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Abstract

This paper presents our approach to SemEval
2025 Shared Task 7: Multilingual and Crosslin-
gual Fact-Checked Claim Retrieval. We in-
vestigate how large language models (LLMs)
designed for general-purpose retrieval can be
adapted for fact-checked claim retrieval across
multiple languages. This includes cases where
the original claim and the fact-checked claim
are in different languages. The experiments
involve fine-tuning with a contrastive objec-
tive, resulting in notable gains in accuracy over
the baseline. We evaluate cost-effective tech-
niques such as LoRA, QLoRA and Prompt Tun-
ing. Additionally, we demonstrate the bene-
fits of Matryoshka embeddings in minimizing
the memory footprint of stored embeddings,
reducing the system requirements for a fact-
checking engine. The final solution, using a
LoRA adapter, achieved 4th place for the mono-
lingual track (0.937 S@10) and 3rd place for
crosslingual (0.825 S@10).

1 Introduction

Verifying claims across various languages is be-
coming increasingly difficult for fact-checkers as
the amount of Internet content keeps growing. Ad-
ditionally, cross-lingual fact-checking not only re-
quires a deep understanding of nuanced linguistic
differences and diverse syntactical structures, but
also demands bridging significant resource gaps in
less-represented languages (Huang et al., 2022).

Recent advances in large language models
(LLMs) have shown promise in tackling these chal-
lenges. Besides generative capabilities, LLMs can
provide high-quality textual embeddings (Wang
et al., 2024a) that can be leveraged for textual re-
trieval (Chen et al., 2024b).

As part of SemEval 2025 Shared Task 7: Multi-
lingual and Crosslingual Fact-Checked Claim Re-
trieval (Peng et al., 2025), we explore different
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methods to adapt general-purpose retrieval LLMs
to the downstream task of fact-checked claim re-
trieval.

We experiment with cost-effective fine-tuning
techniques, including Prompt Tuning (Lester et al.,
2021), Low-Rank Adaptation (LoRA) (Hu et al.,
2021), and QLoRa (Dettmers et al., 2024), focusing
on improving the models performance with mini-
mal trade-offs between accuracy and resources.

Moreover, the amount of memory required to
store fact checks in large databases grows along
with the number of posts and claims on social me-
dia (Lauer, 2024). To address this issue, we pro-
pose using Matryoshka learning (Kusupati et al.,
2024) to compress fact representations while main-
taining their retrieval utility and speeding up pro-
cessing.

Our contributions are threefold:

1. We adapt a general purpose retrieval LLM for
multilingual fact-checked claim retrieval by
using a contrastive objective between social
media posts and claims, resulting in improved
performance.

We evaluate LoRA, QLoRA, and Prompt Tun-
ing strategies.

. We show that Matryoshka representation
learning can help significantly reduce the
memory footprint of fact-checked claims stor-
age with minimal impact on accuracy.

The implementation is available at https://
github.com/racai-ro/FactCheckRetrieval.

2 Related Work

Previous work for fact-checked claim retrieval ex-
plored systems based on classical IR-models such
as BM25 and semantic similarity searches using
BERT like models. Shaar et al. (2020) showed
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that a hybrid approach results in increased per-
formance. They proposed a two-step retrieval
pipeline, comprised of a BM25 initial retrieval and
re-ranking step that takes advantage of both scores
from BM25 and a fine-tuned version of sentence-
BERT (Reimers and Gurevych, 2019).

Subsequent studies (Chernyavskiy et al., 2021;
Mansour et al., 2022) have adopted similar ap-
proaches, incorporating semantic similarity as a
standard component of the retrieval pipeline.

Notably, these systems were developed mainly
for English, with some also addressing Arabic, as
The CLEF 2021 CheckThat! (Shaar et al., 2021)
challenge introduced a separate track for the lan-
guage. This is a short-coming, given the universal
aspect of the task.

To address the language limitation and enable
multilingual retrieval of previously fact-checked
claims, Pikuliak et al. (2023) proposed the Mul-
tiClaim dataset. The best results were obtained
using a fine-tuned GTR-T5-Large model (Ni et al.,
2021). They observed that most embedding models
tested—even those explicitly designed for multi-
ple languages—performed better when applied to
the English-translated version of the dataset. In
contrast, our work focuses solely on the original
multilingual data.

