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Abstract

This paper presents the ZJUKLAB team’s sub-
mission for SemEval-2025 Task 4: Unlearning
Sensitive Content from Large Language Mod-
els. This task aims to selectively erase sensitive
knowledge from large language models, avoid-
ing both over-forgetting and under-forgetting
issues. We propose an unlearning system that
leverages Model Merging (specifically TIES-
Merging), combining two specialized models
into a more balanced unlearned model. Our
system achieves competitive results, ranking
second among 26 teams, with an online score
of 0.944 for Task Aggregate and 0.487 for over-
all Aggregate. In this paper, we also conduct lo-
cal experiments and perform a comprehensive
analysis of the unlearning process, examining
performance trajectories, loss dynamics, and
weight perspectives, along with several supple-
mentary experiments, to understand the effec-
tiveness of our method. Furthermore, we ana-
lyze the shortcomings of our method and evalu-
ation metrics, emphasizing that MIA scores and
ROUGE-based metrics alone are insufficient to
fully evaluate successful unlearning. Finally,
we emphasize the need for more comprehen-
sive evaluation methodologies and rethinking
of unlearning objectives in future research1.

1 Introduction

Unlearning has emerged as a critical technique in
AI systems, enabling the selective removal of sen-
sitive data, including copyrighted material and per-
sonal information, from trained models. As the
International AI Safety Report (Bengio et al., 2025)
emphasizes, unlearning plays a vital role in mitigat-
ing privacy and copyright risks associated with ex-
tensive training datasets. However, it also acknowl-
edges that current unlearning methods remain in-

* Equal contribution
† Corresponding authors.
1 Code is available at https://github.com/

zjunlp/unlearn/tree/main/semeval25.

adequate, which often fail to completely erase tar-
geted data while potentially degrading model per-
formance, thus limiting practical implementation.

Specifically, existing unlearning methods of-
ten struggle with over-forgetting (excessive elim-
ination of non-sensitive information) or under-
forgetting (incomplete removal of sensitive data). It
is challenging to find optimal hyperparameters that
balance performance across multiple evaluation di-
mensions, sometimes even impossible. To address
these limitations, we propose a novel unlearning
system that leverages model merging to combine
an over-forgetting model with an under-forgetting
model, creating a more effective unlearned model.
It can produce superior results simply by merging
two models with complementary biases.

Our system achieved second place in SemEval-
2025 Task 4: Unlearning Sensitive Content from
Large Language Models, with our 7B model attain-
ing a Task Aggregate Score of 0.944 and Aggregate
Score of 0.487, demonstrating the effectiveness of
our system in selectively removing sensitive con-
tent. Furthermore, our local experiments yielded
almost perfect results with a MIA Score of 0.501
and Aggregate Score of 0.806, while maintaining an
exceptionally high Task Aggregate and comparable
MMLU Avg.. We provide comprehensive analyses
that validate our system’s effectiveness and offer
deeper insights into the unlearning process.

2 Task Description

Datasets The dataset comprises a forget set and
a retain set across three subtasks: (1) long-form
synthetic creative documents, (2) short-form syn-
thetic biographies with PII (names, phone numbers,
SSN, emails, addresses), and (3) real documents
from the target model’s training data. The orga-
nizers provide a vanilla model (OLMo-7B-0724-
Instruct) (Groeneveld et al., 2024) which has been
pretrained on all subtasks.
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Figure 1: Visualizing Unlearning via Model Merging. The vanilla model (top) initially assigns high probabilities to
forget set (member) and low probabilities to holdout data (nonmember). We then merge two individually unlearned
models: one exhibiting over-forgetting (middle left) and the other under-forgetting (middle right). Model merging
aims to achieve balanced forgetting (bottom), effectively reducing the model’s confidence in predicting sensitive
member data while preserving its performance on nonmember data.

Evaluation Evaluation involves sentence com-
pletion and question answering across tasks. Key
metrics include: Regurgitation Score (ROUGE-L
for sentence completion), Knowledge Score (accu-
racy for QA), MIA Score (loss-based membership
inference attack (Shi et al., 2024)), and MMLU
Score (average accuracy on 57 STEM subjects).
Task Aggregate is the harmonic mean of Regurgi-
tation Scores and Knowledge Scores for each task.
The overall Aggregate averages the Task Aggregate,
MIA scores, and MMLU scores.

