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Abstract

This paper presents our system developed for
the SemEval-2025 Task 11: Text-Based Emo-
tion Detection (TBED) task, which aims to
identify the emotions perceived by the major-
ity of people from a speaker’s short text. We
introduce a multi-agent framework for emo-
tion recognition, comprising two key agents:
the Emotion Perception Profiler, which iden-
tifies emotions in text, and the Intensity Per-
ception Profiler, which assesses the intensity
of those emotions. We model the task using
both generative and discriminative approaches,
leveraging BERT series and large-scale genera-
tive language models (LLMs). A multi-system
collaboration mechanism is employed to fur-
ther enhance the accuracy, stability, and ro-
bustness. Additionally, we incorporate cross-
lingual knowledge transfer to improve perfor-
mance in diverse linguistic scenarios. Our
method demonstrates superior results in emo-
tion detection and intensity prediction across
multiple subtasks, highlighting its effective-
ness, especially in language adaptability. Our
code is available at https://github.com/
tongzeliang/Semeval2025

1 Introduction

Emotion perception is a complex and subtle process
involving how individuals perceive, express, and
interpret emotions (Canales and Martinez-Barco,
2014; Ghosal et al., 2021; Zhang et al., 2023). This
paper focuses on the Text-Based Emotion Detec-
tion (TBED) task proposed in the SemEval-2025
Task 11 (Belay et al., 2025; Muhammad et al.,
2025b), which aims to determine the emotion that
the majority of people perceive the speaker to be
experiencing based on a sentence or a short text
fragment uttered by the speaker (along with further
assessment of the intensity of emotions).

The TBED task concerns the emotion perceived
by the majority of people rather than the speaker’s
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Figure 1: Examples of TBED. The goal of this task is to
recognize what emotion most people think the speaker
might have felt given a sentence or a short text snippet
uttered by the speaker.

actual emotion. For example, the sentence “I finally
finished all my work today; this is fantastic” may
evoke feelings of joy or satisfaction in most people.
However, it does not rule out the possibility that the
speaker’s actual emotion might differ, perhaps due
to some form of reverse expression. Furthermore,
this task differs from the following emotion-related
tasks: (1) reader emotions induced by the text (Rao
et al., 2014) and (2) emotions of individuals men-
tioned in the text (Wegge and Klinger, 2023).

In this paper, we propose an innovative emotion
recognition framework based on multi-agent collab-
oration (Guo et al., 2024). Specifically, we design
two key agents: (1) the Emotion Perception Profiler,
used for identifying emotions in text, primarily ap-
plied to subtasks A and C, and (2) the Intensity
Perception Profiler, which further assesses emotion
intensity based on the output of the first agent, ap-
plied to subtask B. We model the task using both
generative and discriminative paradigms, training
the intelligent agents using BERT series (Devlin,
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2018; Liu, 2019) models and large-scale genera-
tive language models (LLMs) (Yang et al., 2024;
Grattafiori et al., 2024; Guo et al., 2025). Given that
different base models acquire different capabilities
during the pre-training phase, including learned
knowledge, linguistic proficiency, and task adapta-
tion, we further introduce a multi-system collabora-
tion mechanism. The intelligent agents constructed
on unified base models are referred to as an agent
system. By fusing prediction results from multiple
systems, we enhance the accuracy, stability, and
robustness of the results. Additionally, for sub-
task C, we introduce a cross-linguistic knowledge
transfer mechanism, significantly improving the
performance in cross-linguistic scenarios.

For the final evaluation, we select the models
that performed best on the validation set. We test
all languages involved in subtasks A and B. For
subtask C, we only test languages that do not have
any training or validation data during the validation
phase to ensure the reliability of the results. Our ap-
proach achieves outstanding performance across all
three subtasks, validating the effectiveness of our
method, particularly in terms of language adaptabil-
ity and emotion intensity prediction capabilities.

