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Abstract

This work outlines the AlphaPro team’s solu-
tion to SemEval-2025 Task 8: Question An-
swering on Tabular Data. The task evaluates
the question-answering capabilities of LLMs
over tabular data. The proposed system intro-
duces a three-stage pipeline: question transfor-
mation, intermediate Python code generation,
and code execution. Utilizing the deepseek-v3
model produces overall 77.43% accuracy on
the task dataset, demonstrating the feasibility
of code generation for tabular question answer-
ing. A comparative analysis of deepseek-v3
with five current state-of-the-art LLMs tested
has been presented. The strengths of the system
are outlined and directions for further research
are provided. The code and generated results
for each tested model have been made avail-
able in a public code repository ! to promote
reproducibility and research in this area.

1 Introduction

Large Language Models (LLMs) have demontrated
impressive abilities to understand, reason and inter-
act with structured tabular data (Sui et al., 2024; Wu
etal., 2025). By integrating Natural Language (NL)
processing with advanced reasoning, LLMs offer
a powerful and flexible way to extract valuable
insights from tabular datasets (Liu et al., 2023).
Tabular data are prevalent in various fields, from
financial reports to scientific findings and statisti-
cal analyses. SemEval-2025 Task 8 (Osés Grijalba
et al., 2025) focuses on the importance and chal-
lenge of developing systems capable of answering
questions (QA) over tabular data. The ability to
query tables using natural language, instead of spe-
cialized languages like SQL, significantly reduces
the barrier to accessing and interpreting data.
Earlier research on tabular datasets used a
translation-based system to translate from natu-

"https://github.com/AnshumanAryan24/AlphaPro-
SemEval2025-Task8

ral language to SQL using semantic parsing tech-
niques (Zhong et al., 2017; Li and Jagadish, 2014)
and deep learning-based techniques (Xu et al.,
2017). These methods lack schema awareness of
the table and suffer from the ambiguity of nat-
ural languages. Recent advancements, such as
RAT-SQL (Wang et al., 2021) and NL2SQL (Liu
et al., 2024), address schema integration but still
encounter limitations related to semantic context
representation and query diversity (Liu et al., 2024;
Zhang et al., 2024). Traditional query languages
such as SQL are limited in this regard, as they pri-
marily understand only the structural aspects of
tables but struggle to capture their underlying se-
mantics (Zhang et al., 2024).

To address the above limitations, this work
proposes a schema-infused LLM prompting ap-
proach leveraging few-shot learning and interme-
diate Python code generation effectively handling
the semantics. Unlike traditional SQL-based meth-
ods, this approach capitalizes on schema-aware
question paraphrasing and dynamically generated
Python code, substantially improving semantic ex-
pressiveness and flexibility in handling NL queries.
Figure 1 illustrates the three-stage pipeline of the
proposed system to answer questions posed in nat-
ural language, employing schema-aware question
paraphrasing and generating Python code as inter-
mediaries. In the first stage, the answer type is
predicted and the user’s question is transformed
into a schema-aware format, optimizing it for the
subsequent stage. In the second stage, the model
generates Python code utilizing the pandas frame-
work 2. The final stage involves extracting and
executing this generated Python function, subse-
quently retrieving the results. Python was selected
due to its powerful libraries for manipulating tab-
ular datasets, such as pandas, and its minimalistic
and dynamically typed nature, which facilitates

2pandas
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effective analysis of the generated code.
The key contributions of this work are summa-
rized as follows:

* A novel three-stage LLM prompting frame-
work leveraging few-shot learning is proposed
for question answering over tabular data.
This framework integrates schema-aware para-
phrasing and intermediate Python code gener-
ation, explicitly utilizing table schema infor-
mation such as column names and data types
to enhance the reasoning capabilities of the
system.

* A systematic comparison and detailed perfor-
mance analysis are conducted across six state-
of-the-art open-source LLMs, ranging from
7B to 671B parameters, evaluating their effec-
tiveness across questions of varying complex-

ity.

* A comprehensive error analysis is provided,
highlighting significant challenges in code-
based tabular reasoning, particularly in the
processing of categorical data and special
characters.

* An end-to-end implementation with outputs
generated by all evaluated models has been
publicly released, promoting reproducibility
and supporting future research endeavours in
tabular reasoning.

