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Abstract
This paper describes YNU-HPCC (Alias JH)
team’s participation in the sub-task 2 of the
SemEval-2025 Task 5, which requires fine-
tuning language models to align subject tags
with the TIBKAT collection. The task presents
three key challenges: cross-disciplinary doc-
ument coverage, bilingual (English-German)
processing requirements, and extreme clas-
sification over 200,000 GND Subjects. To
address these challenges, we apply a con-
trastive learning framework using multilingual
Sentence-BERT models, implementing two
training strategies: mixed-negative multi-label
sampling, and single-label sampling with ran-
dom negative selection. Our best-performing
model achieves significant improvements of
28.6% in average recall, reaching 0.2252 on the
core-test set and 0.1677 on the all-test set. No-
tably, we reveal model architecture-dependent
response patterns: MiniLM-series models bene-
fit from multi-label training (+33.5% zero-shot
recall), while mpnet variants excel with single-
label approaches (+230.3% zero-shot recall).
The study further demonstrates the effective-
ness of contrastive learning for multilingual
semantic alignment in low-resource scenarios,
providing insights for extreme classification
tasks. Our implementation is publicly avail-
able at https://github.com/Jiangnaio/
SemEval2025Task5.

1 Introduction

This task emerges in response to the challenges
associated with manually tagging library biblio-
graphic records (D’Souza et al., 2025). Our team is
primarily involved in Task 2, which is dedicated to
aligning GND Subjects with TIBKAT records. This
task involves two datasets: the core dataset, which
contains 79,427 subject labels, and the all dataset,
comprising 204,739 subject labels. The data for
the entire task is presented in two languages, Ger-
man and English, necessitating the consideration

of multilingual characteristics during the modeling
process.

Data analysis highlights two critical characteris-
tics that have significant implications for the task.
Firstly, there is severe label underutilization, with
only 31.9% (25,371 out of 79,427) of the core
dataset labels and 16.5% (33,898 out of 204,739) of
the all dataset labels appearing in the training and
development subsets. Secondly, there is extreme
subject sparsity, as over 50% of the topics contain
two or fewer documents. This situation creates
high-dimensional semantic space challenges.

Given the large number of subjects to classify in
this task, traditional topic-classification approaches
like Latent Dirichlet Allocation (LDA, (Blei et al.,
2003; Jelodar et al., 2019)) struggle due to complex,
non-parallelizable probability calculations that re-
sult in low computational efficiency.

Although BERT (Devlin et al., 2019; Koroteev,
2021; Zhou et al., 2024) can capture sentence se-
mantics effectively, its generated sentence vectors
suffer from anisotropy, being unevenly distributed
in the vector space and concentrated in a narrow
cone, leading to generally high calculated vector
similarities. Most Transformer-based pre-trained
models face this issue in the learned sentence-
vector space (Gao et al., 2019; Ethayarajh, 2019).

Researchers (Cer et al., 2018; Conneau et al.,
2018) have developed sentence-vector encoders
using a “dual-tower” structure with sentence-task
training datasets. With the advent of Sentence-
BERT (Reimers and Gurevych, 2019), sentence
vector representation has advanced significantly
(Chi et al., 2023; Wang et al., 2025; Tavares
and Ayres, 2025). It modifies BERT’s structure
and fine-tunes it via supervised tasks (Luo et al.,
2022) , overcoming BERT’s limitations in sentence-
vector representation. Subsequently, (Gao et al.,
2021) proposed contrastive learning for sentence-
related tasks, often used to fine-tune Sentence-
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BERT. (Huang et al., 2024) found that the loss func-
tion during Sentence-BERT training differs from
that during prediction, causing poor performance
in similarity determination. (Nielsen and Hansen,
2023) identified a hubness problem in Sentence-
BERT’s semantic space, which may also exist in
this task. Future research could improve the loss
function and optimize the training set to address
these issues.

The pre-trained models used here are based on
Sentence-BERT. The following sections detail our
work and results.

2 Related Work

To address this task, we carried out a series of inves-
tigations. First, training datasets were created using
three methods: the multi-label sample scheme, the
single-label sample scheme with mixed negative
samples, and the multi-label sample scheme with
mixed negative samples. The prepared datasets
were then utilized. Simultaneously, we explored
and experimented with several pre-trained models
from sentence-transformers (https://www.sbert.
net/) and, prior to fine-tuning, tested them accord-
ing to the official metrics (4.3). The test results are
presented in Table 1.

Subsequently, we trained several sentence-
transformers models using contrastive learning and
reported the training results along with their analy-
sis. Eventually, the average recall scores on the all-
test and core-test datasets were 16.8% and 22.5%
respectively (see Table 3). Moreover, we provided
detailed experimental methodologies, procedures,
some experimental results, and their analysis.

Furthermore, we proposed leveraging a trans-
lation model (Tiedemann and Thottingal, 2020)
to conduct bidirectional translation between Ger-
man and English, thus achieving data augmenta-
tion, and performing fine-tuning verification on the
augmented data.

