
time to construct the proof trees is O(| A|). We show




this in the remainder of this section.

Recall that HOLMES requires inference rules to
be function-free Horn clauses. While this limits ex-
pressivity to some degree, it provides a huge speed
benefit — logical inference over Horn clauses can
be done in polynomial time, whereas general propo-
sitional inference (i.e., from grounded first-order
rules) is NP-complete.

Alas, even low-order polynomial blowup is un-
acceptable when the textual corpus reaches Web
scale; we seek linear growth. Intuitively, there are
two places where polynomial expansion could cause
trouble. First, the number of different fypes of proofs
(i.e., first order proofs) could grow too quickly, and
secondly, a given type of proof tree might apply
to too many ground assertions (“tuples” in database
lingo). We treat these issues in turn.

Under our assumptions, each proof tree can be
represented as an expression in relational algebra
with at most m equijoins (Ullman, 1989),% each
stemming from the application of an inference rule.
Since the number of rules is fixed, as is m, there are
a constant number of possible first-order proof trees.

The bigger concern is that any one of these first-
order trees might result in a polynomial number of
ground trees; if so, the size of the ground forest
(and corresponding Markov network) could grow
too quickly. In fact, polynomial growth is a common
phenomena in database query evaluation. Luckily,
most relations in the Web corpus behave more fa-
vorably. We introduce a property of relations that
ensures m-way joins, and therefore all proof trees
up to size m, can be computed in O(| A|) time.

The intuition is that most relations derived from
large corpora have a ‘heavy-tailed’ distribution,
wherein a few objects appear many times in a rela-
tion, but most appear only once or twice, thus joins
involving rare objects lead to a small number of re-
sults, and so the main limitation on scalability is
common objects. We now prove that if these com-
mon objects account for a small enough fraction of
the relation, then joins will still scale linearly. We
focus on binary relations, but these results can eas-
ily be extended to relations of larger arity.

3Note that an inference rule of the form H (X) :-
R1(X,Y),Ra2(Y, Z) is equivalent to the algebraic expression
7x (R1 > Rg). First a join is performed between R: and Ro
testing for equality between values of Y'; then a projection elim-
inates all columns besides X.
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Definition 1 A relation, R = {(zi,yi)} C X x
Y, is pseudo-functional (PF) in x with degree k, if
Ve e X : {y|(z,y) € R}| < k. When the precise
variable and degree is irrelevant to discussion, we
simply say “R is PF”

An m-way equijoin over relations that are PF in
the join variables will have at most k™ « | R| results.
Since k™ is constant for a given join and | R| scales
linearly in the size of the textual corpus, proof tree
construction over PF relations also scales linearly.

However, due to their heavy-tailed distributions,
most relations extracted from the Web fit the pseudo-
functional definition in most, but not all values of
X. Fortunately, it turns out that in most cases these
“bad” values of X are rare and hence don’t influence
the join size significantly. We formalize this intu-
ition by defining a class of approximately pseudo-
functional (APF) relations and proving that joining
two APF relations produces at most a linear number
of results.

Definition 2 A relation, R, is approximately
pseudo-functional (APF) in z with degree k, if X
can be partitioned into two sets Xg and Xp such
that for all v € Xg R is PF with degree k and

> Hul(z.y) € R}Y| < k+log(IR])

re€Xp
Theorem 1. If relation Ry is APF in y with de-

gree k1 and Rs is APF in y with degree ko then
the relation ) = Ri <t Ry has size at most
O(maz(|Ry|, | Ral)).

Proof. Since Ry and R, are APF, we know that
Y can be partitioned into four groups: YVpp =
Y1 VB2, Ve = V1 Va2, Yo = Vo1 (Vb2
Yaa = Va1 ﬂy(;g.4 We can show that each group
leads to at most O(|A|) entries in Q. Fory € Ypp
there are at most ky * ko * log(|R1|) * log(| Ra|) en-
tries in (). The y € Ygp and y € YVpe lead to at
most ki * ko * log(|Ra|) and ki * ko * log(|R1|)
entries, respectively. For y € )¢ there are at
most ky * ka2 * maz(|R1|,|Rz2|). Summing the re-
sults from the four partitions, we see that |Q] is
O(maz(|R1],|R2|)), thus itis O(] A|). O

This theorem and proof can easily be extended to

4Ypp are the “doubly bad” values of y that violate the PF
definition for both relations, Vg are the values that do not vio-
late the PF definition for either relation, and Vg¢ and Vg are
the values that violate it in only R; or R2, resp.



an m-way equijoin, as long as each relation is APF
in all arguments that are being joined.

Theorem 2. If Q) is the relation obtained by an equi-
Jjoin over m relations R1_.,, each having size at most
O(|A|), and if all R;y. ., are APF in all arguments
that they are joined in with degree at most k., q., and
if 11 tog(IRil) <Al then |Q]is O(|Al).

1<i<m

The inequality in Theorem 2 relates the sizes of

the relations (| R|), the join (m) and the number of
ground assertions (] A|). However, in many cases we
are interested in much smaller values of m than the
inequality enables. We can relax the APF definition
to allow a broader, but still scalable, class of m-way-
APF relations.
Corollary 3. If Q) is the relation obtained by an m-
way join, and if each participating relation is APF
in their joined variables with a bound of k; x /| R;|
instead of k; x log(|R;|), then the join is O(| A|).

The final step in our scaling argument concerns
probabilistic inference, which is #P-Complete if per-
formed exactly. This is addressed in two ways. First,
HOLMES uses approximate methods, e.g., loopy be-
lief propagation, which avoids the cost of exact in-
ference — at the cost of reduced precision. Sec-
ondly, at a practical level, HOLMES’s incremental
construction of the graphical model (Figure 1) al-
lows it to bound the size of the network by terminat-
ing the search for additional proofs.

4 Experimental Results

This section reports on measurements that confirm
that linear scaling with |A| occurs in practice, and
that HOLMES’s inference is not only scalable but
also improves precision/recall on sample queries in
a diverse set of domains. After describing the exper-
imental domains and queries, Section 4.2 reports on
the boost to the area under the precision/recall curve
for a set of example queries in three domains: ge-
ography, business, and nutrition. Section 4.3 then
shows that APF relations are very common in the
Web corpus, and finally Section 4.4 demonstrates
empirically that HOLMES’s inference time scales
linearly with the number of pages in the corpus.

4.1 Experimental Setup

HOLMES utilized two knowledge bases in these ex-
periments: TEXTRUNNER and WordNet. TEX-
TRUNNER contains approximately 183 million dis-

&4

tinct ground assertions extracted from over 117 mil-
lion web pages, and WordNet contains 159 thousand
manually created IS-A, Part-Of, and Synonym asser-
tions.

In all queries, HOLMES utilizes the domain-
independent inference rules described in Sec-
tion 2.3. HOLMES additionally makes use of two
domain-specific inference rules in the Nutrition
domain, to demonstrate the benefits of including
domain-specific information. Estimating the preci-
sion and relative recall of HOLMES requires exten-
sive and careful manual tagging of HOLMES output.
To make this feasible, we restricted ourselves to a
set of twenty queries in three domains, but made the
domains diverse to illustrate the broad scope of the
system.

We now describe each domain briefly.
Geography: the query issued is: “Who was born in
one of the following countries?” More formally,
Q(X) :- BornIn(X, {country}) where {country}
is bound to each of the following nine countries
in turn {France, Germany, China, Thailand, Kenya,
Morocco, Peru, Columbia, Guatemala}, yielding a
total of nine queries.

Because Web text often refers to a person’s
birth city rather than birth country, this query il-
lustrates how combining an ground assertion (e.g.,
BornIn (Alberto Fujimori, Lima)) with back-
ground knowledge (e.g., LocatedIn (Lima, Peru))
enables the system to draw new conclusions (e.g.,
BornIn (Alberto Fujimori, Peru)).

Business: we issued the following two queries.
1) Which companies are acquiring software com-
panies? Formally, 0Q(x) :- Acquired(X, Y)
A Develops (Y, ‘software’) This query tests
HOLMES’s ability to scalably join a large number of
assertions from multiple pages.

2) Which companies are headquartered in the
USA? Q(X) ‘USA’)
AN IS-A(X, ‘company’)

Answering this query comprehensively requires
HOLMES to combine a join (over the relations Head-
quarteredIn and IS-A) with transitive inference on
PartOf (e.g., Seattle is PartOf Washington which is
PartOf the USA) and on IS-A (e.g., Microsoft IS-A
software company which IS-A company). The IS-
A assertions came from both TEXTRUNNER (using
patterns from (Hearst, 1992)) and WordNet.

:— HeadquarteredIn (X,
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Figure 3: PR Curve for BornIn(X, {country}). Inference
boosts the Area under the PR Curve (AuC) by 102 %.

Domain Increase | Total Inference

in AuC Time
Geography +102% 55s
Business +2,643% 145 s
Nutrition +5,595% 64 s

Table 1: Improvement in the AuC of HOLMES over the
BASELINE and total inference time taken by HOLMES.
Results are summed over all queries in the geography,
business, and nutrition domains. Inference time mea-
sured on unoptimized prototype.

Nutrition: the nine queries issued are instances
of “What foods prevent disease?” Where a food is
a member of one of the classes: fruit, vegetable, or
grain, and a disease is one of: anemia, scurvy, or
osteoporosis. More formally, 0 (X, {disease}) :-
Prevents (X, AN IS-A (X, {food})

Our experiments in the nutrition domain utilized
two domain-specific inference rules in addition to
the ones presented in Section 2.3:
Prevents (X,Y) :—-HighIn(X,Z) A Prevents(Z,Y)
Prevents (X,Y) :-Contains (X, Z) A Prevents (Z,Y)

4.2 Effect of Inference on Recall

{disease})

To measure the cost and benefit of HOLMES’s in-
ference we need to define a baseline for compar-
ison. Answering the conjunctive queries in the
business and nutrition domains requires computing
joins, which TEXTRUNNER does not do. Thus, we
defined a baseline system, BASELINE, which has
access to the underlying Knowledge Bases (KBs)
(TEXTRUNNER and WordNet), and the ability to
compute joins using information explicitly stated in
either KB, but does not have the ability to infer new
assertions.
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We compared HOLMES with BASELINE in all
three domains. Figure 3 depicts the combined pre-
cision/relative recall curves for the nine Geography
queries. HOLMES yields substantially higher re-
call (the shaded region) at modestly lower preci-
sion, doubling the area under the precision/recall
curve (AuC). The other precision/recall curves also
showed a slight drop in precision for substantial
gains in recall. Table 1 summarizes the results, along
with the total runtime needed for inference. Because
relations in the business domain are much larger
than in the other domains (i.e., 100x ground asser-
tions), inference is slower in this domain.

We note that inference is particularly helpful with
rarely mentioned instances. However, inference can
lead to errors when the proof tree contains joins on
generic terms (e.g., “company’’) or common extrac-
tion errors (e.g., “LLC” as a company name). This
is a key area for future work.

4.3 Prevalence of APF Relations

To determine the prevalence of APF relations in Web
text, we examined a sample of 500 binary relations
selected randomly from TEXTRUNNER’s ground as-
sertions. The surface forms of the relations and ar-
guments may misrepresent the true properties of the
underlying concepts, so to better estimate the true
properties we merged synonymous values as given
by Resolver (Yates and Etzioni, 2007) or the most
frequent sense of the word in WordNet. For exam-
ple, we would consider BornIn (baby, hospital)
and BornAt (infant, infirmary) to represent the
same concept, and so would merge them into one
instance of the ‘Born In’ relation. The largest two re-
lations had over 1.25 million unique instances each,
and 52% of the relations had more than 10,000 in-
stances.

For each relation R, we first found all instances
of R extracted by TEXTRUNNER and merged all
synonymous instances as described above. Then,
for each argument of R we computed the smallest
value, Ky, such that R is APF with degree K ;-
Since many interesting assertions can be inferred by
simply joining two relations, we also considered the
special case of 2-way joins using Corollary 3. We
computed the smallest value, Ko, such that the re-
lation is two-way-APF with degree Koy.

Figure 4 shows the fraction of relations with
Kpin and Koy of at most K as a function of varying



4 - - - -
7
@ 80% A //
2
© 60% 1/
x ]
b i
€ 40% -
@
o i
9]
& 20% -
] - -APF
0% — APF for two-way join
0 1000 2000 3000 4000 5000 6000

Degree of Approximate Pseudo-Functionality

Figure 4: Prevalence of APF relations in Web text. The
x-axis depicts the degree of pseudo-functionality, e.g.,
Kpin and Koy, (see definition 2); the y-axis lists the
percent of relations that are APF with that degree. Re-
sults are averaged over both arguments.

values of K. The results are averaged over both ar-
guments of each binary relation. For arbitrary joins
in this KB, 80% of the relations are APF with de-
gree less than 496; for 2-way joins (like the ones in
our inference rules and test queries), 80% of the rela-
tions are APF with degree less than 65. These results
indicate that the majority of relations TEXTRUNNER
extracted from text are APF, and so we can expect
HOLMES’s techniques will allow efficient inference
over most relations.

While Theorem 2 guarantees that joins over those
relations will be O(|R|), that notation hides a poten-
tially large constant factor of K,,;,". Fortunately
the constant factor is significantly smaller in prac-
tice. To see why, we re-examine the proof: the large
factor comes from assuming that all of R’s first ar-
guments which meet the PF definition are associated
with exactly K, distinct second arguments. How-
ever, in our corpus 83% of first arguments are as-
sociated with only one second argument. Clearly,
our worst-case analysis substantially over-estimates
inference time for most queries. Moreover, in ad-
ditional experiments (omitted due to space limita-
tions), measured join sizes grew linearly in the size
of the corpus, but were on average two to three or-
ders of magnitude smaller than the bounds given in
the theory. This observation held across relations
with different sizes and values of K,,,;,.

While the results in Figure 4 may vary for other
sets of relations, we believe the general trends
hold. This is promising for Question Answering and
Textual Inference systems, since if true it implies
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Figure 5: The effects of corpus size on total inference
time. We see approximately linear growth in all domains,
and display the best fit lines and coefficient of determina-
tion (R?) of each.

that combining information from multiple difference
source is feasible, and can allow such systems to in-
fer answers not explicitly seen in any source.

4.4 Scalability of Inference Speed

Since the previous subsection showed that most re-
lations are APF in their arguments, our theory pre-
dicts HOLMES’s inference will scale linearly. We
tested this hypothesis empirically by running infer-
ence over the test queries in our three domains, while
varying the number of pages in the textual corpus.

Figure 5 shows how the inference time HOLMES
used to answer all queries in each domain scales
with KB size. For these queries, and several oth-
ers we tested (not shown here), inference time grows
linearly with the size of the KB. Based on these re-
sults we believe that HOLMES can provide scalable
inference over a wide variety of domains.

5 Related Work

Textual Entailment systems are given two textual
fragments, text 7" and hypothesis H, and attempt to
decide if the meaning of H can be inferred from
the meaning of 7' (Dagan et al., 2005). While
many approaches have addressed this problem, our
work is most closely related to that of (Raina et al.,
2005; MacCartney and Manning, 2007; Tatu and
Moldovan, 2006; Braz et al., 2005), which convert
the inputs into logical forms and then attempt to
‘prove’ H from T plus a set of axioms. For in-
stance, (Braz et al., 2005) represents T, H, and a
set of rewrite rules in a description logic framework,
and determines entailment by solving an integer lin-



ear program derived from that representation.

These approaches and related ones (e.g.,
(Van Durme and Schubert, 2008)) use highly
expressive representations, enabling them to ex-
press negation, temporal information, and more.
HOLMES’s representation is much simpler—
Markov Logic Horn Clauses for inference rules
coupled with a massive database of ground asser-
tions. However, this simplification allows HOLMES
to tackle a “text” of enormously larger size: 117
million Web pages versus a single paragraph. A sec-
ond, if smaller, difference stems from the fact that
instead of determining whether a single hypothesis
sentence, H, follows from the text, HOLMES tries to
find all consequents that match a conjunctive query.

HOLMES is also related to open-domain question-
answering systems such as Mulder (Kwok et al.,
2001), AskMSR (Brill et al.,, 2002), and others
(Harabagiu et al., 2000; Brill et al., 2001). How-
ever, these Q/A systems attempt to find individual
documents or sentences containing the answer. They
often perform deep analysis on promising texts, and
back off to shallower, less reliable methods if those
fail. In contrast, HOLMES utilizes TI and attempts
to combine information from multiple different sen-
tences in a scalable way.

While its ability to combine information from
multiple sources is promising, HOLMES has several
limitations these Q/A systems do not have. Since
HOLMES relies on an information extraction sys-
tem to convert sentences into ground predicates,
any limitations of the IE system will be propagated
to HOLMES. Additionally, the logical representa-
tion HOLMES uses limits the reasoning and types
of questions it can answer. HOLMES is geared to-
wards answering questions which are naturally ex-
pressed as properties and relations of entities, and is
not well suited to answering more abstract or open
ended questions. Although we have demonstrated
that HOLMES is scalable, further work is needed to
make it to run at interactive speeds.

Finally, research in statistical relational learning
such as MLNs (Richardson and Domingos, 2006),
RMNs (Taskar et al.,, 2002), and others (Getoor
and Taskar, 2007) have studied techniques for com-
bining logical and probabilistic inference. Our in-
ference rules are more restrictive than those al-
lowed in MLNSs, but this trade-off allows us to ef-
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ficiently scale inference to large, open domain cor-
pora. By constructing only cliques for satisfied in-
ference rules, HOLMES explicitly models the intu-
ition behind LazySAT inference (Singla and Domin-
gos, 2006) as used in MLNSs. Ie., most Horn clause
inference rules will be trivially satisfied since their
antecedents will be false, so we only need to worry
about ones where the antecedent is true.

6 Conclusions

This paper makes three main contributions:

1. We introduce and evaluate the HOLMES sys-
tem, which leverages KBMC methods in order
to scale a class of TT methods to the Web.

2. We define the notion of Approximately Pseudo-
Functional (APF) relations and prove that, for
a APF relations, HOLMES’s inference time in-
creases linearly with the size of the input cor-
pus. We show empirically that APF relations
appear to be prevalent in our Web corpus (Fig-
ure 4), and that HOLMES’s runtime does scale
linearly with the size of its input (Figure 5), tak-
ing only a few CPU minutes when run over 183
million distinct ground assertions.

3. We present experiments demonstrating that, for
a set of queries in the domains of geography,
business, and nutrition, HOLMES substantially
improves the quality of answers (measured by
AuC) relative to a “no inference” baseline.

In the future, we plan more extensive tests to char-
acterize when HOLMES’s inference is helpful. We
also hope to examine in what cases jointly perform-
ing extraction and inference (as opposed to perform-
ing them separately) is feasible at scale. Finally, we
plan to examine methods for HOLMES to learn both
rule weights and new inference rules.

Acknowledgements

We thank the following for helpful comments on
previous drafts: Fei Wu, Michele Banko, Mausam,
Doug Downey, and Alan Ritter. This research was
supported in part by NSF grants 11S-0535284, IIS-
0312988, and IIS-0307906, ONR grants N00014-
08-1-0431 and N00014-06-1-0147, CALO grant 03-
000225, the WRF / TJ Cable Professorship as well
as gifts from Google. The work was performed at
the University of Washington’s Turing Center.



References

M. Banko, M. Cafarella, S. Soderland, M. Broadhead,
and O. Etzioni. 2007. Open information extraction
from the Web. In Procs. of IJCAL

R. Braz, R. Girju, V. Punyakanok, D. Roth, and M. Sam-
mons. 2005. An inference model for semantic en-
tailment in natural language. In Proceedings of the
National Conference on Artificial Intelligence (AAAI),
pages 1678-1679.

E. Brill, J. Lin, M. Banko, S. T. Dumais, and A. Y. Ng.
2001. Data-intensive question answering. In Procs.
of Text REtrieval Conference (TREC-10), pages 393—
400.

Eric Brill, Susan Dumais, and Michele Banko. 2002. An
analysis of the AskMSR question-answering system.
In EMNLP °02: Proceedings of the ACL-02 conference
on Empirical methods in natural language processing,
pages 257-264, Morristown, NJ, USA. Association for
Computational Linguistics.

I. Dagan, O. Glickman, and B. Magnini. 2005. The
PASCAL Recognising Textual Entailment Challenge.
Proceedings of the PASCAL Challenges Workshop on
Recognising Textual Entailment, pages 1-8.

O. Etzioni, M. Cafarella, D. Downey, S. Kok, A. Popescu,
T. Shaked, S. Soderland, D. Weld, and A. Yates.
2005. Unsupervised named-entity extraction from the
web: An experimental study. Artificial Intelligence,
165(1):91-134.

L. Getoor and B. Taskar. 2007. Introduction to Statistical
Relational Learning. MIT Press.

S. Harabagiu, M. Pasca, and S. Maiorano. 2000. Exper-
iments with open-domain textual question answering.
In Procs. of the COLING-2000.

M. Hearst. 1992. Automatic Acquisition of Hyponyms
from Large Text Corpora. In Procs. of the 14th In-
ternational Conference on Computational Linguistics,
pages 539-545, Nantes, France.

C.C.T. Kwok, O. Etzioni, and D.S. Weld. 2001. Scal-
ing question answering to the Web. Proceedings of
the 10th international conference on World Wide Web,
pages 150-161.

B. MacCartney and C.D. Manning. 2007. Natural Logic
for Textual Inference. In Workshop on Textual Entail-
ment and Paraphrasing.

G. Miller, R. Beckwith, C. Fellbaum, D. Gross, and
K. Miller. 1990. Introduction to wordnet: An on-line
lexical database. International Journal of Lexicogra-
phy, 3(4):235-312.

Judea Pearl. 1988. Probabilistic reasoning in intelli-
gent systems: networks of plausible inference. Morgan
Kaufmann Publishers Inc. San Francisco, CA, USA.

Rajat Raina, Andrew Y. Ng, and Christopher D. Man-
ning. 2005. Robust textual inference via learning and

88

abductive reasoning. In Proceedings of AAAI 2005.
AAAI Press.

M. Richardson and P. Domingos. 2006. Markov Logic
Networks. Machine Learning, 62(1-2):107-136.

Parag Singla and Pedro Domingos. 2006. Memory-
efficient inference in relational domains. In AAAIL

B. Taskar, P. Abbeel, and D. Koller. 2002. Discrimi-
native probabilistic models for relational data. Eigh-
teenth Conference on Uncertainty in Artificial Intelli-
gence (UAIO2).

Marta Tatu and Dan Moldovan. 2006. A logic-based
semantic approach to recognizing textual entailment.
In Proceedings of the COLING/ACL on Main confer-
ence poster sessions, pages 819—826, Morristown, NJ,
USA. Association for Computational Linguistics.

J. Ullman. 1989. Database and knowledge-base systems.
Computer Science Press.

B. Van Durme and L.K. Schubert. 2008. Open knowl-
edge extraction through compositional language pro-
cessing. In Symposium on Semantics in Systems for
Text Processing.

M. Wellman, J. Breese, and R. Goldman. 1992. From
knowledge bases to decision models. The Knowledge
Engineering Review, 7(1):35-53.

F. Wu and D. Weld. 2007. Autonomously semantifying
Wikipedia. In Proceedings of the ACM Sixteenth Con-
ference on Information and Knowledge Management
(CIKM-07), Lisbon, Porgugal.

A. Yates and O. Etzioni. 2007. Unsupervised resolution
of objects and relations on the Web. In Procs. of HLT.



Maximum Entropy based Rule Selection Model for
Syntax-based Statistical Machine Translation

Qun Liu' and Zhongjun He'? and Yang Liu' and Shouxun Lin'
'Key Laboratory of Intelligent Information Processing
Institute of Computing Technology, Chinese Academy of Sciences
Beijing, 100190, China
2Graduate University of Chinese Academy of Sciences
Beijing, 100049, China
{liuqun,zjhe,yliu,sxlin}@ict.ac.cn

Abstract

This paper proposes a novel maximum en-
tropy based rule selection (MERS) model
for syntax-based statistical machine transla-
tion (SMT). The MERS model combines lo-
cal contextual information around rules and
information of sub-trees covered by variables
in rules. Therefore, our model allows the de-
coder to perform context-dependent rule se-
lection during decoding. We incorporate the
MERS model into a state-of-the-art linguis-
tically syntax-based SMT model, the tree-
to-string alignment template model. Experi-
ments show that our approach achieves signif-
icant improvements over the baseline system.

1 Introduction

Syntax-based statistical machine translation (SMT)
models (Liu et al., 2006; Galley et al., 2006; Huang
et al., 2006) capture long distance reorderings by us-
ing rules with structural and linguistical information
as translation knowledge. Typically, a translation
rule consists of a source-side and a target-side. How-
ever, the source-side of a rule usually corresponds
to multiple target-sides in multiple rules. Therefore,
during decoding, the decoder should select a correct
target-side for a source-side. We call this rule selec-
tion.

Rule selection is of great importance to syntax-
based SMT systems. Comparing with word selec-
tion in word-based SMT and phrase selection in
phrase-based SMT, rule selection is more generic
and important. This is because that a rule not only
contains terminals (words or phrases), but also con-
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Figure 1: Example of translation rules

tains nonterminals and structural information. Ter-
minals indicate lexical translations, while nontermi-
nals and structural information can capture short or
long distance reorderings. See rules in Figure 1 for
illustration. These two rules share the same syntactic
tree on the source side. However, on the target side,
either the translations for terminals or the phrase re-
orderings for nonterminals are quite different. Dur-
ing decoding, when a rule is selected and applied to a
source text, both lexical translations (for terminals)
and reorderings (for nonterminals) are determined.
Therefore, rule selection affects both lexical transla-
tion and phrase reordering.

However, most of the current syntax-based sys-
tems ignore contextual information when they se-
lecting rules during decoding, especially the infor-
mation of sub-trees covered by nonterminals. For
example, the information of Xg and X is not
recorded when the rules in Figure 1 extracted from
the training examples in Figure 2. This makes the
decoder hardly distinguish the two rules. Intuitively,
information of sub-trees covered by nonterminals as
well as contextual information of rules are believed

Proceedings of the 2008 Conference on Empirical Methods in Natural Language Processing, pages 89-97,
Honolulu, October 2008. (©2008 Association for Computational Linguistics



NP NP

/\ A
DNP NPB DNP NPB
Xm: NP DEG Xg:NN NN Xm:NP DEG Xg:NN NN
EETEA ‘ %n“:‘é ‘ Hz‘% ‘ ié‘ffk ‘

‘ industrial products ‘ manufacturing ‘ levels ‘ ‘ overall ‘ standard ‘ of ‘ the match

Figure 2: Training examples for rules in Figure 1

to be helpful for rule selection.

Recent research showed that contextual infor-
mation can help perform word or phrase selec-
tion. Carpuat and Wu (2007b) and Chan et
al. (2007) showed improvents by integrating word-
sense-disambiguation (WSD) system into a phrase-
based (Koehn, 2004) and a hierarchical phrase-
based (Chiang, 2005) SMT system, respectively.
Similar to WSD, Carpuat and Wu (2007a) used con-
textual information to solve the ambiguity prob-
lem for phrases. They integrated a phrase-sense-
disambiguation (PSD) model into a phrase-based
SMT system and achieved improvements.

In this paper, we propose a novel solution for
rule selection for syntax-based SMT. We use the
maximum entropy approach to combine rich con-
textual information around a rule and the informa-
tion of sub-trees covered by nonterminals in a rule.
For each ambiguous source-side of translation rules,
a maximum entropy based rule selection (MERS)
model is built. Thus the MERS models can help the
decoder to perform a context-dependent rule selec-
tion.

Comparing with WSD (or PSD), there are some
advantages of our approach:

e Our approach resolves ambiguity for rules with
multi-level syntactic structure, while WSD re-
solves ambiguity for strings that have no struc-
tures;

e Our approach can help the decoder perform
both lexical selection and phrase reorderings,
while WSD can help the decoder only perform
lexical selection;

e Our method takes WSD as a special case, since
a rule may only consists of terminals.

90

In our previous work (He et al., 2008), we re-
ported improvements by integrating a MERS model
into a formally syntax-based SMT model, the hier-
archical phrase-based model (Chiang,2005). In this
paper, we incorporate the MERS model into a state-
of-the-art linguistically syntax-based SMT model,
the tree-to-string alignment template (TAT) model
(Liu et al., 2006). The basic differences are:

e The MERS model here combines rich informa-
tion of source syntactic tree as features since
the translation model is linguistically syntax-
based. He et al. (2008) did not use this in-
formation.

e In this paper, we build MERS models for all
ambiguous source-sides, including lexicalized
(source-side which only contains terminals),
partially lexicalized (source-side which con-
tains both terminals and nonterminals), and un-
lexicalized (source-side which only contains
nonterminals).  He et al. (2008) only built
MERS models for partially lexicalized source-
sides.

In the TAT model, a TAT can be considered as a
translation rule which describes correspondence be-
tween source syntactic tree and target string. TAT
can capture linguistically motivated reorderings at
short or long distance. Experiments show that by
incorporating MERS model, the baseline system
achieves statistically significant improvement.

This paper is organized as follows: Section 2
reviews the TAT model; Section 3 introduces the
MERS model and describes feature definitions; Sec-
tion 4 demonstrates a method to incorporate the
MERS model into the translation model; Section 5
reports and analyzes experimental results; Section 6
gives conclusions.

2 Baseline System

Our baseline system is Lynx (Liu et al., 20006),
which is a linguistically syntax-based SMT system.
For translating a source sentence f{ = fi... fi-fr,
Lynx firstly employs a parser to produce a source
syntactic tree T(f{), and then uses the source
syntactic tree as the input to search translations:



(1) & =argmax,; Pr(ef| f{)

= argmax,,; Pr(T(f{)| i) Pr(el|T(f))

In doing this, Lynx uses tree-to-string alignment
template to build relationship between source syn-
tactic tree and target string. A TAT is actually a
translation rule: the source-side is a parser tree with
leaves consisting of words and nonterminals, the
target-side is a target string consisting of words and
nonterminals.

TAT can be learned from word-aligned, source-
parsed parallel corpus. Figure 4 shows three types
of TATs extracted from the training example in Fig-
ure 3: lexicalized (the left), partially lexicalized
(the middle), unlexicalized (the right). Lexicalized
TAT contains only terminals, which is similar to
phrase-to-phrase translation in phrase-based model
except that it is constrained by a syntactic tree on the
source-side. Partially lexicalized TAT contains both
terminals and non-terminals, which can be used for
both lexical translation and phrase reordering. Un-
lexicalized TAT contains only nonterminals and can
only be used for phrase reordering.

Lynx builds translation model in a log-linear
framework (Och and Ney, 2002):

@) P(e|T(f{)) =
exp[Y, Ambm(el, T(f7))]
Ze’ eXp[Zm )\mhm(e{,T( i]))]

Following features are used:

e Translation probabilities: P(&|T) and P(T|¢);
e Lexical weights: P, (€|T) and P, (T|é);

e TAT penalty: exp(1l), which is analogous to
phrase penalty in phrase-based model;

e Language model P, (el);
e Word penalty I.

In Lynx, rule selection mainly depends on trans-
lation probabilities and lexical weights. These four
scores describe how well a source tree links to a tar-
get string, which are estimated on the training cor-
pus according to occurrence times of € and T. There
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Figure 3: Word-aligned, source-parsed training example.
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Figure 4: TATs learned from the training example in Fig-
ure 3.

are no features in Lynx that can capture contextual
information during decoding, except for the n-gram
language model which considers the left and right
neighboring n-1 target words. But this information
it very limited.

3 The Maximum Entropy based Rule
Selection Model

3.1 The model

In this paper, we focus on using contextual infor-
mation to help the TAT model perform context-
dependent rule selection. We consider the rule se-
lection task as a multi-class classification task: for
a source syntactic tree T, each corresponding target
string € is a label. Thus during decoding, when a
TAT (T, ) is selected, T is classified into label ¢’,
actually.

A good way to solve the classification problem is
the maximum entropy approach:

3)  Pu(ET, T(X)) =
exp[}; Aihi(é}g‘(f)LT(Xk))]
>z expd2; Ahi(e!, C(T), T(Xk))]




where T and ¢ are the source tree and target string of
a TAT, respectively. h; is a binary feature functions
and \; is the feature weight of h;. C'(T') defines local
contextual information of 7. X, & 1S a nonterminal in
the source tree 7', where k is an index. T(X}) is the
source sub-tree covered by X.

The advantage of the MERS model is that it uses
rich contextual information to compute posterior
probability for e given T. However, the transla-
tion probabilities and lexical weights in Lynx ignore
these information.

Note that for each ambiguous source tree, we
build a MERS model. That means, if there are
N source trees extracted from the training corpus
are ambiguous (the source tree which corresponds
to multiple translations), thus for each ambiguous
source tree T; (¢ = 1,..., N), a MERS model M;
(# = 1, ..., N) is built. Since a source tree may cor-
respond to several hundreds of target translations at
most, the feature space of a MERS model is not pro-
hibitively large. Thus the complexity for training a
MERS model is low.

3.2 Feature Definition

Let (T, ¢) be a translation rule in the TAT model.
We use f (f ) to represent the source phrase covered
by T'. To build a MERS model for the source tree T,
we explore various features listed below.

1. Lexical Features (LF)
These features are defined on source words.
Specifically, there are two kinds of lexical fea-
tures: external features f_; and f,;, which
are the source words immediately to the left
and right of f(T'), respectively; internal fea-
tures fr,(T(X%)) and fr(T(X})), which are
the left most and right most boundary words of
the source phrase covered by 7'(X}), respec-

tively.
See Figure 5 (a) for illustration. In
this example, f_j=tigao, fyi=zhizao,

fo(T'(X1))=gongye, fr(T'(X1))=chanpin.

2. Parts-of-speech (POS) Features (POSF)
These features are the POS tags of the source
words defined in the lexical features: P_q,
Py, PL(T(Xk)), PR<T(Xk)) are the POS
tags of f_1, fy1, fL(T(Xy)), fR(T(Xk)), re-
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Figure 5: Illustration of features of the MERS model. The

source tree of the TAT is ( DNP(NP Xp) (DEG de)).
Gray nodes denote information included in the feature.



spectively. POS tags can generalize over all
training examples.

Figure 5 (b) shows POS features. P_1=VYV,
P;1=NN, Pr(T(X1))=NN, Pr(T(X1))=NN.

3. Span Features (SPF)

These features are the length of the source
phrase f(7T'(X%)) covered by T'(X}). In Liu’s
TAT model, the knowledge learned from a short
span can be used for a larger span. This is not
reliable. Thus we use span features to allow the
MERS model to learn a preference for short or
large span.

In Figure 5 (c), the span of X is 2.

4. Parent Feature (PF)
The parent node of T in the parser tree of the
source sentence. The same source sub-tree may
have different parent nodes in different training
examples. Therefore, this feature may provide
information for distinguishing source sub-trees.

Figure 5 (d) shows that the parent is a NP node.

5. Sibling Features (SBF)
The siblings of the root of T This feature con-
siders neighboring nodes which share the same
parent node.

In Figure 5 (e), the source tree has one sibling
node NPB.

Those features make use of rich information
around a rule, including the contextual information
of a rule and the information of sub-trees covered
by nonterminals. They are never used in Liu’s TAT
model.

Figure 5 shows features for a partially lexicalized
source tree. Furthermore, we also build MERS mod-
els for lexicalized and unlexicalized source trees.
Note that for lexicalized tree, features do not include
the information of sub-trees since there is no nonter-
minals.

The features can be easily obtained by modify-
ing the TAT extraction algorithm described in (Liu
et al., 2006). When a TAT is extracted from a
word-aligned, source-parsed parallel sentence, we
just record the contextual features and the features of
the sub-trees. Then we use the toolkit implemented
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by Zhang (2004) to train MERS models for the am-
biguous source syntactic trees separately. We set the
iteration number to 100 and Gaussian prior to 1.

4 Integrating the MERS Models into the
Translation Model

We integrate the MERS models into the TAT model
during the translation of each source sentence. Thus
the MERS models can help the decoder perform
context-dependent rule selection during decoding.

