
Proceedings of the 23rd International Workshop on Treebanks and Linguistic Theories (TLT, SyntaxFest 2025), pages 32–43
August 28-29, 2025 ©2025 Association for Computational Linguistics

Graph Databases for Fast Queries in UD Treebanks

Niklas Deworetzki1 and Peter Ljunglöf1,2

1Department of Computer Science and Engineering,
Chalmers University of Technology and University of Gothenburg

2Språkbanken Text, University of Gothenburg
nikdew@chalmers.se, peter.ljunglof@gu.se

Abstract

We investigate if labelled property graphs, and
graph databases, can be a useful and efficient
way of encoding UD treebanks, to facilitate
searching for complex syntactic phenomena.

We give two alternative encodings of UD tree-
banks into the off-the-shelf graph database
Neo4j, and show how to translate syntactic
queries into the graph query language Cypher.

Our evaluation shows that graph databases can
improve query times by several orders of mag-
nitude, compared to existing approaches.

1 Motivation

Universal Dependencies (UD; de Marneffe et al.,
2021) has celebrated 10 years of existence and has
become a mature framework for text annotation.
Currently there are almost 300 UD treebanks for
almost 170 languages (Zeman et al, 2024).

One prominent use case of UD treebanks is to
find examples of syntactic phenomena, within or
across languages. E.g., Weissweiler et al. (2024)
investigated if it is possible to identify grammati-
cal constructions in different languages by search-
ing for morphosyntactic patterns. Some of the
queries they came up with were quite complex –
they needed to cover all possible tree structures for
a given construction, and at the same time rule out
alternative interpretations.

There are several tools for searching in syn-
tactic treebanks, such as ANNIS3 (Krause and
Zeldes, 2014), AlpinoGraph (Kleiweg and van No-
ord, 2020), PML Tree Query (Štěpánek and Pajas,
2010), and Grew-match (Guillaume, 2021; Bon-
fante et al., 2018). They support complex queries
and are usually efficient enough to be used on the
existing UD treebanks. For example, Grew-match
returns results within a few seconds, even when run-
ning a complex query on the largest UD treebank
(Borges Völker et al., 2019).

If we are only interested in performing searches
in manually annotated treebanks, the current tools
are probably good enough. However, there are
plenty of automatically annotated very large cor-
pora.1 If we want to perform searches for complex
syntactic phenomena in such large treebanks (10–
100 million tokens or more), the current query tools
are not efficient enough. So there is a need for al-
ternative approaches.

In this paper we investigate if existing off-the-
shelf graph databases can be useful and efficient as
a backend for complex searches in treebanks. We
do this by giving two possible ways of encoding
UD trees as labelled property graphs, which is the
format underlying the Neo4j graph database (Fran-
cis et al., 2018). We also show how to translate
Grew-match queries into the graph query language
Cypher, and perform an extensive evaluation of
the efficiency of both encodings, compared to each
other, and to the Grew-match query system.

Our results show that existing off-the-shelf graph
databases such as Neo4j can be very useful for
performing large-scale complex syntactic searches
in very large corpora.

1.1 Structure of the Paper

Section 2 gives an overview of UD treebanks, graph
databases, and query languages. In section 3 we
show two possible ways of encoding UD tree-
banks in a graph database, and in section 4 how to
translate Grew-match queries into graph database
queries. Section 5 consists of an evaluation of the
two different treebank encodings, and in sections
6–7 we discuss the results and present some final
conclusions.

1One such example is the research infrastructure Korp
(Borin et al., 2012) from The Language Bank of Sweden,
which contains more than 15 billion syntactically parsed and
annotated tokens.

32

mailto:nikdew@chalmers.se
mailto:peter.ljunglof@gu.se

2 Background

2.1 UD Treebanks as Graphs

Conceptually, a UD treebank consists of sentences
where every sentence is a graph. The nodes in a
graph are the words in the sentence, and the depen-
dency relations are labelled directed edges between
the word nodes. Words are annotated with different
attributes, such as lemma, part-of-speech, and mor-
phological features. Sentence graphs are required
to form a tree with one single word being the root,
according to the annotation guidelines for universal
dependencies (Zeman et al., 2023).

In addition to the strict tree structure, it is pos-
sible to add enhanced dependency relations to a
sentence, which might turn the sentence into a gen-
eral graph. In this paper we will not assume that
a treebank only consists of trees, so the encoding
that we introduce in section 3 will work on more
generic “graph banks” as well as on UD treebanks.

The basic tokenisation level in UD is syntactic
words, and not phonological or orthographic words.
Some languages contract words, such as English
“isn’t” (is not) and German “im” (in dem), and this
can be encoded in a UD treebank using multi-word
tokens. Conceptually, we can think of this as spe-
cial kind of node, spanning multiple words.

2.2 Searching in UD Treebanks

A common system for graph-based searches in tree-
banks is Grew-match. Searching is done by sending
a request containing multiple items, describing con-
straints on graphs. The main item is specified using
the keyword pattern and contains a list of clauses,
describing the nodes returned by a search. The
with keyword is used to introduce clauses without
adding additional nodes to the result returned for a
request. The without keyword describes negative
constraints – only graphs that do not match these
are returned for a request.

A clause in Grew-match is either a node or edge
declaration, or an additional constraint.

• A node declaration X [attr="val"] describes
a node named X having a property attr with
the value val. All nodes represent words and
properties represent the feature structures on
these words.

• An edge declaration X -[rel]-> Y connects
two nodes named X and Y. This declaration re-
quires that there is a dependency of type rel
from the word X to the word Y.

• Additional constraints can express a certain
word order. Writing X < Y requires that the word
X immediately precedes the word Y. Writing
X<<Y requires that the word X occurs somewhere
before the word Y.

Grew-match considers each sentence in a treebank
as an individual graph and filters for those graphs
matching the request.

2.3 Graph Databases

Neo4j is a general-purpose database system for
graph-based data, similar to what a relational
database is for tabular data. The system consists
of a front-end in which you can formulate graph
queries, a query-engine which plans and optimises
the execution of queries, and a back-end storage
system which handles persistence and data access.
In contrast to Grew-match, Neo4j considers the
whole database as a single graph.