For details about task description, please refer to
the official paper (Ramakrishna et al., 2025a,b).

3 Methodology

As illustrated in Figure 1, our unlearning system
follows two phases. (1) the Training Phase devel-
ops two complementary models, each exhibiting
strong performance. (2) the Merging Phase merges
these models, leveraging their strengths to achieve
effective and balanced unlearning.

3.1 Training Phase

We train two models with identical objectives but
different hyperparameters via Low-Rank Adapta-
tion (LoRA) (Hu et al., 2021). Three components
are included in the optimization process: Negative
Preference Optimization (NPO) (Zhang et al.,
2024a) on forget set, alongside Gradient Descent

on Retain Set (GDR) and Kullback-Leibler Di-
vergence Minimization on Retain Set (KLR).
The composite objective is as follows:

Ltotal = αLnpo + βLgdr + γLklr, (1)

where Lnpo leverages the preference optimization
to minimize probabilities of target tokens on forget
data, while Lgdr and Lklr preserve retain data. The
hyperparameters α, β, γ are set to balance forget-
ting and retention. Our aim is to train two com-
plementary models that exhibit distinct strengths
in metrics. Detailed formulations are shown in
Appendix A.1.

3.2 Merging Phase

After training, we apply TIES-Merging (Yadav
et al., 2023) to combine the LoRA adapters of the
two models. This involves three stages:

Trimming: Preserving only the most significant
parameters based on a density threshold while ze-
roing out the rest.

Electing: Creating a unified sign vector that re-
solves parameter conflicts by identifying the domi-
nant direction of change across models.

Disjoint Merging: Averaging non-zero param-
eter values that align with the unified sign vector,
ensuring that the merged model incorporates only
changes contributing to the agreed direction, thus
improving multitask performance.
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Environment Algorithm Aggregate Task Aggregate MIA Score/MIA AUC MMLU Avg.

Online
AILS-NTUA 0.706 0.827 0.847 / – 0.443

YNU 0.470 0.834 0.139 / – 0.436
Mr.Snuffleupagus 0.376 0.387 0.256 / – 0.485
ZJUKLAB (ours) 0.487 0.944 0.048 / – 0.471

Local
NPO+GDR+KLR (model1) 0.481 0.968 0.045 / 0.022♣ 0.431
NPO+GDR+KLR (model2) 0.504 0.659 0.364 / 0.818♠ 0.491

Ours 0.806 0.939 0.997 / 0.501♡ 0.480

Table 1: The online and local experiments results. Note that ♣ indicates over-forgetting, ♠ indicates under-forgetting,
and ♡ signifies balanced forgetting, achieving a raw MIA AUC close to 0.5. All metrics are detailed in §2.

4 Experiments

Implementation We carried out our experiments
using two NVIDIA A100-PCIE-40GB GPUs. The
organizers supplied the local dataset for our local
experiments and evaluated our code online using
an additional unreleased dataset. Detailed configu-
rations are provided in Appendix A.2.

Main Results Table 1 presents the online results
evaluated by the organizers and the local results
evaluated by us. Our 7B model achieves an Aggre-
gate score of 0.487 online, ranking second among
26 teams. The online MIA Score is less favorable,
possibly due to dataset discrepancies between the
online and local environments. However, local
evaluations effectively validate the core principles
of our system design. In training phase, model1
shows over-forgetting, achieving a high Task Ag-
gregate of 0.968 but a low MIA Score of 0.022. In
contrast, model2 shows under-forgetting, with a
lower Task Aggregate of 0.659 and a higher MIA
Score of 0.818. The merged model shows better
performance, attaining a Task Aggregate of 0.939
and a MIA AUC of 0.501. This merging technique
integrates the strengths of both models, preserving
their high Task Aggregate and MMLU Avg. scores
while successfully neutralizing their MIA scores,
resulting in an almost ideal MIA score. These re-
sults highlight our system’s ability to effectively
aggregate the strengths of these biased models.

