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Abstract

The SemEval-2025 Task 10 Subtask 2 presents
a multi-class multi-label text classification chal-
lenge(Piskorski et al.,, 2025). The task re-
quires systems to classify documents simultane-
ously across three categories: Climate Change
(CC), Ukraine-Russia War (URW), and Others.
Several challenges were identified, including
the distinct characteristics of climate change
and warfare topics, category imbalance, insuf-
ficient training samples, and distributional dif-
ferences across development and test sets. To
address these challenges, we implemented two
approaches. The first approach applies a Con-
trastive learning augmented Cascaded UNet
model (CCU), which employs a cascaded ar-
chitecture to explicitly model the label taxon-
omy. This model incorporates a UNet-style
architecture to classify embeddings extracted
by the base text encoder, with specialized path-
ways for different categories. We addressed
data insufficiency through contrastive learning
and mitigated data imbalance using an asym-
metric loss function. The second approach im-
plemented a Bi-Sequential Trees with Embed-
dings, Sentiment and Topics (BST-EST). In this
approach, transformer encoder models were
applied to extract word embeddings, then we
applied classical machine learning based clas-
sifiers such as Random Forest and XGBoost.
In the experiments, the CCU model achieves a
higher F1 (samples) score (0.345) on the test
set.

1 Introduction

SemEval-2025 Task 10 Subtask 2 introduces a mul-
tilingual, hierarchical, and multilabel document
classification challenge. Our approaches integrate
contrastive learning, hierarchical pathway model-
ing, and domain adaptation techniques to address
these challenges. We also identified several data-
specific issues, including insufficient training sam-
ples, significant class imbalance, and distribution
shifts between development and test sets. Our
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methodology systematically addresses these chal-
lenges through strategic neural architecture design
and feature engineering.

In the context of processing text data across
multiple languages, existing research generally fol-
lows two approaches, pre-training model on mas-
sive multilingual corpora to enable cross-lingual
transfer (Zhuang et al., 2021), or distilling multilin-
gual knowledge into monolingual language models
to optimize the computational efficiency(Reimers
and Gurevych, 2020). In our work, we applied a
pre-trained monolingual encoder model, fine-tuned
with a multilingual dataset as our base encoder.

For hierarchical multi-label classification with
limited samples, prior research such as the hier-
archical verbalizer model employs prompt-based
learning to incorporate label hierarchy knowledge
into the model(Ji et al., 2023). In our approach,
we explicitly defined the hierarchical data struc-
ture by organizing the dataset into topic-based
sub-categories, and designing a corresponding cas-
caded model architecture specifically tailored to
this dataset taxonomy. This architectural frame-
work enforces a hierarchical prediction flow. Ensur-
ing that classification results adhere to the inherent
structure of the classification task. The Proposed
BST-EST model utilizes the prompt templates with
masked language models to leverage pre-trained
knowledge for few-shot learning, dynamically cap-
turing the label-text interaction.

To mitigate the significant differences between
the CC and URW topics, we implement a Gradient
Reversal Layer (GRL) for domain adaptation. The
GRL adversarially aligns feature representations
from different domains by reversing gradients dur-
ing backpropagation. This technique encourages
the feature extractor to produce domain-invariant
features, enabling better knowledge transfer be-
tween the structurally similar but topically distinct
CC and URW narratives.(Ganin and Lempitsky,
2015).
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During inference, attention masks were applied
to ensure the model predictions adhere to the nat-
ural hierarchy of labels, forcing classifications to
respect the narrative and sub-narrative relationships
in the label taxonomy. In detail, the parent category
probabilities effectively act as an attention mech-
anism that gates the flow of information to spe-
cialized pathways. This ensures that the narrative
and sub-narrative predictions are only evaluated for
samples belonging to the correct parent category
by the masked attention mechanism.

A gradient inverse layer was implemented to
achieve domain adaption by learning domain-
invariant features across CC and URW. Contrastive
learning was applied to address the insufficient data
(Ye et al., 2021) (Li et al., 2024). Our augmenta-
tion pipeline combines contextual word substitu-
tion and back translation to mitigate the influence
of the data imbalance. During the experimentation,
we observed a significant limitation in the cascaded
model. When trained on both the narratives and
sub-narratives classification tasks simultaneously,
the model would effectively learn one task while
performing poorly on the other. This phenomenon,
which we identified through gradient flow visual-
ization, appeared to be caused by gradient vanish-
ing in one of the task pathway. By implementing
asymmetric loss, we successfully addressed this
problem, enabling the model to learn both tasks
effectively. By combining these techniques, our
approach provides a framework that achieves com-
petitive performance for multilingual, hierarchical,
multi-label text classification in low-resource sce-
narios.

