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Abstract

Hallucination in machine-generated text poses
big risks in various domains, such as finance,
medicine, and engineering. Task 3 of SemEval-
2025, Mu-SHROOM, challenges participants
to detect hallucinated spans in such text. Our
approach uses pre-trained language models
and fine-tuning strategies to enhance halluci-
nation span detection, focusing on the English
track. Firstly, we applied GPT-40 mini to gen-
erate synthetic data by labeling unlabeled data.
Then, we employed encoder-only pre-trained
language models with a question-answering
architecture for hallucination span detection,
ultimately choosing XILM-RoBERTza for fine-
tuning on multilingual data. This model per-
formed best, ranking 18th in IoU (0.469) and
22nd in Correlation (0.441) on the English
track. It achieved promising results across mul-
tiple languages, surpassing baseline methods in
11 out of 13 languages, with Hindi having the
highest scores of 0.645 intersection-over-union
and 0.684 correlation coefficient. Our findings
highlight the potential of a QA approach and
using synthetic and multilingual data for hallu-
cination span detection.

1 Introduction

Hallucinations can lead to dangerous and mislead-
ing information like mathematical inaccuracies in
finance, programming errors in autonomous vehi-
cles, and misunderstandings in medical diagnoses
(Williamson and Prybutok, 2024). They pose a
challenge in the development of AI models. In task
3 of SemEval-2025, called Mu-SHROOM, partici-
pants were challenged to create a model that can au-
tomatically extract hallucination spans in machine-
generated text (Vazquez et al., 2025). This paper
contains an overview of our approach for task 3 of
SemEval-2025.

The organizers of this shared task define hallu-
cinations as follows: “Content that contains or

describes facts that are not supported by the pro-
vided reference”. (Vazquez et al., 2025)

In other words, hallucinations are cases where
the machine-generated text is more specific than it
should be or factually incorrect, given the informa-
tion available in the provided context.

In the task from last year (Mickus et al., 2024),
the seemingly best approach was to use pre-trained
language models (PLMs) and fine-tuning. Most
teams also used unlabeled training data, resulting
in promising solutions. For this reason, we have
incorporated these ideas. Firstly, we utilized the
unlabeled data to fine-tune an open-source PLM
to create a model that can effectively detect the
spans of hallucinations in a text. We used GPT-
40 mini (OpenAl, 2024) with prompt engineering
to label the unannotated training data. Then, for
our span detection system, we implemented a pre-
trained question-answering (QA) architecture, in
which we compared RoBERTa (Liu et al., 2019)
and DeBERTa (He et al., 2021). In our final system,
a multilingual version of ROBERTa, namely XLM-
RoBERTa (Conneau et al., 2020), was fine-tuned on
the training and validation data. This landed us the
18th and 22nd positions on the English track on the
metrics of intersection-over-union and correlation,
respectively.

The code is available on our GitHub! and the
model on Huggingface?.

2 Background

2.1 Task

This year’s task was set up in a multilingual context.
It contained fourteen languages: Arabic (Modern
standard), Basque, Catalan, Chinese (Mandarin),
Czech, English, Farsi, Finnish, French, German,

'https://github.com/MichielPronk/
bluetoad-semeval-2025-Mu-SHROOM

2Tuned model on Huggingface: https://huggingface.
co/MichielPronk/x1m-roberta-mushroom-ga
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Hindi, Italian, Spanish, and Swedish. Participants
in this task had to predict whether a character in a
text generated by a large language model (LLM)
is hallucinated. As our team is fluent in English,
we mainly experimented with the provided English
data in our approach. We also ran our model on
the other languages, excluding Catalan, as this data
was not properly formatted. The datasets provided
by the organizers this year included a manually la-
beled validation set, an unlabeled training set, and
an unlabeled test set, see Table A.1. For English,
there were 809 training, 50 validation, and 154 test
instances. The labeled data had two categories of
labels: soft and hard labels. Both categories la-
beled text as hallucinations on the character level,
with the difference between the soft and hard la-
bels being that soft labels were the probabilities
of a character being a hallucination as assigned by
human annotators (an example of the data entry is
provided in Appendix A.4).