The data model used by Neo4j is the labelled
property graph, which represents data as a directed
graph, where both nodes and edges may carry la-
bels and attribute-value properties. This provides
great flexibility and expressivity, as data can be
represented in different nuanced ways.

In our encoding in section 3 we will use the
labels mainly to specify the type of the node or
label. Thus, when we write “a Word node”, or
“a SUCCESSOR edge”, we actually mean “a node
with the label Word”, and “an edge with the label
SUCCESSOR”, respectively.

We adopt the convention that node labels are cap-
italised (e.g., Word and Sentence), but edge labels
are uppercased (e.g., SUCCESSOR and DEPREL).

2.4 Cypher Query Language

The Cypher query language is used to query a
Neo4j database (Francis et al., 2018). A query
consists of multiple clauses, with the MATCH, WHERE
and RETURN clauses being relevant for searching.

The MATCH clause introduces patterns to be
matched in the graph. Writing (n:Node {p:val})
in a MATCH clause describes a node named n la-
belled Node that has a property p with value val.
An edge is written as -[r:EDGE {p:val}]-> be-
tween two nodes. This example describes a di-
rected edge labelled EDGE that has the property
p with value val and is bound to the identifier r.
In both cases, identifier, labels and properties are
optional and may be omitted. The direction of
an arrow describes the direction of a relationship.

33

ID FORM LEMMA UPOS XPOS FEATS HEAD DEPREL
1 Surfen Surfen NOUN NN Gender=Neut|Number=Sing 0 root
2-3 im _ _ _ _ _ _
2 in in ADP APPR Case=Dat 4 case
3 dem der DET ART Case=Dat|Gender=Masc,Neut|Number=Sing 4 det
4 Garten Garten NOUN NN Gender=Masc|Number=Sing 1 nmod

Figure 1: Example sentence (simplified) in CoNLL-U format from German-HDT (Borges Völker et al., 2019)

An edge suffixed with a plus character + indicates
that two nodes are related via a sequence of edges
matching the pattern (e.g. -[:EDGE]->+ indicating
a sequence of edges labelled EDGE).

The WHERE clause is used to additionally filter the
matched subgraphs, using predicates that cannot
be expressed by pattern matching. For example,
properties of nodes and edges can be compared
against each other or against regular expressions.
In addition, there are keywords EXISTS and NOT
EXISTS which have similar meaning as the with
and without keywords in Grew-match.

Lastly, the RETURN clause is used to specify the
result of a query. For every subgraph matched by
a query, a record with all values specified in the
RETURN clause will be returned.

While queries in Cypher are read from top to
bottom with identifiers in later clauses being able
to refer back to prior patterns, it is important to
keep in mind that no order of execution is specified
using queries. A database executing a query is
free to reorder or simplify parts of the query in an
attempt to optimize how it is executed, as long as
the query result remains unchanged.

3 Encoding UD as Property Graphs

In order to store a UD-annotated treebank in a
Neo4j database, it first has to be encoded as a la-
belled property graph. In this section we present
an encoding scheme for dependencies, word anno-
tations and structures, which we call the property-
based encoding. Then we discuss an alternative
encoding for annotations, which will be called the
node-based encoding. Finally, we discuss how
database constraints and indexes can be used to
support the encoding.

3.1 Words and Dependencies

We encode each word as a node with label Word. A
dependency between words is encoded as a DEPREL
edge between the two corresponding Word nodes.
The actual dependency relation is encoded as an

edge property for the attribute deprel.
The root node in a sentence is encoded by la-

belling the corresponding Word node with the addi-
tional label Root.

3.2 Property-Based Encoding of Annotations
Figure 1 shows an example sentence in CoNLL-U
format (Zeman et al., 2025).

The columns ID, HEAD and DEPREL (and
DEPS, not shown in the example) are used to en-
code the (enhanced) dependency relation as DEPREL
edges as discussed above, and therefore will not be
encoded as node properties.

The columns FORM, LEMMA, UPOS and XPOS
have a single value and will therefore each be en-
coded as single attributes to the Word node: form,
lemma, upos and xpos, respectively. The column
FEATS (and MISC, not shown in the example) con-
tain attribute-value pairs. Each of these pairs will
be encoded as an individual property.

As an example, wordline 3 in the exam-
ple has a total of seven attributes to be en-
coded: FORM=dem, LEMMA=der, UPOS=DET,
XPOS=ART are specified in separate columns, and
we therefore straightforwardly encode them as
properties on the corresponding Word node. The
FEATS column specifies three morpohological fea-
tures: Case=Dat, Gender=Masc,Neut and Num-
ber=Sing, which are encoded as additional proper-
ties on the Word node.

3.3 Sentences
Sentences are annotated with metadata and span
multiple tokens. To make this metadata accessible,
we need a way to encode sentences and associate
them with spanned tokens. We do this by intro-
ducing a Sentence node for every sentence and
encoding its metadata as properties on that node.

To associate words with their Sentence node,
we create a DEPREL edge with deprel=root to-
wards the root node. Then all words will be con-
nected to their Sentence node by following the
DEPREL edges.

34

:Word :Root

form:"Surfen"

:Word

form:"in"

:Word

form:"dem"

:Word

form:"Garten"

:Sentence

id:"hdts-76384"

:Mwt

form:"im"

:DEPREL

{deprel:"nmod"}

:
D
E
P
R
E
L

{
d
e
p
r
e
l
:
"
c
a
s
e
"
}

:
D
E
P
R
E
L

{
d
e
p
r
e
l
:
"
d
e
t
"
}

:DEPREL

{deprel:"root"}

:SUCCESSOR

:SUCCESSOR

:SUCCESSOR

:MWT

:MWT

Figure 2: Example from Figure 1 encoded as a graph.
Out of all properties, only form is shown.

To encode paragraphs or documents we fol-
low the same strategy: create a Paragraph (or
Document) node, and then create edges to its sen-
tences (and edges from each document node to its
paragraphs).

3.4 Linear Order
Words within a sentence are ordered, and a simple
way to encode order in a graph database is via
directed edges. Therefore, we introduce special
edges to explicitly encode the word order within
sentences.

For each word in a sentence we add a SUCCESSOR
edge to its immediately succeeding word, except
the final word which do not have a successor.

