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Abstract

Detecting emotions across different languages
is challenging due to the varied and culturally
nuanced ways of emotional expressions. The
Semeval 2025 Task 11: Bridging the Gap in
Text-Based emotion shared task was organised
to investigate emotion recognition across differ-
ent languages. The goal of the task is to imple-
ment an emotion recogniser that can identify
the basic emotional states that general third-
party observers would attribute to an author
based on their written text snippet, along with
the intensity of those emotions. We report our
investigation of various task-adaptation strate-
gies for LLMs in emotion recognition. We
show that the most effective method for this
task is to fine-tune a pre-trained multilingual
LLM with LoRA setting separately for each
language.

1 Introduction

Text-based emotion recognition plays a crucial role
in studies related to mental health (Golder and
Macy, 2011), emotional intelligence (Turcan et al.,
2021), and human-computer interaction (Li et al.,
2022). However, recognising emotions in text re-
mains a significant challenge, especially across dif-
ferent languages (Mohammad et al., 2018). Lin-
guistic variations, cultural differences in emotional
expression, and the scarcity of annotated data for
low-resourced languages make emotion recogni-
tion particularly complex (Barrett et al., 2011;
Lindquist and Gendron, 2013; Schröder et al.,
2013).

The SemEval-2025 Task 11: Bridging the Gap in
Text-Based Emotion shared task (Muhammad et al.,
2025b)1 is part of the International Workshop on
Semantic Evaluation (SemEval). Its objective is to
detect collectively perceived emotions within text

1https://github.com/emotion-analysis-project/
SemEval2025-task11

snippets written in 32 different languages. Collec-
tively perceived emotion refers to the basic emo-
tional states—such as anger, joy, and disgust—that
third-party observers from the general public can
attribute to a text snippet generated by a writer. Un-
like tasks aimed at identifying the writer’s actual
emotional states or the emotional states evoked in
individual reader (Mohammad, 2022, 2023), this
task emphasises the shared perception of emotions
by general readers. This distinction is crucial, as
perceived emotions can vary significantly from
both intended and personally experienced emo-
tions.

The shared task consists of three tracks: (A)
Multi-label Emotion Detection, where the goal is
to predict the perceived emotional states expressed
in a given text snippet, including joy, sadness, fear,
anger, surprise, and disgust; (B) Emotion Intensity,
where the objective is to predict the intensity scale
of each perceived emotional state for a given text
snippet. Each emotional state is rated on a 4-point
categorical scale: 0 (no emotion), 1 (low inten-
sity), 2 (moderate intensity), and 3 (high intensity);
and (C) Cross-lingual Emotion Detection, where
the goal is to predict the perceived emotion on text
snippets written in a language different from the
one used for model training, such as training on
English-written data but making emotion recogni-
tion on Javanese-written data.

Our team participated in Tracks A and B, focus-
ing on fine-tuning Large Language Models (LLMs).
LLMs have contributed to significant improve-
ments across different NLP tasks (Brown, 2020;
Touvron et al., 2023). However, previous studies
suggest that they are ineffective for emotion classi-
fication in zero-shot and few-shot settings, even
when provided with In-Context Learning (ICL)
prompts (Liu et al., 2024). A potential improve-
ment can be achieved by fine-tuning LLMs with
instructions (Zhang et al., 2023; Liu et al., 2024).
Drawing inspiration from Liu et al. (2024), we ex-
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plore instruction-tuning and continual fine-tuning
of multilingual LLMs. We then compare the effec-
tiveness of this adaptation for emotion recognition
across different languages by fine-tuning a multilin-
gual model individually for each language. We also
propose several adaptation approaches and conduct
a comparative analysis across these approaches,
specifically for Track A. We develop an adaptation
strategy for LLMs in emotion recognition that is
effective across languages of varying resourced lev-
els (see the categorisation of resource abundance
by Joshi et al. (2020); Üstün et al. (2024)).

2 Methods

2.1 Track A: Multi-label Emotion Detection

We formulate this task as a binary classification
problem for the detection of each emotional state.
For each input, the LLMs predict the occurrence of
the six emotions—anger, disgust, fear, joy, sadness,
and surprise—independently, determining whether
a specific emotional state is present (1) or absent
(0). The final results are aggregated for the input, to
represent a multi-label emotion recognition setting.
To address class imbalance, we apply oversampling
to balance the binary classification instances.

