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Abstract

This paper presents our system developed for
the SemEval-2025 Task 3: Mu-SHROOM, the
Multilingual Shared-task on Hallucinations
and Related Observable Overgeneration Mis-
takes. The objective of this task is to iden-
tify spans of hallucinated text in the output of
large language models across 14 high- and low-
resource languages. To address this challenge,
we propose two consistency-based approaches:
(a) token-level consistency with a superior
LLM and (b) token-level self-consistency with
the underlying model of the sequence that is to
be evaluated. Our results show effectiveness
when compared to simple mark-all baselines,
competitiveness to other submissions of the
shared task and for some languages to GPT4o-
mini prompt-based approaches.

1 Introduction

Large language models (LLMs) have transcended
the boundaries of the natural language processing
community and hold significant potential for au-
tomating tasks across different industries. However,
their adoption is often hindered by concerns regard-
ing their trustworthiness and factual reliability, par-
ticularly due to hallucinations — the phenomenon
where generative systems produce incorrect or fab-
ricated output. Thus, developing methods to detect
hallucinations is an essential step towards ensur-
ing the safe and effective deployment of LLMs in
real-world applications.

Various approaches have been undertaken that
showed the effectiveness of detecting hallucina-
tions through retrieval augmentation and referring
to external knowledge (Wang et al., 2023; Ji et al.,
2023; Zhang et al., 2024; Mishra et al., 2024) or
leveraging the internal states of the LLM (Xiao and
Wang, 2021; Varshney et al., 2023; Farquhar et al.,
2024). These methods are restricted by the fact that

'The code is available at https://github.com/
ZurichNLP/sc-hallucination-detection.

they rely on access to external knowledge and the
openness of the LLM. A further method to detect
hallucination that is not impacted by these factors
leverages the self- and cross-model consistency
for a given task for the same or across different
LLMs (Zhang et al., 2023; Manakul et al., 2023).
While effective, these methods have been almost ex-
clusively tested at the sentence level, however, hal-
lucinations often occur at the sub-sentential level,
with incorrect or fabricated information appearing
within specific spans of text rather than entire sen-
tences. Less work has gone into detecting hallu-
cinations at a more fine-grained level (Zhou et al.,
2021; Liu et al., 2022; Fadeeva et al., 2024).

This year’s SemEval Task 3 MuSHROOM:
the Multilingual Shared-task on Hallucinations
and Related Observable Overgeneration Mis-
takes (Vazquez et al., 2025) calls for research to
fill this gap, by challenging the community on
a hallucination span detection task, providing a
human-annotated dataset of question-answer pairs,
in which the answers have been generated by vari-
ous open-source language models. The dataset con-
tains labelled data for 10 languages (German, En-
glish, French, Italian, Spanish, Hindi, Chinese, Ara-
bic, Swedish, and Finnish) and unlabelled data for
4 additional languages (Farsi, Basque, Czech, and
Catalan) — bringing multilingual and low-resource
components to the challenge.

We approach this challenge by adapting self- and
cross-model consistency approaches to the token
level. Our proposed approach compares alternative
responses by the same underlying model that has
been used to generate the answer that is to be eval-
uated as a way of self-consistency or by a superior
LLM by aligning each token of the answer that is
to be evaluated with a token from each alternative
answer as a way of cross-model consistency (GPT-
consistency). The median similarity score between
the aligned tokens is then used as an indicator for
token-level consistency, or hallucinations.
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Settings ar zh en fi fr de hi it es sV Avg.
Token-level labels inter alignment 44.0% 23.8% 26.71% 474% 36.7% 37.7% 43.4% 42.8% 161% 50.5% 36.9%
Token-level labels forward alignment  38.9% 422% 23.7% 51.5% 392% 36.6% 442% 42.6% 204% 46.7% 38.6%
+ median token consistency score 409% 42.6% 235% 52.0% 369% 41.0% 464% 44.5% 19.0% 48.6% 39.5%
+ word-level labels 42.1% 439% 258% 50.5% 359% 428% 524% 422% 183% 50.0% 40.4%

Table 1: Ablation for different settings across different languages for self-consistency on the validation set.