Figure 2 shows the example encoded as a labeled
property graph, where SUCCESSOR edges are dotted.
To reduce clutter only the form property is shown.

3.5 Multiword Tokens
The line “2–3” in Figure 1 is an example of a multi-
word token (MWT) – in German “im” is interpreted
as a contraction of the syntactic words “in dem”.

We encode multiword tokens in a similar way
to sentences. For each multiword token, we add a
new Mwt node, and MWT edges (dashed in Figure 2)
from the node to each spanned word.

3.6 Alternative, Node-Based Encoding
In section 3.2 we showed how to encode attribute
values as properties directly on the Word nodes.

An alternative strategy is to create a new node
for each value of an attribute for a word, and add
an edge from the Word node to the attribute node.
For example, the attribute Gender=Masc would be
represented as a Gender node, annotated with the
property value=Masc. Note that we only create
one such Gender node with the value Masc, and it
will be shared by all Word nodes.

:Form

value:"Surfen"

:Form

value:"in"

:Form

value:"dem"

:Form

value:"Garten"

:Gender

value:"Neut"

:Gender

value:"Masc"

:Word :Root

:Word

:Word

:Word

:FORM

:FORM

:FORM

:FORM

:GENDER

:GENDER

:GENDER

:GENDER

Figure 3: Form and Gender from Figure 1 encoded as a
graph using the node-based encoding scheme.

There are multiple possible advantages of this
encoding strategy. As following edges between
nodes is a fast operation when querying a graph
database, this encoding scheme could lead to better
query performance. Further, by reusing nodes we
aim to deduplicate data. Sections 5.1 and 5.4 show
the impact on encoding size and query speed.

Further, wordline 3 in Figure 1 has a property
Gender=Masc,Neut, meaning that the determiner
can act as either masculine or neuter. This can be
encoded as two Gender edges from the word, to
the Masc and Neut nodes respectively. This can
simplify some queries quite a lot, but we have not
looked into this because it is not needed for our
translation from the Grew-match query language.

Figure 3 shows the node-based encoding of the
example in Figure 1. To reduce clutter only the
Form and Gender nodes are shown.

The node- and the property-based encodings are
freely interchangeable. The encoding of depen-
dency relations, sentences and MWTs remains un-
changed when choosing between the node-based
and the property-based encoding strategy. It is even
possible to mix both strategies, encoding only some
attributes as nodes and others as properties.

3.7 Constraints and Indexes

Adding constraints and indexes helps the query
planner to improve query performance. Uniqueness
constraints in Neo4j ensure that a combination of
label and property value appears only once in the
database. Similarly, indexes can be used to quickly
find nodes or edges with a combination of label
and property value.

We add a uniqueness constraint and index for
every attribute encoded using the node-based strat-
egy. This should improve performance for queries

35

on the node-based encoding. Additionally, we add
another index on DEPREL edges and their deprel
property, which enables fast lookup of nodes con-
nected by an edge in the index.

4 Querying in Encoded Corpora

To demonstrate the capabilities of the Cypher
query language, we will now describe a straightfor-
ward algorithmic approach to translate Grew-match
queries into Cypher queries.

For every word matched in a Grew-match
pattern, add a MATCH clause for a Word node with
the same identifier. Further, add a single RETURN
clause at the end of the query and add all introduced
identifiers to that clause. While it is not necessary
to match all words first, doing so simplifies the
translation, as words can be referred to by their
identifier afterwards. Then, translate each of the
clauses in a Grew-match request as follows:

• An edge clause specifying a dependency
relation X -[aux]-> Y, is translated into a
MATCH clause specifying the same edge
(X)-[:DEPREL {deprel:"aux"}]->(Y).

• Clauses specifying immediate precedence (writ-
ten X < Y), are translated into a MATCH clause
with an edge (X)-[:SUCCESSOR]->(Y). Gen-
eral precedence between nodes (written X<<Y)
is translated similarly, allowing the two
nodes to be related via a sequence of edges
(X)-[:SUCCESSOR]->+(Y).

• with clauses are translated as if they were part
of a pattern, adding an initial MATCH clause for
all occurring words and translating each clause.
Identifiers for these words must not be included
in the RETURN clause and possibly require re-
naming if they occur in multiple with patterns.

• without clauses are translated into a
NOT EXISTS expression as part of the WHERE
clause containing a translation of the individual
Grew-match clauses.

Clauses in Grew-match accessing annotations have
to be translated differently depending on the encod-
ing scheme. We will consider how this is done on
the example X [upos="NOUN"].

• If encoded as properties, a MATCH clause is
added specifying identifier and the requested
properties: (X {upos:"NOUN"}).

• If encoded as nodes, a MATCH clause is added
for an edge between the word node and

the node representing the requested value:
(X)-[:UPOS]->(:Upos {value:"NOUN"}).
If multiple attribute-value pairs are specified, a
MATCH clause is added for each of them.

Values of properties in Grew-match can also
be specified in terms of a regular expression
or a disjunction of values. In these cases a
direct translation into a MATCH clause is not
possible and we use the WHERE clause to rep-
resent these constraints. For the node-based
encoding of annotations, the corresponding
nodes have to be fetched via a MATCH clause
without specifying their value. A Grew-match
clause like X [lemma="der"|"die"] therefore
turns into WHERE X.lemma IN ["der","die"],
under the property-based annotation scheme.
For the node-based annotation scheme it is
instead translated into the following two clauses:
MATCH (X)-[:LEMMA]->(xlemma:Lemma), and
WHERE xlemma.value IN ["der","die"].

There are some special cases to consider when
translating queries. A query for the root node of a
sentence can be translated into a MATCH clause with
the Root label. Further, queries in Grew-match
consider each sentence as an individual graph. Con-
sequently, all words in a Grew-match request are
implicitly constrained to the same sentence. This
restriction has to be translated as well, by adding a
MATCH clause relating otherwise unrelated words to
the same dependency tree: (X)-[:DEPREL]-+(Y).