Previous approaches have primarily relied on
similarity search, which in turn depends on high-
quality textual embeddings. Wang et al. (2024a)
demonstrated that the effectiveness of such embed-
dings can be significantly improved by leveraging
large language models (LLMs) for both data aug-
mentation and embedding generation.

In line with this, BGE-Multilingual-Gemma2
(Xiao et al., 2023; Chen et al., 2024a) is a multilin-
gual text embedding model built on the Gemma?2
LLM architecture (Riviere et al., 2024). Trained
on a wide variety of multilingual tasks, it has
achieved state-of-the-art performance on the MIR-
ACL benchmark (Zhang et al., 2023), which is
specifically designed for multilingual retrieval.

This paper evaluates the effectiveness of adapt-
ing BGE-Multilingual-Gemma?2 for claim retrieval
in fact-checking, focusing on parameter-efficient
tuning methods.

3 Dataset

The dataset proposed for the SemEval task builds
upon and extends the original MultiClaim dataset
(Pikuliak et al., 2023). It was assembled from a va-

riety of social media platforms, with post-fact pairs
formed according to the fact-check alerts issued by
these platforms.

Quantitatively, the development dataset com-
prises 28,092 social media posts in 27 languages,
205,751 fact-checks in 39 languages authored by
professional fact-checkers, and 31,305 connections
between these two categories. Among these, 4,212
post-fact pairs are crosslingual.

Qualitatively, about 13% of the posts included
multimedia attachments (image/video) and did not
accurately convey the claims in text. In some of
these cases, text was extracted from images using
Optical Character Recognition (OCR), but other
errors may have been introduced as a consequence.
The dataset remains biased toward major languages
and the Indo-European language family, despite
its diversity. Furthermore, the crosslingual pairs’
applicability to other language pairs is limited be-
cause they primarily consist of posts in East or
South Asian languages coupled with English fact-
checks.

4 Proposed Methodology

In this section, we introduce our overall strategy for
our retrieval system for fact-checks: Contrastive
Fine-Tuning with Low-Rank Adaptation and Ma-
tryoshka Embeddings. We separately use Prompt
Tuning to evaluate the contribution of the instruc-
tion in the prompt to the baseline’s performance on
the task.
Specifically, we investigate:

1. LoRa Contrastive Fine-Tuning with Large
In-Batch Negatives: We utilize Multiple Neg-
ative Ranking Loss (MNRL) to separate posi-
tive and negative pairs in the latent space, and
leverage GradCache to overcome hardware
memory limitations.

2. Prompt Tuning: We add trainable prompt
embeddings and tune them for the fact-
checked claim retrieval task, keeping the
model’s weights frozen.

3. Matryoshka Embeddings: To reduce the
memory footprint of high-dimensional em-
beddings, we explore the matryoshka training
approach.

In the following subsections, we provide details
for each of these experiments.
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4.1 Contrastive Fine-Tuning

The MNRL function is particularly well-suited for
datasets that contain only positive pairs. Given that
MultiClaim consists of pairs of social media posts
and corresponding facts, we find the objective to
be an appropriate choice.

For clarity, we briefly describe the MNRL func-
tion. Let p denote the post’s textual embedding
and f represent the fact-checked claim’s textual
embedding. To construct positive pairs, we utilize
the post-fact pairs provided in the dataset. During
training, the model aims to maximize the similar-
ity between p and its corresponding positive f,,
while minimizing the similarity to all other f_ in
the batch, which act as negative examples. Conse-
quently, the loss function can be expressed as:

N . e
1 exp(sim(pz, fi+)/7)
L=—— g log ,
N = 7 L exp(sim(pi, £)/7)
(1

where:

* sim(p, f): cosine similarity between p and f.
* T: temperature scaling parameter.

e N: total number of fact checks in the batch.

Contrastive learning with in-batch negatives
achieves the best results with large batch sizes
(Chen et al., 2022), but this approach demands
significant memory resources. To address this chal-
lenge, we leverage GradCache (Gao et al., 2021).
GradCache caches the encoder’s output embed-
dings along with their corresponding gradients,
thereby decoupling gradient computation for the
encoder from that of the loss function. As a result,
the memory footprint is significantly reduced, and
large batch sizes can be simulated by processing
smaller micro-batches sequentially.

Moreover, based on its training methodology,
BGE-Multilingual-Gemma?2 allows an instruction
to be prepended to the query. This instruction pro-
vides a description of the task and its context. The
authors originally provided the following template:

“Given a web search query, retrieve
relevant passages that answer the query.”

In our work, we defined the prompt according to
the context of the task as follows:

“Given a social media post as a query,
retrieve fact checks that verify or debunk
the post.”

The instruction prompt is delimited from the
query using the special tokens <instruct> and
<query>, resulting in the final model input format:

<instruct>[PROMPT]<query>[QUERY].

To build the training data for our contrastive
learning pipeline, we use the following inputs:

* Social media post: The original post text con-
catenated with any text extracted via OCR. For
QLoRA and LoRA settings, we also prepend
the instruction prompt to this combined text.

e Fact-checked claim: The title concatenated
with the claim text.

4.2 Prompt Tuning

During development, we noticed that eliminating
the instruction from the prompt for the base model
had the following effects: (a) -2% in S@10 for
monolingual evaluation, compared to (b) +1% for
crosslingual evaluation (Table 2).

For our experiments, we defined the instruction
part solely on the task’s context, but in order to
push the baseline’s performance to its upper limit,
we used prompt tuning to find the optimal value.

Prompt tuning (Lester et al., 2021) is a tech-
nique in which small, trainable prompt embed-
dings are prepended to the input of a pre-trained
language model, enabling the model to adapt to
specific tasks without updating its main parame-
ters. This approach optimizes only a small set of
prompt parameters while keeping the rest of the
model frozen. In our case, the trainable embed-
dings are concatenated exclusively to the queries,
positioned between the special <instruct> and
<query> tokens, as illustrated in Figure 1. We use
the previously defined prompt as the starting point
for these embeddings.

A
r N
(s) () (ERSESSHReRe) (o) ((cmoedng ) (&)

Embedding layer

Figure 1: Prompt Tuning approach for query/anchor. S,
I, Q, E are special tokens (<start>, <instruct>, <query>,
<end>).
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4.3 Matryoshka Embeddings

To address the memory implications associated
with storing high-dimensional embeddings, we ex-
plore Matryoshka embedding learning.

This method allows for hierarchical training of
embeddings at multiple resolutions, enabling the
system to store compact representations when re-
quired while retaining the ability to utilize higher-
dimensional embeddings when memory permits.

Specifically, we compute intermediate
losses at predefined embedding dimensions:
[128, 256,512, 768, 1024, 2048, 3584]. The losses
are summed together with equal weights, becoming
the final training objective:

EMatryoshka: 5 ﬁd
deD

where D = {128, 256, 512, 768, 1024, 2048,
3584} denotes the set of predefined truncation di-
mensions applied to the post and fact embeddings,
and each £, is computed as specified in Equation 1.

This hierarchical loss computation encourages
each subspace of the embedding to maintain a
meaningful semantic structure, allowing for pro-
gressive reduction of dimensionality, limiting the
loss in retrieval performance.

5 Experiments and results

In this section, we present details on the training
environment, followed by an overview of our ex-
periments and the results obtained.

5.1 Training environment

For training, we randomly split our available data
(post-fact pairs) into 90% train and 10% validation.

The environment consists of 3 H100 GPUs for
optimized training speed. For optimized memory,
we train in bfloat16, and we use Flash Attention 2
(Dao, 2023).

Due to computation limitations, we truncate the
model’s input to 512 tokens. Analyzing the char-
acter length of the posts in the dataset, we find that
95 % of the posts have fewer than 1899 characters.
Averaging 4 characters per token, our truncation
does not cut substantial data from the posts. The
analysis is shown in Figure 2.

Distribution of Post Lengths

322531 —e— Quantiles
--- Average (517.05)

3959

1899
1167

540
265
135

Post Length (characters, log scale)

Min 25th 50th 75th 90th 95th 99th Max
Figure 2: Character length of social media posts.

During training, we ensure that no duplicates
(post or fact) are present in the batch per device.
The hyperparameters selected for training are dis-
played in table 1.