2.2 Related work

This year’s task is comparable to Task 6 of
SemEval-2024, SHROOM, where participants
were challenged to detect hallucinations on the doc-
ument level instead of the character level (Mickus
etal., 2024). An essential part of both of these tasks
is handling the data made available by the shared
task organizers. Last year, the data consisted of an
unlabeled training set and a labeled validation set.
One of the challenges encountered last year was
converting the unlabeled data into a useful dataset
for experiments. Some of the entries from last
year used LLMs to create training data (Das and
Srihari, 2024; Bahad et al., 2024; Chen et al., 2024).
Das and Srihari (2024) used the Claude 2.1 LLM.
However, they found that this model would not
always give reliable labels and added a confidence-
based measure. Bahad et al. (2024) used Mixtral
8x7B to label the training data and obtained more
consistent labels in comparison to Claude 2.1.
What is noticeable in the entries from last year
is that some teams used the small validation set
and the unlabeled data to create a larger labeled
training set. Rosener et al. (2024) did not apply the
unlabeled data in their research and focused on the
provided labeled validation set. Instead, they used
vectors as encoder input to solve the limited data,
generating additional contextual information about
the features, which helps the algorithm train on
the little data more efficiently. In the results from
last year (Mickus et al., 2024), it is visible that

the teams that used the unlabeled training dataset
obtained better results in comparison to the teams
that did not, Chen et al. (2024) had the second
best-performing model, indicating that good use of
the provided unlabeled training data can be very
effective towards increasing performance.

The use of ensemble models to classify docu-
ments was one of the most popular approaches
last year (Das and Srihari, 2024; Chen et al., 2024;
Rykov et al., 2024). This worked well in last year’s
task, but due to the differences in the current task
and our time constraints, we have decided not to
create an ensemble model. The teams with the
highest scores from last year mostly used closed-
source LLMs, which were often fine-tuned (Mickus
etal., 2024). Other teams that also scored high used
open-source LLMs and fine-tuning. Mickus et al.
(2024) mentioned that a closed-source model like
GPT-3.5 or GPT-4 is not requisite to build a good-
working model, as is showcased in the paper by
Chen et al. (2024), who used different open-source
LLMs in combination with fine-tuning to obtain
the second-best results.

Question-answering architecture allows a lan-
guage model to return the start and end positions
of an answer to a question in the given context.
In an article by Sadat et al. (2023), QA is used
to see whether an answer is grounded, and if it
is not grounded, it is predicted to be hallucinated.
For this, they use similarity-based testing because
they want to detect whether the sentence contains a
hallucination. The model obtained an F1-score of
71.1%.

3 System Overview

Our approach to the task consisted of annotating the
supplied unlabeled training data and, in turn, using
the data to fine-tune a pre-trained large language
model for question answering. In both parts, we
performed several experiments to find the optimal
setup.

3.1 Synthetic Data Generation

A relatively small number of annotated hallucina-
tion entries in the English validation data may not
provide the system with the necessary insight into
the concept of hallucination. Therefore, we auto-
matically converted a sample of provided unlabeled
English data into a labeled one. We considered a
decoder-only LLM to generate the data due to its
strong in-context learning capabilities. This LLM
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allows us to control the output by explaining the
task to the system with a few-shot prompt. The
decoder takes the prompt to generate synthetic data
that can contribute to further system training.

3.2 Fine-tuning pre-trained language model

A difficult aspect of the task is to detect the charac-
ters that a hallucination consists of. We have boiled
this down to extracting hallucination spans, as hal-
lucinations almost always occur on a token level.
This is an open exercise without predetermined an-
swer options and number of hallucinations in each
output, which poses a great challenge to the whole
task.

Model architecture. We propose a pre-trained
model with an extractive question answering ar-
chitecture to tackle the task. This architecture al-
lows a PLM to return an answer’s start and end
positions to a question in a given context. This
approach is similar to the shared task, which aims
to extract the hallucination spans from the model
output text given an input question. However, a key
difference is that in regular question-answering,
the model tries to find the best answer to the
posed question. In contrast, in our task, the model
tries to find information in a context that cannot
be inferred from the posed question. We used
the AutoModelForQuestionAnswering from the
transformers library by Huggingface.?

