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Abstract

Food safety is a critical public health concern
requiring rapid and accurate identification of
potential hazards in food products. This pa-
per presents our approach to SemEval-2025
Task 9, the Food Hazard Detection Challenge,
which focuses on automatically classifying and
extracting hazard information from food re-
call notifications. We propose a hybrid system
combining traditional machine learning with
state-of-the-art language models, implement-
ing an ensemble approach for hazard classifi-
cation (Sub-Task 1) and a prompt-engineered
extraction method using Flan-T5-XL for pre-
cise hazard and product detection (Sub-Task
2). The results demonstrate the effectiveness
of combining multiple complementary models
while highlighting challenges in exact vector
matching for food safety applications.

1 Introduction

Food safety incidents can have severe conse-
quences for public health and the food industry,
making rapid and accurate identification of food
hazards crucial. The SemEval-2025 Task 9: Food
Hazard Detection Challenge (Randl et al., 2025)
addresses this critical need by focusing on auto-
mated analysis of food recall notifications, aiming
to classify and extract specific hazard information
from text descriptions. This task builds upon the
CICLe dataset (Randl et al., 2024), which provides
a comprehensive collection of food recall notifica-
tions.

Our approach to this challenge combines the
strengths of traditional machine learning(ML) tech-
niques with Large Language Models(LLMs). For
Sub-Task 1 (ST1), we implemented a novel en-
semble system integrating XGBoost (Chen and
Guestrin, 2016) with fine-tuned versions of GPT-
2 Large (Radford et al., 2019) and LLaMA 3.1
1B (Touvron et al., 2023) models. The Sub-Task 2
(ST2) utilizes a prompt-engineered approach with

Flan-T5-XL (Chung et al., 2022), focusing on pre-
cise extraction of hazard and product information.
This hybrid approach allows us to leverage both
the statistical power of traditional methods and the
semantic understanding capabilities of LLMs.

We achieved competitive results in both concep-
tion and evaluation phases, with Fl-scores of
0.78 and 0.74 respectively for ST1. In con-
trast, ST2 was more challenging with an F1-
score of 0.05, reflecting the difficulty of exact
vector matching in food safety. Our model per-
formed well on common hazard categories but
struggled with rare classes and precise match ac-
curacy.The complete codebase for our system is
available at https://github.com/madhans476/
Food-hazard-detection-SEMEVAL-2025.git.

2 Background

The data set for this task is derived from the CICLe
corpus (Randl et al., 2024), a large-scale dataset of
7,546 English food recall notices annotated with
hazard types (e.g., biological, chemical, physical)
and product categories (e.g., dairy, meat, bever-
ages). Its broad coverage of food safety incidents
makes it well-suited for training and evaluating
NLP models for food hazard detection.

2.1 Related Work

Food safety monitoring using NLP has gained atten-
tion for its potential to automate hazard detection
from unstructured texts like recall notices. The
CICLe framework (Randl et al., 2024) introduced
conformal in-context learning for multi-class food
risk classification, demonstrating the efficacy of
large language models (LLMs) while highlight-
ing challenges such as class imbalance and fine-
grained categorization. Prior works (Edwards and
Smith, 2019) explored rule-based and ML methods
for extracting food safety incidents from regula-
tory reports but often lacked generalization across

627

Proceedings of the The 19th International Workshop on Semantic Evaluation (SemEval-2025), pages 627-633
July 31 - August 1, 2025 ©2025 Association for Computational Linguistics


https://github.com/madhans476/Food-hazard-detection-SEMEVAL-2025.git
https://github.com/madhans476/Food-hazard-detection-SEMEVAL-2025.git

hazard types. Recent advances in prompt-based
learning (Wei et al., 2022) have shown promise
in entity extraction, inspiring our Sub-Task 2 ap-
proach. Ensemble methods combining ML and
LLMs (Rokach, 2010) support robust classifica-
tion, motivating our strategy for Sub-Task 1. Our
work builds on these foundations by integrating
traditional and neural models to tackle the unique
challenges of exact vector detection in food safety.