For integration, we add two new features into the
log-linear translation model:

e P.,(&|T, T(X})). This feature is computed by
the MERS model according to equation (3),
which gives a probability that the model select-
ing a target-side € given an ambiguous source-
side f, considering rich contextual informa-
tion.

e P, = exp(l). During decoding, if a source
tree has multiple translations, this feature is set
to exp(1), otherwise it is set to exp(0). Since
the MERS models are only built for ambiguous
source trees, the first feature P.(&|T, T/(X}))
for non-ambiguous source tree will be set to
1.0. Therefore, the decoder will prefer to
use non-ambiguous TATs. However, non-
ambiguous TAT's usually occur only once in the
training corpus, which are not reliable. Thus
we use this feature to reward ambiguous TATS.

The advantage of our integration is that we need
not change the main decoding algorithm of Lynx.
Furthermore, the weights of the new features can be
trained together with other features of the translation
model.

5 Experiments

5.1 Corpus

We carry out experiments on Chinese-to-English
translation. The training corpus is the FBIS cor-
pus, which contains 239k sentence pairs with 6.9M
Chinese words and 8.9M English words. For the
language model, we use SRI Language Modeling
Toolkit (Stolcke, 2002) with modified Kneser-Ney
smoothing (Chen and Goodman, 1998) to train two
tri-gram language models on the English portion of



Type No. of No. of No. of ambiguous % ambiguous
TATs source trees source trees
Lexicalized 333,077 16,367 14,380 87.86
Partially Lexicalized | 342,767 38,497 28,397 73.76
Unlexicalized 83,024 7,384 5,991 81.13
Total 758,868 62,248 48,768 78.34

Table 1: Statistical information of TATs filtered by test sets of NIST MT 2003 and 2005.

System Features
PET) | P(T|e) | Pu(e|T) | Pu(T|e) | Imy Imo TP WP P, AP
Lynx 0.210 0.016 0.081 0.051 0.171 | 0.013 | -0.055 | 0.403 - -
+MERS | 0.031 0.008 0.020 0.080 0.152 | 0.014 | 0.027 | 0.270 | 0.194 | 0.207

Table 2: Feature weights obtained by minimum error rate training on the development set. The first 8 features are used
by Lynx. TP=TAT penalty, WP=word penalty, AP=ambiguous TAT penalty. Note that in fact, the positive weight for

WP and AP indicate a reward.

the training corpus and the Xinhua portion of the Gi-
gaword corpus, respectively. NIST MT 2002 test set
is used as the development set. NIST MT 2003 and
NIST MT 2005 test sets are used as the test sets.
The translation quality is evaluated by BLEU met-
ric (Papineni et al., 2002), as calculated by mteval-
v11b.pl with case-insensitive matching of n-grams,
where n = 4.

5.2 Training

To train the translation model, we first run GIZA++
(Och and Ney, 2000) to obtain word alignment in
both translation directions. Then the word alignment
is refined by performing “grow-diag-final” method
(Koehn et al., 2003). We use a Chinese parser de-
veloped by Deyi Xiong (Xiong et al., 2005) to parse
the Chinese sentences of the training corpus.

Our TAT extraction algorithm is similar to Liu et
al. (2006), except that we make some tiny modifica-
tions to extract contextual features for MERS mod-
els. To extract TAT, we set the maximum height of
the source sub-tree to h = 3, the maximum number
of direct descendants of a node of sub-tree to ¢ = 5.
See (Liu et al., 2006) for specific definitions of these
parameters.

Table 1 shows statistical information of TAT's
which are filtered by the two test sets. For each type
(Iexicalized, partially lexicalized, unlexicalized) of
TATs, a great portion of the source trees are am-
biguous. The number of ambiguous source trees ac-
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counts for 78.34% of the total source trees. This in-
dicates that the TAT model faces serious rule selec-
tion problem during decoding.

5.3 Results

We use Lynx as the baseline system. Then the
MERS models are incorporated into Lynx, and
the system is called Lynx+MERS. To run the
decoder, Lynx and Lynx+MERS share the same
settings: tatTable-limit=30, tatTable-threshold=0,
stack-limit=100, stack-threshold=0.00001. The
meanings of the pruning parameters are the same to
Liu et al. (20006).

We perform minimum error rate training (Och,
2003) to tune the feature weights for the log-linear
model to maximize the systems’s BLEU score on the
development set. The weights are shown in Table 2.

These weights are then used to run Lynx and
Lynx+MERS on the test sets. Table 3 shows the
results. Lynx obtains BLEU scores of 26.15 on
NISTO3 and 26.09 on NISTO05. Using all features
described in Section 3.2, Lynx+MERS finally ob-
tains BLEU scores of 27.05 on NIST03 and 27.28
on NISTO5. The absolute improvements is 0.90
and 1.19, respectively. Using the sign-test described
by Collins et al. (2005), both improvements are
statistically significant at p < 0.01. Moreover,
Lynx+MERS also achieves higher n-gram preci-
sions than Lynx.



Test Set | System | BLEU-4 Inld1v1dua12n— gram3prems1o;15
Lynx 26.15 | 71.62 | 35.64 | 18.64 | 9.82
NISTO3 +MERS | 27.05 | 7200 | 36.72 | 19.51 | 10.37
Lynx 2609 | 7039 | 35.12 | 18.53 | 10.11
NISTOS +MERS | 2728 | 71.16 | 36.19 | 19.62 | 10.95

Table 3: BLEU-4 scores (case-insensitive) on the test sets.

5.4 Analysis

The baseline system only uses four features for
rule selection: the translation probabilities P(¢|T)
and P(T|€); and the lexical weights P,,(¢|T) and
P,,(T|¢). These features are estimated on the train-
ing corpus by the maximum likelihood approach,
which does not allow the decoder to perform a con-
text dependent rule selection. Although Lynx uses
language model as feature, the n-gram language
model only considers the left and right n-1 neigh-
boring target words.

The MERS models combines rich contextual in-
formation as features to help the decoder perform
rule selection. Table 4 shows the effect of different
feature sets. We test two classes of feature sets: the
single feature (the top four rows of Table 4) and the
combination of features (the bottom five rows of Ta-
ble 4). For the single feature set, the POS tags are
the most useful and stable features. Using this fea-
ture, Lynx+MERS achieves improvements on both
the test sets. The reason is that POS tags can be gen-
eralized over all training examples, which can alle-
viate the data sparseness problem.

Although we find that some single features may
hurt the BLEU score, they are useful in combina-
tion of features. This is because one of the strengths
of the maximum entropy model is that it can in-
corporate various features to perform classification.
Therefore, using all features defined in Section 3.2,
we obtain statistically significant improvements (the
last row of Table 4). In order to know how the
MERS models improve translation quality, we in-
spect the 1-best outputs of Lynx and Lynx+MERS.
We find that the first way that the MERS models help
the decoder is that they can perform better selection
for words or phrases, similar to the effect of WSD
or PSD. This is because that lexicalized and partially
lexicalized TAT contains terminals. Considering the
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Feature Sets NISTO03 | NISTO05
LF 26.12 26.32
POSF 26.36 26.21
PF 26.17 25.90
SBF 26 .47 26.08
LF+POSF 26.61 26.59
LF+POSF+SPF 26.70 26.44
LF+POSF+PF 26.81 26.56
LF+POSF+SBF 26.68 26.89
LF+POSF+SPF+PF+SBF | 27.05 27.28

Table 4: BLEU-4 scores on different feature sets.

following examples:

Source: B EFAL  Af=F BN &I

Reference: Malta is located in southern Eu-
rope

Lynx: Malta in southern Europe

Lynx+MERS: Malta is located in southern Eu-
rope

Here the Chinese word “4%= F” is incor-
rectly translated into “in” by the baseline system.
Lynx+MERS produces the correct translation “is lo-
cated in”. That is because, the MERS model consid-
ers more contextual information for rule selection.
In the MERS model, P, (in|42F) = 0.09, which is
smaller than P, (is located in|[4%F) = 0.14. There-
fore, the MERS model prefers the translation “is lo-
cated in”. Note that here the source tree (VV 4 )
is lexicalized, and the role of the MERS model is
actually the same as WSD.

The second way that the MERS models help the
decoder is that they can perform better phrase re-
orderings. Considering the following examples:



Source: 3% [f£ F B T 3%]; 89 (L& K%K,

Reference: According to its [development
strategy]s [in the Chinese market]; ...

Lynx: Accordance with [the Chinese market];
[development strategy]s ...

o Lynx+MERS: According to the [development
strategy]s [in the Chinese market];

The syntactic tree of the Chinese phrase “/£ F
T 49 K& K9 is shown in Figure 6. How-
ever, there are two TAT's which can be applied to the
source tree, as shown in Figure 7. The baseline sys-
tem selects the left TAT and produces a monotone
translation of the subtrees “X:PP” and “X5:NPB”.
However, Lynx+MERS uses the right TAT and per-
forms correct phrase reordering by swapping the two
source phrases. Here the source tree is partially lex-
icalized, and both the contextual information and
the information of sub-trees covered by nontermi-
nals are considered by the MERS model.

6 Conclusion

In this paper, we propose a maximum entropy based
rule selection model for syntax-based SMT. We
use two kinds information as features: the local-
contextual information of a rule, the information of
sub-trees matched by nonterminals in a rule. During
decoding, these features allow the decoder to per-
form a context-dependent rule selection. However,
this information is never used in most of the current
syntax-based SMT models.

The advantage of the MERS model is that it can
help the decoder not only perform lexical selection,
but also phrase reorderings. We demonstrate one
way to incorporate the MERS models into a state-
of-the-art linguistically syntax-based SMT model,
the tree-to-string alignment model. Experiments
show that by incorporating the MERS models, the
baseline system achieves statistically significant im-
provements.

We find that rich contextual information can im-
prove translation quality for a syntax-based SMT
system. In future, we will explore more sophisti-
cated features for the MERS model. Moreover, we
will test the performance of the MERS model on
large scale corpus.

96

NP

/\

DNP NPB

N

PP DEG X% & K 9%

_ ‘ |development strategy|
£ FE T 8

|in Chinese market|

Figure 6: Syntactic tree of the source phrase “EPE H
Y o K s,

NP NP
/\ /\
DNP NPB DNP NPB

NN

PP DEG Xg PP DEG Xg

Figure 7: TATs which can be used for the source phrase

P E T8 KR R

Acknowledgements

We would like to thank Yajuan Lv for her valuable
suggestions. This work was supported by the Na-
tional Natural Science Foundation of China (NO.
60573188 and 60736014), and the High Technology
Research and Development Program of China (NO.
2006AA010108).

References

Marine Carpuat and Dekai Wu. 2007a. How phrase
sense disambiguation outperforms word sense disam-
biguation for statistical machine translation. In /17th
Conference on Theoretical and Methodological Issues
in Machine Translation, pages 43-52.

Marine Carpuat and Dekai Wu. 2007b. Improving sta-
tistical machine translation using word sense disam-
biguation. In Proceedings of EMNLP-CoNLL 2007,
pages 61-72.

Yee Seng Chan, Hwee Tou Ng, and David Chiang. 2007.
Word sense disambiguation improves statistical ma-
chine translation. In Proceedings of the 45th Annual



Meeting of the Association for Computational Linguis-
tics, pages 33-40.

Stanley F. Chen and Joshua Goodman. 1998. An empir-
ical study of smoothing techniques for language mod-
eling. Technical Report TR-10-98, Harvard University
Center for Research in Computing Technology.

David Chiang. 2005. A hierarchical phrase-based model
for statistical machine translation. In Proceedings of
the 43rd Annual Meeting of the Association for Com-
putational Linguistics, pages 263-270.

M. Collins, P. Koehn, and I. Kucerova. 2005. Clause re-
structuring for statistical machine translation. In Proc.
of ACLOS, pages 531-540.

Michel Galley, Jonathan Graehl, Kevin Knight, Daniel
Marcu, Steve DeNeefe, Wei Wang, and Ignacio
Thayer. 2006. Scalable inference and training of
context-rich syntactic translation models. In Proceed-
ings of COLING-ACL 2006, pages 961-968.

Zhongjun He, Qun Liu, and Shouxun Lin. 2008. Im-
proving statistical machine translation using lexical-
ized rule selection. In Proceedings of the 22nd In-
ternational Conference on Computational Linguistics
(Coling 2008), pages 321-328.

Liang Huang, Kevin Knight, and Aravind Joshi. 2006.
Statistical syntax-directed translation with extended
domain of locality. In Proceedings of the 7th Biennial
Conference of the Association for Machine Translation
in the Americas.

Philipp Koehn, Franz J. Och, and Daniel Marcu. 2003.
Statistical phrase-based translation. In Proceedings of
HLT-NAACL 2003, pages 127-133.

Philipp Koehn. 2004. Pharaoh: a beam search decoder
for phrase-based statistical machine translation mod-
els. In Proceedings of the Sixth Conference of the
Association for Machine Translation in the Americas,
pages 115-124.

Yang Liu, Qun Liu, and Shouxun Lin. 2006. Tree-to-
string alignment template for statistical machine trans-
lation. In Proceedings of the 44th Annual Meeting of
the Association for Computational Linguistics, pages
609-616.

Franz Josef Och and Hermann Ney. 2000. Improved sta-
tistical alignment models. In Proceedings of the 38th
Annual Meeting of the Association for Computational
Linguistics, pages 440—447.

Franz Josef Och and Hermann Ney. 2002. Discrimina-
tive training and maximum entropy models for statis-
tical machine translation. In Proceedings of the 40th
Annual Meeting of the Association for Computational
Linguistics, pages 295-302.

Franz Josef Och. 2003. Minimum error rate training in
statistical machine translation. In Proceedings of the
41st Annual Meeting of the Association for Computa-
tional Linguistics, pages 160-167.

97

K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu. 2002.
Bleu: a method for automatic evaluation of machine
translation. In Proceedings of the 40th Annual Meet-
ing of the Association for Computational Linguistics,
pages 311-318.

Andreas Stolcke. 2002. Srilm — an extensible lan-
guage modeling toolkit. In Proceedings of the Inter-
national Conference on Spoken language Processing,
volume 2, pages 901-904.

Deyi Xiong, Shuanglong Li, Qun Liu, Shouxun Lin, and
Yueliang Qian. 2005. Parsing the penn chinese tree-
bank with semantic knowledge. In Proceedings of
IJCNLP 2005, pages 70-81.

Le Zhang. 2004. Maximum entropy model-
ing toolkit for python and c++. available at
http://homepages.inf.ed.ac.uk/s0450736/maxent_too-
Ikit.html.



Indirect-HMM-based Hypothesis Alignment for Combining Outputs
from Machine Translation Systems

Xiaodong He', Mei Yang* ", Jianfeng Gao', Patrick Nguyen', and Robert Moore"

"Microsoft Research
One Microsoft Way
Redmond, WA 98052 USA
{xiaohe, jfgao, panguyen,
bobmoore}@microsoft.com

Abstract

This paper presents a new hypothesis alignment method
for combining outputs of multiple machine translation
(MT) systems. An indirect hidden Markov model
(IHMM) is proposed to address the synonym matching
and word ordering issues in hypothesis alignment.
Unlike traditional HMMs whose parameters are trained
via maximum likelihood estimation (MLE), the
parameters of the IHMM are estimated indirectly from a
variety of sources including word semantic similarity,
word surface similarity, and a distance-based distortion
penalty. The IHMM-based method significantly
outperforms the state-of-the-art TER-based alignment
model in our experiments on NIST benchmark
datasets. Our combined SMT system using the
proposed method achieved the best Chinese-to-English
translation result in the constrained training track of the
2008 NIST Open MT Evaluation.

1 Introduction

System combination has been applied successfully
to various machine translation tasks. Recently,
confusion-network-based  system  combination
algorithms have been developed to combine
outputs of multiple machine translation (MT)
systems to form a consensus output (Bangalore, et
al. 2001, Matusov et al., 2006, Rosti et al., 2007,
Sim et al., 2007). A confusion network comprises a
sequence of sets of alternative words, possibly
including null’s, with associated scores. The
consensus output is then derived by selecting one
word from each set of alternatives, to produce the
sequence with the best overall score, which could
be assigned in various ways such as by voting, by

* Mei Yang performed this work when she was an intern with
Microsoft Research.

98

‘Dept. of Electrical Engineering
University of Washington
Seattle, WA 98195, USA

yangmei@u.washington.edu

using posterior probability estimates, or by using a
combination of these measures and other features.

Constructing a confusion network requires
choosing one of the hypotheses as the backbone
(also called “skeleton” in the literature), and other
hypotheses are aligned to it at the word level. High
quality hypothesis alignment is crucial to the
performance of the resulting system combination.
However, there are two challenging issues that
make MT hypothesis alignment difficult. First,
different  hypotheses may wuse different
synonymous words to express the same meaning,
and these synonyms need to be aligned to each
other. Second, correct translations may have
different word orderings in different hypotheses
and these words need to be properly reordered in
hypothesis alignment.

In this paper, we propose an indirect hidden
Markov model (IHMM) for MT hypothesis
alignment. The HMM provides a way to model
both synonym matching and word ordering. Unlike
traditional HMMs whose parameters are trained
via maximum likelihood estimation (MLE), the
parameters of the IHMM are estimated indirectly
from a variety of sources including word semantic
similarity, word surface similarity, and a distance-
based distortion penalty, without using large
amount of training data. Our combined SMT
system using the proposed method gave the best
result on the Chinese-to-English test in the
constrained training track of the 2008 NIST Open
MT Evaluation (MT08).

2 Confusion-network-based MT system
combination

The current state-of-the-art is confusion-network-
based MT system combination as described by

Proceedings of the 2008 Conference on Empirical Methods in Natural Language Processing, pages 98—107,
Honolulu, October 2008. (©2008 Association for Computational Linguistics



Rosti and colleagues (Rosti et al., 2007a, Rosti et
al.,, 2007b). The major steps are illustrated in
Figure 1. In Fig. 1 (a), hypotheses from different
MT systems are first collected. Then in Fig. 1 (b),
one of the hypotheses is selected as the backbone
for hypothesis alignment. This is usually done by a
sentence-level minimum Bayes risk (MBR)
method which selects a hypothesis that has the
minimum average distance compared to all
hypotheses. The backbone determines the word
order of the combined output. Then as illustrated in
Fig. 1 (c), all other hypotheses are aligned to the
backbone. Note that in Fig. 1 (c) the symbol ¢
denotes a null word, which is inserted by the
alignment normalization algorithm described in
section 3.4. Fig. 1 (c) also illustrates the handling
of synonym alignment (e.g., aligning “car” to
“sedan”), and word re-ordering of the hypothesis.
Then in Fig. 1 (d), a confusion network is
constructed based on the aligned hypotheses,
which consists of a sequence of sets in which each
word is aligned to a list of alternative words
(including null) in the same set. Then, a set of
global and local features are used to decode the
confusion network.

E; he have good car
E, he has nice sedan
E; itanicecar

E, asedan he has

E, =argmin ) TER(E,E)
E,

B EeE

e.g., EB = El

(@) hypothesis set (b) backbone selection

Eg he have ¢ good car he| have | ¢| good| car
he| has | ¢| nice | sedan
it| ¢ al| nice | car

hel has [a] & sedan
(d) confusion network

E, a ¢ sedan he has
(c) hypothesis alignment
Figure 1: Confusion-network-based MT
combination.

system

3 Indirect-HMM-based Hypothesis
Alignment

In confusion-network-based system combination
for SMT, a major difficulty is aligning hypotheses
to the backbone. One possible statistical model for
word alignment is the HMM, which has been
widely used for bilingual word alignment (Vogel et
al., 1996, Och and Ney, 2003). In this paper, we
propose an indirect-HMM method for monolingual
hypothesis alignment.
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3.1 IHMM for hypothesis alignment

Let e =(e,..,) denote the backbone,

e’ =(€,...,e}) a hypothesis to be aligned toe,
and a’ =(a,,..,a,) the alignment that specifies
the position of the backbone word aligned to each
hypothesis word. We treat each word in the
backbone as an HMM state and the words in the
hypothesis as the observation sequence. We use a
first-order HMM, assuming that the emission
probability  p(e; |eaj) depends only on the

backbone word, and the transition probability
p(a; |a; 4, 1) depends only on the position of the

last state and the length of the backbone. Treating
the alignment as hidden variable, the conditional
probability that the hypothesis is generated by the
backbone is given by

e’ 1) =T 1] pla, la,.. DpeE) le,) | @

a) j=1

As in HMM-based bilingual word alignment
(Och and Ney, 2003), we also associate a null with
each backbone word to allow generating
hypothesis words that do not align to any backbone
word.

In HMM-based hypothesis alignment, emission
probabilities model the similarity between a
backbone word and a hypothesis word, and will be
referred to as the similarity model. The transition
probabilities model word reordering, and will be
called the distortion model.

3.2 Estimation of the similarity model

The similarity model, which specifies the emission
probabilities of the HMM, models the similarity
between a backbone word and a hypothesis word.
Since both words are in the same language, the
similarity model can be derived based on both
semantic similarity and surface similarity, and the
overall similarity model is a linear interpolation of
the two:

P(ej &) = - Pen (€] [€) +(1-0)- P (€5 8)



where pg.(ejle) and pg,(€j|e) reflect the
semantic and surface similarity between €; and

e, respectively, and « is the interpolation factor.

Since the semantic similarity between two
target words is source-dependent, the semantic
similarity model is derived by using the source
word sequence as a hidden layer:

Peem (€7 1€)
K
=§p(fk |ei)p(e; | fk!ei)

zkzolp(fk &) p(e;| f) @)

where X =(f,..,f.) is the source sentence.
Moreover, in order to handle the case that two
target words are synonyms but neither of them has
counter-part in the source sentence, a null is
introduced on the source side, which is represented
by fo. The last step in (3) assumes that first g;
generates all source words including null. Then ¢;’
is generated by all source words including null.

In the common SMT scenario where a large
amount of bilingual parallel data is available, we
can estimate the translation probabilities from a
source word to a target word and vice versa via
conventional bilingual word alignment. Then both
p(f &) and p(€;| f,) in(3) can be derived:

JCARMES FACARM

where p, (€] | f,) is the translation model from

the source-to-target word alignment model, and
p(f, |&) , which enforces the sum-to-1 constraint

over all words in the source sentence, takes the
following form,

f |e
o(f, ) =—Pes(fl®)
ZpIZS(fk |ei)
k=0

where p,,(f,|e) is the translation model from

the target-to-source word alignment model. In our
method, p,,(null|e) for all target words is
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simply a constant p,u, whose value is optimized
on held-out data®.

The surface similarity model can be estimated
in several ways. A very simple model could be
based on exact match: the surface similarity model,
Psr (€] 1€, would take the value 1.0 if e’= g, and

0 otherwise 2. However, a smoothed surface
similarity model is used in our method. If the target
language uses alphabetic orthography, as English
does, we treat words as letter sequences and the
similarity measure can be the length of the longest
matched prefix (LMP) or the length of the longest
common subsequence (LCS) between them. Then,
this raw similarity measure is transformed to a
surface similarity score between 0 and 1 through
an exponential mapping,

.. () 1&) =exp{p-[ s(e],&) 1]} (4)

where s(e],g) is computed as

, ~ M(e},ei)
S(ej'ei)_m

and M(g},€,) is the raw similarity measure of e;’

ei, which is the length of the LMP or LCS of ¢’
and e. and p is a smoothing factor that
characterizes the mapping, Thus as p approaches
infinity, p,, (€]]€) backs off to the exact match

model. We found the smoothed similarity model of
(4) yields slightly better results than the exact
match model. Both LMP- and LCS- based methods
achieve similar performance but the computation
of LMP is faster. Therefore, we only report results
of the LMP-based smoothed similarity model.

3.3 Estimation of the distortion model

The distortion model, which specifies the transition
probabilities of the HMM, models the first-order
dependencies of word ordering. In bilingual
HMM-based word alignment, it is commonly
assumed that transition probabilities

' The other direction, p,,(e/|null), is available from the

source-to-target translation model.
2 Usually a small back-off value is assigned instead of 0.



p(a; =ila;, =I',1) depend only on the jump
distance (i - i") (Vogel et al., 1996):

o, 1) =201

(i)

®)

As suggested by Liang et al. (2006), we can
group the distortion parameters {c(d)}, d=i - i',
into a few buckets. In our implementation, 11
buckets are used for c(<-4), c(-3), ... c(0), ..., c(5),
c(>6). The probability mass for transitions with
jump distance larger than 6 and less than -4 is
uniformly divided. By doing this, only a handful of
c(d) parameters need to be estimated. Although it
is possible to estimate them using the EM
algorithm on a small development set, we found
that a particularly simple model, described below,
works surprisingly well in our experiments.

Since both the backbone and the hypothesis are
in the same language, It seems intuitive that the
distortion model should favor monotonic
alignment and only allow non-monotonic
alignment with a certain penalty. This leads us to
use a distortion model of the following form,
where K is a tuning factor optimized on held-out
data.

c(d)=(1+]d-1) ", d=-4,....6 (6)

As shown in Fig. 2, the value of distortion score
peaks at d=1, i.e., the monotonic alignment, and
decays for non-monotonic alignments depending
on how far it diverges from the monotonic
alignment.

1.0 —

@1

d

Figure 2, the distance-based distortion parameters
computed according to (6), where K=2.
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Following Och and Ney (2003), we use a fixed
value p, for the probability of jumping to a null
state, which can be optimized on held-out data, and
the overall distortion model becomes

Po if i = null state

P’ '):{(1_ p,)- p(i[i’,1) otherwise

3.4 Alignment normalization

Given an HMM, the Viterbi alignment algorithm
can be applied to find the best alignment between
the backbone and the hypothesis,

J
8 =argmax] [ p(a la, ., P e,) | @)
& j=1

1

However, the alignment produced by the
algorithm cannot be used directly to build a
confusion network. There are two reasons for this.
First, the alignment produced may contain 1-N
mappings between the backbone and the
hypothesis whereas 1-1 mappings are required in
order to build a confusion network. Second, if
hypothesis words are aligned to a null in the
backbone or vice versa, we need to insert actual
nulls into the right places in the hypothesis and the
backbone, respectively. Therefore, we need to
normalize the alignment produced by Viterbi
search.

Eg ...e & ...

En e' &' e e
(a) hypothesis words are aligned to the backbone null

e &'l es'|es

Eg € 6 € & €3 &3

o e,

e,

)
£

€3
e,

E, e' &' ..
(b) a backbone word is aligned to no hypothesis word

Figure 3: illustration of alignment normalization

First, whenever more than one hypothesis
words are aligned to one backbone word, we keep
the link which gives the highest occupation
probability computed via the forward-backward
algorithm. The other hypothesis words originally



aligned to the backbone word will be aligned to the
null associated with that backbone word.

Second, for the hypothesis words that are
aligned to a particular null on the backbone side, a
set of nulls are inserted around that backbone word
associated with the null such that no links cross
each other. As illustrated in Fig. 3 (a), if a
hypothesis word e, is aligned to the backbone
word e,, a null is inserted in front of the backbone
word e, linked to the hypothesis word e;’ that
comes before e,’. Nulls are also inserted for other
hypothesis words such as e;” and e,  after the
backbone word e,. If there is no hypothesis word
aligned to that backbone word, all nulls are
inserted after that backbone word .2

For a backbone word that is aligned to no
hypothesis word, a null is inserted on the
hypothesis side, right after the hypothesis word
which is aligned to the immediately preceding
backbone word. An example is shown in Fig. 3 (b).

4 Related work

The two main hypothesis alignment methods for
system combination in the previous literature are
GlIZA++ and TER-based methods. Matusov et al.
(2006) proposed using GIZA++ to align words
between different MT hypotheses, where all
hypotheses of the test corpus are collected to create
hypothesis pairs for GIZA++ training. This
approach uses the conventional HMM model
bootstrapped from IBM Model-1 as implemented
in GIZA++, and heuristically combines results
from aligning in both directions. System
combination based on this approach gives an
improvement over the best single system.
However, the number of hypothesis pairs for
training is limited by the size of the test corpus.
Also, MT hypotheses from the same source
sentence are correlated with each other and these
hypothesis pairs are not i.i.d. data samples.
Therefore, GIZA++ training on such a data set may
be unreliable.

Bangalore et al. (2001) used a multiple string-
matching algorithm based on Levenshtein edit
distance, and later Sim et al. (2007) and Rosti et al.
(2007) extended it to a TER-based method for
hypothesis alignment. TER (Snover et al., 2006)

3 This only happens if no hypothesis word is aligned to a
backbone word but some hypothesis words are aligned to the
null associated with that backbone word.
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measures the minimum number of edits, including
substitution, insertion, deletion, and shift of blocks
of words, that are needed to modify a hypothesis so
that it exactly matches the other hypothesis. The
best alignment is the one that gives the minimum
number of translation edits. TER-based confusion
network construction and system combination has
demonstrated superior performance on various
large-scale MT tasks (Rosti. et al, 2007). However,
when searching for the optimal alignment, the
TER-based method uses a strict surface hard match
for counting edits. Therefore, it is not able to
handle synonym matching well. Moreover,
although TER-based alignment allows phrase
shifts to accommodate the non-monotonic word
ordering, all non-monotonic shifts are penalized
equally no matter how short or how long the move
is, and this penalty is set to be the same as that for
substitution, deletion, and insertion edits.
Therefore, its modeling of non-monotonic word
ordering is very coarse-grained.

In contrast to the GIZA++-based method, our
IHMM-based method has a similarity model
estimated using bilingual word alignment HMMs
that are trained on a large amount of bi-text data.
Moreover, the surface similarity information is
explicitly incorporated in our model, while it is
only used implicitly via parameter initialization for
IBM Model-1 training by Matusov et al. (2006).
On the other hand, the TER-based alignment
model is similar to a coarse-grained, non-
normalized version of our IHMM, in which the
similarity model assigns no penalty to an exact
surface match and a fixed penalty to all
substitutions, insertions, and deletions, and the
distortion model simply assigns no penalty to a
monotonic jump, and a fixed penalty to all other
jumps, equal to the non-exact-match penalty in the
similarity model.

There have been other hypothesis alignment
methods. Karakos, et al. (2008) proposed an ITG-
based method for hypothesis alignment, Rosti et al.
(2008) proposed an incremental alignment method,
and a heuristic-based matching algorithm was
proposed by Jayaraman and Lavie (2005).

5 Evaluation

In this section, we evaluate our IHMM-based
hypothesis alignment method on the Chinese-to-
English (C2E) test in the constrained training track



of the 2008 NIST Open MT Evaluation (NIST,
2008). We compare to the TER-based method used
by Rosti et al. (2007). In the following
experiments, the NIST BLEU score is used as the
evaluation metric (Papineni et al., 2002), which is
reported as a percentage in the following sections.
51 Implementation details

In our implementation, the backbone is selected
with MBR. Only the top hypothesis from each
single system is considered as a backbone. A
uniform posteriori probability is assigned to all
hypotheses. TER is used as loss function in the
MBR computation.

Similar to (Rosti et al., 2007), each word in the
confusion network is associated with a word
posterior probability. Given a system S, each of its
hypotheses is assigned with a rank-based score of
1/(1+r)", where r is the rank of the hypothesis, and
n is a rank smoothing parameter. The system
specific rank-based score of a word w for a given
system S is the sum of all the rank-based scores of
the hypotheses in system S that contain the word w
at the given position (after hypothesis alignment).
This score is then normalized by the sum of the
scores of all the alternative words at the same
position and from the same system S to generate
the system specific word posterior. Then, the total
word posterior of w over all systems is a sum of
these system specific posteriors weighted by
system weights.

Beside the word posteriors, we use language
model scores and a word count as features for
confusion network decoding.

Therefore, for an M-way system combination
that uses N LMs, a total of M+N+1 decoding
parameters, including M-1 system weights, one
rank smoothing factor, N language model weights,
and one weight for the word count feature, are
optimized using Powell’s method (Brent, 1973) to
maximize BLEU score on a development set* .

Two language models are used in our
experiments. One is a trigram model estimated
from the English side of the parallel training data,
and the other is a 5-gram model trained on the
English GigaWord corpus from LDC using the
MSRLM toolkit (Nguyen et al, 2007).

* The parameters of IHMM are not tuned by maximum-BLEU
training.
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In order to reduce the fluctuation of BLEU
scores caused by the inconsistent translation output
length, an unsupervised length adaptation method
has been devised. We compute an expected length
ratio between the MT output and the source
sentences on the development set after maximum-
BLEU training. Then during test, we adapt the
length of the translation output by adjusting the
weight of the word count feature such that the
expected output/source length ratio is met. In our
experiments, we apply length adaptation to the
system combination output at the level of the
whole test corpus.

5.2 Development and test data

The development (dev) set used for system
combination parameter training contains 1002
sentences sampled from the previous NIST MT
Chinese-to-English test sets: 35% from MTO04,
55% from MTO05, and 10% from MTO06-newswire.
The test set is the MTO08 Chinese-to-English
“current” test set, which includes 1357 sentences
from both newswire and web-data genres. Both
dev and test sets have four references per sentence.

As inputs to the system combination, 10-best
hypotheses for each source sentence in the dev and
test sets are collected from each of the eight single
systems. All outputs on the MTO8 test set were
true-cased before scoring using a log-linear
conditional Markov model proposed by Toutanova
et al. (2008). However, to save computation effort,
the results on the dev set are reported in case
insensitive BLEU (ciBLEU) score instead.

5.3 Experimental results

In our main experiments, outputs from a total of
eight single MT systems were combined. As listed
in Table 1, Sys-1 is a tree-to-string system
proposed by Quirk et al., (2005); Sys-2 is a phrase-
based system with fast pruning proposed by Moore
and Quirk (2008); Sys-3 is a phrase-based system
with syntactic source reordering proposed by
Wang et al. (2007a); Sys-4 is a syntax-based pre-
ordering system proposed by Li et. al. (2007); Sys-
5 is a hierarchical system proposed by Chiang
(2007); Sys-6 is a lexicalized re-ordering system
proposed by Xiong et al. (2006); Sys-7 is a two-
pass phrase-based system with adapted LM
proposed by Foster and Kuhn (2007); and Sys-8 is



a hierarchical system with two-pass rescoring
using a parser-based LM proposed by Wang et al.,
(2007b). All systems were trained within the
confines of the constrained training condition of
NIST MTO8 evaluation. These single systems are
optimized with maximum-BLEU training on
different subsets of the previous NIST MT test
data. The bilingual translation models used to
compute the semantic similarity are from the word-
dependent HMMs proposed by He (2007), which
are trained on two million parallel sentence-pairs
selected from the training corpus allowed by the
constrained training condition of MTO08.

5.3.1 Comparison with TER alignment

In the IHMM-based method, the smoothing
factor for surface similarity model is set to p = 3,
the interpolation factor of the overall similarity
model is set to o = 0.3, and the controlling factor of
the distance-based distortion parameters is set to
K=2. These settings are optimized on the dev set.
Individual system results and system combination
results using both IHMM and TER alignment, on
both the dev and test sets, are presented in Table 1.
The TER-based hypothesis alignment tool used in
our experiments is the publicly available TER Java
program, TERCOM (Snover et al., 2006). Default
settings of TERCOM are used in the following
experiments.

On the dev set, the case insensitive BLEU score
of the IHMM-based 8-way system combination
output is about 5.8 points higher than that of the
best single system. Compared to the TER-based
method, the IHMM-based method is about 1.5
BLEU points better. On the MTO08 test set, the
IHMM-based system combination gave a case
sensitive BLEU score of 30.89%. It outperformed
the best single system by 4.7 BLEU points and the
TER-based system combination by 1.0 BLEU
points. Note that the best single system on the dev
set and the test set are different. The different
single systems are optimized on different tuning
sets, so this discrepancy between dev set and test
set results is presumably due to differing degrees
of mismatch between the dev and test sets and the
various tuning sets.
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Table 1. Results of single and combined systems
on the dev set and the MTO08 test set

System Dev MTO8
CiBLEU% BLEU%
System 1 34.08 21.75
System 2 33.78 20.42
System 3 34.75 21.69
System 4 37.85 25.52
System 5 37.80 24.57
System 6 37.28 24.40
System 7 32.37 25.51
System 8 34.98 26.24
TER 42.11 29.89
IHMM 43.62 30.89

In order to evaluate how well our method
performs when we combine more systems, we
collected MT outputs on MTO08 from seven
additional single systems as summarized in Table
2. These systems belong to two groups. Sys-9 to
Sys-12 are in the first group. They are syntax-
augmented hierarchical systems similar to those
described by Shen et al. (2008) using different
Chinese word segmentation and language models.
The second group has Sys-13 to Sys-15. Sys-13 is
a phrasal system proposed by Koehn et al. (2003),
Sys-14 is a hierarchical system proposed by
Chiang (2007), and Sys-15 is a syntax-based
system proposed by Galley et al. (2006). All seven
systems were trained within the confines of the
constrained training condition of NIST MTO08
evaluation.

