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Abstract

We present our submission to the Task 5 of
SemEval-2025 that aims to aid librarians in as-
signing subject tags to the library records by
producing a list of likely relevant tags for a
given document. We frame the task as an infor-
mation retrieval problem, where the document
content is used to retrieve subject tags from
a large subject taxonomy. We leverage two
types of encoder models to build a two-stage
information retrieval system—a bi-encoder for
coarse-grained candidate extraction at the first
stage, and a cross-encoder for fine-grained re-
ranking at the second stage. This approach
proved effective, demonstrating significant im-
provements in recall compared to single-stage
methods and showing competitive results ac-
cording to qualitative evaluation.

1 Introduction

SemEval-2025 Task 5 aims to produce a technical
solution to annotate a large collection of documents
with relevant subject tags (D’Souza et al., 2025).
Subject tags come from the GND (Gemeinsame
Normdatei in German or Integrated Authority File
in English) subject taxonomy. For example, an ar-
ticle dealing with seismic resistance of industrial
buildings may have subject tags such as “Indus-
trial Plant Technology (General)” and “Earthquake
Safety Construction Engineering”.

Systematic and precise metadata annotation, sub-
ject tagging in particular, is essential for digital col-
lections of documents to be usable and useful for
the end-users as information retrieval and knowl-
edge discovery sources. However, producing such
metadata, especially at scale, requires an immense
amount of specialist time and effort. For instance,
a recent prototype at the National Library of Esto-
nia, Kratt, found that even with machine assistance
catalogers still needed to validate many tags, high-
lighting the labor bottleneck (Asula et al., 2021).

The core idea behind our system is that given a
tag definition and a document to tag, it should be
possible to predict whether the given tag is suitable
for the document by measuring how similar their
representations are using a pre-trained language
model. This can be thought of as an information
retrieval problem.

Bi-encoder and cross-encoder models are two
common ways to approach this problem (Reimers
and Gurevych, 2019; Nogueira and Cho, 2019;
Karpukhin et al., 2020), both with their strengths
and weaknesses. A bi-encoder processes docu-
ments and queries independently to produce their
vector representations. Then, cosine similarity is
measured between the document and query vectors
to score relevance. Bi-encoder allows for efficient
retrieval in large document collections as the doc-
ument representations can be pre-computed. The
downside, however, is that it is impossible to cap-
ture token-level similarities between documents
and queries with this approach. Meanwhile, a
cross-encoder processes document and query pairs
simultaneously, capturing such similarities and pro-
ducing more fine-grained similarity scores. The
computational cost of using a cross-encoder is sig-
nificantly larger compared to that of a bi-encoder,
making it generally unsuitable for large document
collections. Accordingly, we combine both in a sin-
gle two-stage system to produce the optimal result.

Our system scored closer to the middle of the
quantitative leaderboard (Table 1); however, it sur-
passed many of the participants with a similar rank
in the qualitative leaderboard (Table 2), especially
in Case 1, where “technically correct, but irrelevant”
tags were counted in favor of the teams. This is
likely due to our system not considering the tag-to-
tag relations, thus missing a more complex knowl-
edge structure in the dataset and being unable to
distinguish more intricate cases. More specifically,
we consider each document/tag pair independently
of each other. However, we hypothesize that some
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Team Name Average Recall (tib-core-subjects) Average Recall (all-subjects)

RUC Team 0.6568 0.5856
Annif 0.5899 0.6295
LA2I2F 0.5794 0.4821
DUTIR831 0.5599 0.6045
icip 0.4976 0.5302
Team_silp_nlp 0.4939 0.1271
TartuNLP (ours) 0.4049 0.3818
JH 0.2252 0.1677
last_minute 0.2099 -
Homa 0.2030 -
TSOTSALAB 0.0667 -
DNB-AI-Project - 0.5631
jim - 0.4686
NBF - 0.3224

Table 1: Average recall scores for tib-core-subjects and all-subjects subtasks of quantitatitative evaluation. Sorted
by tib-core-subjects score, best scores and teams on each subtask are highlighted with bold font.

subject tags may be mutually exclusive.
We release the code for training and inference

and the models.1

2 Background

In the shared task, the participants were given a
collection of English and German documents con-
taining a title and an abstract. The goal was to
recommend the top N subjects most relevant from
a predefined set of subjects. Each subject was repre-
sented by an alphanumeric code, a name in German,
and an optional definition in German. Training and
validation data provide ground truth tags for each
document.

Two subtasks were offered to the participants:
a complete collection of subjects (tibkat) and a
smaller subset of the collection (tibkat-core). The
former also contained a larger number of docu-
ments. In our experiments, we used the smaller
tibkat-core dataset. However, we submitted the
final results for both subtasks.

