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Abstract

This paper presents a novel multi-agent frame-
work for automated code generation and ex-
ecution in tabular question answering. De-
veloped for the SemEval-2025 Task 8, our
system utilises a structured, multi-agent ap-
proach where distinct agents handle dataset
extraction, schema identification, prompt en-
gineering, code generation, execution, and
prediction. Unlike traditional methods such
as semantic parsing-based SQL generation
and transformer-based table models such as
TAPAS, our approach leverages a large lan-
guage model-driven code synthesis pipeline us-
ing the DeepSeek API. Our system follows a
zero-shot inference approach, which generates
Python functions that operate directly on struc-
tured data. Through the dynamic extraction of
dataset schema and intergration into structured
prompts, the model comprehension of tabular
structures is enhanced, which leads to more
precise and interpretable results. Experimen-
tal results demonstrate that our system outper-
forms existing tabular questioning and answer-
ing models, achieving an accuracy of 84.67%
on DataBench and 86.02% on DataBench-lite,
which significantly surpassed the performances
of TAPAS (2.68%) and stable-code-3b-GGUF
(27%). The source code used in this pa-
per is available at https://github.com/
oseibrefo/semEval25task8

1 Introduction

Large language models (LLMs) have significantly
advanced natural language processing (NLP),
demonstrating strong capabilities in question an-
swering (QA), code generation, and structured data
analysis (Brown et al., 2020; Chen et al., 2021).
While LLMs excel in open-domain QA over un-
structured text (Osei-Brefo and Liang, 2022), rea-
soning over tabular data presents additional chal-
lenges. These include schema understanding, multi-
column aggregation, numerical computation, and

execution reliability (Osés Grijalba et al., 2023;
Pasupat and Liang, 2015).

Tabular question answering (TQA) has been tradi-
tionally approached using the following three main
techniques:

Semantic Parsing Approaches: These are tra-
ditional methods where models such as Seq2SQL
(Zhong et al., 2017) and SQLNet (Xu et al., 2017)
translate natural language queries into SQL com-
mands. While effective for structured databases,
these approaches require predefined schemas and
struggle with generalisation to diverse table struc-
tures.

Transformer-Based Table Models: Models
such as TAPAS (Herzig et al., 2020) and TaBERT
(Yin et al., 2020) jointly encode table structures and
queries, enabling direct classification-based predic-
tions. However, they are limited in their ability
to perform dynamic computations beyond simple
row-based retrieval.

Code-Based Approaches: Recent methods have
explored prompting LLMs to generate executable
Python functions to extract or compute answers
(Chen et al., 2021; Fried et al., 2022). These
approaches offer more flexibility than SQL-based
models but require safeguards against execution
errors, format inconsistencies, and incorrect
column selection.

Tabular question answering (TQA) presents
unique challenges since it requires models to under-
stand structured data and perform reasoning over
numerical and categorical values. Unlike standard
text-based QA, TQA often involves multiple com-
putational steps, such as aggregating values, filter-
ing rows, or computing statistics. Traditional meth-
ods rely on SQL-based querying or transformer
models fine-tuned on tabular data, such as TAPAS.
However, these approaches often require extensive
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training and struggle to generalize to unseen tables.
A promising alternative is to leverage LLMs for
program synthesis, where the model generates exe-
cutable code to answer questions about tabular data.
This approach allows for flexible and interpretable
reasoning steps while enabling the processing of
large datasets beyond the LL.M’s context window
by delegating execution to external interpreters.
We propose a multi-agent system that integrates
prompt-based code generation with structured
dataset extraction and execution. The system con-
sists of the following multi-agent system workflow:

* Dataset Extraction Agent: Loads the dataset
files.

* Schema Agent: Loads the dataset files, such
as parquet files, that correspond to each ques-
tion and extracts the relevant columns and
sample rows.

* Prompt Engineering Agent: Constructs a
structured prompt that includes the extracted
schema and sample data to guide the LLM in
the generation of accurate code.

* Code Generation Agent: Uses a preferred
LLM to generate Python functions designed
to process the provided tabular data.

* Execution Agent: Runs the generated func-
tion on the dataset and returns the computed
answer.

* prediction agent: Predicts the final answers
for each question

Our contributions are as follows:

* A structured approach for table-based
question-answering is developed to generate
executable Python code.

* We introduce a method to extract structured
dataset information and integrate it into the
prompt, improving LLM performance for ta-
ble reasoning.

* We evaluate our approach on the DataBench
benchmark and show that it outperforms tra-
ditional SQL-based methods and zero-shot
LLM prompting.

Unlike zero-shot in-Context Learning (Z-ICL),
which provides the entire dataset within the prompt,

our approach generates Python functions that exe-
cute externally, making it more scalable for large
datasets. Experimental results demonstrate the ef-
fectiveness of our approach and highlight its adapt-
ability to unseen tabular data structures and its abil-
ity to generate accurate responses across multiple
answer types.

2 Methodology

2.1 System Overview

Our proposed method follows a structured ap-
proach that consists of a pipeline made of extrac-
tion agents, schema agents, prompt engineering
agents, main inference agents, code generation
agents, execution agents, and prediction agents
as components. It involves the implementation
of a sequential multi-agent pipeline for structured
code generation and execution in tabular ques-
tion answering. The pipeline consists of distinct
agents, each responsible for a specific subtask, as
demonstrated in Figure 1. To facilitate text gen-
eration, GPT-2 Large, a causal language model
(CausalLM), is employed. This processes natural
language queries and generates structured Python
code. The AutoTokenizer is used to tokenize the in-
put queries and ensure they are formatted correctly
for model inference.

This setup allows the system to efficiently en-
code input queries, generate structured responses,
and execute inference tasks within the multi-agent
framework. The model interacts with schema and
prompt engineering agents to produce executable
code, which ensures structured tabular reasoning.

2.2 Schema Agent: Extracting Table
Structure

The Schema Agent loads the dataset files labelled
as all.parquet and sample.parquet associated with
each question and extracts the schema of the table.
Given a dataset D with IV rows and M columns:

D ={(C1,C4....,Cn) | Ri,Ra,...,RN} (1)

where C; represents column names and R; rep-
resents row entries. The Schema Agent performs:

e Extraction of the column names from the
dataset.

* Retrieval of the first five rows of the dataset
for inclusion in the structured prompt.
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Figure 1: Overview of the multi-agent System, consisting of the extraction agent, schema agent, prompt engineering
Agent, Main inference Agent, Code generation Agent, Execution and prediction agents

There is no explicit ranking mechanism to deter-
mine the importance of columns, and all columns
are included in the prompt without prioritisation.

2.3 Prompt Engineering Agent: Generating
Structured Inputs

The Prompt Engineering Agent constructs struc-
tured prompts for the LLM based on the extracted
schema. These prompts guide the LLM in generat-
ing accurate responses. An example of the prompts
used in this work is demonstrated in figure 2:

For a given question () and dataset schema, the
prompt P is constructed using the following for-

Prompt
ring Agent

( You are a Python expert analyzing tabular data step by step. \

Your final answer MUST be in Python code:
- Put your code in triple backticks: *
- The code must define exactly ONE function named answer(data).
- The function returns a single line: return ...
- The return type is exactly ONE of:
* boolean: True/False or "Yes"/"No"
* a single string or number
* a list of strings or numbers, e.g., ["cat","dog"] or [1,2]
- DO NOT include ANY extra lines outside the triple-quoted block
- DO NOT include ANY additional text outside the triple-quoted code block

E

Use only these sample rows and columns. Then produce your code.

Question 1D: {row id}

Question: {question}

Relevant Columns: {relevant columns}
Sample Rows: {sample rows}

mula in equation 2:

P = fprompt(Qa {Ck}lea S) 2

Where:

-5 is a set of sample rows and

-{Cy }I£_ | represents the columns or attributes of
the dataset schema.

The current implementation follows these steps:

e Extracts column names and includes them in
the prompt.
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* Provides five sample rows from the dataset.

* Formats the prompt to request a Python func-
tion that adheres to specific constraints.