2 Methodology

To address the multilingual, multi-class, multi-label
documentation classification task, we applied a
BST-EST model, and a CCU model to test the clas-
sification performance.

2.1 CCU model

Our primary approach integrates several method-
ological components including text data augmenta-
tion, contrastive learning, a cascaded UNet archi-
tecture, asymmetric loss functions, and an attention
mask mechanism during inference.

2.1.1 Data Augmentation

Initially, to reduce the distributional discrepancies
between development and test sets. We apply two
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Figure 1: The CCU model architecture.

augmentation strategies, back translation and syn-
onym replacement. These augmentation techniques
expand the training corpus while maintaining label
consistency. It is particularly critical for class im-
balance. The dataset was split into sub-categories.
The dataset was organized into a three level hierar-
chical structure, parent categories for "CC’, "'URW’,
and ’Others’ at top level, followed by narratives
and subnarratives were then split by topic at lower
levels. The hierarchical data organization directly
informed our model architecture, each pathways
designed to correspond to each level of the dataset
hierarchy. This design ensuring that the classifica-
tion logits follow the label taxonomy.

2.1.2 Model Architecture

The hierarchical model architecture was designed
to adapt the dataset taxonomy. The model leverages
the pre-trained all-MiniLM-L12-v2 transformer en-
coder model (Wang et al., 2020), with cascaded
UNet for text classification. We selected MiniLM
to enable rapid experimentation which benefits
from its performance and computational efficiency.
We chose to adapt the UNet architecture, tradition-
ally used for image segmentation, for hierarchical
text classification because of its structural advan-
tages. The UNet encoder-decoder design with skip
connections allows information to flow across dif-
ferent resolution levels, which we repurpose for
hierarchical label prediction. In our text classi-
fication context, the UNet cascaded structure en-
ables feature extraction at different levels, while
the skip connections facilitate information shar-
ing between domain classification and narrative
and sub-narrative pathways. This architecture ef-
ficiently models our label taxonomy through its
natural hierarchical processing.

Based on the parent category classification, the
model activates one of two specialized domain path-
ways: the CC pathway or the URW pathway. The
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skip connections facilitate information sharing be-
tween the domain classification and the narrative
and sub-narrative pathways, allowing later classifi-
cation decisions to leverage earlier domain-specific
features while maintaining hierarchical consistency.
This architecture efficiently models our label tax-
onomy through a hierarchical pathway processing
flow.

Given our limited training data and the need
to learn discriminative features across multiple
languages and domains, we employed contrastive
learning as a data-efficient training strategy. This
approach maximizes the utilization of available
samples by learning from both positive and nega-
tive pairs, effectively expanding our training sam-
ples without requiring additional labeled data. The
implementation of contrastive learning improves
the ability of the model to learn features from lim-
ited training data. A cosine embedding loss was
implemented, which maximizes similarity between
positive pairs while pushing negative pairs apart in
the embedding space. Each pathway defined dif-
ferent sample strategies based on the sub-divided
datasets.

The multi-class training objective combines
three components: Cross-Entropy loss was imple-
mented to classify the three parent category. To
address severe class imbalance in our hierarchical
classification task, we implemented asymmetric
loss. During experimentation, we observed that the
model struggled to learn rare classes, leading to
gradient vanishing issues. Asymmetric loss assigns
different penalties to false positives and false neg-
atives, providing stronger learning signals for un-
derrepresented classes and stabilizing the training
process. During experimentation, we observed gra-
dient vanishing through gradient flow visualization.
The asymmetry loss was implemented to classify
the sub-groups of narratives and sub-narratives to
handle class imbalance(Ben-Baruch et al., 2021).
Contrastive learning and cosine embedding loss
were implemented to adapt to the small dataset.
The final loss is computed as the sum of all loss
values.