The proposed system using the DeepSeek-v3
model (DeepSeek-Al, 2024), evaluated on the
DataBench dataset (Grijalba et al., 2024), out-
performs five contemporary state-of-the-art open-
source LLLMs, achieving an average accuracy of
77.43%.

2 Related Work

Recent advances in question answering (QA) over
structured data have spurred research into neural
architectures, semantic parsing, and program gen-
eration for tabular reasoning.

2.1 QA over Structured Data

Early work on structured data QA often employed
semantic parsers to translate natural language
questions into SQL or other formal query lan-
guages (Zhong et al., 2017). These approaches
typically relied on handcrafted grammar rules and
domain-specific features.

With the advent of pretrained language models,
neural techniques such as TAPAS (Herzig et al.,
2020) and TaBERT (Yin et al., 2020) introduced
joint encoders for table-question pairs, enabling
end-to-end reasoning without intermediate formal
representations. These models directly perform op-
erations like cell selection and aggregation. More
recently, RHGN (Yang et al., 2023) proposed a two-
stage strategy involving row selection followed by
row-level comprehension, further improving QA
accuracy over tables.

Despite these advances, many existing mod-
els require full-table encoding and extensive task-
specific finetuning, which can be computationally
expensive and less adaptable across domains.

2.2 Executable Code Generation for QA

A complementary direction involves generating ex-
ecutable programs as intermediate representations
for QA. This paradigm enables complex reason-
ing using the expressiveness of programming lan-
guages. Chen et al. (Chen et al., 2021) showed that
pretrained LLMs can generate Python code to an-
swer multi-step questions, providing interpretabil-
ity and improved control.

Rajkumar et al. (Rajkumar et al., 2022) extended
this idea by proposing a framework to query tables
using Python and the Pandas framework. Their
results demonstrated that Python-based generation
can outperform SQL-based parsing for complex
queries, especially those involving arithmetic, fil-
tering, or nested logic.

Building on these insights, our work adopts a
prompt-based approach that leverages LLMs to
generate Python code for tabular QA without re-
quiring model finetuning. We focus specifically
on the SemEval-2025 Task 8 (Osés Grijalba et al.,
2025), introducing a schema-aware prompting strat-
egy that bridges structured inputs and executable
reasoning via interpretable code generation.

3 System Overview

This work proposes a three-stage framework pow-
ered by Large Language Models (LLMs) to gener-
ate executable Python code to answer questions on
tabular data sets. The overall architecture, depicted
in Figure 1, comprises the following sequential
components:

(a) Question Transformation: The input ques-
tion is first transformed into a schema-aware
representation. This step employs prompt
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Figure 1: Architecture diagram for proposed system

engineering techniques that incorporate the
structure of the dataset, including column
names and data types. The LLM is guided
to infer the expected answer type (e.g., scalar,
list, boolean) and reformulate the question to
enhance compatibility with code generation
in subsequent stages.

(b) Code Generation: The reformulated question
is passed to the LLM to generate Python code,
typically using the Pandas library. The gener-
ated code is crafted to query the input table ef-
fectively and extract the relevant answer. This
stage bridges natural language understanding
with executable logic.

(c) Execution and Result Formatting: The gen-
erated code is executed on the tabular dataset,
and the resulting output is post-processed to
conform to the desired answer format. This
may include standardizing numeric precision,
formatting lists, or converting values into nat-
ural language responses, depending on task-
specific requirements.

3.1 Question Transformation Prompt Design

This section elucidates the methodology through
which the prompt template shown in Figure 3 of
Appendix B was crafted. The objective is to para-
phrase the natural language question into a form
infused with keywords from the table schema, and
which is in a format more suitable for code genera-
tion. The prompt consists of:

¢ Precise instructions regarding the goal The
prompt defines two key tasks for the model:

first, to predict the expected answer type of
the question; and second, to paraphrase the
question into a form that is more suitable for
code generation while preserving its original
semantic meaning.

* Explicit marking of expected answer types
The set of possible data types for the answer
(boolean, category, number, list[category],
listinumber]) is designated in the prompt.

* Few-shot prompting Two input-output exam-
ples are provided that demonstrate the dual
task of predicting answer types and paraphras-
ing questions. This enables the LL.M to infer
the task structure and generalize to unseen
queries within the same format.

