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Abstract

Automatic and early detection of foodborne
hazards is crucial for preventing foodborne out-
breaks. Existing Al-based solutions often can-
not handle complexity and noise in food recall
reports and they struggle to overcome the de-
pendency between product and hazard labels.
We introduce a methodology for classifying re-
ports on food-related incidents that addresses
these challenges. Our approach leverages LLM-
based information extraction, to minimize re-
port variability, along with a two-stage classifi-
cation pipeline. The first model assigns coarse-
grained labels that narrow the space of eligible
fine-grained labels for the second model. This
sequential process allows us to capture hier-
archical label dependencies between products
and hazards and between their respective cate-
gories. Additionally, we designed each model
with two classification heads that rely on the
inherent relations between food products and
associated hazards. We validate our approach
on two multi-label classification sub-tasks. Ex-
perimental results demonstrate the effective-
ness of our approach, which achieves an im-
provement of +30% and +40% in classification
performance compared to the baseline.

1 Introduction

Food hazard detection — identifying potential risks
associated with food products — is pivotal for pub-
lic health. In this context, researchers have started
exploring solutions based on traditional machine
learning (ML) and deep learning (DL) techniques
to automate food hazard detection tasks. This can
help mitigate foodborne outbreaks and improve
food safety measures (Zhou et al., 2019; Qian et al.,
2023).

Albeit promising, such approaches leverage
structured data extracted from incomplete or mis-
leading information collected from social me-
dia (Maharana et al., 2019; Tao et al., 2023).
More interestingly, natural language processing

(NLP) techniques powered by large language
models (LLMs) have unlocked new possibili-
ties—especially in scenarios with limited labeled
data (such as low-resource languages (Perak et al.,
2024; Koudounas et al., 2023) or specific con-
text (Pal et al., 2024; Benedetto et al., 2023)).

They enable the extraction of more robust and
context-enhanced information from unstructured
data when it relies on authoritative sources such
as public reports from government agencies (Ozen
et al., 2025). This allows for more reliable and
comprehensive analysis of food hazard trends and
their potential impact.

Among others, Randl et al. (2024) have intro-
duced a dataset of publicly available food recall
announcements, annotated at two hierarchical lev-
els — i.e., high-level categories and fine-grained
labels for both food products and associated haz-
ards. The authors use this dataset to benchmark
a food hazard detection methodology for address-
ing a multi-label report classification task. While
the reports included in the dataset provide author-
itative insights, they inherently present noise and
span thousands of classes, which poses significant
analytical challenges.

Relying on the work of Randl et al. (2024), we
hypothesize that information about hierarchical
structure can enhance a model’s classification per-
formance. Specifically, classifying broader product
categories first can facilitate subsequent identifica-
tion of specific food items, and the same applies
to hazard classification. Moreover, while the re-
lationship between food products and associated
hazards is highly correlated, existing approaches
fail to explicitly model these dependencies (Randl
et al., 2024).

In this paper, we address the report classification
task in a multitask fashion. We propose a novel
approach based on sequential multi-head classifica-
tion. We present three key advances in multi-label
food hazard detection:
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1. Multi-Head Architecture: We decouple prod-
uct and hazard prediction by leveraging two
classification heads, which enables special-
ized feature learning for each label type.

2. Hierarchical Constraint Mechanism: We first
predict macro-categories to dynamically re-
strict fine-grained class probabilities, leverag-
ing label hierarchy to improve accuracy.

3. LLM-Driven Corpus Normalization: We ap-
ply LLM information extraction to standard-
ize report texts, thus reducing variability and
noise prior to classification.

The classification results on The Food Hazard
Detection Challenge (Randl et al., 2025) dataset
validate the effectiveness of our approach. Our
pipeline achieves an F-score of 0.80 for product
classification and an F-score of 0.47 for hazard
classification. The Multi-Head approach accounts
for the largest improvement in performance, adding
an absolute F1 of +0.30 on product classification
and an absolute F1 of +0.46 on hazard classification
to the single-head baselines. Corpus normalization
contributes an additional +0.01 F1 improvement by
reducing text variability. Enforcing the hierarchical
constraints at the Sequential Classification stage
yields a marginal +0.005 F1 gain. Additionally, our
approach ranks in the top 15 of the public leader-
board (“title and text” tracks), reaching 6th place
in ST1 and 13th place in ST2'.