5 Evaluation

This section presents the performance of Neo4j
as a corpus system for UD-annoated treebanks in
different scenarios to evaluate, (a) whether Neo4j
is a viable system for treebanks and (b) how the
presented encoding schemes perform. We mainly
consider two perspectives here: The perspective
of an administrator encoding treebanks and provi-
sioning the storage space for the database. And the
perspective of users wanting to search treebanks
with quick query response times. Our evaluations
cover encoding time, required disk space for en-
coded treebanks and query execution time.

We developed a tool to automatically encode
and import UD-annotated treebanks into a Neo4j
database using the presented encoding schemes.
The tool and its source code is freely accessible
online.2 Our tool accepts CoNLL-U files as its

2Source code, executables and experiment data is available
at https://github.com/Niklas-Deworetzki/neo4j-ud-importer

36

https://github.com/Niklas-Deworetzki/neo4j-ud-importer

Figure 4: Disk size of treebanks.

input, encodes the treebank described by these files
as a graph and stores this graph in a Neo4j database.

Our measurements were obtained using Neo4j
version 5.26.0 and Grew-match version 1.16.1,
both running in Docker on the same hardware.

5.1 Encoding Corpora

We automatically encoded all treebanks in UD re-
lease 2.15 (Zeman et al, 2024) to measure time
and disk space requirements. Figure 4 shows the
required disk size of treebanks in bytes in relation
to treebank size in tokens.3 The disk size of an
encoded treebank is calculated as the sum of the
size of all files in the database directory in Neo4j.
A clear linear relationship between disk size and
treebank size can be seen. The encoding time also
has a strong linear relationship with treebank size
– it takes around 1 minute for the property-based
encoding to encode a 1-million token treebank, and
2–3 minutes for the node-based encoding. The
property-based encoding requires approximately 6
times as much disk space as the CoNLL-U files,
while the node-based encoding requires approxi-
mately 10 times as much disk space.

5.2 Benchmarking Setup

To measure the performance of Neo4j as a query
system for UD-annoated treebanks, we translated
and ran a set of queries from Weissweiler et al.
(2024). They present rules for the Grew-match
graph rewriting framework to automatically anno-
tate constructions in UD treebanks. We selected
queries from these rules for four different construc-
tions present in ten different languages (namely
interrogatives, existentials, conditionals and NPN –

3The figure omits the Hamburg Dependency Treebank,
which with 3.4 million tokens lies far outside the shown range
and approximately 5% below the trend line.

a repeated noun with an adposition in between).

Important for our selection is that the chosen
requests cover a variety of languages, cover many
aspects of the Grew-match query language, and are
relevant for linguistic research. Details of these
queries are not important to our evaluation, but are
explained further in Appendix C. We used the pro-
cedure from section 4 to translate the four chosen
patterns for each of the different languages into
equivalent Cypher queries for both encoding vari-
ants, resulting in a total of 80 translated queries.

To execute queries and measure their execution
time, we grouped queries for the same language
and encoding scheme together. The four queries
were executed in sequence, and the sequence was
repeated multiple times. The goal of this is to
increase cache pressure, so that it is not possible for
a query system to simply “remember” the results
for one particular query. We then started up a server
with one encoded corpus, executed the sequence of
queries for that corpus 10 times to warm up caches,
and then took measurements by repeating queries in
sequence 100 times. For each query, we recorded
the median of all 100 collected execution times.
Queries for Neo4j were sent to the database server
for execution, while queries for Grew-match were
executed by accessing its command line interface.

We selected the biggest available corpus for each
of the ten languages to run our measurements on.
The complete list of languages and used corpora
can be found in Appendix A.

5.3 Comparing Neo4j and Grew-match

Neo4j using the property-based encoding requires
on average 1% of query execution time compared
to Grew-match. More precisely, Grew-match re-
quires between 30 (for the NPN query on the Hindi
treebank) and 600 (for conditionals in Portugese
and existentials in Spanish) times as much execu-
tion time. There is, however, one exception: for the
interrogatives in Hindi, Neo4j was actually slower,
requiring 10% more execution time.

On all measured systems, the execution time is
roughly proportional to the size of the queried tree-
bank. Per million tokens of treebank size, Grew-
match requires on average 28 seconds of query
time, while Neo4j requires 0.28 seconds (for the
property-based encoding) and 0.31 seconds (for the
node-based encoding). A table listing all execution
times is shown in Appendix B.

37

Language Cond. Exist. Interrog. NPN
Chinese 0.24 0.72 0.25 1.60
Coptic 0.67 0.85 0.66 1.94
English 0.55 0.52 0.70 2.64
French 0.59 1.05 5.45 1.24
German 0.64 0.58 0.08 1.33
Hebrew 0.62 0.78 5.99 0.98
Hindi 0.27 0.39 1.07 6.76
Portuguese 0.88 0.57 0.21 1.57
Spanish 0.51 0.74 0.16 1.47
Swedish 0.67 0.50 0.74 1.52
Average 0.53 0.64 0.35 1.53

Table 1: Execution time of the node-based encoding,
relative to the property-based encoding, per query type.
A value of 0.25 means that the node-based encoding
is 4 times faster. Outliers are bold-faced, and they are
not included in the calculation of the average speed-up.
Because the values are factors, the average is calculated
as the geometric mean.

5.4 Comparing Encoding Strategies

A comparison of the query execution times for the
property-based and node-based encoding is shown
in Table 1. The results in that table show groups
of similar relative execution times: In general, the
node-based encoding is faster, requiring 40% to
80% of execution time for most queries. For in-
terrogatives in Hindi and NPN’s in Hebrew, there
is no difference between both encoding schemes.
For all of the NPN queries, the node-based encod-
ing is actually slower, requiring 1.5 times longer
execution time on average. For interrogatives in
French and Hebrew, as well as NPN’s in Hindi, the
node-based encoding is 5–7 times slower. On the
other hand, it is 4–10 times faster for condition-
als in Hindi and Chinese, and for interrogatives in
Chinese, German, Portuguese and Spanish.

5.5 Execution Time and Corpus Size

To better understand how execution times scale
with respect to corpus size, we ran the same set of
queries on differently-sized subsets of the Hamburg
Dependency Treebank. These sub-corpora were ob-
tained by randomly sampling 10%, 20%, . . . , 90%
of sentences from the original corpus.