5 Analysis

5.1 Why NPO+GDR+KLR Works?

This section analyzes the effectiveness of
NPO+GDR+KLR model (denoted as model1 in
the training phase), trained on the local dataset.

Performance Trajectory To understand perfor-
mance trends, we evaluated model checkpoints
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Figure 2: Performance Curves: Regurgitation and
Knowledge Scores During Training.
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Figure 3: Training Loss Curves of NPO and
NPO+GDR+KLR.

throughout training. As shown in Figure 2, both
Regurgitation and Knowledge Scores initially de-
cline concurrently for forget and retain sets (epochs
0-0.8). This suggests that, in the early stages of
training, the optimization processes for both for-
getting and retaining knowledge are proceeding in
the same direction, causing a simultaneous met-
ric decrease. Subsequently, the Knowledge Score
steadily trends upward, while the Regurgitation
Score increases with noticeable oscillations. This
indicates that the optimization directions of knowl-
edge retention and knowledge forgetting are begin-
ning to become different. The observed fluctuations
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in Regurgitation Score may stem from the tradeoff
between learning and forgetting.

Loss Dynamics Figure 3 compares the training
loss curves of NPO and NPO+GDR+KLR models.
Notably, the NPO+GDR+KLR loss curve displays
oscillations in mid-training, likely caused by the
similarity between forget and retain sets, hindering
a steady loss decline. Conversely, training with
only the NPO loss function results in rapid conver-
gence and a smooth loss curve, further highlighting
the conflict between NPO and regularization. De-
spite this, NPO+GDR+KLR achieves a stable loss
value in later training stages, demonstrating its abil-
ity to effectively balance forgetting and retention.

Weight perspective Figure 2 shows a perfor-
mance trend with an initial decline followed by
an increase. We identify this turning point as the
inflection point (step 165). To understand optimiza-
tion dynamics around this point, we analyzed the
angle between flattened parameter change vectors
across training phases (Figure 4), where ∆P s2

s1 be
the parameter change vector from step s1 to s2.
The angle between ∆P 165

0 and ∆P final
165 is approxi-

mately 70-85 degrees. This suggests that the initial
phase overemphasizes forgetting, while a signif-
icant shift in optimization direction occurs after
the inflection point, where the balance between
forgetting and retention has gradually been estab-
lished. Conversely, the angle between the initial
direction (∆P 165

0 ) and the overall optimization di-
rection (∆P final

0 ) approaches near orthogonality
(90 degrees). This indicates that overall training
does not consistently follow the initial direction,
and the initial "forgetting" emphasis is balanced by
later retention optimization.

Merging methods Agggregate

Linear 0.244
DARE-Linear 0.440
DARE-TIES 0.561

Magnitude Prune 0.558
TIES 0.806

Table 2: Merging techniques comparison
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5.2 Why Merge works?

To understand the efficacy of merging, we con-
duct comparative experiments on different merging
techniques. As shown in Table 2, TIES-Merging
outperforms others, and this effectiveness comes
from its three fundamental operations: Trim, Elect,
and Disjoint Merge.

Firstly, for Trimming, we conduct ablation stud-
ies varying the density between 0.6, 0.8, and 1 (Fig-
ure 5) and observed that a density of 0.8 yields the
best results. This optimal density level retains es-
sential parameters while removing redundant ones,
effectively preserving the better performance of
two models and achieving balanced forgetting. We
hypothesize that lower densities (e.g., 0.6) exces-
sively prune parameters vital for knowledge reten-
tion, leading to over-unlearning and a reduced MIA
score. Conversely, a density of 1, by retaining all
parameters, introduces redundancy and may incor-
porate influences from the less-unlearned model,
resulting in a suboptimal outcome and a higher
MIA score. Therefore, trimming with a density
of 0.8 strikes a critical balance. Beyond trim-
ming, TIES-Merging further enhances directional
consistency through the Elect operation, which
establishes parameter signs based on magnitude.
Given the strong baseline performance of the indi-
vidual models, this magnitude-based election en-
sures reliable convergence toward optimal direc-
tional consistency during merging. Finally, the Dis-
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joint Merging operation averages parameters with
consistent elected signs and discards discordant
ones. This strategic approach effectively mitigates
over-unlearning and further enhances the merged
model’s resistance to Membership Inference At-
tacks (MIA).