We find that simply prompting a strong LLM
results in a strong baseline, reaching the highest
results on average across languages with an overlap
with gold annotations of up to 51.7%, consistency-
based approaches can outperform it or achieve com-
parable results for languages like Chinese, French,
Finnish or Swedish, reaching overlaps with human
gold annotations of 47.9%-60.1%

2 Background

This work takes inspiration in  self-
consistency (Wang et al., 2023), a framework
in which Chain-of-Thought (CoT) prompting is
improved by sampling more than one possible
continuation and choosing the continuation that is
generated most consistently. Self-consistency has
also been adapted to the hallucination detection
task under the assumption that inconsistency is an
indicator for counter-factuality and model uncer-
tainty. It is proven effective at the sentence-level
hallucination detection task in English: Manakul
et al. (2023) compare an LLM-generated response
against stochastically-generated responses and let
an LLM judge over the factuality of the response.
Miindler et al. (2024) investigate self-contradiction
as an indicator for hallucinations. Zhang et al.
(2023) introduce the concept of cross-model
consistency, building on the observation that
one model can hallucinate consistently across
multiple continuations and therefore, an additional
LLM is needed to break the consistency. In this
work, we continue to follow the intuition that
inconsistency indicates model uncertainty and that,
especially in a cross-model setting with a superior
LLM, inconsistency can be used for hallucination
detection at sub-sentential level.

3 System Overview

3.1 Self- and cross-model consistency

We generate k alternative responses to the ques-
tion of the original question answer pair, where
k = b5 for self-consistency and k£ = 20 for GPT-
consistency per sampling configuration. The num-
ber of sampling configurations for self-consistency

is based on the provided scripts by the shared task
organizers in order to stay as close as possible
to the setup used to generate the hallucinated an-
swers. This number varies, but at the minimum in-
cludes all combinations of temperatures t = {0.1,
0.2, 0.3} and nucleus sampling probability p =
{0.90, 0.953}. The process of generating alterna-
tive responses is done using a superior, multilingual
model gpt-40-mini-2024-07-18 with the set of
minimum configurations. During the first itera-
tion of experiments, all alternative responses are
included in the threshold calibration and prediction,
afterwards, we experiment with fewer alternative
responses and analyzing the optimal configuration
setting, showing the stability of our approach with
down to 5 alternative responses in total (see Ap-
pendix C).

3.2 Token consistency scores

We use SimAlign (Jalili Sabet et al., 2020) with
XLM-R (Conneau et al., 2020), transformer layer
8, and SimAlign variant forward to calculate the
token alignments and their corresponding similarity
scores s; 1., for each token 7 in the answer that
is to be evaluated and the aligned token in each
alternative answer k. The similarity scores are
aggregated across alternative answers by taking
their median:

s; = median (8; 1, Si2, .-, Sik) -

We call s; the token consistency score.

Table 1 shows that we found the forward variant
of SimAlign to be superior to the inter variant for
our purposes. Additionally, we experimented with
using the mean (first two rows in Table 1) as an
aggregation method for the similarity scores, but
found the median to be a better fit.

3.3 Threshold calibration

The token consistency scores are then compared
to a model-specific threshold to decide whether it
is hallucinated or not. The threshold is calibrated
based on a calibration set that we split from the
shared task’s validation dataset. The threshold
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value that maximizes the F1-score for detecting
hallucinated spans for the training set is chosen
for each individual underlying model. All tokens
with median similarity score below the threshold
are labelled as a hallucination.

3.4 Word-level label derivation

Once the token-level label has been attained, we
derive a word-level label by taking the majority
vote of the labels of the subword tokens within a
word and extrapolate it to the word. Although the
gold label annotations are at the character level, we
find that word-level predictions outperform predic-
tions below the word level (token) (Table 1). The
hard labels are then derived by matching each sep-
arate word in order with the whole answer string
to find the start and end indices of the hallucinated
substrings.