We used the same setup as presented in Sec-
tion 5.2 to execute all four queries for the German
language on these corpora. The measured execu-
tion times are shown in Figure 5 and show a clear
linear relationship between execution time and cor-
pus size for each of the executed queries.

Figure 5: Execution time for differently sized sub-
corpora of HDT. Note the discontinuity for NPN.

There is one exception to this linear dependency,
which is seen in the diagram: there is an unex-
pected jump for NPN queries in the property-based
encoding after 70% of the corpus size.

6 Discussion

Our experiments clearly show that Neo4j is a viable
corpus search system for UD treebanks.

6.1 Comparing Neo4j and Grew-match
On average, Neo4j outperforms Grew-match in
almost all cases by orders of magnitude. Most
queries run in fractions of a second where Grew-
match needs several seconds for the same query.

We believe that one reason for this improve-
ment is that Neo4j considers the whole treebank as
one single graph, and therefore it can make use of
search indexes (as discussed in section 3.7). Grew-
match on the other hand considers every sentence
to be a separate graph, which makes it much harder
to do global optimisations, and therefore it has to
test each sentence against the query iteratively.

The main trade-off with using Neo4j instead of
Grew-match is disk usage. Figure 4 shows that
encoding the treebank in a graph database uses 6 –
10 times more space than the original CoNLL-U
text files, depending on the encoding.

For example, all UD treebanks combined consist
of roughly 32M tokens, or 2.9 GB of CoNLL-U
text files. In comparison, the Neo4j database files
require 14 or 22 GB (depending on the encoding),
which is a considerable overhead, but still manage-
able.

6.2 Hindi Interrogatives
There is one notable exception, the interrogative
query in Hindi shows no improvement at all com-

38

pared to Grew-match. This is the case both for the
node-based and the property-based encoding. The
query itself consists of a disjunction of several lem-
mas, followed by a filter that rules out sentences
containing some subtrees that are unrelated to the
actual lemma. Because of this, Neo4j has to add
additional constraints to make sure that the sub-
trees are in the same sentence as the lemma it is
searching for, so it has to do extra work and cannot
make use of the global indexes. See Appendix C
for the query and its translation.

We did try a simple optimisation in our encod-
ings, where we created direct edges from word
nodes to their sentence nodes. This improved the
execution time for Hindi interrogatives (and some
other queries) by up to 100 times. We did not
perform any in-depth evaluation of this and other
possible optimisations, but it suggests that it is pos-
sible to improve the corpus encoding substantially
if we know what kind of queries we will perform.

6.3 Comparing Encodings
The size of the encoded corpora grow linearly in
the size of the treebanks, and the property-based
encoding requires only around 60% as much stor-
age as the node-base encoding. Extracting different
values into separate, shared nodes provides no ben-
efit in terms of storage size. The reason for this is
that Neo4j stores string values not as part of nodes,
but in a separate unit (Rocha, 2020). Therefore,
strings occurring multiple times in the dataset will
result in only one copy stored in the database with
multiple references to that one copy.

In terms of execution time, the node-based en-
coding is usually faster than the property-based, by
a factor of 1.5–3. But this is not always the case:
for the NPN queries it is the property-based encod-
ing that is faster by a factor of 1.5–2.5. And there
are some few extreme outliers, where the property-
based encoding is actually 6–7 times faster.

Looking into the execution plans and profiling
information for these queries suggests that having
each attribute as a separate node in the graph is the
reason for both of these behaviors. In situations
where the node-based encoding outperforms the
property-based one, it does so by making use of
uniqueness constraints and indexes. For example,
one lookup in the POS-index will yield the node for
a certain part-of-speech, which has a reference to
all matching words. The property-based representa-
tion on the other hand, linearly scans through words
to find nodes for which relations can be resolved

and further constraints checked. When it comes to
the NPN construction queries, this linear scan is
advantageous. The query asks for three subsequent
tokens, and the database has the successors readily
available when we use the property-based encoding.
For the node-based encoding, the database opts to
find all words related to the single Noun node, fol-
lowed by subsequently finding their successors and
their part-of-speech nodes. This results in many ac-
cesses to the underlying storage at many different
positions, resulting in slow execution times.

The conclusion from this is, that the node-
based encoding can make use of available indices
and uniqueness constraints efficiently, outperform-
ing the property-based encoding for most queries.
However, this is not true in all cases, and the rel-
ative simplicity of the property-based encoding
sometimes results in lower execution times, as
shown by the NPN queries.

6.4 Scalability
Comparing the same query on differently sized
sub-corpora we see that the execution time grows
linearly in the size of the corpus size for all queries
and encoding strategies. We do not know why the
property-based encoding experiences a bigger-than-
expected jump in execution time for NPN queries
when going from 70% to 80% of the original cor-
pus size. Maybe it has to do with caching of in-
termediate results and that the system runs out of
internal memory, but that is just a guess.

Encoding the corpus in Neo4j seems to improve
the search speed by around 100 times on average,
compared to Grew-match. Therefore we draw the
conclusion that it should be feasible to use any of
our encodings on treebanks with 100 million tokens
or more. Such a treebank would require about 100
GB of storage space, which is feasible on modern
computers.

Note that we got these improvements despite
using a very simplistic encoding of the treebanks
into a graph database. As suggested by our opti-
misation in section 6.2 there is probably a lot of
opportunities for further improvement.

6.5 Use as a Corpus System
One thing we have not looked into in this study
is how to incorporate Cypher and Neo4j in a full-
fledged corpus system, such as Grew. Grew-match
is just one part of the Grew system, which is a gen-
eral graph-rewriting framework with which one can
create, annotate, and update treebanks. In addition

39

to searching within a treebank, nodes and edges can
be created or deleted, nodes can be re-ordered and
annotations can be changed. Cypher supports sim-
ilar functionality via commands such as CREATE,
DELETE, and SET, for modifying the database in dif-
ferent ways. More work would be required to map
different Grew commands to these Cypher clauses.

7 Conclusion

Our main conclusion from this evaluation is that
graph databases are viable as backend storage for
treebanks. The study is only done on UD treebanks,
but there is nothing very UD-specific in our encod-
ings or the graph databases, so we believe that this
would be useful for all kinds of treebanks.

Using graph databases it will be possible to
search for complex syntactic phenomena in very
large treebanks with 100 million tokens and more.

Since we translate the treebanks to a general
graph, it should definitely be possible to include
more kinds of relations, such as anaphoric refer-
ences, semantic databases, and morphological seg-
mentation. Including all kinds of relations in one
single graph database opens up for doing large-
scale searching for complex queries on several lin-
guistic levels at once.

Acknowledgments

We thank Nicholas Smallbone and three anony-
mous reviewers for valuable discussions, com-
ments and insights.

References
Riyaz Ahmad Bhat, Rajesh Bhatt, Annahita Farudi,

Prescott Klassen, Bhuvana Narasimhan, Martha
Palmer, Owen Rambow, Dipti Misra Sharma, Ash-
wini Vaidya, Sri Ramagurumurthy Vishnu, et al. 2017.
The Hindi/Urdu treebank project. In Handbook of
Linguistic Annotation. Springer Press.

Guillaume Bonfante, Bruno Guillaume, and Guy Perrier.
2018. Application of Graph Rewriting to Natural
Language Processing. Wiley Online Library.

Emanuel Borges Völker, Maximilian Wendt, Felix Hen-
nig, and Arne Köhn. 2019. HDT-UD: A very large
Universal Dependencies treebank for German. In
Proceedings of the Third Workshop on Universal De-
pendencies (UDW, SyntaxFest 2019), pages 46–57,
Paris, France. Association for Computational Lin-
guistics.

Lars Borin, Markus Forsberg, and Johan Roxendal.
2012. Korp – the corpus infrastructure of Språk-
banken. In Proceedings of the 8th International

Conference on Language Resources and Evaluation
(LREC’12), pages 474–478, Istanbul, Turkey. Euro-
pean Language Resources Association (ELRA).

António Branco, João Ricardo Silva, Luís Gomes, and
João António Rodrigues. 2022. Universal grammati-
cal dependencies for Portuguese with CINTIL data,
LX processing and CLARIN support. In Proceed-
ings of the 13th International Conference on Lan-
guage Resources and Evaluation (LREC’22), pages
5617–5626, Marseille, France. European Language
Resources Association (ELRA).

Marie-Catherine de Marneffe, Christopher D. Man-
ning, Joakim Nivre, and Daniel Zeman. 2021. Uni-
versal Dependencies. Computational Linguistics,
47(2):255–308.

Nadime Francis, Alastair Green, Paolo Guagliardo,
Leonid Libkin, Tobias Lindaaker, Victor Marsault,
Stefan Plantikow, Mats Rydberg, Petra Selmer, and
Andrés Taylor. 2018. Cypher: An evolving query
language for property graphs. In Proceedings of
the 44th International Conference on Management
of Data (SIGMOD’18), page 1433–1445, Houston,
USA. Association for Computing Machinery (ACM).

GSDSimp. 2023. Simplified chinese universal depen-
dencies. Accessed 2025-04-14, https://github.com/
UniversalDependencies/UD_Chinese-GSDSimp.

Bruno Guillaume. 2021. Graph matching and graph
rewriting: GREW tools for corpus exploration, main-
tenance and conversion. In Proceedings of the 16th
Conference of the European Chapter of the Associa-
tion for Computational Linguistics (EACL): System
Demonstrations, pages 168–175, Online. Association
for Computational Linguistics (ACL).

Bruno Guillaume, Marie-Catherine de Marneffe, and
Guy Perrier. 2019. Conversion et améliorations de
corpus du français annotés en Universal Dependen-
cies [conversion and improvement of Universal De-
pendencies French corpora]. Traitement Automatique
des Langues, 60(2):71–95.

Peter Kleiweg and Gertjan van Noord. 2020. Alpino-
Graph: A graph-based search engine for flexible and
efficient treebank search. In Proceedings of the 19th
International Workshop on Treebanks and Linguis-
tic Theories, pages 151–161, Düsseldorf, Germany.
Association for Computational Linguistics.

Thomas Krause and Amir Zeldes. 2014. ANNIS3: A
new architecture for generic corpus query and vi-
sualization. Digital Scholarship in the Humanities,
31(1):118–139.

Taulé Mariona, M. Antònia Martí, and Marta Recasens.
2008. AnCora: Multilevel Annotated Corpora for
Catalan and Spanish. In Proceedings of the 6th In-
ternational Conference on Language Resources and
Evaluation (LREC’08), pages 96–101, Marrakech,
Morocco. European Language Resources Associa-
tion (ELRA).

40

https://doi.org/10.1002/9781119428589
https://doi.org/10.1002/9781119428589
https://doi.org/10.18653/v1/W19-8006
https://doi.org/10.18653/v1/W19-8006
https://aclanthology.org/2022.lrec-1.603/
https://aclanthology.org/2022.lrec-1.603/
https://aclanthology.org/2022.lrec-1.603/
https://doi.org/10.1162/coli_a_00402
https://doi.org/10.1162/coli_a_00402
https://doi.org/10.1145/3183713.3190657
https://doi.org/10.1145/3183713.3190657
https://github.com/UniversalDependencies/UD_Chinese-GSDSimp
https://github.com/UniversalDependencies/UD_Chinese-GSDSimp
https://github.com/UniversalDependencies/UD_Chinese-GSDSimp
https://github.com/UniversalDependencies/UD_Chinese-GSDSimp
https://doi.org/10.18653/v1/2021.eacl-demos.21
https://doi.org/10.18653/v1/2021.eacl-demos.21
https://doi.org/10.18653/v1/2021.eacl-demos.21
https://aclanthology.org/2019.tal-2.4/
https://aclanthology.org/2019.tal-2.4/
https://aclanthology.org/2019.tal-2.4/
https://aclanthology.org/2019.tal-2.4/
https://doi.org/10.18653/v1/2020.tlt-1.13
https://doi.org/10.18653/v1/2020.tlt-1.13
https://doi.org/10.18653/v1/2020.tlt-1.13
https://doi.org/10.1093/llc/fqu057
https://doi.org/10.1093/llc/fqu057
https://doi.org/10.1093/llc/fqu057
https://aclanthology.org/L08-1222/
https://aclanthology.org/L08-1222/

Joakim Nivre, Jens Nilsson, and Johan Hall. 2006. Tal-
banken05: A Swedish treebank with phrase structure
and dependency annotation. In Proceedings of the
5th International Conference on Language Resources
and Evaluation (LREC’06), Genoa, Italy. European
Language Resources Association (ELRA).