We collected 10-best MT outputs only on the
MTO8 test set from these seven extra systems. No
MT outputs on our dev set are available from them
at present. Therefore, we directly adopt system
combination parameters trained for the previous 8-
way system combination, except the system
weights, which are re-set by the following
heuristics: First, the total system weight mass 1.0 is
evenly divided among the three groups of single
systems: {Sys-1~8}, {Sys-9~12}, and {Sys-
13~15}. Each group receives a total system weight
mass of 1/3. Then the weight mass is further
divided in each group: in the first group, the
original weights of systems 1~8 are multiplied by
1/3; in the second and third groups, the weight
mass is evenly distributed within the group, i.e.,
1/12 for each system in group 2, and 1/9 for each



system in group 3°. Length adaptation is applied to
control the final output length, where the same
expected length ratio of the previous 8-way system
combination is adopted.

The results of the 15-way system combination
are presented in Table 3. It shows that the IHMM-
based method is still about 1 BLEU point better
than the TER-based method. Moreover, combining
15 single systems gives an output that has a NIST
BLEU score of 34.82%, which is 3.9 points better
than the best submission to the NIST MTO08
constrained training track (NIST, 2008). To our
knowledge, this is the best result reported on this
task.

Table 2. Results of seven additional single systems
on the NIST MTO8 test set

System MTO8
BLEU%
System 9 29.59
System 10  29.57
System 11 29.64
System 12 29.85
System 13 25.53
System 14 26.04
System 15 29.70

Table 3. Results of the 15-way system combination
on the NIST MT08 C2E test set

Sys. Comb. MTO08
BLEU%

TER 33.81

IHMM 34.82

5.3.2 Effect of the similarity model

In this section, we evaluate the effect of the
semantic similarity model and the surface
similarity model by varying the interpolation
weight o of (2). The results on both the dev and
test sets are reported in Table 4. In one extreme
case, a = 1, the overall similarity model is based
only on semantic similarity. This gives a case
insensitive BLEU score of 41.70% and a case
sensitive BLEU score of 28.92% on the dev and
test set, respectively. The accuracy is significantly
improved to 43.62% on the dev set and 30.89% on
test set when o = 0.3. In another extreme case, a =

® This is just a rough guess because no dev set is available. We
believe a better set of system weights could be obtained if MT
outputs on a common dev set were available.
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0, in which only the surface similarity model is
used for the overall similarity model, the
performance degrades by about 0.2 point.
Therefore, the surface similarity information seems
more important for monolingual hypothesis
alignment, but both sub-models are useful.

Table 4. Effect of the similarity model

Dev Test

CiBLEU% BLEU%
a=1.0 41.70 28.92
a=0.7 42.86 30.50
a=0.5 43.11 30.94
a=0.3 43.62 30.89
a=0.0 43.35 30.73

5.3.3 Effect of the distortion model

We investigate the effect of the distance-based
distortion model by varying the controlling factor
K'in (6). For example, setting K=1.0 gives a linear-
decay distortion model, and setting K=2.0 gives a
guadratic smoothed distance-based distortion
model. As shown in Table 5, the optimal result can
be achieved using a properly smoothed distance-
based distortion model.

Table 5. Effect of the distortion model

Dev Test

CiBLEU% BLEU%
K=1.0 42.94 30.44
K=2.0 43.62 30.89
K=4.0 43.17 30.30
K=8.0 43.09 30.01

6 Conclusion

Synonym matching and word ordering are two
central issues for hypothesis alignment in
confusion-network-based MT system combination.
In this paper, an IHMM-based method is proposed
for hypothesis alignment. It uses a similarity model
for synonym matching and a distortion model for
word ordering. In contrast to previous methods, the
similarity model explicitly incorporates both
semantic and surface word similarity, which is
critical to monolingual word alignment, and a
smoothed distance-based distortion model is used
to model the first-order dependency of word
ordering, which is shown to be better than simpler
approaches.



Our experimental results show that the IHMM-
based hypothesis alignment method gave superior
results on the NIST MT08 C2E test set compared
to the TER-based method. Moreover, we show that
our system combination method can scale up to
combining more systems and produce a better
output that has a case sensitive BLEU score of
34.82, which is 3.9 BLEU points better than the
best official submission of MTO08.
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Abstract

The intersection of tree transducer-based
translation models with n-gram language
models results in huge dynamic programs for
machine translation decoding. We propose a
multipass, coarse-to-fine approach in which
the language model complexity is incremen-
tally introduced. In contrast to previous order-
based bigram-to-trigram approaches, we fo-
cus on encoding-based methods, which use
a clustered encoding of the target language.
Across various encoding schemes, and for
multiple language pairs, we show speed-ups of
up to 50 times over single-pass decoding while
improving BLEU score. Moreover, our entire
decoding cascade for trigram language models
is faster than the corresponding bigram pass
alone of a bigram-to-trigram decoder.

1 Introduction

In the absence of an n-gram language model, decod-
ing a synchronous CFG translation model is very
efficient, requiring only a variant of the CKY al-
gorithm. As in monolingual parsing, dynamic pro-
gramming items are simply indexed by a source lan-
guage span and a syntactic label. Complexity arises
when n-gram language model scoring is added, be-
cause items must now be distinguished by their ini-
tial and final few target language words for purposes
of later combination. This lexically exploded search
space is a root cause of inefficiency in decoding, and
several methods have been suggested to combat it.
The approach most relevant to the current work is
Zhang and Gildea (2008), which begins with an ini-
tial bigram pass and uses the resulting chart to guide
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a final trigram pass. Substantial speed-ups are ob-
tained, but computation is still dominated by the ini-
tial bigram pass. The key challenge is that unigram
models are too poor to prune well, but bigram mod-
els are already huge. In short, the problem is that
there are too many words in the target language. In
this paper, we propose a new, coarse-to-fine, mul-
tipass approach which allows much greater speed-
ups by translating into abstracted languages. That
is, rather than beginning with a low-order model of
a still-large language, we exploit language projec-
tions, hierarchical clusterings of the target language,
to effectively reduce the size of the target language.
In this way, initial passes can be very quick, with
complexity phased in gradually.

Central to coarse-to-fine language projection is
the construction of sequences of word clusterings
(see Figure 1). The clusterings are deterministic
mappings from words to clusters, with the property
that each clustering refines the previous one. There
are many choice points in this process, including
how these clusterings are obtained and how much
refinement is optimal for each pass. We demon-
strate that likelihood-based hierarchical EM train-
ing (Petrov et al., 2006) and cluster-based language
modeling methods (Goodman, 2001) are superior
to both rank-based and random-projection methods.
In addition, we demonstrate that more than two
passes are beneficial and show that our computa-
tion is equally distributed over all passes. In our
experiments, passes with less than 16-cluster lan-
guage models are most advantageous, and even a
single pass with just two word clusters can reduce
decoding time greatly.
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To follow related work and to focus on the effects
of the language model, we present translation re-
sults under an inversion transduction grammar (ITG)
translation model (Wu, 1997) trained on the Eu-
roparl corpus (Koehn, 2005), described in detail in
Section 3, and using a trigram language model. We
show that, on a range of languages, our coarse-to-
fine decoding approach greatly outperforms base-
line beam pruning and bigram-to-trigram pruning on
time-to-BLEU plots, reducing decoding times by up
to a factor of 50 compared to single pass decoding.
In addition, coarse-to-fine decoding increases BLEU
scores by up to 0.4 points. This increase is a mixture
of improved search and subtly advantageous coarse-
to-fine effects which are further discussed below.

2 Coarse-to-Fine Decoding

In coarse-to-fine decoding, we create a series of ini-
tially simple but increasingly complex search prob-
lems. We then use the solutions of the simpler prob-
lems to prune the search spaces for more complex
models, reducing the total computational cost.

2.1 Related Work

Taken broadly, the coarse-to-fine approach is not
new to machine translation (MT) or even syntactic
MT. Many common decoder precomputations can
be seen as coarse-to-fine methods, including the A*-
like forward estimates used in the Moses decoder
(Koehn et al., 2007). In an ITG framework like
ours, Zhang and Gildea (2008) consider an approach
in which the results of a bigram pass are used as
an A* heuristic to guide a trigram pass. In their
two-pass approach, the coarse bigram pass becomes
computationally dominant. Our work differs in two
ways. First, we use posterior pruning rather than
A* search. Unlike A* search, posterior pruning
allows multipass methods. Not only are posterior
pruning methods simpler (for example, there is no
need to have complex multipart bounds), but they
can be much more effective. For example, in mono-
lingual parsing, posterior pruning methods (Good-
man, 1997; Charniak et al., 2006; Petrov and Klein,
2007) have led to greater speedups than their more
cautious A* analogues (Klein and Manning, 2003;
Haghighi et al., 2007), though at the cost of guaran-
teed optimality.
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Figure 2: Possible state projections 7 for the target noun
phrase “the report for these states” using the clusters
from Figure 1. The number of bits used to encode the tar-
get language vocabulary is varied along the x-axis. The
language model order is varied along the y-axis.

Second, we focus on an orthogonal axis of ab-
straction: the size of the target language. The in-
troduction of abstract languages gives better control
over the granularity of the search space and provides
a richer set of intermediate problems, allowing us
to adapt the level of refinement of the intermediate,
coarse passes to minimize total computation.

Beyond coarse-to-fine approaches, other related
approaches have also been demonstrated for syntac-
tic MT. For example, Venugopal et al. (2007) con-
siders a greedy first pass with a full model followed
by a second pass which bounds search to a region
near the greedy results. Huang and Chiang (2007)
searches with the full model, but makes assumptions
about the the amount of reordering the language
model can trigger in order to limit exploration.

2.2 Language Model Projections

When decoding in a syntactic translation model with
an n-gram language model, search states are spec-
ified by a grammar nonterminal X as well as the
the n-1 left-most target side words /,—1,...,/; and
right-most target side words 71, . . ., r,—1 of the gen-
erated hypothesis. We denote the resulting lexical-
ized state as I, 1,...,01-X-r1,...,rp_1. Assum-
ing a vocabulary V' and grammar symbol set GG, the
state space size is up to |V|?®~1|G/|, which is im-
mense for a large vocabulary when n > 1. We
consider two ways to reduce the size of this search
space. First, we can reduce the order of the lan-
guage model. Second, we can reduce the number
of words in the vocabulary. Both can be thought
of as projections of the search space to smaller ab-
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Figure 1: An example of hierarchical clustering of target language vocabulary (see Section 4). Even with a small
number of clusters our divisive HMM clustering (Section 4.3) captures sensible syntactico-semantic classes.

stracted spaces. Figure 2 illustrates those two or-
thogonal axes of abstraction.

Order-based projections are simple. As shown
in Figure 2, they simply strip off the appropriate
words from each state, collapsing dynamic program-
ming items which are identical from the standpoint
of their left-to-right combination in the lower or-
der language model. However, having only order-
based projections is very limiting. Zhang and Gildea
(2008) found that their computation was dominated
by their bigram pass. The only lower-order pass
possible uses a unigram model, which provides no
information about the interaction of the language
model and translation model reorderings. We there-
fore propose encoding-based projections. These
projections reduce the size of the target language vo-
cabulary by deterministically projecting each target
language word to a word cluster. This projection ex-
tends to the whole search state in the obvious way:
assuming a bigram language model, the state [-X-r
projects to ¢(1)-X-c(r), where ¢(+) is the determin-
istic word-to-cluster mapping.

In our multipass approach, we will want a se-
quence cj . . . ¢, of such projections. This requires a
hierarchical clustering of the target words, as shown
in Figure 1. Each word’s cluster membership can be
represented by an n-bit binary string. Each prefix of
length k declares that word’s cluster assignment at
the k-bit level. As we vary k, we obtain a sequence
of projections c(+), each one mapping words to a
more refined clustering. When performing inference
in a k-bit projection, we replace the detailed original
language model over words with a coarse language
model LM}, over the k-bit word clusters. In addition,
we replace the phrase table with a projected phrase
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table, which further increases the speed of projected
passes. In Section 4, we describe the various clus-
tering schemes explored, as well as how the coarse
LM, are estimated.

2.3 Multipass Decoding

Unlike previous work, where the state space exists
only at two levels of abstraction (i.e. bigram and tri-
gram), we have multiple levels to choose from (Fig-
ure 2). Because we use both encoding-based and
order-based projections, our options form a lattice
of coarser state spaces, varying from extremely sim-
ple (a bigram model with just two word clusters) to
nearly the full space (a trigram model with 10 bits or
1024 word clusters).

We use this lattice to perform a series of coarse
passes with increasing complexity. More formally,
we decode a source sentence multiple times, in a
sequence of state spaces Sg, S1, ..., 9,=5, where
each S; is a refinement of .5;_; in either language
model order, language encoding size, or both. The
state spaces S; and S; (¢ < j) are related to each
other via a projection operator 7;_;(-) which maps
refined states deterministically to coarser states.

We start by decoding an input x in the simplest
state space Sp. In particular, we compute the chart
of the posterior distributions pg(s) = P(s|x) for all
states s € Sp. These posteriors will be used to prune
the search space 57 of the following pass. States s
whose posterior falls below a threshold ¢ trigger the
removal of all more refined states s’ in the subse-
quent pass (see Figure 3). This technique is poste-
rior pruning, and is different from A* methods in
two main ways. First, it can be iterated in a multi-
pass setting, and, second, it is generally more effi-
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Figure 3: Example of state pruning in coarse-to-fine decoding using the language encoding projection (see Section 2.2).
During the coarse one-bit word cluster pass, two of the four possible states are pruned. Every extension of the pruned
one-bit states (indicated by the grey shading) are not explored during the two-bit word cluster pass.

cient with a potential cost of increased search errors
(see Section 2.1 for more discussion).

Looking at Figure 2, multipass coarse-to-fine de-
coding can be visualized as a walk from a coarse
point somewhere in the lower left to the most re-
fined point in the upper right of the grid. Many
coarse-to-fine schedules are possible. In practice,
we might start decoding with a 1-bit word bigram
pass, followed by an 3-bit word bigram pass, fol-
lowed by a 5-bit word trigram pass and so on (see
Section 5.3 for an empirical investigation). In terms
if time, we show that coarse-to-fine gives substantial
speed-ups. There is of course an additional mem-
ory requirement, but it is negligible. As we will see
in our experiments (Section 5) the largest gains can
be obtained with extremely coarse language mod-
els. In particular, the largest coarse model we use in
our best multipass decoder uses a 4-bit encoding and
hence has only 16 distinct words (or at most 4096
trigrams).

3 Inversion Transduction Grammars

While our approach applies in principle to a vari-
ety of machine translation systems (phrase-based or
syntactic), we will use the inversion transduction
grammar (ITG) approach of Wu (1997) to facili-
tate comparison with previous work (Zens and Ney,
2003; Zhang and Gildea, 2008) as well as to focus on
language model complexity. ITGs are a subclass of
synchronous context-free grammars (SCFGs) where
there are only three kinds of rules. Preterminal unary
productions produce terminal strings on both sides
(words or phrases): X — e/f. Binary in-order pro-
ductions combine two phrases monotonically (X —
[Y'Z]). Finally, binary inverted productions invert
the order of their children (X — (Y Z)). These pro-
ductions are associated with rewrite weights in the
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standard way.

Without a language model, SCFG decoding is just
like (monolingual) CFG parsing. The dynamic pro-
gramming states are specified by ; X;, where (i, j) is
a source sentence span and X is a nonterminal. The
only difference is that whenever we apply a CFG
production on the source side, we need to remem-
ber the corresponding synchronous production on
the target side and store the best obtainable transla-
tion via a backpointer. See Wu (1996) or Melamed
(2004) for a detailed exposition.

Once we integrate an n-gram language model, the
state space becomes lexicalized and combining dy-
namic programming items becomes more difficult.
Each state is now parametrized by the initial and
final n—1 words in the target language hypothesis:
ln—1,...;11-;Xj-r1,...,7,—1. Whenever we combine
two dynamic programming items, we need to score
the fluency of their concatentation by incorporat-
ing the score of any language model features which
cross the target side boundaries of the two concate-
nated items (Chiang, 2005). Decoding with an in-
tegrated language model is computationally expen-
sive for two reasons: (1) the need to keep track of
a large number of lexicalized hypotheses for each
source span, and (2) the need to frequently query the
large language model for each hypothesis combina-
tion.

Multipass coarse-to-fine decoding can alleviate
both computational issues. We start by decoding
in an extremely coarse bigram search space, where
there are very few possible translations. We com-
pute standard inside/outside probabilities (i.5/0S),
as follows. Consider the application of non-inverted
binary rule: we combine two items l-; By-rp and
le-1,Cj-r. spanning (i, k) and (k, j) respectively to
form a larger item l-;A;-r., spanning (i,j). The
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Figure 4: Monotonic combination of two hypotheses dur-
ing the inside pass involves scoring the fluency of the con-
catenation with the language model.

inside score of the new item is incremented by:

iS(lb—iAj—Tc) += p(X e [YZ]) . iS(lb—in—Tb) .
1S (le-xCj-r¢) - LM (13, 1)

This process is also illustrated in Figure 4. Of
course, we also loop over the split point k and ap-
ply the other two rule types (inverted concatenation,
terminal generation). We omit those cases from this
exposition, as well as the update for the outside pass;
they are standard and similar. Once we have com-
puted the inside and outside scores, we compute pos-
terior probabilities for all items:

iS(la—iAj-T‘a)OS(la-iAj—Ta)
iS(root)

p(la'iAj'ra) =

where iS(root) is sum of all translations’ scores.
States with low posteriors are then pruned away.
We proceed to compute inside/outside score in the
next, more refined search space, using the projec-
tions 7; ;1 to map between states in S; and S;_1.
In each pass, we skip all items whose projection into
the previous stage had a probability below a stage-
specific threshold. This process is illustrated in Fig-
ure 3. When we reach the most refined search space
Soo, We do not prune, but rather extract the Viterbi
derivation instead.!

4 Learning Coarse Languages

Central to our encoding-based projections (see Sec-
tion 2.2) are hierarchical clusterings of the tar-
get language vocabulary. In the present work,
these clusterings are each k-bit encodings and yield
sequences of coarse language models LM; and
phrasetables PTy.

'Other final decoding strategies are possible, of course, in-

cluding variational methods and minimum-risk methods (Zhang
and Gildea, 2008).
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Given a hierarchical clustering, we estimate the
corresponding LMy, from a corpus obtained by re-
placing each token in a target language corpus with
the appropriate word cluster. As with our original
refined language model, we estimate each coarse
language model using the SRILM toolkit (Stolcke,
2002). The phrasetables PTj, are similarly estimated
by replacing the words on the target side of each
phrase pair with the corresponding cluster. This pro-
cedure can potentially map two distinct phrase pairs
to the same coarse translation. In such cases we keep
only one coarse phrase pair and sum the scores of the
colliding originals.

There are many possible schemes for creating hi-
erarchical clusterings. Here, we consider several di-
visive clustering methods, where coarse word clus-
ters are recursively split into smaller subclusters.

4.1 Random projections

The simplest approach to splitting a cluster is to ran-
domly assign each word type to one of two new sub-
clusters. Random projections have been shown to be
a good and computationally inexpensive dimension-
ality reduction technique, especially for high dimen-
sional data (Bingham and Mannila, 2001). Although
our best performance does not come from random
projections, we still obtain substantial speed-ups
over a single pass fine decoder when using random
projections in coarse passes.

4.2 Frequency clustering

In frequency clustering, we allocate words to clus-
ters by frequency. At each level, the most frequent
words go into one cluster and the rarest words go
into another one. Concretely, we sort the words in
a given cluster by frequency and split the cluster so
that the two halves have equal token mass. This ap-
proach can be seen as a radically simplified version
of Brown et al. (1992). It can, and does, result in
highly imbalanced cluster hierarchies.

4.3 HMM clustering

An approach found to be effective by Petrov and
Klein (2007) for coarse-to-fine parsing is to use
likelihood-based hierarchical EM training. = We
adopt this approach here by identifying each clus-
ter with a latent state in an HMM and determiniz-
ing the emissions so that each word type is emitted
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Figure 5: Results of coarse language model perplexity
experiment (see Section 4.5). HMM and JClustering have
lower perplexity than frequency and random clustering
for all number of bits in the language encoding.

by only one state. When splitting a cluster s into
51 and s, we initially clone and mildly perturb its
corresponding state. We then use EM to learn pa-
rameters, which splits the state, and determinize the
result. Specifically, each word w is assigned to s; if
P(w|s1) > P(wl|s2) and sz otherwise. Because of
this determinization after each round of EM, a word
in one cluster will be allocated to exactly one of that
cluster’s children. This process not only guarantees
that the clusters are hierarchical, it also avoids the
state drift discussed by Petrov and Klein (2007). Be-
cause the emissions are sparse, learning is very effi-
cient. An example of some of the words associated
with early splits can be seen in Figure 1.

4.4 JCluster

Goodman (2001) presents a clustering scheme
which aims to minimize the entropy of a word given
a cluster. This is accomplished by incrementally
swapping words between clusters to locally mini-
mize entropy.” This clustering algorithm was devel-
oped with a slightly different application in mind,
but fits very well into our framework, because the
hierarchical clusters it produces are trained to maxi-
mize predictive likelihood.

4.5 Clustering Results

We applied the above clustering algorithms to our
monolingual language model data to obtain hierar-

>The software for this clustering technique is available at
http://research.microsoft.com/~ joshuago/.
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Figure 6: Coarse-to-fine decoding with HMM or JClus-
tering coarse language models reduce decoding times
while increasing accuracy.

chical clusters. We then trained coarse language
models of varying granularity and evaluated them on
a held-out set. To measure the quality of the coarse
language models we use perplexity (exponentiated
cross-entropy).> Figure 5 shows that HMM clus-
tering and JClustering have lower perplexity than
frequency and random based clustering for all com-
plexities. In the next section we will present a set of
machine translation experiments using these coarse
language models; the clusterings with better per-
plexities generally produce better decoders.

S Experiments

We ran our experiments on the Europarl corpus
(Koehn, 2005) and show results on Spanish, French
and German to English translation. We used the
setup and preprocessing steps detailed in the 2008
Workshop on Statistical Machine Translation.* Our
baseline decoder uses an ITG with an integrated tri-
gram language model. Phrase translation parame-
ters are learned from parallel corpora with approx-
imately 8.5 million words for each of the language
pairs. The English language model is trained on the
entire corpus of English parliamentary proceedings
provided with the Europarl distribution. We report
results on the 2000 development test set sentences
of length up to 126 words (average length was 30
words).

3We assumed that each cluster had a uniform distribution
over all the words in that cluster.
4See http://www.statmt .orqg/wnt 08 for details.
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Our ITG translation model is broadly competitive
with state-of-the-art phrase-based-models trained on
the same data. For example, on the Europarl devel-
opment test set, we fall short of Moses (Koehn et al.,
2007) by less than one BLEU point. On Spanish-
English we get 29.47 BLEU (compared to Moses’s
30.40), on French-English 29.34 (vs. 29.95), and
23.80 (vs. 24.64) on German-English. These differ-
ences can be attributed primarily to the substantially
richer distortion model used by Moses.

The multipass coarse-to-fine architecture that we
have introduced presents many choice points. In
the following, we investigate various axes individu-
ally. We present our findings as BLEU-to-time plots,
where the tradeoffs were generated by varying the
complexity and the number of coarse passes, as well
as the pruning thresholds and beam sizes. Unless
otherwise noted, the experiments are on Spanish-
English using trigram language models. When
different decoder settings are applied to the same
model, MERT weights (Och, 2003) from the unpro-
jected single pass setup are used and are kept con-
stant across runs. In particular, the same MERT
weights are used for all coarse passes; note that this
slightly disadvantages the multipass runs, which use
MERT weights optimized for the single pass de-
coder.

5.1 Clustering

In section Section 4, HMM clustering and JCluster-
ing gave lower perplexities than frequency and ran-
dom clustering when using the same number of bits
for encoding the language model. To test how these
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Figure 8: A combination of order-based and encoding-
based coarse-to-fine decoding yields the best results.

models perform at pruning, we ran our decoder sev-
eral times, varying only the clustering source. In
each case, we used a 2-bit trigram model as a sin-
gle coarse pass, followed by a fine output pass. Fig-
ure 6 shows that we can obtain significant improve-
ments over the single-pass baseline regardless of the
clustering. To no great surprise, HMM clustering
and JClustering yield better results, giving a 30-fold
speed-up at the same accuracy, or improvements of
about 0.3 BLEU when given the same time as the
single pass decoder. We discuss this increase in ac-
curacy over the baseline in Section 5.5. Since the
performance differences between those two cluster-
ing algorithms are negligible, we will use the sim-
pler HMM clustering in all subsequent experiments.

5.2 Spacing

Given a hierarchy of coarse language models, all
trigam for the moment, we need to decide on the
number of passes and the granularity of the coarse
language models used in each pass. Figure 7 shows
how decoding time varies for different multipass
schemes to achieve the same translation quality.
A single coarse pass with a 4-bit language model
cuts decoding time almost in half. However, one
can further cut decoding time by starting with even
coarser language models. In fact, the best results
are achieved by decoding in sequence with 1-, 2-
and 3-bit language models before running the final
fine trigram pass. Interestingly, in this setting, each
pass takes about the same amount of time. A simi-
lar observation was reported in the parsing literature,
where coarse-to-fine inference with multiple passes
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BLEU scores on all language pairs and for all parameter settings.

of roughly equal complexity produces tremendous
speed-ups (Petrov and Klein, 2007).

5.3 Encoding vs. Order

As described in Section 2, the language model com-
plexity can be reduced either by decreasing the vo-
cabulary size (encoding-based projection) or by low-
ering the language model order from trigram to bi-
gram (order-based projection). Figure 7 shows that
both approaches alone yield comparable improve-
ments over the single pass baseline. Fortunately,
the two approaches are complimentary, allowing us
to obtain further improvements by combining both.
We found it best to first do a series of coarse bigram
passes, followed by a fine bigram pass, followed by
a fine trigram pass.

5.4 Final Results

Figure 9 compares our multipass coarse-to-fine de-
coder using language refinement to single pass de-
coding on three different languages. On each lan-
guage we get significant improvements in terms of
efficiency as well as accuracy. Overall, we can
achieve up to 50-fold speed-ups at the same accu-
racy, or alternatively, improvements of 0.4 BLEU
points over the best single pass run.

In absolute terms, our decoder translates on aver-
age about two Spanish sentences per second at the
highest accuracy setting.> This compares favorably
to the Moses decoder (Koehn et al., 2007), which
takes almost three seconds per sentence.

30f course, the time for an average sentence is much lower,
since long sentences dominate the overall translation time.
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5.5 Search Error Analysis

In multipass coarse-to-fine decoding, we noticed
that in addition to computational savings, BLEU
scores tend to improve. A first hypothesis is
that coarse-to-fine decoding simply improves search
quality, where fewer good items fall off the beam
compared to a simple fine pass. However, this hy-
pothesis turns out to be incorrect. Table 1 shows
the percentage of test sentences for which the BLEU
score or log-likelihood changes when we switch
from single pass decoding to coarse-to-fine multi-
pass decoding. Only about 30% of the sentences
get translated in the same way (if much faster) with
coarse-to-fine decoding. For the rest, coarse-to-fine
decoding mostly finds translations with lower likeli-
hood, but higher BLEU score, than single pass de-
coding.® An increase of the underlying objectives of
interest when pruning despite an increase in model-
score search errors has also been observed in mono-
lingual coarse-to-fine syntactic parsing (Charniak et
al., 1998; Petrov and Klein, 2007). This effect may
be because coarse-to-fine approximates certain min-
imum Bayes risk objective. It may also be an effect
of model intersection between the various passes’
models. In any case, both possibilities are often per-
fectly desirable. It is also worth noting that the num-
ber of search errors incurred in the coarse-to-fine
approach can be dramatically reduced (at the cost
of decoding time) by increasing the pruning thresh-
olds. However, the fortuitous nature of coarse-to-
fine search errors seems to be a substantial and de-
sirable effect.

SWe compared the influence of multipass decoding on the
TM score and the LM score; both decrease.
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Table 1: Percentage of sentences for which the BLEU
score/log-likelihood improves/drops during coarse-to-
fine decoding (compared to single pass decoding).

6 Conclusions

We have presented a coarse-to-fine syntactic de-
coder which utilizes a novel encoding-based lan-
guage projection in conjunction with order-based
projections to achieve substantial speed-ups. Un-
like A* methods, a posterior pruning approach al-
lows multiple passes, which we found to be very
beneficial for total decoding time. When aggres-
sively pruned, coarse-to-fine decoding can incur ad-
ditional search errors, but we found those errors to
be fortuitous more often than harmful. Our frame-
work applies equally well to other translation sys-
tems, though of course interesting new challenges
arise when, for example, the underlying SCFGs be-
come more complex.
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Abstract

In this paper, we present a novel method
based on CRFs in response to the two special
characteristics of “contextual dependency”
and “label redundancy” in sentence sentiment
classification. We try to capture the contextual
constraints on sentence sentiment using CRFs.
Through introducing redundant labels into the
original sentimental label set and organizing
all labels into a hierarchy, our method can add
redundant features into training for capturing
the label redundancy. The experimental
results prove that our method outperforms the
traditional methods like NB, SVM, MaxEnt
and standard chain CRFs. In comparison with
the cascaded model, our method can
effectively alleviate the error propagation
among different layers and obtain better
performance in each layer.

1 Introduction”

There are a lot of subjective texts in the web, such
as product reviews, movie reviews, news,
editorials and blogs, etc. Extracting these
subjective texts and analyzing their orientations
play significant roles in many applications such as

electronic commercial, etc. One of the most
important tasks in this field is sentiment
* Contact: Jun ZHAO, jzhao@nlpr.ia.ac.cn
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classification, which can be performed in several
levels: word level, sentence level, passage level,
etc. This paper focuses on sentence level sentiment
classification.

Commonly, sentiment classification contains
three layers of sub-tasks. From upper to lower, (1)
Subjective/Objective classification: the subjective
texts are extracted from the corpus teeming with
both subjective and objective texts. (2) Polarity
classification: a subjective text is classified into
“positive” or ‘“negative” according to the
sentimental expressions in the text. (3) Sentimental
strength rating: a subjective text is classified into
several grades which reflect the polarity degree of
“positive” or “negative”. It is a special multi-class
classification problem, where the classes are
ordered. In machine learning, this kind of problem
is also regarded as an ordinal regression problem
(Wei Wu et al. 2005). In this paper, we mainly
focus on this problem in sentiment classification.

Sentiment classification in sentence level has its
special characteristics compared with traditional
text classification tasks. Firstly, the sentiment of
each sentence in a discourse is not independent to
each other. In other words, the sentiment of each
sentence is related to those of other adjacent
sentences in the same discourse. The sentiment of
a sentence may vary in different contexts. If we
detach a sentence from the context, its sentiment
may not be inferred correctly. Secondly, there is
redundancy among the sentiment classes,

Proceedings of the 2008 Conference on Empirical Methods in Natural Language Processing, pages 117-126,
Honolulu, October 2008. (©)2008 Association for Computational Linguistics



especially in sentimental strength classes. For
example:

“I love the scenario of “No country for old man”
very much!!”

“This movie sounds good.”

The first sentence is labeled as “highly praised”
class and the second one is labeled as “something
good” class. Both the sentences express positive
sentiment for the movie, but the former expresses
stronger emotion than the latter. We can see that
both “highly praised” and “something good”
belong to an implicit class “positive”, which can be
regarded as the relation between them. If we add
these implicit classes in the label set, the sentiment
classes will form a hierarchical structure. For
example, “positive” can be regarded as the parent
class of “highly praised” and “something good”,
“subjective” can be regarded as the parent class of
“positive” and  “negative”. This  implicit
hierarchical structure among labels should not be
neglected because it may be beneficial for
improving the accuracy of sentiment classification.
In the paper, we call this characteristic of
sentiment classification as “label redundancy”.
Unfortunately, in our knowledge most of the
current research treats sentiment classification as a
traditional multi-classification task or an ordinal
regression task, which regard the sentimental
classes being independent to each other and each
sentence is also independent to the adjacent
sentences in the context. In other words, they
neglect the contextual information and the
redundancy among sentiment classes.

In order to consider the contextual information in
the process of the sentence sentiment classification,
some research defines contextual features and
some uses special graph-based formulation, like
(Bo Pang, et al. 2005). In order to consider the
label redundancy, one potential solution is to use a

cascaded framework which can combine
subjective/objective classification, polarity
classification and sentimental strength

classification together, where the classification
results of the preceding step will be the input of the
subsequent one. However, the subsequent
classification cannot provide constraint and
correction to the results of the preceding step,
which will lead to the accumulation and
propagation of the classification errors. As a result,
the performance of sentiment analysis of sentences
is often not satisfactory.
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This paper focuses on the above two special
characteristics of the sentiment classification
problem in the sentence level. To the first
characteristicc, ~we regard the  sentiment
classification as a sequence labeling problem and
use conditional random field (CRFs) model to
capture the relation between two adjacent
sentences in the context. To the second
characteristic, we propose a novel method based on
a CRF model, in which the original task is mapped
to a classification on a hierarchical structure, which
is formed by the original label set and some
additional implicit labels. In the hierarchical
classification framework, the relations between the
labels can be represented as the additional features
in classification. Because these features are related
to the original labels but unobserved, we name
them as “redundant features” in this paper. They
can be used to capture the redundant and
hierarchical relation between different sentiment
classes. In this way, not only the performance of
sentimental strength rating is improved, the
accuracies of subjective/objective classification
and polarity classification are also improved
compared with the traditional sentiment
classification method. And in comparison with the
cascaded method, the proposed approach can
effectively alleviate error propagation. The
experimental results on movie reviews prove the
validity of our method.
for

2 Capturing Contextual Influence

Sentiment Classification

For capturing the influence of the contexts to the
sentiment of a sentence, we treat original sentiment
classification as a sequence labeling problem. We
regard the sentiments of all the sentences
throughout a paragraph as a sequential flow of
sentiments, and we model it using a conditional
model. In this paper, we choose Conditional
Random Fields (CRFs) (Lafferty et al, 2001)
because it has better performance than other
sequence labeling tools in most NLP applications.
CRFs are undirected graphical models used to
calculate the conditional probability of a set of
labels given a set of input variables. We cite the
definitions of CRFs in (Lafferty et al, 2001). It
defines the conditional probability proportional to
the product of potential functions on cliques of the



expA-F(Y,X) )
Z(X)

where X is a set of input random variables and Y is

a set of random labels. F(Y,X)is an arbitrary

PY|X)=

feature function over its arguments, A is a learned
weight for each feature function and

Z(X)=) exp(A-F(Y,X)).

The training of CRFs is based on Maximum
Likelihood Principle (Fei Sha et al. 2003). The log
likelihood function is

L= [4-F(¥,X,)-logZ,(X,)]

Therefore, Limited-memory BFGS (L-BFGS)

algorithm is used to find this nonlinear

optimization parameters.

3 Label Redundancy in Sentiment
Classification

In this section, we explain the “label redundancy”
in sentiment classification mentioned in the first
section. We will analyze the effect of the label
redundancy on the performance of sentiment
classification from the experimental view.

We conduct the experiments of polarity
classification and sentimental strength rating on the
corpus which will be introduced in section 5 later.
The class set is also illustrated in that section.

Polarity classification is a three-class classification
process, and sentimental strength rating is a five-
class classification process. We use first 200
reviews as the training set which contains 6,079
sentences, and other 49 reviews, totally 1,531
sentences, are used as the testing set. Both the
three-class classification and the five-class
classification use standard CRFs model with the
same feature set. The results are shown in Table 1,
2 and 3, where “Answer” denotes the results given
by human, “Results” denotes the results given by
CRFs model, “Correct” denotes the number of
correct samples which is labeled by CRFs model.
We use precision, recall and F1 value as the
evaluation metrics.