2 System Overview

Preliminary. Given a sentence or text snippet
W = {w1,we,...,w,} uttered by the speaker, a
predefined emotion set £ = {ey, ea, ..., €y, }, the
objective of the three subtasks is as follows:

* Subtask A: Predict the perceived emotion(s)
S = {ex|ex € E} of the speaker.

* Subtask B: Predict the perceived emotion(s)
and their corresponding emotional intensity
P = {(ek,ix)|ex € E,ix, € I}, where I =
{low, moderate, high}, denotes three degrees
of the emotion intensity.

* Subtask C: Predict the perceived emotion(s)
S = {ex|er € E} of the speaker in an unseen
target language, without relying on labeled
training data in that language.

Framework. Our framework consists of two
agents, Emotion Perception Profiler (EPP) and
Intensity Perception Profiler (IPP). Specifically, as
shown in Figure 2, EPP receives the text input and
focuses on detecting the speaker’s emotion, while
IPP receives both the text input and the previously
detected emotion information, taking the responsi-
bility of determining the intensity of that emotion.
In the following sections, we will present two dis-

tinct implementations of these agents: one based
on BERT and the other based on Large Language
Models (LLMs).

2.1 BERT-based Method

This approach leverages a Pretrained Language
Model (PLM) model to obtain embedded repre-
sentations for the corresponding features, framing
the problem as either a multi-label or single-label
classification task.

Emotion Perception Profiler. Firstly, we adopt
XLM-Roberta as our PLM to generate contextual
word representations by:

H =XLM-Roberta ({w1, wa, ..., wy}),
:[h[CLS] ) hla h2> R hn7 h[SEP]}

For each emotion ¢; € F, a dedicated binary clas-
sification head is defined as follows:

p; = Sigmoid (wZT hierg) + b,») G

Finally, the speaker is considered to exhibit the
corresponding emotion if the probability p; exceeds
0.5. The training loss is defined as:

L =y;logp; + (1 —y;)log(1—pi), ()
where y; € {0, 1} is the ground truth label for the
i-th emotion in the predefined set.

€]

Intensity Perception Profiler. Similar to EPP, we
utilize a PLM to encode the textual information
along with the corresponding emotions that are to
be assessed for intensity:

H =XLM-Roberta ({wy, wa, . .
=[hjcrg); h1, ho, ..
The representation of ey, is subsequently passed
through a fully connected layer with a softmax acti-

vation function, producing probability distributions
across all intensities:

pr = Softmax (WThemo + bk) G

. >wn}> ek) )

4)
i) hna h[SEP]a hemo]-

The training loss is formulated as the cross-entropy
loss between the ground truth and the predicted
label distributions, similar to formula 3.

2.2 LLM-based Method

Given the outstanding performance of LLMs across
various domains, such as text classification and
sentiment analysis, we also employ an LLM-based
approach to implement the EPP and IPP, transform-
ing the three subtasks into text generation tasks.
We combine fine-tuning and ICL by utilizing
LoRA as the parameter-efficient fine-tuning (PEFT)
method to optimize the model and incorporating
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Figure 2: Our framework. The Emotion Perception Profiler analyzes the text output by the speaker to perceive
the corresponding emotion, thereby addressing subtasks A and C. The Intensity Perception Profiler combines both
emotional and textual information to assess the intensity of each emotion, completing subtask B.

Prompt of Subtask C

Instruction
Given a emotion set: ['Angry', 'Joy', 'Fear', 'Surprise', ...],
please identify the emotions of the speaker in a given text.

Cross Lingual Demonstrations

Input: Da hast du, denke ich, alles richtig gemacht.
Output: Joy

Input: 92 /NG TC7L-9° AAPIP:: Tbdmr 22
Output: Neutral

Input: 3R TTE! SThT T TS BT B 2 11
Output: Joy, Surprise

Test Input

Input: Bangga aku jadi orang sunda Salam dari bogor.
Output:

Figure 3: Examples of the prompt designed for subtask
C. Specifically, the demonstrations used in ICL and the
final test examples belong to different languages.