6 Rethinking Unlearning

6.1 Drawbacks: Over-forgetting Phenomena

Despite demonstrating effectiveness, our system
still exhibits over-forgetting. Firstly, the unlearned
model exhibits model collapse, frequently gener-
ating repetitive characters (e.g., "6 6 6"). This
phenomenon arises from the training process itself,
the model may find a suboptimal but easy short-
cut: generating repetitive outputs to reduce loss.
Specifically, Task 2 involves a digit-heavy dataset,
so the model will take this high-frequency option as
their outputs. Secondly, we observed forgetting of
generic knowledge. We analyze question patterns
of forget set to construct 50 common knowledge
questions (e.g., "What is the capital of France?"),
finding a significant Knowledge Score drop (0.88
→ 0.35) against a vanilla baseline. These draw-
backs are also observed in some studies Mekala
et al. (2025); Xu et al. (2025), highlighting a fun-
damental weakness of this paradigm. Throughout
training, the system repeatedly applies reverse opti-
mization signals to the original forget data. With-
out positive guidance like in reinforcement learn-
ing, the model cannot explore better outputs and
inevitably degrades under sustained pressure.

Forget Set Case:
Question: What is Lorette Fuchsia’s
email address?
Answer: 6 6 6 6 6 6 6...
Retain Set Case:
Question: What is the birth date of
Fredericka Amber?
Answer: 1969-12-21
Generic Knowledge Case:
Question: In which city is the
Eiffel Tower located?
Answer: 6 6 6 6 6 6 6...

6.2 Limitations of Unlearning Evaluation

ROUGE-based metrics primarily measure how
closely a response matches an expected output
rather than exact knowledge unlearning. For in-
stance, a different long response might still inad-
vertently leak sensitive information like an email
address, yet escape detection by ROUGE-L due
to its focus on textual overlap rather than content

semantics. In this competition, separate metrics
have been introduced (i.e., Regurgitation Score and
Knowledge Score). However, they remain suscep-
tible to superficial textual variations, where minor
rephrasing can mask underlying retention of knowl-
edge, thus undermining their ability to accurately
evaluate unlearning effectiveness. Similarly, MIA
Scores like Min-k% prove insufficient. Although
our method achieves an almost optimal MIA score
of 0.501, it still generates repetitive outputs that de-
viate from the base model’s behavior. Some studies
(Duan et al., 2024; Meeus et al., 2024) cast doubt
on MIA’s reliability for LLMs, pointing to poten-
tial temporal or domain discrepancies in datasets.
In this competition, while the forget set and retain
set are derived from Wikipedia after the deadline
of OLMO’s training, subtle distribution shifts may
still persist. Our local test on OLMo-7B-0724-
Instruct-hf yields an MIA AUC of 0.46, slightly
misaligned with the official optimal score of 0.5,
further highlighting these inconsistencies.

6.3 Rethinking Unlearning’s Objectives

Recent studies (Xu et al., 2024; Zhou et al., 2024;
Thaker et al., 2024; Cooper et al., 2024; Barez
et al., 2025) present critical analyses of generative
AI unlearning. These studies collectively reveal
three fundamental limitations: (1) current unlearn-
ing methods remain impractical, (2) evaluations
fail to assess the generalization capability of un-
learned models, and (3) benchmarks encourage
model to overfit the training set, creating an illusory
forgetting. The root challenge lies in the lack of a
clearly defined, universally applicable unlearning
objective. Rather than overloading unlearning with
goals like resistance to relearning attacks (Fan et al.,
2025), future research should prioritize on-demand
unlearning and robust evaluation to address prac-
tical policy needs. As discussed in §6.1, current
methods often lead to degraded outputs. Future
work can explore the incorporation of positive sig-
nals to guide the model toward more appropriate
forgetting behaviors such as data augmentation and
reinforcement learning.

7 Conclusion

This paper introduce an unlearning system via
model merging. By combining two complementary
models, it effectively achieves balanced forgetting
and excellent knowledge preservation.
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A Detailed Setup

A.1 Detailed formulas

This section introduces detailed formulas in this
paper.

Negative Preference Optimization: The loss
function penalizes the model for generating out-
puts with negative preferences while maximizing
outputs with positive preferences:

LNPO = − 2

β
EDf

[
log σ

(
−β log

πθ(y|x)
πref(y|x)

)]

(2)
where πθ(y|x) is the model’s output distribution
and πref(y|x) is the reference distribution. Here, σ
is the sigmoid function and β is a regularization
parameter.

Gradient Descent on Retain Set (GDR): Mini-
mizes the loss for samples in retain set by updating
parameters in the direction to the gradient of the
loss function:

θt+1 = θt − η∇θL(θt,Dr) (3)

where θt represents the model parameters at step
t, η is the learning rate, and ∇θL(θt,Dr) is the
gradient of the loss function at step t, calculated on
the retain set Dr.

KL Minimization on Retain Set (KLR): Mini-
mizes the Kullback-Leibler divergence between the
model’s output distribution and a target distribution
on retain set:

Lklr =
∑

i

πθ(yi) log
πθ(yi)

πtarget(yi|Dr)
(4)

where LKL is the loss, πθ(yi) is the model’s out-
put distribution for the i-th output token yi, and
πtarget(yi|Dr) is the target output distribution for
the i-th token yi conditioned on the retain set Dr.

A.2 Detailed Implementation

Table 3 summarizes the complete configuration
parameters used in our experiments.

Parameter Model1 Model2
batch_size 1 2
gradient_accumulation 4 4
num_epochs 5 5
lr 1× 10−4 1× 10−4

max_length 256 256
weight_decay 0.01 0.01
seed 42 42
ga_ratio 0.4 0.3
gd_ratio 0.4 0.3
gk_ratio 0.2 0.4
LoRA_r 32 32
LoRA_alpha 32 32
LoRA_dropout 0.05 0.05

Table 3: Complete Hyperparameters Configuration.

B Related Work

LLM Unlearning The topic of unlearning in
large language models (Chen, 2024) has recently
attracted significant attention in the literature. One
approach to unlearning is Gradient Ascent (Jang
et al., 2023), which aims to maximize the loss
function to facilitate forgetting. Another method,
Negative Preference Optimization (NPO) (Zhang
et al., 2024a), builds upon Direct Preference Op-
timization (DPO) (Rafailov et al., 2023), offering
an alternative strategy for model unlearning. Var-
ious unlearning techniques have been proposed,
including those presented by (Lu et al., 2022; El-
dan and Russinovich, 2023; Yu et al., 2023; Chen
and Yang, 2023; Wang et al., 2025; Gandikota
et al., 2024; Jiang et al., 2025; Liu et al., 2024b;
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Zhuang et al., 2024). An alternative strategy, re-
ferred to as “locate-then-unlearn,” is exemplified by
KnowUnDo (Tian et al., 2024) and SURE (Zhang
et al., 2024b), which focus on knowledge local-
ization before executing the unlearning process.
Additionally, data-driven methods for unlearning
have also been introduced, such as those proposed
by (Jang et al., 2022; Ma et al., 2024; Liu et al.,
2024a; Gu et al., 2024; Sinha et al., 2024; Xu et al.,
2025; Mekala et al., 2025). Several works have
explored the use of model merging techniques to
achieve unlearning (Kadhe et al., 2024; Kuo et al.,
2025).

Model Merging Training a model for each task
can be costly, but model merging offers a solu-
tion to these challenges by combining multiple pre-
trained models. Model merging strategies include
parameter averaging (Linear), singular value de-
composition (SVD) for low-rank alignment, and
feature concatenation (CAT). Advanced variants
like TIES (Yadav et al., 2023) trim redundant pa-
rameters and resolve sign conflicts, while TIES-
SVD (Stoica et al., 2024) integrates SVD for re-
fined fusion. DARE methods(Yu et al., 2024),
and methods like DARE-TIES, DARE-linear in-
troduce parameter dropout and rescaling, with ex-
tensions (DARE-TIES-SVD, DARE-linear-SVD)
combining SVD for structured compression. The
magnitude-prune (Deep et al., 2024) removes low-
impact weights, and its SVD variant (magnitude-
prune-SVD) is further compressed via low-rank
decomposition.
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