Table 1 gives the result of sentimental strength
rating. Table 2 shows the polarity classification
results extracted from the results of sentimental
strength rating in Table 1. The extraction process is
as follows. In the sentimental strength rating
results, we combine the sentences with “PP” class
and the sentences with “P” class into “Pos” class,
and the sentences with “NN” class and the
sentences with “N” class into “Neg” class. So the
results of five-class classification are transformed
into the results of three-class classification. Table 3
is the results of performing polarity classification
in the data set by CRFs directly.

Label | Answer | Results | Correct | Precision | Recall F1
PP 51 67 5 0.0746 0.0980 | 0.0847
P 166 177 32 0.1808 0.1928 | 0.1866
Neu 1190 1118 968 0.8658 | 0.81.34 | 0.8388
N 105 140 25 0.1786 0.2381 | 0.2041
NN 19 29 1 0.0345 0.0526 | 0.0417
Total 1531 1531 1031 0.67.34 | 0.6734 | 0.6734

Table 1. Result of Sentimental Strength Rating

Label | Answer | Results | Correct | Precision | Recall F1
Pos 217 244 79 0.3238 | 0.3641 | 0.3427
Neu 1190 1118 968 0.8658 | 0.8134 | 0.8388
Neg 124 169 41 0.2426 | 0.3306 | 0.2799
Total 1531 1531 1088 0.7106 | 0.7106 | 0.7106

Table 2. Result of Polarity Classification Extracted from Table 1.

Label | Answer | Results | Correct | Precision | Recall F1
Pos 217 300 108 0.3600 | 0.4977 | 0.4178
Neu 1190 1101 971 0.8819 | 0.8160 | 0.8477
Neg 124 130 40 0.3077 | 0.3226 | 0.3150
Total 1531 1531 1119 0.7309 | 0.7309 | 0.7309

Table 3. Result of Polarity Classification

119



From the results we can find the following
phenomena.

(1) The corpus is severely unbalanced, the
objective sentences take the absolute majority in
the corpus, which leads to the poor accuracy for
classifying subjective sentences. The experiment in
Table 1 puts polarity classification and sentimental
strength rating under a unique CRFs model,
without considering the redundancy and
hierarchical structure between different classes. As
a result, the features for polarity classification will
usually cover the features for sentimental strength
rating. These reasons can explain why there is only
one sample labeled as “NN” correctly and only 5
samples labeled as “PP” correctly.

(2) Comparing Table 2 with 3, we can find that,
the F1 value of the polarity classification results
extracted from sentimental strength rating results is
lower than that of directly conducting polarity
classification. That is because the redundancy
between sentimental strength labels makes the
classifier confused to determine the polarity of the
sentence. Therefore, we should deal with the
sentiment analysis in a hierarchical frame which
can consider the redundancy between the different
classes and make full use of the subjective and
polarity information implicitly contained in
sentimental strength classes.

4 Capturing Label Redundancy for CRFs
via Adding Redundant Features

As mentioned above, it’s important for a classifier
to consider the redundancy between different
labels. However, from the standard CRFs
described in formula (1), we can see that the
training of CRFs only maximizes the probabilities
of the observed labels Y in the training corpus.
Actually, the redundant relation between sentiment
labels is unobserved. The standard CRFs still treats
each class as an isolated item so that its
performance is not satisfied.

In this section, we propose a novel method for
sentiment classification, which can capture the
redundant relation between sentiment labels
through adding redundant features. In the
following, we firstly show how to add these
redundant features, then illustrate the
characteristics of this method. After that, for the
sentiment analysis task, the process of feature
generation will be presented.
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4.1 Adding Redundant Features for CRFs

Adding redundant features has two steps. Firstly,
an implicit redundant label set is designed, which
can form a multi-layer hierarchical structure
together with the original labels. Secondly, in the
hierarchical classification framework, the implicit
labels, which reflect the relations between the
original labels, can be used as redundant features
in the training process. We will use the following
example to illustrate the first step for sentimental
strength rating task.

For the task of sentimental strength rating, the
original label set is {“PP (highly praised)”, “P
(something good)”, “Neu (objective description)”,
“N (something that needs improvement)” and “NN
(strong aversion)”’}. In order to introduce
redundant labels, the 5-class classification task is
decomposed into the following three layers shown
in Figure 1. The label set in the first layer is
{“subjective”, “objective”}, The label set in the
second layer is for polarity -classification
{“positive”, “objective”, “negative”}, and the label
set in the third layer is the original set. Actually,
the labels in the first and second layers are
unobserved redundant labels, which will not be
reflected in the final classification result obviously.

Sentiment Analysis

Subjective

Obijective The first layer

| Positive | | Negative | | Obijective The second layer
I I
C 1 [ ]
| PP | | P | | N | | NN | | Objective | The third layer

Figure 1. The hierarchical structure of
sentimental labels
In the second step, with these redundant labels,
some implicit features can be generated for CRFs.
So the standard CRFs can be rewritten as follows.



exp(F(X,T)-A)
Z.(X)

P(T|X)=

cp(YFXE)A) @
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where T =(Y,Y,,..Y;...,Y,) , and Y, denotes the

label sequence in the ;" layer. F.(X,Y,) denotes

the arbitrary feature function in the j layer.

From the formula (2), we can see that the
original label set is rewritten as

r=(,%,..Y,..,Y,) , which contains implicit

labels in the hierarchical structure shown in Figure
1. The difference between our method and the
standard chain CRFs is that we make some implicit
redundant features to be active when training. The
original feature function F(Y,X) is replaced by

ZFJ(X ,Y,). We use an example to illustrate the
Jj=1

process of feature generation. When a sentence
including the word “good” is labeled as “PP”, our
model not only generate the state feature (good,
“PP”), but also two implicit redundant state feature
(good, “positive”) and (good, “subjective”).
Through adding larger-granularity labels “positive”
and “negative” into the model, our method can
increase the probability of “positive” and decrease
the probability of “negative”. Furthermore, “P” and
“PP” will share the probability gain of “positive”,
therefore the probability of “P” will be larger than
that of “N”. For the transition feature, the same
strategy is used. Therefore the complexity of its

m

training procedure is O(M x N x Z F;x1) where M
J

is the number of the training samples, N is the

average sentence length, 7, is the average number

of activated features in the j” layer, [ is the
number of the original labels and m is the number
of the layers. For the complexity of the decoding

m
procedure, our method has O(N x Z F;x1).
J
It’s worth noting that, (1) transition features are
extracted in each layer separately rather than
across different layers. For example, feature (good,
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“subjective”, “positive”) will never be extracted
because ‘“‘subjective” and “positive” are from
different layers; (2) if one sentence is labeled as
“Neu”, no implicit redundant features will be
generated.

4.2 The Characteristics of Our Method

Our method allows that the label sets are
dependent and redundant. As a result, it can
improve the performance of not only the classifier
for the original sentimental strength rating task, but
also the classifiers for other tasks in the
hierarchical frame, i.e. polarity classification and
subjective/objective classification. This kind of
dependency and redundancy can lead to two
characteristics of the proposed method for
sentiment classification compared with traditional
methods, such as the cascaded method.

(1) Error-correction: Two dependent tasks in the
neighboring layers can correct the errors of each
other relying on the inconsistent redundant
information. For example, if in the first layer, the
features activated by “objective” get larger scores
than the features activated by “subjective”, and in
the second layer the features activated by
“positive” get larger scores than the features
activated by “objective”, then inconsistency
emerges. At this time, our method can globally
select the label with maximum probability. This
characteristic can make up the deficiency of the
cascaded method which may induce error
propagation.

(2) Differentiating the ordinal relation among
sentiment labels: Our method organizes the ordinal
sentiment labels into a hierarchy through
introducing redundant labels into standard chain
CRFs, in this way the degree of classification
errors can be controlled. In the different layers of
sentiment analysis task, the granularities of
classification are different. Therefore, when an
observation cannot be correctly labeled on a
smaller-granularity label set, our method will use
the larger-granularity labels in the upper layer to
control the final classification labels.

4.3 Feature Selection in Different Layers

For feature selection, our method selects different
features for each layer in the hierarchical frame.

In the top layer of the frame shown in Figure 1,
for subjective/objective classification task, we use



not only adjectives and the verbs which contain
subjective information (e.g., “believe”, “think™) as
the features, but also the topic words. The topic
words are defined as the nouns or noun phases
which frequently appear in the corpus. We believe
that some topic words contain subjective
information.

In the middle and bottom layers, we not only use
the features in the first layer, but also some special
features as follows.

(1) The prior orientation scores of the sentiment
words: Firstly, a sentiment lexicon is generated by
extending the synonymies and antonyms in
WordNet” from a positive and negative seed list.
Then, the positive score and the negative score of a
sentiment word are individually accumulated and
weighted according to the polarity of its
synonymies and antonyms. At last we scale the
normalized distance of the two scores into 5 levels,
which will be the prior orientation of the word.
When there is a negative word, like {not, no, can’t,
merely, never, ...}, occurring nearby the feature
word in the range of 3 words size window, the
orientation of this word will be reversed and “NO”
will be added in front of the original feature word
for creating a new feature word.

(2) Sentence transition features: We consider two
types of sentence transition features. The first type
is the conjunctions and the adverbs occurring in the
beginning of this sentence. These conjunctions and
adverbs are included in a word list which is
manually selected, like {and, or, but, though,
however, generally, contrarily, ...}. The second
type of the sentence transition feature is the
position of the sentence in one review. The reason
lies in that: the reviewers often follow some
writing patterns, for example some reviewers
prefer to concede an opposite factor before
expressing his/her real sentiment. Therefore, we
divide a review into five parts, and assign each
sentence with the serial number of the part which
the sentence belongs to.

5 Experiments

5.1 Data and Baselines

In order to evaluate the performance of our method,
we conducted experiments on a sentence level

2 http://wordnet.princeton.edu/
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annotation corpus obtained from Purdue University,
which is also used in (Mao and Lebanon 07). This
corpus contains 249 movie reviews and 7,610
sentences totally, which is randomly selected from
the Cornell sentence polarity dataset v1.0. Each
sentence was hand-labeled with one of five classes:
PP (highly praised), P (something good), Neu
(objective description), N (something that needs
improvement) and NN (strong aversion), which
contained the orientation polarity of each sentence.
Based on the S5-class manually labeled results
mentioned above, we also assigned each sentence
with one of three classes: Pos (positive polarity),
Neu (objective description), Neg (negative
polarity). Data statistics for the corpus are given in
Table 4.

Pos Neu Neg
Label Total
PP P Neu N | NN
5 classes | 383 | 860 | 5508 | 694 | 165 | 7610
3 classes 1243 5508 859 7610
Table 4. Data Statistics for Movies Reviews
Corpus

There is a problem in the dataset that more than
70% of the sentences are labeled as “Neu” and
labels are seriously unbalanced. As a result, the
“Neu” label is over-emphasized. For this problem,
Mao and Lebanon (2007) made a balanced data set
(equal number sentences for different labels) which
is sampled in the original corpus. Since randomly
sampling sentences from the original corpus will
break the intrinsic relationship between two
adjacent sentences in the context, we don’t create
balanced label data set.

For the evaluation of our method, we choose
accuracy as the evaluation metrics and some
classical methods as the baselines. They are Naive
Bayes (NB), Support Vector Machine (SVM),
Maximum Entropy (MaxEnt) (Kamal Nigam et al.
1999) and standard chain CRFs (Fei et al. 2003).
We also regard cascaded-CRFs as our baseline for
comparing our method with the cascaded-based
method. For NB, we use Laplace smoothing
method. For SVM, we use the LibSVM® with a
linear kernel function®. For MaxEnt, we use the
implementation in the toolkit Mallet’. For CRFs,

3 http://www.csie.ntu.tw/~cjlin/libsvm
* http://svmlight joachims.org/
> http://mallet.cs.umass.edu/index.php/Main_Page



Label NB SVM | MaxEnt | Standard CRF | Cascaded CRF | Our Method
PP | 0.1745 | 0.2219 | 0.2055 0.2027 0.2575 0.2167
P 0.2049 | 0.2877 | 0.2353 0.2536 0.2881 0.3784
Neu | 0.8083 | 0.8685 | 0.8161 0.8273 0.8554 0.8269
N 0.2636 | 0.3014 | 0.2558 0.2981 0.3092 0.4204
NN | 0.0976 | 0.1162 | 0.1148 0.1379 0.1510 0.2967
Total | 0.6442 | 0.6786 | 0.6652 0.6856 0.7153 0.7521
Table 5. The accuracy of Sentimental Strength Rating
Label NB SVM | MaxEnt | Standard CRF | Cascaded-CRF | Our Method
Pos | 0.4218 | 0.4743 | 0.4599 0.4405 0.5122 0.6008
Neu | 0.8147 | 0.8375 | 0.8424 0.8260 0.8545 0.8269
Neg | 0.3217 | 0.3632 | 0.2739 0.3991 0.4067 0.5481
Total | 0.7054 | 0.7322 | 0.7318 0.7327 0.7694 0.7855
Table 6. The Results of Polarity Classification
Label NB SVM | MaxEnt | Standard CRF | Our Method
Subjective | 0.4743 | 0.5847 | 0.4872 0.5594 0.6764
Objective | 0.8170 | 0.8248 | 0.8212 0.8312 0.8269
Total 0.7238 | 0.7536 | 0.7518 0.7561 0.8018

Table 7. The accuracy of Subjective/Objective Classification

we use the implementation in Flex-CRFs®. We set

SVM and MaxEnt methods.

We think that is

the iteration number to 120 in the training process
of the method based on CRFs. In the cascaded
model we set 3 layers for sentimental strength
rating, where the first layer is subjective/objective
classification, the second layer is polarity
classification and the last layer is sentimental
strength classification. The upper layer passes the
results as the input to the next layer.

5.2  Sentimental Strength Rating
In the first experiment, we evaluate the
performance of our method for sentimental

strength rating. Experimental results for each
method are given in Table 5. We not only give the
overall accuracy of each method, but also the
performance for each sentimental strength label.
All baselines use the same feature space mentioned
in section 4.3, which combine all the features in
the three layers together, except cascaded CRFs
and our method. In cascaded-CRFs and our method,
we use different features in different layers
mentioned in section 4.3. These results were
gathered using 5-fold cross validation with one
fold for testing and the other 4 folds for training.
From the results, we can obtain the following
conclusions. (1) The three versions of CRFs
perform consistently better than Naive Bayes,

® http://flexcrfs.sourceforge.net
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because CRFs model considers the contextual
influence of each sentence. (2) Comparing the
performance of cascaded CRFs with that of
standard sequence CRFs, we can see that not only
the overall accuracy but also the accuracy for each
sentimental strength label are improved, where the
overall accuracy is increased by 3%. It proves that
taking the hierarchical relationship between labels
into account is very essential for sentiment
classification. The reason is that: the cascaded
model performs sentimental strength rating in three
hierarchical layers, while standard chain CRFs
model treats each label as an independent
individual. So the performance of the cascaded
model is superior to the standard chain CRFs. (3)
The experimental results also show that our
method performs better than the Cascaded CRFs.
The classification accuracy is improved from
71.53% to 75.21%. We think that is because our
method adds the label redundancy among the
sentimental strength labels into consideration
through adding redundant features into the feature
sets, and the three subtasks in the cascaded model
are merged into a unified model. So the output
result is a global optimal result. In this way, the
problem of error propagation in the cascaded frame
can be alleviated.



5.3  Sentiment Polarity Classification

In the second experiment, we evaluate the
performance of our method for sentiment polarity
classification. Our method is based on a
hierarchical frame, which can perform different
tasks in different layers at the same time. For
example, it can determine the polarity of sentences
when sentimental strength rating is performed.
Here, the polarity classification results of our
method are extracted from the results of the
sentimental strength rating mentioned above. In the
sentimental strength rating results, we combine the
sentences with PP label and the sentences with P
label into one set, and the sentences with NN label
and the sentences with N label into one set. So the
results of 5-class classification are transformed into
the results of 3-class classification. Other methods
like NB, SVM, MaxEnt, standard chain CRFs
perform 3-class classification directly, and their
label sets in the training corpus is {Pos, Neu, Neg}.
The parameter setting is the same as sentimental
strength rating. For the cascaded-CRFs method, we
firstly perform subjective/objective classification,
and then determine the polarity of the sentences
based on the subjective sentences. The
experimental results are given in Table 6.

From the experimental results, we can obtain the
following conclusion for sentiment polarity
classification, which is similar to the conclusion
for sentimental strength rating mentioned in
section 5.2. That is both our model and the
cascaded model can get better performance than
other traditional methods, such as NB, SVM,
MaxEnt, etc. But the performance of the cascaded
CRFs (76.94%) is lower than that of our method
(78.55%). This indicates that because our method
exploits the label redundancy in the different layers,
it can increase the accuracies of both polarity
classification and sentimental strength rating at the
same time compared with other methods.

5.4 Subjective/Objective Classification

In the last experiment, we test our method for
subjective/objective classification. The
subjective/objective label of the data is extracted
from its original label like section 5.3. As the same
as the experiment for polarity classification, all
baselines perform subjective/objective
classification directly. It’s no need to perform the
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cascaded-based method because it’s a 2-class task.
The results of our method are extracted from the
results of the sentimental strength rating too. The
results are shown in Table 7. From it, we can
obtain the similar conclusion, i.e. our method
outperforms other methods and has the 80.18%
classification accuracy. Our method, which
introduces redundant features into training, can
increase the accuracies of all tasks in the different
layers at the same time compared with other
baselines. It proves that considering label
redundancy are effective for promoting the
performance of a sentimental classifier.

6 Related Works

Recently, many researchers have devoted into the
problem of the sentiment classification. Most of
researchers focus on how to extract useful textual
features (lexical, syntactic, punctuation, etc.) for
determining the semantic orientation of the
sentences using machine learning algorithm (Bo et
al. 2002; Kim and Hovy, 2004; Bo et al. 2005, Hu
et al. 2004; Alina et al 2008; Alistair et al 2006).
But fewer researchers deal with this problem using
CRFs model.

For identifying the subjective sentences, there
are several research, like (Wiebe et al, 2005). For
polarity classification on sentence level, (Kim and
Hovy, 2004) judged the sentiment by classifying a
pseudo document composed of synonyms of
indicators in one sentence. (Pang and Lee, 04)
proposed a semi-supervised machine learning
method based on subjectivity detection and
minimum-cut in graph.

Cascaded models for sentiment classification
were studied by (Pang and Lee, 2005). Their work
mainly used the cascaded frame for determining
the orientation of a document and the sentences. In
that work, an initial model is used to determine the
orientation of each sentence firstly, then the top
subjective sentences are input into a document -

level model to determine the document’s
orientation.
The CRFs has previously been used for

sentiment classification. Those methods based on
CRFs are related to our work. (Mao et al, 2007)
used a sequential CRFs regression model to
measure the polarity of a sentence in order to
determine the sentiment flow of the authors in
reviews. However, this method must manually



select a word set for constraints, where each
selected word achieved the highest correlation with
the sentiment. The performance of isotonic CRFs
is strongly related to the selected word set.
(McDonald et al 2007; Ivan et al 2008) proposed a
structured model based on CRFs for jointly
classifying the sentiment of text at varying levels
of granularity. They put the sentence level and
document level sentiment analysis in an integrated
model and employ the orientation of the document
to influence the decision of sentence’s orientation.
Both the above two methods didn’t consider the
redundant and hierarchical relation between
sentimental strength labels. So their methods
cannot get better results for the problem mentioned
in this paper.

Another solution to this problem is to use a joint
multi-layer model, such as dynamic CRFs, multi-
layer CRFs, etc. Such kind of models can treat the
three sub-tasks in sentiment classification as a
multi-task problem and can use a multi-layer or
hierarchical undirected graphic to model the
sentiment of sentences. The main difference
between our method and theirs is that we consider
the problem from the feature representation view.
Our method expands the feature set according to
the number of layers in the hierarchical frame. So
the complexity of its decoding procedure is lower
than theirs, for example the complexity of the

multi-layer CRFs is O(NXxF lej.) when
j

decoding and our method only has O(N x z F xI),

J

where N is the average sentence length, F; is the

average number of activated features in the /" layer,
[ is the number of the original labels.

7 Conclusion and Future Work

In the paper, we propose a novel method for
sentiment classification based on CRFs in response
to the two special characteristics of “contextual
dependency” and “label redundancy” in sentence
sentiment classification. We try to capture the
contextual constraints on the sentence sentiment
using CRFs. For capturing the label redundancy
among sentiment classes, we generate a
hierarchical framework through introducing
redundant labels, under which redundant features
can be introduced. The experimental results prove
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that our method outperforms the traditional
methods (like NB, SVM, ME and standard chain
CRFs). In comparison with cascaded CRFs, our
method can effectively alleviate error propagation
among different layers and obtain better
performance in each layer.

For our future work, we will explore other
hierarchical models for sentimental strength rating
because the experiments presented in this paper
prove this hierarchical frame is effective for
ordinal regression. We would expand the idea in
this paper into other models, such as Semi-CRFs
and Hierarchical-CRFs.
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Abstract

Although research in other languages is in-
creasing, much of the work in subjectivity
analysis has been applied to English data,
mainly due to the large body of electronic re-
sources and tools that are available for this lan-
guage. In this paper, we propose and evalu-
ate methods that can be employed to transfer a
repository of subjectivity resources across lan-
guages. Specifically, we attempt to leverage
on the resources available for English and, by
employing machine translation, generate re-
sources for subjectivity analysis in other lan-
guages. Through comparative evaluations on
two different languages (Romanian and Span-
ish), we show that automatic translation is a
viable alternative for the construction of re-
sources and tools for subjectivity analysis in
a new target language.
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Janyce Wiebe
University of Pittsburgh
carmenb@unt.edu, rada@cs.unt.eduwiebe@cs.pitt.edu

Samer Hassan
University of North Texas
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A significant fraction of the research work to date
in subjectivity analysis has been applied to English,
which led to several resources and tools available for
this language. In this paper, we explore multiple
paths that employ machine translation while lever-
aging on the resources and tools available for En-
glish, to automatically generate resources for sub-
jectivity analysis for a new target language. Through
experiments carried out with automatic translation
and cross-lingual projections of subjectivity annota-
tions, we try to answer the following questions.

First, assuming an English corpus manually an-
notated for subjectivity, can we use machine trans-
lation to generate a subjectivity-annotated corpus in
the target language? Second, assuming the availabil-
ity of a tool for automatic subjectivity analysis in
English, can we generate a corpus annotated for sub-
jectivity in the target language by using automatic
subjectivity annotations of English text and machine
translation? Finally, third, can these automatically
generated resources be used to effectively train tools

We have seen a surge in interest towards the ags; gpjectivity analysis in the target language?
plication of automatic tools and techniques for the

extraction of opinions, emotions, and sentiments in Since our methods are particularly useful for lan-
text (subjectivity. A large number of text process- guages with only a few electronic tools and re-
ing applications have already employed techniquesurces, we chose to conduct our initial experiments
for automatic subjectivity analysis, including auto-on Romanian, a language with limited text process-
matic expressive text-to-speech synthesis (Alm ahg resources developed to date. Furthermore, to
al., 2005), text semantic analysis (Wiebe and Mihalvalidate our results, we carried a second set of ex-
cea, 2006; Esuli and Sebastiani, 2006), tracking seperiments on Spanish. Note however that our meth-
timent timelines in on-line forums and news (Lloydods do not make use of any target language specific
et al., 2005; Balog et al., 2006), mining opinionsknowledge, and thus they are applicable to any other
from product reviews (Hu and Liu, 2004), and queskanguage as long as a machine translation engine ex-
tion answering (Yu and Hatzivassiloglou, 2003). ists between the selected language and English.
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2 Related Work 3 Machine Trandation for Subjectivity
Analysis

Research in sentiment and subjectivity analysis ha¥e explore the possibility of using machine transla-
received increasingly growing interest from the nattion to generate the resources required to build sub-
ural language processing community, particularlyectivity annotation tools in a given target language.
motivated by the widespread need for opinion-basédle focus on two main scenarios. First, assuming a
applications, including product and movie reviewscorpus manually annotated for subjectivity exists in
entity tracking and analysis, opinion summarizationthe source language, we can use machine translation
and others. to create a corpus annotated for subjectivity in the

Much of the work in subjectivity analysis hastarget language. Second, assuming a tool for auto-

been applied to English data, though work on o,[herpatic subjectivity analysis exists in the source lan-

languages is growing: e.g., Japanese data are us?etbagf’t_we tcan US,? this tool togeth?rtwclltt; macgilne
in (Kobayashi et al., 2004; Suzuki et al., 2006, 2ns'aton lo create a corpus annotated for subjec-

Takamura et al., 2006; Kanayama and Nasukawgil\,”ty in the target language.

2006), Chinese data are used in (Hu et al., 2005£ In order to perform a comprehensive investiga-

and German data are used in (Kim and Hovy, 2006 |.'on, we propose three_z experiments as described be-
In addition, several participants in the Chines pw. The first scenario, based on a corpus manu-

and Japanese Opinion Extraction tasks of NTCIR?—_lIIy annotgted for SﬁbjeCtiVitya is exem_plifi;zd bi; the
6 (Kando and Evans, 2007) performed subjectivity)rSt experiment. The second scenario, based on a

and sentiment analysis in languages other than Ef2'PYS automatically annotated with a tool for sub-
glish Jectivity analysis, is subsequently divided into two

experiments depending on the direction of the trans-
In general, efforts on building subjectivity analy-|ation and on the dataset that is translated.
sis tools for other languages have been hampered by| all three experiments, we use English as a
the high costinvolved in creating corpora and lexicadource language, given that it has both a corpus man-
resources for a new language. To address this gaplly annotated for subjectivity (MPQA (Wiebe et
we focus on leveraging resources already developedl 2005)) and a tool for subjectivity analysis (Opin-

for one language to derive subjectivity analysis toolgnFinder (Wiebe and Riloff, 2005)).
for a new language. This motivates the direction of

our research, in which we use machine translatiohl Experiment One: Machine Translation of
coupled with cross-lingual annotation projections to Manually Annoctated Corpora
generate the resources and tools required to perfo

N S T this experiment, we use a corpus in the source
subjectivity classification in the target language.

language manually annotated for subjectivity. The
The work closest to ours is the one reported igorpus is automatically translated into the target lan-
(Mihalcea et al., 2007), where a bilingual lexiconguage, followed by a projection of the subjectivity
and a manually translated parallel text are used tabels from the source to the target language. The
generate the resources required to build a subjectiexperiment is illustrated in Figure 1.
ity classifier in a new language. In that work, we We use the MPQA corpus (Wiebe et al., 2005),
found that the projection of annotations across pawhich is a collection of 535 English-language news
allel texts can be successfully used to build a comrticles from a variety of news sources manually an-
pus annotated for subjectivity in the target languageotated for subjectivity. Although the corpus was
However, parallel texts are not always available fooriginally annotated at clause and phrase level, we
a given language pair. Therefore, in this paper wase the sentence-level annotations associated with
explore a different approach where, instead of relythe dataset (Wiebe and Riloff, 2005). From the total
ing on manually translated parallel corpora, we usef 9,700 sentences in this corpus, 55% of the sen-
machine translation to produce a corpus in the netences are labeled as subjective while the rest are
language. objective. After the automatic translation of the cor-
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Figure 1: Experiment one: machine translation of manFigure 2: Experiment two: machine translation of raw
ually annotated training data from source language intaining data from source language into target language
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Machine
Translation

Training Target
(SemCor)

Machine
Learning

Training Source
(SemCor)

Training Source
(MPQA) \

Extract

Opinion
Finder

Table 1 shows the performance of the two Opinion-

pus and the projection of the annotations, we obtaifinqer classifiers as measured on the MPQA corpus
a large corpus of 9,700 subjectivity-annotated Se’{tWiebe and Riloff, 2005).
0

tences in the target language, which can be used
train a subjectivity classifier.

P R F
high-precision 86.7 32.6 47.4
high-coverage 79.4 70.6 74.7

3.2 Experiment Two: Machine Trandlation of
Source Language Training Data

In the second experiment, we assume that the onfPle 1: Precision (P), Recall (R) and F-measure (F) for

resources available are a tool for subjectivity anndl' W0 OpinionFinder classifiers, as measured on the

tation in the source language and a collection of rav'\\;lPQA corpus
texts, also in the source language. The source lan-
guage text is automatically annotated for subjectiv- AS a raw corpus, we use a subset of the SemCor
ity and then translated into the target language. 18orpus (Miller et al., 1993), consisting of 107 docu-
this way, we produce a subjectivity annotated cornents with roughly 11,000 sentences. This is a bal-
pus that we can use to train a subjectivity annotatiodnced corpus covering a number of topics in sports,
tool for the target language. Figure 2 illustrates thigolitics, fashion, education, and others. The reason
experiment. for working with this collection is the fact that we

In order to generate automatic subjectivity anno@lso have a manual translation of the SemCor docu-
tations, we use the OpinionFinder tool developed b{ients from English into one of the target languages
(Wiebe and Riloff, 2005). OpinionFinder includestsed in the experiments (Romanian), which enables
two classifiers. The first one is a rule-based highcomparative evaluations of different scenarios (see
precision classifier that labels sentences based on tR&Ction 4).
presence of subjective clues obtained from a large Note that in this experiment the annotation of sub-
lexicon. The second one is a high-coverage clasgectivity is carried out on the original source lan-
fier that starts with an initial corpus annotated usguage text, and thus expected to be more accurate
ing the high-precision classifier, followed by severathan if it were applied on automatically translated
bootstrapping steps that increase the size of the letext. However, the training data in the target lan-
icon and the coverage of the classifier. For most agfuage is produced by automatic translation, and thus
our experiments we use the high-coverage classifidikely to contain errors.
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3.3 Experiment Three: Machine Trandation of  the target language into the source language. The
Target Language Training Data source language text is then annotated for subjectiv-

The third experiment is similar to the second ond® USing OpinionFinder, followed by a projection of

except that we reverse the direction of the transle{he re_sultmg Iabels_ back into the target Iangu_age._
tion. We translate raw text that is available in the UNIKe the previous three experiments, in this

target language into the source language, and thgﬁperiment we only generate subjectivity-annotated

use a subjectivity annotation tool to label the autofeSourcesand we do not build and evaluate a stan-

matically translated source language text. After thdalone subjectivity analysiwol for the target lan-
annotation, the labels are projected back into the tagt/ag€. Further training of a machine learning algo-

get language, and the resulting annotated corpus'{§1M: @S in experiments two and three, is required in
order to build a subjectivity analysis tool. Thus, this

used to train a subjectivity classifier. Figure 3 illus- - X ;

trates this experiment. fourth expe_rlment is an evaluation of t_hesources
generated in the target language, which represents
an upper bound on the performance of any machine

6 learning algorithm that would be trained on these re-

Test Target - : R K
sources. Figure 4 illustrates this experiment.

Test Target |

Opinion
Finder
Labels

Machine
Learning

Training Target
(SemCor)

Opinion
Finder
Labels

Machine
Translation

Machine
Translation

Test Source

Training Source
3 (SemCor)

Figure 4: Upper bound: machine translation of test data
Figure 3: Experiment three: machine translation of ravirom target language into source language
training data from target language into source language

As before, we use the high-coverage classifigt Evauation and Results

available in OpinionFinder, and the SemCor corpuyyr initial evaluations are carried out on Romanian.
We use a manual translation of this corpus availabhahe performance of each of the three methods is
in the target language. evaluated using a dataset manually annotated for
In this experiment, the subjectivity annotationssubjectivity. To evaluate our methods, we generate a
are carried out on automatically generated sour@omanian training corpus annotated for subjectivity
text, and thus expected to be less accurate. Hown which we train a subjectivity classifier, which is
ever, since the training data was originally writterthen used to label the test data.
in the target language, it is free of translation errors, We evaluate the results against a gold-standard
and thus training carried out on this data should bgorpus consisting of 504 Romanian sentences man-
more robust. ually annotated for subjectivity. These sentences
represent the manual translation into Romanian of
a small subset of the SemCor corpus, which was
removed from the training corpora used in experi-
For comparison purposes, we also propose an ements two and three. This is the same evaluation
periment which plays the role of an upper bound odataset as used in (Mihalcea et al., 2007). Two
the methods described so far. This experiment irRomanian native speakers annotated the sentences
volves the automatic translation of the test data fronmdividually, and the differences were adjudicated

3.4 Upper bound: Machine Translation of
Target Language Test Data
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through discussions. The agreement of the two an- Romanian

notators is 0.83%«(= 0.67); when the uncertain an- Exp | Classifier P R | F

notations are removed, the agreement rises to 0.89E1 [ Naive Bayes | 60.91] 60.91] 60.91
(x = 0.77). The two annotators reached consensus SVM 66.07 | 66.07| 66.07
on all sentences for which they disagreed, resulting £ | Naive Bayes | 63.69| 63.69] 63.69
in a gold standard dataset with 272 (54%) subjective SVM 69.44 | 69.44| 69.44
sentences and 232 (46%) objective sentences. Moregz | Naive Bayes | 65.87| 65.87 | 65.87
details about this dataset are available in (Mihalcea SVM 67.86| 67.86! 67.86
etal., 2007). B | OpinionFinder| 71.83| 71.83| 71.83

In order to learn from our annotated data, we ex-
periment with two different classifiers, Nee Bayes Table 2: Precision (P), Recall (R) and F-measure (F) for
and support vector machines (SVM), selected fdRomanian experiments
their performance and diversity of learning method-
ology. For Néave Bayes, we use the multinomial ) ) -
model (McCallum and Nigam, 1998) with a threshfication is used. This could imply that a classifier

old of 0.3. For SVM (Joachims, 1998), we use th&annot be so easily trained on the cues that humans
LibSVM implementation (Fan et al., 2005) with aYS€ to express subjectivity, especially when they are
linear kernel. not overtly expressed in the sentence and thus can

The automatic translation of the MPQA and oibe lost in the translation. Instead, the automatic

the SemCor corpus was performed using Languaggnotaﬁons produced with a rule-based tool (Opin-

Weavert a commercial statistical machine transla!°"Finder), relying on overt mentions of words in

tion software. The resulting text was post—processe% SUbJe_Ct'V'ty lexicon, Seems to be more r?_b us_t to
by removing diacritics, stopwords and numbers. Fotrranslatlon, further resulting in better classification

training, we experimented with a series of WeightTreSl_mS' To exer?pllfy, hco&spldepr\ the foIIow;]r_\ghs dUb-
ing schemes, yet we only report the results obtaind§Ctive sentence from the QA corpus, which does

for binary weighting, as it had the most consisten?©" include ovgrt c.Iues of SUbJeCt'V'tY’ but was an-
behavior. notated as subjective by the human judges because

The results obtained by running the three experlqf the structure qf the sente_ncE:ls the P?"es“”"
ments on Romanian are shown in Table 2. The bas&-> that are calling for t_he implementation of the
line on this data set is 54.16%, represented by th%qreemems’ understan_d!ngs, and_reconjmendatlons
. l%artamlng to the Palestinian-Israeli conflict.

percentage of sentences in the corpus that are sub- _ ,

jective, and the upper bound (UB) is 71.83%, which W& compare our results with those obtained by
is the accuracy obtained under the scenario whefePreviously proposed method that was based on
the test data is translated into the source languad® Mmanual translation of the SemCor subjectivity-

and then annotated using the high-coverage Opifiinotated corpus. In (Mihalcea et al., 2007), we

ionFinder tool. used the manual translation of the SemCor corpus
Perhaps not surprisingly, the SVM classifier outlnlfoI Zzomanlan t‘; form ?nhErjgllsh-Romaman gar-

performs Néve Bayes by 2% to 6%, implying that 2/I€! data set. The English side was annotated us-

SVM may be better fitted to lessen the amount of9 the Opinion Finder tool, and the subjectivity la-

noise embedded in the dataset and provide more ERQIS were pr_o_Jected on the R_omanlan text, AMa .
curate classifications. Bayes classifier was then trained on the subjectivity

The first experiment, involving the automaticannotated Romanian corpus and tested on the same

translation of the MPQA corpus enhanced with mangﬁlivSt?r?d?rd allf usbetdirl1n gl:rr] f;(perlmfntfi.mT?]kt)lebB
ual annotations for subjectivity at sentence Ieveﬁ ows the results obtaine 0s€ experiments by

using the high-coverage OpinionFinder classifier.
does not seem to perform well when compared to the _ _
Among our experiments, experiments two and

experiments in which automatic subjectivity classi- k )
three are closest to those proposed in (Mihalcea

hitp://Iwww.languageweaver.com/ et al.,, 2007). By using machine translation, from
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OpinionFinder classifier P R F 07
high-coverage 67.85| 67.85| 67.85

Table 3: Precision (P), Recall (R) and F-measure (F) for 0%
subjectivity analysis in Romanian obtained by using an

English-Romanian parallel corpus o5

F-measure

English into Romanian (experiment two) or Roma-
nian into English (experiment three), and annotating
this dataset with the high-coverage OpinionFinder
classifier, we obtain an F-measure of 63.69%, and 05~ oa o8 Y 1
65.87% respectively, using Nee Bayes (the same Percentage of corpus
machine learning classifier as used in (Mihalcea et
al., 2007)). This implies that at most 4% in g-Figure 6_: Experiment three: Ma_chine learning F-measure
measure can be gained by using a parallel corpus Qgran incrementally larger training set
compared to an automatically translated corpus, fur-
ther suggesting that machine translation is a viablgus size may have on the accuracy of the classifiers.
alternative to devising subjectivity classification in ane re-ran experiments two and three with 20% cor-
target language leveraged on the tools existent ingus size increments at a time (Figures 5 and 6). It
source language. is interesting to note that a corpus of approximately
As English is a language with fewer inflections6000 sentences is able to achieve a high enough F-
when compared to Romanian, which accommodateseasure (around 66% for both experiments) to be
for gender and case as a suffix to the base form of@nsidered viable for training a subjectivity classi-
word, the automatic translation into English is closefier. Also, at a corpus size over 10,000 sentences, the
to a human translation (experiment three). Therefongaive Bayes classifier performs worse than SVM,
labeling this data using the OpinionFinder tool angvhich displays a directly proportional trend between
projecting the labels onto a fully inflected humanthe number of sentences in the data set and the ob-
generated Romanian text provides more accuragerved F-measure. This trend could be explained
classification results, as compared to a setup whel§ the fact that the SVM classifier is more robust
the training is carried out on machine-translated Rawith regard to noisy data, when compared td\a
manian text (experiment two). Bayes.