2.4 Code Generation Agent: Production of
Executable Code

The Code Generation Agent is responsible for gen-
erating Python functions to process tabular data.
The implementation invokes an external LLM via
the DeepSeek API instead of a fine-tuned local
model:

Code = fLLM(P) (3)

Where P represents a structured prompt pro-
vided to the LLM, and the output is executable
Python code. The generated function follows a
specific format as:

def answer (data) :
# Model-generated logic
return result

2.5 Execution Agent: Running Generated
Code

The generated Python function is executed to pro-
duce an answer. However, there is no explicit vali-
dation step before execution. Due to resource lim-
itations, the code was assumed to be correct, and
execution was attempted without verifying syntax
or logical consistency.

2.6 Prediction Generation and Output
Formatting

Once execution is completed, the predictions are
written to output files (predictions.txt and predic-
tions_lite.txt). This step concludes the process,
which involves extracting the dataset, generating
code using the LLLM, and executing the generated
function.

3 Experiments

The system follows a zero-shot approach, relying
on prompt engineering to instruct the model on how
to retrieve and compute answers from structured
tabular data. The experimental setup involved the
use of the DeepSeek API.

The dataset was extracted from a competition
archive in a ZIP file. The extracted data had mul-
tiple subdirectories, with each representing a dis-
tinct dataset. Each dataset contained Parquet files,
which stored structured tabular data for question-
answering. Each dataset ID also corresponded to
a folder that contained two files, which are the
all.parquet and sample.parquet files. The sam-
ple.parquet file contained the first 20 rows of the

all.parquet files.

The test data also contained the 522 set of test
questions to be answered along with the ID of the
corresponding dataset. Table 1 shows the various
folders and IDs of the datasets.

Dataset Folder
066_IBM_HR Employee-related data
067_TripAdvisor Travel and hotel reviews
068_WorldBank_Awards | Economic and financial data
069_Taxonomy Classification-based dataset
070_OpenFoodFacts Food product information

071_COL Cost of living statistics
072_Admissions Academic admissions and student data
073_Med_Cost Medical and healthcare expenses

Description

074_Lift Ride-sharing or transport statistics
075_Mortality Mortality and health data
076_NBA Basketball statistics
077_Gestational Pregnancy and maternal health data
078_Fires Fire incident reports
079_Coffee Coffee-related statistics
080_Books Book sales and metadata

Table 1: Dataset folders and their descriptions.

A GPT-based model known as deepseek-chat
was used as a multi-agent for zero-shot inference
through API calls. The model was prompted to
generate Python executable codes that extracted
the required answer. The prompt ensures that the
model adheres to a structured format for consistent
and interpretable results.

3.1 Model Configuration and
Hyperparameters

The GPT-based model used for inference is
DeepSeek Chat Deepseek-V3, accessed
via an API. The model is configured to generate
structured Python code, which is then executed to
extract answers. The key hyperparameters used
during inference are shown in Table 2:

Parameter

Model Name
Tokenizer

Padding Token

Max Length (Default)
Input Truncation
Padding Strategy

Category Value / Description
gpt2-large

AutoTokenizer

Base Model

tokenizer.pad_token
1024 tokens (GPT-2 limitation)
Enabled (t runcation=True)
max_length

Tokenizer

Rank (r) 8
LoRA Alpha 32
LoRA Configuration | Target Modules ["c_attn"] (Attention Layer)
LoRA Dropout 0.1
Bias Handling "none"

Max Input Token Length | 1024 (GPT-2 Large max token limit)
Model Used for Inference | DeepSeek-V3 API
Temperature 0.0 (Deterministic Outputs)

Inference API Used DeepSeck-V3 API)

Table 2: Hyperparameter used for the tokenization and
inference.

4 Results and Discussion

Our system was evaluated on the DataBench test
benchmark, which consists of real-world datasets
with a total of 522 manually curated questions.
The evaluation assessed the effectiveness of our
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approach in generating and executing Python code
to answer tabular questions. Performance was
measured using the Datatech Eval package, which
ensured a standardized assessment across various
dataset structures and question types.

