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Abstract

In this challenge, we explored text-based food
hazard prediction with long tail distributed
classes. The task was divided into two subtasks:
(1) predicting whether a web text implies one
of ten food-hazard categories and identifying
the associated food category, and (2) providing
a more fine-grained classification by assign-
ing a specific label to both the hazard and the
product. Our findings highlight that large lan-
guage model-generated synthetic data can be
highly effective for oversampling long-tail dis-
tributions. Furthermore, we find that fine-tuned
encoder-only, encoder-decoder, and decoder-
only systems achieve comparable maximum
performance across both subtasks. During this
challenge, we gradually released (under CC
BY-NC-SA 4.0) a novel set of 6,644 manually
labeled food-incident reports.

1 Introduction

The Food Hazard Detection Challenge at SemEval
2025 evaluated classification systems for titles of
food-incident reports collected from the world wide
web. Algorithms like these could, for example, be
used to help automated crawlers find and extract
food issues from publicly available sources like
social media. Since such systems could have a high
economic impact (specific food items may need to
be recalled, leading to financial damage for the
producers), transparency is extremely important.
Human experts using data from these crawlers need
to be well-informed about how the respective food
issues are extracted.

Prior work has shown that a major challenge in
food-hazard and food-product classification from
text is the large number of possible classes, com-
bined with a long-tail distribution (Randl et al.,
2024b). To address this, we define two subtasks:

• Subtask 1 (ST1) focuses on training models
for coarse-grained “category” prediction.
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Figure 1: The columns in the blue boxes were available
to the participants to serve as model input, while the
orange boxes comprised the ground truth labels per sub-
task. The number on the right of each label indicated
the number of unique values per label.

• Subtask 2 (ST2) is a more fine-grained “vec-
tor” prediction task.

A prior SemEval challenge by Kirk et al. (2023)
framed a similar setup as an initial step toward
explainability. While this interpretation may be
somewhat broad, we recognize that a “vector” pre-
diction task is particularly valuable for automated
information extraction, as it provides more specific
information.

An overview of the SemEval-Task is shown in
Figure 1. It includes two sub-tasks: (ST1) text
classification for food hazard prediction, predict-
ing the type of hazard (HAZARD-CATEGORY)
and the type of product (PRODUCT-CATEGORY);
(ST2) food hazard and product “vector” detection,
predicting the exact hazard (HAZARD) and prod-
uct (PRODUCT). The task was primarily concerned
with detecting the hazard (more important than the
product), hence a two-step scoring metric based
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Figure 2: Timeline of the challenge: (a) Trial Phase: Training data was provided before the challenge commenced.
(b) Conception Phase: Example code, along with unlabeled validation and test data, was released at the beginning
of the challenge. During this phase, participants could submit separate trial entries for ST1 (category classification)
and ST2 (“vector” classification) using the validation data. (c) Evaluation Phase: The validation data was made
available, and final submissions for both tasks were accepted on the test data to determine the final ranking.

on the macro F1 score was used, focusing on the
respective hazard label per sub-task (see Section 4).

2 Task Organization

The detailed timeline of the project is illustrated in
Figure 2. Participants were provided with training
and validation data to develop, train, and evalu-
ate their systems before the evaluation phase. The
challenge was conducted on Codalab1 (Pavao et al.,
2023), adhering to the framework of previous com-
petitions (Kirk et al., 2023).

The validation data was made available at the
start of the challenge, enabling participants to sub-
mit to the leaderboards and compare their systems
during the conception phase. However, these rank-
ings did not influence the final results. The test
set was released at the beginning of the challenge
with labels concealed until its conclusion. During
the evaluation phase, models could be trained on
both the training and validation data but were eval-
uated exclusively on the test set to get the final
ranking. After the evaluation phase, participants
were required to submit a brief system description
specifying the dataset features used, with this infor-
mation made public alongside the final ranking.