5 Portability to Other Languages

To test the validity of the results on other languages,
we ran a portability experiment on Spanish.

To build a test dataset, a native speaker of Span-
ish translated the gold standard of 504 sentences into
Spanish. We maintain the same subjectivity anno-
tations as for the Romanian dataset. To create the
training data required by the first two experiments,
we translate both the MPQA corpus and the Sem-
i ” " o5 . Cor corpus into Spanish using the Google Transla-

Percentage of corpus tion service a publicly available machine transla-
tion engine also based on statistical machine transla-
Figure 5: Experiment two: Machine learning F-measurgion. \We were therefore able to implement all the ex-
over an incrementally larger training set periments but the third, which would have required

F-measure

0.5

We also wanted to explore the impact that the cor- 2http://www.google.com/translate
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a manually translated version of the SemCor corpu$. Discussion
Although we could have used a Spanish text to carry .
out a similar experiment, due to the fact that thédased on our experiments, we can conclude that ma-

dataset would have been different, the results woufg'ine translation offers a viable approach to gener-
not have been directly comparable. ating resources for subjectivity annotation in a given

target language. The results suggest that either a

The results of the two experiments exploring thenanyally annotated dataset or an automatically an-

portability to Spanish are shown in Table 4. Intery a0 one can provide sufficient leverage towards

e§tingly, all the figures are hlgher than those Obéuﬂdlng a tool for Subjectivity analysis.
tained for Romanian. We assume this occurs be- Since the use of parallel corpora (Mihalcea et al.,

cause Spanish is one of the six official U_nlted N?’ZOO?) requires a large amount of manual labor, one
tions languages, and the Google translation engi

' the reasons behind our experiments was to asses

IS using the F’”'ted Natlons parallelicorpgs to trainy, ability of machine translation to transfer subjec-
their transl_atlon engl_ne,_therefore implying that ive content into a target language with minimal ef-
better quality translation is achieved as compared rt. As demonstrated by our experiments, machine

the one available for Romanian. We can the.reforﬁanslation offers a viable alternative in the construc-
conclude that the more accurate the translation ep-

) L Hon of resources and tools for subjectivity classifica-
gine, the more accurately the subjective content Bon in a new target language, with only a small de-

translated, and therefore the better the results. Asd}ease in performance as compared to the case when

was the case for Romanle_m, the SVM F:|aSSIerr pro; parallel corpus is available and used.
duces the best results, with absolute improvements . .. iy .
To gain further insights, two additional experi-

ver the Nave B lassifier ranging from 0.2% . . .
over the Nave Bayes classifier ranging from O ’ments were performed. First, we tried to isolate the

to 3.5%. role played by the quality of the subjectivity anno-
Since the Spanish automatic translation seems tations in the source-language for the cross-lingual
be closer to a human-quality translation, we are ngrojections of subjectivity. To this end, we used the
surprised that this time the first experiment is abl@igh-precision OpinionFinder classifier to annotate
to generate a more accurate training corpus as comire English datasets. As shown in Table 1, this clas-
pared to the second experiment. The MPQA corpusifier has higher precision but lower recall as com-
since it is manually annotated and of better qualitypared to the high-coverage classifier we used in our
has a higher chance of generating a more reliabjgrevious experiments. We re-ran the second exper-
data setin the target language. As in the experimeniident, this time trained on the 3,700 sentences that
on Romanian, when performing automatic translawere classified by the OpinionFinder high-precision
tion of the test data, we obtain the best results witblassifier as either subjective or objective. For Ro-
an F-measure of 73.41%, which is also the uppehanian, we obtained an F-measure of 69.05%, while
bound on our proposed experiments. for Spanish we obtained an F-measure of 66.47%.
Second, we tried to isolate the role played by
language-specific clues of subjectivity. To this end,

Spanish X ; .
— we decided to set up an experiment which, by com-
Exp | Classifier P |R |F . .
= parison, can suggest the degree to which the lan-
El | Naive Bayes | 65.28| 65.28| 65.28 3465 are able to accommodate specific markers for
SVM 68.85| 68.85| 68.85

subjectivity. First, we trained an English classifier
E2 | Naive Bayes | 62.50| 62.50| 62.50 using the SemCor training data automatically anno-

SVM 62.70] 62.70| 62.70 tated for subjectivity with the OpinionFinder high-
UB | OpinionFinder| 73.41| 73.41| 73.41 coverage tool. The classifier was then applied to the
English version of the manually labeled test data set
Table 4: Precision (P), Recall (R) and F-measure (F) 1o gold standard described in Section 4). Next, we
Spanish experiments ran a similar experiment on Romanian, using a clas-
sifier trained on the Romanian version of the same
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SemCor training data set, annotated with subjectiv- Exp | Classifier [P |R | F

ity labels projected from English. The classifierwas En | Naive Bayes| 60.32| 60.32| 60.32
tested on the same gold standard data set. Thus, the SVM 60.32| 60.32| 60.32

two classifiers used the same training data, the same Ry [ Naive Bayes| 67.85| 67.85] 67.85

test data, and the same subjectivity annotations, the SVM 69.84| 69.84| 69.84

only difference being the language used (English or

Romanian). Table 5: Precision (P), Recall (R) and F-measure (F) for

The results for these experiments are compiled iifentifying language specific information
Table 5. Interestingly, the experiment conducted on
Romanian shows an improvement of 3.5% to 9.5%
over the results obtained on English, which indifivity analysis in other languages, by leveraging on
cates that subjective content may be easier to lealfie resources available in English. We introduced
in Romanian versus English. The fact that Romaand evaluated three different approaches to generate
nian verbs are inflected for mood (such as indicativéubjectivity annotated corpora in a given target lan-
conditional, subjunctive, presumptive), enables a@uage, and exemplified the technique on Romanian
automatic classifier to identify additional subjectiveand Spanish.
markers in text. Some moods such as conditional The experiments show promising results, as they
and presumptive entail human judgment, and thergre comparable to those obtained using manually
fore allow for clear subjectivity annotation. More-translated corpora. While the quality of the trans-
over, Romanian is a highly inflected language, adation is a factor, machine translation offers an effi-
commodating for forms of various words based ogient and effective alternative in capturing the sub-
number, gender, case, and offering an explicit leective semantics of a text, coming within 4% F-

icalization of formality and politeness. All thesemeasure as compared to the results obtained using
features may have a cumulative effect in allowinghuman translated corpora.

for better classification. At the same time, English In the future, we plan to explore additional
entails minimal inflection when _compared o Othe'fanguage—specific clues, and integrate them into the
Indo-European languages, as it lacks both gendgr

d adiecti « (with ¢ tabl ubjectivity classifiers. As shown by some of our
and adjective agreemen (\.N' Very 1ew notab'e eXéxperiments, Romanian seems to entail more subjec-
ceptions such abeautiful girlandhandsome bgy

. i tivity markers compared to English, and this factor
Verb moods are composed with the aid of modal y P g

, : o ?hotivates us to further pursue the use of language-
while tenses and expressions are built with the alg P guag

o . ) pecific clues of subjectivity.
of auxiliary verbs. For this reason, a machine learn-
ing algorithm may not be able to identify the same Our experiments have generated corpora of about
amount of information on subjective content in ar?0:000 sentences annotated for subjectivity in Ro-
English versus a Romanian text. It is also interesting!@nian and Spanish, which are available for down-
to note that the labeling of the training set was perload at http://lit.csci.unt.edu/index.php/Downloads,
formed using a subjectivity classifier developed foflong with the manually annotated data sets.
English, which takes into account a large, human-
annotated, subjectivity lexicon also developed for
English. One would have presumed that any Claﬁcknowledgments
sifier trained on this annotated text would therefore
provide the best results in English. Yet, as explainetlhe authors are grateful to Daniel Marcu and Lan-

earlier, this was not the case. guageWeaver for kindly providing access to their
Romanian-English and English-Romanian machine
7 Conclusion translation engines. This work was partially sup-
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In this paper, we explored the use of machine tran$0840608.
lation for creating resources and tools for subjec-
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Ranking Reader Emotions Using Pairwise Loss Minimization and
Emotional Distribution Regression
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Abstract

This paper presents two approaches to ranking
reader emotions of documents. Past studies
assign a document to a single emotion cate-
gory, so their methods cannot be applied di-
rectly to the emotion ranking problem.
Furthermore, whereas previous research ana-
lyzes emotions from the writer’s perspective,
this work examines readers’ emotional states.
The first approach proposed in this paper
minimizes pairwise ranking errors. In the sec-
ond approach, regression is used to model
emotional distributions. Experiment results
show that the regression method is more ef-
fective at identifying the most popular emo-
tion, but the pairwise loss minimization
method produces ranked lists of emotions that
have better correlations with the correct lists.

1 Introduction

Emotion analysis is an increasingly popular re-
search topic due to the emergence of large-scale
emotion data on the web. Previous work primarily
studies emotional contents of texts from the
writer's perspective, where it is typically assumed
that a writer expresses only a single emotion in a
document. Unfortunately, this premise does not
hold when analyzing a document from the reader's
perspective, because readers rarely agree unani-
mously on the emotion that a document instills.
Figure 1 illustrates this phenomenon. In the figure,
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Figure 1. Emotional responses of 626 people after read-
ing a Yahoo! News article about an Iranian refugee
mother and her two children who finally reunited with
their family in the March of 2007 after been stranded in
a Moscow airport for 10 months due to false passports.

readers’ responses are distributed among different
emotion categories. In fact, none of the emotions in
Figure 1 has a majority (i.e., more than 50%) of the
votes. Intuitively, it is better to provide a ranking
of emotions according to their popularity rather
than associating a single reader emotion with a
document. As a result, current writer-emotion
analysis techniques for classifying a document into
a single emotion category are not suitable for ana-
lyzing reader emotions. New methods capable of
ranking emotions are required.

Reader-emotion analysis has potential applica-
tions that differ from those of writer-emotion
analysis. For example, by integrating emotion
ranking into information retrieval, users will be
able to retrieve documents that contain relevant
contents and at the same time produce desired feel-
ings. In addition, reader-emotion analysis can as-
sist writers in foreseeing how their work will
influence readers emotionally.

Proceedings of the 2008 Conference on Empirical Methods in Natural Language Processing, pages 136-144,
Honolulu, October 2008. (©)2008 Association for Computational Linguistics



In this paper, we present two approaches to
ranking reader emotions. The first approach is in-
spired by the success of the pairwise loss minimi-
zation framework used in information retrieval to
rank documents. Along a similar line, we devise a
novel scheme to minimize the number of incor-
rectly-ordered emotion pairs in a document. In the
second approach, regression is used to model
reader-emotion distributions directly. Experiment
results show that the regression method is more
effective at identifying the most popular emotion,
but the pairwise loss minimization method pro-
duces ordered lists of emotions that have better
correlations with the correct lists.

The rest of this paper is organized as follows.
Section 2 describes related work. In Section 3, de-
tails about the two proposed approaches are pro-
vided. Section 4 introduces the corpus and Section
5 presents how features are extracted from the cor-
pus. Section 6 shows the experiment procedures
and results. Section 7 concludes the paper.

2 Related Work

Only a few studies in the past deal with the reader
aspect of emotion analysis. For example, Lin et al.
(2007; 2008) classify documents into reader-
emotion categories. Most previous work focuses
on the writer’s perspective. Pang et al. (2002) de-
sign an algorithm to determine whether a docu-
ment’s author expresses a positive or negative
sentiment. They discover that using Support Vec-
tor Machines (SVM) with word unigram features
results in the best performance. Since then, more
work has been done to find features better than
unigrams. In (Hu et al., 2005), word sentiment in-
formation is exploited to achieve better classifica-
tion accuracy.

Experiments have been done to extract emo-
tional information from texts at granularities finer
than documents. Wiebe (2000) investigates the
subjectivity of words, whereas Aman and Szpako-
wicz (2007) manually label phrases with emotional
categories. In 2007, the SemEval-2007 workshop
organized a task on the unsupervised annotation of
news headlines with emotions (Strapparava and
Mihalcea, 2007).

As for the task of ranking, many machine-
learning algorithms have been proposed in infor-
mation retrieval. These techniques generate rank-
ing functions which predict the relevance of a
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document. One class of algorithms minimizes the
errors resulting from ordering document pairs in-
correctly. Examples include (Joachims, 2002),
(Freund et al., 2003) and (Qin et al., 2007). In par-
ticular, the training phase of the Joachims’ Rank-
ing SVM (Joachims, 2002) is formulated as the
following SVM optimization problem:

minwy‘ﬁim %w—rw_’_czgi,j,k
subject to:
V(qyd;), (qy,d;) eV |5 > 5

w' (CD(qk 7dl') - cD(‘]k ,d_/ ) =1- §i7_/7k
ViVjVk: éi,j,k >0

(1)

where V is the training corpus, ®(g;, d;) is the fea-
ture vector of document d; with respect to query ¢,
si; 1s the relevance score of d; with respect to gy, w
is a weight vector, C is the SVM cost parameter,
and & are slack variables. The set of constraints
at (1) means that document pairwise orders should
be preserved.

Unfortunately, the above scheme for exploiting
pairwise order information cannot be applied di-
rectly to the emotion ranking task, because the task
requires us to rank emotions within a document
rather than provide a ranking of documents. In par-
ticular, the definitions of ®(g.d;), ®(qr.d;), si; and
st; do not apply to emotion ranking. In the next
section, we will show how the pairwise loss mini-
mization concept is adapted for emotion ranking.

3 Ranking Reader Emotions

In this section, we provide the formal description
of the reader-emotion ranking problem. Then we
describe the pairwise loss minimization (PLM)
approach and the emotional distribution regression
(EDR) approach to ranking emotions.

3.1 Problem Specification

The reader emotion ranking problem is defined as
follows. Let D = {d}, d>, ..., dy} be the document
space, and E = {e|, e, ..., ey} be the emotion
space. Let f; : E — R be the emotional probability
function of d;eD. That is, fi(e;) outputs the fraction
of readers who experience emotion e; after reading
document d;. Our goal is to find a function » : D —
EY such that 7(d)) = (ex1), €x2)> ---» €xary) Where zis



a permutation on {1, 2, ..., M}, and fi(e1)) = fil(ex2))

3.2 Pairwise Loss Minimization

As explained in Section 2, the information retrieval
framework for exploiting pairwise order informa-
tion cannot be applied directly to the emotion rank-
ing problem. Hence, we introduce a mnovel
formulation of the emotion ranking problem into
an SVM optimization problem with constraints
based on pairwise loss minimization.

Whereas Ranking SVM generates only a single
ranking function, our method creates a pairwise
ranking function gi : D — R for each pair of emo-
tions e; and ¢, aiming at satisfying the maximum
number of the inequalities:

VdieD | fi(e) > filer) : gi(di) > 0
VdieD | fi(e) < fler) : gi(d) <0

In other words, we want to minimize the number of
incorrectly-ordered emotion pairs. We further re-
quire gi(d;) to have the linear form w' Q(d) + b,
where w is a weight vector, b is a constant, and
Q)(d;) is the feature vector of d;. Details of feature
extraction will be presented in Section 5.

As Joachims (2002) points out, the above type
of problem is NP-Hard. However, an approximate
solution to finding g can be obtained by solving
the following SVM optimization problem:

min,, , - %wTw+CZ§i
subject to:
vd, €0 fi(e,)> fi(e):w'Qd) +b21-¢

Vd, 0| f(e))< fi(e,):—(w'Ad,)+b)21-¢,
Vi:§ 20

where C is the SVM cost parameter, & are slack
variables, and Q is the training corpus. We assume
each document d;eQ is labeled with fi(e)) for every
emotion e;eE.

When formulated as an SVM optimization prob-
lem, finding g is equivalent to training an SVM
classifier for classifying a document into the e; or
ey category. Hence, we use LIBSVM, which is an
SVM implementation, to obtain the solution.'

Uhttp://www.csie.ntu.edu.tw/~cjlin/libsvm/
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Input: Set of emotion ordered pairs P
. G < a graph with emotions as vertices and no edge
. while (P = Q)
. remove (e;,e;) with the highest confidence from P
. if adding edge (ej,ex) to G produces a loop
then add (ee) to G

. return topological sort of G

1
2
3
4
5
6. elseadd (e,e)to G
7
Al

gorithm 1. Merge Pairwise Orders.

We now describe how we rank the emotions of a
previously unseen document using the M(M — 1)/2
pairwise ranking functions gy created during the
training phase. First, all of the pairwise ranking
functions are applied to the unseen document,
which generates the relative orders of every pair of
emotions. These pairwise orders need to be com-
bined together to produce a ranked list of all the
emotions. Algorithm 1 does exactly this.

In Algorithm 1, the confidence of an emotion
ordered pair at Line 3 is the probability value re-
turned by a LIBSVM classifier for predicting the
order. LIBSVM’s method for generating this prob-
ability is described in (Wu et al., 2003). Lines 4
and 5 resolve the problem of conflicting emotion
ordered pairs forming a loop in the ordering of
emotions. The ordered list of emotions returned by
Algorithm 1 at Line 7 is the final output of the
PLM method.

3.3 Emotional Distribution Regression

In the second approach to ranking emotions, we
use regression to model f; directly. A regression
function 4; : D — R is generated for each e;eE by
learning from the examples (€X(d,), fi(e;)) for all
documents d; in the training corpus.

The regression framework we adopt is Support
Vector Regression (SVR), which is a regression
analysis technique based on SVM (Schoélkopf et al.,
2000). We require 4, to have the form w'Q(d;) + b.
Finding 4; is equivalent to solving the following
optimization problem:

min, , s wiw+ CZ(é:i,l +&i)
subject to:
vd, €Q:

file)-w'Qd)+b)>&-&,
(WTQ(di)+b)_ﬁ(ej)Zg_§i,2
Vi:ff,l,ébi,z 20
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Figure 2. News articles in the entire corpus grouped by
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where C is the cost parameter, £ is the maximum
difference between the predicted and actual values
we wish to maintain, & and &, are slack variables,
and Q is the training corpus. To solve the above
optimization problem, we use SVM"¢"’s SVR im-
plementation.”

When ranking the emotions of a previously un-
seen document d;, we sort the emotions e;eE in
descending order of /;(dy).

4 Constructing the Corpus

The training and test corpora used in this study
comprise Chinese news articles from Yahoo! Kimo
News’, which allows a user to cast a vote for one
of eight emotions to express how a news article
makes her feel. Each Yahoo! news article contains
a list of eight emotions at the bottom of the web-
page. A reader may select one of the emotions and
click on a submit button to submit the emotion. As
with many websites which collect user responses,
such as the Internet Movie Database, users are not
forced to submit their responses. After submitting a
response, the user can view a distribution of emo-
tions indicating how other readers feel about the
same article. Figure 1 shows the voting results of a
Yahoo! news article.

The ecight available emotions are happy, sad,
angry, surprising, boring, heartwarming, awesome,
and useful. Useful is not a true emotion. Rather, it
means that a news article contains practical infor-
mation. The value fi(e)) is derived by normalizing
the number of votes for emotion e; in document d;
by the total number votes in d..

The entire corpus consists of 37,416 news arti-
cles dating from January 24, 2007 to August 7,
2007. News articles prior to June 1, 2007 form the

2 http://svmlight joachims.org/
? http://tw.news.yahoo.com
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training corpus (25,975 articles), and the remaining
ones form the test corpus (11,441 articles). We
collect articles a week after their publication dates
to ensure that the vote counts have stabilized.

As mentioned earlier, readers rarely agree
unanimously on the emotion of a document. Figure
2 illustrates this. In 41% of all the news articles in
the entire corpus, the most popular emotion re-
ceives less than 60% of the votes.

5 Extracting Features

After obtaining news articles, the next step is to
determine how to convert them into feature vectors
for SVM and SVR. That is, we want to instantiate
Q. For this purpose, three types of features are ex-
tracted.

The first feature type consists of Chinese charac-
ter bigrams, which are taken from the headline and
content of each news article. The presence of a bi-
gram is indicated by a binary feature value.

Chinese words form the second type of features.
Unlike English words, consecutive Chinese words
in a sentence are not separated by spaces. To deal
with this problem, we utilize Stanford NLP
Group’s Chinese word segmenter to split a sen-
tence into words.* As in the case of bigrams, bi-
nary feature values are used.

We use character bigram features in addition to
word features to increase the coverage of Chinese
words. A Chinese word is formed by one or more
contiguous Chinese characters. As mentioned ear-
lier, Chinese words in a sentence are not separated
by any boundary symbol (e.g., a space), so a Chi-
nese word segmentation tool is always required to
extract words from a sentence. However, a word
segmenter may identify word boundaries errone-
ously, resulting in the loss of correct Chinese
words. This problem is particularly severe if there
are a lot of out-of-vocabulary words in a dataset. In
Chinese, around 70% of all Chinese words are
Chinese character bigrams (Chen et al., 1997).
Thus, using Chinese character bigrams as features
will allow us to identify a lot of Chinese words,
which when combined with the words extracted by
the word segmenter, will give us a wider coverage
of Chinese words.

The third feature type is extracted from news
metadata. A news article’s metadata are its news

4 http://nlp.stanford.edu/software/segmenter.shtml



category, agency, hour of publication, reporter, and
event location. Examples of news categories in-
clude sports and political. Again, we use binary
feature values. News metadata are used because
they may contain implicit emotional information.

6 Experiments

The experiments are designed to achieve the fol-
lowing four goals: (i) to compare the ranking per-
formance of different methods, (ii) to analyze the
pairwise ranking quality of PLM, (iii) to analyze
the distribution estimation quality of EDR, and (iv)
to compare the ranking performance of different
feature sets. The Yahoo! News training and test
corpora presented in Section 4 are used in all ex-
periments.

6.1 Evaluation Metrics for Ranking

We employ three metrics as indicators of ranking
quality: ACC@k, NDCG@k and SACC@k.

ACC@k stands for accuracy at position k. Ac-
cording to ACC@k, a predicted ranked list is cor-
rect if the list’s first & items are identical (i.e., same
items in the same order) to the true ranked list’s
first £ items. If two emotions in a list have the
same number of votes, then their positions are in-
terchangeable. ACC@k is computed by dividing
the number of correctly-predicted instances by the
total number of instances.

NDCG@k, or normalized discounted cumulative
gain at position £ (Jarvelin and Kekaldinen, 2002),
is a metric frequently used in information retrieval
to judge the quality of a ranked list when multiple
levels of relevance are considered. This metric is
defined as

NDCG@k =z,

k rel,
=llog,(i+1)

where rel; is the relevance score of the predicted
item at position i, and z; is a normalizing factor
which ensures that a correct ranked list has an
NDCG@k value of 1. In the emotion ranking prob-
lem, rel; is the percentage of reader votes received
by the emotion at position i. Note that the log,(i+1)
value in the denominator is a discount factor which
decreases the weights of items ranked later in a list.
NDCG@k has the range [0, 1], where 1 is the best.
In the experiment results, NDCG@k values are
averaged over all instances in the test corpus.
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NDCG@k is used because ACC@k has the dis-
advantage of not taking emotional distributions
into account. Take Figure 1 as an example. In the
figure, heartwarming and happy have 31.3% and
30.7% of the votes, respectively. Since the two
percentages are very close, it is reasonable to say
that predicting happy as the first item in a ranked
list may also be acceptable. However, doing so
would be completely incorrect according to
ACC@k. In contrast, NDCG@k would consider it
to be partially correct, and the extent of correctness
depends on how much heartwarming and happy’s
percentages of votes differ. To be exact, if happy is
predicted as the first item, then the corresponding
NDCG@!1 would be 30.7% / 31.3% = 0.98.

The third metric is SACC@k, or set accuracy at
k. It is a variant of ACC@k. According to
SACC@k, a predicted ranked list is correct if the
set of its first k items is the same as the true ranked
list’s set of first k items. In effect, SACC@k evalu-
ates a ranking method’s ability to place the top &
most important items in the first £ positions.

6.2 Tuning SVM and SVR Parameters

SVM and SVR are employed in PLM and EDR,
respectively. Both SVM and SVR have the adjust-
able C cost parameter, and SVR has an additional &
parameter. To estimate the optimal C value for a
combination of SVM and features, we perform 4-
fold cross-validation on the Yahoo! News training
corpus, and select the C value which results in the
highest binary classification accuracy during cross-
validation. The same procedure is used to estimate
the best C and ¢ values for a combination of SVR
and features. The C-& pair which results in the
lowest mean squared error during cross-validation
is chosen. The candidate C values for both SVM
and SVR are 27'°, 2, ..., 2°%. The candidate & val-
ues for SVR are 107 and 10™". All cross-validations
are performed solely on the training data. The test
data are not used to tune the parameters. Also,
SVM and SVR allow users to specify the type of
kernel to use. Linear kernel is selected for both
SVM and SVR.

6.3 Nearest Neighbor Baseline

The nearest neighbor (NN) method is used as the
baseline. The ranked emotion list of a news article
in the test corpus is predicted as follows. First, the
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test news article is compared to every training
news article using cosine similarity, which is de-
fined as

| D, N D; |

cos(d,,d,) = ———
@) | D, [ x| D |

where d; and d; are two news articles, and D; and D,
are sets of Chinese character bigrams in d; and d,
respectively. The ranked emotion list of the train-
ing article having the highest cosine similarity with
the test article is used as the predicted ranked list.

6.4 Comparison of Methods

Figures 3 to 5 show the performance of different
ranking methods on the test corpus. For both PLM
and EDR, all of the bigram, word, and news meta-
data features are used.

In Figure 3, EDR’s ACC@1 (0.751) is higher
than those of PLM and NN, and the differences are
statistically significant with p-value < 0.01. So,
EDR is the best method at predicting the most
popular emotion. However, PLM has the best
ACC@k for k > 2, and the differences from the
other two methods are all significant with p-value
< 0.01. This means that PLM’s predicted ranked
lists better resemble the true ranked lists.

Figure 3 displays a sharp decrease in ACC@k
values as k increases. This trend indicates the hard-
ness of predicting a ranked list correctly. Looking
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from a different angle, the ranking task under the
ACC@k metric is equivalent to the classification
of news articles into one of 8!/(8 — k)! classes,
where we regard each unique emotion sequence of
length £ as a class. In fact, computing ACC@8 for
a ranking method is the same as evaluating the
method’s ability to classify a news article into one
of 8! = 40,320 classes. So, producing a completely-
correct ranked list is a difficult task.

In Figure 4, all of PLM and EDR’s NDCG@k
improvements over NN are statistically significant
with p-value < 0.01. For some values of £, the dif-
ference in NDCG@k between PLM and EDR is
not significant. The high NDCG@k values (i.e.,
greater than 0.8) of PLM and EDR imply that al-
though it is difficult for PLM and EDR to generate
completely-correct ranked lists, these two methods
are effective at placing highly popular emotions to
the beginning of ranked lists.

In Figure 5, PLM outperforms the other two
methods for 2 < k£ < 7, and the differences are all
statistically significant with p-value < 0.01. For
small values of k£ (e.g., 2 < k < 3), PLM’s higher
SACC@k values mean that PLM is better at plac-
ing the highly popular emotions in the top posi-
tions of a ranked list.

To further compare PLM and EDR, we examine
their performance on individual test instances. Fig-
ure 6 shows the percentage of test instances where
both PLM and EDR give incorrect lists, only PLM
gives correct lists, only EDR gives ranked lists,
and both methods give correct lists. The “Only
PLM Correct” and “Only EDR Correct” categories
are nonzero, so neither PLM nor EDR is always
better than the other.

In summary, EDR is the best at predicting the
most popular emotion according to ACC@],
NDCG@1 and SACC@]1. However, PLM gener-
ates ranked lists that better resemble the correct
ranked lists according to ACC@k and SACC@k



Method Average 7, Average p-value
PLM 0.584 0.068
EDR 0.474 0.114
NN 0.392 0.155
Table 1. Kendall’s 7, statistics.

He Su Sa Us Ha Bo An
Aw 0.80 0.75 0.78 0.77 0.82 0.76 0.79
He 0.79 0.81 0.78 0.81 0.89 0.81
Su 0.82 0.78 0.80 0.82 0.82
Sa 0.78 0.80 0.84 0.82
Us 0.82 0.91 0.82
Ha 0.83 0.79
Bo 0.80

Table 2. Classification accuracies of SVM pairwise
emotion classifiers on the test corpus. He = heartwarm-
ing, Su = surprising, Sa = sad, Us = useful, Ha = happy,
Bo = boring, and An = angry.
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Figure 7. Accuracy of pairwise emotion classification
and the corresponding average discrimination value.

for £ > 2. Further analysis shows that neither
method is always better than the other.

6.5 Pairwise Ranking Quality of PLM

In this subsection, we evaluate the performance of
PLM in predicting pairwise orders.

We first examine the quality of ranked lists gen-
erated by PLM in terms of pairwise orders. To do
this, we use Kendall’s 7, correlation coefficient,
which is a statistical measure for determining the
correlation between two ranked lists when there
may be ties between two items in a list (Liebetrau,
1983). The value of 7, is determined based on the
number of concordant pairwise orders and the
number of discordant pairwise orders between two
ranked lists. Therefore, this measure is appropriate
for evaluating the effectiveness of PLM at predict-
ing pairwise orders correctly. 7, has the range [-1,
1], where 1 means a perfect positive correlation,
and -1 means two lists are the reverse of each other.
When computing 7, of two ranked lists, we also
calculate a p-value to indicate whether the correla-
tion is statistically significant.
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We compute 7, statistics between a predicted
ranked list and the corresponding true ranked list.
Table 1 shows the results. In Table 1, numbers in
the “Average 7,” and “Average p-value” columns
are averaged over all test instances. The statistics
for EDR and NN are also included for comparison.
From the table, we see that PLM has the highest
average 7, value and the lowest average p-value, so
PLM is better at preserving pairwise orders than
EDR and NN methods. This observation verifies
that PLM’s minimization of pairwise loss leads to
better prediction of pairwise orders.

We now look at the individual performance of
the 28 pairwise emotion rankers gj. As mentioned
in Section 3.2, each pairwise emotion ranker gj is
equivalent to a binary classifier for classifying a
document into the e; or e, category. So, we look at
their classification accuracies in Table 2. In the
table, accuracy ranges from 0.75 for the awesome-
surprising pair to 0.91 for the useful-boring pair.

From the psychological perspective, the rela-
tively low accuracy of the awesome-surprising pair
is expected, because awesome is surprising in a
positive sense. So, readers should have a hard time
distinguishing between these two emotions. And
the SVM classifier, which models reader responses,
should also find it difficult to discern these two
emotions. Based on this observation, we suspect
that the pairwise classification performance actu-
ally reflects the underlying emotional ambiguity
experienced by readers. To verify this, we quantify
the degree of ambiguity between two emotions,
and compare the result to pairwise classification
accuracy.

To quantify emotional ambiguity, we introduce
the concept of discrimination value between two
emotions e¢; and e, in a document d;, which is de-
fined as follows:

e = fi(e))
e+ fi(e)

where f; is the emotional probability function de-
fined in Section 3.1. Intuitively, the larger the dis-
crimination value is, the smaller the degree of
ambiguity between two emotions is.

Figure 7 shows the relationship between pair-
wise classification accuracy and the average dis-
crimination value of the corresponding emotion
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pair. The general pattern is that as accuracy in-
creases, the discrimination value also increases. To
provide concrete evidence, we use Pearson’s prod-
uct-moment correlation coefficient, which has the
range of [-1, 1], where 1 means a perfect positive
correlation (Moore, 2006). The coefficient for the
data in Figure 7 is 0.726 with p-value < 0.01. Thus,
pairwise emotion classification accuracy reflects
the emotional ambiguity experienced by readers.

In summary, PLM’s pairwise loss minimization
leads to better pairwise order predictions than EDR
and NN. Also, the pairwise classification results
reveal the inherent ambiguity between emotions.

6.6 Distribution Estimation Quality of EDR

In this subsection, we evaluate EDR’s performance
in estimating the emotional probability function f..

With the prior knowledge that a news article’s f;
values sum to 1 over all emotions, and f; is between
0 and 1, we adjust EDR’s f; predictions to produce
proper distributions. It is done as follows. A pre-
dicted f; value greater than 1 or less than 0 is set to
1 and 0, respectively. Then the predicted f; values
are normalized to sum to 1 over all emotions.

NN’s distribution estimation performance is in-
cluded for comparison. For NN, the predicted f;
values of a test article are taken from the emotional
distribution of the most similar training article.

Figure 8 shows the mean squared error of EDR
and NN for predicting f. In the figure, the error
generated by EDR is less than those by NN, and all
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the differences are statistically significant with p-
value < 0.01. Thus, EDR’s use of regression leads
to better estimation of f; than the NN.

6.7 Comparison of Features

Figure 9 shows each of the three feature type’s
ACC@k for predicting test instances’ ranked lists
when PLM is used. The feature comparison graph
for EDR is not shown, because it exhibits a very
similar trend as PLM. For both PLM and EDR,
bigrams are better than words, which are in turn
better than news metadata. In Figure 9, the combi-
nation of all three feature sets achieves the best
performance. For both PLM and EDR, the im-
provements in ACC@k of using all features over
words and metadata are all significant with p-value
< 0.01, and the improvements over bigrams are
significant for £ < 2. Hence, in general, it is better
to use all three feature types together.

7 Conclusions and Future Work

This paper presents two methods to ranking reader
emotions. The PLM method minimizes pairwise
loss, and the EDR method estimates emotional dis-
tribution through regression. Experiments with
significant tests show that EDR is better at predict-
ing the most popular emotion, but PLM produces
ranked lists that have higher correlation with the
correct lists. We further verify that PLM has better
pairwise ranking performance than the other two
methods, and EDR has better distribution estima-
tion performance than NN.

As for future work, there are several directions
we can pursue. An observation is that PLM ex-
ploits pairwise order information, whereas EDR
exploits emotional distribution information. We
plan to combine these two methods together. An-
other research direction is to improve EDR by
finding better features. We would also like to inte-
grate emotion ranking into information retrieval.
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Abstract

We formulate dependency parsing as a graphical model
with the novel ingredient of global constraints. We show
how to apply loopy belief propagation (BP), a simple and
effective tool for approximate learning and inference. As
a parsing algorithm, BP is both asymptotically and em-
pirically efficient. Even with second-order features or la-
tent variables, which would make exact parsing consider-
ably slower or NP-hard, BP needs only O(n?) time with
a small constant factor. Furthermore, such features sig-
nificantly improve parse accuracy over exact first-order
methods. Incorporating additional features would in-
crease the runtime additively rather than multiplicatively.