3.5 Baselines

Mark-all As a lower baseline, we use a
mark-all approach, where we mark every single
character in the answer as a hallucination, as do the
organizers of the shared task (Vazquez et al., 2025).

GPT4o zero-shot classification As another
baseline, we prompt gpt-40-mini-2024-07-18 to
detect the hallucinated spans in the answer that is
to be evaluated. We experiment with two different
prompting techniques: a simple direct prompt and
a more elaborate two-step prompt” . For all GPT4o-
mini generations, OpenAl’s structured outputs are
used, and all prompts are written in English no
matter what the target language is>.

3.6 Handling of previously unseen languages

The test set contains 4 languages that are not part
of the validation set and for which it was not possi-
ble to calibrate the threshold directly beforehand.
In order to make a prediction for these languages
nonetheless, we used the following approaches of
adapting thresholds by models and languages that
were seen during validation:

1. Taking the threshold of the same model in
a different language. If the same model was used
for multiple languages, the typologically closer
language was chosen. Applied to Catalan, Basque,
and Czech.

The prompts are attached in Appendix D.

3Chollampatt et al. (2025) find that GPT models almost
consistently perform better if prompts for multilingual tasks
are held in English.

2. If the model was not seen in the validation set,
the threshold was derived by averaging all model-
specific thresholds for the typologically closest lan-
guage. Applied to Farsi.

4 Experimental Setup
4.1 Data

All question—answer pairs containing hallucination
spans were provided by the shared task’s organizers
in the form of a validation and test set.

The validation set contains ~50 question-answer
pairs each for 10 languages (Arabic (ar), Chinese
(zh), English (en), French (fr), Finnish (fi), German
(de), Hindi (hi), Italian (it), Spanish (es), Swedish
(sv)). Each data point comes annotated with hard
labels that give the start and the end index of a
hallucinated span, soft labels that includes the same
indices in addition to a hallucination probability
value*, the name of the model used to generate the
answer, and the token logits. We split the validation
set 50/50 for a train/val split. This split is balanced
according to the underlying models.

The test set contains the same annotations apart
from the hard and soft labels, which were only pro-
vided after the shared task evaluation phase. It con-
tains the same 10 and 4 additional (low-resource)
languages that were not part of the validation set
(Basque (eu), Catalan (ca), Czech (cs), Farsi (fa)).
For each of the original 10 languages, ~150 sam-
ples were provided, while 100 samples were pro-
vided for the 4 additional languages. More detailed
information on the full dataset and the models used
to generate the answers is given in Table 4 in Ap-
pendix A.

4.2 Evaluation

Two evaluation metrics are considered for this task.
Intersection over Union (IoU) is applied to calcu-
late the overlap between the predicted hard labels
and the gold annotations, where .S, is the predicted
span and S is the gold span:

1, if both S, and S, are empty
IoU = $ s
i SZ B SZ I , otherwise

The second metric, Spearman’s correlation coef-
ficient, is used to evaluate the probability assigned
to each hallucinated span in the soft labels. Since
we focus on the hard labels in our experiments,

*The handling of the soft labels is described in Ap-
pendix B.2.
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Method ar zh en fi fr de hi it es sV Avg.
mark-all 36.1% 47.7% 349% 48.6% 454% 345% 27.1% 283% 185% 53.7% 37.5%
direct prompt 50.3% 399% 47.0% 51.7% 453% 512% 63.8% 61.7% 40.5% 52.6% 50.4%
two step prompt 52.5% 423% 48.5% 53.8% 48.6% 489% 61.8% 683% 364% 561% 51.7%
GPT-consistency 40.7% 424% 41.8% 601% S57T1% 422% 509% 51.5% 272% 554% 46.9%
GPT-consistency-fv  40.4% 47.9% 44.1% 51.4% 57.7% 41.6% 51.7% 528% 234% 559% 46.7%
self-consistency 36.4% 44.6% 363% 519% 475% 394% 388% 47.1% 209% 46.5% 40.9%
self-consistency-fv. ~ 35.0% 43.3% 342% 51.4% 51.9% 372% 364% 468% 185% 52.6% 40.7%
rank 12/32  6/29 14/44  7/30 9/33 14/31 9/27 11731 11/35  9/30

Table 2: IoU scores for our best-performing approaches per system for each language seen in the validation set.
The rank indicates the rank achieved by the bolded approach in the shared task compared to the best submissions by
all participants. -fv indicates that the full validation set was used to calibrate the threshold. These results are based

on the test set.