3.2 Code Generation using Prompt
Engineering

In the code generation step, the system approach

employed another customized prompt that takes the

paraphrased question and produces Python code

that can be executed. The prompt consists of:

* Information about the prompt structure
The prompt first informs that the model will
be provided with four pieces of information -
dataset name, schema, question, and expected
answer type.

* Information about main objective The fol-
lowing requirements to generate the necessary
Python code are mentioned in the prompt:

(a) The name of the dataset and schema de-
scription (column names along with data

types)
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(b) The paraphrased question from the prior
stage of question transformation

(c) The anticipated answer type (also from
the prior stage)

* Guidelines on output formatting To obtain a
more precise output, the expected answer type
obtained from the output of stage 1 as shown
in Figure 1 is mentioned.

¢ Expected output function definition The
model is explicitly instructed to generate only
the function definition, assuming the presence
of the required code base and pandas library.

* Owing to some of the larger models, such
as Llama and DeepSeek, there was a need
for specific instructions to prevent additional
Markdown and explanatory content in the out-
put.

Following this, manually crafted few-shot ex-
amples have also been provided. An illustrative
example of the prompt designs has been presented
in Appendix B.

3.3 Execution and Function Extraction

In the last stage, the system runs the code pro-
duced with the table as input, providing all global
and local scope variables to the execution. We
used Python’s built-in interpreter function exec().
The execution environment consists of essential
libraries, such as the pandas library, for handling
data, and the result is presented according to the
requirements of the task. The result, or error, pro-
duced by running this code is then formatted suit-
ably. This is expected to allow:

* Ensuring proper answer data type (boolean,
category, number, or lists)

* Correct list formatting with proper brackets
and separators

» Handling exceptions and errors in system out-
put

4 Experimental Setup

This paper evaluates proposed framework using the
dataset from SemEval-2025 Task 8 (Osés Grijalba
etal., 2025), made available through the DataBench
platform (Grijalba et al., 2024). The dataset in-
cludes both training and development splits, and
spans diverse domains and table schemas. This

diversity enables robust testing of the system’s gen-
eralization ability across different question types
and data formats.

LLMs Used: This paper evaluates six LLMs
with sizes ranging from 7B to 671B parame-
ters, which includes general LLMs and open-
source models : gemma-3-12b-it (Team et al.,
2025), llama-3.3-70b-instruct-turbo, qwen2.5-7b-
instruct-1m (Yang et al., 2025), gqwen2.5-coder-
14b-q5, c4ai-command-r-plus-08-2024 (Cohere
Labs, 2024), deepseek-v3 (DeepSeek-Al, 2024).

System Components: The experimental
pipeline incorporates the following core compo-
nents:

* Prompt Engineering: Carefully crafted
prompt templates with few-shot examples are
used for both question paraphrasing and code
generation, ensuring schema-awareness and
context preservation.

* Answer Type Prediction: The system
identifies the expected answer type—boolean,
category, number, list[category], or
listfnumber]—to guide the formatting and
structure of the generated output (Codabench,
2025).

* Code Execution: Python code generated by
the LLM is executed using a controlled en-
vironment powered by exec (). Execution is
sandboxed with scoped global and local vari-
ables, and includes exception handling mecha-
nisms to ensure safe and consistent evaluation.

Inference Configuration: All model inferences
were performed through the Together Al API,
with models such as gemma, deepseek, and others
accessed via its hosted endpoints. For API-based
calls, the stream parameter was set to False to
ensure consistent output handling. Code generation
tasks were configured with a maximum token limit
of 1000 and a temperature range between 0.5 and
0.7 to balance creativity and determinism.

Evaluation Protocol: The proposed model is
evaluated using the DataBench eval function. Ac-
curacy is measured as the ratio of correctly an-
swered questions to the total number of questions
in the development set. In addition, output for-
matting is evaluated to ensure alignment with the
expected data type and structure. To assess robust-
ness, this work analyses model performance across
varying levels of question complexity.
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5 Results and Observations

The comprehensive analysis conducted demon-
strates the system’s feasibility and robustness, as
detailed below.

5.1 Dataset Overview

Table 1 summarizes the characteristics of the
DataBench dataset (Grijalba et al., 2024), com-
prising 65 tables across domains such as Business,
Health, Social, Sports, and Travel. Additionally, a
condensed version, DataBench Lite, includes all
tables with only the first 20 rows, facilitating rapid
prototyping. The dataset’s questions are catego-
rized into five answer types: boolean, category,
number, list[category], and list[number].