Martha Palmer, Rajesh Bhatt, Bhuvana Narasimhan,
Owen Rambow, Dipti Misra Sharma, and Fei Xia.
2009. Hindi syntax: Annotating dependency, lexical
predicate-argument structure, and phrase structure.
In The 7th International Conference on Natural Lan-
guage Processing, pages 14–17.

José Rocha. 2020. Understanding Neo4j’s data on disk.
Accessed 2025-04-14, https://neo4j.com/developer/
kb/understanding-data-on-disk/.

Shoval Sade, Amit Seker, and Reut Tsarfaty. 2018.
The Hebrew Universal Dependency treebank: Past,
present and future. In Proceedings of the Second
Workshop on Universal Dependencies (UDW 2018),
pages 133–143, Brussels, Belgium. Association for
Computational Linguistics.

Natalia Silveira, Timothy Dozat, Marie-Catherine
de Marneffe, Samuel Bowman, Miriam Connor, John
Bauer, and Chris Manning. 2014. A gold standard de-
pendency corpus for English. In Proceedings of the
9th International Conference on Language Resources
and Evaluation (LREC’14), pages 2897–2904, Reyk-
javik, Iceland. European Language Resources Asso-
ciation (ELRA).

Jan Štěpánek and Petr Pajas. 2010. Querying diverse
treebanks in a uniform way. In Proceedings of the
Seventh International Conference on Language Re-
sources and Evaluation (LREC’10), Valletta, Malta.
European Language Resources Association (ELRA).

Leonie Weissweiler, Nina Böbel, Kirian Guiller, San-
tiago Herrera, Wesley Scivetti, Arthur Lorenzi, Nu-
rit Melnik, Archna Bhatia, Hinrich Schütze, Lori
Levin, Amir Zeldes, Joakim Nivre, William Croft,
and Nathan Schneider. 2024. UCxn: Typologically
informed annotation of constructions atop Univer-
sal Dependencies. In Proceedings of the Joint In-
ternational Conference on Computational Linguis-
tics, Language Resources and Evaluation (LREC-
COLING’24), pages 16919–16932, Torino, Italia. Eu-
ropean Language Resources Association (ELRA).

Amir Zeldes and Mitchell Abrams. 2018. The Coptic
Universal Dependency treebank. In Proceedings of
the Second Workshop on Universal Dependencies
(UDW 2018), pages 192–201, Brussels, Belgium. As-
sociation for Computational Linguistics.

Daniel Zeman, Joakim Nivre, Nathan Schneider, Filip
Ginter, and Christopher Manning. 2023. Univer-
sal dependencies guidelines. Accessed 2025-04-14,
https://universaldependencies.org/guidelines.html.

Daniel Zeman, Joakim Nivre, Nathan Schneider, Filip
Ginter, and Sampo Pyysalo. 2025. CoNLL-U format.
Accessed 2025-04-14, https://universaldependencies.
org/format.html.

Daniel Zeman et al. 2024. Universal Dependencies
2.15. LINDAT/CLARIAH-CZ digital library at the
Institute of Formal and Applied Linguistics (ÚFAL),
Faculty of Mathematics and Physics, Charles Univer-
sity.

A List of Treebanks used for Execution
Time Measurements

The complete list of all treebanks used for our exe-
cution time measurements is shown in Table 2. The
collection of languages is determined by the lan-
guages for which Weissweiler et al. (2024) provide
automated annotation rules. We chose the largest
available treebank for each of these languages.

B Table of Execution Time Measurements

Table 3 contains the results of our benchmark,
showing all 120 data points obtained from running
queries for 4 different constructions in 10 differ-
ent languages on 3 query systems. The order of
languages presented in this table follows Table 2.

C List of Grew-match and Neo4j Queries

A selection of queries used for our exe-
cution time measurements is shown in Ta-
ble 4. The complete list of queries is avail-
able online: https://github.com/Niklas-Deworetzki/
neo4j-ud-importer/tree/main/experiments/queries

41

https://aclanthology.org/L06-1121/
https://aclanthology.org/L06-1121/
https://aclanthology.org/L06-1121/
https://neo4j.com/developer/kb/understanding-data-on-disk/
https://neo4j.com/developer/kb/understanding-data-on-disk/
https://neo4j.com/developer/kb/understanding-data-on-disk/
https://doi.org/10.18653/v1/W18-6016
https://doi.org/10.18653/v1/W18-6016
https://aclanthology.org/L14-1067/
https://aclanthology.org/L14-1067/
https://aclanthology.org/L10-1260/
https://aclanthology.org/L10-1260/
https://aclanthology.org/2024.lrec-main.1471
https://aclanthology.org/2024.lrec-main.1471
https://aclanthology.org/2024.lrec-main.1471
https://doi.org/10.18653/v1/W18-6022
https://doi.org/10.18653/v1/W18-6022
https://universaldependencies.org/guidelines.html
https://universaldependencies.org/guidelines.html
https://universaldependencies.org/guidelines.html
https://universaldependencies.org/format.html
https://universaldependencies.org/format.html
https://universaldependencies.org/format.html
http://hdl.handle.net/11234/1-5787
http://hdl.handle.net/11234/1-5787
https://github.com/Niklas-Deworetzki/neo4j-ud-importer/tree/main/experiments/queries
https://github.com/Niklas-Deworetzki/neo4j-ud-importer/tree/main/experiments/queries

Lang. Treebank # Tokens

German HDT (Borges Völker et al., 2019) 3,399,390
Spanish AnCora (Mariona et al., 2008) 547,558
Portuguese CINTIL (Branco et al., 2022) 441,991
French GSD (Guillaume et al., 2019) 389,367
Hindi HDTB (Bhat et al., 2017; Palmer et al., 2009) 351,704
English EWT (Silveira et al., 2014) 251,493
Chinese GSDSimp (GSDSimp, 2023) 123,291
Hebrew HTB (Sade et al., 2018) 114,648
Swedish Talbanken (Nivre et al., 2006) 96,820
Coptic Scriptorium (Zeldes and Abrams, 2018) 26,837

Table 2: UD treebanks used for our benchmark ordered by size.