1 Introduction

Computational linguists worry constantly about run-
time. Sometimes we oversimplify our models, trad-
ing linguistic nuance for fast dynamic programming.
Alternatively, we write down a better but intractable
model and then use approximations. The CL com-
munity has often approximated using heavy pruning
or reranking, but is beginning to adopt other meth-
ods from the machine learning community, such
as Gibbs sampling, rejection sampling, and certain
variational approximations.

We propose borrowing a different approximation
technique from machine learning, namely, loopy be-
lief propagation (BP). In this paper, we show that
BP can be used to train and decode complex pars-
ing models. Our approach calls a simpler parser as a
subroutine, so it still exploits the useful, well-studied
combinatorial structure of the parsing problem. !

2 Overview and Related Work

We wish to make a dependency parse’s score de-
pend on higher-order features, which consider ar-

*This work was supported by the Human Language Tech-
nology Center of Excellence.

! As do constraint relaxation (Tromble and Eisner, 2006) and
forest reranking (Huang, 2008). In contrast, generic NP-hard
solution techniques like Integer Linear Programming (Riedel
and Clarke, 2006) know nothing about optimal substructure.
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bitrary interactions among two or more edges in the
parse (and perhaps also other latent variables such
as part-of-speech tags or edge labels). Such features
can help accuracy—as we show. Alas, they raise the
polynomial runtime of projective parsing, and ren-
der non-projective parsing NP-hard. Hence we seek
approximations.

We will show how BP’s “message-passing” disci-
pline offers a principled way for higher-order fea-
tures to incrementally adjust the numerical edge
weights that are fed to a fast first-order parser. Thus
the first-order parser is influenced by higher-order
interactions among edges—but not asymptotically
slowed down by considering the interactions itself.

BP’s behavior in our setup can be understood intu-
itively as follows. Inasmuch as the first-order parser
finds that edge e is probable, the higher-order fea-
tures will kick in and discourage other edges €’ to the
extent that they prefer not to coexist with e.? Thus,
the next call to the first-order parser assigns lower
probabilities to parses that contain these ¢’. (The
method is approximate because a first-order parser
must equally penalize all parses containing €', even
those that do not in fact contain e.)

This behavior is somewhat similar to parser stack-
ing (Nivre and McDonald, 2008; Martins et al.,
2008), in which a first-order parser derives some of
its input features from the full 1-best output of an-
other parser. In our method, a first-order parser de-
rives such input features from its own previous full
output (but probabilistic output rather than just 1-
best). This circular process is iterated to conver-
gence. Our method also permits the parse to in-
teract cheaply with other variables. Thus first-order
parsing, part-of-speech tagging, and other tasks on a
common input could mutually influence one another.

Our method and its numerical details emerge nat-
urally as an instance of the well-studied loopy BP
algorithm, suggesting several potential future im-

2This may be reminiscent of adjusting a Lagrange multiplier
on e’ until some (hard) constraint is satisfied.
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provements to accuracy (Yedidia et al., 2004; Braun-
stein et al., 2005) and efficiency (Sutton and McCal-
lum, 2007).

Loopy BP has occasionally been used before in
NLP, with good results, to handle non-local fea-
tures (Sutton and McCallum, 2004) or joint decod-
ing (Sutton et al., 2004). However, our application
to parsing requires an innovation to BP that we ex-
plain in §5—a global constraint to enforce that the
parse is a tree. The tractability of some such global
constraints points the way toward applying BP to
other computationally intensive NLP problems, such
as syntax-based alignment of parallel text.

3 Graphical Models of Dependency Trees
3.1 Observed and hidden variables

To apply BP, we must formulate dependency parsing
as a search for an optimal assignment to the vari-
ables of a graphical model. We encode a parse using
the following variables:

Sentence. The n-word input sentence W is fully
observed (not a lattice). Let W = WyW;---W,,
where W) is always the special symbol ROOT.

Tags. If desired, the variables T' = 1175 - - - T}, may
specify tags on the n words, drawn from some tagset
T (e.g., parts of speech). These variables are needed
iff the tags are to be inferred jointly with the parse.

Links. The O(n?) boolean variables {L;; : 0 <
i <n,1<j<n,i#j} correspond to the possible
links in the dependency parse.? L;j = true is in-
terpreted as meaning that there exists a dependency
link from parent i — child j.*

Link roles, etc. It would be straightforward to add
other variables, such as a binary variable L;,; that is
true iff there is a link i — j labeled with role 7 (e.g.,
AGENT, PATIENT, TEMPORAL ADJUNCT).

3.2 Markov random fields

We wish to define a probability distribution over all
configurations, i.e., all joint assignments A to these

3“Links” are conventionally called edges, but we reserve the
term “edge” for describing the graphical model’s factor graph.

“We could have chosen a different representation with O(n)
integer variables {P; : 1 < j < n}, writing P; = 4 instead of
L;; = true. This representation can achieve the same asymp-
totic runtime for BP by using sparse messages, but some con-
straints and algorithms would be somewhat harder to explain.
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variables. Our distribution is simply an undirected
graphical model, or Markov random field (MRF):>

P42 T FulA)

specified by the collection of factors F),, : A —
R=0. Each factor is a function that consults only a
subset of A. We say that the factor has degree d
if it depends on the values of d variables in .4, and
that it is unary, binary, ternary, or global if d is
respectively 1, 2, 3, or unbounded (grows with n).

A factor function F,,,(A) may also depend freely
on the observed variables—the input sentence W
and a known (learned) parameter vector #. For no-
tational simplicity, we suppress these extra argu-
ments when writing and drawing factor functions,
and when computing their degree. In this treatment,
these observed variables are not specified by A, but
instead are absorbed into the very definition of F,.

In defining a factor F;,, we often define the cir-
cumstances under which it fires. These are the only
circumstances that allow F,,(A) # 1. When F,,
does not fire, F;,,(A) = 1 and does not affect the
product in equation (1).

ey

3.3 Hard constraints

A hard factor F),, fires only on parses A that violate
some specified condition. It has value O on those
parses, acting as a hard constraint to rule them out.

TREE. A hard global constraint on all the L;; vari-
ables at once. It requires that exactly n of these vari-
ables be true, and that the corresponding links form
a directed tree rooted at position O.

PTREE. This stronger version of TREE requires
further that the tree be projective. That is, it pro-
hibits L;; and Ly, from both being true if © — j
crosses k — £. (These links are said to cross if one
of k, £ is strictly between ¢ and j while the other is
strictly outside that range.)

EXACTLY1. A family of O(n) hard global con-
straints, indexed by 1 < 7 < n. EXACTLYI; re-
quires that j have exactly one parent, i.e., exactly
one of the L;; variables must be true. Note that EX-
ACTLY1 is implied by TREE or PTREE.

3Our overall model is properly called a dynamic MREF, since
we must construct different-size MRFs for input sentences of
different lengths. Parameters are shared both across and within
these MRFs, so that only finitely many parameters are needed.



ATMoOST1. A weaker version. ATMOSTI; re-
quires j to have one or zero parents.

NAND. A family of hard binary constraints.
NANDj; k¢ requires that L;; and Ly, may not both be
true. We will be interested in certain subfamilies.
NOT2.  Shorthand for the family of O(n?) bi-
nary constraints {NAND;; 1., }. These are collectively
equivalent to ATMOST]I, but expressed via a larger
number of simpler constraints, which can make the
BP approximation less effective (footnote 30).
NO2CYCLE. Shorthand for the family of O(n?)
binary constraints {NAND;; j; }.

3.4 Soft constraints

A soft factor F},, acts as a soft constraint that prefers
some parses to others. In our experiments, it is al-
ways a log-linear function returning positive values:

Fn(A) = > (A W,m) ()

hefeatures(F, )

exp

where 6 is a learned, finite collection of weights and
f is a corresponding collection of feature functions,
some of which are used by Fj,. (Note that f3 is
permitted to consult the observed input W. It also
sees which factor F},, it is scoring, to support reuse
of a single feature function f; and its weight 6, by
unboundedly many factors in a model.)

LINK. A family of unary soft factors that judge
the links in a parse 4 individually. LINK;; fires iff
L;; = true, and then its value depends on (i, j),
W, and 6. Our experiments use the same features as
McDonald et al. (2005).

A first-order (or “edge-factored”) parsing model
(McDonald et al., 2005) contains only LINK factors,
along with a global TREE or PTREE factor. Though
there are O(n?) link factors (one per L;;), only n
of them fire on any particular parse, since the global
factor ensures that exactly n are true.

We’ll consider various higher-order soft factors:

PAIR. The binary factor PAIR;; x¢ fires with some
value iff L;; and Ly, are both true. Thus, it penal-
izes or rewards a pair of links for being simultane-
ously present. This is a soft version of NAND.

GRAND. Shorthand for the family of O(n?) binary
factors {PAIR;; j;}, which evaluate grandparent-
parent-child configurations, ¢ — j — k. For exam-
ple, whether preposition j attaches to verb ¢ might
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depend on its object k. In non-projective parsing,
we might prefer (but not require) that a parent and
child be on the same side of the grandparent.

S1B. Shorthand for the family of O(n?) binary fac-
tors {PAIR;; ;. }, which judge whether two children
of the same parent are compatible. E.g., a given verb
may not like to have two noun children both to its
left.® The children do not need to be adjacent.

CHILDSEQ. A family of O(n) global factors.
CHILDSEQ; scores 7’s sequence of children; hence
it consults all variables of the form L;;. The scor-
ing follows the parametrization of a weighted split
head-automaton grammar (Eisner and Satta, 1999).
If 5 has children 2,7,9 under A, then CHILDSEQ;
is a product of subfactors of the form PAIR54 57,
PAIR57 59, PAIRsg 54 (right child sequence) and
PAIR54 52, PAIR52 54 (left child sequence).

NOCROSS. A family of O(n?) global constraints.
If the parent-to-j link crosses the parent-to-¢ link,
then NOCROSS;; fires with a value that depends
only on j and ¢. (If j and ¢ do not each have ex-
actly one parent, NOCROSS j, fires with value 0; i.e.,
it incorporates EXACTLY1; and EXACTLY 1,.)’

TAG; is a unary factor that evaluates whether 7;’s
value is consistent with W (especially ;).

TAGLINK;; is a ternary version of the LINK;; fac-
tor whose value depends on L;;, T; and T (i.e., its
feature functions consult the tag variables to decide
whether a link is likely). One could similarly enrich
the other features above to depend on tags and/or
link roles; TAGLINK is just an illustrative example.

TRIGRAM is a global factor that evaluates the tag
sequence 7' according to a trigram model. It is a
product of subfactors, each of which scores a tri-
gram of adjacent tags T;_o,T;_1,7T;, possibly also
considering the word sequence W (as in CRFs).

4 A Sketch of Belief Propagation

MacKay (2003, chapters 16 and 26) provides an
excellent introduction to belief propagation, a gen-

8 A similar binary factor could directly discourage giving the
verb two SUBJECTS, if the model has variables for link roles.

"In effect, we have combined the O(n*) binary factors
PAIR;j ¢ into O(n?) groups, and made them more precise
by multiplying in EXACTLYONE constraints (see footnote 30).
This will permit O(n®) total computation if we are willing to
sacrifice the ability of the PAIR weights to depend on ¢ and k.
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Figure 1: A fragment of a factor graph, illustrating a few
of the unary, binary, and global factors that affect vari-
ables Los and Lsg. The GRAND factor induces a loop.

eralization of the forward-backward algorithm that
is deeply studied in the graphical models literature
(Yedidia et al., 2004, for example). We briefly
sketch the method in terms of our parsing task.

4.1 Where BP comes from

The basic BP idea is simple. Variable L34 main-
tains a distribution over values true and false—a
“belief”—that is periodically recalculated based on
the current distributions at other variables.

Readers familiar with Gibbs sampling can regard
this as a kind of deterministic approximation. In
Gibbs sampling, Ls4’s value is periodically resam-
pled based on the current values of other variables.
Loopy BP works not with random samples but their
expectations. Hence it is approximate but tends to
converge much faster than Gibbs sampling will mix.

It is convenient to visualize an undirected factor
graph (Fig. 1), in which each factor is connected
to the variables it depends on. Many factors may
connect to—and hence influence—a given variable
such as Lgy4. If X is a variable or a factor, N'(X)
denotes its set of neighbors.

4.2 What BP accomplishes

Given an input sentence I and a parameter vector
0, the collection of factors F},, defines a probabil-
ity distribution (1). The parser should determine the
values of the individual variables. In other words,
we would like to marginalize equation (1) to obtain
the distribution p(Ls4) over L34 = true vs. false,
the distribution p(7y) over tags, etc.

If the factor graph is acyclic, then BP com-
putes these marginal distributions exactly. Given

80r, more precisely—this is the tricky part—based on ver-
sions of those other distributions that do not factor in L34’s re-
ciprocal influence on them. This prevents (e.g.) L34 and T3
from mutually reinforcing each other’s existing beliefs.
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an HMM, for example, BP reduces to the forward-
backward algorithm.

BP’s estimates of these distributions are called be-
liefs about the variables. BP also computes be-
liefs about the factors, which are useful in learn-
ing 6 (see §7). E.g., if the model includes the factor
TAGLINK;;, which is connected to variables L;;, T,
T}, then BP will estimate the marginal joint distribu-
tion p(L;j, Tj, T;) over (boolean, tag, tag) triples.

When the factor graph has loops, BP’s beliefs are
usually not the true marginals of equation (1) (which
are in general intractable to compute). Indeed, BP’s
beliefs may not be the true marginals of any distribu-
tion p(.A) over assignments, i.e., they may be glob-
ally inconsistent. All BP does is to incrementally
adjust the beliefs till they are at least locally con-
sistent: e.g., the beliefs at factors TAGLINK;; and
TAGLINK;;, must both imply® the same belief about
variable 7T;, their common neighbor.

4.3 The BP algorithm

This iterated negotiation among the factors is han-
dled by message passing along the edges of the fac-
tor graph. A message to or from a variable is a (pos-
sibly unnormalized) probability distribution over the
values of that variable.

The variable V' sends a message to factor F', say-
ing “My other neighboring factors G jointly suggest
that I have posterior distribution gy, (assuming
that they are sending me independent evidence).”
Meanwhile, factor F' sends messages to V, saying,
“Based on my factor function and the messages re-
ceived from my other neighboring variables U about
their values (and assuming that those messages are
independent), I suggest you have posterior distribu-
tion rp_,y, over your values.”

To be more precise, BP at each iteration & (until
convergence) updates two kinds of messages:

(k)

WP =r [ 2w 3)
GeN(V)\F
from variables to factors, and @)
k k
A=k Y P I ) eA)
As.t. A[V]=v UeN(F)\V

°In the sense that marginalizing the belief p(L;;, T;, Tj) at
the factor yields the belief p(7;) at the variable.



from factors to variables. Each message is a proba-
bility distribution over values v of V', normalized by
a scaling constant . Alternatively, messages may be
left as unnormalized distributions, choosing x # 1
only as needed to prevent over- or underflow. Mes-
sages are initialized to uniform distributions.

Whenever we wish, we may compute the beliefs
atV and F:

0w 2 s I r&v) 5)
GeN (V)
BED) & kP T @ #(AID) )
UeN(F)

These beliefs do not truly characterize the ex-
pected behavior of Gibbs sampling (§4.1), since the
products in (5)—(6) make conditional independence
assumptions that are valid only if the factor graph
is acyclic. Furthermore, on cyclic (“loopy”) graphs,
BP might only converge to a local optimum (Weiss
and Freedman, 2001), or it might not converge at all.
Still, BP often leads to good, fast approximations.

5 Achieving Low Asymptotic Runtime

One iteration of standard BP simply updates all the
messages as in equations (3)—(4): one message per
edge of the factor graph.

Therefore, adding new factors to the model in-
creases the runtime per iteration additively, by in-
creasing the number of messages to update. We
believe this is a compelling advantage over dy-
namic programming—in which new factors usually
increase the runtime and space multiplicatively by
exploding the number of distinct items.'”

5.1 Propagators for local constraints

But how long does updating each message take? The
runtime of summing over all assignments ) , in

For example, with unknown tags 7, a model with
PTREE+TAGLINK will take only O(n?® + n®g?) time for BP,
compared to O(n>g?) time for dynamic programming (Eisner
& Satta 1999). Adding TRIGRAM, which is string-local rather
than tree-local, will increase this only to O(n® + n%g? + ng®),
compared to O(n>¢®) for dynamic programming.

Even more dramatic, adding the SIB family of O(n®)
PAIR;; ;1 factors will add only O(n?) to the runtime of BP
(Table 1). By contrast, the runtime of dynamic programming
becomes exponential, because each item must record its head-
word’s full set of current children.
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equation (4) may appear prohibitive. Crucially, how-
ever, '(A) only depends on the values in A of F’s
its neighboring variables N'(F'). So this sum is pro-
portional to a sum over restricted assignments to just
those variables.!!

For example, computing a message from
TAGLINK;; — T; only requires iterating over all
(boolean, tag, tag) triples.'?> The runtime to update
that message is therefore O(2 - |7| - |T]).

5.2 Propagators for global constraints

The above may be tolerable for a ternary factor. But
how about global factors? EXACTLY 1 has n neigh-
boring boolean variables: surely we cannot iterate
over all 2" assignments to these! TREE is even
worse, with 20(n?) assignments to consider. We will
give specialized algorithms for handling these sum-
mations more efficiently.

A historical note is in order. Traditional constraint
satisfaction corresponds to the special case of (1)
where all factors F},, are hard constraints (with val-
ues in {0,1}). In that case, loopy BP reduces to
an algorithm for generalized arc consistency (Mack-
worth, 1977; Bessiere and Régin, 1997; Dechter,
2003), and updating a factor’s outgoing messages is
known as constraint propagation. Régin (1994)
famously introduced an efficient propagator for
a global constraint, ALLDIFFERENT, by adapting
combinatorial bipartite matching algorithms.

In the same spirit, we will demonstrate efficient
propagators for our global constraints, e.g. by adapt-
ing combinatorial algorithms for weighted parsing.
We are unaware of any previous work on global fac-
tors in sum-product BP, although for max-product
BP,'® Duchi et al. (2007) independently showed
that a global 1-to-1 alignment constraint—a kind
of weighted ALLDIFFERENT—permits an efficient
propagator based on weighted bipartite matching.

5.3 Constraint propagators for parsing

Table 1 shows our asymptotic runtimes for all fac-
tors in §53.3-3.4. Remember that if several of these

""'The constant of proportionality may be folded into ; it is
the number of assignments to the other variables.

12Separately for each value v of T;, get v’s probability by
summing over assignments to (L, T3, Tj) s.t. T; = v.

13Max—product replaces the sums in equations (3)—(6) with
maximizations. This replaces the forward-backward algorithm
with its Viterbi approximation.



factor degree runtime count | runtime
family (each) (each) (total)
TREE O(n?)  0O(n?) 1 o(n?)
PTREE O(n?)  O(n?) 1 O(n?3)
EXACTLY] | O(n) O(n) n O(n?)
ATMOSTI O(n) O(n) n O(n?)
Not2 2 O(1) O(n?) O(n?)
NO2CYCLE 2 O(1) O(n?) O(n?)
LINK 1 O(1) O(n?) O(n?)
GRAND 2 O(1) 0O(n?) O(n?)
SIB 2 O(1) O(n?) O(n?)
CHILDSEQ | O(n) O(n?) O(n) O(n?)
NOCROSS O(n) O(n) 0O(n?) O(n?3)
TAG 1 O(g) O(n) O(ng)
TAGLINK 3 0(g%) O(n?) | O(n?g?)
TRIGRAM O(n) O(ng®) 1| O(ng®)

Table 1: Asymptotic runtimes of the propagators for var-
ious factors (where n is the sentence length and g is the
size of the tag set 7). An iteration of standard BP propa-
gates through each factor once. Running a factor’s prop-
agator will update all of its outgoing messages, based on
its current incoming messages.

factors are included, the total runtime is additive.'*

Propagating the local factors is straightforward
(85.1). We now explain how to handle the global
factors. Our main trick is to work backwards from
marginal beliefs. Let F' be a factor and V be one
of its neighboring variables. At any time, F' has a
marginal belief about V' (see footnote 9),

S

Ast. AlV]=v

bV = w) = (7

a sum over (6)’s products of incoming messages. By
the definition of rz_.y in (4), and distributivity, we
can also express the marginal belief (7) as a point-

wise product of outgoing and incoming messages'
k+1 k+1 k
bt (V= 0) =) e ) ®)

up to a constant. If we can quickly sum up the
marginal belief (7), then (8) says we can divide out

each particular incoming message q‘(/kl p to obtain
. . . (k+1)
its corresponding outgoing message 7,y
“We may ignore the cost of propagators at the variables.
Each outgoing message from a variable can be computed in
time proportional to its size, which may be amortized against
the cost of generating the corresponding incoming message.
'SE.g., the familiar product of forward and backward mes-
sages that is used to extract posterior marginals from an HMM.
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Note that the marginal belief and both messages
are unnormalized distributions over values v of V.
F and k are clear from context below, so we simplify
the notation so that (7)—(8) become

Ast. AlV]=v

TRIGRAM must sum over assignments to the tag
sequence 1. The belief (6) in a given assignment
is a product of trigram scores (which play the role
of transition weights) and incoming messages gr;
(playing the role of emission weights). The marginal
belief (7) needed above, b(T; = t), is found by sum-
ming over assignments where 7; = ¢. All marginal
beliefs are computed together in O(ng?) total time
by the forward-backward algorithm.'®

EXACTLY1; is a sparse hard constraint. Even
though there are 2" assignments to its n neighboring
variables { L;;}, the factor function returns 1 on only
n assignments and O on the rest. In fact, for a given i,
b(L;; = true) in (7) is defined by (6) to have exactly
one non-zero summand, in which A puts L;; = true
and all other L, ; = false. We compute the marginal
beliefs for all ¢ together in O(n) total time:

1. Pre-compute 7 = [, qr,, (false).”

2. For each i, compute the marginal belief
b(Li; = true) as 7 - qr,;, where qr,; € R de-
notes the odds ratio gz, (true)/q.,, (false)."®

3. The partition function b() denotes ) 4 b(A);
compute it in this case as ), b(L;; = true).

4. For each i, compute b(L;; = false) by subtrac-
tion, as b() — b(L;; = true).

TREE and PTREE must sum over assignments to
the O(n?) neighboring variables {L;;}. There are
now exponentially many non-zero summands, those
in which A corresponds to a valid tree. Nonetheless,

Which is itself an exact BP algorithm, but on a different
graph—a junction tree formed from the graph of TRIGRAM sub-
factors. Each variable in the junction tree is a bigram. If we had
simply replaced the global TRIGRAM factor with its subfactors
in the full factor graph, we would have had to resort to General-
ized BP (Yedidia et al., 2004) to obtain the same exact results.

7But taking 7 = 1 gives the same results, up to a constant.

' As a matter of implementation, this odds ratio gz, can be
used to represent the incoming message qr.,; everywhere.



we can follow the same approach as for EXACTLY 1.
Steps 1 and 4 are modified to iterate over all 7, j such
that L;; is a variable. In step 3, the partition function
> 4 b(A) is now 7 times the total weight of all trees,
where the weight of a given tree is the product of the
qr,; values of its n edges. In step 2, the marginal
belief b(L;; = true) is now 7 times the total weight
of all trees having edge i — j.

We perform these combinatorial sums by calling a
first-order parsing algorithm, with edge weights g;;.
Thus, as outlined in §2, a first-order parser is called
each time we propagate through the global TREE or
PTREE constraint, using edge weights that include
the first-order LINK factors but also multiply in any
current messages from higher-order factors.

The parsing algorithm simultaneously computes
the partition function b(), and all O(n?) marginal
beliefs b(L;; = true). For PTREE (projective), it
is the inside-outside version of a dynamic program-
ming algorithm (Eisner, 1996). For TREE (non-
projective), Koo et al. (2007) and Smith and Smith
(2007) show how to employ the matrix-tree theorem.
In both cases, the total time is O(n?3)."

NOCROSS;; must sum over assignments to O(n)
neighboring variables {L;;} and {Ly,}. The non-
zero summands are assignments where j and /
each have exactly one parent. At step 1, 7 e
[1; v, (false) - [], gz, (false). At step 2, the
marginal belief b(L;; = true) sums over the n non-
zero assignments containing ¢ — j. Itis 7 - qr,; -
> i ALy, - PAIR;j 1o, Where PAIR;j o is 0 if ¢ — j
crosses k — £ and is 1 otherwise. z is some factor
value defined by equation (2) to penalize or reward
the crossing. Steps 3—4 are just as in EXACTLY1;.

The question is how to compute b(L;; = true) for
each 7 in only O(1) time,?” so that we can propagate
each of the O(n?) NOCROSS ¢ in O(n) time. This
is why we allowed x, to depend only on j,/. We
can rewrite the sum b(L;; = true) as

W'q_Lij : (:L‘jf : Z (ijg + 1 Z qug>

crossing k noncrossing k

€))

YA dynamic algorithm could incrementally update the out-
going messages if only a few incoming messages have changed
(as in asynchronous BP). In the case of TREE, dynamic matrix
inverse allows us to update any row or column (i.e., messages
from all parents or children of a given word) and find the new
inverse in O(n?) time (Sherman and Morrison, 1950).

symmetrically, we compute b(Lye = true) for each k.
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To find this in O(1) time, we precompute for each

¢ an array of partial sums Qy[s,t] = 3.\, dL,,-

Since Q¢ls, t] = Q¢[s,t—1]+qr,,, we can compute
each entry in O(1) time. The total precomputation
time over all /, s, ¢ is then O(n?), with the array @,
shared across all factors NOCROSS /s The crossing
sum is respectively Q[0,i—1]+Q¢[7+1,n], Qe[i+
1,7 — 1], or 0 according to whether ¢ € (i,7), £ ¢
[4,7], or £ = i.2! The non-crossing sum is Q[0, n]
minus the crossing sum.

CHILDSEQ; , like TRIGRAM, is propagated by a
forward-backward algorithm. In this case, the al-
gorithm is easiest to describe by replacing CHILD-
SEQ; in the factor graph by a collection of local
subfactors, which pass messages in the ordinary
way.?? Roughly speaking,?® at each j ¢ [1,n],
we introduce a new variable C;;—a hidden state
whose value is the position of #’s previous child,
if any (so 0 < Cj; < j). So the ternary sub-
factor on (Cij,Lij,Ci’jJrl) has value 1 if Lij =
false and C; j41 = C;;; a sibling-bigram score
(PAIRiCij,iCi7j+1) if Lij = true and C’L’,j+1 = j; and
0 otherwise. The sparsity of this factor, which is 0
almost everywhere, is what gives CHILDSEQ); a total
runtime of O(n?) rather than O(n?). It is equivalent
to forward-backward on an HMM with n observa-
tions (the L;;) and n states per observation (the C;),
with a deterministic (thus sparse) transition function.

6 Decoding Trees

BP computes local beliefs, e.g. the conditional prob-
ability that a link L;; is present. But if we wish
to output a single well-formed dependency tree, we
need to find a single assignment to all the {L;; } that
satisfies the TREE (or PTREE) constraint.

Our final belief about the TREE factor is a distri-
bution over such assignments, in which a tree’s prob-
ability is proportional to the probability of its edge
weights gz, (incoming messages). We could simply
return the mode of this distribution (found by using
a 1-best first-order parser) or the k-best trees, or take
samples.

*''There are no NOCROSS ¢ factors with £ = j.

22We still treat CHILDSEQ; as a global factor and compute all
its correct outgoing messages on a single BP iteration, via serial
forward and backward sweeps through the subfactors. Handling
the subfactors in parallel, (3)-(4), would need O(n) iterations.

»Ignoring the treatment of boundary symbols “#” (see §3.4).



In our experiments, we actually take the edge

weights to be not the messages qL;, from the links,
def

but the full beliefs b L;; at the links (where b Li; =
log by, (true) /by, (false)). These are passed into a
fast algorithm for maximum spanning tree (Tarjan,
1977) or maximum projective spanning tree (Eis-
ner, 1996). This procedure is equivalent to minimum
Bayes risk (MBR) parsing (Goodman, 1996) with a
dependency accuracy loss function.

Notice that the above decoding approaches do not
enforce any hard constraints other than TREE in the
final output. In addition, they only recover values
of the L;; variables. They marginalize over other
variables such as tags and link roles. This solves
the problem of “nuisance” variables (which merely
fragment probability mass among refinements of a
parse). On the other hand, it may be undesirable for
variables whose values we desire to recover.?*

7 Training

Our training method also uses beliefs computed by
BP, but at the factors. We choose the weight vector
f by maximizing the log-probability of training data

2An alternative is to attempt to find the most probable
(“MAP”) assignment to all variables—using the max-product
algorithm (footnote 13) or one of its recent variants. The esti-
mated marginal beliefs become “max marginals,” which assess
the 1-best assignment consistent with each value of the variable.

We can indeed build max-product propagators for our global
constraints. PTREE still propagates in O(n?) time: simply
change the first-order parser’s semiring (Goodman, 1999) to use
max instead of sum. TREE requires O(n*) time: it seems that
the O(n?) max marginals must be computed separately, each
requiring a separate call to an O(n?) maximum spanning tree
algorithm (Tarjan, 1977).

If max-product BP converges, we may simply output each
variable’s favorite value (according to its belief), if unique.
However, max-product BP tends to be unstable on loopy graphs,
and we may not wish to wait for full convergence in any case. A
more robust technique for extracting an assignment is to mimic
Viterbi decoding, and “follow backpointers” of the max-product
computation along some spanning subtree of the factor graph.

A slower but potentially more stable alternative is determin-
istic annealing. Replace each factor F,, (A) with F,,,(A)Y/7,
where T' > 0 is a temperature. As 7' — 0 (“quenches”), the
distribution (1) retains the same mode (the MAP assignment),
but becomes more sharply peaked at the mode, and sum-product
BP approaches max-product BP. Deterministic annealing runs
sum-product BP while gradually reducing 7" toward O as it it-
erates. By starting at a high 7" and reducing 7" slowly, it often
manages in practice to find a good local optimum. We may then
extract an assignment just as we do for max-product.
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under equation (1), regularizing only by early stop-
ping. If all variables are observed in training, this
objective function is convex (as for any log-linear
model).

The difficult step in computing the gradient of
our objective is finding Vy log Z, where Z in equa-
tion (1) is the normalizing constant (partition func-
tion) that sums over all assignments 4. (Recall that
Z, like each Fy,, depends implicitly on W and 6.)
As usual for log-linear models,

Volog Z = E,4)[VoFn(A)]  (10)

Since VyF,,(A) only depends on the assignment
A’s values for variables that are connected to F),
in the factor graph, its expectation under p(.A) de-
pends only on the marginalization of p(.A) to those
variables jointly. Fortunately, BP provides an esti-
mate of that marginal distribution, namely, its belief
about the factor F,,,, given W and 6 (§4.2).%

Note that the hard constraints do not depend on 6
at all; so their summands in equation (10) will be 0.

We employ stochastic gradient descent (Bottou,
2003), since this does not require us to compute
the objective function itself but only to (approxi-
mately) estimate its gradient as explained above. Al-
ternatively, given any of the MAP decoding proce-
dures from §6, we could use an error-driven learning
method such as the perceptron or MIRA 26

8 Experiments

We asked: (1) For projective parsing, where higher-
order factors have traditionally been incorporated
into slow but exact dynamic programming (DP),
what are the comparative speed and quality of the
BP approximation? (2) How helpful are such higher-
order factors—particularly for non-projective pars-
ing, where BP is needed to make them tractable?
(3) Do our global constraints (e.g., TREE) contribute
to the goodness of BP’s approximation?

20ne could use coarser estimates at earlier stages of training,
by running fewer iterations of BP.

%The BP framework makes it tempting to extend an MRF
model with various sorts of latent variables, whose values are
not specified in training data. It is straightforward to train under
these conditions. When counting which features fire on a train-
ing parse or (for error-driven training) on an current erroneous
parse, we can find expected counts if these parses are not fully
observed, by using BP to sum over latent variables.



A
[2]
2
5 8-
[}
(7]
c A MBR by DP
g o Viterbi DP
s Q + 2 iterations of BP
2 X 3iterations of BP A 2
g 5 iterations of BP
Q 10 iterations of BP
(0] o _| X
g ¢« A o
3: b2 5( +
—
o - £ % " +
T T

T T T
30 40 50 60 70

o H#
o

o 1
N

©

Sentence length

Figure 2: Runtime of BP parser on various sentence
lengths compared to O(n*) dynamic programming.

8.1 Data

We trained and tested on three languages from the
CoNLL Dependency Parsing Shared Task (Nivre et
al., 2007). The English data for that task were
converted from the Penn Treebank to dependen-
cies using a trace-recovery algorithm that induced
some very slight non-projectivity—about 1% of
links crossed other links. Danish is a slightly more
non-projective language (3% crossing links). Dutch
is the most non-projective language in the corpus
(11%). In all cases, the test input W consists of
part-of-speech-tagged words, so T' variables were
not used.

8.2 Features

Although BP makes it cheap to incorporate many
non-local features and latent variables at once, we
kept our models relatively simple in this paper.

Our first-order LINK;; factors replicate McDon-
ald et al. (2005). Following equation (2), they are
defined using binary features that look at words ¢
and j, the distance j — ¢, and the tags (provided in
W) of words at, around, and between ¢ and j.

Our second-order features are similar. In the
GRAND factors, features fire for particular triples
of tags and of coarse tags. A feature also fires if
the grandparent falls between the child and parent,
inducing crossing dependency links. The CHILD-
SEQ factors included features for tags, and like-
wise coarse tags, on adjacent sibling pairs and
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Figure 3: Runtime of BP parser on various sentence
lengths compared to O(n®) dynamic programming. DP
is so slow for length > 45 that we do not even show it.

parent-sibling-sibling triples. Each of these fea-
tures also have versions that were conjoined with
link direction—pairs of directions in the grandpar-
ent case—or with signed link length of the child or
farther sibling. Lengths were binned per McDonald
et al. (2005). The NOCROSS j; factors consider the
tag and coarse tag attributes of the two child words
j and ¢, separately or jointly.

8.3 Experimental procedures

We trained all models using stochastic gradient de-
scent (§7). SGD initialized 6 = 0 and ran for 10 con-
secutive passes over the data; we picked the stopping
point that performed best on held-out data.

When comparing runtimes for projective parsers,
we took care to produce comparable implementa-
tions. All beliefs and dynamic programming items
were stored and indexed using the high-level Dyna
language,?’ while all inference and propagation was
written in C++. The BP parser averaged 1.8 seconds
per sentence for non-projective parsing and 1.5 sec-
onds per sentence for projective parsing (1.2 and 0.9
seconds/sentence for < 40 words), using our stan-
dard setup, which included five iterations of BP and
the final MBR tree decoding pass.

In our tables, we boldface the best result in each
column along with any results that are not signifi-
cantly worse (paired permutation test, p < .05).

2"This dominates runtime, and probably slows down all our
parsers by a factor of 4-11 owing to known inefficiencies in the
Dyna prototype we used (Eisner et al., 2005).
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Figure 4: Runtime vs. search error after different num-
bers of BP iterations. This shows the simpler model of
Fig. 2, where DP is still relatively fast.

8.4 Faster higher-order projective parsing

We built a first-order projective parser—one that
uses only factors PTREE and LINK—and then com-
pared the cost of incorporating second-order factors,
GRAND and CHILDSEQ, by BP versus DP.?8

Under DP, the first-order runtime of O(n?) is in-
creased to O(n*) with GRAND, and to O(n®) when
we add CHILDSEQ as well. BP keeps runtime down
to O(n3)—although with a higher constant factor,
since it takes several rounds to converge, and since
it computes more than just the best parse.?”

Figures 2-3 compare the empirical runtimes for
various input sentence lengths. With only the
GRAND factor, exact DP can still find the Viterbi
parse (though not the MBR parse?®) faster than ten
iterations of the asymptotically better BP (Fig. 2),
at least for sentences with n < 75. However, once
we add the CHILDSEQ factor, BP is always faster—
dramatically so for longer sentences (Fig. 3). More
complex models would widen BP’s advantage.