Span generation. One challenge encountered
with this approach is that extractive question-
answering systems are optimized for identifying
the single most relevant answer, whereas the task
at hand stressed the identification of all potential
hallucination spans. The model predicts the prob-
ability of each token being the start of an answer
span and the probability of it being the end. The
start and end positions with the highest logit scores
are combined with the answer span. To ensure
our algorithm finds multiple spans, it takes the 20
best start and end positions and creates all possible
span combinations. It then filters out combinations
where the end occurs before the start and which
exceed a set length of 30 characters. From the re-
maining combinations, the start and end logits are
added, and this list is sorted descending on logit
score. The highest is taken, and a threshold is set
at 0.8 of the highest logit score. Every span that

Shttps://huggingface.co/transformers/
v3.0.2/model_doc/auto.html#transformers.
AutoModelForQuestionAnswering

exceeds the threshold is seen as a possible halluci-
nation. The maximum character length and logit
threshold were determined through experimenting
with different values on the validation set.

Fine-tuning. A traditional question-answering
architecture takes a question and a context from
which to extract the answer as input. In fine-tuning,
the answer is given as a single span with the start
and end positions corresponding to the context. Our
model input is the prompt as question and model
output as context. In the dataset, each instance is
a model input, output, and a list of hallucination
spans. This list of spans did not work well with the
chosen architecture. Therefore, we preprocessed
the data to create separate instances for each hallu-
cination span, paired with the corresponding model
input and output. These were then fed to the model
during fine-tuning.

4 Experimental Setup

Synthetic data generation. We selected GPT-
40 mini (OpenAl, 2024) as the automatic halluci-
nation detector for its easy-to-access online inter-
face for prompt experimentation, strong instruction-
following capabilities, and API availability. Using
the various combinations of the entries from the
English validation set, we constructed a few-shot
prompt for the system (see Appendix A.2). The in-
cluded examples correspond with the case types the
GPT model found the most challenging to predict,
mainly involving annotation span nuances. The
designed prompt generated a sample of 500 entries
with automatically annotated hallucinated text seg-
ments (see an example output entry in Appendix
A.3). To prevent the system from incorrectly count-
ing the hallucination spans and hallucinating on the
numerical probabilities, we instructed the system to
provide hallucinations in textual form only, which
were then converted to corresponding hard labels
using a Python script.

Pre-trained language model experiments. We
fine-tuned a RoBERTa (Liu et al., 2019) and De-
BERTa (He et al., 2021) model using the same
hyperparameters. They were fine-tuned on the syn-
thetically generated data and evaluated on the vali-
dation data in English. Our hyperparameter tuning
focused on the learning rate, batch size, weight
decay, number of epochs, and the logit threshold
when selecting hallucination spans. The model was
then fine-tuned on the synthetic training and vali-
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dation English data of 550 instances in total. Fur-
thermore, a multilingual model, XLM-RoBERTa
(Conneau et al., 2020), was fine-tuned on the syn-
thetic training English data and all validation data
(see Table 4), which combined to 1000 instances.
This model was also tuned, focusing on the num-
ber of epochs and learning rate and using only the
training and English validation data. The specific
hyperparameters of the final model can be found in
Appendix A.S.

Packages. The models were loaded with
huggingface (Wolf et al., 2020) and fine-tuned
using the transformers and datasets Python
libraries.

Metrics. We evaluated the models using the
metrics set by the organizers, which are the
intersection-over-union (IoU) of the characters
marked as hallucinations in the predicted hallu-
cinations and the true hallucinations and correla-
tion (Cor) between the predicted probability of a
character being hallucinations and the probability
assigned by human annotators. As it seemed more
relevant and less ambiguous to find the halluci-
nations than assigning probabilities to them, we
focused on achieving the highest intersection-over-
union.

There were three baselines introduced by the or-
ganizers of the task: the mark all, which predicted
every character as hallucination, the mark none,
which predicted no characters as hallucination, and
the neutral, which estimates hallucinations based
on probability distributions. The mark all baseline
was in every language the highest scoring baseline.