ICL demonstrations into the prompt, formulated as:

g~ Prem(y | T,z). (6)
Here, T = {Z,t(z1,1), ..., t(Tk, yx)}, where Z
represents the task instruction and ¢ denotes the
template of few-shot demonstrations for ICL. No-
tably, for subtask C, we introduce a novel cross-
lingual ICL paradigm that leverages knowledge
transfer from high-resource languages to enhance
performance in low-resource settings where no tar-
get language training data is available.

Combine Fine-tuning and ICL. Conventionally,
fine-tuning adapts a model to a specific task by ex-
plicitly adjusting its parameters, while in contrast,
ICL performs the task through the prompting of ex-
amples. By incorporating ICL demonstrations into
the prompt during the fine-tuning phase, the model
can learn from both labeled data and contextual
examples, enhancing its task understanding and
generalization ability. Specifically, for subtasks A
and B, we select the semantically closest top-k in-
stances as ICL demonstrations by calculating the
cosine distance between sentence embeddings.

Cross-lingual ICL. To address the zero-shot cross-
lingual requirement of Subtask C, where no target-
language training data is permitted, we propose a
novel multilingual knowledge transfer framework
through cross-lingual in-context learning, as shown
in Figure 3. Our approach operates in two phases:

* Fine-tuning: During the PEFT phase via
LoRA, we construct ICL demonstrations in
T using multilingual examples {(zs,ys)}
from high-resource languages s € S (e.g.,
English, Spanish), while maintaining the tar-
get language ¢ exclusive from 7, exclusively
for inference. The model is optimized to learn
language-agnostic patterns through:

L=Eqy~p[—10g Peem(y | Tmsz)] (7)

where T, contains demonstrations from mul-
tiple high-resource source languages.

Inference: At inference time for target lan-
guage t, we retrieve semantically similar ex-
amples from other source languages using:
sim(zy, z5) = cos(E(xt), E(zs))  (8)
where E denotes a multilingual sentence en-
coder (e.g., LaBSE). The top-k most relevant

source-language examples {(zs,,ys;) }<_, are
injected into the prompt 7T,.

This dual-phase approach enables three key advan-
tages: (1) Cross-lingual capability activation by
leveraging ICL demonstrations from high-resource
languages to stimulate the model’s latent under-
standing of the target low-resource language, (2)
Cross-lingual semantic bridging via contrastive-
aligned multilingual embeddings, and (3) Zero-
shot generalization without violating the target-
language data constraint. In the Experiment sec-
tion, we further elaborate on and summarize the
selection strategy for the source high-resource lan-
guage derived from empirical evidence.
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Method

Chinese(chn) German(deu) English(eng) Spanish(esp) Portuguese(ptbr) Russian(rus)

A B A B A

B A B A B A B

XLM-Roberta 59.10 70.26 65.00 67.08 72.80

80.06 79.40 75.16 57.20 56.88 8590 88.66

LLaMa3.1-8B  70.62 69.98 67.80 67.91 80.09
Deepseek-7B 66.30 69.11 6230 64.78 78.70
LLMs Qwen2.5-7B 67.30 69.72 7090 67.19 79.10
Mistralv0.3-7B  70.10 68.79 6520 66.72 82.60
Gemma2-9B 62.10 - 60.80 - 81.20

79.82 81.67 7528 53.70 56.00 89.77 87.95
78.33 7730 7494 51.40 55.67 85.20 88.24
78.30 81.90 75.62 61.60 56.94 87.10 88.70
7792 82.08 74.19 5220 56.99 88.10 87.48
- 75.10 - 53.10 - 79.20 -

Table 1: Experimental results on the validation set of subtasks A and B. Average F1-Macro scores are reported for
subtask A. Pearson correlation scores are reported for subtask B. The best performance scores are in bold.