Method ca cs eu fa Avg.
mark-all 242% 263% 36.7% 203% 26.9%
direct prompt 55.6% 393% 46.5% 48.7% 47.5%
two step prompt 58.6% 392% 50.7% 51.1% 49.9%
GPT-consistency 413% 334% 46.6% 44.7% 41.5%
GPT-consistency-fv = 39.8% 34.0% 48.6% 44.9% 41.8%
self-consistency 283% 30.7% 32.7% 20.7% 28.1%
self-consistency-fv. =~ 26.7% 30.5% 33.7% 21.0% 28.0%
rank 8/24 11726 11726 12/26

Table 3: IoU scores for our best-performing approaches
per system for each previously unseen language. The
rank indicates the rank achieved by the bolded approach
in the shared task compared to the best submissions by
all participants. -fv indicates that the full validation set
was used to calibrate the threshold.

all results for the soft labels are appended in Ap-
pendix B.2.

We first evaluate all hyperparameter settings per
system on the validation set. Based on those results
we choose the best-performing setting for the self-
and GPT-consistency approach (Table 1). For each
consistency-based approach, we additionally ex-
periment with calibrating the threshold on the full
validation set (denoted with -fv in Table 2 and 3).

5 Results and Discussion

5.1 Main results

Table 2 shows the results of our systems and base-
lines on the test set’. We find that on average, our
GPT4o0-mini prompt-based approaches outperform
the rest. Prompt engineering led to a small im-
provement over a direct prompt. In cases like zh, fr

50On average, all systems achieve higher scores on the test
set compared to the validation set, while maintaining their
relative ranking. There is some system ranking variation for
individual languages. Most notably fr and fi, where GPT-
consistency surprisingly outperforms the other approaches on
the test set.

(direct), and sv (direct), however, it fails to beat the
lower mark-all baseline.

For zh, fi, and fr we see distinct improvement
over prompting when applying GPT-consistency.
This discrepancy to the prompt-based approach
could indicate that for these languages, GPT4o-
mini is able to generate the factual answers to the
questions, but cannot locate the spans by itself just
as well. While doubling the number of question-
answer pairs to find a threshold does improve the
performance in some cases (zh, en, fr, hi, it, sv), it
performs on average worse than the system based
on the original smaller split. The self-consistency
results for zh, fi, and fr show competitiveness com-
pared to the prompt-based approach. Furthermore,
using the full validation for the self-consistency cal-
culation only leads to an improvement for fr and sv.
This indicates some stability to using a small num-
ber of samples that are needed for the consistency-
based systems to be effective. We append a more
detailed analysis of the effect of sample and alter-
native answer number in Appendix C.

5.2 Previously unseen languages

For the previously unseen, low-resource languages,
the results are shown in Table 3. Similarly to the
results for the previously seen languages, all of
our systems outperform the mark-all baseline on
average across all languages. A notable difference
here is, however, the clear drop in performance of
SC, which could be led back to the missing model
and language specific threshold calibration.

The models used for ca and cs were all seen for
other languages in the validation set. For eu the
majority of answers have been generated with a
model that has also been seen in other languages
in the validation set. For Farsi a completely new
set of models, none of which were seen in the vali-
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Figure 1: The performance of the zero-shot baseline, GPT-consistency and self-consistency for a subset of languages
that were seen during calibration and some of whose underlying model had a parameter size larger than 9B. n
indicates the number of samples/answers this statistic is based on.

dation set, have been used to generate the answers
that are to be evaluated. Taking this into considera-
tion, we can deduct that the self-consistency based
approaches rely highly on the threshold being cali-
brated for each model specifically, and, to a lesser
degree, for the specific language. GPT-consistency
seems somewhat more stable in this regard.

