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Abstract

This paper addresses the SemEval 2025 - Task
11 entitled "Bridging the Gap in Text-Based
Emotion Detection", with a focus on perceived
emotions from short text snippets, as spoken
by individuals across various languages. This
study involves three tracks: (1) multi-label emo-
tion detection (ED), (2) emotion intensity pre-
diction, and (3) cross-lingual ED. A compre-
hensive analysis of multiple languages, includ-
ing Arabic, Amharic, Chinese, English, and
other languages, is conducted utilizing a vari-
ety of machine and deep learning techniques.
For Track A, a hybrid approach using an ensem-
ble of advanced pre-trained transformer mod-
els, coupled with majority voting on predic-
tions, yields significant insights. Track B lever-
ages a multilingual transformer model along-
side prompt engineering, using Average Ensem-
ble Voting (AEV) for emotion intensity predic-
tion. In Track C, a cross-lingual ED task, a
classification of languages based on linguis-
tic families is employed to enhance the perfor-
mance of multilingual models. The method-
ologies incorporated, such as model selection,
prompt engineering, and voting mechanisms,
are evaluated using F1-score and Pearson cor-
relation metrics. This research contributes to
the broader field of ED, highlighting the impor-
tance of cross-lingual approaches and model
optimization for accurate emotion prediction
across diverse linguistic landscapes.

1 Introduction

Text-based emotion detection has become a criti-
cal task in the field of natural language processing
(NLP), enabling systems to understand and respond
to human emotions based on written language. The
ability to accurately infer the emotions of speakers
from their text offers vast potential in applications
ranging from customer service automation to men-
tal health monitoring and Sentiment analysis (SA)
in social media (Saadati et al., 2024). However,
despite significant advancements, this task remains

challenging due to the complexity of emotional ex-
pressions across cultures, contexts, and languages.
The present task (Muhammad et al., 2025b),
"Bridging the Gap in Text-Based Emotion Detec-
tion", focuses on understanding the perceived emo-
tions of a speaker through short text snippets. Un-
like traditional SA, which often centers on the emo-
tional impact on the reader or the identification of
the speaker’s true emotions—both of which are dif-
ficult to ascertain from a limited text—the focus
here is on detecting the emotion that is most likely
perceived by an average reader or listener. Specif-
ically, the task aims to identify emotions such as
joy, sadness, fear, anger, surprise, and disgust from
a variety of languages, including widely spoken
ones like English, Spanish, and Chinese, as well as
lesser-studied languages such as Emakhuwa, Igbo,
and Hausa.

The task is organized into three distinct tracks:
Track A (Multi-label Emotion Detection), Track
B (Emotion Intensity), and Track C (Cross-lingual
Emotion Detection). Track A requires systems to
predict the presence or absence of specific emotions
in text, encompassing the prediction of one or more
perceived emotions in a given text snippet. Track B
involves determining the intensity of the identified
emotions, ranging from no emotion to high degrees
of emotion. Track C challenges systems to gener-
alize emotion detection across multiple languages,
testing the models’ ability to predict emotion labels
for unseen languages based on training data.

The challenge further emphasizes the impor-
tance of handling multilingual data and the com-
plexities of translating emotional expressions
across languages and traditions.  With this
in mind, various methodologies have been ex-
plored, including the use of state-of-the-art mod-
els such as Microsoft’s DeBERTa (Chehreh et al.,
2024), Google’s Multilingual DistilBERT (M-
DistilBERT) (Sanh et al., 2019), and Google’s
Gemini (Reid et al., 2024). These models fine-
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tuned for different tracks, and employ techniques
such as translation, prompt engineering, and model
ensemble strategies like Majority Voting and AEV,
to enhance performance and address the unique
challenges presented by the diverse language sets
involved.

The paper is organized into seven sections: Sec-
tion 2 covers the dataset, Section 3 reviews related
work, and Section 4 presents the system architec-
ture. Section 5 describes the experimental setup,
followed by Section 6, which presents and analyzes
the results. Section 7 concludes with key findings
and future research directions. This paper aims
to present the methodology, evaluation strategies,
and results of our approach to tackling the multi-
faceted problem of text-based emotion detection,
while also exploring how advancements in multi-
lingual NLP can bridge the gap in understanding
human emotions across different languages.