3 Methodology

This section presents the methodology employed
for food hazard prediction using text classifica-
tion (ST1) and vector detection (ST2) in the
SemEval-2025 Shared Task. Our approach ad-
dresses class imbalance, leverages ensemble learn-
ing, fine-tuning LLMs using Parameter-Efficient
Fine-Tuning (PEFT), and uses prompt-based tun-
ing for hazard and product vector extraction.

3.1 Sub-Task 1

For Sub-Task 1 (ST1) of the SemEval-2025 food
hazard prediction challenge, we developed a sys-
tem combining traditional machine learning with
state-of-the-art language models. This approach
leverages the semantic understanding of large lan-
guage models and the robust feature extraction of
traditional methods to tackle the complexity of food
hazard classification.

3.1.1 Hazard Category Classification

Our hazard category classification system uses a
three-model ensemble. The motivation for this
approach stems from our observation that while in-
dividual models achieved similar F1 scores (GPT-2:
0.72, LLaMA: 0.76, XGBoost: 0.75), they exhib-
ited different strengths in capturing various aspects
of the task:

* Language models (GPT-2 and LLaMA) ex-
cel at understanding contextual relationships
and nuanced language patterns in food safety
descriptions

e Traditional machine learning (XGBoost with
TF-IDF) captures keyword-based patterns and
statistical relationships

* Each model showed distinct error patterns,
making them complementary in an ensemble

The ensemble architecture consists of:
1) GPT-2 Large Model:
We fine-tune the GPT-2 Large model (Radford

et al., 2019) using Parameter-Efficient Fine-Tuning
(PEFT) (Hu et al., 2021) with Low-Rank Adap-
tation (LoRA). GPT-2’s strong English language
understanding capabilities make it particularly suit-
able for processing formal food safety notifications.
The LoRA configuration includes:

e Rank (r) =16

* Alpha (o) =16

* Dropout = 0.05

* Target modules: attention layers (’c_attn’,
‘c_proj’) and MLP layers (’c_fc’,
’mlp.c_proj’)

2) LLaMA 3.1 1B Model:

We employ Meta’s LLaMA 3.1 1B model (Touvron
et al., 2023) with LoRA fine-tuning. LLaMA’s ad-
vanced architecture and efficient scaling make it
particularly effective at handling complex classifi-
cation tasks. The LoRA configuration includes:

e Rank (r) =16

* Alpha (a) =16

* Dropout = 0.05

* Target modules: attention layers (’q_proj’,
k_proj’. ’v_proj’, *o_proj’) and MLP layers
(’gate_proj’, up_proj’, ’"down_proj’)

The LoRA configuration matches that of GPT-2
Large for consistency in the fine-tuning approach.
3) TF-IDF + XGBoost Pipeline:

Our traditional machine learning pipeline provides
a robust baseline approach that complements the
neural models:

e TF-IDF vectorization (Ramos, 2003) with:

— max_features = 3500 (optimized to cap-
ture key terminology while avoiding spar-
sity)

— max_df = 0.75 (removes overly common

terms)
— sublinear_tf = True (reduces the impact

of high-frequency terms)
* SMOTE (Chawla et al., 2002) for handling
class imbalance:

— Stage 1: Majority class sampling
(k_neighbors=7)
— Stage 2: Minority class sampling

(k_neighbors=1)

* XGBoost classifier (Chen and Guestrin, 2016)
with default parameters, chosen for its robust-
ness and ability to handle complex feature
interactions
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3.1.2 Ensemble Strategy

The final prediction is determined through hard
voting (Rokach, 2010) among the three models as
illustrated in figure 1. Hard voting is a technique
in which each model in the ensemble predicts a
class and the majority vote is taken as the final clas-
sification. Unlike soft voting, which averages prob-
ability distributions, hard voting ensures simpler
implementation and robustness against individual
model overconfidence.