Domain  Datasets Rows Columns
Business 26 1,156,538 534
Health 7 98,032 123
Social 16 1,189,476 508
Sports 6 398,778 177
Travel 10 427,151 273
Total 65 3,269,975 1615

Table 1: Domains of Tables in Dataset (Grijalba et al.,
2024)

5.2 Question Complexity Analysis

To assess the complexity of the question, we used
spaCy?, a Python NLP library, analysing syntac-
tic and lexical features. This analysis enabled
categorization of questions into complexity lev-
els based on factors such as sentence length, syn-
tactic depth, and lexical diversity. Figure 2 illus-
trates the distribution of questions across complex-
ity levels and the corresponding performance of
the deepseek-v3 model, as contrasted to others.
The complexity-wise distribution of the questions
and the performance of deepseek-v3 for each are
presented in Table 2.

5.3 Model Performance Across Complexity
Levels

Figure 2 presents the accuracy of various mod-
els across different complexity levels of the ques-
tion. All models exhibited a decline in perfor-
mance with increasing complexity. In particu-
lar, gwen2.5-7b-instruct-1m consistently per-
formed beyond complexity level 0. In contrast,
deepseek-v3 achieved the highest accuracy at all

3https://spacy.io/

Question Accuracy

S.No Complexity Count Accuracy (%)

1 0 2 100.00
2 1 194 83.51
3 2 292 81.85
4 3 275 73.45
5 4 174 70.11
6 5 51 74.51

Table 2: Systematic Performance Analysis of question
complexity vs accuracy

levels of complexity. This discussion is expanded
in the Appendix A.
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Figure 2: Complexity Wise Model Performance

5.4 Evaluation Using DataBench Eval
Function

We utilized the databench_eval package (Gri-
jalba et al., 2025) to compare generated answers
with ground truth. This evaluation metric accom-
modates minor formatting discrepancies, such as
item order in lists and numerical representations
(e.g., integer vs. float), focusing on semantic cor-
rectness.

5.5 Error Analysis

A careful inspection of the generated code errors
revealed several recurring issues. Table 3 summa-
rizes the total number of errors produced by each
model.

* Special Character Handling: Smaller mod-
els struggled to process inputs containing emo-
jis or special characters (e.g., the euro symbol
“€’), often resulting in incomplete or failed
code execution.

* Data Type Mismatches for Categori-
cal Columns: The most frequent error
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across all models involved misinterpreta-
tion of categorical columns as string types.
For example, in response to the question
"List the 2 most common host verifica-
tion methods", the model incorrectly treated
the column host_verifications (of type
list[category]) as a string, leading to in-
correct logic in the generated code.

* Schema Ignorance and Improper Type
Assumptions: Despite having access to
the column schema, models sometimes as-
sumed incorrect data types and applied in-
compatible functions. For instance, for the
question "Are there any players who joined
their current club before they were 18 years
old?", the model misinterpreted columns
Joined<gx:date> and Age<gx:number> as
strings, resulting in erroneous function calls
such as str() on numeric values.

¢ Use of Deprecated Functions: Some mod-
els generated outdated code involving dep-
recated functions or parameters, resulting in
warnings or compatibility issues during exe-
cution. For example, when answering "What
are the bottom five number of replies?", the
generated code included the deprecated Pan-
das parameter observed=False, triggering a
FutureWarning due to changes in the default
behavior of the library.

* Correlation with Model Size: We ob-
served a negative correlation between model
size and the number of errors. The small-
est model, qwen2.5-7b-instruct-1m, gen-
erated 371 errors, whereas the largest model,
deepseek-v3 (671B parameters), produced
only 44. This trend suggests that larger mod-
els better generalize schema understanding
and generate more reliable code.