3 System Overview

Our system is based on the two-stage approach to
information retrieval. We consider the available
texts of the documents (usually, just the title and
the abstract) to be the queries, while the subject
definitions act as the documents to be retrieved. In

1https://github.com/slowwavesleep/
llms4subjects-submission

the first stage, we employ an approximate near-
est neighbors (ANN) search algorithm (Dasgupta
and Freund, 2008) over pre-computed subject em-
beddings. In the second stage, these N retrieved
subject descriptions are re-ranked using a cross-
encoder model (Nogueira and Cho, 2019).

3.1 First Stage

The first stage of our system is a pre-trained bi-
encoder model. We did not perform any additional
fine-tuning, relying on the strength of pre-trained
multilingual embeddings, which have been shown
to handle cross-lingual retrieval effectively (Dorkin
and Sirts, 2024a). The only modification we made
was to provide a task-specific prompt for the model.
For each document, we queried the model with the
document text and retrieved top N subject descrip-
tions.

The model is only used once to obtain repre-
sentations for each document and subject, which
are then stored and reused as needed, making the
model relatively cheap and fast to use. However,
performing the semantic search over a large collec-
tion of subject representations remains computa-
tionally expensive. To mitigate that, we employed
an approximate nearest neighbors algorithm to cre-
ate a fast search index for the subjects as a data
structure separate from the pre-computed repre-
sentations. Accordingly, the index is then queried
with document representations to retrieve subject
candidates.

The first stage efficiently retrieves a coarse set of
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Rank Team Name Average Recall Case 1 Average Recall Case 2

1 DNB-AI-Project 0.7175 0.6406
2 RUC Team 0.7155 0.6254
3 DUTIR831 0.6966 0.6125
4 Annif 0.6797 0.5866
5 LA212F 0.6659 0.5718
6 TartuNLP (ours) 0.6649 0.5291
7 jim 0.6601 0.5620
8 icip 0.6310 0.5241
9 NBF 0.6117 0.4622
10 last_minute 0.3971 0.2882
11 JH 0.3678 0.2475
12 Homa 0.3610 0.2993
13 TSOTSALAB 0.1407 0.1012

Table 2: Average recall for both cases of qualitative evaluation.

N candidate subjects. The efficiency stems from
leveraging ANN indices; while increasing the num-
ber of trees (n_trees) enhances the index accuracy
and thus retrieval quality (higher recall), it also
increases memory usage and the time required to
build and query the index. Varying this parameter
provides flexibility in tuning Stage 1 performance
against computational resources.

3.2 Second Stage
In the second stage, we employ a cross-encoder
model to re-rank the subject candidates initially
selected by the first-stage model. Specifically, pairs
are formed where each instance consists of the
target text and one candidate subject description.
Each such pair is fed into the cross-encoder model.

This model functions as a classifier trained to as-
sess the relevance or similarity between the paired
texts (target text and candidate definition). It out-
puts a probability score indicating the likelihood of
relevance, which we interpret directly as a normal-
ized similarity score between 0 and 1. This scoring
allows us to refine and reorder the list of subject
candidates.

Cross-encoder models are well-suited for this
task due to their proven ability to generalize across
highly heterogeneous text collections (Thakur et al.,
2021; Dorkin and Sirts, 2024b; Petrov et al., 2024).
They excel at capturing subtle nuances by jointly
processing document-query-like pairs to compute
fine-grained relevance scores.

Given the specificity of this shared task prob-
lem, no suitable pre-trained off-the-shelf models
existed. Consequently, we developed our cross-

encoder model through a fine-tuning process: we
took a large, multilingual text encoder pre-trained
on general data and adapted it by training on the
provided dataset.

While cross-encoders offer superior ranking per-
formance—demonstrated by their ability to signifi-
cantly boost recall (nearly doubling values in Table
3) compared to bi-encoder approaches—they are
computationally expensive. This is primarily be-
cause generating predictions requires processing
each candidate pair individually. This represents a
key scalability consideration for this approach.

4 Experimental setup

The shared task data underwent minimal trans-
formations to be suitable for our approach. For
each document, the title and the abstract were
concatenated. Similarly, the name and definition
(when available) were concatenated for each sub-
ject. Thus, each document and each subject was
represented by a single string, which served as in-
put to our models.

Our solution primarily relied on the Sentence-
Transformers2 library for both stages of the
system. We employed multilingual-e5-large-
instruct3 (Wang et al., 2024) as the first stage model
to produce document and subject representations.
We customized the prompt used to encode the doc-
uments to include the following: “Instruct: Given
the following title and abstract for the document,

2https://www.sbert.net/
3https://huggingface.co/intfloat/

multilingual-e5-large-instruct
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Recall at k Bi-encoder Bi-encoder →
Cross-encoder

5 0.1161 0.2126
10 0.1555 0.2646
15 0.1773 0.2920
20 0.1932 0.3121
25 0.2080 0.3261
30 0.2399 0.3574
35 0.2496 0.3661
40 0.2590 0.3732
45 0.2655 0.3791
50 0.2719 0.3837

Table 3: Recall values per k for the submitted runs.

retrieve the relevant subjects classifying the doc-
ument”. The query prompt remained unchanged
from the default prompt “Query:”. We used the
Annoy4 library to build the approximate neighbors
index with a somewhat large number of trees equal
to 100 to maximize the recall at the cost of some
performance. When selecting candidates for the
second stage we the search_k parameter to 50000
for the same purpose. Finally, for each document
we selected N equal to 512 subject candidates for
re-ranking.