2 Background

In the last decade, researchers have focused their ef-
forts on exploring Al-based solutions for food haz-
ard detection (Zhou et al., 2019; Qian et al., 2023).
Most of the existing research rely on traditional
ML (Kumar et al., 2024) and DL techniques (Xiong
et al., 2023), from the detection of zoonotic disease
sources (Lupolova et al., 2017) to microbial risk
assessment (Njage et al., 2019), to name but a few.
Nevertheless, the recent development of LLMs and
the advancement of NLP techniques (Zhao et al.,
2024) have pushed the boundaries towards more
sophisticated approaches (Ozen et al., 2025; Prab-
hune et al., 2025; Randl et al., 2024).

Although recent studies have started leveraging
insights from the scientific literature (Xiong et al.,
2023; Ozen et al., 2025), the majority of food risk

!Code available at https://github.com/auro736/
BitsAndBites_SemEval2025_Task9.

detection approaches rely on corpora consisting of
news or social media posts (Tao et al., 2023; Ma-
harana et al., 2019). Such sources often provide in-
complete information and lack precision from both
a taxonomical and scientific perspective, making it
challenging to extract structured and reliable data
for Al-driven food risk assessment (Randl et al.,
2024).

The majority of existing approaches frame the
problem as a binary classification task where the
goal is to detect the presence of an incident from
tabular or image data (Wang et al., 2022). Such
approaches are promising but are often too sim-
plistic for real-world scenarios (Hu et al., 2022)
where food risk assessment requires complete inter-
pretation of textual data, consideration of context,
and distinguishing between different levels of risk
severity (Danezis et al., 2016; Prache et al., 2022).

To overcome these issues, Randl et al. (2024)
created a new dataset of > 6000 food recall an-
nouncements from 24 public food safety author-
ity websites spanning 28 years from 1994 to 2022.
They formulated the food hazard detection problem
as two supervised multi-label classification tasks
and organized the collected reports accordingly:
(i) the aim of subtask STy is the classification of
each report into macro categories of food products
(22 labels) and related hazards (10 labels); (ii) the
aim of subtask ST is identification of the specific
products (1 142 labels) and hazards (128 labels)
mentioned in the reports.

Randl et al. (2024) relied on that dataset to vali-
date a methodology based on LLMs and conformal
prediction (Vovk et al., 2022). They addressed
the two classification subtasks separately by train-
ing two different classifiers, each designed with
a single classification head that simultaneously
processed products and their associated hazards.
While promising, this design may limit the model’s
ability to distinguish between the different aspects
of each target.

In contrast, we propose a modification to this
architecture by splitting the classification head into
two distinct heads, which allows the model to better
capture the relationship between food products and
potential hazards.

Moreover, while Randl et al. (2024) addressed
the two subtasks independently, we introduce a
sequential classification approach (see Section 3),
where we constrain the classification probabilities
of the detailed labels (i.e., subtask ST5) to the prob-
abilities of the category labels (i.e., subtask STy).
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Figure 1: Overview of the adopted methodology. For
each subtask (ST; and ST5), we train one classification
model with two classification heads: one for classifying
the product labels, and one for classifying the food
hazard. Then, we constrain the probabilities of the STy
detailed labels based on the probabilities of the ST;
generic categories.

This enables the model to refine its predictions by
leveraging the hierarchical dependency between
the two tasks, ultimately improving both the accu-
racy and robustness of food hazard detection.

3 Methodology

In this section, we present our food hazard detec-
tion methodology. In Section 3.1, we address the
overall problem by relying on a multi-head archi-
tecture. This results in two models — one for high-
level categories (ST1) and one for fine-grained la-
bels (ST2). Then, in Section 3.2, we introduce
the sequential classification approach, where fine-
grained predictions are guided and constrained by
the predictions of the broader categories. Finally, in
Section 3.3, we describe how we leverage LLMs to
normalize the noisy, unstructured reports through
summarization and information extraction, which
also enhances classification performance.