Learning Rate Scheduler Per device batch size
0.0002 1024

cosine

Table 1: Training Hyperparameters for Fine-tuning

5.2 Finetuning

The results of our experiments for the development
stage of the shared task are shown in Table 2, and
those for the testing stage in Table 3. To gain a
deeper understanding of our failure cases, we man-
ually categorized errors on the development set (for
our best solution) into four groups:

* Missing Context (independent from the ver-
dict label): The context lacked sufficient in-
formation for non-expert humans to align the
golden fact check with the post.

* Similar: One or more predicted fact checks
fully covered the golden fact check.

* Similar but Insufficient: Predicted fact
checks partially covered the golden fact check.

* Missed: Information from the golden fact
check was entirely absent from the predic-
tions.

Classification was based on English transla-
tions, which may introduce artifacts.

In the monolingual setting, most errors were
labeled as Missing Context (51.4%) and Similar
(27.1%), with fewer cases labeled as Similar but
Insufficient (11.6%) and Missed (10%). Missed
cases often involved longer posts with multiple
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Technique Model Mono (S@10) Cross (S@10) Trained Params Rank
Base NV-Embed-v2 (Lee et al., 2024) 0.76 0.64 0 NA
Base gte-Qwen2-7B-instruct (Li et al., 2023) 0.79 0.55 0 NA
Base multilingual-e5-large (Wang et al., 2024b) 0.83 0.66 0 NA
Base bge-multilingual-gemma?2 0.85 0.71 0 NA
Prompt engineering bge-multilingual-gemma?2 0.87 0.70 0 NA
Prompt tuning bge-multilingual-gemma?2 0.91 0.84 75,264 NA
QLoRA bge-multilingual-gemma?2 0.95 0.91 216,072,192 64
LoRA bge-multilingual-gemma2 0.955 0.927 54,018,048 16
LoRA (large) bge-multilingual-gemma?2 0.958 0.927 216,072,192 64

Table 2: Results on Shared Task Development Stage

Technique Model

Mono (S@10)

Cross (S@10) Trained Params Rank

LoRA bge-multilingual-gemma?2

0.937

0.82 54,018,048 16

Table 3: Results on Shared Task Testing Stage

claims, where the model focused on non-target
claims. Similar distributions were observed in
the crosslingual setting (Missing Context: 42.2%,
Similar: 24.5 %, Similar but Insufficient: 22.2 %,
Missed: 11.1 %).

Multimodal cases (image or video information)
lacking enough descriptive text were labeled Miss-
ing Context. Prediction errors were sometimes
caused by similar events occurring at different
times. Including posting dates could help narrow
the search for relevant fact checks.

5.3 Matryoshka training

0.950
0.940 1 —e— Standard —
0.924 1 —e— Matryoshka

0.700

0.650

0.615
0.600

16 32 64 128 256 512 1024
Dimensions (log scale)

2048 3584

Figure 3: Performance with respect to truncated dimen-
sion.

To assess the efficiency of Matryoshka training
with respect to the trade-off between embedding
size and accuracy, we compared two models:

* Standard: bge-multilingual-gemma2 model
finetuned with LoRA and MNRL loss (4.1).

* Matryoshka: The same strategy as Standard,
also incorporating the Matryoshka training
objective 4.3.

For each of the two models, we truncated the
computed embeddings to different sizes and ran
our evaluation. The comparative results are shown
in Figure 3. We noticed that by using Matryoshka
representation learning, we can reduce the embed-
ding size and therefore memory by 98.2% (from
3584 to 64) with only a 2% loss in NDCG@ 10.

6 Conclusions and Limitations

In this work, we successfully adapted a general-
purpose retrieval LLM for multilingual and cross-
lingual fact-checking through contrastive fine-
tuning and parameter-efficient techniques, increas-
ing its performance on the task. Also, using Ma-
tryoshka learning, we can significantly lower mem-
ory requirements while still achieving competitive
accuracy.
However, a number of limitations still exist:

* Bias in the dataset: Generalizability to non-
Indo-European and low-resource languages is
restricted by the Indo-European bias.

* Single-Step Retrieval: Relying on a single-
step retrieval approach limits the system’s ca-
pability in handling complex, multi-hop fact-
checking scenarios.

Future work should improve information extrac-
tion from images/videos, expand the dataset, and
explore multi-step retrieval methods.
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