2 Dataset

The shared task utilizes a comprehensive and mul-
tilingual dataset designed to explore how emotions
are perceived across different languages. The main
objective is to determine which emotion people are
most likely to associate with a speaker based on a
brief text snippet. Provided by the organizers of
SemEval 2025 - Task 11 on Text-Based Emotion
Detection, this dataset covers multiple languages
and captures a broad range of linguistic and cul-
tural nuances. For all languages except Amharic,
Oromo, Somali, and Tigrinya, we have used the
dataset referenced in (Muhammad et al., 2025a).
However, for any analysis involving one of these
four languages, we have used the dataset from (Be-
lay et al., 2025) instead. This distinction ensures
that the dataset remains culturally and contextually
appropriate for each language. The emotions con-
sidered in this study include anger, disgust, fear,
joy, sadness, and surprise. In track A, 28 languages
are covered. For track B, 11 languages are included.
In track C, 32 languages are available. Our output
for tracks A and C must be in a binary format (0
or 1), as 1 indicating the presence and 0 indicating
the absence of a given emotion in the text. In track
B, however, the output must be one of the integers
from O to 3 for each emotion, representing its inten-
sity level (0: no emotion, 1: low degree of emotion,
2: moderate degree of emotion, and 3: high degree
of emotion). The dataset is been pre-processed by
the task organizers and is divided into three key

subsets: training, validation, and testing.

3 Related Work

Sentiment analysis identifies the overall emotional
tone of a text (positive, negative, or neutral), while
ED focuses on identifying specific emotions. SA
is broader, while ED provides more detailed and
intense emotional insights. Emotion detection from
text, particularly perceived emotions, is a rich field
of research in NLP, playing a crucial role in analyz-
ing human expressions and understanding people’s
attitudes toward specific subjects. Several studies
have focused on detecting emotions based on tex-
tual cues, with a variety of approaches ranging from
lexicon-based methods to advanced machine and
deep learning techniques. However, the challenge
of bridging the gap between text and the perception
of emotions across different languages, cultures,
and contexts remains an open issue. In this sec-
tion, we review relevant work related to text-based
emotion detection, emphasizing approaches related
to multi-label emotion detection, emotion intensity
prediction, and cross-lingual emotion detection.

3.1 Text-Based Emotion Detection

Early emotion detection methods primarily relied
on lexical resources like the Emotion Lexicon
(EmoLex), which linked words to specific emo-
tion categories, but these approaches struggled to
capture the complexity of mixed emotions or irony
(Doan and Luu, 2022). With the rise of deep learn-
ing, neural network-based models such as RNNs,
CNNs, and Transformer architectures like BERT
and its multilingual variants have significantly im-
proved ED by better understanding contextual nu-
ances in the text (Rezapour, 2024). A key challenge
in this area is multi-label classification, where texts
may convey multiple emotions simultaneously; re-
cent studies (Ameer et al., 2023) have explored
frameworks for predicting multiple emotions from
a single sentence, showing notable advancements
over single-label methods.

3.2 Emotion Intensity Detection

Recent advancements in emotion intensity predic-
tion have gained significant attention in NLP, with
datasets like Emotion Intensity (Kajiwara et al.,
2021) underscoring its growing importance. This
task has become a critical component of emotion
recognition, especially in NLP challenges like Se-
mEval. Notably, models like LE-PC-DNN com-
bine convolutional and fully connected layers with
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lexicon-based features and transfer learning to pre-
dict emotion intensity in tweets, aiming for state-of-
the-art performance through deep multi-task learn-
ing (Kulshreshtha et al., 2018). Similarly, the Crys-
talFeel system leverages parts-of-speech, n-grams,
word embeddings, and affective lexicons to predict
intensity levels for emotions, achieving strong re-
sults while revealing insightful word- and message-
level associations (Gupta and Yang, 2018). These
innovations reflect the increasing sophistication of
emotion intensity prediction, combining deep learn-
ing and linguistic features for more accurate and
efficient emotion analysis in text.

