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Abstract

We introduce SemEval-2025 Task 4: unlearn-
ing sensitive content from Large Language
Models (LLMs). The task features 3 subtasks
for LLM unlearning spanning different use
cases: (1) unlearn long form synthetic creative
documents spanning different genres; (2) un-
learn short form synthetic biographies contain-
ing personally identifiable information (PII), in-
cluding fake names, phone number, SSN, email
and home addresses, and (3) unlearn real docu-
ments sampled from the target model’s training
dataset. We received over 100 submissions
from 26 teams and we summarize the key tech-
niques and lessons in this paper.

1 Introduction

Large Language Models (LLMs) have achieved
enormous success recently due to their ability to
understand and solve various non-trivial tasks in
natural language. However, they have been shown
to memorize their training data (Carlini et al., 2019)
which, among other concerns, increases risk of the
model regurgitating creative or private content. Of-
ten, such issues are discovered post model training
during testing or red teaming. Furthermore, stake-
holders may sometimes request to remove their
data after model training to protect copyright, or
exercise their right to be forgotten (General Data
Protection Regulation). In these instances, retrain-
ing models after discarding such data is one option
but doing so after each such removal request is
prohibitively expensive.

Machine unlearning is a promising line of re-
search for removing sensitive information from
models’ parametric memory. While unlearning has
been studied for sometime in classification prob-
lems, it is still a relatively underdeveloped area of
study in LLM research since the latter operate in
a potentially unbounded output label space. Cur-
rent algorithms often fall short of effectively and
efficiently unlearning sensitive information from

LLMs, without impacting model utility. Further,
there is a need for benchmarks which can provide
thorough evaluations of new unlearning algorithms
in removing different categories of sensitive infor-
mation.

To address these needs and to spur further re-
search on this topic, we developed a new challenge
(and an associated benchmark) for LLM Unlearn-
ing as part of the SemEval 2025 competition. This
document provides a summary of our challenge1

along with the benchmark, results and key take-
aways.

2 Related work

Given the nascent stage of unlearning research in
LLMs, few prior works exist which address the
task of robustly evaluating the success of unlearn-
ing. (Triantafillou et al., 2023) presented a new
challenge task in which the goal was to to unlearn
information contained in select images within the
task of image based age prediction. While success-
ful, the specific task addressed in this challenge
was narrow, focusing only on image based age pre-
diction - a classification problem with 10 classes
with limited applicability in the unbounded text
generation task of large language models.

(Maini et al., 2024) released a new evaluation
framework named TOFU which partially addressed
this task of evaluating LLM unlearning algorithms.
Their framework was evaluated on question an-
swering task applied on biographies of syntheti-
cally created fake authors. They train target models
on this synthetic data and evaluate the ability of
unlearning algorithms to forget a portion of this
synthetic dataset. While being a promising first
step, this work has a few key limitations: unlearn-
ing the targeted information required for the QA
task is unlikely to cause loss of any other substan-
tial information, specially linguistic attributes such

1llmunlearningsemeval2025.github.io
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as grammar. Further, this work leverages GPT4
to generate the synthetic content, which may have
downstream implications owing to GPT4’s propri-
etary license.

More recently, (Shi et al., 2024) released a bench-
mark named MUSE which evaluated model un-
learning using real data set for containing news
documents and Harry Potter book chapters. This
benchmark released detailed evaluation metrics to
robustly evaluate the unlearning algorithms. How-
ever since it only leverages real data set the bench-
mark does not provide a clean test bed to evaluate
model performance. Specifically, the information
contained in the unlearn documents may also ap-
pear in other disjoint training documents, limiting
the effectiveness of unlearning. While the TOFU
benchmark mentioned before avoids this by only
using synthetic documents, the data set coverage is
rather limited (it only containts biographic informa-
tion). The benchmark developed in our challenge
addresses both these shortcomings together and
presents a single holistic testbed to evaluate model
unlearning in LLMs.

3 Challenge Description

To robustly evaluate unlearning algorithms on their
effectiveness in removing different categories of
information from LLM, we developed2 a new un-
learning benchmark (on English language), cov-
ering three distinct sub-tasks spanning (1) cre-
ative content, (2) Personally Identifiable Informa-
tion (PII) of synthetic individuals and (3) real bi-
ographies of individuals sampled from Wikipedia.
Please refer to (Ramakrishna et al., 2025) for de-
tailed information on the dataset creation process.