Lang. Query Grew Prop. Node Lang. Query Grew Prop. Node

German cond. 70.84 0.714 0.458 Spanish cond. 15.05 0.059 0.030
exist. 67.49 0.283 0.165 exist. 14.95 0.025 0.019
interrog. 67.43 0.643 0.050 interrog. 15.33 0.126 0.020
NPN 68.02 1.282 1.699 NPN 15.05 0.179 0.262

Portugese cond. 8.52 0.014 0.012 French cond. 7.18 0.035 0.021
exist. 8.50 0.103 0.059 exist. 7.16 0.019 0.020
interrog. 8.48 0.089 0.019 interrog. 7.26 0.081 0.441
NPN 8.57 0.135 0.212 NPN 7.21 0.151 0.188

Hindi cond. 16.16 0.109 0.029 English cond. 5.79 0.049 0.027
exist. 16.24 0.224 0.086 exist. 5.77 0.064 0.033
interrog. 16.22 17.633 18.906 interrog. 5.84 0.028 0.020
NPN 16.19 0.028 0.192 NPN 6.00 0.043 0.112

Chinese cond. 3.54 0.033 0.008 Hebrew cond. 3.11 0.027 0.017
exist. 3.53 0.020 0.014 exist. 3.09 0.017 0.013
interrog. 3.52 0.029 0.007 interrog. 3.11 0.020 0.119
NPN 3.54 0.041 0.065 NPN 3.12 0.094 0.092

Swedish cond. 2.43 0.031 0.021 Coptic cond. 1.28 0.021 0.014
exist. 2.42 0.031 0.015 exist. 1.27 0.011 0.009
interrog. 2.45 0.019 0.014 interrog. 1.29 0.021 0.014
NPN 2.43 0.042 0.063 NPN 1.32 0.017 0.033

Table 3: Execution times measured in seconds for the three query systems (Grew-match, Neo4j with property-based
encoding and Neo4j with node-based encoding) on equivalent queries ordered by language and construction.

42

Query Grew-match Property-based Node-based

German
exist.

pattern {

E[lemma="es"];

G[lemma="geben"];

G-[nsubj]->E;

}

MATCH (E:Word)

MATCH (G:Word)

MATCH (E {LEMMA:’es’})

MATCH (G {LEMMA:’geben’})

MATCH (G)-[:DEPREL

{deprel:’nsubj’}]->(E)

RETURN E, G

MATCH (E:Word)

MATCH (G:Word)

MATCH (E)-[:LEMMA]->

(:Lemma {value:’es’})

MATCH (G)-[:LEMMA]->

(:Lemma {value:’geben’})

MATCH (G)-[:DEPREL

{deprel:’nsubj’}]->(E)

RETURN E, G

Hindi
interrog.

pattern {

W [lemma="kyA"
|"kOn"
|"khA\"
|"kb"
|"k{s�"
|"EktnA"
|"Eks"];

} without {

SC [form="Ek"];
V -[mark]-> SC

} without {

V1 [upos=VERB];

V1 -[advcl]-> V;

}

MATCH (W:Word)

WHERE W.LEMMA in [. . .]

AND NOT EXISTS {

MATCH (SC:Word)

MATCH (V:Word)

MATCH (V)-[:DEPREL]-+(W)

MATCH (SC FORM:’Ek’)
MATCH (V)-[:DEPREL

{deprel:’mark’}]->(SC)

} AND NOT EXISTS {

MATCH (V1:Word)

MATCH (V:Word)

MATCH (V1)-[:DEPREL]-+(W)

MATCH (V1 UPOS:’VERB’)

MATCH (V1)-[:DEPREL

{deprel:’advcl’}]->(V)

} RETURN W

MATCH (W:Word)

MATCH (W)-[:LEMMA]->

(wlemma:Lemma)

WHERE wlemma.value in [. . .]

AND NOT EXISTS {

MATCH (SC:Word)

MATCH (V:Word)

MATCH (V)-[:DEPREL]-+(W)

MATCH (SC)-[:FORM]->

(:Form {value:’Ek’})
MATCH (V)-[:DEPREL

{deprel:’mark’}]->(SC)

} AND NOT EXISTS {

MATCH (V1:Word)

MATCH (V:Word)

MATCH (V1)-[:DEPREL]-+(W)

MATCH (V1)-[:UPOS]->

(:Upos {value:’VERB’})

MATCH (V1)-[:DEPREL

{deprel:’advcl’}]->(V)

} RETURN W

Chinese
NPN

pattern {

N1 [upos=NOUN];

P [upos=ADP];

N2 [upos=NOUN];

N1 < P;

P < N2;

N1.form=N2.form;

}

MATCH (N1:Word)

MATCH (P:Word)

MATCH (N2:Word)

MATCH (N1 {UPOS:’NOUN’})

MATCH (N2 {UPOS:’NOUN’})

MATCH (P {UPOS:’ADP’})

MATCH (N1)-[:SUCCESSOR]->(P)

MATCH (N2)<-[:SUCCESSOR]-(P)

WHERE N1.FORM = N2.FORM

RETURN N1, N2, P

MATCH (N1:Word)

MATCH (P:Word)

MATCH (N2:Word)

MATCH (N1)-[:UPOS]->

(:Upos {value: ’NOUN’})

MATCH (N2)-[:UPOS]->

(:Upos {value: ’NOUN’})

MATCH (P)-[:UPOS]->

(:Upos {value: ’ADP’})

MATCH (N1)-[:SUCCESSOR]->(P)

MATCH (N2)<-[:SUCCESSOR]-(P)

WHERE (N1)-[:FORM]->(:Form)

<-[:FORM]-(N2)

RETURN N1, N2, P

Table 4: A sample of queries used for execution time measurements. The table shows a Grew-match pattern and the
translated Cypher queries, following the translation scheme provided in Section 4. Note that the full list of lemmas
for the Hindi interrogative query is only shown for Grew-match and is abbreviated for the other two columns.

43