During inference, parent category probabili-
ties thresholded at 0.5 dynamically activate sub-
category pathways by applying an attention mask,
ensuring classification results adhere to the hierar-
chical labels.
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Figure 2: The BST-EST Model Architecture Diagram
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Figure 3: The BST-EST Feature Engineering pipeline

2.2 BST-EST model

In our second approach, we develop a hierarchi-
cal classification system that first transforms news
articles into numerical representations using multi-
ple feature-engineering techniques. These include
BERT and ModernBERT embeddings for semantic
encoding, BART-generated summaries for narra-
tive abstraction, and complementary features from
sentiment analysis (VADER, TextBlob, SentiWord-
Net) and LDA topic modeling. These represen-
tations are then processed by two machine learn-
ing models—ranging from logistic regression to
XGBoost—with the first predicting broad narra-
tives and the second using these predicting sub-
narratives. Model selection and hyperparameter
optimisation are performed systematically using
Optuna’s TPE sampler with k-fold cross-validation.
The diagrams for the model architecture and the
feature engineering process outline this visually.
Initially, the dataset needed cleaning. This in-
cluded removal of newline characters and exces-
sive whitespace to ensure that the language models
could generate the most accurate inferences. To
capture the rich context of the news articles and im-
prove model performance, several advanced feature
engineering techniques were applied. First, BERT
embeddings were used to convert text into dense
vector representations. The BERT and Modern-
BERT models were leveraged to generate embed-
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dings by processing the input articles. Each article
was tokenized and passed through the BERT model,
with the embedding extracted from the special CLS
token. These embeddings serve as powerful repre-
sentations that capture both syntactic and semantic
features of the text, allowing the models to better
understand and process the articles.

Next, BART Summaries were used to extract
narrative summaries from the articles. The BART
model was employed to summarise each article by
generating a concise version that captured the main
narratives. These summaries were then passed
through BERT to generate embeddings, further im-
proving the model’s ability to process the content.
This step served as an abstraction layer that could
help focus on the most relevant parts of the article
when classifying narratives.

In addition to embeddings, several additional
features were engineered using common sentiment
analysis techniques and topic modeling(Liang et al.,
2020). VADER Sentiment Analysis was applied
to each article to generate sentiment scores(Hutto
and Gilbert, 2014), including negative, neutral, pos-
itive and compound scores. This feature helped
capture the overall emotional tone of the articles.
TextBlob was also used to assess sentiment polar-
ity and subjectivity, offering complementary infor-
mation on the emotional stance and subjective na-
ture of the text. Furthermore, SentiWordNet(Esuli
et al.), a lexical resource for sentiment analysis,
was employed to calculate the positive and nega-
tive sentiment scores based on word-level analy-
sis. For further context, Latent Dirichlet Allocation
(LDA) was also applied as a topic modeling tech-
nique(Blei et al., 2003). LDA helped extract the
latent topics present in the articles by using a count
vectorizer to convert the text into a bag-of-words
format. This was followed by LDA to assign a
distribution of topics to each article, which could
be useful for understanding the broader themes or
issues being discussed. The sentiment scores from
Valence Aware Dictionary and sEntiment Reasoner
(VADER) and TextBlob, as well as the topic dis-
tributions from LDA, were concatenated with the
BERT embeddings to form a single feature vector
for each article.

Optuna’s Tree-structured Parzen Estimator
(TPE) was used for the optimisation of Macro F1
for both models (Watanabe, 2023). The optimisa-
tion process incorporated k-fold cross-validation
to ensure generalisability across datasets. it in-

volved hyperparameter-tuning for a range of ma-
chine learning models, from simpler approaches
such as logistics regression, decision trees and SVC
to more advanced ensembles like Random For,
GBM, XGBoost and LightGBM. This then saw
exploring a wider range of the successful architec-
tures. In addition to hyperparamter-tuning, the pro-
cess also evaluated different which of the embed-
dings methods were best, the number of principal
components and simultaneously with the hyperpa-
rameters. With the relatively small data sample,
this was possible.

3 Experiment

The training set consists of 1699 samples dis-
tributed across five languages (English, Russian,
Hindi, Portuguese, and Bulgarian). The taxon-
omy was designed to analyze and compare pro-
paganda narratives in two conflict domains: the
Russia-Ukraine war and climate change. Both cate-
gories employ similar broadcasting techniques that
attempt to redirect responsibility, challenge oppos-
ing credibility, heighten concerns about negative
outcomes, and divert attention. These approaches
tend to polarize audiences and support specific po-
litical positions.

We further split the dataset into subsets based
on hierarchical relationships, with narratives and
sub-narratives grouped by their main topic (CC or
URW). This organization forced the model to learn
classification patterns that respect the category hi-
erarchies. All language materials were combined
into a unified multilingual dataset.

3.1 Evaluation Metric

The text classification task was evaluated using the
F1-samples metric, which computes the F1 score
averaged across all narrative and sub-narrative la-
bels for each document, with systems ranked on
the leaderboard based on this metric.