Fig. 4 shows the tradeoff between runtime and
search error of BP in the former case (GRAND only).
To determine BP’s search error at finding the MBR
parse, we measured its dependency accuracy not

ZWe trained these parsers using exact DP, using the inside-
outside algorithm to compute equation (10). The training and
test data were English, and for this section we filtered out sen-
tences with non-projective links.

*Viterbi parsing in the log domain only needs the (max, +)
semiring, whereas both BP and any MBR parsing must use the
slower (+, log+) so that they can compute marginals.
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] Danish Dutch  English
(a) | TREE+LINK | 85.5 87.3 88.6
+NOCROSS 86.1 88.3 89.1
+GRAND 86.1 88.6 894
+CHILDSEQ 86.5 88.5 90.1
(b) | Proj. DP 86.0 84.5 90.2
+hill-climbing | 86.1 87.6 90.2

Table 2: (a) Percent unlabeled dependency accuracy for
various non-projective BP parsers (5 iterations only),
showing the cumulative contribution of different features.
(b) Accuracy for an projective DP parser with all features.
For relatively non-projective languages (Danish and espe-
cially Dutch), the exact projective parses can be improved
by non-projective hill-climbing—but in those cases, just
running our non-projective BP is better and faster.

against the gold standard, but against the optimal
MBR parse under the model, which DP is able to
find. After 10 iterations, the overall macro-averaged
search error compared to O(n*) DP MBR is 0.4%;
compared to O(n®) (not shown), 2.4%. More BP
iterations may help accuracy. In future work, we
plan to compare BP’s speed-accuracy curve on more
complex projective models with the speed-accuracy
curve of pruned or reranked DP.

8.5 Higher-order non-projective parsing

The BP approximation can be used to improve
the accuracy of non-projective parsing by adding
higher-order features. These would be NP-hard to
incorporate exactly; DP cannot be used.

We used BP with a non-projective TREE factor
to train conditional log-linear parsing models of two
highly non-projective languages, Danish and Dutch,
as well as slightly non-projective English (§8.1).
In all three languages, the first-order non-projective
parser greatly overpredicts the number of crossing
links. We thus added NOCROSS factors, as well
as GRAND and CHILDSEQ as before. All of these
significantly improve the first-order baseline, though
not necessarily cumulatively (Table 2).

Finally, Table 2 compares loopy BP to a previ-
ously proposed “hill-climbing” method for approx-
imate inference in non-projective parsing McDon-
ald and Pereira (2006). Hill-climbing decodes our
richest non-projective model by finding the best pro-
Jjective parse under that model—using slow, higher-
order DP—and then greedily modifies words’ par-
ents until the parse score (1) stops improving.



Decoding Danish Dutch English
NoT2 81.8 (76.7) 83.3(75.0) 87.5(66.4)
ATMOST1 85.4(82.2) 87.3(86.3) 88.5(84.6)
EXACTLY1 85.7 (85.00 87.0(86.7) 88.6(86.0)
+ NO2CYCLE | 85.0(85.2) 86.2(86.7) 88.5(86.2)
TREE 85.5(85.5) 87.3(87.3) 88.6(88.6)
PTREE 85.8 83.9 88.8

Table 3: After training a non-projective first-order model
with TREE, decoding it with weaker constraints is asymp-
totically faster (except for NOT2) but usually harm-
ful. (Parenthetical numbers show that the harm is com-
pounded if the weaker constraints are used in training
as well; even though this matches training to test con-
ditions, it may suffer more from BP’s approximate gradi-
ents.) Decoding the TREE model with the even stronger
PTREE constraint can actually be helpful for a more pro-
jective language. All results use 5 iterations of BP.

BP for non-projective languages is much faster
and more accurate than the hill-climbing method.
Also, hill-climbing only produces an (approximate)
1-best parse, but BP also obtains (approximate)
marginals of the distribution over all parses.

8.6 Importance of global hard constraints

Given the BP architecture, do we even need the hard
TREE constraint? Or would it suffice for more local
hard constraints to negotiate locally via BP?

We investigated this for non-projective first-order
parsing. Table 3 shows that global constraints are
indeed important, and that it is essential to use TREE
during training. At test time, the weaker but still
global EXACTLY1 may suffice (followed by MBR
decoding to eliminate cycles), for total time O(n?).

Table 3 includes NOT2, which takes O(n?) time,
merely to demonstrate how the BP approximation
becomes more accurate for training and decoding
when we join the simple NOT2 constraints into more
global ATMOST]1 constraints. This does not change
the distribution (1), but makes BP enforce stronger
local consistency requirements at the factors, rely-
ing less on independence assumptions. In general,
one can get better BP approximations by replacing a
group of factors F},(A) with their product.*

The above experiments concern gold-standard

3%In the limit, one could replace the product (1) with a sin-
gle all-purpose factor; then BP would be exact—but slow. (In
constraint satisfaction, joining constraints similarly makes arc
consistency slower but better at eliminating impossible values.)
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accuracy under a given first-order, non-projective
model. Flipping all three of these parameters for
Danish, we confirmed the pattern by instead mea-
suring search error under a higher-order, projective
model (PTREE+LINK+GRAND), when PTREE was
weakened during decoding. Compared to the MBR
parse under that model, the search errors from de-
coding with weaker hard constraints were 2.2% for
NoT2, 2.1% for EXACTLY1, 1.7% for EXACTLY1
+ NO2CYCLE, and 0.0% for PTREE.

9 Conclusions and Future Work

Belief propagation improves non-projective depen-
dency parsing with features that would make ex-
act inference intractable. For projective parsing, it
is significantly faster than exact dynamic program-
ming, at the cost of small amounts of search error,

We are interested in extending these ideas to
phrase-structure and lattice parsing, and in try-
ing other higher-order features, such as those used
in parse reranking (Charniak and Johnson, 2005;
Huang, 2008) and history-based parsing (Nivre and
McDonald, 2008). We could also introduce new
variables, e.g., nonterminal refinements (Matsuzaki
etal., 2005), or secondary links M;; (not constrained
by TREE/PTREE) that augment the parse with repre-
sentations of control, binding, etc. (Sleator and Tem-
perley, 1993; Buch-Kromann, 2006).

Other parsing-like problems that could be at-
tacked with BP appear in syntax-based machine
translation. Decoding is very expensive with a syn-
chronous grammar composed with an n-gram lan-
guage model (Chiang, 2007)—but our footnote 10
suggests that BP might incorporate a language
model rapidly. String alignment with synchronous
grammars is quite expensive even for simple syn-
chronous formalisms like ITG (Wu, 1997)—but
Duchi et al. (2007) show how to incorporate bipar-
tite matching into max-product BP.

Finally, we can take advantage of improvements
to BP proposed in the context of other applications.
For example, instead of updating all messages in
parallel at every iteration, it is empirically faster to
serialize updates using a priority queue (Elidan et
al., 2006; Sutton and McCallum, 2007).?!

31 These methods need alteration to handle our global propa-
gators, which do update all their outgoing messages at once.
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Abstract

We explore a stacked framework for learn-
ing to predict dependency structures for natu-
ral language sentences. A typical approach in
graph-based dependency parsing has been to
assume a factorized model, where local fea-
tures are used but a global function is opti-
mized (McDonald et al., 2005b). Recently
Nivre and McDonald (2008) used the output
of one dependency parser to provide features
for another. We show that this is an example
of stacked learning, in which a second pre-
dictor is trained to improve the performance
of the first. Further, we argue that this tech-
nique is a novel way of approximating rich
non-local features in the second parser, with-
out sacrificing efficient, model-optimal pre-
diction. Experiments on twelve languages
show that stacking transition-based and graph-
based parsers improves performance over ex-
isting state-of-the-art dependency parsers.

1 Introduction

In this paper we address a representation-efficiency
tradeoff in statistical natural language processing
through the use of stacked learning (Wolpert,
1992). This tradeoff is exemplified in dependency
parsing, illustrated in Fig. 1, on which we focus in
this paper:

e Exact algorithms for dependency parsing (Eis-
ner and Satta, 1999; McDonald et al., 2005b)
are tractable only when the model makes very
strong, linguistically unsupportable independence
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assumptions, such as “arc factorization” for non-
projective dependency parsing (McDonald and
Satta, 2007).

e Feature-rich parsers must resort to search or
greediness, (Ratnaparkhi et al., 1994; Sagae and
Lavie, 2005; Hall et al., 2006), so that parsing
solutions are inexact and learned models may be
subject to certain kinds of bias (Lafferty et al.,
2001).

A solution that leverages the complementary
strengths of these two approaches—described in de-
tail by McDonald and Nivre (2007)—was recently
and successfully explored by Nivre and McDonald
(2008). Our contribution begins by reinterpreting
and generalizing their parser combination scheme as
a stacking of parsers.

We give a new theoretical motivation for stacking
parsers, in terms of extending a parsing model’s fea-
ture space. Specifically, we view stacked learning as
a way of approximating non-local features in a lin-
ear model, rather than making empirically dubious
independence (McDonald et al., 2005b) or structural
assumptions (e.g., projectivity, Eisner, 1996), using
search approximations (Sagae and Lavie, 2005; Hall
et al., 2006; McDonald and Pereira, 2006), solving a
(generally NP-hard) integer linear program (Riedel
and Clarke, 2006), or adding latent variables (Titov
and Henderson, 2007). Notably, we introduce the
use of very rich non-local approximate features in
one parser, through the output of another parser.
Related approaches are the belief propagation algo-
rithm of Smith and Eisner (2008), and the “trading
of structure for features” explored by Liang et al.

Proceedings of the 2008 Conference on Empirical Methods in Natural Language Processing, pages 157-166,
Honolulu, October 2008. (©)2008 Association for Computational Linguistics
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Figure 1: A projective dependency parse (top), and a non-
projective dependency parse (bottom) for two English
sentences; examples from McDonald and Satta (2007).

(2008).

This paper focuses on dependency parsing, which
has become widely used in relation extraction (Cu-
lotta and Sorensen, 2004), machine translation
(Ding and Palmer, 2005), question answering (Wang
et al.,, 2007), and many other NLP applications.
We show that stacking methods outperform the ap-
proximate “second-order” parser of McDonald and
Pereira (2006) on twelve languages and can be used
within that approximation to achieve even better re-
sults. These results are similar in spirit to (Nivre and
McDonald, 2008), but with the following novel con-
tributions:

e a stacking interpretation,

e aricher feature set that includes non-local features
(shown here to improve performance), and

e a variety of stacking architectures.

Using stacking with rich features, we obtain results
competitive with Nivre and McDonald (2008) while
preserving the fast quadratic parsing time of arc-
factored spanning tree algorithms.

The paper is organized as follows. We discuss re-
lated prior work on dependency parsing and stacking
in §2. Our model is given in §3. A novel analysis of
stacking in linear models is given in §4. Experiments
are presented in §5.

2 Background and Related Work

We briefly review work on the NLP task of depen-
dency parsing and the machine learning framework
known as stacked learning.
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2.1 Dependency Parsing

Dependency syntax is a lightweight syntactic rep-
resentation that models a sentence as a graph where
the words are vertices and syntactic relationships are
directed edges (arcs) connecting heads to their argu-
ments and modifiers.

Dependency parsing is often viewed computa-
tionally as a structured prediction problem: for each
input sentence x, with n words, exponentially many
candidate dependency trees y € ) (x) are possible in
principle. We denote each tree by its set of vertices
and directed arcs, y = (V,, 4,). A legal depen-
dency tree has n + 1 vertices, each corresponding to
one word plus a “wall” symbol, $, assumed to be the
hidden root of the sentence. In a valid dependency
tree, each vertex except the root has exactly one par-
ent. In the projective case, arcs cannot cross when
depicted on one side of the sentence; in the non-
projective case, this constraint is not imposed (see
Fig. 1).

2.1.1 Graph-based vs. transition-based models

Most recent work on dependency parsing can be
categorized as graph-based or transition-based. In
graph-based parsing, dependency trees are scored
by factoring the tree into its arcs, and parsing is
performed by searching for the highest scoring tree
(Eisner, 1996; McDonald et al., 2005b). Transition-
based parsers model the sequence of decisions of
a shift-reduce parser, given previous decisions and
current state, and parsing is performed by greedily
choosing the highest scoring transition out of each
successive parsing state or by searching for the best
sequence of transitions (Ratnaparkhi et al., 1994;
Yamada and Matsumoto, 2003; Nivre et al., 2004;
Sagae and Lavie, 2005; Hall et al., 2006).

Both approaches most commonly use linear mod-
els to assign scores to arcs or decisions, so that a
score is a dot-product of a feature vector f and a
learned weight vector w.

In sum, these two lines of research use different
approximations to achieve tractability. Transition-
based approaches solve a sequence of local prob-
lems in sequence, sacrificing global optimality guar-
antees and possibly expressive power (Abney et al.,
1999). Graph-based methods perform global in-
ference using score factorizations that correspond
to strong independence assumptions (discussed in



§2.1.2). Recently, Nivre and McDonald (2008) pro-
posed combining a graph-based and a transition-
based parser and have shown a significant improve-
ment for several languages by letting one of the
parsers “guide” the other. Our stacked formalism
(to be described in §3) generalizes this approach.

2.1.2 Arc factorization

In the successful graph-based method of McDon-
ald et al. (2005b), an arc factorization independence
assumption is used to ensure tractability. This as-
sumption forbids any feature that depends on two
or more arcs, permitting only “arc-factored” features
(i.e. features that depend only on a single candidate
arc a € A, and on the input sequence x). This in-
duces a decomposition of the feature vector f(z, y)
as:

f((L‘,y) = Z fa(x)'

acAy

Parsing amounts to solving

arg maxyey(x)
w ' f(z,y), where w is a weight vector. With
a projectivity constraint and arc factorization, the
parsing problem can be solved in cubic time by
dynamic programming (Eisner, 1996), and with a
weaker “tree” constraint (permitting nonprojective
parses) and arc factorization, a quadratic-time
algorithm exists (Chu and Liu, 1965; Edmonds,
1967), as shown by McDonald et al. (2005b). In
the projective case, the arc-factored assumption can
be weakened in certain ways while maintaining
polynomial parser runtime (Eisner and Satta, 1999),
but not in the nonprojective case (McDonald and
Satta, 2007), where finding the highest-scoring tree
becomes NP-hard.

McDonald and Pereira (2006) adopted an approx-
imation based on O(n?) projective parsing followed
by rearrangement to permit crossing arcs, achieving
higher performance. In §3 we adopt a framework
that maintains O(n?) runtime (still exploiting the
Chu-Liu-Edmonds algorithm) while approximating
non arc-factored features.

2.2 Stacked Learning

Stacked generalization was first proposed by
Wolpert (1992) and Breiman (1996) for regression.
The idea is to include two “levels” of predictors. The
first level, “level 0,” includes one or more predictors
g1,.-.,9Kx : R — R; each receives input x € RY
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and outputs a prediction gx(x). The second level,
“level 1,” consists of a single function A : RTK —
R that takes as input (x, g1(x), ... gx(x)) and out-
puts a final prediction § = h(x, g1(x),...gx(X)).
The predictor, then, combines an ensemble (the g,)
with a meta-predictor (h).

Training is done as follows: the training data are
split into L partitions, and L instances of the level
0 predictor are trained in a “leave-one-out” basis.
Then, an augmented dataset is formed by letting
each instance output predictions for the partition that
was left out. Finally, each level O predictor is trained
using the original dataset, and the level 1 predictor
is trained on the augmented dataset, simulating the
test-time setting when h is applied to a new instance
x concatenated with (g (x))x.

This framework has also been applied to classifi-
cation, for example with structured data. Some ap-
plications (including here) use only one classifier at
level 0; recent work includes sequence labeling (Co-
hen and de Carvalho, 2005) and inference in condi-
tional random fields (Kou and Cohen, 2007). Stack-
ing is also intuitively related to transformation-based
learning (Brill, 1993).

3 Stacked Dependency Parsing

We next describe how to use stacked learning for
efficient, rich-featured dependency parsing.

3.1 Architecture

The architecture consists of two levels. At level 0
we include a single dependency parser. At runtime,
this “level O parser” g processes an input sentence x
and outputs the set of predicted edges that make up
its estimation of the dependency tree, gy = g(z). At
level 1, we apply a dependency parser—in this work,
always a graph-based dependency parser—that uses
basic factored features plus new ones from the edges
predicted by the level 0 parser. The final parser pre-
dicts parse trees as h(z, g(z)), so that the total run-
time is additive in calculating h(-) and g(+).

The stacking framework is agnostic about the
form of g and h and the methods used to learn them
from data. In this work we use two well-known,
publicly available dependency parsers, MSTParser
(McDonald et al., 2005b)," which implements ex-

lhttp://sourceforge.net/projects/mstparser



act first-order arc-factored nonprojective parsing
(§2.1.2) and approximate second-order nonprojec-
tive parsing, and MaltParser (Nivre et al., 20006),
which is a state-of-the-art transition-based parser.’
We do not alter the training algorithms used in prior
work for learning these two parsers from data. Us-
ing the existing parsers as starting points, we will
combine them in a variety of ways.

3.2 Training

Regardless of our choices for the specific parsers and
learning algorithms at level O and level 1, training is
done as sketched in §2.2. Let D be a set of training

examples {(z;, y;) }4.

1. Split training data D
DL, ..., DL

2. Train L instances of the level O parser in the fol-
lowing way: the [-th instance, ¢!, is trained on
D! = D\ D'. Then use ¢' to output predic-
tions for the (unseen) partition D'. At the end,
an augmented dataset D = Ulel D is built, so
that D = {(x;, 9(x:), yi) }i-

3. Train the level O parser g on the original training
data D.

4. Train the level 1 parser h on the augmented train-
ing data D.

into L partitions

The runtime of this algorithm is O(LT+ 1T} ), where
Ty and T} are the individual runtimes required for
training level O and level 1 alone, respectively.

4 Two Views of Stacked Parsing

We next describe two motivations for stacking
parsers: as a way of augmenting the features of a
graph-based dependency parser or as a way to ap-
proximate higher-order models.

4.1 Adding Input Features

Suppose that the level 1 classifier is an arc-factored
graph-based parser. The feature vectors will take the
form?

f(may) fl(x7y) VfQ(fE,g07y)

= Z fl,a<m) ~ f2,a($7g(x>)7

a€Ay

2http://w3.msi.vxu.se/“jha/maltparser
3We use — to denote vector concatenation.
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where fi(z,y) = Y,ca,fira(z) are regu-
lar arc-factored features, and fo(x,90,y) =
> aca, f2,a(z, g(x)) are the stacked features. An
example of a stacked feature is a binary feature
f2,0(x, g(x)) that fires if and only if the arc a was
predicted by g, i.e.,if a € Ag(z); such a feature was
used by Nivre and McDonald (2008).

It is difficult in general to decide whether the in-
clusion of such a feature yields a better parser, since
features strongly correlate with each other. How-
ever, a popular heuristic for feature selection con-
sists of measuring the information gain provided by
each individual feature. In this case, we may obtain
a closed-form expression for the information gain
that f> ,(x, g(x)) provides about the existence or not
of the arc a in the actual dependency tree y. Let A
and A’ be binary random variables associated with
the events a € A, and a’ € Ag(x)» respectively. We
have:

. / = aa/ [e) M
) = e )
— HW)- Y pla)H(A]A=a)
ac{0,1}

Assuming, for simplicity, that at level O the prob-
ability of false positives equals the probability of
false negatives (i.e., Py = p(a’ = Ola = 1) =
p(a’ = 1la = 0)), and that the probability of
true positives equals the probability of true negatives
(1 = Py = p(@ =0la =0) = p(a = 1|a = 1)),
the expression above reduces to:

I(A; A" = H(A) + Perlogy Pey
+ (1 — Pey)logy(l — Pey)
= H(A') — Hey,

where He, denotes the entropy of the probability of
error on each arc’s prediction by the level O classi-
fier. If P, < 0.5 (i.e. if the level O classifier is
better than random), then the information gain pro-
vided by this simple stacked feature increases with
(a) the accuracy of the level O classifier, and (b) the
entropy H (A’) of the distribution associated with its
arc predictions.

4.2 Approximating Non-factored Features

Another way of interpreting the stacking framework
is as a means to approximate a higher order model,



such as one that is not arc-factored, by using stacked
features that make use of the predicted structure
around a candidate arc. Consider a second-order
model where the features decompose by arc and by
arc pair:

f(x’y): Z (fal(x)v Z fahaz(x)) :

a1€Ay az€Ay

Exact parsing under such model, with arbitrary
second-order features, is intractable (McDonald and
Satta, 2007). Let us now consider a stacked model
in which the level O predictor outputs a parse ¢. At
level 1, we use arc-factored features that may be
written as

f(x>y): Z (fm(x)v Z fahaz(m))?

aleAy azeAg

this model differs from the previous one only by re-
placing A, by Aj; in the index set of the second sum-
mation. Since g is given, this makes the latter model
arc-factored, and therefore, tractable. We can now
view f(, ) as an approximation of f(z, ); indeed,
we can bound the score approximation error,

Y

As(z,y) = ‘WTf(x,y) — WTf(x,y)

where w and w stand respectively for the parameters
learned for the stacked model and those that would
be learned for the (intractable) exact second order
model. We can bound As(z,y) by spliting it into
two terms: As(z,y) =

(% —w) £ y) + W (E(y) — £(,p))]
< | —w) B, y) |+ w T (E,y) — £(,p))

)

éAS"(ﬁ,y) éAsdeC(xzy)

where we introduced the terms Asy and Asgec that
reflect the portion of the score approximation error
that are due to training error (i.e., different parame-
terizations of the exact and approximate models) and
decoding error (same parameterizations, but differ-
ent feature vectors). Using Holder’s inequality, the
former term can be bounded as:

AStr(:x? y)

TE(a,y)

W —wl; - [[f(z, )l
[w —wl,;

(% —w)

VANVAN
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where ||.||1 and ||.||s denote the ¢;-norm and sup-
norm, respectively, and the last inequality holds
when the features are binary (so that ||f(z, )| s <
1). The proper way to bound the term ||W — w||;
depends on the training algorithm. As for the de-
coding error term, it can bounded for a given weight
vector w, sentence x, candidate tree y, and level 0
prediction §j. Decomposing the weighted vector as
W = W; — Wy, Wy being the sub-vector associ-
ated with the second-order features, we have respec-
tively: Asgec(z,y) =

W (E(z,y) — £(z,1))|

Zw;—( fal,GQ(x) - Z fa1,02($))‘
az2€Ay

a1€Ay az€Ay

-
< Z Z Wy fay,0, ()
a1€Ay CLQGA,QAAL/
< AgAA,|- ) f,
- Z | Y y| ME{%?XAZI W2 Lay,a2 (w)‘
aleAy
= 2L(y,9) - max  |Wy fu, ap(7)],
a;y a2€A5AAy 2 fa1,02
where AjAA, £ (A; — A,) U (A, — Ay) denotes

the symmetric difference of the sets A; and A,
which has cardinality 2L(y, 3), i.e., twice the Ham-
ming distance between the sequences of heads that
characterize y and the predicted parse §. Using
Holder’s inequality, we have both

IA

.
W3 faraa@)] < Wil - oy, (2) o

and ‘WQTfaha2 (:c)‘

IN

[Walloo - [Ifar,as () ]1-

Assuming that all features are binary valued, we
have that ||f,, 4,(2)||cc < 1 and that ||f;, o, (2)][1 <
Ny, where Ny o denotes the maximum number of
active second order features for any possible pair of
arcs (a1, az). Therefore:

ASdcc(xa y) < 2nL(y, Q) min{”“’QHl? Nf,Q'HWQHOO}ﬂ

where n is the sentence length. Although this bound
can be loose, it suggests (intuitively) that the score
approximation degrades as the predicted tree 4 gets
farther away from the true tree y (in Hamming dis-
tance). It also degrades with the magnitude of
weights associated with the second-order features,



Name
PredEdge

Description

Indicates whether the candidate edge
was present, and what was its label.
Lemma, POS, link label, distance and
direction of attachment of the previous
and and next predicted siblings
Lemma, POS, link label, distance and
direction of attachment of the grandpar-
ent of the current modifier

Predicted head of the candidate modifier
(if PredEdge=0)

Sequence of POS and link labels of all
the predicted children of the candidate
head

Sibling

GrandParents

PredHead

AllChildren

Table 1: Feature sets derived from the level O parser.

Description

PredEdge

PredEdge+Sibling
PredEdge+Sibling+GrandParents
PredEdge+Sibling+GrandParents+PredHead
PredEdge+Sibling+GrandParents+PredHead+
AllChildren

Table 2: Combinations of features enumerated in Table 1
used for stacking. A is a replication of (Nivre and Mc-
Donald, 2008), except for the modifications described in
footnote 4.

which suggests that a separate regularization of the
first-order and stacked features might be beneficial
in a stacking framework.

As a side note, if we set each component of
the weight vector to one, we obtain a bound
on the /1-norm of the feature vector difference,

[ y) — £(@.)|| < 2L, 9Ny
5 Experiments

In the following experiments we demonstrate the ef-
fectiveness of stacking parsers. As noted in §3.1, we
make use of two component parsers, the graph-based
MSTParser and the transition-based MaltParser.

5.1 Implementation and Experimental Details

The publicly available version of MSTParser per-
forms parsing and labeling jointly. We adapted this
system to first perform unlabeled parsing, then la-
bel the arcs using a log-linear classifier with access
to the full unlabeled parse (McDonald et al., 2005a;
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McDonald et al., 2005b; McDonald and Pereira,
2006). In stacking experiments, the arc labels from
the level O parser are also used as a feature.*

In the following subsections, we refer to our mod-
ification of the MSTParser as MST1o (the arc-
factored version) and MST9o (the second-order
arc-pair-factored version). All our experiments use
the non-projective version of this parser. We refer to
the MaltParser as Malt.

We report experiments on twelve languages from
the CoNLL-X shared task (Buchholz and Marsi,
2006). All experiments are evaluated using the
labeled attachment score (LAS), using the default
settings.® Statistical significance is measured us-
ing Dan Bikel’s randomized parsing evaluation com-
parator with 10,000 iterations.” The additional fea-
tures used in the level 1 parser are enumerated in
Table 1 and their various subsets are depicted in Ta-
ble 2. The PredEdge features are exactly the six fea-
tures used by Nivre and McDonald (2008) in their
MSTa parser; therefore, feature set A is a repli-
cation of this parser except for modifications noted
in footnote 4. In all our experiments, the number of
partitions used to create Dis L = 2.

5.2 Experiment: MSTo0 + MST20

Our first experiment stacks the highly accurate
MSTy0 parser with itself. At level O, the parser
uses only the standard features (§5.1), and at level 1,
these are augmented by various subsets of features
of x along with the output of the level O parser, g(x)
(Table 2). The results are shown in Table 3. While
we see improvements over the single-parser baseline

*We made other modifications to MSTParser, implement-
ing many of the successes described by (McDonald et al.,
2006). Our version of the code is publicly available at http:
//www.ark.cs.cmu.edu/MSTParserStacked. The
modifications included an approximation to lemmas for datasets
without lemmas (three-character prefixes), and replacing mor-
phology/word and morphology/lemma features with morphol-
ogy/POS features.

>The CoNLL-X shared task actually involves thirteen lan-
guages; our experiments do not include Czech (the largest
dataset), due to time constraints. Therefore, the average results
plotted in the last rows of Tables 3, 4, and 5 are not directly
comparable with previously published averages over thirteen
languages.

6http://nextens.uvt.nl/~conll/software.html

7http://www.cis.uperm.edu/*dbikel/software.
html
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Arabic 67.88 | 6691 6741 67.68 6737 68.02
Bulgarian ~ 87.31 | 87.39 87.03 87.61 87.57 87.55
Chinese 87.57 | 87.16 87.24 87.48 87.42 8748
Danish 85.27 | 8539 85.61 8557 8543 8557
Dutch 79.99 | 7979 79.79 79.83 80.17 80.13
German 87.44 | 8692 87.32 8732 8726 87.04
Japanese 90.93 | 9141 91.21 9135 91.11 91.19
Portuguese  87.12 | 87.26 86.88 87.02 87.04 86.98
Slovene 74.02 | 7430 7430 74.00 74.14 73.94
Spanish 82.43 | 82.17 8235 82.81 8253 8275
Swedish 82.87 | 82.99 8295 8251 83.01 82.69
Turkish 60.11 | 59.47 59.25 5947 5945 59.31
Average 81.08 | 80.93 80.94 &81.05 81.04 81.05

Table 3: Results of stacking MST 5o with itself at both level 0 and level 1. Column 2 enumerates LAS for MST ;0.
Columns 3-6 enumerate results for four different stacked feature subsets. Bold indicates best results for a particular

language.

for nine languages, the improvements are small (less
than 0.5%). One of the biggest concerns about this
model is the fact that it stacks two predictors that
are very similar in nature: both are graph-based and
share the features f; ,(z). It has been pointed out by
Breiman (1996), among others, that the success of
ensemble methods like stacked learning strongly de-
pends on how uncorrelated the individual decisions
made by each predictor are from the others’ deci-
sions.® This experiment provides further evidence
for the claim.

5.3 Experiment: Malt + MSTo0

We next use MaltParser at level 0 and the second-
order arc-pair-factored MSToo at level 1. This
extends the experiments of Nivre and McDonald
(2008), replicated in our feature subset A.

Table 4 enumerates the results. Note that the
best-performing stacked configuration for each and
every language outperforms MST50, corroborat-
ing results reported by Nivre and McDonald (2008).
The best performing stacked configuration outper-
forms Malt as well, except for Japanese and Turk-
ish. Further, our non-arc-factored features largely
outperform subset A, except on Bulgarian, Chinese,

8This claim has a parallel in the cotraining method (Blum

and Mitchell, 1998), whose performance is bounded by the de-
gree of independence between the two feature sets.

and Japanese. On average, the best feature config-
uration is E, which is statistically significant over
Malt and MSTs0 with p < 0.0001, and over fea-
ture subset A with p < 0.01.

5.4 Experiment: Malt + MST10

Finally, we consider stacking MaltParser with the
first-order, arc-factored MSTParser. We view this
approach as perhaps the most promising, since it is
an exact parsing method with the quadratic runtime
complexity of MST 0.

Table 5 enumerates the results. For all twelve
languages, some stacked configuration outperforms
MST o and also, surprisingly, MSTs0, the sec-
ond order model. This provides empirical evi-
dence that using rich features from MaltParser at
level 0, a stacked level 1 first-order MSTParser can
outperform the second-order MSTParser.” In only
two cases (Japanese and Turkish), the MaltParser
slightly outperforms the stacked parser.

On average, feature configuration D performs
the best, and is statistically significant over Malt,
MST10, and MSTs0 with p < 0.0001, and over
feature subset A with p < 0.05. Encouragingly, this
configuration is barely outperformed by configura-

Recall that MST20 uses approximate search, as opposed
to stacking, which uses approximate features.
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Mt 8T29 yralt MUM palt Syt et
Arabic 66.71 67.88 68.56 | 69.12 68.64 6834 68.92
Bulgarian 87.41 87.31 88.99 | 88.89 88.89 88.93 88.91
Chinese 86.92 87.57 88.41 | 88.31 88.29 88.13 88.41
Danish 84.77 8527 8645 | 86.67 86.79 86.13 86.71
Dutch 78.59 79.99 80.75 | 81.47 8147 81.51 81.29
German 85.82 87.44 88.16 | 88.50 88.56 88.68 88.38
Japanese 91.65 9093 91.63 | 91.43 9159 91.61 9149
Portuguese 87.60 87.12 88.00 | 88.24 88.30 88.18 88.22
Slovene 70.30 74.02 76.62 | 76.00 76.60 76.18 76.72
Spanish 81.29 8243 83.09 | 83.73 83.47 83.21 8343
Swedish 84.58 82.87 84.92 | 84.60 84.80 85.16 84.88
Turkish 65.68 60.11 64.35 | 64.51 64.51 6507 6521
Average 80.94 81.08 82.52 | 82.58 82.65 82.59 82.71

Table 4: Results of stacking Malt and MSTo at level 0 and level 1, respectively. Columns 2—4 enumerate LAS for
Malt, MST o0 and Malt + MST 5o as in Nivre and McDonald (2008). Columns 5-8 enumerate results for four other
stacked feature configurations. Bold indicates best result for a language.

tion A of Malt + MST5o (see Table 4), the dif-
ference being statistically insignificant (p > 0.05).
This shows that stacking Malt with the exact, arc-
factored MST' 1o bridges the difference between the
individual MST 10 and MST 0 models, by approx-
imating higher order features, but maintaining an
O(n?) runtime and finding the model-optimal parse.

5.5 Disagreement as a Confidence Measure

In pipelines or semisupervised settings, it is use-
ful when a parser can provide a confidence measure
alongside its predicted parse tree. Because stacked
predictors use ensembles with observable outputs,
differences among those outputs may be used to es-
timate confidence in the final output. In stacked de-
pendency parsing, this can be done (for example) by
measuring the Hamming distance between the out-
puts of the level 0 and 1 parsers, L(g(z), h(x)). In-
deed, the bound derived in §4.2 suggests that the
second-order approximation degrades for candidate
parses y that are Hamming-far from g(x); therefore,
if L(g(x),h(x)) is large, the best score s(x,h(x))
may well be “biased” due to misleading neighbor-
ing information provided by the level O parser.

We illustrate this point with an empirical analysis
of the level 0/1 disagreement for the set of exper-
iments described in §5.3; namely, we compare the
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Figure 2: Accuracy as a function of token disagreement
between level 0 and level 1. The z-axis is the Hamming
distance L(g(x), h(z)), i.e., the number of tokens where
level 0 and level 1 disagree. The y-axis is the accuracy
averaged over sentences that have the specified Hamming
distance, both for level 0 and level 1.



v
qT107 (§T1O sT ST sT 10
Mokt Mﬁwwﬁwmw*mﬁ*%w %N %N o
Arabic 66.71 66.81 6788 | 6840 6850 6820 6842 68.68
Bulgarian 87.41 86.65 87.31 | 88.55 88.67 88.75 88.71 88.79
Chinese 86.92 86.60 87.57 | 87.67 87.73 87.83 87.67 87.61
Danish 84.77 84.87 8527 | 86.59 86.27 86.21 86.35 86.15
Dutch 78.59 7895 79.99 | 80.53 81.51 80.71 81.61 81.37
German 85.82 8626 87.44 | 88.18 88.30 88.20 8R8.36 88.42
Japanese 91.65 91.01 9093 | 91.55 91.53 91.51 9143 91.57
Portuguese 87.60 86.28 87.12 | 88.16 88.26 88.46 88.26 88.36
Slovene 70.30 7396 74.02 | 75.84 75.64 7542 75.96 75.64
Spanish 81.29 81.07 8243 | 82.61 83.13 83.13 83.09 82.99
Swedish 8458 81.88 82.87 | 84.86 84.62 84.64 84.82 84.76
Turkish 65.68 59.63 60.11 | 6449 6497 6447 64.63 64.61
Average 80.94 80.33 81.08 | 82.28 82.42 8229 82.44 82.41

Table 5: Results of stacking Malt and MST10 at level O and level 1, respectively. Columns 2—4 enumerate LAS for
Malt, MST10 and MST50. Columns 5-9 enumerate results for five different stacked feature configurations. Bold

indicates the best result for a language.

level 0 and level 1 predictions under the best overall
configuration (configuration E of Malt + M ST50).
Figure 2 depicts accuracy as a function of level 0-
level 1 disagreement (in number of tokens), aver-
aged over all datasets.

We can see that performance degrades steeply
when the disagreement between levels O and 1 in-
creases in the range 0—4, and then behaves more ir-
regularly but keeping the same trend. This suggests
that the Hamming distance L(g(x), h(z)) is infor-
mative about parser performance and may be used
as a confidence measure.