6 Conclusion and Future Work

This paper presents a three-stage LLM-based
framework for SemEval-2025 Task 8: Question
Answering over Tabular Data. The proposed three-
stage framework comprises question transforma-
tion and answer type prediction, followed by code
generation and code execution utilizing an LLM-
based code prompting and a few-shot learning
based approach to tabular reasoning. The sys-
tem achieves an overall accuracy of 77.43% using

Errors

Model Name Generated
gemma-3-12b-it 183
llama-3.3-70b-instruct-turbo 78
gwen2.5-7b-instruct-1m 371
gwen2.5-coder-14b-q5 97
c4ai-command-r-plus-08-2024 127
deepsseek-v3 44

Table 3: Count of erroneous codes generated by differ-
ent models

the deepseek-v3 model.In addition, this study also
presents a comparative study of different models
and analyses the structure of the task data set. The
prompt design is analysed and an illustrative ex-
ample of the system’s working is presented. The
experimental results show the potential of using
prompt engineering and code generation as an in-
termediate step in tabular question answering.

The scope of the system can be expanded further,
through investigation on the following topics:

* Enhancing the Question Transformation
prompt by testing with additional context.

* More effectively incorporating table structure
and metadata into the question interpretation.

* Improving code generation with an error re-
covery step for automated handling of encoun-
tered errors.

* Expanding the scope of the Code Generation
stage to generate code for different related
tasks, and using different libraries available
for Python.
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Model Accuracy Adjusted Decline Std.
(%) Accuracy (%) Rate (%) Deviation

gemma-3-12b-it 61.76 59.75 3.36 7.29
llama-3.3-70b-instruct-turbo 72.67 71.27 2.73 5.72
qwen2.5-7b-instruct-1m 44.53 43.89 -0.28 2.1

qwen2.5-coder-14b-q5 60.32 58.1 3.47 6.83
cdai-command-r-plus-08-2024 66.09 64.47 3.37 6.69
deepseek-v3 77.43 76.69 1.8 5.74

Table 4: Comparison of model performance metrics

gwen2.5-7b-instruct-1m model showed the
worst performance. The models gemma-3-12b-it
and gwen2.5-coder-14b-g5 showed similar de-
cline in performance. Further discussion based on
adjusted accuracy scores for different complexity
levels is presented below.

The complexity type O had only 2 questions,
compared to the vastly more number of questions
in other types, and all models got correct answers
for these. This resulted in skewed data for accuracy
scores. Hence, while finding the adjusted accuracy
and standard deviation, these have not been consid-
ered, as discussed below.

To account for the difference in the number of ques-
tions in each category, we follow the following
macro-average principle for calculating accuracies:

’

1
Amodel = N Z Amodel,i

where A,y oqe1,; is the accuracy for complexity level
1, A;no 4e; 18 the model’s new complexity-averaged
accuracy score, and N = 5 is the number of levels
averaged over.

Along with these scores, the performance de-
cline rate and the standard deviation based on the
complexity-wise performance in Figure 2 are also
computed in Table 4.

Decline rate is computed as follows:

Amodel,S - Amodel,l
4

Dmodel =

where D,;,04¢ is model’s decline rate, and A, qei 5
and A,,04e,1 are the accuracies at complexity
levels 5 and 1 respectively. From Table 4, the
deepseek-v3 and llama-3.3-70b-instruct-turbo mod-
els show a smooth, gradual performance decline
with increasing question complexity, reflecting sta-
bility. The qwen2.5-7b-instruct-1m shows a nega-
tive decline rate, implying that performance im-
proved slightly, but overall performance is the
worst among all models.

B Prompt Design

Two prompts utilized in the implementation are il-
lustrated here - query transformation prompt and
code generation prompt. Both the prompts have
an initial template which contains specific instruc-
tions along with few-shot examples. These prompt
initials are then completed by adding specific infor-
mation for the given query. For illustration the
question given in Table 5 has been taken from
the Databench dataset (Grijalba et al., 2024). The
prompts are as follows:

* Query Transformation Prompt The prompt
given in Figure 3 shows the complete prompt
for the Question Transformation stage. The
lines 1 to 23 are the prompt initials, and the
line 24 to 26 are filled for each specific ques-
tion.

* Code Generation Prompt The prompt given
in Figure 5 shows the completed prompt for
the Code Generation stage. The lines 1 to
36 are the prompt initials and 37 onward are
filled for the specific transformed question.

The transformed question from the output of the
first stage given in Table 5 show that, based on the
few-shot examples, the model was able to add the
specification of ‘minimum’ age, instead of asking
about the ‘youngest’ billionaire. The generated
code shown in Figure 4 first selects the minimum
age using the .min() method of the pandas library,
and returns the result.
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You will be provided with two pieces of information. The first being a question and the second
< being the column names along with data types of a dataset. