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Abstract

Food safety is a critical global concern, and
timely detection of food-related hazards is es-
sential for public health and economic stabil-
ity.The automated detection of food hazards
from textual data can enhance food safety mon-
itoring by enabling early identification of poten-
tial risks. In the Food Hazard Detection task,
we address two key challenges: (ST1) food
hazard-category and product-category classifi-
cation and (ST2) food hazard and product vec-
tor detection. For ST1, we employ BertForSe-
quenceClassification, leveraging its powerful
contextual understanding for accurate food haz-
ard classification. For ST2, we utilize a Ran-
dom Forest Classifier, which effectively cap-
tures patterns in the extracted features for food
hazard and product vector detection. This pa-
per presents the results of the TechSSN3 team
at the SemEval-2025 Food Hazard Detection
Task, where we achieved a ranking of 21st in
Task 1 and 19th in Task 2.
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1 Introduction

Food safety is a critical global concern, as
contaminated food products can lead to widespread
health risks, economic losses, and damage to
consumer trust. Identifying food hazards early is
essential for preventing outbreaks and ensuring
regulatory compliance. Traditionally, food safety
monitoring relies on manual inspection, regulatory
reporting, and consumer complaints. However,
these methods are slow, labor-intensive, and
reactive rather than proactive. With the increasing
availability of food-related incident reports on the
web, there is an urgent need for automated systems
that can detect food hazards from unstructured
textual data.

The SemEval-2025 Food Hazard Detec-
tion task (Randl et al., 2025) aims to tackle these
challenges by evaluating explainable classification
models for food-incident reports. This task consists
of two subtasks: (ST1) food hazard and product
category classification, and (ST2) food hazard and
product vector detection, which aims to identify
the exact hazard-product associations. The task
focuses on enhancing NLP-based hazard detection
models for English-language reports, ensuring
their effectiveness for regulatory and industrial
applications.

We approach each subtask with methods best
suited to their objectives. For ST1, we use Bert-
ForSequenceClassification to leverage contextual
embeddings for accurate classification of food haz-
ard and product categories. For ST2, a Random
Forest Classifier is applied to engineered features
to detect hazard-product associations, providing ro-
bustness and interpretability in relational modeling.

2 Related Work

The integration of machine learning (ML) with
food hazard detection has been extensively ex-
plored, leveraging technologies such as spec-
troscopy, chromatography, mass spectrometry,
and biosensors to identify potential contaminants.
ML enhances the accuracy and efficiency of
hazard detection by analyzing complex patterns
in food composition, enabling real-time identi-
fication of chemical, biological, and physical
hazards. Recent advancements include RFID
(Radio-Frequency Identification)-based contami-
nation sensing (Roberts, 2006), where ultra-high-
frequency (UHF) RFID tags detect signal varia-
tions caused by contaminants, with ML models like
XGBoost (Azmi and Baliga, 2020) achieving high
accuracy. Additionally, ML-driven food hazard de-
tection systems utilize cross-media data sources,
including government reports, news, and social me-
dia, to identify emerging risks. Techniques such as
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semantic topic modeling and event detection fur-
ther improve early warning systems. Despite these
advancements, challenges persist in handling data
variability, adapting models to detect novel hazards,
and ensuring real-world applicability across differ-
ent regulatory and geographical contexts. More-
over, integrating domain expertise with automated
hazard detection remains crucial for refining model
predictions and reducing false positives, ensuring
the reliability of ML-based food safety monitoring
systems.

3 Background

The SemEval-2025 Food Hazard Detection task
focuses on extracting and classifying food safety
incidents from textual data. The task is designed to
improve the automated detection of food hazards
in real-world reports, supporting early warning sys-
tems and regulatory monitoring. It is divided into
two subtasks:

• (ST1) Food Hazard and Product Category
Classification: Given a food-incident report,
the system must classify it into one of several
predefined food hazard and product categories

• (ST2) Food Hazard and Product Vector Pre-
diction: The system must identify the exact
food hazard and the associated food product
from the text, providing structured outputs for
fine-grained risk assessment

The SemEval-2025 Food Hazard Detection dataset
provided for this task consists of 5,082 labeled sam-
ples for training, covering food hazard incidents in
English. An additional 565 samples were provided
as validation data, followed by 997 test samples
for final evaluation. The dataset contains struc-
tured and unstructured data relevant to food safety
incidents. It includes ‘year’, ‘month’, ‘day’, and
‘country’ for temporal and geographical context.
The ‘title’ and ‘text’ describe incidents, serving
as inputs for classification.The dataset features 10
unique hazard categories (e.g., biological, Chem-
ical, foreign bodies) and 22 unique product cate-
gories (e.g., meat, egg and dairy products, prepared
dishes and snacks, cereals and bakery products).
Additionally, the hazard and product columns spec-
ify the exact contaminant (e.g., escherichia coli,
listeria monocytogenes) and affected item (ground
beef, hot dogs).