Model ‘ IoU Cor
RoBERTa 0.368 0.355
DeBERTa 0.369 0.351

Table 1: Comparison of the ROBERTa and DeBERTa
model on the validation set

5 Results and Analysis

5.1 Preliminary Results

We fine-tuned and compared a DeBERTa and
RoBERTa model to see their performance using the
same hyperparameters on the validation set. Dur-
ing experimentation, we ran each model once. The
results can be found in table 1. Since we found that

the results were quite close together, we decided to
focus on one model only, namely ROBERTa. We
experimented with the hyperparameters, including
the learning rate, batch size, and weight decay, but
found no improvement. We then opted to add the
validation data to the training data when fine-tuning.
This gave us better scores on the validation but not
the test set. The better performance on the vali-
dation set could be attributed to overfitting. The
score decline on the test set could be due to training
and validation data sharing the same inputs, which
could also have led to overfitting because more of
the same data was added.

Finally, we combined the training and valida-
tion data for all languages and fine-tuned an XLM-
RoBERTa model. This gave us better scores on the
English validation data and higher scores on the
English test set. A possible reason is that the mul-
tilingual data is more varied and of higher quality,
resulting in a better overall performance, topping
the performance of the English-specific model. Ta-
ble 2 shows the results for our iterations of the
RoBERTa models on the test set.

Model Data IoU Cor
RoBERTa Train 0.348 0.334
RoBERTa tuned Train 0.38 0.347
RoBERTa Train + EN Val | 0.371 0.353
XLM-RoBERTa - 0.125 0.04
XLM-RoBERTa Train + all Val | 0.469 0.441

Table 2: Model performance on English test data and
what data we used. Also including non fine-tuned XLM-
RoBERTa scores. Best results in bold.

5.2 Final results

We let the model predict for all the other languages
as it is pre-trained on the multilingual data. The
results and positions in the competition can be
found in table 3. Here, the ranking is based on
the IoU scores. We were quite surprised by the
performance in the other languages. Our model
competed in 13 languages and outperformed the
baseline IoU scores in 11 languages, only falling
behind in French and Chinese. On Cor we beat
every baseline.

In the English task, our model ranked 18th in
IoU and 22nd in Cor out of 41 teams and three
baselines. Surprisingly, it performed best in Hindi,
possibly due to dataset-specific hallucination traits.
However, an examination of language represen-

687



tation within the XILLM-RoBERTa model reveals
no clear correlation. All languages from the task
are in the training corpus of the model, but the
languages there seem to have no connection to
the performance or the number of tokens in the
XLM-RoBERTa training data. Although Swedish
and Chinese have lower representation in the data,
the model performed well in Swedish and poorly
in Chinese. Despite English having the highest
data representation, it was not the best-performing
language. The varying performance could be at-
tributed to the characteristics of the language, the
difference in hallucinations and/or annotations be-
tween languages, or the model that produced each
output containing hallucinations.

Language IoU position Cor position ‘ IoU Cor
AR 8/29 14/29 0.547  0.506
CS 14/23 14/23 0.351 0.3628
DE 12/28 11/28 0.544 0.5243
EN 18/41 22/41 0.469 0.441
ES 19/32 15/32 0.279 0.4267
EU 12/23 13/23 0.506 0.457
FA 10/23 8/23 0.571 0.579
FI 11727 16/27 0.569 0.491
FR 19/30 20/30 0.439 0.38
HI 8/24 8/24 0.645 0.684
IT 13/28 10/28 0.639 0.668
SV 7/27 11/27 0.585 0.427
ZH 20/26 20/26 0.278 0.226

Table 3: The final scores and positions for the IoU and
Cor out of the total participants plus three baselines
per language. English scores marked in italics and the
highest IoU and Cor scores in bold

5.3 Error Analysis

We conducted a qualitative analysis of the system’s
best prediction attempt for the English test set, com-
paring them with the provided gold standard. One
key observation was the variation in spans selected
by the system. Since the original QA architecture
is designed to identify a single answer, it uses log-
its to determine the most probable start and end
positions. While this approach works for a single
span, logits are not intended to link multiple spans
or indicate precise hallucination boundaries.