The proposed adaptation strategies are described
below:

• Few-shot: We apply ICL based on the
BM25 (Robertson et al., 1995) scores to re-
trieve instances from the training set to con-
struct a prompt for the prediction of each
test instance (see the prompt template in Sec-
tion 3.3). That is, we use BM25 scores to rank
semantic (bag-of-words) relevancy between
the given test instance (as a query) and each
training instance (as a document) (Schutze
et al., 2008; Robertson et al., 2009). We re-
trieve the top k most relevant instances and
their manually annotated emotional state label
as k-shot examples to prompt-tune LLMs for
each test instance.

• Supervised Fine-Tuning (SFT): We fine-
tune pre-trained and instruction-tuned multi-
lingual LLMs using supervised and parameter-
efficient settings.

• English-bridged Adaptation (E-Bridge):
We apply SFT to LLMs on English-written
instances and then apply continual SFT for
the adaptation to other languages.

• Marginalisation: We first apply SFT to LLM
on Track B (see details of SFT in Section 2.2),
and then use fine-tuned LLM to make predic-
tions for instances on Track A. To align with
the binary classification in Track A, predic-
tions of 1–3 are marginalised into 1, indicat-
ing the presence of an emotional state, while
predictions of zero are retained to represent
its absence.

2.2 Track B: Emotion Intensity Detection

We frame this task as a multi-class classification
problem for each emotion. Given an input text, the
LLM predicts whether a specific emotion can be
perceived at a given intensity level. The intensity
is measured on a four-point categorical scale: 0
for no emotion, 1 for low intensity, 2 for moderate
intensity, and 3 for high intensity. Thus, for a text
with six emotional states, the LLM processes the
input six times, once for each emotion. The final
results are aggregated to the input text for the com-
pletion of multi-label emotion intensity recognition
set by Track B.

To achieve this, we convert each text with mul-
tiple emotion intensities into separate instances,
one for each emotion. We fine-tune pre-trained
and instruction-tuned LLMs on this transformed
dataset, using supervised learning to predict the
emotional intensity for each emotion independently
(SFT) and apply zero-shot, where we only use in-
struction as a baseline.

3 Experimental Setup

3.1 Shared Task Dataset

The dataset used in the shared task is a com-
bination of EthioEmo (Belay et al., 2025) and
BRIGHTER (Muhammad et al., 2025a), which in-
cludes emotion annotations for multiple languages.
Specifically, 28 languages for Track A and 11 lan-
guages for Track B. The statistical details of the
annotated languages are detailed by Belay et al.
(2025) for Amharic, Oromo, Somali, and Tigrinya,
and by Muhammad et al. (2025a) for the remaining
languages.

Instruction-tuning on External Dataset: We
leveraged an external dataset to instruction-tune
LLMs (Liu et al., 2024). This helps the model
generalise on the external task by learning how to
follow instructions for emotion recognition before
fine-tuning on the dataset specific to this shared
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Track A (F1) Track B (r)

Languages Baseline Ours Model Baseline Ours Model

Afrikaans (afr) 37.14 31.61 aya-101 — — —
Algerian Arabic (arq) 41.41 52.55 aya-32 1.64 52.11 aya-32
Amharic (amh) 63.83 58.81 aya-32 50.79 15.40 llama
Chinese (chn) 53.08 57.84 aya-32 40.53 54.92 aya-32
Emakhuwa (vmw) 12.14 17.27 aya-101 — — —
English (eng) 70.83 77.62 aya-32 64.15 72.09 llama
German (deu) 64.23 65.72 aya-32 56.21 60.98 aya-32
Hausa (hau) 59.55 54.25 aya-101 27.03 37.15 llama
Hindi (hin) 85.51 73.16 aya-32 — — —
Igbo (ibo) 47.90 32.56 aya-101 — — —
Indonesian (ind) — — — — — —
isiXhosa (xho) — — — — — —
isiZulu (zul) — — — — — —
Javanese (jav) — — — — — —
Kinyarwanda (kin) 46.29 42.95 aya-101 — — —
Marathi (mar) 82.22 75.75 aya-101 — — —
Moroccan Arabic (ary) 47.16 — — — — —
Nigerian-Pidgin (pcm) 55.50 21.81 aya-101 — — —
Oromo (orm) 12.63 39.24 aya-101 — — —
Portuguese (Brazil) (ptbr) 42.57 55.54 aya-32 29.74 48.88 emo-aya
Portuguese (Mozambican) (ptmz) 45.91 — — — — —
Romanian (ron) 76.23 72.24 aya-101 55.66 59.22 aya-32
Russian (rus) 83.44 89.10 aya-101 87.66 79.26 llama
Somali (som) 45.93 43.28 aya-101 — — —
Spanish (Latin American) (esp) 77.44 82.00 aya-101 72.59 69.66 llama
Sundanese (sun) 37.31 48.75 aya-101 — — —
Swahili (swa) 22.65 30.31 aya-101 — — —
Swedish (swe) 51.98 48.88 aya-101 — — —
Tatar (tat) 53.94 53.84 aya-101 — — —
Tigrinya (tir) 46.28 49.95 aya-101 — — —
Ukrainian (ukr) 53.45 66.40 aya-32 39.94 49.42 emo-aya∗

Yoruba (yor) 9.22 29.96 aya-101 — — —

Table 1: Effectiveness of baseline and our approaches (SFT or zero-shot (*) of a specific model) on the test set.
The baseline results are provided by the task organisers Muhammad et al. (2025a). Note that aya-32 denotes the
aya-32b-expanse model, llama denotes the Llama3.1-8B-Instruct model, emo-aya denotes instruction-tuned
aya-32b-expanse.

task. The selected external dataset is an exten-
sion to the SemEval-2018 Task 1: Affect in Tweets,
which includes a series of subtasks related to af-
fectual state inference: (1) emotion intensity re-
gression; (2) emotion intensity ordinal classifica-
tion; (3) valence (sentiment) regression; (4) valence
ordinal classification; and, (5) emotion classifica-
tion (Mohammad and Kiritchenko, 2018; Moham-
mad et al., 2018) which overlaps with the tracks of
this shared task.

3.2 Evaluation Metrics

For both Track A and Track B, we follow the eval-
uation metrics specified by the shared task organ-

isers. Track A uses the unweighted average of all
per-emotion F1 scores. Track B uses the average of
per-emotion Pearson’s correlation coefficient (r).

3.3 Hyperparameters

LLMs: We use three open-source multilingual
LLMs: AYA (aya-101 (Üstün et al., 2024),
aya-32b-expanse (Dang et al., 2024)), and
LLAMA (Llama3.1-8B-Instruct (Dubey et al.,
2024)). aya-101 (mT5-based) offers broad
multilingual support with a smaller size, while
aya-32b-expanse (GPT-style) provides larger ca-
pacity and similarly wide language coverage.
Llama3.1-8B-Instruct (GPT-style) is smaller
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Supervised Fine-tuning (SFT) Marginalisation Few-shots

Language AYAft EMO-AYAft E-Bridge AYAptb EMO-AYAptb AYAftb EMO-AYAftb 1-shot

English 80.12 73.31 — 64.55 57.94 68.47 72.88 52.31
German 62.31 52.43 56.21 53.92 46.65 60.69 54.56 30.24
Portuguese 61.29 53.42 57.33 44.55 40.56 41.87 45.93 34.11
Russian 89.11 87.13 86.16 54.12 60.56 72.42 55.34 75.01

Table 2: Macro F1 scores on the development split of Track A for four languages. AYAft denotes direct SFT of
the aya-32b-expanse model on the training set. EMO-AYAft indicates first performing instruction-tuning on
the aya model on the external dataset, followed by SFT on the training set. E-Bridge refers to SFT of the aya
model on the training set in English, followed by continual SFT on the remaining three languages. AYAptb involves
prompt-tuning a model in a zero-shot setting to complete the Track B objective, followed by marginalisation.
EMO-AYAptb represents applying instruction-tuning to aya model on the external dataset and then prompt-tuning it
in a zero-shot setting on Track B, followed by marginalisation. The best results are boldfaced.

but supports only seven languages. Due to its
broader coverage and capacity, aya-32b-expanse
was preferred, with aya-101 as a lightweight alter-
native. For languages jointly supported by both
aya-32b-expanse and Llama3.1-8B-Instruct,
such as English and German, model selection also
accounts for differences in parameter size.