Within each sub-task, we further test the mod-
els for regurgitation (where model is prompted to
complete partial documents) and knowledge (via
generated question-answer pairs), leading to 12 dif-
ferent sub-tasks for the challenge. To score highly
in the challenge, participants are expected to do
well in all sub-tasks. In comparison, existing un-
learning benchmarks such as TOFU (Maini et al.,
2024) and MUSE (Shi et al., 2024) cover only a
portion of the subtasks we test for.

For each subtask, we released Retain (R) (i.e.
model should retain these documents in memory)
and Forget (F ) datasets (i.e. model should forget
information from these documents) along with two
target models (7 billion and 1 billion parameters

2github.com/amazon-science/lume-llm-unlearning

Forget Retain

Task 1 199 194 393
Task 2 203 202 405
Task 3 295 294 589

697 690 1,387

Table 1: Number of unique documents for both data
subsets within each task. For each document, we create
multiple regurgitation and knowledge datasets leading
to 4,394 unique examples.

in size) which were fine-tuned to memorize docu-
ments from all three tasks.

Participants were encouraged to explore vari-
ous unlearning algorithms which enable them to
remove the sensitive information present in F with-
out affecting model knowledge on the R. Our ini-
tial data release was further split in 80:20 ratio
as train and validation subsets for optional hyper-
parameter tuning. Participants were expected to
submit working Python scripts containing their un-
learning code for the evaluation phase, which were
executed on privately held subsets of retain and
forget sets from each sub-task. Table 1 lists over-
all statistics of our benchmark, and examples are
shown in Figure 5.

We provide further details on our dataset creation
for the three tasks below, followed by details on the
evaluation phase.

3.1 Dataset Creation

3.1.1 Task 1: Synthetic creative documents
LLMs trained on Internet-scraped data are often
exposed to copyrighted content, making unlearn-
ing of this information a common requirement post
training. However, evaluating effectiveness of un-
learning on only real creative documents (Shi et al.,
2024; Eldan and Russinovich, 2023) is challeng-
ing as information to be removed may appear in
other documents not being unlearned. For example,
MUSE (Shi et al., 2024) uses Harry Potter books as
its forget set, but this information may be exposed
to the model via Wikipedia articles and social me-
dia posts. Motivated by this, in this task, we only
include synthetically generated short novels, cre-
ated using Mixtral 8x7B (Jiang et al., 2023) as our
generator LLM.

To create each document in this task, we first
randomly sample a genre from one of Action, Fan-
tasy, Thriller, Comedy, Mystery, Science Fiction,
Young Adult and Romance. Next we generate one
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to four synthetic character names using a random
name generator 3, and synthetic locations from the
city list of a random address generator 4 for all gen-
res except Fantasy genre. For Fantasy, we sample
unique genre specific city names using a Dungeons
and Dragons town generator 5. Given this infor-
mation, we prompt the Mixtral model (full prompt
listed in Appendix B) to create a short story with
150-200 words. To validate the generated stories,
we conducted manual reviews (each short story
was reviewed by two authors) and filtered out sto-
ries with similar content to prior reviewed stories.
Our final dataset for this task contained 393 unique
short stories across all genres.

3.1.2 Task 2: Synthetic biographies with
sensitive PII

We use various heuristics to generate 500 synthetic
personal biographies with following PII fields:

• Name: randomly created from a name genera-
tor, includes firstname+lastname.

• Birthday: randomly sampled between
01/01/1964 and 01/01/1991.

• Social Security number (SSN): randomly sam-
pled within the range 900-xx-xxxx (which by
policy cannot not belong to a real person (ssa,
2011)).

• Phone Number: 10 randomly sampled digits.
• Email address: Created heuristically of the

form firstname_lastname@me.com.
• Home address: A non-existent physical home

address obtained by combining a random
street address from a US state with an alter-
nate city and zip-code from a different state.

For each synthetic individual created above, we
prompt the Mixtral model (using prompt listed in
Appendix C) to create a short biography which
includes all the PII information.

3.1.3 Task 3: Real biographies

To evaluate effectiveness of unlearning on real data,
we include real biographies as the third task. Specif-
ically, we sampled 750 biographies spanning 100
to 200 words from Wikipedia documents released
in the Dolma (Soldaini et al., 2024) v1.6 corpus,
which was part of the training dataset for the OLMo
models (Groeneveld et al., 2024) we use for this
task.

3pypi.org/project/unique-names-generator
4pypi.org/project/random-address
5perchance.org/dndtowngen

3.2 Subtasks

For each task, we additionally created prompts for
two subtasks detailed below.

3.2.1 Regurgitation tests
To test for model regurgitation of documents, we
created sentence completion prompts for all docu-
ments from the three tasks by sampling a random
position in second half of the document with the
sentences before it as the input.

3.2.2 Knowledge tests
We create question answer prompts for each docu-
ment using an agentic workflow for Tasks 1 and 3
where we prompt the data generator LLM (Mixtral
8x7b) with few-shot Chain of Thought prompting
(Wei et al., 2022) (prompt listed in Appendix D)
to construct an unambiguous question with a sin-
gle concise answer. We validate the quality of the
generated QA pair by prompting three verification
LLMs (Claude 3 Sonnet, Titan Text Express and
Mixtral 8x7B) to answer the question with full doc-
ument as grounding. We discard QA pairs if any of
the three verification LLMs are unable to answer
the question accurately. For Task 2, we use tem-
plate based heuristics for each PII field to frame
questions of the form What is the birth date of John
Smith? with the corresponding entry as the answer.

3.3 Data Splits

We divide the dataset we created into two halves,
corresponding to forget (F ) and retain (R) subsets.
Each unlearning algorithm is evaluated on how well
it can erase sensitive information from the forget
subset, without impacting information in the retain
subset. We maintain a 1:1 ratio between the two
subsets, which adds to the challenge. We further
split both of these into private and public subsets.
We released the public retain and forget subsets
in September 2024, as part of the task artifacts.
The private datasets were saved for the evaluation
phase.

3.4 Unlearning Model Candidates

We fine-tuned OLMo-7B-0724-Instruct-hf (7 Bil-
lion parameters6) and OLMo-1B-0724-hf (1 Bil-
lion parameters7) models on documents from all

6huggingface.co/llmunlearningsemeval2025organiza
tion/olmo-1B-model-semeval25-unlearning

7huggingface.co/llmunlearningsemeval2025organiza
tion/olmo-finetuned-semeval25-unlearning
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three tasks and release them as unlearning candi-
dates. We selected OLMo because of its permis-
sive license and open sourced training dataset (with
logs) which enables downstream task specific anal-
yses of model behavior.

3.5 Evaluation

In typical evaluation cycles, participants are invited
to upload their trained model checkpoints which
are evaluated on a private test set. However, since
unlearning algorithms need access to the targeted
information to erase from the model’s memory, we
would have to release the private forget and retain
subsets. But this can compromise the integrity
of evaluations since a participant may chose to
retrain the OLMo models from scratch on just the
retain data subsets, achieving high scores in our
evaluation metrics.

To avoid this, in our challenge we invited each
participant to develop their unlearning algorithms
locally using the publicly released forget and retain
subsets and upload their working code for evalu-
ation. For each such submission, we individually
call the corresponding unlearning functions with
the private forget and retain subsets as arguments,
and evaluate the generated checkpoints for unlearn-
ing effectiveness. During the evaluation phase, sub-
missions were timed and those runs which take
more than a pre-determined threshold of time were
discarded. Further, to support diverse explorations,
each team was invited to submit up to 5 distinct
code files for the evaluation, of which the best per-
forming candidate (among those which finished
training and retained model utility) was selected
for the leaderboard.

All evaluation experiments were conducted
(with limited permissions) on an AWS EC2
p4d.24xlarge node with 8 A100 40 GB GPUs.
The compute environment was pre-configured with
DeepSpeed Zero (Rajbhandari et al., 2020) with
additional packages installed if requested by the
teams.

To evaluate the generated checkpoints, we com-
puted following metrics:

3.5.1 Task memorization metrics
For each of our three tasks, we compute two dis-
tinct metrics listed below, corresponding to the two
subtasks to evaluate the model’s memorization of
sensitive information:
a) Regurgitation Rate: We compute ROUGE-L
(Lin, 2004) scores for the model generated outputs

with respect to the expected sentence completions.
We chose ROUGE since it is weighted for recall of
sensitive information in model outputs.
b) Knowledge Test Accuracy: For all QA prompts,
we use case insensitive exact match between model
output and the expected answer to measure predic-
tion accuracy.

Overall, we compute 12 different metrics which
measure memorization. We compute the harmonic
mean of these to obtain a single task-aggregate
metric.

3.5.2 Membership Inference Attack success
rates (MIA)

Since the model may retain some sensitive informa-
tion despite showing low memorization rates after
unlearning, we also compute MIA rates on the sub-
task prompts. We compute loss based membership
inference attacks using the MIA attack framework
from (Duan et al., 2024) to assess data leakage
risk after unlearning. A robust unlearning algo-
rithm should effectively remove evidence of the
forget set and yield MIA success rates close to 0.5
AUC (random chance) between member v/s non-
member datasets. We use a subset of the memo-
rized Wikipedia biographies from the forget subset
of Task 3 as the member set and a disjoint sample
of similar biographies not exposed to the model
as the non-member set. Further, we compute fol-
lowing MIA score to penalize any deviations from
0.5:

MIA Score = 1− 2 · |mia_auc − 0.5|

3.5.3 Model Utility

We also test for overall model utility by comput-
ing test set accuracy for 57 STEM subjects from
MMLU (Hendrycks et al., 2021), a general bench-
mark for LLM utility. We also threshold on this
metric for the post unlearning candidate to avoid
trivial solutions which completely distort general
model utility but achieve high scores in the task
aggregate and/or MIA (such as Gradient Ascent).
Specifically for the 7B model, we only consider
submissions for which the MMLU accuracy is
above 0.371 (75% of the pre-unlearning check-
point) for our official awards leaderboard. How-
ever, we did not impose this constraint for the 1B
model since the performance of the base model
on this dataset was already low, close to random
chance.
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Figure 1: Performance on retain and forget subsets for benchmarked unlearning algorithms. Reg: Regurgitation
Rate (r), Kno: Knowledge Accuracy (t). Split refers to data subset (forget or retain) used in evaluations.

3.5.4 Aggregate Final Score
Finally, we compute arithmetic mean of the task
aggregate metric, MIA score and the model utility
to obtain a single numeric score to compare all
submissions.

4 Benchmarked Algorithms

We benchmarked our dataset on several state of the
art unlearning algorithms described below.
Gradient Ascent: This is a straightforward un-
learning algorithm where we reverse the direction
of model update by flipping the sign in gradient de-
scent, in order to steer the model away from the sen-
sitive model outputs in the forget set. While easy
to implement, this approach has a significant draw-
back since the gradient ascent training objective is
unbounded, which can lead to model divergence
with nonsensical outputs for all inputs. The loss
term in this algorithm reverses sign of the standard
Cross Entropy training loss (LCE) and is applied
only on the forget set F :

−LCE(F ; θ)

Gradient Difference (Liu et al., 2022): In this ap-
proach, we augment the gradient ascent objective
applied on forget set, by adding a gradient descent
objective on the retain set. By jointly optimizing
on both sets, we steer the model away from regurgi-
tating the sensitive information from the retain set,
while ensuring it does not lose performance in the
retain set. Despite being a promising alternative to
Gradient Ascent, this quality of model performance
on non-sensitive dataset depends on the size of the
retain set used in model training, and can lead to

poor generalization on new examples. The loss
term jointly increases the likelihood of generating
responses in the retain set R while reducing the
likelihood of generating F , as shown below.

−LCE(F ; θ) + LCE(R; θ)

KL Regularization (Maini et al., 2024) Similar
to Gradient Difference, in this baseline, we aug-
ment the gradient ascent objective with a Kullback-
Leibler Divergence term to ensure the model does
not deviate too far from the original model.

−LCE(F ; θ) + LKL(R; θ, θref )

Negative Preference Optimization (Zhang et al.,
2024): This baseline uses a modified version of the
Direct Preference Optimization objective, adapted
to remove the sensitive information from forget set.

LNPO(F ; θ)

4.1 Benchmark Results

Consistent with other recent benchmarks, we evalu-
ate each algorithm described above using following
hyper-parameters and provide these results to the
participants for reference. We use a batch size of
32, and run the algorithms for 10 epochs using a
learning rate = 1e − 5 on both models. Figure 1
plots their performance on forget and retain sets
(task wise plots are shown in Appendix E). We
observe over-unlearning with the 7B model but
under-unlearning with the 1B model for selected
hyper-parameters, suggesting room for improve-
ments by participants over these baselines.
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AILS-NTUA ✓ ✓ ✓ ✓ ✓
ZJUKLAB ✓ ✓ ✓ ✓ ✓
YNU ✓ ✓ ✓
Mr. Snuffleupagus ✓ ✓
ishumei-Chinchunmei ✓ ✓
GUIR ✓ ✓ ✓
GIL-IIMAS UNAM ✓
Atyaephyra ✓ ✓ ✓
Lacuna Inc. ✓ ✓
NLPART ✓
JU-CSE-NLP’25 ✓ ✓

Table 2: Key ideas explored in participating teams, sorted based on their performance on 7B model.

5 Participant Systems

We received over 100 submissions from 24 teams
with nearly 70 individuals spanning over 30 institu-
tions across the world. We list key ideas explored
by participants in Table 2.

Most teams used variations of Gradient Differ-
ence (GD), KL Regularization or Negative Pref-
erence Optimization (NPO) with specific hyper-
parameters coupled with clever optimizations lead-
ing to faster training within the fixed compute time.
Other teams explored new and innovative solutions
for unlearning by leveraging novel loss objectives,
selective layer/parameter training, etc.

The best performing team, AILS-NTUA, lever-
aged a parameter-efficient unlearning method
based on GD with LoRA adapters added to trans-
former projection layers. They carefully sampled
chunks of forget set mixed with a large (resam-
pled) retain set. The second place team, ZJUK-
LAB merged two different models unlearned with
distinct hyperparameters, to balance under/over-
unlearning in the two models. The third place team,
YNU used alternating GD with randomly sampled
forget labels. Team Mr. Snuffleupagus applied tar-
geted unlearning using RMU on 3 layers selected
using the validation set. ishumei-Chinchunmei
explored a new inverted loss function for the forget
set, which avoids the gradient explosion commonly
found in GA.

SHA256 use causal mediation analysis on the

OLMo models and identify the first five model
layers as most relevant for unlearning, and apply
re-weighted GD. While this approach achieved
high unlearning performance, it considerably de-
graded model utility on MMLU. Team Atyaephyra
use LoRA adapters with NPO, regularized using
KL, with low memory footmark by offloading the
adapters during distillation. However, their submis-
sion included an early exit bug during 7B evalua-
tions which led to low performance with this model.
This was corrected and resubmitted in time for 1B
evaluation, in which their submission took the third
spot. We present more detailed summaries of the
core strategies used by participating teams in Table
5.

5.1 Results and Discussion

Table 3 presents performance of the top teams when
their unlearning algorithms are applied to 7B and
1B models. AILS-NTUA achieved the best per-
formance with both the 1B and 7B models, as
their system excels across all three metrics. While
ZJUKLAB performed better on Task Aggregate
and MMLU scores for the 7B model, their sub-
mission significantly underperformed on the MIA
score suggesting the unlearned information was not
completely removed from model parameter space,
and also highlighting a trade-off between MIA and
the Task Aggregate scores (also observed in (Ra-
makrishna et al., 2024)).
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Team Final Score Task Aggregate MIA Score MMLU Avg.
Results from 7B Models

AILS-NTUA 0.706 0.827 0.847 0.443
ZJUKLAB 0.487 0.944 0.048 0.471

YNU 0.47 0.834 0.139 0.436
Mr. Snuffleupagus 0.376 0.387 0.256 0.485

ishumei-Chinchunmei 0.326 0.496 0 0.481
Results from 1B Models

AILS-NTUA 0.688 0.964 0.857 0.242
SHA256 0.652 0.973 0.741 0.243

Atyaephyra 0.586 0.887 0.622 0.248
Mr. Snuffleupagus 0.485 0.412 0.793 0.25

ZJUKLAB 0.483 0.915 0.292 0.243

Table 3: Scores from the top-5 teams for 7B and 1B models. Complete results are published at
llmunlearningsemeval2025.github.io.

Team Regurgitation Score Knowledge Score
Task 1 Task 2 Task 3 Task 1 Task 2 Task 3

Forget Set
AILS-NTUA 0.963 0.986 0.979 0.966 0.998 0.951
ZJUKLAB 0.992 0.980 0.990 1.000 1.000 1.000

YNU 0.963 0.995 0.904 0.992 1.000 0.993
Mr. Snuffleupagus 0.594 0.994 0.916 0.415 1.000 0.566

ishumei-Chinchunmei 0.587 0.634 0.637 0.603 0.567 0.601
Retain Set

AILS-NTUA 0.493 0.995 0.556 0.758 0.990 0.844
ZJUKLAB 0.671 0.952 0.815 0.527 0.799 0.696

YNU 0.896 0.981 0.749 0.967 0.984 0.970
Mr. Snuffleupagus 0.485 0.290 0.145 0.582 0.167 0.526

ishumei-Chinchunmei 0.502 0.392 0.428 0.330 0.470 0.452

Table 4: Regurgitation and Knowledge Scores for the top-5 teams on 3 sub-tasks in the 7B model. Higher values
indicate better performance in all scores.

Results for both models are largely consistent,
with three teams (AILS-NTUA, Mr. Snuffleupa-
gus, and ZJUKLAB) ranking in the top five posi-
tions on both leaderboards. As discussed earlier,
Atyaephyra had a bug in their submission which
was addressed before 1B evaluations thereby gain-
ing several positions.

Finally, a handful of teams which were disquali-
fied in 7B evals due to a drop in their MMLU utility
recovered higher positions in the 1B leaderboard.
Notably, SHA256 achieved a high Final Score
(0.711), Task Aggregate (0.964), and MIA Score
(0.894) with the 7B model. However, their MMLU
score (0.275) dropped below the pre-defined thresh-
old of 0.371, suggesting a substantial drop in over-
all model utility after unlearning. As a result, their
system was regrettably disqualified in 7B evals but

retained for 1B.
Table 4 presents task wise breakdown of top 5

teams in the 7B model. Results show that the top
three systems achieve nearly perfect performance
on the forget set, demonstrating the effectiveness of
their methods in reducing regurgitation and remov-
ing knowledge from the LLMs. However, in several
cases the performance on the retain sets drops con-
siderably, suggesting over-unlearning, leading to
unintended forgetting of relevant information from
the model. When comparing across tasks, Task 2
appears relatively easier than the other two tasks
since it largely deals with short form, factual an-
swers, with both AILS-NTUA and YNU achieving
near-perfect scores in this task.

We plot histograms of team performances for
both models in Figure 2. Most teams score low on

2590

llmunlearningsemeval2025.github.io


0.0 0.5 1.00

2

4
7B

 M
od

el

0.2 0.40

2

4

0.0 0.5 1.00

5

10

0.0 0.5 1.00

2

4

6

1B
 M

od
el

(a) Final scores

0.20 0.25 0.300

5

10

(b) MMLU

0.0 0.5 1.00

5

10

(c) MIA

Figure 2: Distribution of key scores for all participants on both models. MMLU plots are zoomed in (but still
contain 10 bins). Dashed line indicates threshold for 7B model utility below which submissions are discarded.

0.00 0.25 0.50 0.75 1.00
0

2

4

6

8

R
eg

ur
gi

ta
tio

n 
R

at
e split

forget_set
retain_set

0.00 0.25 0.50 0.75 1.00
0

2

4

6

8 split
forget_set
retain_set

0.00 0.25 0.50 0.75 1.00
0

2

4

6

8
split
forget_set
retain_set

0.00 0.25 0.50 0.75 1.00
0

2

4

6

8

K
no

w
le

dg
e 

Te
st

split
forget_set
retain_set

(a) Task1

0.00 0.25 0.50 0.75 1.00
0

2

4

6

8

10 split
forget_set
retain_set

(b) Task2

0.00 0.25 0.50 0.75 1.00
0

2

4

6

8 split
forget_set
retain_set

(c) Task3

Figure 3: Distribution of participant scores for forget and retain sets on the 7B model for all 6 sub-tasks.

MIA, with only three teams scoring high on the
7B model while most others scored close to zero,
suggesting imbalanced unlearning in these submis-
sions. The MMLU scores for the 7B model are split
into two clusters above and below the pre-defined
threshold for rejection, with most submissions scor-
ing above this threshold, suggesting delibrate pa-
rameter tuning to stop unlearning before this score
drops below the threshold. For 1B model, since the
base model performance on MMLU was already
close to random chance, there is minimal impact
due to the unlearning algorithms. The final score
plots show an approximately bi-modal distribution,
with a majority of teams with low scores except a
select few which score highly.

We also plot distributions of sub-task wise per-
formance for all teams for the two models in Fig-
ures 3 and 4. We plot 1-test scores for the Forget
set for easy comparison with the retain set. Across
both models and in a majority of subtasks, the high-
est performing teams score considerably better with
the forget set compared to retain set as observed in
Table 4. This is also due to over-unlearning in low
scoring submissions which would remove the sensi-
tive information but cause substantial degradations
in the retain set as illustrated by a relatively uni-
form spread of retain set scores. We also observe
an approximately bi-modal distribution across all
tasks for the 1B model while for the 7B model
some teams scored intermediate values.
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Figure 4: Distribution of participant scores for forget and retain sets on the 1B model for all 6 sub-tasks.

6 Key Takeaways

What were the key strategies explored by the
teams? The top team, along with a few others,
applied gradient-based unlearning with low-rank
adaptation (LoRA). These parameter-efficient up-
dates enable the model to be fine-tuned efficiently,
allowing for more iterations and the use of a larger
retain dataset. Similarly, several teams developed
selective unlearning techniques to identify and tar-
get specific parameters or layers for unlearning.
Finally, balancing between over or under unlearn-
ing is critical and several teams fail to address it,
causing low MMLU or MIA scores respectively.

Is the task solved? While the top-performing
team achieved high scores, its utility (measured
by MMLU) still experienced a notable drop, from
0.494 to 0.443. Their model checkpoint was also
reported to generate garbage tokens with specific
prompts, suggesting some degree of model degra-
dation due to unlearning. In contrast, other teams
maintained utility but did not improve on MIA or
task aggregate scores. This highlights that balanc-
ing utility and unlearning effectiveness remains a
challenging and open task for future work.

What can we do differently? Several partici-
pants reported not having access to a multi-gpu
training environment, and submitted code which
was not tested with Deepspeed. As a result, sub-
stantial manual effort was invested in modifying
all submitted code files to train on our evaluation
environment. In future work, we can avoid this by
using platforms such as Huggingface competitions.

7 Conclusion and Future Improvements

This paper summarizes SemEval-2025 Task 4 on
unlearning sensitive content from LLMs. Our task
presents a significant challenge, as most baselines
struggle to maintain model utility while unlearning
unwanted information. We received several innova-
tive solutions which made strong contributions to-
wards solving this task. We hope our challenge and
the associated benchmark inspire further research
into efficient methods for unlearning sensitive con-
tent from LLMs.

We note several avenues for future exploration:
1. Evaluation metrics. Outside LLMs, un-

learning literature typically uses some form
of statistical hypothesis testing between the
model posteriors from the unlearned and the
retrained (i.e. trained without the sensitive in-
formation) model candidates. However, this is
not always feasible for LLMs since the model
would have to be trained from ground up, in-
cluding pretraining which is a computation-
ally expensive undertaking.

2. Larger model checkpoints: We limited our
challenge to 7 and 1 billion parameter mod-
els due to limited compute availability with
most participants. In future work we may ex-
pand on this challenge by inviting a subset
of teams to onboard to specialized compute
platforms to motivate further research on un-
learning larger models.

3. Unlearning other attributes: Unlearning of
sensitive information or a class of model capa-
bilities (such as coding in a specific language).
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Figure 5: Examples of full documents and test prompts for the three tasks covered in this challenge. The figure is
quoted from (Ramakrishna et al., 2025).

B Creative Content Generation Prompt

Model Input:
Create a short novel of at least 150 words. The

novel should be from fantasy genre and set in
the city of Atlantis. It should include
following characters: Kyle , Stan , Kenny and
Eric.

Model Output:
A short story about four friends lost in the magical

realm below the oceans , known to ousiders as
Atlantis. Kyle had always held a deep
fascination for the deep blue ocean , and this
naturally led him to take up a major in oceanic
studies ...

C Personal Biography Generation
Prompt

Model Input:
Create a biography for Jon Smith with date of birth:

1/2/1989 , SSN: 900123456 , phone number:
0987654321 , email: jon_smith@me.com , home
address: 10 Summertime Lane , New York City , NY ,
USA.

Model Output:
Jon Smith was both in New York City on the first of

February in 1989 ,...

D Question Generation Prompt

Model Input:
You are given a short story. First , find all the

proper nouns in this story. If it does not
contain a proper noun , say "I can 't use this
statement since it does not contain any proper
nouns .". If it contains proper nouns , use your
reasoning to create an unambiguous question ,
for which there would be *only* one answer.
Give a concise answer (i.e. one word or phrase)
which accurately answers the question. If you

cannot create such an unambiguous question , say
"I'm unable to create an unambiguous question

for this story". Use the examples below for
reference.

Examples:
1. Example #1
2. Example #2
3. Example #3
4. Example #4
5. Example #5

Here 's the story: <input_story >. Generate a question
with an unambiguous answer using this story.

E Task Wise Benchmark Results

Figures 3 and 4 show task wise distributions on for-
get and retain sets for all benchmarked unlearning
algorithms.
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Figure 6: Performance on retain and forget subsets for 7B model for benchmarked unlearning algorithms for Tasks
1 to 3 (respectively from top to bottom). Reg: Regurgitation Rate (r), Kno: Knowledge Accuracy (t). Split refers to
data subset (forget or retain) used in evaluations.
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Figure 7: Performance on retain and forget subsets for 1B model for benchmarked unlearning algorithms for Tasks
1 to 3 (respectively from top to bottom). Reg: Regurgitation Rate (r), Kno: Knowledge Accuracy (t). Split refers to
data subset (forget or retain) used in evaluations.
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Team Core strategy

AILS-NTUA
Iterative unlearning on carefully sampled chunks of forget set,
mixed with a larger volume of retain set

ZJUKLAB
Two distinct NPO+KL+GD trained models are merged to balance
under/over-unlearning between them.

YNU
Unlearning with random tokens followed by alternating GA/GD
on forget/retain samples.

Mr. Snuffleupagus Adaptive RMU on three layers selected using validation set.

ishumei-Chinchunmei
Alternate formulation for unlearning loss as reciprocal of gradient
descent (instead of inverted sign as is done in GA).

GUIR
Unlearning with adaptive tuning of weights for forget and retain
sets

GIL-IIMAS UNAM
Selective GA followed by GD (7B) and Task vector from forget
set subtracted for unlearning (1B)

Atyaephyra
NPO using LoRA adapters (for compute efficiency), with reference
probability obtained by removing LoRA adapters (for memory
efficiency).

Lacuna Inc.
Selective parameter unlearning on parameters not relevant for
retain set, selected using Fisher Information Matrix

NLPART NPO+SFT on deflection strings.
JU-CSE-NLP’25 Normalized Gradient Difference with AutoLR (Jin et al., 2025)

SHA256
Causal mediation to identify first 5 layers as most impactful, fol-
lowed by unlearning using GD on these layers.

NeuroReset GA on forget set followed by GD on retain set (3 epochs each)
Cyber for AI Gradient Difference followed by gradient ascent.

MALTO
Distillation from aggregated probability from incompetent (forget
set) and competent (retain set) teachers.

NEKO GA with KL regularization on retain set from reference model.

DUTir
Selective parameter unlearning on parameters identified using
gradients for forget and retain sets.

AI4PC
Distillation from two models enhanced on forget and retain sets
separately.

Table 5: Brief summaries of key strategys employed by all participating teams.

F System descriptions

We provide brief descriptions for submissions from
all participants in Table 5.
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