The system provides multiple start and end posi-
tions, so we manually combined them into differ-
ent span variations and assessed their probability
of being hallucinations based on their logits. This
solution ensured that the picked spans were consid-
ered as part of hallucination by the system. Still, it
resulted in a lot of noise in the output, consisting of

overlapping spans, which negatively reflected on
the evaluation scores. Examples of such QA output
can be found in Appendix A.6.

These examples also illustrate the system’s ten-
dency to pick positions based on the syntactic de-
pendencies within the sentence. This behavior can
be linked to the QA system’s pre-training to pro-
cess text at the token level, which ensures accurate
span selection. While the current task can benefit
from such an approach for a similar reason, the
token-based span selection limits the system’s abil-
ity to detect character-level hallucinations. Since
the gold standard hallucination spans were anno-
tated by humans at the character level, some spans
appear abrupt and do not always include complete
words. As the examples in Appendix A.7 illustrates,
our system could not identify these hallucinations
with the current fine-tuning and pre-training.

6 Conclusion

In this paper, we presented several contributions
to the task of hallucination detection in machine-
generated output. We used GPT-40 mini to
generate synthetic hallucination span annotations,
adapted QA architecture for hallucination span ex-
traction and finetuned an XLM-RoBERTa model to
generalize across 13 languages, outperforming the
baseline in 11 languages. This approach resulted
in the 18th and 22nd position in the English sub-
task with an intersection-over-union of 0.469 and a
correlation of 0.441 respectively.

Further research could focus on trying differ-
ent large language models. Also, using human-
annotated data seemed to give big improvements,
so trying to add more quality data could yield better
results. Furthermore, we found that our method to
synthesize hallucination spans from model predic-
tions could be improved as it can detect the correct
spans but assigns a low probability to them, result-
ing in too many characters being marked as hallu-
cinations. Finally, we used GPT-40 mini, which
has the drawbacks of being closed-source and paid.
Attempting the automatic annotation process with
an open-source model would be preferable.
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A Appendix

A.1 Data distribution

‘ N entries (total) N entries (EN) Available for Languages

Train | 3351 809 EN, FR, SP, ZH
Validation 500 50 AR, DE, EN, ES, FI,
FR, HL IT, SV, ZH
Test 1902 154 AR, CA, CS, DE,
EN, ES, EU, FA, FL, FR,
HL IT, SV, ZH

Table 4: Statistics of the provided unlabeled train, validation, and test sets, showing the number of English entries
and data availability across different languages.

A.2 Prompt

You are a model that detects hallucinations in a decoder-generated text. We define
a hallucination as "content that contains or describes facts that are not supported
by the provided reference”. 1In other words: hallucinations are cases where the
answer text is more specific than it should be or factually incorrect, given the
information available in the provided context.

You are given a source text represented as a question and an answer to that
question. Detect whether the answer contains hallucinations and provide the spans
in the answer text that are the source of hallucination. Work per sentence. 1In
each sentence, firstly, detect the word phrases that represent hallucinations.
Within each phrase, search for specific words that do not align with the context by
introducing a hallucination. Include only these words in the final answer. Below are
three examples of correct hallucination detection:

SOURCE TEXT: "What is the population of the Spanish region of Galicia?”

ANSWER: TEXT: "As of 2021, the estimated population in the region is around 1.5
million people.”

HALLUCINATION SPANS: "2021", "1.5 million”

SOURCE TEXT: "Do all arthropods have antennae?”

ANSWER TEXT: "Yes, all arachnids have antennas. However, not all of them are visible
to the naked eye."”

HALLUCINATION SPANS: "Yes", "arachnids”, "visible”, "naked eye”

SOURCE TEXT: Which country is the World Chess Federation based in?