5.3 Model-specific scores

An analysis of model-specific performance (Fig-
ure 1) reveals that the effectiveness of the above
described approaches is not only determined by
the given language, but it is also strongly depen-
dent on the underlying model — more specifically,
the underlying model’s size. For models exceed-
ing 8B parameters, self-consistency almost con-
sistently outperforms the zero-shot baseline. This
trend has a particularly strong effect on the overall
performance of zh, where a substantial portion of
the evaluated responses were generated by large
models. Similar trends are seen in fi, fr and sv.
In contrast, for smaller models (<8B), GPT-based
zero-shot approaches generally perform better. Full
insight into the model-specific results is given in
Appendix E.

6 Conclusion

In this work, we introduced a (self-)consistency-
based approach to hallucination span detection
in LLM-generated responses for multilingual
question-answering as part of the submission for
the SemEval 2025 Shared Task 3: Mu-SHROOM,
the Multilingual Shared-task on Hallucinations and
Related Observable Overgeneration Mistakes.

Our method leverages both token-level self-
consistency and cross-model consistency with a su-
perior LLM (GPT40-mini) to identify hallucinated
spans. We demonstrated that our methods outper-
form naive baselines and remain comparable with
state-of-the-art approaches for certain languages,
even when operating under limited resource con-
straints. The results indicate that self-consistency is
highly dependent on model-and language-specific
threshold calibration and that it is most effective
when applied to responses generated by larger mod-
els (>8B parameters), where it oftentimes outper-
forms the GPT-based zero-shot baseline. Future
work could improve the stability across smaller
models by combining self-consistency and GPT-
consistency, or extend consistency-based methods
to additional generative tasks beyond question-
answering.
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A Details on Dataset

Lang #train #val #test Model Names

Arabic (ar) 26 24 150 SealLM-7B-v2.5, openchat-3.5-0106-gemma, Arcee-Spark

Basque (eu) 0 0 99 Meta-Llama-3-8B-Instruct, gemma-7b-it

Catalan (ca) 0 0 100 Meta-Llama-3-8B-Instruct, occiglot-7b-es-en-instruct

Chinese (zh) 25 25 150 Qwenl.5-14B-Chat, Baichuan2-13B-Chat, Yi-1.5-9B-Chat,
internlm2-chat-7b

Czech (cs) 0 0 100 Mistral-7B-Instruct-v@.3, Meta-Llama-3-8B-Instruct

English (en) 24 26 154 mistral, falcon-7b-instruct, Pythia-Chat-Base-7B

Farsi (fa) 0 0 100 PersianMind-v1.0,Meta-Llama-3.1-8B-Instruct, Llama-3.2-3B-Instruct,
aya-23-35B, aya-23-8B

Finnish (fi) 26 24 150 Poro-34B-chat, 11ama-7b-finnish-instruct-ve.2

French (fr) 25 25 150 CroissantLLMChat-v@.1, vigogne-2-13b-chat,
Mistral-Nemo-Instruct-2407, occiglot-7b-eu5-instruct,
Meta-Llama-3.1-8B-Instruct

German (de) 24 26 150  bloom-6b4-clp-german-oasst-v@.1, SauerkrautLM-7B-v1-GGUF,
occiglot-7b-de-en-instruct

Hindi (hi) 25 25 150 ProjectIndus, OpenHathi-7B-Hi-v@.1-Base, Meta-Llama-3-8B-Instruct

Italian (it) 25 25 150 modello-italia-9b, Meta-Llama-3.1-8B-Instruct,
DantelLLM-7B-Instruct-Italian-v@.1, Qwen2-7B-Instruct

Spanish (es) 25 25 152 Llama-3-Instruct-Neurona-8b-v2, Meta-Llama-3-8B-Instruct,
Qwen2-7B-Instruct

Swedish (sv) 25 24 150 gpt-sw3-6.7b-v2-instruct-gguf, Poro-34B-chat, Viking-33B

Table 4: Statistics on the dataset splits with model names.