The evaluation was carried out to compare the
performance of our multi-agent system with ex-
isting models, particularly in handling structured
tabular data.

4.1 Evaluation

To benchmark the performance of our system, we
compared it against two baseline models, which
are:

Stable-code-3b-GGUF: A transformer-based
generative code model.

TAPAS: A transformer-based tabular QA model
designed for direct classification-based predictions.
Additionally, we tested our system on two datasets:

DataBench: The full benchmark dataset that con-
tains diverse real-world tabular QA tasks.

DataBench-lite: A smaller subset with simpli-
fied queries and table structures.

Models Accuracy (%)
Stable-code-3b-GGUF (Baseline) 26.00
Transformer-Based (TAPAS) 0.19
Multi-Agent Tabular QA with DeepSeek-V3) 84.67

Table 3: Performance comparison on the test DataBench
dataset.

As shown in Table 3, our proposed DeepSeek
API-based multi-agent model significantly outper-
formed both TAPAS and Stable-code-3b-GGUF
models. The system achieved an accuracy of
84.67%, which is 225.65% higher than that of the
stable-code-3b-GGUF model, which is the baseline
code used by the organisers.

The table also shows the TAPAS model, despite
being optimised for tabular data, performed poorly
with mere 0.19% accuracy due to its limitations
in handling complex aggregation and multi-step
computation.

These results demonstrate that a multi-agent sys-
tem made up of structured prompt engineering and
code execution-driven approaches is significantly
more effective for tabular question answering than
pure transformer-based classification methods.
Table 4 presents results for DataBench-lite, which
is a reduced version of the DataBench benchmark

Models Accuracy (%)
Stable-code-3b-GGUF (Baseline) 27.00
Transformer-Based (TAPAS) 2.68
Multi-Agent Tabular QA with DeepSeek-V3 86.02

Table 4: Performance comparison on the test
DataBench-lite dataset.

with simplified table structures and fewer multi-
step reasoning tasks. Here too, our proposed
DeepSeek API-based multi-agent model signifi-
cantly outperformed both TAPAS and Stable-code-
3b-GGUF models. It achieved an accuracy of
86.02%, which is 218.59% higher than that of the
stable-code-3b-GGUF model, which is the baseline
code used by the organisers. The TAPAS model
achieved an accuracy of 2.68% under this data.

The DeepSeek API-based model consistently
performed well across both DataBench and
DataBench-lite, which demonstrates their robust-
ness in structured data comprehension. On the
other hand, the TAPAS model struggled signifi-
cantly, even with simplified tasks. This demon-
strates that direct transformer-based classification
models are not well-suited for complex table rea-
soning. Additionally, the baseline model, Stable-
code-3b-GGUF, showed only slight improvement
on DataBench-lite, which suggests that generative
approaches without structured execution are not
sufficiently robust for tabular QA.

Our proposed multi-agent pipeline excels due to
the following key factors:

Structured Prompt Engineering Ensures that
the LLM receives well-formatted input, including
schema details and sample rows.

Code Generation and Execution: Enables the
system to dynamically compute answers, unlike
transformer models that rely solely on training-
based pattern recognition.

Dataset Adaptability: By extracting relevant
schema details before inference, the system can
generalize to unseen datasets without requiring ad-
ditional fine-tuning.

4.2 Limitations and Areas for Improvement
While our approach significantly outperforms ex-

isting models, a few limitations remain:

Execution Overhead: Running generated code
adds an additional processing step, which can in-
crease inference time.
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Error Handling Mechanisms: Some syntax er-
rors in generated code require manual validation
or debugging, which could be optimized with auto-
mated syntax correction.

Scalability for Large Datasets: While the sys-
tem performs well on structured datasets, handling
extremely large tables may introduce computa-
tional bottlenecks.

The evaluation results clearly demonstrate that
our DeepSeek API-based multi-agent system sig-
nificantly improves accuracy in tabular question-
answering tasks. The ability to dynamically gen-
erate and execute Python code allows for greater
flexibility compared to purely transformer-based
approaches like TAPAS. Future work will focus
on enhancing execution efficiency, refining error
handling, and optimizing scalability for even larger
datasets.

