LTG at SemEval-2025 Task 10: Optimizing Context for Classification of Narrative Roles

Egil Rønningstad, Gaurav Negi


Abstract
Our contribution to the SemEval shared task 10, subtask 1 on entity framing, tackles the challenge of providing the necessary segments from longer documents as context for classification with a masked language model. We show how simple entity-oriented heuristics for context selection and the XLM-RoBERTa language model is on par with, or outperforms, Supervised Fine-Tuning with larger generative language models.
Anthology ID:
2025.semeval-1.61
Volume:
Proceedings of the 19th International Workshop on Semantic Evaluation (SemEval-2025)
Month:
July
Year:
2025
Address:
Vienna, Austria
Editors:
Sara Rosenthal, Aiala Rosá, Debanjan Ghosh, Marcos Zampieri
Venues:
SemEval | WS
SIG:
Publisher:
Association for Computational Linguistics
Note:
Pages:
440–447
Language:
URL:
https://preview.aclanthology.org/transition-to-people-yaml/2025.semeval-1.61/
DOI:
Bibkey:
Cite (ACL):
Egil Rønningstad and Gaurav Negi. 2025. LTG at SemEval-2025 Task 10: Optimizing Context for Classification of Narrative Roles. In Proceedings of the 19th International Workshop on Semantic Evaluation (SemEval-2025), pages 440–447, Vienna, Austria. Association for Computational Linguistics.
Cite (Informal):
LTG at SemEval-2025 Task 10: Optimizing Context for Classification of Narrative Roles (Rønningstad & Negi, SemEval 2025)
Copy Citation:
PDF:
https://preview.aclanthology.org/transition-to-people-yaml/2025.semeval-1.61.pdf