Lastly, we concluded the experiment, analyzed
its limitations, and proposed subsequent improve-
ment plans.

3 Methodology

Our architecture combines Sentence-BERT with
contrastive learning to address the extreme classi-
fication challenge. As shown in Figure 1, the sys-
tem processes TIBKAT-GND pairs through dual
encoders with shared parameters.

Figure 1: Flowchart illustrating the use of the Sentence-
BERT model and cosine similarity to measure the simi-
larity between two text segments: TIBTAK Record and
GND Subject.

Semantic Encoding For a TIBKAT record d and
GND subject s, we compute their embeddings:

hd = SBERT([dtitle; dabstract]) (1)

hs = SBERT([sName; sAlternate Name]) (2)

where [; ] denotes concatenation and SBERT repre-
sents our fine-tuned model.

Balanced Sample Construction We create train-
ing pairs maintaining 1:1 positive-negative ratio:

• Positive: (d, s+) where s+ ∈ S true
d

• Negative: (d, s−) where s− ∈ S false
d

where S true
d represents the set of all s that are related

to d. S represents the set of all s or the GND
Subjects used in the train and dev datasets. S false

d

represents U(S \ S true
d ). (Li et al., 2024, 2025)

We design two sampling paradigms for extreme
classification scenarios:

Aggregate Multi-label Sampling: Aggregate
all the true subjects of S true

d into a single sam-
ple (d,Aggregate(S true

d ), 1), and randomly sam-
ple an equal number of S false

d into a negative sample
(d,Aggregate(S false

d ), 0) to construct 1:1 positive-
negative pairs.

Instance-wise Disaggregated Sampling : In-
dividually construct a positive sample (d, si, 1) for
each true subject si, and randomly select a negative
subject s′i from the candidate set S false

d to create a
negative simple (d, si, 0).
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Training Objective We optimize a temperature-
scaled contrastive loss:

L = − 1

N

N∑

i=1

log
esim(h

(i)
d ,h

(i)+
s )/τ

∑K
j=1 e

sim(h
(i)
d ,h

(i)j
s )/τ

(3)

where τ = 0.05 is learned during training, and
K = 2 for our 1:1 sampling.

4 Experiments

4.1 Experimental Setup

We conducted systematic evaluations across three
dimensions: (1) baseline performance of pre-
trained models, (2) effectiveness of multi-label
simple, and (3) effectiveness of single-label sim-
ple. Our implementation leveraged four multilin-
gual Sentence-BERT variants from the sentence-
transformers library, selected based on their zero-
shot performance (Table 1).

Training Configuration

• Batch size: 32 (multi-label) / 16 (single-label)

• Learning rate: 2× 10−5 with AdamW opti-
mizer

• Temperature parameter τ : 0.05 (learned)

• Training epochs: 3 (core dataset) / 20 (all
dataset)

• Hardware: 1×NVIDIA RTX 3060 GPU

4.2 Data Strategies

Upon analyzing the datasets, we discovered that
even the GND subject covered by the datasets in
the tib-core-subjects directory might not be found
in the GND-Subjects-tib-core.json file. Therefore,
we utilized the GND-Subjects-all.json file to create
the datasets for training and evaluation.

4.3 Evaluation Metric

We employ three standard metrics for system eval-
uation:

Precision =
Count(true set ∩ pred set)

k
(4)

Recall =
Count(true set ∩ pred set)

Count(true set)
(5)

F1− score = 2× Precision×Recall

Precision+Recall
, (6)

Model P R F1

all-distilroberta-v1 0.0086 0.0820 0.0146
all-MiniLM-L6-v2 0.0112 0.1031 0.0190
all-mpnet-base-v2 0.0110 0.1043 0.0187
P-MiniLM-L6 0.0049 0.0439 0.0083
PM-MiniLM-L12 0.0185 0.1751 0.0317
P-mpnet-base-v2 0.0081 0.0773 0.0138
PM-mpnet-v2 0.0113 0.1069 0.0192

Table 1: Zero-shot performance comparison (Preci-
sion/Recall/F1 averages for k=5-50), the P of models
represents ”paraphrase” and M represents ”multilin-
gual”.

Among them, the set of true GND Subjects is rep-
resented as true set, and the set of the top k most
relevant GND Subjects predicted by our model is
represented as pred set. The number of elements
in a set is counted by Count(∗), and the intersec-
tion of sets is denoted by ∩. F1− score will be 0
when Precision+Recall = 0.

For comprehensive analysis, we compute met-
ric averages across k-values from 5 to 50 (incre-
menting by 5), reporting: Avg. Precision@k, Avg.
Recall@k and Avg. F1-score@k

4.4 Baseline

We select the metrics of the PM-MiniLM-L12
(paraphrase-multilingual-MiniLM-L12-v2) model
in Table 1 as the baseline.