Source languages Indonesian(ind) Javanese(jav) isiXhosa(xho) isiZulu(zul)
Portuguese(Brazilian; ptbr) 37.00 30.32 8.48 4.09
Russian(rus) 39.49 31.79 10.61 11.89
German(deu) 36.06 26.22 5.43 4.28
Qwen2.5-7B  Spanish(esp) 47.86 38.92 16.87 16.15
Swabhili(swa) 34.95 28.89 - -
Sundanese(sun) 51.28 36.68 - -
Chinese(chn) 37.70 28.41 6.41 4.61

Table 2: Experimental results on the validation set of subtask C. Average F1-Macro scores are reported. The best

performance scores are in bold.

Source languages  ind jav

all 51.39 37.13
sun+esp 5439 41.46
sun+esp+rus+swa  49.43  35.50
sun+esp+rus 55.06 38.40
Qwen2.5-78 11 who swa 4599 39.15
all w/o deu 4720 40.34
all w/o sun 46.67 37.54
all w/o ptbr 46.45 39.98

Table 3: Experimental results on the validation set of
subtask C. In contrast to results in Table 2, we employ a
diverse set of source languages for model training.

3 Experiments

3.1 Setup

Models and Metrics. For discriminative mod-
eling, we employ the XLM-Roberta-Large (Liu,
2019) as the encoder and employ linear lays as clas-
sifiers. For generative modeling, we utilize several
prominent large language models (LLMs), includ-
ing LLaMa3.1-8B (Dubey et al., 2024), Deepseek-
7B (Bi et al., 2024), Qwen2.5-7B (Yang et al.,
2024), Mistralv0.3-7B (Jiang et al., 2023), and
Gemma2-9B (Team et al.,, 2024). We adopt
LoRA (Hu et al., 2021) as our parameter-efficient
fine-tuning method.

Metrics. The evaluation metric for subtasks A
and C is the F1-macro based on the predicted and
gold labels. Subtask B employs the Pearson cor-
relation between the predicted labels and the gold
ones for evaluation.

3.2 Main Results

During the validation phase, we evaluate six lan-
guages for subtasks A and B, with the results pre-
sented in Tables 1. Despite these models being
pre-trained on multiple languages, disparities still
exist. Overall, the performance of LLaMA and
Qwen is relatively superior. Additionally, the ef-
fectiveness of LLMs generally surpasses that of
BERT-based (smaller) models (SLMs).

Notably, for subtask A, the superiority of LLMs
is more pronounced. However, for subtask B, there
is no significant difference between the two. This
discrepancy may be attributed to the different evalu-
ation metrics employed for subtasks A and B. This
observation provides valuable insights, suggesting
that it may be beneficial to integrate both large and
small models to leverage their respective strengths
for multi-agent collaboration. Furthermore, due
to the adoption of a multi-step mode, a potential
issue of exposure bias may arise. However, our
experiments revealed that end-to-end modeling ap-
proaches yielded inferior results, which may be
related to the complexity of the tasks. We also
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Baselines

Languages Ours
Qwen2.5-72B  Dolly-v2-12B  Llama-3.3-70B  Mixtral-8x7B  Deepseek-R1-70B

Afrikaans(afr) 60.18 23.58 61.28 53.69 43.66 57.37(13.91)
Algerian Arabic(arq) 37.78 38.59 55.75 45.29 50.87 59.4813.73)
Moroccan Arabic(ary) 52.76 24.27 44.96 35.07 47.21 58.1915.43)
Chinese(chn) 55.23 27.52 53.36 4491 53.45 68.00;15 77
German(deu) 59.17 26.86 56.99 51.20 54.26 70.64 (111 47
English(eng) 55.72 42.60 65.58 58.12 56.99 80.40(;14.59)
Spanish(esp) 72.33 36.41 61.27 65.72 73.29 83.83(110.54)
Hausa(hau) 43.79 29.43 50.91 40.40 51.91 61.54 (19 63
Hindi(hin) 79.73 27.59 60.59 62.19 76.91 89.56(19.83)
Igbo(ibo) 37.40 2431 33.18 31.90 32.85 54.12 116 72)
Kinyarwanda(kin) 31.96 19.73 34.36 26.35 32.52 44.51110.15)
Marathi(mar) 74.58 25.69 67.40 50.36 76.68 87.74(111.06)
Nigerian-Pidgin(pcm) 38.66 34.41 48.67 45.61 45.00 60.45:11, 75
Portuguese(Brazilian; ptbr) 51.60 25.90 45.03 41.64 51.49 62.46 110 56)
Portuguese(Mozambican; ptmz) 40.44 16.70 34.06 36.52 39.58 50.72110.28)
Romanian(ron) 68.18 43.58 71.28 68.51 65.02 74.60 13 30
Russian(rus) 73.08 29.72 62.61 61.72 76.97 90.08113.11)
Sundanese(sun) 42.67 32.20 46.33 42.10 44.61 48.16(11 g3,
Swahili(swa) 27.36 17.63 29.47 26.51 33.27 30.23(;3.04)
Swedish(swe) 48.89 21.79 50.26 48.61 44.60 58.15(17.89)
Tatar(tat) 51.58 25.12 49.84 39.44 53.86 75.43(121.57)
Ukrainian(ukr) 54.76 17.16 42.34 40.15 51.19 63.70(15 94
Emakhuwa(vmw) 20.41 16.03 18.96 19.00 19.09 22.17 41 76)
Yoruba(yor) 24.99 16.00 23.70 19.67 27.44 39.19(111.75)
Avg 50.14 26.78 48.67 43.95 50.11 62.11 41, 97

Table 4: Experimental results on the test set of subtask A. Average F1-Macro scores are reported. The best
performance scores are in bold.

Baselines

Languages Ours
Qwen2.5-72B  Dolly-v2-12B Llama-3.3-70B  Mixtral-8x7B  Deepseek-R1-70B

Algerian Arabic(arq) 29.54 3.80 36.29 31.05 36.37 50.67 (+14.30)
Chinese(chn) 46.17 8.11 51.86 46.52 48.57 67.09 11593
German(deu) 43.30 7.43 53.46 47.60 54.78 72.29117.51)
English(eng) 55.99 13.35 44.14 55.26 48.08 79.34 123 35)
Spanish(esp) 51.11 10.49 51.64 55.54 60.74 78.75(118.01)
Hausa(hau) 27.00 6.43 39.16 25.84 38.85 61.76125 ¢0)
Portuguese(Brazilian; ptbr) 38.20 9.02 40.90 39.17 46.72 65.06(115.34)
Romanian(ron) 55.48 12.62 45.87 57.07 57.69 65.71(15.02)
Russian(rus) 58.25 13.96 57.56 56.01 62.28 88.34 16.06)
Ukrainian(ukr) 37.74 6.04 36.99 38.74 43.54 60.34 115 50)
Avg 44.28 9.13 45.79 45.28 49.76 68.94 (119 15)

Table 5: Experimental results on the test set of subtask B. Pearson correlation scores are reported. The best
performance scores are in bold.

Baselines Ours
Languages
Qwen2.5-72B  Dolly-v2-12B Llama-3.3-70B  Mixtral-8x7B  Deepseek-R1-70B  F1 =~ RANK
Indonesian(ind) 57.29 36.61 39.20 54.37 49.51 60.90 3rd
Javanese(jav) 50.47 36.18 41.88 48.37 43.05 43.86 Ist
isiXhosa(xho) 29.56 24.12 30.79 22.92 29.08 26.03 3rd
isiZulu(zul) 22.03 14.72 21.48 20.38 20.38 22.56 3rd
Avg 39.84 2791 33.34 36.51 35.51 38.34 -

Table 6: Experimental results on the test set of subtask C. Average F1-Macro scores are reported. The best
performance scores are in bold.
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Method English German Portuguese

LLaMa3.1.88 °U 80.09 67.80 53.70
-w/o ICL  78.35 67.01 49.16
Qwen2.5-7B ours 79.10 70.90 61.60
-w/o ICL  77.92 68.34 59.77
Mistral0.3-7B ours 82.60 65.20 52.20
-w/oICL  79.88 63.50 50.36