Figure 1 illustrates the frequency distribution
of food hazard categories. Figure 2 depicts the

Figure 1: Frequency Distribution of Food Hazard Cate-
gories

frequency distribution of Food Product categories.
Figure 3 shows a t-SNE (t-Distributed Stochastic

Figure 2: Frequency Distribution of Food Product Cate-
gories

Neighbor Embedding) visualization of tokenized
inputs, where each point represents a data instance
colored by hazard category.

Figure 3: t-SNE Visualization of Tokenized Inputs

Our participation focused on both subtasks (ST1
and ST2) to develop a comprehensive system
capable of handling hazard and product category
classification and precise vector detection.
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4 System Overview

This section outlines the approach taken for the
SemEval-2025 Food Hazard Detection task, high-
lighting the key methodologies, models, and tech-
niques used. It covers the data preprocessing, fea-
ture extraction, model selection, and training strate-
gies used to optimize performance across both sub-
tasks.

4.1 Subtask 1: Food hazard and product
category detection, predicting the exact
hazard-category and product-category.

1. Data Preprocessing
Only the relevant columns were preserved,
while the rest, including ‘hazard’, ‘product’,
and ‘title’, were not used for the analysis.
Categorical labels for ‘hazard-category’ and
‘product-category’ were encoded into numeri-
cal values using LabelEncoder. The ’text’ data
was then tokenized using a pre-trained BERT
tokenizer (Koroteev, 2021), applying trunca-
tion and padding to ensure a consistent input
length of 128 tokens.

2. Feature Extraction
BERT Tokenization was performed using the
BertTokenizer from the Hugging Face Trans-
formers library, encoding text into input_ids
and attention_mask (Clark et al., 2019) for
efficient processing. To optimize classifi-
cation, the dataset was split into two—one
for hazard-category and another for product-
category—enabling independent training and
specialized learning for each task.

3. Model Selection and Training
For classification, the BertForSequenceClassi-
fication (Face) model was utilized, leveraging
its pre-trained transformer-based architecture.
Two separate instances were initialized—one
for hazard-category classification and another
for product-category classification. Training
was conducted with specific hyperparameters,
including 10 epochs for hazard classification
and 12 for product classification, a batch size
of 16 for training and 64 for evaluation, and
an epoch-wise evaluation strategy. To pre-
vent overfitting (Ying, 2019), an EarlyStop-
pingCallback (Prechelt, 2002) was applied,
terminating training if no improvement was
observed within two epochs. The models were
trained separately for each task, with results

stored in designated directories for further
evaluation.

4.2 Subtask 2: Food hazard and product
“vector” detection, predicting the exact
hazard and product.

1. Data Preprocessing
The ‘text’ column was utilized to process tex-
tual features. Stopwords were removed, and
the text was lowercased to ensure consistency.
TF-IDF (Term Frequency-Inverse Document
Frequency) (Ramos et al., 2003) was then ap-
plied to convert the processed text into numer-
ical vectors, enabling effective feature extrac-
tion for classification models.

For categorical features, labels such as
‘product-category’, ‘hazard- category’, ‘haz-
ard’, and ‘product’ were transformed into nu-
merical values using Label Encoding. This
conversion ensured compatibility with ma-
chine learning models while preserving the
categorical relationships necessary for accu-
rate classification.

2. Feature Extraction
We employ TF-IDF vectorization to convert
raw ‘text’ into numerical features. This tech-
nique assigns importance scores to words
based on how frequently they appear in a docu-
ment while reducing the weight of commonly
occurring words across all documents.

The transformed text representation is then
combined with categorical encodings of
structured fields such as ‘hazard-category’,
‘product-category’. This integration allows
the model to leverage both textual and
structured data for improved prediction
accuracy.

3. Model Selection and Training
We use Random Forest Classifiers (Salman
et al., 2024) for both hazard and product pre-
diction, leveraging their ensemble learning
approach to construct multiple decision trees
and aggregate outputs for improved accuracy
and robustness. This reduces overfitting (Ying,
2019) and enhances generalization, making
it suitable for food hazard detection. Two
separate classifiers were trained: the Hazard
Model, which predicts specific hazard types
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(e.g. Salmonella, Listeria, Metal Contamina-
tioN), and the Product Model, which identifies
affected food products (e.g., Dairy, Seafood,
Beverages).

Each model utilizes 100 decision trees, bal-
ancing performance and computational effi-
ciency, with hyperparameter tuning to address
class imbalances and ensure accurate predic-
tions for less frequent hazard and product cat-
egories.

