MRT at SemEval-2025 Task 8: Maximizing Recovery from Tables with Multiple Steps
Maximiliano Hormazábal Lagos, Álvaro Bueno Sáez, Héctor Cerezo - Costas, Pedro Alonso Doval, Jorge Alcalde Vesteiro
Abstract
In this paper we expose our approach to solve the SemEval 2025 Task 8: Question-Answering over Tabular Data challenge. Our strategy leverages Python code generation with LLMs to interact with the table and get the answer to the questions. The process is composed of multiple steps: understanding the content of the table, generating natural language instructions in the form of steps to follow in order to get the answer, translating these instructions to code, running it and handling potential errors or exceptions. These steps use open source LLMs and fine grained optimized prompts for each task (step). With this approach, we achieved a score of 70.50% for subtask 1.- Anthology ID:
- 2025.semeval-1.68
- Volume:
- Proceedings of the 19th International Workshop on Semantic Evaluation (SemEval-2025)
- Month:
- July
- Year:
- 2025
- Address:
- Vienna, Austria
- Editors:
- Sara Rosenthal, Aiala Rosá, Debanjan Ghosh, Marcos Zampieri
- Venues:
- SemEval | WS
- SIG:
- Publisher:
- Association for Computational Linguistics
- Note:
- Pages:
- 487–493
- Language:
- URL:
- https://preview.aclanthology.org/transition-to-people-yaml/2025.semeval-1.68/
- DOI:
- Cite (ACL):
- Maximiliano Hormazábal Lagos, Álvaro Bueno Sáez, Héctor Cerezo - Costas, Pedro Alonso Doval, and Jorge Alcalde Vesteiro. 2025. MRT at SemEval-2025 Task 8: Maximizing Recovery from Tables with Multiple Steps. In Proceedings of the 19th International Workshop on Semantic Evaluation (SemEval-2025), pages 487–493, Vienna, Austria. Association for Computational Linguistics.
- Cite (Informal):
- MRT at SemEval-2025 Task 8: Maximizing Recovery from Tables with Multiple Steps (Hormazábal Lagos et al., SemEval 2025)
- PDF:
- https://preview.aclanthology.org/transition-to-people-yaml/2025.semeval-1.68.pdf