Text + Title

Models

Input >

Figure 1: Hard Voting Ensemble.

This ensemble approach effectively combines the
strengths of each model while mitigating their in-
dividual weaknesses. The similar F1 scores (0.72-
0.76) of individual models suggested that each
model captured different aspects of the classifica-
tion task effectively, making them ideal candidates
for ensemble learning. Their complementary be-
haviors led to improved robustness and reliability
in hazard category prediction.

3.1.3 Product Category Classification

For product category classification, we opted for a
single LLaMA 3.1 1B model approach rather than
an ensemble, as our experiments showed that this
model consistently outperformed other architec-
tures for this specific task. The model architecture
remains consistent with the implementation of the
LLaMA hazard category, using LoRA for efficient
fine-tuning.

3.1.4 Experimental Setup

For tokenization, we use model-specific tokenizers
from the Hugging Face Transformers library (Wolf
et al., 2020) to ensure optimal text representa-

tion for each architecture. For GPT-2 Large and
LLaMA 3.1 1B, we apply their native tokenizers
with add_prefix_space=True, setting the pad to-
ken to the EOS token. Both are configured with
max_length=512 and padding="max_length” to
maintain consistent input dimensions while pre-
serving context.

We adopt a unified training framework across all
models, also based on the Transformers library,
with a configuration designed for stability and effi-
ciency, as detailed in Table 1.

Hyper parameter  Value
Learning rate 2x107°
Batch size 8
Training epochs 5
Weight decay 0.01

Table 1: Hyper parameters for ST1

Training Process
* Data split: 90% training, 10% validation (ran-

dom_state=42)
* Evaluation frequency: Every 500 steps
* Model checkpoint saving: Every 500 steps
* Gradient checkpointing enabled for memory
optimization
3.2 Sub-Task 2

For the more challenging task of exact hazard
and product vector detection, we implemented a
prompt-engineered approach using the Flan-T5-XL
model (Chung et al., 2022). This task required
extracting specific product and hazard terms from
recall notices, presenting a more fine-grained ex-
traction challenge compared to category classifica-
tion.

3.2.1 Model Architecture
We selected Google’s Flan-T5-XL as our base
model, as shown in Figure 2, due to its:

* Strong instruction-following capabilities

* Robust performance on various NLP tasks

* Pretraining on diverse instruction formats

The model was fine-tuned using Parameter-
Efficient Fine-Tuning (PEFT) with the LoRA con-
figuration:

e Rank (r) =32

* Alpha (a) =32

* LoRA dropout = 0.1

e Target modules: query, key, value, and

encoder-decoder attention layers
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Figure 2: ST2 Architecture

3.2.2 Prompting Engineering

For the more challenging task of exact hazard
and product vector detection, we adopted an
instruction-based fine-tuning approach, lever-
aging Flan-T5’s ability to generalize across
instruction-driven tasks. We primarily used zero-
shot prompting during inference by formulating
task-specific prompts that did not include example
demonstrations. The prompts were structured in
plain text format and integrated within Python
scripts for seamless model inference.

We experimented with few-shot prompting by in-
cluding example input-output pairs in early itera-
tions, but did not observe consistent improvements
over the fine-tuned model’s zero-shot performance.
Below are the task-specific prompts used for each
vector type:

» Hazard extraction: "Extract the exact reason
for the food recall from the given text. Provide
only the specific recall reason, without includ-
ing any other information, from the following
recall text:"

¢ Product extraction: "Extract only the recall
food product from the following food recall
text:"

The prompts were designed to:

* Focus the model’s attention on specific infor-
mation

¢ Minimize extraneous information in the out-
put
* Maintain consistency in extraction patterns

3.2.3 Experimental Setup

The training process was optimized for the
extraction task. The configuration emphasizes both
learning stability and computational efficiency:

Hyper parameter Value
Learning Rate 1x1075
Batch size 2
Training epochs 5
Weight decay 0.01
max_length (Input) 512

max_length (Target) 64
Gradient clipping 1.0

Table 2: Hyper parameters for ST2

Training Process
* Data split: 90% training, 10% validation
* Regular evaluation every 500 steps
* Model checkpoints saved every 500 steps

* Best model selection based on validation per-
formance

* Mixed precision training disabled for stability

3.3 Implementation Details

All experiments were conducted using:

* PyTorch framework (Paszke et al.) for deep
learning models

* Hugging Face Transformers (Wolf et al.,
2020) library for model implementations

PEFT library for efficient fine-tuning

Scikit-learn (Pedregosa et al., 2011) for tradi-
tional ML components

* Imbalanced-learn (Lemaitre et al., 2017) for
SMOTE implementation

4 Results

4.1 Overall Performance

Our system showed varied effectiveness across the
two subtasks of the SemEval-2025 food hazard
prediction challenge, as summarized in Table 3.

The significant performance gap between subtasks
indicates our approach effectively captures broader
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Figure 3: Classification reports for (a) product category and (b) hazard category classifications on the validation set,
showing precision, recall, F1-score, and support for each class.

Task F1-Score Rank
ST1 (Classification) 0.74 18
ST2 (Vector Detection) 0.05 23

Table 3: Overall system score and team rank on test set

categories but struggles with precise entity extrac-
tion. Our team(madhans476) ranked 18th in ST1
and 23rd in ST2, highlighting competitive classifi-

classification (Table 5), the ensemble’s F1-score
(0.68) was lower than LLaMA’s (0.72), so we
opted for a single LLaMA 3.1 1B model for this
task to maximize performance. The traditional
machine learning approach (XGBoost) remained
competitive for hazards but underperformed for
products, suggesting TF-IDF features are less
effective for product category diversity.

Our system achieved competitive performance in
the shared task, as shown in Tables 6 and 7:

cation performance but challenges in exact vector Team Score
matching.

PATeam 0.86
4.2 ST1: Classification Performance madhans476 (Ours) 0.78

4.2.1

Analysis of individual model contributions in Sub-

Model Performance . . .
Table 6: Comparison with rank 1 on Conception phase

Task 1 revealed complementary strengths across Team Score
our ensemble components on validation set: qipullls 0.82
madhans476 (Ours) 0.74
Model F1-Score
Table 7: Comparison with rank 1 on Evaluation phase
GPT-2 Large 0.72
LLaMA 3.1 1B 0.76 4.2.2 Error Analysis
XGBoost 0.75 To assess model performance in Sub-Task 1, we
Ensemble 0.78

present classification reports for hazard and prod-
uct category predictions based on the validation
set. These reports, shown in Figure 3, detail preci-
sion, recall, F1-score, and support for each class,

Table 4: F1-Scores for Hazard-Category Classification.

Model F1-Score highlighting the model’s strengths and weaknesses.
GPT-2 Large 0.66 Key observations include:
LLaMA 3.1 1B 0.72 * Higher Accuracy for Common Categories:
XGBoost 0.51

The model performed well on frequent classes
Ensemble 0.68

like "allergens" (hazard: F1=0.98, sup-
port=207) and "alcoholic beverages" (product:
F1=0.93, support=7), where ample training
data supported robust predictions.

Table 5: F1-Scores for Product-Category Classification.

As seen in Table 4, the ensemble approach
achieved the highest F1-score (0.78) for hazard
category classification, leading us to adopt it
for robustness. However, in product category
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(product: F1=0.57, support=10) had lower
F1-scores, reflecting challenges from limited
examples and class imbalance.

* Misclassification Due to Overlapping Ter-
minology: Categories like "foreign bodies"
(F1=0.95, support=63) and "organoleptic as-
pects" (F1=0.82, support=8) showed confu-
sion, likely due to overlapping textual cues in
recall notices.

4.3 ST 2: Vector Detection Performance

4.3.1 Model Performance

The Flan-T5-XL model for Sub-Task 2 achieved
an Fl-score of 0.05 on the test set, indicating sig-
nificant challenges in exact vector detection.