5 Results and Analysis

5.1 Zero-shot Performance Baseline

Table 1 presents the zero-shot performance of vari-
ous pre-trained models, establishing baseline met-
rics for subsequent comparisons. The paraphrase-
multilingual-MiniLM-L12-v2 (PM-MiniLM-L12-
v2) model demonstrates superior zero-shot re-
call (17.51%), outperforming other candidates by
63.8% relative to the second-best PM-mpnet-v2
model. This baseline analysis reveals significant
performance variance across architectural variants,
with MiniLM-series models showing particular
promise for the target task.

5.2 Training Strategy Effectiveness

Table 2 compares the impact of different training
approaches. The multi-label sampling strategy im-
proves performance for all-distilroberta-v1 and P-
MiniLM-L6, while both the all-MiniLM-L6-v2 and
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Table 2: Training strategy comparison (Average Recall@k)

Model Strategy P R F1

all-distilroberta-v1 Multi-label 0.0135↑ 0.1749↑ 0.0238↑
all-MiniLM-L6-v2 Multi-label 0.0057↓ 0.0573↓ 0.0098↓
P-MiniLM-L6 Multi-label 0.0060↑ 0.0586↑ 0.0102↑
PM-mpnet-v2 Multi-label 0.0086↓ 0.0889↓ 0.0149↓
PM-mpnet-v2 Single-label 0.0336↑ 0.3531↑ 0.0578↑

PM-mpnet-v2 models exhibited performance degra-
dation. The PM-mpnet-v2 model demonstrated sig-
nificant performance improvement under the single-
label training strategy. This dichotomy suggests
an architecture-dependent optimization landscape
where model capacity interacts with sampling strat-
egy effectiveness.

5.3 Competition Results and Analysis

Our official submission results, presented in Ta-
bles 3, demonstrate the performance of the fine-
tuned PM-MiniLM-L12-v2 model on both all-test
and core-test datasets. It should be noted that due
to an operational oversight, the potentially superior
fine-tuned PM-mpnet-v2 model was inadvertently
excluded from the final submission.

The fine-tuned PM-MiniLM-L12-v2 model
achieved significant improvements, with a 28.6%
enhancement in average recall on the core-test
dataset (0.2252). However, its performance on the
all-test dataset (0.1677) was comparatively lower,
likely due to the model’s exclusive training on the
core dataset. This suggests potential domain adap-
tation challenges when transitioning from core to
all datasets.

Metric Analysis Across Top-k Thresholds Fig-
ure 2 reveals three key patterns in metric behavior
across different top-k values (k = 5, 10, 15, 20):

• Precision exhibits a clear negative correlation
with k

• Recall demonstrates a strong positive correla-
tion with k

• F1-score shows a moderate positive trend

These trends suggest that optimal k-value selec-
tion should be application-dependent, balancing
the trade-off between precision and recall based on
specific use case requirements.

Dataset Avg. Recall Relative Imp.

Core-Test 0.2252 +28.6%
All-Test 0.1677 -

Table 3: Comparative performance analysis across test
datasets (Average Recall@k for k=5–50)

5.4 Improvement

Moreover, we tested the Alibaba-NLP/gte-
multilingual-base (Zhang et al., 2024; Chen et al.,
2024; Saad-Falcon et al., 2024) model and found
that it still performs well before training.(0.0275
on Avg. Precision@k, 0.2508 on Avg. Recall@k,
0.0468 on Avg. F1-score@k) The multi-stage
training method of the gte-multilingual-base model
provides inspiration for subsequent research on
this task. In the evaluation, we found that the
accuracy of the model is not high. A two-stage
prediction method can be adopted: First, use
Sentence-BERT to select the top 500 most relevant
Subjects, and then let the large model select the top
50 most relevant Subjects with prompt words. The
relevant test code has been submitted to https:

//github.com/Jiangnaio/SemEval2025Task5.

6 Conclusion

In this study, we constructed training datasets us-
ing both multi-label and single-label sample meth-
ods, mixed them with negative samples at a 1:1
ratio, and then fine-tuned several pre-trained mod-
els based on the Sentence-BERT architecture using
contrastive learning. Ultimately, we implemented
and validated a solution for the subtask 2 of the
SemEval-2025 Task 5 under low GPU memory
conditions. Our approach enables efficient and
rapid topic retrieval with limited computational re-
sources. The best results of our model submitted
for official evaluation achieved an average recall
rate of 0.1677 on the all-test dataset and 0.2252
on the core-test dataset (performance demonstrated
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Figure 2: Bar chart of official test results

only in pre-trained models with fewer than 300M
parameters).

For future research, bidirectional translation can
be employed for data augmentation to address the
issue of insufficient sample numbers in certain sub-
jects. During inference, a two-stage approach com-
bined with LLMs can be adopted. Detailed steps
for these subsequent tasks are provided in the re-
sults and analysis section.
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