264



B Correlation of Hallucination Probability to Gold Annotation

B.1 Predicting the hallucination probability

To predict the hallucination probability of each span we always assign a probability of 1. The correlation
between the predicted probabilities and the gold labels is shown in Table 5 for the submitted systems on
the validation set.

B.2 Evaluating the hallucination probability

To measure the correlation between the predicted probability values with the gold values for the soft
labels, Spearman’s correlation was applied, where p; is the ranked position of the predicted and r; of the
gold probability:

1, if both r and p contain only
a single unique value and match
p=10 if one contains a single unique value
and the other does not match
)2 .
1-— 6%((;;;7:’;3), otherwise
Method ar zh en fi fr de hi it es 3 Avg.

GPT-consistency-allone  30.23% 20.52% 36.56% 37.66% 30.69% 30.23% 54.21% 34.02% 25.55% 22.13% 32.18%
self-consistency-allone  36.37% 20.89% 23.08% 43.43% 27.10% 33.94% 50.88% 32.94% 25.73% 18.90% 31.33%

Table 5: Spearman correlation scores for our best-performing approaches per system for each language seen in the
validation set.
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C Stability to a reduced number of alternative responses

One limitation of the consistency-based approaches in the main section is that they require a considerable
number of alternative responses, and therefore, computation and time. Hence, we decided to experiment
with 5 alternative responses during either the prediction, for threshold generation or both. Additionally,
we look at the influence different configuration settings have on the performance. Table 6 shows the
results on overlap with gold annotations on the validation split.

When comparing the averages across languages, a small performance degradation is noticeable ev-
erywhere. GPT-consistency seems to be more stable across the board, with weaker fluctuation across
sampling configurations. None of the averages degrade more than 1.5%. In this regard, self-consistency
shows on average stronger fluctuations when changing the sampling configurations for a reduced size
of alternative responses, degrading as much as 5.1% (sc-fewer-both; p0.90 t0.1) and even gaining 0.1%
(sc-fewer-pred; p0.90 t0.3).