4.3.2 Error Analysis

This low performance can be attributed to several
factors:

* Model Sensitivity: The instruction-based
prompting struggled with fine-grained extrac-
tion, prioritizing semantic similarity over ex-
act matches due to Flan-T5-XL’s generation
tendencies.

* Data Variability: The CICLe dataset’s di-
verse recall notices, with inconsistent termi-
nology and multi-hazard descriptions, posed
difficulties during fine-tuning, as the model
lacked sufficient context for rare vectors.

* Evaluation Strictness: The strict exact-
match criterion amplified errors, as even mi-
nor deviations (e.g., "mineral water" vs. "bot-
tled water") were penalized.

To address these, we experimented with stricter
prompt constraints (e.g., limiting output length to
32 tokens) and LoRA fine-tuning, which improved
precision marginally (by 0.02) but not recall, sug-
gesting a need for more robust training strategies.

4.4 Comparative Analysis

To contextualize our results, we compare our ap-
proach with the CICLe framework (Randl et al.,
2024), a leading prior method for food hazard de-
tection. As shown in Table 8, our method outper-
forms CICLE in classification but underperforms
in vector detection.

Our Sub-Task 1 ensemble achieved competitive
F1-scores, demonstrating robustness despite a sim-
pler ensemble strategy. For Sub-Task 2, the F1-
score was 0.05, highlighting the difficulty of fine-
grained vector detection. To address this, we pro-
pose a similarity-based evaluation metric using

Task CICLe Ours
Classification 0.65 0.74
Vector Detection 0.51 0.05

Table 8: Comparison of our F1-scores with CICLe.

cosine similarity between predicted and ground-
truth vectors (e.g., with pre-trained embeddings
like BERT). This allows for semantic alignment
even when exact matches fail (e.g., "salmon" vs.
"smoked salmon").

5 Conclusion

We presented a hybrid approach for food hazard
prediction and classification in SemEval-2025 Task
9, combining traditional ML with state-of-the-art
language models, achieving competitive perfor-
mance in both classification (ST1) and vector de-
tection (ST2).

Key contributions include:

* An ensemble method combining XGBoost,
GPT-2, and LLaMA 3.1 1B for hazard classi-
fication.

* Class imbalance handling via SMOTE.

* Efficient fine-tuning using PEFT techniques.

* Prompt engineering for accurate vector detec-
tion with Flan-T5-XL.

Error analysis showed strong performance on com-
mon hazard categories and clear product descrip-
tions, but challenges persist with rare classes and
exact vector matches. The methods proposed here
have broader applications in domains requiring fine-
grained classification and entity extraction from
technical texts.

6 Limitations
Our approach for ST2 has a few limitations:

* Exact match issues: The model sometimes

generated semantically similar but not exact
matches.
For example, given "Recall of smoked salmon
due to potential Listeria contamination," the
model extracted "salmon" instead of "smoked
salmon."

* Vocabulary mismatch: Outputs occasion-
ally failed to align with the predefined vector
space.

In "Alpine Springs mineral water recalled due
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to chemical contamination," the model pre-
dicted "mineral water" while the expected la-
bel was "bottled water."

7 Future Work

Our findings suggest several directions for future
research:

* Enhanced Prompting: Few-shot prompt-
ing with 2-3 examples or Chain-of-Thought
prompting may improve Sub-Task 2’s low F1-
score (0.05) by guiding more precise outputs.

* Larger Models and Data: Using larger Flan-
TS variants or augmenting the CICLe dataset
with synthetic samples may reduce issues with
rare classes and variability.

* Hybrid Metrics: Extending the similar-
ity score—potentially combining it with
F1—could better assess ST2 performance, es-
pecially when approximate matches are ac-
ceptable.

These directions aim to overcome current chal-
lenges and generalize the approach to broader
safety monitoring domains.
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