Table 7: Ablation results of subtask A. “w/0” ICL de-
notes the removal of demonstrations from the prompt.
The best results are highlighted in bold.

preliminarily verified that code-style prompts can
enhance the performance of end-to-end modeling
approaches. Table 2 and 3 illustrate the validation
set performance for subtask C. We trained models
using different source languages and tested them
on four target languages. We conducted experi-
ments under two distinct scenarios: one involving
training the model using a single source language
exclusively, and the other incorporating multiple
languages for model training. The results indicate
that source languages linguistically closer to the
target languages enhance the model performance.

During the testing phase, we compare our
approach with official LLM baselines (Muham-
mad et al., 2025a; Belay et al., 2025), includ-
ing Qwen2.5-72B, Dolly-v2-12B, Llama-3.3-70B,
Mixtral-8x7B, and DeepSeek-R1-70B. The results
for the three subtasks are presented in Tables 4, 5
and 6, respectively. Even though these baselines
employed significantly larger models, our approach
demonstrated superior performance.

3.3 Ablation Study

We conduct a series of ablation experiments to sys-
tematically evaluate the contribution of each pro-
posed optimization, as shown in Tables 7 and 8.
The results reveal several key insights: (1) Incor-
porating ICL demonstrations during fine-tuning
improves model performance. This can be at-
tributed to the dual role of ICL examples in provid-
ing explicit task-specific guidance and enhancing
the model’s ability to generalize from contextual
patterns, thereby bridging the gap between pre-
trained knowledge and downstream task require-
ments. (2) The single-agent IPP™ setup under-
performs compared to the multi-agent approach,
highlighting the importance of task decomposition
and collaborative reasoning. The multi-agent sys-
tem likely benefits from specialized handling of
subtasks, enabling more robust decision-making

Method English German Portuguese
ours 79.82 67.91 56.00
LLaMa3.1-8B -w/o ICL 76.34 65.48 53.72
-w IPP* 77.20 66.00 54.26
-wCodelPPT  78.47 67.63 55.01
ours 78.30 67.19 56.94
Qwen2.5-7B -w/o ICL 77.92 68.34 59.77
-wIPP* 76.47 65.23 54.10
-wCodeIPPT 7699  66.31 54.99
ours 77.92 66.72 56.99
Mistral0.3-7B -w/o ICL 76.23 63.34 54.87
-wIPP* 75.31 63.03 54.30
-w CodelPP™  76.36 62.69 55.07

Table 8: Ablation results of subtask B. “IPP™” refers
to the approach where a single agent directly performs
both emotion prediction and intensity detection tasks.
“CodeIPP*” extends IPPT by utilizing a code-style
prompt, modeling emotion and intensity as structured
pairs, and applying the corresponding LLM code ver-
sion. The best results are highlighted in bold, and the
second-best results are underlined.

through inter-agent interactions. (3) Replacing nat-
ural language prompts with code-style formatting
further enhances performance. This improvement
may stem from the structured nature of code-style
prompts, which enforce stricter syntactic and se-
mantic constraints, reducing ambiguity and align-
ing more effectively with the model’s pre-trained
capabilities in code comprehension and structured
reasoning. Collectively, these findings demonstrate
that each optimization contributes meaningfully
to the overall performance, validating the design
choices of our framework.

4 Conclusion

In this paper, we propose a multi-agent framework
for the Text-Based Emotion Detection (TBED) task
in the SemEval-2025 Task 11. Our system, com-
prising the Emotion Perception Profiler and Inten-
sity Perception Profiler, demonstrates superior ac-
curacy, stability, and robustness across multiple
subtasks. The cross-lingual knowledge transfer
and in-context learning strategies effectively ad-
dress challenges in low-resource languages, en-
hancing language adaptability. Extensive exper-
iments demonstrate the effectiveness of our ap-
proach without the need for costly pre-training.
Future work will explore further optimizations in
diverse linguistic and emotional contexts.