6 Conclusion

In this work, we made use of stacked learning to im-
prove dependency parsing. We considered an archi-
tecture with two layers, where the output of a stan-
dard parser in the first level provides new features
for a parser in the subsequent level. During learning,
the second parser learns to correct mistakes made by
the first one. The novelty of our approach is in the
exploitation of higher-order predicted edges to simu-
late non-local features in the second parser. We pro-
vided a novel interpretation of stacking as feature
approximation, and our experimental results show
rich-featured stacked parsers outperforming state-
of-the-art single-layer and ensemble parsers. No-

tably, using a simple arc-factored parser at level 1,
we obtain an exact O(n?) stacked parser that outper-
forms earlier approximate methods (McDonald and
Pereira, 2006).
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Abstract

We present a study on how grammar binariza-
tion empirically affects the efficiency of the
CKY parsing. We argue that binarizations af-
fect parsing efficiency primarily by affecting
the number of incomplete constituents gener-
ated, and the effectiveness of binarization also
depends on the nature of the input. We pro-
pose a novel binarization method utilizing rich
information learnt from training corpus. Ex-
perimental results not only show that differ-
ent binarizations have great impacts on pars-
ing efficiency, but also confirm that our learnt
binarization outperforms other existing meth-
ods. Furthermore we show that it is feasible to
combine existing parsing speed-up techniques
with our binarization to achieve even better
performance.

1 Introduction

Binarization, which transforms an n-ary grammar
into an equivalent binary grammar, is essential for
achieving an O(n?) time complexity in the context-
free grammar parsing. O(n?) tabular parsing al-
gorithms, such as the CKY algorithm (Kasami,
1965; Younger, 1967), the GHR parser (Graham
et al., 1980), the Earley algorithm (Earley, 1970) and
the chart parsing algorithm (Kay, 1980; Klein and
Manning, 2001) all convert their grammars into bi-
nary branching forms, either explicitly or implicitly
(Charniak et al., 1998).

In fact, the number of all possible binarizations
of a production with n + 1 symbols on its right

“This work was done when Xinying Song and Shilin Ding
were visiting students at Microsoft Research Asia.
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cyl@microsoft.com

hand side is known to be the nth Catalan Number
C, = n%rl (27?) All binarizations lead to the same
parsing accuracy, but maybe different parsing effi-
ciency, i.e. parsing speed. We are interested in in-
vestigating whether and how binarizations will af-
fect the efficiency of the CKY parsing.

Do different binarizations lead to different pars-
ing efficiency? Figure 1 gives an example to help
answer this question. Figure 1(a) illustrates the cor-
rect parse of the phrase “get the bag and go”. We
assume that NP — NP C'C' NP is in the original
grammar. The symbols enclosed in square brackets
in the figure are intermediate symbols.

VP VP

VP CC CC VP
VP [ ﬂ /[\ 1
,V'W\
vmp VP [NPCC) \ VP VP hp
Py | NP? | P |

VB NP CC VB VB NP CC VB VB NP CC VB

| R | | |

get DT NN and go
| |

the bag the bag the bag

(a) final parse (b) with left (c) with right

Figure 1: Parsing with left and right binarization.

If a left binarized grammar is used, see Fig-
ure 1(b), an extra constituent [N P C'C] spanning
“the bag and” will be produced. Because rule
[NPCC] — NP CC is in the left binarized gram-
mar and there is an NP over “the bag” and a C'C
over the right adjacent “and”. Having this con-
stituent is unnecessary, because it lacks an NP to
the right to complete the production. However, if a
right binarization is used, as shown in Figure 1(c),
such unnecessary constituent can be avoided.

One observation from this example is that differ-
ent binarizations affect constituent generation, thus
affect parsing efficiency. Another observation is that

Proceedings of the 2008 Conference on Empirical Methods in Natural Language Processing, pages 167-176,
Honolulu, October 2008. (©)2008 Association for Computational Linguistics



for rules like X — Y CC'Y, it is more suitable to
binarize them in a right branching way. This can
be seen as a linguistic nature: for “and”, usually
the right neighbouring word can indicate the correct
parse. A good binarization should reflect such ligu-
istic nature.

In this paper, we aim to study the effect of bina-
rization on the efficiency of the CKY parsing. To our
knowledge, this is the first work on this problem.

We propose the problem to find the optimal bina-
rization in terms of parsing efficiency (Section 3).
We argue that binarizations affect parsing efficiency
primarily by affecting the number of incomplete
constituents generated, and the effectiveness of bi-
narization also depends on the nature of the input
(Section 4). Therefore we propose a novel binariza-
tion method utilizing rich information learnt from
training corpus (Section 5). Experimental results
show that our binarization outperforms other exist-
ing methods (Section 7.2).

Since binarization is usually a preprocessing step
before parsing, we argue that better performance can
be achieved by combining other parsing speed-up
techniques with our binarization (Section 6). We
conduct experiments to confirm this (Section 7.3).

2 Binarization

In this paper we assume that the original gram-
mar, perhaps after preprocessing, contains no e-
productions or useless symbols. However, we allow
the existence of unary productions, since we adopt
an extended version of the CKY algorithm which
can handle the unary productions. Moreover we do
not distinguish nonterminals and terminals explic-
itly. We treat them as symbols. What we focus on is
the procedure of binarization.

Definition 1. A binarization is a function 7, map-
ping an n-ary grammar G to an equivalent binary
grammar G’. We say that G’ is a binarized grammar
of G, denoted as 7(G).

Two grammars are equivalent if they define the
same probability distribution over strings (Charniak
et al., 1998).

We use the most widely used left binarization
(Aho and Ullman, 1972) to show the procedure of
binarization, as illustrated in Table 1, where p and ¢
are the probabilities of the productions.
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’ Original grammar ‘ Left binarized grammar ‘
Y —- ABC:p [AB] - AB:1.0
Z — ABD :q Y - [AB]C:p
Z — [AB]D :q

Table 1: Left binarization

In the binarized grammar, symbols of form [A B|
are new (also called intermediate) nonterminals.
Left binarization always selects the left most pair of
symbols and combines them to form an intermedi-
ate nonterminal. This procedure is repeated until all
productions are binary.

In this paper, we assume that all binarizations fol-
low the fashion above, except that the choice of pair
of symbols for combination can be arbitrary. Next
we show three other known binarizations.

Right binarization is almost the same with left
binarization, except that it always selects the right
most pair, instead of left, to combine.

Head binarization always binarizes from the head
outward (Klein and Manning, 2003b). Please refer
to Charniak et al. (2006) for more details.

Compact binarization (Schmid, 2004) tries to
minimize the size of the binarized grammar. It leads
to a compact grammar. We therefore call it compact
binarization. It is done via a greedy approach: it al-
ways selects the pair that occurs most on the right
hand sides of rules to combine.

3 The optimal binarization

The optimal binarization should help CKY parsing
to achieve its best efficiency. We formalize the idea
as follows:

Definition 2. The optimal binarization is 7*, for a
given n-ary grammar G and a test corpus C"

7 =argmin T (7(G),C) (1)

where T'(w(G), C) is the running time for CKY to
parse corpus C, using the binarized grammar 7 (G).

It is hard to find the optimal binarization directly
from Definition 2. We next give an empirical anal-
ysis of the running time of the CKY algorithm and
simplify the problem by introducing assumptions.

3.1 Analysis of CKY parsing efficiency

It is known that the complexity of the CKY algo-
rithm is O(n3L). The constant L depends on the bi-



narized grammar in use. Therefore binarization will
affect L. Our goal is to find a good binarization that
makes parsing more efficient.

It is also known that in the inner most loop of
CKY as shown in Algorithm 1, the for-statement in
Line 1 can be implemented in several different meth-
ods. The choice will affect the efficiency of CKY.
We present here four possible methods:

M1 Enumerate all rules X — Y Z, and check if Y is in
left span and Z in right span.

M2 For each Y in left span, enumerate all rules X —
Y Z, and check if Z is in right span.

M3 For each Z in right span, enumerate all rules X —
Y Z, and check if Y is in left span.

M4 Enumerate each Y in left span and Z in right span!,
check if there are any rules X — Y Z.

Algorithm 1 The inner most loop of CKY

1: for X — Y Z,Y in left span and Z in right span
2: Add X to parent span

3.2 Model assumption

We have shown that both binarization and the for-
statement implementation in the inner most loop of
CKY will affect the parsing speed.

About the for-statement implementations, no pre-
vious study has addressed which one is superior.
The actual choice may affect our study on binariza-
tion. If using M1, since it enumerates all rules in
the grammar, the optimal binarization will be the
one with minimal number of rules, i.e. minimal bi-
narized grammar size. However, M1 is usually not
preferred in practice (Goodman, 1997). For other
methods, it is hard to tell which binarization is op-
timal theoretically. In this paper, for simplicity rea-
sons we do not consider the effect of for-statement
implementations on the optimal binarization.

On the other hand, it is well known that reduc-
ing the number of constituents produced in parsing
can greatly improve CKY parsing efficiency. That
is how most thresholding systems (Goodman, 1997;
Tsuruoka and Tsujii, 2004; Charniak et al., 2006)
speed up CKY parsing. Apparently, the number of

'Note that we should skip Y (Z) if it never appears as the
first (second) symbol on the right hand side of any rule.
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constituents produced in parsing is not affected by
for-statement implementations.

Therefore we assume that the running time of
CKY is primarily determined by the number of con-
stituents generated in parsing. We simplify the opti-
mal binarization to be:

7 ~ argmin F(r(G),C) ()

where E(m(G),C) is the number of constituents
generated when CKY parsing C' with 7(G).

We next discuss how binarizations affect the num-
ber of constituents generated in parsing, and present
our algorithm for finding a good binarization.

How binarizations affect constituents

Throughout this section and the next, we will use an
example to help illustrate the idea. The grammar is:

X —ABCD
Y —ABC
cC -CD

Z —ABCE
W — FCDE

The input sentence is g A1 BoC3 D4 F5, where the
subscripts are used to indicate the positions of spans.
For example, [1, 3] stands for B C. The final parse®
is shown in Figure 2. Symbols surrounded by dashed
circles are fictitious, which do not actually exist in
the parse.

Y:[0,4] Z:[0,5]

X:[0,4] C[24 W
) j \
F
A:[01] B:[12] C:[23] D:34 E][4)5]

Figure 2: Parse of the sentence ABC D E

4.1 Complete and incomplete constituents

In the procedure of CKY parsing, there are two kinds
of constituents generated: complete and incomplete.

Complete constituents (henceforth CCs) are those
composed by the original grammar symbols and

2More precisely, it is more than a parse tree for it contains
all symbols recognized in parsing.



spans. For example in Figure 2, X :[0,4], Y :[0, 3]
and Y:[0, 4] are all CCs.

Incomplete constituents (henceforth ICs) are
those labeled by intermediate symbols. Figure 2
does not show them directly, but we can still read the
possible ones. For example, if the binarized gram-
mar in use contains an intermediate symbol [A B C,
then there will be two related ICs [A B C1:[0, 3] and
[A B C1:[0, 4] (the latter is due to C:[2, 4]) produced
in parsing. ICs represent the intermediate steps to
recognize and complete CCs.

4.2 Impact on complete constituents

Binarizations do not affect whether a CC will be pro-
duced. If there is a CC in the parse, whatever bi-
narization we use, it will be produced. The differ-
ence merely lies on what intermediate ICs are used.
Therefore given a grammar and an input sentence,
no matter what binarization is used, the CKY pars-
ing will generate the same set of CCs.

For example in Figure 2 there is a CC X :[0, 4],
which is associated with rule X — A BC D. No
matter what binarization we use, this CC will be rec-
ognized eventually. For example if using left bina-
rization, we will get [A BJ:[0, 2], [A B C]:[0, 3] and
finally X :[0, 4]; if using right binarization, we will
get [C DJ:[2,4], [B C D]:1, 4] and again X:[0, 4].

4.3 Impact on incomplete constituents

Binarizations do affect the generation of ICs, be-
cause they generate different intermediate symbols.
We discuss the impact on two aspects:

Shared IC. Some ICs can be used to generate
multiple CCs in parsing. We call them shared. If a
binarization can lead to more shared ICs, then over-
all there will be fewer ICs needed in parsing.

For example, in Figure 2, if we use left binariza-
tion, then [A BJ:[0, 2] can be shared to generate both
X:[0,4] and Y:[0, 3], in which we can save one IC
overall. However, if right binarization is used, there
will be no common ICs to share in the generation
steps of X:[0, 4] and Y:[0, 3], and overall there are
one more IC generated.

Failed IC. For a CC, if it can be recognized even-
tually by applying an original rule of length k, what-
ever binarization to use, we will have to generate the
same number of k — 2 ICs before we can complete
the CC. However, if the CC cannot be fully recog-
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nized but only partially recognized, then the number
of ICs needed will be quite different.

For example, in Figure 2, therule W — FC D E
can be only partially recognized over [2, 5], so it can-
not generate the corresponding CC. Right binariza-
tion needs two ICs ([D E]:[3, 5] and [C' D E]:[2,5])
to find that the CC cannot be recognized, while left
binarization needs none.

As mentioned earlier, ICs are auxiliary means to
generate CCs. If an IC cannot help generate any
CCs, it is totally useless and even harmful. We call
such an IC failed, otherwise it is successful. There-
fore, if a binarization can help generate fewer failed
ICs then parsing would be more efficient.

4.4 Binarization and the nature of the input

Now we show that the impact of binarization also
depends on the actual input. When the input
changes, the impact may also change.

For example, in the previous example about the
rule W — FC D FE in Figure 2, we believe that
left binarization is better based on the observation
that there are more snippets of [C'D E] in the in-
put which lack for F' to the left. If there are more
snippets of [F'C D] in the input lacking for E to the
right, then right binarization would be better.

The discussion above confirms such a view: the
effect of binarization depends on the nature of the
input language, and a good binarization should re-
flect this nature. This accords with our intuition. So
we use training corpus to learn a good binarization.
And we verify the effectiveness of the learnt bina-
rization using a test corpus with the same nature.

In summary, binarizations affect the efficiency of
parsing primarily by affecting the number of ICs
generated, where more shared and fewer failed ICs
will help lead to higher efficiency. Meanwhile, the
effectiveness of binarization also depends on the na-
ture of its input language.

5 Towards a good binarization

Based on the analysis in the previous section, we
employ a greedy approach to find a good binariza-
tion.  We use training corpus to compute metrics
for every possible intermediate symbol. We use this
information to greedily select the best pair to com-
bine.



5.1 Algorithm

Given the original grammar G and training corpus
C, for every sentence in C', we firstly obtain the final
parse (like Figure 2). For every possible intermedi-
ate symbol, i.e. every ngram of the original symbols,
denoted by w, we compute the following two met-
rics:

1. How many ICs labeled by w can be generated
in the final parse, denoted by num(w) (number
of related ICs).

2. How many CCs can be generated via ICs la-
beled by w, denoted by ctr(w) (contribution of
related ICs).

For example in Figure 2, for a possible inter-
mediate symbol [A B C], there are two related ICs
([ABC]:[0,3] and [ABC]:[0,4]) in the parse,
so we have num([A B C]) = 2. Meanwhile, four
CCs (Y':]0,3], X:[0,4], Y:]0,4] and Z:[0, 5]) can
be generated from the two related ICs. Therefore
ctr([A B C]) = 4. We list the two metrics for every
ngram in Figure 2 in Table 2. We will discuss how
to compute these two metrics in Section 5.2.

’w ‘num‘ctTHw ‘num‘ctr‘
[AB] I | 4 [[BCE]| 1 |1
[ABC] 2 | 4 [[CD] 1| 2
[ABCD]| 1 | 1| [CDE]| 1 |0
[ABC E] 1 1 [C E] 1 1
[BC]| 2 4 [D E] 1 0
[BC D] 1 1

Table 2: Metrics of every ngram

The two metrics indicate the goodness of a possi-
ble intermediate symbol w: num(w) indicates how
many ICs labeled by w are likely to be generated in
parsing; while ctr(w) represents how much w can
contribute to the generation of CCs. If ctr(w) is
larger, the corresponding ICs are more likely to be
shared. If ctr is zero, those ICs are surely failed.
Therefore the smaller num(w) is and the larger
ctr(w) is, the better w would be.

Combining num and ctr, we define a utility func-
tion for each ngram w in the original grammar:

utility(w) =

f(num(w), ctr(w)) 3)
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where f is a ranking function, satisfying that f(z, y)
is larger when z is smaller and y is larger. We will

discuss more details about it in Section 5.3.

Using utility as the ranking function, we sort all
pairs of symbols and choose the best to combine.
The formal algorithm is as follows:

S1 For every symbol pair of (vy,vs) (where vy and
v9 can be original symbols or intermediate symbols
generated in previous rounds), let w; and ws be the
ngrams of original symbols represented by v; and
V9, respectively. Let w = wywsy be the ngram rep-
resented by the symbol pair. Compute utility(w).

S2 Select the ngram w with the highest utility(w), let
it be w* (in case of a tie, select the one with a
smaller num). Let the corresponding symbol pair
be (vy, v3).

S3 Add a new intermediate symbol v*, and replace all
the occurrences of (vf,v3) on the right hand sides
of rules with v*.

S4 Add a new rule v* — viv; : 1.0.

S5 Repeat S1 ~ S4, until there are no rules with more
than two symbols on the right hand side.

5.2 Metrics computing

In this section, we discuss how to compute num and
ctr in details.

Computing ctr is straightforward. First we get
final parses like in Figure 2 for training sentences.
From a final parse, we traverse along every parent
node and enumerate every subsequence of its child
nodes. For example in Figure 2, from the parent
node of X :[0,4], we can enumerate the follow-
ing: [AB]:[0,2], [ABC]:[0,3], [ABC D]:[0,4],
[B C]:1,3], [BC DJ:[1,4], [C D]:[2,4]. We add 1 to
all the ctr of these ngrams, respectively.

To compute num, we resort to the same idea
of dynamic programming as in CKY. We perform
a normal left binarization except that we add all
ngrams in the original grammar G as intermediate
symbols into the binarized grammar G’. For exam-
ple, for the rule of S — A BC : p, the constructed
grammar is as follows:

[AB] — AB:10

S — [AB]C:p
[BC] — BC:1.0

Using the constructed G’, we employ a normal
CKY parsing on the training corpus and compute



how many constituents are produced for each ngram.
The result is num. Suppose the length of the train-
ing sentence is n, the original grammar G has N
symbols, and the maximum length of rules is k,
then the complexity of this method can be written
as O(N*n3).

5.3 Ranking function

We discuss the details of the ranking function f used
to compute the utility of each ngram w. We come
up with two forms for f: linear and log-linear

1. linear: f(x,y) = —M\ix + Aoy
2. log-linear®: f(x,7y) = — A1 log(x) + A2 log(y)

where A1 and Ay are non-negative weights subject to
A+ Ay = 14.

We will use development set to determine which
form is better and to learn the best weight settings.

6 Combination with other techniques

Binarization usually plays a role of preprocessing in
the procedure of parsing. Grammars are binarized
before they are fed into the stage of parsing. There
are many known works on speeding up the CKY
parsing. So we can expect that if we replace the
part of binarization by a better one while keeping
the subsequent parsing unchanged, the parsing will
be more efficient. We will conduct experiment to
confirm this idea in the next section.

We would like to make more discussions be-
fore we advance to the experiments. The first is
about parsing accuracy in combining binarization
with other parsing speed-up techniques. Binariza-
tion itself does not affect parsing accuracy. When
combined with exact inference algorithms, like the
iterative CKY (Tsuruoka and Tsujii, 2004), the ac-
curacy will be the same. However, if combined with
other inexact pruning techniques like beam-pruning
(Goodman, 1997) or coarse-to-fine parsing (Char-
niak et al., 2006), binarization may interact with
those pruning methods in a complicated way to af-
fect parsing accuracy. This is due to different bina-
rizations generate different sets of intermediate sym-

3For log-linear form, if num(w) = 0 (and consequently
ctr(w) = 0), we set f(num(w), ctr(w)) = 0; if num(w) >
0 but ctr(w) = 0, we set f(num(w), ctr(w)) = —oo.

4Since f is used for ranking, the magnitude is not important.
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bols. With the same complete constituents, one bi-
narization might derive incomplete constitutes that
could be pruned while another binarization may not.
This would affect the accuracy. We do not address
this interaction on in this paper, but leave it to the
future work. In Section 7.3 we will use the iterative
CKY for testing.

In addition, we believe there exist some speed-up
techniques which are incompatible with our bina-
rization. One such example may be the top-down
left-corner filtering (Graham et al., 1980; Moore,
2000), which seems to be only applicable to the pro-
cess of left binarization. A detailed investigation on
this problem will be left to the future work.

The last issue is how our binarization performs
on a lexicalized parser, like Collins (1997). Our in-
tuition is that we cannot apply our binarization to
Collins (1997). The key fact in lexicalized parsers
is that we cannot explicitly write down all rules
and compute their probabilities precisely, due to the
great number of rules and the severe data sparsity
problem. Therefore in Collins (1997) grammar rules
are already factorized into a set of probabilities.
In order to capture the dependency relationship be-
tween lexcial heads Collins (1997) breaks down the
rules from head outwards, which prevents us from
factorizing them in other ways. Therefore our bina-
rization cannot apply to the lexicalized parser. How-
ever, there are state-of-the-art unlexicalized parsers
(Klein and Manning, 2003b; Petrov et al., 2006), to
which we believe our binarization can be applied.

7 Experiments

We conducted two experiments on Penn Treebank 11
corpus (Marcus et al., 1994). The first is to com-
pare the effects of different binarizations on parsing
and the second is to test the feasibility to combine
our work with iterative CKY parsing (Tsuruoka and
Tsujii, 2004) to achieve even better efficiency.

7.1 Experimental setup

Following conventions, we learnt the grammar from
Wall Street Journal (WSJ) section 2 to 21 and mod-
ified it by discarding all functional tags and empty
nodes. The parser obtained this way is a pure un-
lexicalized context-free parser with the raw treebank
grammar. Its accuracy turns out to be 72.46% in



terms of F1 measure, quite the same as 72.62% as
stated in Klein and Manning (2003b). We adopt this
parser in our experiment not only because of sim-
plicity but also because we focus on parsing effi-
ciency.

For all sentences with no more than 40 words in
section 22, we use the first 10% as the development
set, and the last 90% as the test set. There are 158
and 1,420 sentences in development set and test set,
respectively. We use the whole 2,416 sentences in
section 23 as the training set.

We use the development set to determine the bet-
ter form of the ranking function f as well as to
tune its weights. Both metrics of num and ctr
are normalized before use. Since there is only one
free variable in A\; and Ao, we can just enumerate
0 < A1 <1, andset Ay =1 — A;. The increasing
step is firstly set to 0.05 for the approximate loca-
tion of the optimal weight, then set to 0.001 to learn
more precisely around the optimal.

We find that the optimal is 5,773,088 (constituents
produced in parsing development set) with A\ =
0.014 for linear form, while for log-linear form the
optimal is 5,905,292 with \; = 0.691. Therefore we
determine that the better form for the ranking func-
tion is linear with \; = 0.014 and Ay = 0.986.

The size of each binarized grammar used in the
experiment is shown in Table 3. “Original” refers
to the raw treebank grammar. “Ours” refers to the
learnt binarized grammar by our approach. For the
rest please refer to Section 2.

# of Symbols | # of Rules
Original 72 14,971
Right 10,654 25,553
Left 12,944 27,843
Head 11,798 26,697
Compact 3,644 18,543
Ours 8,407 23,306

Table 3: Grammar size of different binarizations

We also tested whether the size of the training set
would have significant effect. We use the first 10%,
20%, - - -, up to 100% of section 23 as the training
set, respectively, and parse the development set. We
find that all sizes examined have a similar impact,
since the numbers of constituents produced are all
around 5,780,000. It means the training corpus does
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not have to be very large.

The entire experiments are conducted on a server
with an Intel Xeon 2.33 GHz processor and 8 GB
memory.

7.2 Experiment 1: compare among
binarizations

In this part, we use CKY to parse the entire test set
and evaluate the efficiency of different binarizations.

The for-statement implementation of the inner
most loop of CKY will affect the parsing time
though it won’t affect the number of constituents
produced as discussed in Section 3.2. The best im-
plementations may be different for different bina-
rized grammars. We examine M1~M4, testing their
parsing time on the development set. Results show
that for right binarization the best method is M3,
while for the rest the best is M2. We use the best
method for each binarized grammar when compar-
ing the parsing time in Experiment 1.

Table 4 reports the total number of constituents
and total time required for parsing the entire test set.
It shows that different binarizations have great im-
pacts on the efficiency of CKY. With our binariza-
tion, the number of constituents produced is nearly
20% of that required by right binarization and nearly
25% of that by the widely-used left binarization. As
for the parsing time, CKY with our binarization is
about 2.5 times as fast as with right binarization and
about 1.75 times as fast as with left binarization.
This illustrates that our binarization can significantly
improve the efficiency of the CKY parsing.

Binarization | Constituents ‘ Time (s) ‘
Right 241,924,229 5,747
Left 193,238,759 3,474
Head 166,425,179 3,837
Compact 94,257,478 2,302
Ours 52,206,466 2,182

Table 4: Performance on test set

Figure 3 reports the detailed number of complete
constituents, successful incomplete constituents and
failed incomplete constituents produced in parsing.
The result proves that our binarization can signifi-
cantly reduce the number of failed incomplete con-
stituents, by a factor of 10 in contrast with left bi-
narization. Meanwhile, the number of successful in-



complete constituents is also reduced by a factor of
2 compared to left binarization.

1.8e+08 T T :
complete m—m
successful incomplete E
failed incomplete E=——=
1.4e+08 - E

1.6e+08 - M

1.2e+08 -
1.0e+08
8.0e+07 |-

# of Constituents

6.0e+07
4.0e+07 -

2.0e+07 -

Head Compact Ours
Binarizations

0.0e+00 — L
Right Left

Figure 3: Comparison on various constituents

Another interesting observation is that parsing
with a smaller grammar does not always yield a
higher efficiency. Our binarized grammar is more
than twice the size of compact binarization, but ours
is more efficient. It proves that parsing efficiency is
related to both the size of grammar in use as well as
the number of constituents produced.

In Section 1, we used an example of “get the
bag and go” to illustrate that for rules like X —
Y CCY, right binarization is more suitable. We
also investigated the corresponding linguistic nature
that the word to the right of “and” is more likely to
indicate the true relationship represented by “and”.
We argued that a better binarization can reflect such
linguistic nature of the input language. To our sur-
prise, our learnt binarization indeed captures this lin-
guistic insight, by binarizing NP — NPCC NP
from right to left.

Finally, we would like to acknowledge the limi-
tation of our assumption made in Section 3.2. Ta-
ble 4 shows that the parsing time of CKY is not
always monotonic increasing with the number of
constituents produced. Head binarization produces
fewer constituents than left binarization but con-
sumes more parsing time.

7.3 Experiment 2: combine with iterative CKY

In this part, we test the performance of combining
our binarization with the iterative CKY (Tsuruoka
and Tsujii, 2004) (henceforth T&T) algorithm.
Iterative CKY is a procedure of multiple passes
of normal CKY: in each pass, it uses a threshold to
prune bad constituents; if it cannot find a successful
parse in one pass, it will relax the threshold and start
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another; this procedure is repeated until a successful
parse is returned. T&T used left binarization. We
re-implement their experiments and combine itera-
tive CKY with our binarization. Note that iterative
CKY is an exact inference algorithm that guarantees
to return the optimal parse. As discussed in Sec-
tion 6, the parsing accuracy is not changed in this
experiment.

T&T used a held-out set to learn the best step of
threshold decrease. They reported that the best step
was 11 (in log-probability). We found that the best
step was indeed 11 for left binarization; for our bina-
rizaiton, the best step was 17. T&T used M4 as the
for-statement implementation of CKY. In this part,
we follow the same method.

The result is shown in Table 5. We can see that
iterative CKY can achieve better performance by us-
ing a better binarization. We also see that the reduc-
tion by binarization with pruning is less significant
than without pruning. It seems that the pruning itself
in iterative CKY can counteract the reduction effect
of binarization to some extent. Still the best per-
formance is archieved by combining iterative CKY
with a better binarization.

CKY + Binarization ‘ Constituents ‘ Time (s) ‘

Tsuruoka and Tsujii (2004)

CKY + Left 45,406,084 1,164
Iterative CKY + Left 17,520,427 613
Reimplement
CKY + Left 52,128,941 932
CKY + Ours 14,892,203 571
Iterative CKY + Left 23,267,594 377
Iterative CKY + Ours | 10,966,272 314

Table 5: Combining with iterative CKY parsing

8 Related work

Almost all work on parsing starts from a binarized
grammar. Usually binarization plays a role of pre-
processing. Left binarization is widely used (Aho
and Ullman, 1972; Charniak et al., 1998; Tsuruoka
and Tsujii, 2004) while right binarization is rarely
used in the literature. Compact binarization was in-
troduced in Schmid (2004), based on the intuition
that a more compact grammar will help acheive a
highly efficient CKY parser, though from our exper-
iment it is not always true.



We define the fashion of binarizations in Sec-
tion 2, where we encode an intermediate symbol us-
ing the ngrams of original symbols (content) it de-
rives. This encoding is known as the Inside-Trie (I-
Trie) in Klein and Manning (2003a), in which they
also mentioned another encoding called Outside-
Trie (O-Trie). O-Trie encodes an intermediate sym-
bol using the its parent and the symbols surrounding
it in the original rule (context). Klein and Manning
(2003a) claimed that O-Trie is superior for calculat-
ing estimates for A* parsing. We plan to investigate
binarization defined by O-Trie in the future.

Both I-Trie and O-Trie are equivalent encodings,
resulting in equivalent grammars, because they both
encode using the complete content or context infor-
mation of an intermediate symbol. If we use part of
the information to encode, for example just parent in
O-Trie case, the encoding will be non-equivalent.

Proper non-equivalent encodings are used to gen-
eralize the grammar and prevent the binarized gram-
mar becoming too specific (Charniak et al., 2006). It
is equipped with head binarization to help improve
parsing accuracy, following the traditional linguistic
insight that phrases are organized around the head
(Collins, 1997; Klein and Manning, 2003b). In con-
trast, we focus our attention on parsing efficiency
not accuracy in this paper.

Binarization also attracts attention in the syntax-
based models for machine translation, where trans-
lation can be modeled as a parsing problem and bi-
narization is essential for efficient parsing (Zhang
et al., 2006; Huang, 2007).

Wang et al. (2007) employs binarization to de-
compose syntax trees to acquire more re-usable
translation rules in order to improve translation ac-
curacy. Their binarization is restricted to be a mix-
ture of left and right binarization. This constraint
may decrease the power of binarization when ap-
plied to speeding up parsing in our problem.

9 Conclusions and future work

We have studied the impact of grammar binarization
on parsing efficiency and presented a novel bina-
rization which utilizes rich information learnt from
training corpus. Experiments not only showed that
our learnt binarization outperforms other existing
ones in terms of parsing efficiency, but also demon-
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strated the feasibility to combine our binarization
with known parsing speed-up techniques to achieve
even better performance.

An advantage of our approach to finding a good
binarization would be that the training corpus does
not need to be parsed sentences. Only POS tagged
sentences will suffice for training. This will save the
effort to adapt the model to a new domain.

Our approach is based on the assumption that the
efficiency of CKY parsing is primarily determined
by the number of constituents produced. This is a
fairly sound one, but not always true, as shown in
Section 7.2. One future work will be relaxing the
assumption and finding a better appraoch.

Another future work will be to apply our work to
chart parsing. It is known that binarization is also
essential for an O(n?) complexity of chart parsing,
where dotted rules are used to binarize the grammar
implicitly from left. As shown in Charniak et al.
(1998), we can binarize explicitly and use intermedi-
ate symbols to replace dotted rules in chart parsing.
Therefore chart parsing can use multiple binariza-
tions. We expect that a better binarization will also
help improve the efficiency of chart parsing.
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Abstract

We present a novel unsupervised sentence fu-
sion method which we apply to a corpus of bi-
ographies in German. Given a group of related
sentences, we align their dependency trees and
build a dependency graph. Using integer lin-
ear programming we compress this graph to
a new tree, which we then linearize. We use
GermaNet and Wikipedia for checking seman-
tic compatibility of co-arguments. In an eval-
uation with human judges our method out-
performs the fusion approach of Barzilay &
McKeown (2005) with respect to readability.

1 Introduction

Automatic text summarization is a rapidly develop-

not yet available (see e.g. Hovy (2003, p.589)). Sen-
tence fusion (Barzilay & McKeown, 2005), where a
new sentence is generated from a group of related
sentences and where complete semantic and con-
ceptual representation is not required, can be seen
as a middle-ground between extractive and abstrac-
tive summarization. Our work regards a corpus of
biographies in German where multiple documents
about the same person should be merged into a sin-
gle one. An example of a fused sentence (3) with the
source sentences (1,2) is given below:

(1) BohrstudierteanderUniversitit Kopenhagen
Bohrstudied at the University Copenhagen
underlangtedort seineDoktorwiirde.
andgot therehis PhD

'Bohr studied at the University of Copenhagen
and got his PhD there’

ing field in computational linguistics. Summariza-

tion systems can be classified as either extractive of2) NachdemAbitur studierteer Physik und
abstractive ones (3pck Jones, 1999). To date, most ~ After the schoolstudied hephysicsand
systems are extractive: sentences are selected from Mathematik anderUniversitit Kopenhagen.
one or several documents and then ordered. This mathematicat the University Copenhagen
method exhibits problems, because input sentences -after school he studied physics and mathemat-
very often overlap and complement each other atthe jcs at the University of Copenhagen’

same time. As a result there is a trade-off between

non-redundancgndcompletenessf the output. Al-

though the need for abstractive approaches has been

) NachdemAbitur studierteBohr Physik und
After the schoolstudied Bohrphysicsand

recognized before (e.g. McKeown et al. (1999)), so MathematikanderUniversi&tKopenhagen
far almost all attempts to get closer to abstractive —Mathematicst theU.nlversny Copenhagen
summarization using scalable, statistical techniques underlangtedort seineDoktorwtirde.

have been limited to sentence compression.

andgot therehis PhD

The main reason why there is little progress on ab-  'After school Bohr studied physics and mathe-
stractive summarization is that this task seems tore- matics at the University of Copenhagen and got
quire a conceptual representation of the text whichis  his PhD there’
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Having both (1) and (2) in a summary would makdssues do not arise. Apart from that, there is no
it redundant. Selecting only one of them would nobbvious way of how existing sentence compression
give all the information from the input. (3), fusedmethods can be adapted to sentence fusion.
from both (1) and (2), conveys the necessary infor- gailay & McKeown (2005) present a sentence
mation without being redundant and is more approysion method for multi-document news summariza-
priate for a summary. tion which crucially relies on the assumption that in-
To this end, we present a novel sentence fusiogrmation appearing in many sources is important.
method based on dependency structure alignmegibnsequently, their method produces an intersec-
and semantically and syntactically informed phrasgo, of input sentences by, first, finding the centroid
aggregation and pruning. We address the problem §} ine input, second, augmenting it with informa-
an unsupervised manner and use integer linear pr@sn, from other sentences and, finally, pruning a pre-
gramming (ILP) to find a globally optimal solution. gefined set of constituents (e.g. PPs). The resulting
We argue that our method has three important advagcture is not necessarily a tree and allows for ex-
tages compared to existing methods. First, we agraction of several trees, each of which can be lin-
dress the grammaticality issue empirically by meansgyized in many ways.
of knowledge obtained from an automatically parsed .
corpus. We do not require such resources as subc%t-'\/la.lrsI & Krahmer (2005) extend th_e appmaCh of
egorization lexicons or hand-crafted rules, but de- arzilay &_McKepwn tq do not. onlyintersection
cide to retain a dependency based on its syntaC\Z t alsounlon_fusmn. Like I_3ar2|l_ay & Mc!(eown
importance score. The second point concerns int 2005), they find 'the best Imearl_zatlon with a lan-
grating semantics. Being definitely importafthis guage model which, as they point out, often pro-

source of information remains relatively unused induces inadequate rankings being unable to deal with

work on aggregatiohwithin NLG” (Reiter & Dale word order, agreement and subcategorization con-

2000, p.141). To our knowledge, in the text-to-texpr ANts: In our work we aim at producing a valid

generation field, we are the first to use semantic ind_ependency tree structure so that most grammatical-

formation not only for alignment but also for aggre-'ty issues are resolvdueforethe linearization stage.

gation in that we check coarguments’ compatibility. Wan et al. (2007) introduce a global revision
Apart from that, our method is