3.3 Cross-Lingual Emotion Detection

Cross-lingual emotion detection is an emerging
field within emotion detection, where models are
designed to generalize across languages with di-
verse structures, cultural contexts, and expressions.
This contrasts with traditional systems that typi-
cally rely on a single language or closely related
language sets. Research in this area has investi-
gated the transfer of models across different lan-
guages. For example, the work of (Kadiyala, 2024)
highlights performance drops when training and
testing data originate from different languages. A
key approach to improving cross-lingual emotion
detection is the use of multilingual models like
Google’s Multilingual BERT (M-BERT), XLLM-
RoBERTa (XLLM-R), and multilingual TS5, which
have demonstrated stronger performance in multi-
lingual tasks. For example, (Hassan et al., 2022)
adapted M-BERT (Devlin et al., 2018) model for
cross-lingual emotion detection, leveraging shared
embeddings across languages to achieve competi-
tive results. However, challenges remain, including
cultural differences in emotional expression and
the need for large, multilingual labeled datasets.

4 System Architecture

The system architecture for multilingual emotion
detection uses back translation, multilingual mod-
els, transfer learning, LLMs to improve accuracy
across languages. Prompt engineering optimizes
task processing, ensuring effective and adaptable
ED across diverse datasets.

4.1 Back Translation

In our paper for SemEval 2024 - Task 10 (Tareh
et al., 2024), we utilized back translation, a widely
adopted technique in multilingual NLP, which con-
tributed significantly to achieving the best perfor-

mance. This method ensures that the meaning of
the original text is preserved across languages, par-
ticularly in ED tasks. By addressing challenges in
handling multilingual data, especially when train-
ing models on text from various languages, we
were able to improve the model’s robustness. The
back translation process involves translating the
text from the target language to English and then
back to the original language, creating a parallel
corpus that helps identify any inconsistencies. This
technique was crucial in enhancing the accuracy
of our ED models, as it helped pinpoint misinter-
pretations or discrepancies during translation, as
detailed in our paper.

For this particular task, back translation was in-
corporated into the data preprocessing pipeline.
Text from various languages was first translated
into English using the Llama3.3-70b! translation
model, which, with its 70 billion parameters, was
selected for its effectiveness with a broad range of
languages, including those from underrepresented
language families. Once the data was in English,
it was back-translated to the original language, al-
lowing for a comparison between the original and
retranslated texts. This comparison helped detect
errors in the translation, ensuring that emotional
expressions were accurately preserved and improv-
ing the overall quality of the data used for training
the ED models (Wendler et al., 2024).

Despite its benefits, back translation has limita-
tions. The quality of the back-translation depends
on the initial translation model and the character-
istics of the language pairs involved, especially
when languages have different sentence structures
or cultural contexts. Additionally, the process is
computationally expensive and time-consuming,
particularly when dealing with large datasets across
many languages. However, the advantages of pre-
serving emotional content and reducing translation
biases outweighed these challenges, making back
translation an essential technique for enhancing
multilingual ED models and ensuring more accu-
rate predictions in cross-lingual tasks (Yoon, 2022).

4.2 Multilingual Models and Transfer
Learning

In recent years, multilingual transformer models
have become the standard for addressing cross-
lingual emotion detection. For example, M-BERT
and M-DistillBERT have been used for several ED

"https://developers.cloudflare.com
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tasks, including cross-lingual tasks, due to their
ability to handle multiple languages simultaneously
and share knowledge across languages. In the con-
text of the present work, models like DeBERTa
(Aziz et al., 2023) and Gemini-1.5-flash have been
used to tackle the challenges of multi-label clas-
sification, emotion intensity, and cross-lingual de-
tection, demonstrating the effectiveness of lever-
aging pre-trained language models fine-tuned with
task-specific datasets. Transfer learning, which
involves fine-tuning pre-trained models on task-
specific datasets, has also been widely used to
bridge the gap between languages. This technique
has been especially useful in tackling the challenge
of cross-lingual emotion detection, where train-
ing data may not be available for all languages.
(Mozhdehi and Moghadam, 2023) investigated the
impact of transfer learning on cross-lingual perfor-
mance, demonstrating that fine-tuning multilingual
models with domain-specific data enhances their
effectiveness.