Config ar zh en fi fr de hi it es sV Avg.
sc-all 42.1% 43.9% 25.8% 50.5% 35.9% 42.8% 52.4% 42.2% 18.3% 50.1% 40.4%
5 p0.90 t0.1 42.5% 41.9% 21.5% 47.1% 33.9% 38.9% 40.9% 37.6% 14.9% 35.8% 35.5%
g p0.90 t0.2 40.6% 43.4% 26.7% 51.3% 33.9% 42.2% 53.2% 38.9% 17.9% 49.4% 39.7%
5 p0.90 t0.3 39.0% 44.9% 27.7% 51.4% 35.8% 47.0% 51.8% 43.5% 17.2% 47.9% 40.6%
E p0.95 t0.1 42.0% 42.0% 25.9% 49.4% 31.9% 43.6% 42.0% 34.5% 16.2% 50.6% 37.8%
) p0.95t0.2 44.8% 43.8% 25.2% 50.2% 34.6% 40.3% 51.0% 41.2% 16.7% 47.2% 39.5%
p0.95t0.3 41.5% 43.4% 23.8% 52.2% 37.0% 46.7% 532% 40.3% 15.7% 47.6% 40.1%
one of each 42.7% 43.7% 24.3% 52.3% 31.9% 44.6% 47.5% 36.9% 17.1% 47.7% 38.9%
p0.90 0.1 41.4% 44.5% 21.3% 49.6% 38.6% 39.0% 40.7% 43.3% 12.3% 50.2% 38.1%
= p0.90 t0.2 43.9% 44.8% 23.3% 48.3% 38.1% 40.9% 43.9% 42.4% 18.9% 47.9% 39.3%
§ p0.90 t0.3 40.7% 44.1% 24.8% 49.0% 35.8% 39.9% 43.2% 39.1% 18.5% 48.8% 38.4%
& p0.95t0.1 43.1% 44.8% 23.8% 48.1% 36.5% 39.4% 36.9% 45.3% 16.0% 50.2% 38.4%
2 p0.95t0.2 43.2% 43.7% 23.7% 46.9% 40.5% 40.1% 43.2% 41.8% 17.2% 53.6% 39.4%
p0.95t0.3 43.8% 45.5% 23.7% 48.3% 38.2% 40.2% 44.9% 43.3% 18.7% 49.6% 39.6%
one of each 38.8% 44.9% 21.2% 48.7% 40.6% 40.7% 43.6% 42.6% 16.1% 50.1% 38.7%
= p0.90 0.1 39.0% 42.3% 20.2% 46.3% 34.3% 40.3% 38.8% 44.1% 11.3% 36.1% 35.3%
E p0.90 t0.2 40.9% 42.8% 27.0% 51.0% 35.7% 40.1% 52.9% 44.2% 19.4% 48.6% 40.3%
5 p0.90 t0.3 39.9% 44.2% 25.7% 50.4% 33.2% 39.1% 51.7% 40.6% 17.7% 45.5% 38.8%
E p0.95t0.1 39.4% 41.9% 26.6% 50.1% 34.3% 41.8% 33.9% 39.0% 14.8% 47.6% 36.9%
) p0.95t0.2 40.1% 43.7% 25.0% 49.4% 34.1% 45.1% 50.7% 40.5% 18.2% 53.0% 40.0%
p0.95t0.3 40.2% 39.5% 23.7% 52.6% 37.1% 38.8% 53.6% 40.5% 17.1% 45.7% 38.9%
one of each 40.7% 43.7% 23.2% 53.1% 34.0% 38.8% 46.0% 36.6% 15.9% 50.1% 38.2%
gpt-all 41.5% 42.5% 31.7% 49.3% 41.2% 41.9% 55.6% 44.3% 27.5% 59.7% 43.5%
- p0.90 0.1 40.4% 40.8% 31.4% 49.3% 41.0% 41.9% 55.7% 44.2% 27.3% 59.5% 43.1%
% p0.90 t0.2 40.3% 40.4% 32.1% 49.4% 41.3% 42.7% 56.0% 42.7% 23.2% 59.9% 42.8%
5 p0.90 t0.3 40.9% 40.2% 31.0% 48.5% 40.9% 42.9% 55.9% 42.5% 23.4% 61.3% 42.8%
E p0.95t0.1 41.1% 40.6% 31.0% 49.6% 41.3% 40.7% 55.5% 44.1% 27.2% 59.6% 43.1%
‘54'35 p0.95t0.2 40.6% 40.2% 32.1% 48.3% 41.2% 42.6% 55.5% 43.1% 27.5% 59.9% 43.1%
p0.95t0.3 40.4% 40.4% 31.8% 48.5% 41.2% 42.9% 56.0% 42.6% 23.4% 60.9% 42.8%
one of each 39.5% 40.3% 31.5% 48.3% 41.1% 41.9% 55.8% 44.4% 23.6% 59.9% 42.6%
p0.90 0.1 41.2% 40.5% 32.3% 49.6% 42.0% 40.4% 55.6% 42.1% 26.1% 58.7% 42.9%
5: p0.90 t0.2 42.0% 40.1% 31.8% 49.4% 42.4% 40.1% 55.7% 43.0% 27.5% 60.1% 43.2%
4 p0.90 t0.3 41.8% 41.0% 32.1% 48.3% 42.2% 40.2% 56.0% 44.4% 24.1% 59.2% 42.9%
jqf p0.95 t0.1 41.3% 40.5% 31.7% 48.8% 41.9% 38.3% 55.6% 43.0% 25.5% 59.5% 42.6%
& p0.95 t0.2 41.9% 40.1% 31.8% 48.9% 42.7% 37.5% 55.6% 44.7% 28.0% 59.3% 43.0%
p0.95t0.3 41.9% 40.9% 31.7% 49.3% 42.3% 40.8% 55.7% 44.5% 27.7% 59.6% 43.4%
one of each 41.9% 40.7% 29.9% 47.8% 41.6% 41.1% 55.6% 44.2% 26.8% 59.2% 42.9%
- p0.90 0.1 39.9% 40.2% 31.9% 49.3% 41.5% 41.3% 55.7% 42.0% 25.9% 58.0% 42.6%
E p0.90 t0.2 39.2% 39.7% 32.2% 49.4% 42.3% 42.6% 56.1% 41.8% 23.3% 60.4% 42.7%
5 p0.90t0.3 40.0% 40.5% 33.7% 47.5% 42.0% 42.9% 56.0% 42.6% 19.9% 60.7% 42.6%
E p0.95t0.1 38.3% 40.3% 31.0% 48.7% 41.9% 40.3% 55.5% 42.8% 25.0% 59.3% 42.3%
éd p0.95t0.2 37.5% 39.6% 32.1% 47.8% 42.5% 42.4% 55.7% 43.6% 27.9% 60.3% 42.9%
p0.95t0.3 39.8% 40.5% 31.6% 48.4% 42.3% 42.9% 56.0% 43.5% 23.3% 60.7% 42.9%
one of each 39.2% 40.2% 29.8% 47.0% 41.5% 41.8% 55.7% 44.2% 22.4% 59.3% 42.1%