We employ Low-Rank Adaptation (LoRA) (Hu
et al., 2022) and apply 4-bits quantisation (Jacob
et al., 2018) to LLMs for parameter-efficient SFT.
We set the LoRA rank and alpha parameters to 32
and 64, respectively. The dropout ratio is set to
0.05. We limit both the input source length and the
target length to 512. The training epoch size is 10
and the batch size is 2. The learning rate is set to
2e− 5 for Track A and 5e− 5 for Track B.

The formulations of instructions for zero-shot,
few-shot (ICL), and SFT settings are as below:

• Track A: “You are detecting emotions on a
statement written in {language}. Statement:
{text}. Does this statement express {emotion}?
Answer 1 for yes and 0 for no.”

• Track B: “Task: Categorize the tweet into
an intensity level of the specified emotion E,
representing the mental state of the tweeter.
0: no E can be inferred. 1: low amount of
E can be inferred. 2: moderate amount of
E can be inferred. 3: high amount of E can
be inferred. Tweet: {text} Emotion {emotion}
Intensity class:”

where {text} is the text content of each instance, and
{emotion} is one of the six emotional states (or five,
excluding disgust for English and Surprise for
Afrikaans). The instruction of Track B is adapted
from Liu et al. (2024).

For BM25-based few-shot prompting, we use the
rank_bm25 library (Stuart, 2022) and choose the
default parameter setting, b = 0.75 and k1 = 1.5,
for BM25.

We use NVIDIA H100 GPUs running on one
node for this experiment.

4 Experimental Results

Results on Testing Set
We present the results of the submitted predictions
for ranking (testing) in Table 1, including the base-
line results per language provided by Muhammad
et al. (2025a). We submitted results for 26 out of
32 languages in Track A and the 11 (all) languages
provided in Track B.

We observed noticeable variations in effective-
ness across languages for both Track A (macro F1)
and Track B (average r). The baseline approach
is mostly effective in higher-resourced languages,
such as German, English, and Russian. However,
applying instruction-tuning or SFT to LLMs on
mid-resourced and lower-resourced language is
more effective than the baseline for emotion recog-
nition.

Additionally, model selection plays a cru-
cial role, as larger GPT-based models like
aya-32b-expanse outperform smaller mT5-based
models like aya-101, particularly in lower-
resourced languages where the latter struggles.

We applied the adaptation strategies for the test
set prediction based on the highest F1 and correla-
tion coefficient r achieved on the development set
in Track A & B, respectively.

Results on Track A Development Set
We compared the effectiveness of the various adap-
tation strategies with experiments in English, Ger-
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Zero-shot SFT

Language AYA EMO-AYA LLAMA EMO-LLAMA AYAft EMO-AYAft LLAMAft EMO-LLAMAft

Algerian Arabic (arq) 41.55 46.39 16.65 37.44 64.66 9.11 30.61 28.56
Amharic (amh) 7.63 7.37 11.93 16.40 — — 25.30 24.12
Chinese (chn) 47.61 49.00 35.57 43.01 62.37 48.37 39.83 44.15
English (eng) 57.80 56.16 43.87 57.32 73.81 74.04 75.87 75.23
German (deu) 53.00 43.39 41.61 45.11 55.93 50.04 41.09 44.16
Hausa (hau) 15.08 16.77 16.15 15.34 21.31 16.18 45.13 42.56
Portuguese (Brazilian) (ptbr) 46.71 49.02 31.17 30.96 45.63 53.42 — —
Romanian (ron) 57.92 47.36 47.98 47.74 63.35 61.22 50.76 52.34
Russian (rus) 56.01 62.34 34.98 50.47 75.44 70.63 83.62 82.10
Spanish (Latin American) (esp) 57.77 54.77 45.80 48.69 68.50 64.36 70.07 69.10
Ukrainian (ukr) 45.68 50.07 24.12 33.05 — — 41.99 40.56

Table 3: The average r on the development set of Track B. AYA and LLAMA refer to the base models,
aya-expanse-32b and Llama3.1-8B-Instruct, respectively. EMO-AYA and EMO-LLAMA are their instruction-
tuned versions. *ft are fine-tuned versions. The best results are boldfaced.

man, Portuguese, and Russian. All comparisons
are statistically validated using hypothesis testing
with a significance threshold of p < 0.05. We
observed that directly applying SFT to LLMs on
the training set (AYAft) consistently achieves the
highest macro F1 scores across all four languages,
outperforming all of the other experimented adap-
tation approaches, such as: (i) BM25-based ICL (1-
shot), (ii) instruction-tuning on the external dataset
before SFT on the training set (EMO-AYA), (iii)
bridging the adaptation with English (E-Bridge),
or (iv) applying marginalisation to predictions of
LLMs fine-tuned on Track B (Table 2).