For the second stage, we fine-tuned a cross-
encoder based on mdeberta-v3-base5 (He et al.,
2021) with default parameters using Sentence-
Transformers. We trained on positive examples
from document-subject pairs in the training set
and constructed negative examples by pairing doc-
uments with randomly sampled subjects not ex-
plicitly linked to them. The model achieved high
performance quickly during training; we stopped
after one epoch as the F-score plateaued near 0.97.
The resulting model was used to make predictions
on the validation split. The model is available on
HuggingFace6.

5 Results

With our submission to the shared task, we aimed
to build a hackathon-like proof-of-concept sys-
tem to test the feasibility and measure the bene-
fits of applying a two-stage information retrieval
approach to match document contents with a struc-
tured knowledge resource. More specifically, our
interest lied in the improvements attained by the
second stage model at the cost of added complexity

4https://github.com/spotify/annoy
5https://huggingface.co/microsoft/

mdeberta-v3-base
6https://huggingface.co/adorkin/

llms4subjects-cross-encoder

and computational requirements compared to using
only bi-encoder representations for retrieval.

With that purpose in mind, we submitted two
runs for final evaluation: bi-encoder retrieval and
two-stage retrieval. The results in Table 3 demon-
strate the substantial benefit of incorporating the
cross-encoder re-ranking stage. Adding the second
stage nearly doubles the recall across various cut-
off points k, significantly improving performance
over using only the Stage 1 bi-encoder retrieval.
This highlights the effectiveness of leveraging sen-
tence similarity between documents and subject
definitions as relevance signals.

However, the enhanced performance comes with
computational implications. Both stages involve
parameters that directly impact scalability:

• Stage 1 (Bi-Encoder + ANN): While the ini-
tial candidate retrieval is relatively fast due
to approximate nearest neighbor search, in-
creasing the n_trees parameter used in An-
noy’s index construction enhances recall by
building more accurate indices. Additionally,
the search_k parameter determines how many
nodes in the index are explored during the
search, thus also improving recall. These im-
provements come at the cost of an increased
memory footprint and longer indexing and
querying times.

• Stage 2 (Cross-Encoder): The primary com-
putational bottleneck lies in applying the
cross-encoder to re-rank all N candidates for
each document. This step is significantly more
computationally demanding than Stage 1, es-
pecially as N grows large. While feasible for
annotating documents individually on local
CPU hardware, deploying such a system at ex-
treme scale—e.g., processing millions of doc-
uments in real-time or with strict resource lim-
its—would necessitate careful management
of parameters like n_trees and N , potentially
requiring optimization techniques (like quan-
tization or using a shallow cross-encoder).

Upon examination of the results of the qualita-
tive evaluation, we discover that the errors made by
our system are primarily related to subjects with
similar names and no definitions. The incorrectly
assigned subject seems to be generally vaguely
related to the document. However, they define a
different subfield of a relevant subject.
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For example, for an article titled “Model-based
engineering of an automotive adaptive exterior
lighting system: realistic example specifications
of behavioral requirements and functional design”,
some of the tags that are considered correct are
“Automotive Engineering, Vehicle Construction,
Conveyor Technology, Aerospace Technology“ and
“System Planning IT, Data Processing”. Meanwhile,
“Lighting technology Electrical engineering, Elec-
trical power engineering: Calculation, Design and
Construction of Lighting Systems” and “Outdoor
Lighting Electrical Engineering, Electrical Power
Engineering” are only technically correct. Finally,
“Adaptive Process Model Measurement, Control
and Regulation Technology” and “Model-Based
Testing Computer Science, Data Processing” are
assigned incorrectly to this document by our sys-
tem.

The main limitation of our approach is the re-
liance only on text representations. Using addi-
tional information such as related subjects and
tag co-occurrence could have improved the per-
formance of our system.

6 Conclusion

This paper described our solution to SemEval-2025
Task 5 based on a two-stage information retrieval
system, where we used the documents to annotate
as queries to retrieve candidate subject tags from a
large collection of subject tags. For both stages
we view sentence similarity between document
texts and subject tag descriptions as the relevance
score. Our system demonstrates moderate perfor-
mance. However, we confirmed our hypothesis that
a second-stage re-ranker substantially improves the
performance of the system compared to using a
bi-encoder as the only stage.
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