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Abstract
The proliferation of structured tabular data in
domains like healthcare and finance has in-
tensified the demand for precise table ques-
tion answering, particularly for complex nu-
merical reasoning and cross-domain general-
ization. Existing approaches struggle with im-
plicit semantics and multi-step arithmetic op-
erations. This paper presents our solution for
SemEval-2025 task,including three synergis-
tic components: (1) a Schema Profiler that ex-
tracts structural metadata via LLM-driven anal-
ysis and statistical validation, (2) a Hierarchi-
cal Chain-of-Thought module that decomposes
questions into four stages—semantic anchor-
ing, schema mapping, query synthesis, and self-
correction—to ensure SQL validity, and (3) a
Confidence-Accuracy Voting mechanism that
resolves discrepancies across LLMs through
weighted ensemble decisions. Our framework
achieves scores of 81.23 on Databench and
81.99 on Databench_lite, ranking 6th and 5th
respectively, demonstrating the effectiveness of
structured metadata guidance and cross-model
deliberation in complex TableQA scenarios.

1 Introduction

In the era of digitization, structured data repre-
sented in tabular formats is ubiquitous across do-
mains such as finance, healthcare, and scientific
research. Table Question Answering (TableQA),
which aims to retrieve precise information from
tables based on natural language queries, has
emerged as a critical research direction. Its applica-
tions range from database querying and spreadsheet
automation to extracting insights from web tables
or even image-based tabular data. Despite its prac-
tical significance, the complexity of TableQA lies
in effectively aligning natural language questions
with the structural and semantic features of tables,
especially when handling aggregation (e.g., "sum-
marize sales by region"), comparison (e.g., "which
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product has the highest revenue"), and multi-hop
reasoning (e.g., "find the second-largest budget de-
partment"). Traditional approaches often rely on
weakly supervised table parsers to extract relevant
cells and apply predefined aggregation operators,
which are limited in generalizability and scalability
(Pasupat and Liang, 2015).

Recent advancements in Large Language Mod-
els (LLMs) have revolutionized TableQA by en-
abling more flexible and context-aware reasoning.
LLMs address TableQA challenges through two
primary paradigms: In-Context Learning and Text-
to-SQL. These approaches leverage the models’
ability to process structured data alongside free-
form text, opening new possibilities for handling
complex tabular reasoning tasks.

The In-Context Learning paradigm integrates
tabular data into carefully designed prompts, al-
lowing models to generate answers in zero-shot or
few-shot settings. For example, structured prompt-
ing strategies encode table headers, cell values, and
structural metadata (e.g., row/column indices) into
the input sequence, enhancing the model’s abil-
ity to reason over numerical and hierarchical rela-
tionships (Lu et al., 2025). Recent work further
improves robustness through reasoning-enhanced
prompting, where LLMs are guided to decompose
questions into step-by-step sub-tasks (e.g., filter-
ing, sorting, and aggregating) (Qiao et al., 2023).
Notably, models like TAPAS (Herzig et al., 2020)
and TaBERT (Yin et al., 2020) demonstrate that
pre-training on large-scale table-text pairs signif-
icantly enhances structural awareness, achieving
state-of-the-art performance on benchmarks like
WikiTableQuestions and WikiSQL.

The Text-to-SQL approach translates natural
language questions into executable SQL queries,
enabling direct database interactions. This task
requires precise alignment between linguistic ex-
pressions (e.g., "senior employees") and database
schemas (e.g., ‘WHERE age > 60‘), while ac-
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counting for structural constraints such as pri-
mary/foreign keys and column types. Recent stud-
ies leverage LLMs’ code-generation capabilities to
improve SQL accuracy. For instance, DIN-SQL
(Pourreza and Rafiei, 2023a) decomposes complex
queries into sub-problems solved by specialized
agents, while RESDSQL (Li et al., 2023) employs
a retrieval-augmented framework to align questions
with schema elements.

SemEval-2025 Task 8 tackles the challenge of
answering diverse, real-world questions over large-
scale tabular datasets in domains such as healthcare
and finance. Existing methods face limitations in
cross-domain generalization due to implicit seman-
tics (e.g., medical jargon). They also struggle with
complex numerical reasoning, including percentile
calculations and multi-step arithmetic. To address
these challenges, we propose a framework that
combines structured schema analysis, hierarchi-
cal reasoning, and multi-model deliberation. Our
method employs a three-stage architecture: (1) a
Schema Profiler that automatically extracts struc-
tural metadata through guided LLM parsing and
statistical verification, (2) a Hierarchical Chain-of-
Thought Reasoning module that decomposes ques-
tions into semantic anchoring, schema mapping,
query synthesis, and self-correction stages, and
(3) a Confidence-Accuracy Voting mechanism that
resolves discrepancies across three LLM agents
through weighted ensemble deliberation. Our pro-
posed method ranks 6th on the Databench dataset
and 5th on the Databench_lite dataset.

2 Related Work

The rapid evolution of table question answering
has been significantly propelled by advances in
large language models (LLMs) and their applica-
tion to Text-to-SQL tasks. Early work established
the Spider benchmark (Yu et al., 2019), a cross-
domain dataset that remains a cornerstone for eval-
uating complex SQL generation. Building on this,
PICARD was introduced (Scholak et al., 2021),
which integrates constrained decoding with pre-
trained models like T5 to ensure syntactically valid
SQL queries. The advent of powerful LLMs shifted
the paradigm toward in-context learning, exempli-
fied by DIN-SQL (Pourreza and Rafiei, 2023b),
where GPT-4 iteratively decomposes questions into
sub-tasks like schema linking and query refine-
ment. Concurrently, retrieval-augmented methods
like RESDSQL (Li et al., 2023) dynamically align

questions with database schemas to mitigate do-
main shift.Meanwhile, it has been demonstrated
that code-style prompts enable zero-shot SQL gen-
eration in C3 (Dong et al., 2023). Despite these
innovations, challenges persist in handling implicit
semantics, where domain-specific terms (e.g., med-
ical abbreviations) require external knowledge, and
context window constraints (Hao et al., 2022),
which lead to truncation of large tables. Recent
efforts like CoT-SQL (Wei et al., 2022) leverages
chain-of-thought prompting to decompose multi-
step queries.

3 System Overview

In this section, we will introduce the overall struc-
ture of our proposed system. Our proposed system
comprises three core modules that synergistically
enhance table-based question answering through
structured reasoning and ensemble learning. Fig-
ure 1 illustrates the overall architecture of our pro-
posed method.

Module 1: Schema Profiler: We first feed
partial tabular data into a Large Language Model
(moonshot-v1) to extract critical schema informa-
tion. This process automatically identifies field
types, value distributions, and contextual relation-
ships within the table structure. The derived meta-
data establishes a semantic foundation for subse-
quent processing stages. Module 2: Hierarchical
Chain-of-Thought Reasoning: We design a four-
stage Chain-of-Thought (CoT) prompting strategy
that combines schema metadata with task-specific
instructions. This enhanced prompt is then in-
put into three different Large Language Models
to generate candidate SQL queries. Module 3:
Multi-Model Deliberation: To ensure robustness,
we implement a deliberation mechanism that di-
rectly adopts answers when all models reach con-
sensus. When discrepancies occur, the mechanism
employs cross-model voting with mutual evalua-
tion. The voting system weights the models’ con-
fidence scores and historical accuracy to resolve
conflicts, ultimately selecting the most reliable an-
swer through ensemble decision-making.

This hierarchical architecture effectively bal-
ances schema comprehension, diverse reasoning
patterns, and result verification, demonstrating
strong performance on complex table QA scenar-
ios.
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Figure 1: The overall architecture of our proposed method.

3.1 Schema Profiler

The framework initiates with structural metadata
parsing to achieve a deep understanding of the tabu-
lar schema. Specifically, we input a 20-row sample
from the Databench Lite dataset into moonshot-v1
and process it using a multi-turn guided prompting
strategy. The primary prompt instructs the model to
analyze the table structure and explicitly requires
the output to include: (1) Column attributes, in-
cluding data types (string/numerical/temporal) and
value characteristics (units for numerical columns,
frequent values for categorical columns); (2) Field
semantics, which involves precisely parsing the
meaning of each field to clarify its specific role in
the business context and the relationships between
fields; (3) Constraint discovery, which identifies im-
plicit business rules (e.g., inventory ≤ warehouse
capacity). This process generates a standardized
JSON schema profile, thereby establishing a re-
liable structural foundation for downstream SQL
generation.

3.2 Hierarchical Chain-of-Thought Reasoning

To address the challenges of generating accurate
SQL queries from natural language questions over
heterogeneous tables, we propose a hierarchical
Chain-of-Thought (CoT) framework that decom-
poses the reasoning process into four intercon-
nected cognitive stages. This structured approach
ensures both syntactic validity and semantic align-
ment with the database schema.