4.3 Prompt Engineering

Prompt engineering is a key approach for optimiz-
ing large language models (LLMs) to perform var-
ious tasks effectively. It involves creating well-
structured prompts that guide LLLMs to generate ac-
curate and relevant responses. This includes clear
task descriptions, well-organized input data, and
defined output formats. The goal is to enhance
the LLM’s ability to process and complete tasks,
especially through in-context learning, where in-
structions and examples are provided in natural
language (Brown et al., 2020). Effective prompt
engineering also requires careful structuring of in-
put data, particularly for specialized formats like
knowledge graphs, and ensuring the output format
aligns with expectations (Zhang et al., 2023).

As an emerging field, prompt engineering
plays a significant role in improving LLM per-
formance across various applications, including
vision-language tasks, SA, and academic research.
Key prompting techniques, such as few-shot learn-
ing, and chain-of-thought, enhance reasoning and
task-specific accuracy (Chen et al., 2024). While
prompt engineering offers substantial benefits, it
also presents challenges, such as ambiguity, bias,
and issues of generalizability. As LLMs continue
to be integrated into multiple domains, includ-
ing healthcare and scientific research, mastering
prompt engineering has become increasingly im-
portant for professionals aiming to leverage Al for

enhanced problem-solving and workflow efficiency
(Lamba, 2024).

S Experimental Setup

The experimental setup includes multiple stages
aimed at optimizing performance across multilin-
gual tasks, focusing on model transformation, fine-
tuning, integration, and strategies like prompt engi-
neering and ensemble learning. Here’s an overview
of the steps and methods used.

5.1 Text Translation for Multilingual Data

Due to the dataset’s diverse linguistic nature, we
utilize Llama3.3, a powerful multilingual language
model, to translate all text into English. Standard-
izing the training language enables us to leverage
a unified model instead of training separate mod-
els for each language, significantly improving effi-
ciency and consistency.

5.2 Model Selection and Fine-Tuning

We carefully select and fine-tune pre-trained trans-
former models for each track, ensuring they are
optimized to meet the specific requirements of the
task. Figure 1 shows the architecture.

* Track A: Fine-tuned DeBERTa—enhances
BERT and RoBERTa with disentangled atten-
tion and an improved mask decoder for better
efficiency and performance—recognized for
its strong emotion classification capabilities.

* Track B: Fine-tuned M-DistiIBERT—a
lightweight yet effective model optimized for
multilingual tasks. It is trained on a concate-
nation of Wikipedia data in 104 languages
and features 6 layers, 768 dimensions, and 12
attention heads, totaling 134M parameters.

* Track C: Fine-tuned M-BERT and Distil-
BERT, capable of learning cross-lingual rep-
resentations.

In tracks A and B, each model is trained on the
translated English dataset, with the validation set
used for hyperparameter tuning to maximize per-
formance. In track C, We categorize the languages
based on linguistic families and their relevance in
NLP research. The languages are grouped into
seven categories based on linguistic families and
their relevance to NLP, as shown in Table 1.
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5.3 Prompt Engineering with Gemini

The Gemini family represents a significant advance-
ment in multimodal AI models, offering impres-
sive capabilities across image, audio, video, and
text understanding. For our ED task, we deployed
Gemini-1.5-flash-002, a more efficient alternative
to the computationally intensive Pro version, while
still maintaining the 2M+ context length and mul-
timodal capabilities. This transformer decoder
model is specifically optimized for tensor process-
ing units (TPUs), featuring parallel computation
of attention and feedforward components, online
distillation from Gemini-1.5-pro, and training with
higher-order preconditioned methods (Reid et al.,
2024). We interfaced with the model through its
API, which facilitated efficient request handling
and response storage. To maximize performance
on our emotion tasks, we configured all safety pa-
rameters to "None", enabling unrestricted access to
the model’s full potential during inference while
balancing performance and cost-effectiveness.