402



Limitations

We acknowledge the following limitations of our
work: (1) For subtask B, the sequential process
of first determining sentiment and then predict-
ing intensity inevitably introduces exposure bias.
(2) The necessity of employing multiple collabo-
rative agents incurs additional computational and
storage overhead. (3) The absence of supplemen-
tary pre-training limits the model’s adaptability to
languages less encountered during its initial pre-
training phase.
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A Experimental Details

Datasets Table 9 presents the distribution of train-
ing data across various subtasks. Subtask A encom-
passes datasets in 27 languages, with a relatively
balanced distribution. Each language has approx-
imately 2,300 training samples on average. Sub-
task B includes datasets in 11 languages, with an
average of 2,200 training samples per language.
Subtask C evaluates the cross-lingual performance.
The complete test dataset comprises 32 languages.
However, most of these languages are included
in subtask A. Therefore, we focus on languages
that lack any training data, totaling four languages.
Subtasks A and C require the identification of senti-
ment categories, including joy, sadness, fear, anger,
surprise, and disgust (with some languages involv-
ing only five categories). Subtask B further as-
sesses the intensity of the identified emotions, cate-
gorizing them into low, moderate, and high degrees.
For more details, refer to Muhammad et al. (2025a);
Belay et al. (2025).

Implementation Details For Bert models, we set
the learning rates for the encoder and the classifier
to 2e-5 and 1le-3, respectively. The batch size was
set to 16, and the model was trained for 3 epochs us-
ing the AdamW optimizer. For LLMs, the training
configuration consists of a learning rate of le-4, 3
epochs, a batch size of 2, bf16 mixed precision, and
a maximum sequence length of 2048 tokens. Addi-
tionally, the rank of LoRA fine-tuning is set to 16,
with a warmup ratio of 0.1. All implementations
are conducted within the PyTorch framework, uti-
lizing NVIDIA 4090 GPUs for computation. The
number of demonstrations for ICL is set to 10.

B Supplementary Experiments

B.1 Model Comparision

To further investigate the nuanced performance
variations of different models across languages and
emotion categories, we conducted the systematic
experiments outlined in Figure 4. Our analysis
yields three principal findings:

(1) Emotion-specific performance divergence:
The detection accuracy and intensity quantifica-
tion efficacy exhibit significant disparities across
emotion categories. We hypothesize that this phe-
nomenon stems from differential boundary clarity
in emotional intensity gradations. For instance, the
superior detection of “Joy” across all languages
contrasts with the suboptimal performance on “Dis-

—— LLaMa3.1-8B BLOOM-7B Qwen2-7B-Chat

Anger Anger

English

Anger Anger

Chinesé\

Figure 4: The Fine-grained performance of Subtask B.
We compared the performance of three LLMs across
four languages: English, Hindi, Chinese, and Por-
tuguese. Each axis corresponds to a specific emotional
category, with the performance of the models repre-
sented as follows: LLaMa3.1-8B (blue), BLOOM-7B
(orange), and Qwen2-7B-Chat (green).

gust”, potentially attributable to the inherent am-
biguity in disgust intensity demarcation and its in-
frequent contextual manifestations in training cor-
pora. This aligns with Ekman’s (Ekman, 1992)
basic emotion theory, where primary emotions ex-
hibit more prototypical expressions, while com-
plex emotions like disgust demonstrate higher cul-
tural dependency. Joy-related lexicons show higher
cross-lingual isomorphism in intensity scales (e.g.,
“delighted” vs. “content”) compared to disgust’s
binary conceptualization (“disgusted” vs. “non-
disgusted”) in most languages.

(2) High-resource language performance
plateau: Model disparities remain statistically in-
significant for linguistically well-resourced lan-
guages such as English and Portuguese. This con-
vergence in performance across models suggests a
saturation effect, where the optimization of model
performance reaches a plateau in languages with
abundant training data. Such saturation implies
that, for these linguistically well-resourced lan-
guages, the need for careful selection between dif-
ferent LLMs may be less critical, as all models are
likely to perform at a similar level of effectiveness.