(1)Semantic Anchoring: The initial phase is the
semantic mining and classification stage, where the
model is required to mine the semantics of the ques-
tion and determine its type: Boolean, scalar, or list.
Boolean questions are typically used for existence
checks, such as determining whether a certain con-
dition is met through trigger words like "whether,"
"does... exist," or "is there any...". Scalar questions
involve quantitative queries and usually contain
terms such as "highest," "lowest," "average," or "to-
tal," aiming to obtain a single numerical result. For
example, "What is the highest price?" or "What is
the average value?". List questions, on the other
hand, require returning a set of entities or results,
such as through expressions like "how many," "list
all...," or "return the set of...," which are used to ob-
tain multiple results or entity collections that meet
specific conditions.

(2)Schema-Aware Semantic Mapping: In this
stage, the structured metadata profile is utilized to
map entities in the query to corresponding column
names. For explicit entity linking, field names in
the query are directly matched (e.g., “patient age”
→ age). For implicit semantic inference, potential
associations are uncovered (e.g., “hospitalization
duration” → discharge_date - admission_date). For
value range normalization, expressions are trans-
formed into database storage formats (e.g., “Q1”
→ BETWEEN ’2023-01’ AND ’2023-03’).

(3)Logic-Aggregated Query Synthesis: This
phase systematically integrates parsed seman-
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tic components into executable SQL structures
through three operational principles. Parenthesis-
encapsulated precedence rules govern multi-clause
logic composition (e.g., ‘(A OR B) AND C‘), com-
plemented by type-driven operator selection for
temporal or numerical comparisons. Dynamic ag-
gregation binding associates question intent with
SQL functions—‘AVG()‘ for "average price" and
‘COUNT()‘ for "total quantity". Subquery opti-
mization prioritizes nested structures over joins
when processing comparative constraints (e.g.,
"books above average price"), effectively mitigat-
ing Cartesian product risks through predicate push-
down techniques.

(4)Multi-Granularity Self-Correction: In this
stage, common error patterns of Large Language
Models (LLMs) are countered through syntactic,
semantic, and logical validation. Syntax validation
enforces schema-compliant escaping for special
column names (e.g., auto-correcting malformed
‘Price (TK)‘ to ‘"Price (TK)"‘) and verifies join
paths against foreign key constraints. Semantic
consistency checks eliminate contradictory condi-
tional logic (e.g., conflicting ‘Stock_Status‘ val-
ues) while injecting null-safety clauses (e.g., ‘IS
NOT NULL‘) for optional fields. Output alignment
ensures that Boolean queries strictly return truth
values and scalar queries produce singleton aggre-
gation results, among others.

3.3 Multi-Model Deliberation

To resolve discrepancies in SQL generation across
multiple large language models (LLMs), we pro-
pose a streamlined consensus mechanism that har-
monizes model confidence and empirical perfor-
mance.

(1)Unanimity Prioritization: If the SQL out-
puts from all models yield identical answers when
executed in the database, the output is directly
adopted, leveraging inter-model agreement as a
high-reliability indicator.

(2) Confidence-Accuracy Voting: When the
three LLM agents (qwen-max, Qwen2.5-Coder-
Instruct, Moonshot) generate conflicting SQL can-
didates, a voting protocol is triggered. For each
candidate query, the system calculates its final
score through a Confidence-Accuracy Voting mech-
anism:

Scorek =


∑

j ̸=m

Confj→k




︸ ︷︷ ︸
Cross-Model Consensus

× HisAccm︸ ︷︷ ︸
Model Reliability

(1)

where:

• Confj→k (0–1): Model j’s confidence score
for candidate SQLk. For example, if SQL1
is generated by qwen-max, Moonshot and
Qwen-Coder assess its correctness likelihood
separately.

• HisAccm (0–1):Pre-computed accuracy of the
model on the dev Databench set containing
diverse table schemas and question types.

The candidate with the highest aggregated score
is selected, ensuring both peer validation and
source model competency are leveraged.

4 Experiment

4.1 Dataset
The dataset for this study is derived from the Se-
mEval 2025 Task 8 benchmark suite, which in-
cludes two versions: DataBench and its lightweight
variant DataBench Lite. The full-scale DataBench
comprises 65 real-world tabular corpora spanning
3,269,975 rows and 1,615 columns, paired with
1,300 annotated questions split into training and
development subsets. For streamlined evaluation,
DataBench Lite provides sampled versions of these
corpora, retaining 20 rows per table. The test set
consists of an independent collection of 15 corpora
and 522 questions to ensure rigorous evaluation.