Table 6: IoU results for self-consistency with fewer alternative responses during prediction, thresholds calibrated
with fewer alternative responses or both in comparison to using all alternative responses for both calibrating the
threshold and prediction.
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D Prompts for the Zero-Shot GPT40-mini Baseline

We use GPT40-mini as a zero-shot baseline with the following two prompts:

Method Prompt

Direct prompt System Prompt: "You will be given a question-answer pair. The answer might contain spans
that are counterfactual. You will output the counterfactual spans. Note that the answers can also
be fully counterfactual or not at all."

User Prompt: "Question: {model_input}. Answer: {model_output}."

Two step prompt  User Prompt (Alternative Answer): "Answer the following question with five possible answers:
{model_input}."

System Prompt: "You will be given a question-answer pair. The answer might contain spans
that are counterfactual. You will also be given multiple other possible answers. Based on these
other possible answers, output the spans from the answer of the initial question-answer pair that
are counterfactual. Note that the answers can also be fully counterfactual or not at all."

User Prompt: "Question: {model_input} Answer: {model_output} Other possible answers:
{alternative_answer}."

Table 7: System and user prompts used in our experiments.
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Figure 2: The performance of the zero-shot baseline, GPT-consistency and self-consistency for each language that
was seen during calibration and model used to generate the answers that are to be searched for hallucinations. n
indicates the number of samples/answers this statistic is based on.

A comparison of hallucination detection performance across different approaches, languages, and
model architectures (Figure 2) suggests that the effectiveness of a given method is not solely determined
by the target language but is also influenced by the model that generated the evaluated text.

Notably, GPT-based approaches tend to outperform self-consistency when the underlying model is
relatively small (<8B parameters). However, for larger models (>8B parameters), self-consistency
consistently surpasses the zero-shot baseline. This observation may explain SC’s relatively strong
performance for zh, as roughly 4/5 of the Chinese evaluation data was generated by models exceeding 8B
parameters. The same trend can also be observed in sv, it, fi and fr.

Figure 3 shows similar and consistent behavior for the smaller underlying models of the unseen
languages during threshold calibration. Only for fa, models with a parameter size >9B were used, but
since none of those were seen during calibration for the other languages, SC* performance also degrades
for the 35B model.

This model-specific analysis is to be interpreted with caution due to the small and imbalanced sample
sizes. To make more certain, claims the experiments would have to be repeated on a larger dataset.
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Figure 3: The performance of the zero-shot baseline, GPT-consistency and self-consistency for each language that
was not seen during calibration and model used to generate the answers that are to be searched for hallucinations. n

indicates the number of samples/answers this statistic is based on.
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