3.1 Multi-Head Architecture (MH)

Given the possible correlations between food prod-
ucts and their associated hazards (Randl et al.,
2024), we have opted for a double classification
head approach.

For each subtask, we split the classification layer
of the LM into two classification heads. This way,
part of the model parameters are shared across the
two subtasks while each classification head is spe-
cialized in a different classification subtask (see the
green and purple blocks of Figure 1).

As a consequence, for a single subtask we ob-
tain two loss functions, i.e., Lp for the product
classification head and Ly for the hazard clas-
sification head. We jointly train the two classi-
fication heads with a linear combination of the
two loss functions. The resulting loss function
isL=MAp-Lp+MAyg-Lyg,where A\p, \g € R are
multiplicative coefficients to balance the contribu-
tions of the head-specific losses.

3.2 Sequential Classification (SC)

We define the set of hazard/product categories
C ={c1,...,cc} from STy and the set of detailed
hazards/products as D = {d,...,dp} from ST.
As mentioned in Section 2, the dataset exhibits a
hierarchical structure between ST; and STo, i.e.,
given a hazard/product category ¢; € C, there exists
a subset of details D; € D associated with c¢;.

We train two classifiers independently, each tai-
lored to their respective subtask — i.e., LM; for
ST and LM for STs, as highlighted in Figure 1.

First, in ST; we leverage LM; to predict the
probabilities of all the hazard/product categories
of an input report. Hence, we assign the report
to the hazard/product category with the highest
probability, formally arg Icngéc De;» Where p, is the

probability of category c;.

Then, in STs, we exploit the hierarchical rela-
tionship between categories and their associated
details by weighting the probability of each de-
tail (pq;) by the probability of its corresponding
category (p.,;). Rather than considering a single
category, we propagate all probabilities from ST;
into their corresponding detailed hazard/product
probabilities in STs:

Pd; = DPd; * Pe;s Vdj € Dj, Ve, €C

Hence, we consider the final detailed predic-
tion with the maximum probability, formally
arg Max pa;

This ensures that the predictions for detailed haz-
ards/products are influenced by the category-level
classification, thus maintaining hierarchical con-
sistency between ST; and STy. As a result, this
sequential classification approach should enhance
the accuracy and consistency of predictions by re-
stricting LM3 to only relevant details.

3.3 Corpus Normalization (CN)

The texts included in the dataset follow different
formats and structures depending on the type of
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ST, ST,
Validation Test Validation Test
Baseline 0.4932 0.4722 0.0031 0.0037
MH 0.7893 0.7998 0.4777 0.4644
MH + SC - - 0.4825 0.4693
MH + CN 0.8020 0.7817 0.4813 0.4700
MH + CN + SC - - 0.4802 0.4681

Table 1: Comparison of classification results across the proposed approaches: sequential classification (SC) and
corpus normalization (CN). The experiments are conducted using RoBERTa-large, identified as the best-performing

model. The best results are highlighted in boldface.

report, the country, the government agency, or the
website from which they were extracted. This poses
significant challenges for a classifier based on an
LM.

To address this issue, we reduce the reports’ vari-
ability and noise by leveraging another LLM in a
zero-shot setting to extract specific information in
a uniform and fixed format. Hence, we obtain the
final report by prepending the extracted text to the
original report.

Below, we provide the prompt template we used
to normalize the report:

( A
You are an expert in analyzing food-related incident

reports. For the given text, identify the recalled food
product and the motivation for the recall. Add also the
categories that you can infer of the food product and the
motivation.

Provide the output in the following format:

PRODUCT: <food product and its category extracted>

HAZARD: <motivation and its category extracted>

Do not include any additional explanation or output. Follow
the format strictly.

4 Experimental Setup

When not explicitly stated, we ran our experi-
ments on the training, validation and test datasets”
released by the “Food Hazard Detection Chal-
lenge” (Randl et al., 2025).

We used RoBERTa-large as the best model
among BERT-uncased-large, DeBERTa-v3-large
and ModernBERT-large evaluated during a model
selection stage (see Appendix A). We used se-
quence cross-entropy as the loss function as well
as the AdamW optimizer (Loshchilov and Hutter,
2017) with a weight decay of 0.01 and a learning
rate of 107°. To prevent overfitting, we remove
connections in the last classification layer with a
probability of 0.1.

After a hyperparameters tuning stage, we set
the coefficients of the multi-head architecture to

2We use the title and rext features from the datasets to
create a single concatenated text.

Ap = 0.5 and Ay = 0.5 for subtask ST, whereas
we set A\p = 1.0 and Ay = 1.5 for subtask ST,
(please refer to Appendix B for further details on
loss coefficient tuning). We extracted the struc-
tured information from the reports (CN) with Meta-
Llama-3.1-8B-Instruct in zero-shot fashion. We
ran all the experiments on a Ubuntu 22.04 Long
Term Support (LTS) machine equipped with Intel®
Xeon™ Gold 6126 CPU, 1 x Nvidia® RTX 6000
graphics processing unit (GPU), 24 gigabyte (GB)
of random access memory (RAM).

Evaluation Metric We evaluated our approach
through the fask F1-score evaluation metric pro-
posed by the organizers of the “SemEval” chal-
lenge (Randl et al., 2025). This metric is a cus-
tomized version of the traditional F1-score account-
ing for the relation between food products and as-
sociated hazards. We provide its implementation
in the following code snippet in Python:

'd N\
I from sklearn.metrics import f1_score

3 def task_f1_score(H_true, P_true, H_pred, P_pred):

4 # Compute F1 for hazards:

5 H_f1 = f1_score(H_true, H_pred, average='macro')

6 # Constraint the products on the predicted hazards
7 P_true = P_true[H_pred == H_truel

8 P_pred = P_pred[H_pred == H_true]

9 # Compute F1 for products:

10 P_f1 = f1_score(P_true, P_pred, average='macro')
11 # Compute the final task F1-score

12 return (H_f1 + P_f1) / 2

In a nutshell, we first evaluated the F1-score
of the predicted hazards with macro averaging
to account for labeling unbalances. Then, we
constrained the evaluation to only those instances
where the predicted and ground truth hazards align.
Within this subset, we then computed the macro
average F1-score for the associated food products.
Finally, we computed the final task F1-score by av-
eraging the product and hazard scores. This ensures
that both hazard detection and product association
are jointly considered in the evaluation.
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5 Experimental Results

In Table 1, we provide the task Fl-scores for
the two classification tasks obtained with our ap-
proach?.

We use as baseline a standard classification
model based on RoOBERTa-large and a single clas-
sification head for each task —i.e., ST and STs.

Firstly, using a single classification head limits
the baseline performance, with a task F1-score of
< 50% in STy. This limitation is even more evident
in STy, where the task Fl-score is < 1%. Here,
further analysis reveals that merging the product
and hazard labels in a unique classification head
leads to a strong bias for the predominant class —
i.e., the products. As a consequence, 89% of the
hazards are misclassified as products.

The multi-head (MH) classification brings a sub-
stantial improvement over the baseline in both ST,
and STy, with improvements in the task F1-scores
of > 39% and > 46% respectively. The classifica-
tion results confirm our assumption that splitting
the hazard and product classification heads allows
the classifier to achieve high specialization while
accounting for label unbalancing.

Overall, corpus normalization (CN) applied
along with MH leads to a performance comparable
to simple MH, except for a slight decrease in the
test task F1-score of ~ 2% for ST;. Apart from this
specific case, the information extracted by the LLM
follows a uniform and fixed structure, effectively
reducing the reports’ variability and facilitating the
classifier’s handling of heterogeneous data. As a
result, with CN the classifiers can correctly assign
over 100 more reports to the correct products and
hazards compared to using the MH alone.

Leveraging the hierarchical structure of labels
(i.e., categories and details) through sequential clas-
sification (SC) applied alongside simple MH pays
off, resulting in a slight task F1-score improvement
of ~ 0.5%. On the other hand, SC seems to slightly
limit the improvement of the CN approach. Despite
the classifier performing comparably with a task
F1-score of around 48%, combining the three ap-
proaches leads to a slight decrease in performance
of ~ 0.1%.

3Note that the results presented in this table differ from
those in the public competition leaderboard. Here, we have re-
vised and refined the methodology to achieve greater stability
and robustness across different model configurations.

6 Conclusions

In this paper, we proposed a novel sequential
multi-head classification approach to classify food-
related incident reports. We introduced a classifi-
cation pipeline that integrates (i) multi-head clas-
sifiers to split food products and associated hazard
labels, (ii) a sequential classification strategy lever-
aging hierarchical labels, and (iii) LLM informa-
tion extraction for normalizing reports that exhibit
high variability.

Experimental results demonstrate the efficacy
of our approach, which yields significant perfor-
mance improvements over the baseline single-head
classifier. The multi-head approach substantially
enhances the classifier’s performance, mitigating
the biases caused by labeling imbalances observed
in the baseline model. Corpus normalization re-
duces report variability and provides a common
structure to the texts, thereby slightly improving
the classification performance. Finally, sequen-
tial classification marginally boosts performance
by constraining predictions based on hierarchical
label dependencies.

Future work could explore alternative ap-
proaches to hierarchical classification constraints,
further optimizing the balance between inter-
pretability and performance. Additionally, inte-
grating external knowledge could enhance model
robustness and generalization across different food
safety scenarios. We also plan to evaluate the use
of the embeddings produced by our multi-head,
hierarchy-based approach to index incident reports
in a retrieval-augmented generation (RAG) frame-
work to enable more efficient retrieval and richer
contextualization of historical cases.

Limitations and Ethical Statement

The dataset used in this study, to the best of our
knowledge, does not contain any personal informa-
tion. However, it may include potentially harmful
or inappropriate content. This consideration also
extends to the model employed, which may gener-
ate incorrect responses. The use of this particular
dataset and models is subject to the limitations
outlined in their respective technical reports and
licenses.

Our approach depends on the quality and com-
prehensiveness of the dataset used. Although it con-
sists of authoritative food recall reports, the dataset
may still contain inconsistencies or outdated infor-
mation, and the performance of the model may vary
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due to the presence of other kinds of data. As such,
the generalizability of our approach to other food
safety datasets or real-world scenarios remains an
open question requiring further validation on dif-
ferent food safety records.
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A Model Selection

Here, we complement our experimental results by
reporting the model selection task F1-Scores. We

Task ST1 Task ST>
Validation Test | Validation Test
ModernBERT 0.6379  0.6591 0.2368  0.2223
BERT-uncased | 0.6735 0.6866| 0.2634  0.2472
DeBERTa-v3 0.7393  0.6741 0.2291  0.2022
RoBERTa 0.7487  0.7394| 0.3315 0.3175

Table 2: Model selection classification scores for the
two subtasks ST, ST with sampled data. Best results

are in bold.
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Figure 2: Task F1-Scores with different values of A\p
and Ap.

organize our dataset relying only on the challenge
training data, properly split into training (70%),
validation (15%) and test sets (15%).

We choose the best model among BERT-
uncased-large, RoBERTa-large, DeBERTa-v3-
large, ModernBERT-large. We train each model
for a maximum of 10 epochs with early stopping
and the same experimental settings of Section 4.
Appendix A showcases the classification results.

B Choice of \p and )\ g

Here, we complement our experimental results by
reporting the results of the hyperparameter tuning
stage for A\p and \g introduced in Section 3.1. As
for the model selection, we organize our dataset
relying only on the challenge training data, properly
split into training (70%), validation (15%) and test
sets (15%).
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We use RoBERTa-large as the best model result-
ing from the model selection stage and train it for
a maximum of 10 epochs with early stopping. We
test Ap and Ay values in the range from 0.5 to 2.0
and report in Figure 2 the task F1-Scores.
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