ANSWER TEXT: The World Chess Federation, also known as FIDE (Fédération Internationale
des Echecs), is not based in any one specific country. It is an international
organization with its headquarters currently located in Minsk, Belarus. However, it
maintains offices in several countries and holds various events around the world.
HALLUCINATION SPANS: ’not based in any one specific country’, ’Minsk, Belarus’,
"maintains offices’, ’several countries’
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Follow the examples and provide the hallucination spans for the following

text pair:
SOURCE TEXT: <input>
ANSWER TEXT: <input>

A.3 Synthetic Training Data Entry

{"model_input”: "Is the Arts and Humanities Citation Index still maintained?”,
"model_output_text”: "As of 2021, the A&HCI is no longer maintained by the U.S.
government and is now maintained privately by JSTOR.", "hard_labels": [[6, 10], [53,

681, [104, 10911}
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A.4 Validation and Training Data

Validation data example:
{"id":"val-en-1","lang":"EN","model_input":"What did Petra van Staveren

win a gold medal for?","model_output_text":"Petra van Stoveren
won a silver medal in the 2008 Summer Olympics in Beijing,
China.","model_id":"tiiuaefalcon-7b-instruct”, "soft_labels”:

[{"start”:10,"prob"
,{"start":13,"prob”

2,"end":12},{"start":12,"prob":0.3,"end": 13}
2,"end":18%},{"start":25,"prob":0.9,"end":31}
,{"start":31,"prob” 1,"end":37%},{"start":45,"prob":1.0,"end":49}
,{"start":49,"prob” 3,"end":65%},{"start":65,"prob":0.2,"end":69}
,{"start":69,"prob"”:0.9,"end":83}1, "hard_labels":[[25,31],[45,49]1,[69,83]1],
"model_output_logits"”:[-5.5669536591,-11.90533638,-13.0743436813,-9.9514026642,
-8.8359375,-5.2216725349,-8.8481779099,-9.2853775024,-7.6449022293,-8.7612609863, -
9.1256427765,-5.7042989731,-5.7393956184,-8.409078598,-10.6083183289,-11.707988739,
-5.3747014999,-6.5602250099,-5.1362328529,-5.7765812874,-8.4669551849,-8.3430461884,
-8.70186996461, "model_output_tokens”:["Pet”,"ra","@12@van","@120Sto","ve","ren"”,"@120won" ,
"0120a","0120silver”,"@120medal”,"@120in","0120the","”0120","200","8","®120Summer”,
"912001ympics”,"@120in","0120Beijing",”,","@120China",".","<|endoftext|>"1}

:0.
:0.
:0.
:0.

Training data example:

{"lang":"EN","model_id": "togethercomputerPythia-Chat-Base-7B", "model_input"”:"Do

all arthropods have antennae?”,”model_output_text”:" Yes, all insects and
arachnids (including spiders, scorpions, and ticks) have at least one antenna.
" "model_output_logits":[-2.57427001,5.1865358353,5.4173498154,2.3298389912,
6.6413722038,3.5858919621,10.0333786011,4.0347309113,2.5324678421,0.595354557,
2.0120403767,1.8963916302,6.8019108772,6.2508711815,4.6549735069,2.6137938499,
-3.9706561565,7.5047488213,4.2792539597,3.0500841141,-0.4772415757,3.1624026299,

13.7479448318,-1.7824890614,3.9432423115,4.9513559341,4.3375749588,14.83578395841],

"model_output_tokens"”:["@120Yes",”,","0120all","0120insects”,"@120and","@120ar",
”ach” , Iln” , Ilids" , II@’IZ@(” , Ilincluding”’ "é'] 2®Spiders” , II, n , II@'I 2®sC", ”Orp” , Ilions” , II, n ,
"@120and"”,"@120ticks”,")","@120have"”,"0120at","0120least"”,"@1200ne","d120antenna”,
n . n, "é1®a”]}

A.5 XLM-RoBERTa Settings
The hyperparameters used for the best performing XLLM-RoBERTa model:

max_length=384

stride=128

n_best=20

max_answer_length=30

learning_rate=2e-05

batch_size=16

epochs=4

weight_decay=0.1

Here max_length corresponds to the maximum input length in the tokenizer. stride is the number of
overlapping tokens between two successive chunks. n_best is the top K of how many start and end span

positions to return from the predictions. max_answer_length is the maximum span length allowed when
creating possible hallucination spans.
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A.6 Examples of the Noisy Output by the QA System

The examples below were taken from the English test set. The ROBERTA spans are generated
by the best XLLM-RoBERTa QA system, while the TRUE spans are the gold standard provided by
the organizers. The examples illustrate the large amount of noise the QA system indicates as hallucinations.