These results suggest that LLMs may not sig-
nificantly benefit from instruction tuning, as direct
SFT shows greater effectiveness across all four lan-
guages. E-Bridge can be viewed as a specialised
form of instruction tuning, where the LLM first
learns instructions in English instances before be-
ing fine-tuned in other languages. This method
proves effective for German and Portuguese but
is less effective for Russian, possibly due to the
closer cultural alignment of German and Por-
tuguese speakers with English speakers (Rinke and
Flores, 2021; Wikipedia, 2025).

Results on Track B Development Set

The emotion intensity results across multiple lan-
guages using both base and instruction-tuned ver-
sions of AYA and LLAMA in zero-shot and SFT
settings are shown in Table 3. Fine-tuning sig-
nificantly improves performance across most lan-
guages, demonstrating that task-specific adaptation
benefits intensity detection. While fine-tuning of-
fers substantial gains across the languages, the ben-
efits are often more pronounced in higher-resourced
languages (i.e., English, Spanish). While AYA

generally demonstrates stronger zero-shot perfor-
mance, LLAMA benefits more from instruction
tuning, showing significant improvements after
fine-tuning. Instruction-tuned models (EMO-AYA
and EMO-LLAMA) provide some advantages in
zero-shot settings, particularly in languages with
less training data, but their impact diminishes af-
ter fine-tuning, suggesting that instruction-tuning
alone is often sufficient for intensity detection.

Higher-resourced languages, such as English,
Russian, and Spanish, consistently achieve better
results, with both zero-shot and fine-tuned models
performing reliably. Mid-resourced languages, in-
cluding German, Portuguese, and Romanian, show
moderate performance, benefiting from fine-tuning
but still exhibiting variability depending on the
model. The performance of all languages improves
with fine-tuning, but challenges persist in making
significant gains for languages where the models
initially perform poorly. Despite this, the advance-
ments show that fine-tuning and instruction tun-
ing can help optimise model behaviour across lan-
guages, and targeted adaptation strategies may fur-
ther boost results for emotion intensity detection
tasks.

5 Conclusions

We participated in the SemEval 2025 Task 11:
Bridging the Gap in Text-Based Emotion shared
task, which included tracks for multi-label emotion
detection (Track A) and emotion intensity detec-
tion (Track B). For Track A, we approached it as
a binary classification problem for each emotion—
determining whether an emotional state is present
in or absent from a given input text snippet. We
found that direct supervised fine-tuning can effec-
tively adapt LLMs for the detection of emotions
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for most languages, except for the lower-resourced
languages where few-shot learning is more effec-
tive. For Track B, we achieved the best results by
employing different LLMs (both direct SFT and
instruction-tuned) for each language. The results in
both tracks suggest that, when adapting LLMs for
emotion recognition on most mid-resourced and
higher-resourced language, instruction-tuning was
not as effective as in other NLP tasks. A more
suitable approach is to directly apply supervised
fine-tuning of LLMs on task-specific datasets.

Limitations

The exploration of various adaptation strategies
was limited to four languages (English, German,
Russian, and Portuguese), which may not gen-
eralise to other languages, particularly lower-
resourced ones or those with different linguistic
structures. The models used may reflect biases
from the training data, which could affect perfor-
mance in low-resourced languages. We only ex-
plored prompt-tuning and instruction-tuning with
the parameter-efficient LoRA setting for adapting
LLMs.

Ethical Considerations

We relied on the dataset providers to remove any
material from the dataset that may reveal anyone’s
identity in their posts used in this study. We guar-
antee that datasets are only used for scientific or re-
search purposes and are not redistributed or shared
with third parties. This project is subject to the
ethics approval and agreement provided by the
SemEval-2025 task organisers.
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