3.2 Experiment Setup

We implemented our methodology on NVIDIA
A4000 and NVIDIA RTX3090 GPUs, using CUDA
12.4 and PyTorch 2.5.0. Our preprocessing pipeline
included label binarization to convert labels into
binary vectors, while preserving hierarchical rela-
tionships through manual subdivision of the dataset.
The dataset contains samples in all languages, but
inference was only performed on the English test
set. For CCU model, we applied class weighting
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Table 1: Text classification results on the test set.

Model F1 Macro (Coarse) F1 St. Dev. (Coarse) F1 (Samples) F1 St. Dev. (Samples)
CCU 0.486 0.363 0.345 0.360
BST-EST 0.354 0.440 0.311 0.437

to address label imbalance using inverse frequency
weighting.

We experimented with several base mod-
els including BERT, ModernBERT, and all-
MiniLM-L12-v2(Devlin et al., 2019)(Warner et al.,
2024)(Wang et al., 2020). The document embed-
dings produced by the encoder were used for par-
ent category classification (CC, URW, or Other)
and then routed to specialized domain pathways.
For domain adaptation, we implemented a GRL
that adversarially aligns embeddings from different
topics by reversing the gradient direction during
backpropagation.

The pathways were designed to make narrative
and sub-narrative classification to form up an end-
to-end deep learning approach to handle the com-
plexity of different levels of label granularity.

The training process applied the AdamW op-
timizer, with linear warmup in 10 percent steps
followed by cosine decay, a batch size of 32 with
gradient accumulation over 4 steps. Regularization
methods applied including dropout (at p=0.1) in all
dense layers, mixup interpolation(a=0.4 beta distri-
bution), and gradient clipping(max norm=1.0).

For the BST-EST model, the base models in-
cluded Logistic Regression, SVC, Decision Tree,
Random Forest, GBM, XGBoost, LightGBM and
ExtraTrees. Among these, ExtraTrees outper-
formed the others across evaluation metrics. Se-
mantic meaning was captured through the use of
embeddings produced by one of ModernBERT or
BERT, using VADER, TextBlob, SentiWordNet for
sentiment representation features along with LDA
for topic based features.

Hyperparameter optimization was performed
using a Tree-structured Parzen Estimator (TPE)
method from Optuna, with a focus on the most
important hyperparameters for each model archi-
tecture. Regularisation parameters were explored
to control complexity and prevent over-fitting and
for ensemble-based tree models, the number of
estimators explored were limited to prevent over-
fitting, given the small dataset. A range of other key
hyperparameters, including those specific to each
algorithm, were also searched to optimise model

performance, focusing on a wider range for the bet-
ter performing models. Model evaluation was also
performed using a range of k (k=5, 6, ..., 10) for
k-fold cross-validation.

4 Discussion

In this SemEval-2025 Task 10 Subtask 2, we
successfully implemented our approaches and
achieved 6th place. We proposed two methods
to solve this multi-label multi-class multilingual
text classification task. The CCU model, which in-
tegrates a pre-trained language model with a UNet
cascaded classifier, hierarchical dataset organiza-
tion, gradient reversal for domain adaptation, asym-
metric loss, and contrastive learning. The BST-
EST method using pre-trained transformer encoder
model, to extract embeddings, also the sentiment
message was added to the embeddings then classi-
fied with machine learning classifiers.

Furthermore, limitations still remain unsolved.
For the CCU model, labels are represented using
one-hot encoding rather than semantic text embed-
dings, which results in the loss of inherent label
meaning.

5 Conclusion

This article presents an integrated implementation
of existing solutions for multi-class, multi-label
text classification to address SemEval-2025 Task
10 Subtask 2. Our team developed two distinct
approaches to enhance classification performance.
One built upon a cascaded UNet model with con-
trastive learning, and another leveraged multiple
NLP feature extraction methods combined with
machine learning classification techniques. Our ef-
forts resulted in achieving 6th place with the main
metric F1 sample of 0.345.

The CCU model addressed the challenges identi-
fied during experimentation. We mitigated data im-
balance through augmentation process, while con-
trastive learning techniques helped overcome data
insufficiency. The cascaded model architecture,
with specialized pathways, was designed to tackle
the complexities of multi-class learning across dif-

422



ferent label granularities. These solutions con-
tributed to performance improvements.

Finally, the result remains below the optimal
level for a reasonable classification. Furthermore,
the integration of existing research offers limited
novelty in the research field. Additionally, the path-
way learning issue we identified, where the model
would learn one pathway at the expense of another,
suggests opportunities for developing more bal-
anced training techniques for hierarchical classifi-
cation models.
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