5 Experimental Setup

The Experimental Setup section outlines the key
tools, libraries, and evaluation strategies used to de-
velop and assess our food hazard detection models.
The Results subsection presents the performance
outcomes, highlighting the impact of our approach
on food hazard classification and product detection.

5.1 External Libraries & Tools

Several external libraries and tools were utilized for
data preprocessing, model training, and evaluation.
Pandas (v1.3.5) was used for data manipulation
and handling missing values. Scikit-learn (v1.0.2)
(Pedregosa et al., 2011) provided essential machine
learning functionalities, including Random Forest
classifiers, TF-IDF vectorization, and evaluation
metrics. Additionally, NLTK (Natural Language
Toolkit) (v3.6.7) (Bird et al., 2009) was employed
for text preprocessing, such as tokenization and
stopword removal.

For NLP-based modeling, the Hugging Face
Transformers library (v4.17.0) (Face) was used
to implement BertForSequenceClassification, en-
abling efficient fine-tuning of a pre-trained BERT
model for predicting the hazard and product vec-
tors.

5.2 Evaluation Metrics

To assess model performance, multiple evaluation
metrics were used. The Macro F1-score (Opitz and
Burst, 2019) was the primary metric, as it ensures
a balanced evaluation across all hazard and product
categories, even for underrepresented classes.

6 Results

Table 1 presents the results of individual runs for
the Conception phase of Subtask 1, where the final
test result achieved a score of 0.6442, demonstrat-
ing its effectiveness in classifying food hazards.

We conducted multiple submissions to evaluate dif-
ferent modeling approaches for food hazard and
product category classification.
Submission 1 utilized a Support Vector Machine
(SVM) (Salcedo-Sanz et al., 2014) model. Sub-
mission 2 employed BertForSequenceClassifica-
tion with both ‘text’ and ‘title’ (BERT-TT) as input
features. Submission 3 also used BertForSequence-
Classification but considered only ’text’ (BERT1-
T) as the input feature. Submission 4 experimented
with BertForSequenceClassification while increas-
ing the learning rate (BERT2-T), using ’text’ as the
sole input feature.

Table 1: Subtask 1 : Food hazard and product category
detection

Submission Macro F1-Score

Submission 1 (SVM) 0.6375
Submission 2 (BERT-TT) 0.7391
Submission 3 (BERT1-T) 0.7069
Submission 4 (BERT2-T) 0.6943

Table 2 presents the results of individual runs for
the Conception phase of Subtask 2, where the final
test result achieved a score of 0.2712, demonstrat-
ing its effectiveness in predicting food hazard and
product vectors. Submission 1 utilized a Logistic
Regression model (LR) (Maalouf, 2011). Submis-
sion 2 employed a Random Forest Classifier with
‘title’ as the input feature (RF-T). Submission 3 also
used a Random Forest Classifier but incorporated
multiple input features, including ‘title,’ ‘product-
category,’ and ‘hazard-category,’ (RF-TPH) to en-
hance prediction performance.

Table 2: Subtask 2 : Food hazard and product vector
prediction

Submission Macro F1-Score

Submission 1 (LR) 0.0040
Submission 2 (RF-T) 0.0116
Submission 3 (RF-TPH) 0.0991

7 Conclusion

Our system effectively addressed the SemEval-
2025 Food Hazard Detection task, achieving com-
petitive results in both food hazard and product
category classification and hazard-product vector
detection. The model demonstrated strong per-
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formance in classifying food hazards, while the
challenge of accurately associating hazards with
products highlighted areas for improvement.

8 Future Work

Future work will focus on making the model more
reliable and adaptable to different datasets for bet-
ter food hazard detection. Incorporating semi-
supervised or self-supervised learning techniques
to leverage unlabeled data could improve perfor-
mance in real-world scenarios with limited anno-
tated samples. Additionally, expanding training
data through synthetic data generation or data aug-
mentation may help address class imbalances and
enhance model adaptability. Integrating contextual
embeddings from domain-specific corpora, such
as food safety reports and scientific literature, can
provide richer feature representations, enabling the
model to capture intricate relationships between
hazards and products.

9 Limitations

Our approach utilizes BERT-based models for clas-
sification but may face challenges in capturing in-
tricate contextual relationships, particularly when
dealing with implicit references or specialized ter-
minology. The computational demands of fine-
tuning BERT and training Random Forest on large
datasets can be significant, making real-time de-
ployment in low-resource settings difficult. Addi-
tionally, while the dataset is well-structured for this
task, real-world food safety reports often contain
noisy, ambiguous, or incomplete information. The
model’s ability to generalize to such unstructured
or multilingual data remains an area for future ex-
ploration.
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