Example 1
SOURCE TEXT: "Did Health ever compose videogame soundtracks?”
ANSWER TEXT: " Yes, in 2015, Health composed the soundtrack for "Inside” by Tame

Impala.”

ROBERTA SPANS: [’2015, Health composed the soundtrack for "Inside’, ’2015,’, ’2015,
Health composed the soundtrack for "Inside"” by Tame Impala’, ’Yes, in 2015, Health
composed the soundtrack for "Inside’, ’Yes, in 2015,’, ’Yes, in 2015, Health composed
the soundtrack for "Inside" by Tame Impala’, ’Yes’, ’Inside’, ’Inside” by Tame

Impala’, ’Tame Impala’]

TRUE SPANS: [’2015’, ’Inside” by Tame Impala’]

MATCHES: [’Inside” by Tame Impala’]

MISSED SPANS: [’2015’]

NOISE: [’2015, Health composed the soundtrack for "Inside’, ’Inside’, ’Yes, in
2015,’, ’Yes’, ’2015,’, ’Tame Impala’, ’2015, Health composed the soundtrack for
"Inside” by Tame Impala’, ’Yes, in 2015, Health composed the soundtrack for "Inside’,
’Yes, in 2015, Health composed the soundtrack for "Inside"” by Tame Impala’]

Example 2

SOURCE TEXT: "Who developed International Klein Blue?"

ANSWER TEXT: " The dye was developed by a chemist named Ewald Klein in the 1930s.”
ROBERTA SPANS: [’1930s’, ’Ewald Klein’, ’Ewald Klein in the 1930s’, ’chemist named
Ewald Klein’, ’chemist named Ewald Klein in the 1930s’]

TRUE SPANS: [’chemist’, ’Ewald’, ’1930s’]

MATCHES: [’1930s’]

MISSED SPANS: [’chemist’, ’Ewald’]

NOISE: [’Ewald Klein’, ’chemist named Ewald Klein’, ’chemist named Ewald Klein in
the 1930s’, ’Ewald Klein in the 1930s’]

Example 3

SOURCE TEXT: "Is there any year when the BAFTA Award for Best Actor in a Supporting
Role hasn’t been awarded?”

ANSWER TEXT: " No, there is not.”

ROBERTA SPANS: [’No, there is not’, ’No’, ’there is not’]

TRUE SPANS: [’No, there is not’]

MATCHES: [’No, there is not’]

MISSED SPANS: []

NOISE: [’No’, ’there is not’]
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A.7 Examples of the Challenging Output

The examples below were taken from the English test set. The ROBERTA spans were generated by the
best XLM-RoBERTa QA system, while the TRUE spans are the gold standard provided by the organizers.
The examples illustrate the challenging cases of gold standard spans the QA system cannot comprehend.

Example 1

SOURCE TEXT: "How many martellos are there on Formentera?”

ANSWER TEXT: " There are a total of 4 martello towers on the island of Forments.”
ROBERTA SPANS: [’4 martello towers on the island of Forments’, ’4’, ’Forments’]
TRUE SPANS: [’s’]

MATCHES: []

MISSED SPANS: [’s’]

NOISE: [’Forments’, ’4 martello towers on the island of Forments’, ’4’]

Example 2

SOURCE TEXT: "is there an airfield in Beauvechain?”

ANSWER TEXT: " no, there is no airport in beauvechains”

ROBERTA SPANS: [’no, there is no airport in beauvechains’, ’no, there is no airport’,
"no’ ]

TRUE SPANS: [’no’, ’e is no airport’]

MATCHES: [’no’]

MISSED SPANS: [’e is no airport’]

NOISE: [’no, there is no airport’, ’no, there is no airport in beauvechains’]
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