4.2 Implementation
In our experiment, we utilized three LLMs to eval-
uate their performance on the given task. Specif-
ically, we called the APIs of Qwen-max, Qwen-
coder, and Moonshot. Table 1 summarizes the
configuration settings used for each model during
the experiment.

Table 1: Model configuration settings.

Setting Qwen-max Qwen-coder Moonshot

temperature 0.7 0.7 0.3
top_p 0.8 0.8 0.8
presence_penalty 1.5 1.5 1.5
max_tokens 8,192 8,192 8192
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4.3 Results
Table 2 and Table 3 show the performance of
three models on the Databench and Databench_lite
datasets with different modules added. The ex-
perimental results indicate that systematically in-
troducing the Schema Profiler and hierarchical
Chain of Thought (CoT) strategy significantly im-
proves table question-answering performance. Un-
der the full configuration (+Profiler+COT), Qwen-
max achieves a score of 77.39 on the complete
dataset Databench, an improvement of 8.04 over
the baseline (69.35), and reaches 77.97 (+8.05) on
the lightweight version Databench_lite. This val-
idates the universal advantage of structured meta-
data guidance. The hierarchical CoT enhances the
execution accuracy of complex queries through
step-by-step parsing. The synergistic effect of the
two strategies generates a superadditive improve-
ment—the combined gain (Databench: 8.04–9.96)
exceeds the sum of individual module gains, high-
lighting the role of metadata in directing the rea-
soning path.

Table 2: Comparison of Scores for three models on
the test set of Databench. "Base" indicates no strat-
egy added, "+Profiler" indicates the addition of Profiler,
"+COT" indicates the addition of COT.

Method Qwen-max Qwen-coder Moonshot

Base 69.35 68.2 65.9
+Profiler 71.83 70.88 69.92
+COT 74.71 73.18 72.22
+Profiler+COT 77.39 76.44 75.86

Table 3: Comparison of Scores for three models on the
test set of Databench_lite. "Base" indicates no strat-
egy added, "+Profiler" indicates the addition of Profiler,
"+COT" indicates the addition of COT.

Method Qwen-max Qwen-coder Moonshot

Base 69.92 68.0 66.28
+Profiler 72.22 71.26 70.11
+COT 75.47 74.32 72.8
+Profiler+COT 77.97 76.63 76.05

Table 4 compares the performance of three
review strategies on the complex scenario
dataset Databench and its lightweight version
Databench_lite. The experimental results show
that the multi-model collaborative decision-making
mechanism significantly improves the accuracy of
the table question-answering system. The single-
model baseline (Qwen-max) achieves scores of

Table 4: Comparison of Scores for Different Deliber-
ation Strategies on the Databench and Databench_lite
Datasets

Model Score Scorelite

Qwen-max 77.39 77.97
Qwen-max+moonshot 79.69 80.08
all 81.23 81.99

77.39 on Databench and 77.97 on Databench_lite
without enabling review. After introducing dual-
model cross-validation (Qwen-max + Moonshot),
the scores increase by 2.3 and 2.11, respectively.
The full review strategy integrating three models
(All) further raises the accuracy to 81.23 and 81.99,
achieving absolute improvements of 4.84 and 4.02
over the baseline. This progress validates the ef-
fectiveness of cross-model verification in eliminat-
ing individual biases—through a two-stage consen-
sus mechanism (consensus adoption and weighted
voting), the robustness of semantic understanding
under complex table structures is enhanced. It is
particularly noteworthy that dual-model review can
cover approximately 75% of the potential error
correction needs, providing an efficient balance
between precision and computational cost for sce-
narios with limited resources.

5 Conclusion

This paper presents our solution for SemEval-2025
Task 8 on Table Question Answering. We pro-
pose a three-stage framework integrating schema
analysis, hierarchical reasoning, and multi-model
deliberation. Our approach leverages: (1) a
Schema Profiler that extracts structural metadata
via guided LLM parsing, (2) a Hierarchical Chain-
of-Thought module decomposing questions into
four reasoning stages (semantic anchoring, schema
mapping, query synthesis, self-correction), and (3)
a Confidence-Accuracy Voting mechanism harmo-
nizing outputs from three LLM agents through
weighted ensemble decisions. Our method achieves
scores of 81.23 on Databench and 81.99 on
Databench_lite, ranking 6th and 5th respectively.
Future work will focus on: (1) enhancing schema
profiling with dynamic domain adaptation, (2) re-
fining CoT stages for multi-table joins, and (3)
extending the deliberation mechanism to hybrid
LLM-Symbolic architectures.
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