Participants could submit up to five times per
day and 100 times in total during the conception
phase, whereas in the evaluation phase, each par-
ticipant was limited to a single valid submission.

1https://codalab.lisn.upsaclay.fr

“Randsland brand Super Salad Kit recalled due to Listeria
monocytogenes”

hazard: listeria monocytogenes

hazard-category: biological

product: salads

product-category: fruits and vegetables

“Create Common Good Recalls Jambalaya Products Due To
Misbranding and Undeclared Allergens”

hazard: milk and products thereof

hazard-category: allergens

product: meat preparations

product-category: meat, egg and dairy products

“Nestlé Prepared Foods Recalls Lean Cuisine Baked Chicken
Meal Products Due to Possible Foreign Matter Contamina-
tion”

hazard: plastic fragment

hazard-category: foreign bodies

product: cooked chicken

product-category: prepared dishes and snacks

Table 1: Sample of texts along with their labels.

Additionally, participants were required to share
their code (e.g., via GitHub) along with their sys-
tem description papers.

3 Dataset

The dataset we used in the challenge is a subset
of the data described in Randl et al. (2024b) and
publicly accessible on zenodo (Randl et al., 2024a).
It consists of 6,644 TITLEs (length in characters:
min=5, avg=88, max=277), and full TEXTs (length
in characters: min=56, avg=2329, max=48318) of
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Figure 3: Overview over the data used in the challenge

English food recall announcements from the of-
ficial websites of food agencies (e.g. the FDA’s
website). In addition, the dataset contains meta in-
formation such as date of download and country of
issue. These texts were primarily gathered between
2012 and 2022 from domains based in the United
States, Australia, Canada, and the United Kingdom
(see Figure 3 (c) and (d)). The data was manually
labeled with the reason for recall (HAZARD) and
the recalled PRODUCT. Although neither TITLE

nor TEXT individually is guaranteed to contain in-
formation about the product and hazard involved
in a recall, their combination reliably provides the
necessary details for classification. The distribu-
tion of this information between TITLE and TEXT

varies across the dataset and largely depends on the
issuing authority. Each pair of TITLE and TEXT has
been assessed by two experts on food science or
food technology from Agroknow2. Some sample
TITLEs are shown in Table 1.

The data was stratified based on the more im-
portant hazard “vectors” (HAZARD) and divided
into three subsets: 5,082 samples for training, 565
for validation, and 997 for evaluation. The train-
ing data, which was already published on zen-
odo (Randl et al., 2024a), also contains additional

2https://agroknow.com

non-English texts that could be used by participants
to train their classifiers. Nevertheless, our evalua-
tion was only based on English texts. As the texts
contain varying degrees of information on the HAZ-
ARD, we considered careful pre-processing of the
data as part of the challenge. Upon completion
of the task, the complete dataset was made avail-
able under the Creative Commons BY-NC-SA 4.0
license.

One sample of the dataset is shown in Figure 1.
As described above, the data includes the features
YEAR, MONTH, DAY, COUNTRY, TEXT and TI-
TLE. Participants performed their text analysis
primarily on the TITLE or TEXT fields, while ad-
ditional features were available if needed. The
task was to predict the labels PRODUCT-CATEGORY

and HAZARD-CATEGORY, as well as the vectors
PRODUCT and HAZARD. The dataset comprises
1,256 different PRODUCT values (e.g., “ice cream,”
“chicken based products,” “cakes”) sorted into 22
categories (e.g. “meat, egg and dairy products,”
“cereals and bakery products,” “fruits and vegeta-
bles”) with the help of ontologies. In addition,
there are 261 distinct values for HAZARD (e.g.,
“salmonella,” “listeria monocytogenes,” “milk and
products thereof ”) , which are grouped (again using
ontologies) into the following 10 values of the la-
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bel HAZARD-CATEGORY: “allergens,” “biological,”
“foreign bodies,” “fraud,” “chemical,” “other haz-
ard,” “packaging defect,” “organoleptic aspects,”
“food additives and flavourings,” “migration.” The
class distribution in the data is heavily imbalanced
with the above examples being ranked from the
most to the least common in Figure 3.

3.1 Baselines
In our challenge, we provided participants with
three jupyter-notebooks for training and evaluating
baseline models for both subtasks3:
(i) We provide a traditional pipeline consisting of a
TF-IDF embedding in combination with a logistic
regression classifier based on the scikit-learn
Python module (Pedregosa et al., 2011).
(ii) A second baseline implementation fine-
tunes an encoder-only transformer, specifically
bert-base-uncased (Devlin et al., 2019), using
the transformers Python module (Wolf et al.,
2020) by huggingface.co.
(iii) Finally we provide a more sophisticated base-
line based on the CICLe method (Randl et al.,
2024b). It relies on prompting larger transformers
such as GPT-4 without further fine-tuning (Brown
et al., 2020) in combination with conformal predic-
tion (Vovk et al., 2005). In our baseline we use the
crepes Python module to implement conformal
prediction (Boström, 2022).

Baseline performance of different classifiers on
the whole dataset used in this challenge was also re-
ported by Randl et al. (2024b). The results showed
that the classification of hazards and products was
a non-trivial task, and the classification of the
“vector”-label, which we aimed to address in this
challenge, was particularly challenging.

4 Evaluation

We computed the performance for ST1 and ST2 by
calculating the macro F1-score on the participants’
predicted labels ŷ using the annotated labels y as
ground truth. This measure is the unweighted mean
of per-class-F1-scores over the n classes. Both ŷ
and y are vectors of m samples:

F1(y, ŷ) =
2

n

n∑

i=0

RCLi(y, ŷ) · PRCi(y, ŷ)

RCLi(y, ŷ) + PRCi(y, ŷ)
(1)

where RCLc is the recall and PRCc is the precision
for a specific class c. In order to combine the pre-

3https://food-hazard-detection-semeval-2025.
github.io/code/

dictions for the HAZARD and PRODUCT labels into
one score, we took the average of the scores:

S(Y, Ŷ ) =
F1(y

h, ŷh) + F1(y
p|h, ŷp|h)

2
(2)

Here Y = [yh,yp] is the 2 × m matrix with the
HAZARD label yh and the PRODUCT label yp as
column vectors. The vector yp|h is defined as the
entries of yp where yh is correctly predicted:

yp|h = {yp
j | ŷh

j = yh
j }, j ∈ {1, 2, ...,m} (3)

The scalar y∗
j is the j-th element of y∗. Ŷ and

ŷp|h are defined accordingly. With this measure
we based our rankings predominantly on the pre-
dictions for the HAZARD classes. Intuitively, this
means that a submission with both yh and yp com-
pletely right would have scored 1.0, a submission
with yh completely right and yp completely wrong
would have scored 0.5, and any submission with
yh completely wrong would have scored 0.0 inde-
pendently of the value of yp.

5 Participant Systems and Results

In total, our task attracted approximately 260 par-
ticipants and received 99 valid submissions during
the evaluation phase. Among these, 27 system de-
scription papers were submitted for peer-review.
These 27 systems form the basis of our analysis
and the official ranking, as they are accompanied by
detailed system descriptions, enabling a thorough
evaluation. The full, unofficial ranking – includ-
ing all submissions to codalab – is available on the
task’s website.4

5.1 Popular Methods
Figure 4 illustrates the frequency distribution of
system attributes. Each subplot corresponds to a
distinct attribute, highlighting key trends among
the systems. We observe that the majority (16 sys-
tems) of stystems uses both TITLE and TEXT fea-
tures, while three systems incorporated all available
dataset features. Furthermore, the majority (21 sys-
tems) treated the tasks separately, with only five
systems leveraging a combined approach to exploit
the correlation between the tasks. In terms of model
choice, most systems (19) relied on encoder-only
transformer models, while two used traditional ma-
chine learning models. Among the systems that

4https://food-hazard-detection-semeval-2025.
github.io/
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used transformer-based models, open-source mod-
els (24 systems) were preferred. Furthermore, the
majority (14 models) opted for a single model for
classification rather than an ensemble strategy (11
systems). Finally, regarding the data sources, 12
systems incorporated synthetic data, for example
oversampling with LLM-generated texts, to address
the tasks.

5.2 Leaderboard Results
ST1 Table 2 presents the results and the ranking
of the systems that submitted system a descrip-
tion paper in ST1. The scores lie between 0.1426
and 0.8223, with the largest gap in performance ob-
served between the first and second-ranked systems
among the top three. Systems ranked between fifth
and 16th exhibit relatively similar scores, while
a distinct widening of the gap is evident in the
lower ranks. Furthermore, the top two systems used
richer feature sets compared to the lower-ranked
systems, indicating that the richer feature sets may
have contributed to their scores, while most sys-
tems relied on both textual features, i.e., TITLE and
TEXT, rather than focusing on one of them.

RANK TEAM NAME SCORE FEATURES

Baselines:
TFIDF + LR 0.498 TITLE

BERT 0.667 TITLE

1 Anastasia 0.8223
YEAR, MONTH, DAY,

COUNTRY, TITLE, TEXT

2 MyMy 0.8112
YEAR, MONTH, DAY,

COUNTRY, TITLE, TEXT

3 SRCB 0.8039 TITLE, TEXT

4 PATeam 0.8017 TITLE, TEXT

5 HU 0.7882 TITLE, TEXT

6 BitsAndBites 0.7873 TITLE, TEXT

7 CSECU-Learners 0.7863 TITLE, TEXT

8 ABCD 0.7860 TITLE, TEXT

9 MINDS 0.7857 TITLE, TEXT

10 Zuifeng 0.7835 TITLE

11 Fossils 0.7815 TITLE, TEXT

12 PuerAI 0.7729 TITLE

13 Ustnlp16 0.7654 TITLE, TEXT

14 FuocChu_VIP123 0.7646 TEXT

15 BrightCookies 0.7610 TEXT

16 farrel_dr 0.7587 TITLE, TEXT

17 OPI-DRO-HEL 0.7381 TITLE, TEXT

18 madhans476 0.7362 TITLE, TEXT

19 Anaselka 0.6858 TITLE, TEXT

20 Somi 0.6614
TITLE, TEXT

COUNTRY, TITLE, TEXT

21 TechSSN3 0.6442 TEXT

22 UniBuc 0.6355 TITLE, TEXT

23 CICL 0.6079 TEXT

24 VerbaNexAI 0.5165 TITLE

25 JU-NLP 0.4566 TITLE, TEXT

26 Habib University 0.4482 TITLE, TEXT

27 Howard University-AI4PC 0.1426 TEXT

Table 2: ST1 ranking for systems of teams that sub-
mitted a system description paper. Gray entries are
outperformed by the best baseline.

ST2 Table 3 presents the results and the rankings
of the systems for ST2 that submitted a system
description paper. The results show significantly
lower performance compared to ST1, with the high-
est score of SRCB (0.5473) being considerably
lower than the top score in ST1 (0.8223), which
indicates that ST2 is a more challenging task. A
sharp drop in scores is observed after the top three
teams and again after the 12th team (BitsAndBites),
with the lowest-ranked system (Anaselka) receiv-
ing 0.0049 score. Notably, the top three teams
in both subtasks – except for the Anastasia team,
which focused only on ST1 – performed well in
both, consistently ranking among the top teams in
each subtask. Among the top 15 systems, while
a few systems, such as Anastasia and BitsAnd-
Bites, performed better on ST1, a larger number of
systems, including MINDS, Fossils, PuerAI, and
BrightCookies, achieved significantly higher rank-
ings in ST2.

RANK TEAM NAME SCORE FEATURES

Baselines:
TFIDF + LR 0.183 TITLE

BERT 0.165 TITLE

1 SRCB 0.5473 TITLE, TEXT

2 MyMy 0.5278
YEAR, MONTH, DAY,

COUNTRY, TITLE, TEXT

3 PATeam 0.5266 TITLE, TEXT

4 HU 0.5099 TITLE, TEXT

5 MINDS 0.4862 TITLE, TEXT

6 Fossils 0.4848 TITLE, TEXT

7 CSECU-Learners 0.4797 TITLE, TEXT

8 PuerAI 0.4783 TITLE

9 Zuifeng 0.4712 TITLE

10 ABCD 0.4576 TITLE, TEXT

11 BrightCookies 0.4529 TEXT

12 Ustnlp16 0.4512 TITLE, TEXT

13 BitsAndBites 0.4456 TITLE, TEXT

14 UniBuc 0.3453 TITLE, TEXT

15 OPI-DRO-HEL 0.3295 TITLE, TEXT

16 VerbaNexAI 0.3223 TITLE

17 CICL 0.3169 TEXT

18 Somi 0.3048
TITLE, TEXT

COUNTRY, TITLE, TEXT

19 TechSSN3 0.2712 TEXT

20 Howard University-AI4PC 0.1380 TEXT

21 Anastasia 0.1281
YEAR, MONTH, DAY,

COUNTRY, TITLE, TEXT

22 farrel_dr 0.1249 TITLE, TEXT

23 madhans476 0.0486 TITLE, TEXT

24 Habib University 0.0315 TITLE, TEXT

25 JU-NLP 0.0126 TITLE, TEXT

26 Anaselka 0.0049 TITLE, TEXT

Table 3: ST2 ranking for systems of teams that sub-
mitted a system description paper. Gray entries are
outperformed by the best baseline.

5.3 Best Systems

In this section, we outline the key methods em-
ployed by the top three systems for each subtask.
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Since the teams “MyMy” and “SCRB” rank among
the top three in both evaluations (see Tables 2 and
3), we analyze a total of four systems.

SRCB (ST1: 3rd, ST2: 1st) The first place in ST2
comes from Ricoh Software Research Center.
Zhang et al. (2025) concatenated the TITLE and
the TEXT in lower case, and followed a two-step
approach. In the first step, they used BERT to
reduce the label space and include only the most
probable ones. In a second step, then, all the pos-
sible labels (possibly along with examples) were
fed to a large language model (LLM) to predict the
correct one. This approach follows the paradigm
of Randl et al. (2024b), who suggested reducing
the possible labels by quantifying the uncertainty
with conformal prediction (Vovk et al., 2005). In-
frequent categories were furthermore augmented
with an LLM, while approx. 10% of the data was
truncated.

Anastasia (ST1: 1st, ST2: 21th) The best system in
ST1 is by Le et al. (2025) from VNUHCM – Uni-
versity of Information Technology and focuses on
ST1, while neglecting ST2. After a simple text nor-
malization step, they chunk the texts into snippets
of consecutive sentences that fit the context win-
dows of their applied models. Following this, they
fine-tune two encoder-only transformers, specifi-
cally DeBERTa-v3-large and RoBERTa-large, us-
ing focal loss (Lin et al., 2017) with class weights.
For training, they compare two setups: (i) They
try multi-task fine-tuning of DeBERTa-v3-large
to get a combined model for both HAZARD and
PRODUCT prediction using oversampling for under-
represented classes and undersampling for overrep-

resented classes. (ii) Additionally, they try single-
task fine-tuning of both DeBERTa-v3-large and
RoBERTa-large, this time addressing the class-
imbalance by creating synthetic samples by prompt-
ing gemini-2.0-flash-exp to paraphrase texts in
underrepresented classes. They report that multi-
task training leads to slightly worse performance
on ST1 compared to single-task. This may be owed
to the different resampling approaches, though. Fi-
nally, they combine all of their trained models
(single- and multi-task) in one ensemble, using
soft voting with a weighted sum. The weights were
based on grid search on the validation set.

MyMy (ST1: 2nd, ST2: 2nd) Phan and Chiang
(2025) from the Department of Computer Sci-
ence and Information Engineering, National Cheng
Kung University employ a retrieval-augmented gen-
eration (RAG) approach to address both subtasks
separately by intergrating domain-specific external
knowledge. It first retrieves relevant documents
for each data sample from PubMed,5 following
the RAG paradigm: it uses GPT- 3.5 Turbo3,6

Gemini Flash 2.0 (Team et al., 2023), Llama
3.1 8B (Touvron et al., 2023), and Mistral 8x7B
(Jiang et al., 2023) LLMs to simplify the original
data sample; it then retrieves documents from the
PubMed API, encodes them into embeddings using
nomic-embed-text-v1 (Nussbaum et al., 2024)
and stores them in a Chroma embedding database;
cosine similarity scores are then computed to re-
trieve the top-K most relevant documents. These

5https://pubmed.ncbi.nlm.nih.gov/
6https://platform.openai.com/docs/models/

gpt-3-5-turbo
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documents are then combined with the original in-
put and paraphrased using the same LLMs to gen-
erate augmented data. A validation step incorporat-
ing the same LLMs is used to filter the generated
samples based on relevance, ensuring data quality.
The enriched dataset is then used to fine-tune clas-
sification models (Gemini Flash 2.0 (Team et al.,
2023), PubMedBERT (Gu et al., 2021), and Mod-
ernBERT (Warner et al., 2024)). Finally, predic-
tions are obtained through a weighted soft voting
strategy, where class probabilities from multiple
models are combined using weighted sums to de-
termine the final label.

PATeam (ST1: 4th, ST2: 3rd) Wan et al. (2025)
begin with data cleaning using regular expres-
sions, followed by text augmentation, where LLM-
generated summaries are concatenated with the
TEXT feature. To address data imbalance, SMOTE
(Chawla et al., 2002) is applied to underrepresented
categories (fewer than five samples, a threshold
determined through tuning) to ensure a minimum
of five samples per class. The system employs a
bagging approach with bootstrapping to generate
five subsets of the training data, fine-tuning five
microsoft/phi-4 models7 using low-rank adap-
tation (LoRA) (Hu et al., 2021) to reduce trainable
parameters. Predictions from all five models are
integrated via an ensemble voting mechanism. The
system employs the multi-dimensional type-slot la-
bel interaction network (MTLN) (Wan et al., 2023)
to capture the correlation between the two subtasks.
It first classifies ST1 and then utilizes these predic-
tions to inform the classification of ST2. An abla-
tion study confirmed that this multi-task approach
outperforms treating the tasks independently.

7https://huggingface.co/microsoft/phi-4

5.4 What Worked Well

A prevalent strategy among these systems is the
use of generative LLMs for synthetic data creation
to mitigate class imbalance. Specifically, three ap-
proaches stand out: (i) paraphrasing (Le et al.,
2025), (ii) summarizing and appending generated
text to the original (Wan et al., 2025), and (iii) gen-
erating new samples by combining information
from two instances of the same class (Zhang et al.,
2025). Additionally, Le et al. (2025) and Phan
and Chiang (2025) incorporate class-weighted loss
functions to increase the impact of underrepre-
sented classes during training.

Another common technique among top-ranking
systems is the use of ensemble methods. Le et al.
(2025) employ a soft voting approach, optimizing
weights of different models during grid search on a
validation set, while Phan and Chiang (2025) adopt
a max voting strategy, selecting the prediction from
the most confident model. Wan et al. (2025) fine-
tune five classifiers using bootstrapped subsets of
their preprocessed training data.

In contrast to these shared strategies, there is no
clear consensus on the use of multi-task learning
(joint modeling of both subtasks) versus single-task
learning (treating subtasks separately). Three out
of four systems opt for a single-task approach, but
Wan et al. (2025) experiment with both strategies
in a prompting-based classification setup. Their
results suggest that multi-turn prompts, where both
subtasks are addressed within a single interaction,
outperform single-turn prompts, which handle the
subtasks separately.

As discussed in Section 5.2, richer feature sets
tend to support stronger models across both sub-
tasks. This observation is further illustrated in Fig-
ure 5, where systems leveraging multiple input fea-
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tures consistently outperform those using only a
single feature (according to maximum achieved
score). Notably, models utilizing only TITLEs
tend to achieve better results than those using only
TEXTs. A plausible explanation is that TITLEs often
contain more concise and targeted information com-
pared to the broader and potentially noisier content
in TEXTs. Interestingly, the three approaches that
utilize all available features achieve better results in
ST1, but underperform slightly in ST2, suggesting
that their design was primarily optimized for the
former.

Multi Task

Single Task

n = 5

n = 16

n = 5

n = 15

Single Model

Ensemble

n = 13

n = 8

n = 12

n = 8

Provided Data

Synthetic Data

n = 12

n = 9

n = 11

n = 9

0.0 0.2 0.4 0.6 0.8 1.0
scores

Decoder-Only
Encoder-Decoder

Encoder-Only

n = 2
n = 2

n = 15

n = 2
n = 1

n = 15

Figure 6: Average score achieved and number of submis-
sions per combination per design choice (– ST1, – ST2).
The horizontal bars show minimum and maximum.

Figure 6 presents a detailed comparison of de-
sign choices based on evaluation scores. Interest-
ingly, treating the subtasks separately leads to bet-
ter performance than multi-task approaches that
use a shared model for ST1 and ST2. Additionally,
leveraging an ensemble of multiple models proves
more effective than relying on independent models.

As discussed in Section 3, one major challenge
participants faced was the extreme class imbalance
in the dataset. It is therefore unsurprising that over-
sampling underrepresented classes with artificially
generated data significantly improved performance
compared to using only the provided training set.
As noted in Section 5.3, this artificial data was typ-
ically generated by prompting LLMs. Finally, an
interesting finding is that no transformer architec-
ture – whether encoder-only (e.g. BERT), encoder-
decoder (e.g. BART), or decoder-only (e.g. Llama)
– consistently outperforms the others. Across all
three architectures, the highest achieved scores re-
main approximately equal within each subtask.
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Figure 7: Histogram of the frequency (vertically) across
the fraction of systems correctly predicting a specific
sample (horizontally).

6 Discussion

6.1 Task Difficulty Estimation

We show an instance-based difficulty analysis in
Figure 7. The figure shows that across cate-
gories/vectors most samples are more likely to be
predicted correctly than not. Nevertheless, we also
see a spike at zero accuracy, which is most preva-
lent for the vector PRODUCT, but seen for all cate-
gories/vectors. This indicates that several samples
were never correctly classified, indicating that they
are extremely difficult or even missing informa-
tion. To make it easier to identify such instances
in our data, we include an instance difficulty score,
ranging linearly from 0 (instance was classified
correctly by all submissions) to 1 (instance was
never correctly classified), for all instances in the
train and test set in our dataset on zenodo.

6.2 Error Analysis

Figure 8 shows the pairwise error rate between the
submissions per category. The error is considerably
higher in ST2 for the two plots on the right com-
pared to the two of ST1. This is partly due to the
fewer number of possible labels in the latter and
the higher likelihood of mistakes on the former.

A more detailed analysis is shown in the con-
fusion matrices in Appendix A. For HAZARD-
CATEGORY, we see that precision and recall are
relatively high except for the classes “migration”
and “food additives and flavourings” (see Figure 9).
While samples of the class “migration” are pre-
dicted to the very similar class “chemical” in 90%
of the cases, predictions for “food additives and
flavourings” are divided between the true class
(49%), “other hazard” (28%), “fraud” (13%), and
“allergens” (13%).
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Figure 8: Pairwise error rate (vertically) of submis-
sions (horizontally)

We see a similar picture for PRODUCT-
CATEGORY in Figure 10. Most classes show good
performance, while “food additives and flavour-
ings,” “honey and royal jelly,” and “other food
product / mixed” show high misclassification rates.
“Food additives and flavourings” is most com-
monly confused with “meat, egg and dairy prod-
ucts” (22%) and “cereals and bakery products”
(18%). “Honey and royal jelly” is confused with
the most supported class “meat, egg and dairy
products” in 40% of the cases. As an overarch-
ing class for leftover samples, “other food prod-
uct / mixed” is misclassified to multiple other
classes, most prominently “soups, broths, sauces
and condiments” (18%), and “fruits and vegeta-
bles” (18%). All of these commonly mislabeled
classes are highly underrepresented in the dataset
and/or easy to confuse with other, higher-supported
classes in the data.

7 Conclusion

In conclusion, our task demonstrates that LLM-
generated synthetic data can be highly effective for
oversampling in long-tail distributions. A second,
albeit expected, finding is that ensemble strategies
significantly enhance classification performance.
Additionally, while combined approaches for vec-
tor and category classification can be beneficial in
prompting scenarios, they do not generally lead
to performance improvements. More notably, we
do not observe a clear winner among transformer
architectures: fine-tuned encoder-only, encoder-
decoder, and decoder-only models achieve compa-
rable maximum performance across both subtasks.

Future research on our dataset should prioritize

the more challenging vector classification task. Our
analysis indicates that classification errors often
stem from low class support and that food recall
texts contain ambiguous instances, with semanti-
cally similar classes contributing to misclassifica-
tion. We argue that debugging classifiers using
explainability techniques may help improve perfor-
mance.

Despite its potential to assist human validation
and enable meta-learning approaches, such as clus-
tering or pre-sorting examples, explainability in
text-based food risk classification remains under-
explored. However, explanations can vary signifi-
cantly depending on the model and task. Existing
literature addresses both model-specific (Assael
et al., 2022; Pavlopoulos et al., 2022) and model-
agnostic (Ribeiro et al., 2016) explainability ap-
proaches, which should be further investigated in
this domain.

Limitations

(i) A limitation of our evaluation process is that,
while we enforced a one-submission-per-user pol-
icy during the evaluation phase, some participants
have circumvented this by registering multiple ac-
counts. We chose not to remove suspicious ac-
counts, as identifying all of them would have been
impractical and likely only encouraged more covert
attempts to bypass the restriction.
(ii) We chose to release the unlabeled test set at the
beginning of the challenge, as this was easier to set
up with codalab. While this ensured transparency
throughout the challenge, participants strongly de-
termined to win could peak (e.g., manually anno-
tating the test data).
(iii) We found 42 duplicate entries in our dataset
after the start of the challenge. These were intro-
duced due to an error in one of our preprocessing
scripts and resulted in six entries that are present in
both the training and validation set as well as seven
entries that are present in both the training and test
set. As this concerns less than 1% of the data, we
argue that it is not severely impacting our results.

Ethical Statement

All texts are collected from official and publicly
available sources, hence no privacy-related issues
are present. All annotations have been provided by
Agroknow experts. System application is intended
to complement and not substitute the human expert
in preventing illness or harm from food sources.
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Figure 10: Confusion Matrix for PRODUCT-CATEGORY. Numbers signify average number of occurrence per
submission during the evaluation phase. Colors are normalized by row.
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