4.3 Error Analysis

Our system follows a structured multi-agent
pipeline for generating and executing Python code
to answer tabular questions. However, inference
errors were observed due to syntax issues, type
mismatches, and execution failures. The most fre-
quent error types encountered during inference are
categorised in Table 5.

Error Type Occurrence (%)
Syntax Error in Generated Code 62.5
Data Type Handling Errors 12.5
Column Selection Errors 12.5
Execution Failure (Timeout) 12.5

Table 5: Common failure cases in model predictions.

Syntax errors were the most prevalent issue and
contributed to 62.5% of the total error cases en-
countered. These failures occurred due to missing
commas, incorrect indentation, or malformed ex-
pressions within the generated Python code.

This error appeared five times out of eight to-
tal error cases encountered, indicating a system-
atic issue in the LLM-generated function. The is-
sue likely stems from improper prompt structuring,
leading the model to generate incomplete expres-
sions or incorrectly formatted function calls.

The next category of errors was the data type
handling errors. These were the data type mis-
matches that were a notable issue and contributed
to 12.5% of the total error cases. These failures
occurred when the model-generated function incor-

rectly applied string-based operations on numerical
values. Some possible causes of this were that the
function incorrectly assumed all table values were
strings, leading to operations like . split () be-
ing applied to numeric values. Others could also be
due to the model’s failure to validate column data
types before execution.

There were also column selection errors, which
occurred during the selection of the correct column
for computation, and they accounted for 12.5%
of the total failures. Some of the possible causes
of these were: The selection of a categorical col-
umn by the model when a numerical column was
expected. Other causes include the attempted per-
formance of a numeric comparison on string values
by the generated function.

The final category of errors was due to execu-
tion failures, which resulted from incorrectly struc-
tured generator expressions that led to runtime er-
rors. These made up 12.5% of the total error cases.
The possible cause of these errors is the attempt
of the function to use a generator expression with-
out proper parentheses. It could also be due to the
occurrence of the execution timeout due to an inef-
ficient or infinite loop. Refer to Appendix A for a
list of all the sample errors encountered

5 Conclusion

This work has proposed the use of a multi-agent
system that integrates prompt-based code genera-
tion with structured dataset extraction and execu-
tion for tabular question answering. The results
demonstrate that multi-agent, execution-driven
LLM pipelines are superior to direct prompting
techniques and other traditional tabular QA ap-
proaches, achieving higher accuracy on real-world
tabular data reasoning tasks.

By improving execution validation, incorporat-
ing LoRA fine-tuning, and enhancing schema com-
prehension, this approach could further improve
how LLMs interact with structured data. Future
work will focus on enhancing the code execution
efficiency and the incorporation of automated error
correction.
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A Sample errors encountered

___INFERENCE_ERROR__ :
calling answer (data) :
invalid syntax.
forgot a comma?
line 1)

Error

Perhaps you
(<string>,

Mitigation Strategies

* Use an AST-based syntax validation step to
detect and reject malformed code before exe-
cution.

* Modify structured prompts to enforce syntac-
tically complete function generation.

» Implement a post-processing step to correct
common syntax errors before execution.

_ INFERENCE_ERROR__ :
calling answer (data) :
"float’ object has no
attribute ’'split’

Error

Mitigation Strategies

* Enforce explicit type conversion (float (),
str (), int () ) before processing table val-
ues.

* Modify prompts to instruct the model to vali-
date column types before execution.

* Implement exception handling to catch and
fix type-related errors dynamically.

__ _INFERENCE_ERROR__: Error
calling answer (data): ’<’
not supported between
instances of ’"float’ and
"str’

Mitigation Strategies

* Implement column selection heuristics to im-
prove the relevance of retrieved data.

* Modify prompts to explicitly specify the ex-
pected column type for computation.

_ INFERENCE_ERROR__ :
Invalid syntax after fix:
Generator expression must
be parenthesized
line 4)

(<unknown>,

Mitigation Strategies

* Modify prompt instructions to favor list com-
prehensions ([ ]) over generator expressions

(O).
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