5.4 Ensemble Strategy with Voting
Mechanism

To improve robustness and reduce model biases,
we leverage ensemble learning techniques:

* Majority Voting Mechanism for Track A:
DeBERTa, Gemini-1.5, and SVM generate
independent predictions, and a majority vote
determines the final emotion labels, ensuring
balanced and unbiased results. Refer to Equa-
tion 1 for the majority voting mechanism for-
mula.

* AEV Mechanism for Tracks B and C:
Since emotion intensity prediction and cross-
lingual detection require nuanced outputs, we
apply performance-based weighting, prioritiz-
ing predictions from the model with the high-
est validation accuracy. Refer to Equation 2
for the AEV mechanism formula.

By leveraging transformer models, prompt engi-
neering, and ensemble techniques, our approach
ensures accurate, multilingual emotion detection,
enhancing both efficiency and generalization across
diverse texts.

6 Results

In this section, we present the evaluation results
for the three subtasks across multiple languages.

The performance of each model is reported using
F1-scores and Pearson correlation scores, as appro-
priate for each subtask. Additionally, we discuss
the rankings and highlight key insights drawn from
the results.

Track A evaluates the performance of various
models, such as DeBERTa, SVM, and Gemini-1.5,
and investigates the effectiveness of the majority
voting mechanism, which combines multiple strate-
gies, across different languages. The F1-scores for
each approach are reported in Table 3.

Track B evaluates the performance of M-
DistilBERT, Gemini-1.5, and an AEV strategy us-
ing Pearson correlation scores. The results are sum-
marized in Table 4. The AEV strategy yielded the
best performance in 7 out of 11 languages, indicat-
ing that a hybrid model can enhance generalization.

Track C investigates the ability of models to
generalize across languages using DistilBERT, M-
BERT, and an AEV strategy. Although the F1-
scores of M-BERT and DistilBERT in Table 5 were
generally comparable, their predictions showed
significant variability in certain cases. M-BERT
consistently outperformed DistilBERT in most lan-
guages, highlighting its robust performance in
cross-lingual tasks. However, there were instances
where DistilBERT provided superior results. To
leverage the strengths of both models and improve
overall performance, we implemented a voting
mechanism to combine their predictions.

7 Conclusion

This study addresses the challenges of text-based
emotion detection across multiple languages, focus-
ing on multi-label classification, emotion intensity
prediction, and cross-lingual detection. By fine-
tuning advanced NLP models (Gemini, DeBERTa,
M-BERT, M-DistillBERT) and combining them
with traditional methods like SVM, strong results
were achieved. A voting-based ensemble method
enhanced model reliability. The approach demon-
strated the effectiveness of multilingual models,
especially for low-resource languages, ranking in
the top 10 teams of the competition. However, im-
provements are needed in emotion intensity predic-
tion and for low-resource languages. Future work
will refine model architectures, fine-tune LLMs,
and explore new techniques like RAG and CAG for
further enhancement.
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A Language Groups for Track C

The languages are grouped as follows:

B Majority Voting Formula

The formula calculates the predicted emotion de-
(

tection yf) based on the majority agreement from

Language Groups

Group 1: English, German, Swedish, Afrikaans
Group 2: Spanish, Portuguese, Romanian
Group 3: Russian, Ukrainian

Group 4: Hindi, Marathi

Group 5: Chinese

Group 6: Arabic

Group 7: Hausa

Table 1: Categorization of languages based on linguistic
families and NLP relevance

three models. If at least two models predict 1, the
final prediction is 1; otherwise, the prediction is 0.

oo (€) (e) (e)
g(e) — 1 if yi,modell + yi,modelZ + yi,modeB > 2
! 0 otherwise

ey
C Average Ensemble Voting Formula

The AEV formula calculates the predicted emotion

intensity ?92(6) by averaging the outputs from two

models and rounding to the nearest integer.

(e) (e)
(e | Yimodelt T Yimodel2

2

+0.5 2)

D Hyperparameters

The hyperparameters for the model were set to op-
timize performance and training stability, as shown
in Table 2.

Hyperparameter Value
Seed 42
Batch size 16
Weight decay 0.01
Learning rate 2e-5
Warmup ratio 0.06
Warmup steps 500
Max sequence length 128
Number of training epochs 11
Ctemperawre 01
candidate count 1

max output tokens

Table 2: System hyperparameter settings
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E Findings

These results highlight the impact of different ar-
chitectures and voting techniques on multilingual
NLP tasks.

Language  DeBERTa SVM Gemini  Majority Voting
Hindi 0.7743 0.7332 0.8108 0.7712
Russian 0.7683 0.7793 0.8224 0.7945
English 0.7280 0.5210 0.6930 0.7351
Romanian 0.7116 0.6159 0.6596 0.7255
Spanish 0.6871 0.6569 0.7279 0.7198
Marathi 0.6745 0.7384 0.8006 0.7995
German 0.5847 0.4378 0.5673 0.6137
Ukrainian 0.5389 0.4103 0.5884 0.5666
Swedish 0.5118 0.4347 0.5131 0.5296
Chinese 0.5025 0.4097 0.5421 0.5537
Hausa 0.4694 0.6282 0.5743 0.6582
Afrikaans 0.4395 0.3110 0.5617 0.5906
Igbo 0.3950 0.5442 0.3600 0.5155
Ambharic 0.3128 0.4716 0.5232 0.4666

Table 3: Fl-scores for Track A in different languages
and models

Language M-DistilBERT Gemini AEV
Russian 0.765 0.7795  0.8599
English 0.5492 0.6926  0.6670

Romanian 0.5323 0.611 0.6006
Spanish 0.589 0.6429  0.6922
German 0.4504 0.5973  0.5634

Ukrainian 0.4556 0.5267  0.5648
Chinese 0.4135 0.5055 0.5188

Hausa 0.4378 0.5225  0.6575
Ambharic 0.3199 04612  0.4612

Portuguese 0.3979 0.5144  0.5046

Arabic 0.2702 04612 0.4514

Table 4: Average Pearson correlation for different mod-
els and languages

F System Configuration

This section details the hardware and software spec-
ifications of the system used for the experiments.
The following tables summarize the CPU, RAM,
GPU, and operating system configurations:

G Model Architecture

The model combines Transformer-based models
(DeBERTa, DistilBERT, Gemini, M-Bert) and
SVM with ensemble methods (voting, averaging)
for multilingual NLP tasks.

Language DistilBERT M-BERT AEV
English 0.5799 0.6062 0.6571
German 0.4379 0.4569 0.4551
Swedish 0.4569 0.4521 0.4707

Afrikaans 0.3179 0.3200 0.3187
Spanish 0.6559 0.6780 0.6960

Portuguese 0.3745 0.3920 0.3540

Romanian 0.6162 0.6276 0.6384
Russian 0.7830 0.8095 0.8167

Ukrainian 0.4852 0.5075 0.4945

Hindi 0.7217 0.7584 0.7643
Marathi 0.7382 0.7736 0.7673
Chinese 0.5291 0.5344 0.5434
Arabic 0.4274 0.4780 0.4370

Hausa 0.5784 0.5677 0.5982

Table 5: Fl-scores for Track C in different languages
and models

Type KEY VALUE
Model Intel(R) Xeon(R)
E5-2620 v4
Frequency 2.10 GHz
CPU  On-line CPU(s) list 16
Sockets 1
Core(s) per socket 8
Thread(s) per core 2
Op-mode 64-bit
’ é/;NI ~ Block Size 7 777777 128MB
Total Capacity 16 GB
S Brand NVIDIA
GPU  Model RTX 2080 Rev. A
Memory 8 GB

Subtask A

Subtask B

Subtask C

Figure 1: Model architecture with layers, transformers,
and ensemble methods.
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