(3) Low-resource language sensitivity: Con-

versely, marked performance discrepancies emerge
in Hindi (BLOOM vs. LLaMa: F1=0.841 vs.
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Subtask Training Data Distribution #Languages #Avg
afr(1.9%), amh(5.5%), arq(1.4%), ary(2.5%), chn(4.1%), deu(4.0%), eng(4.3%),
A esp(3.1%), hau(3.3%), hin(3.9%), ibo(4.4%), kin(3.8%), mar(3.7%), orm(5.3%), 23 23k
pem(5.7%), ptbr(3.4%), ptmz(2.4%), ron(1.9%), rus(4.1%), som(5.2%), sun(1.4%), ’
swa(5.1%), swe(1.8%), tat(1.5%), tir(5.7%), ukr(3.8%), vimw(2.4%), yor(4.6%)
B amh(14.1%), arq(3.6%), chn(10.5%), deu(10.3%), eng(11.0%), esp(7.9%), hau(8.5%), 1 29k
ptbr(8.8%), ron(4.9%), rus(10.6%), ukr(9.8%) ’
C ind, jav, xho, zul 4 Not available

Table 9: Statistics of the training data. We show the proportion of training data in each language, the number of
languages, and the average amount of data in each dataset. The training set for Subtask C is not available.

0.792) and Chinese (Qwen vs. BLOOM: F1=0.697
vs. 0.541). This underscores the importance of
strategically selecting LLLMs based on language-
specific architectural optimization and the represen-
tativeness of training data, especially when dealing
with under-resourced languages. The superior per-
formance of BLOOM in Hindi potentially reflects
its enhanced morphological processing capabilities,
which are particularly well-suited for agglutinative
languages like Hindi. This highlights the need for
models that are not only trained on diverse multi-
lingual datasets but also optimized to handle the
unique syntactic and morphological characteristics
of specific languages.

C Related Works

Sentiment Analysis. Sentiment analysis is a mul-
tifaceted area that seeks to understand how lan-
guage conveys and perceives emotions. It can be
divided into three levels: Document-level analysis
(Zhang et al., 2021) captures the overall emotional
tone of a text, useful for tasks like sentiment anal-
ysis in reviews. Sentence-level analysis (Bordoloi
and Biswas, 2023) focuses on emotions within in-
dividual sentences, often applied in more detailed
sentiment classification. Aspect-based Sentiment
Analysis (ABSA) (Zhang et al., 2024) identifies
emotions related to specific features or aspects,
which is especially valuable in opinion mining,
where emotions towards different components of a
product or service need to be assessed separately.
All three granularities have rich downstream ap-
plications, such as sarcasm detection (Qiu et al.,
2025), dialogue system (Song et al., 2022; Liu et al.,
2022), or recommendation system (Lin et al., 2021).
In this paper, we focus primarily on sentence-level
multi-label emotion classification tasks.

In-context Learning. In-context learning refers
to the ability of models, especially LLMs, to adapt

to a task by conditioning on a few examples or in-
structions provided within the input without requir-
ing explicit retraining (Brown et al., 2020; Zhang
et al., 2022; Wei et al., 2023; Zhao et al., 2024).
Early work on this concept emphasized its potential
in tasks such as few-shot learning, where models
demonstrated impressive performance by simply
leveraging context from examples embedded in
the prompt (Zhao et al., 2021; Lu et al., 2022).
Subsequent studies have explored how models can
generalize across various tasks, including question
answering and text generation, by relying on in-
context examples (Wang et al., 2023b; Hendel et al.,
2023; Wang et al., 2023a). The flexibility of in-
context learning has made it a promising approach
for tasks with limited labeled data or dynamic,
context-sensitive applications. This paper proposes
a novel cross-lingual ICL framework to enhance
LLMs’ adaptability for low-resource languages by
strategically leveraging cross-lingual knowledge
transfer through contextual demonstrations.
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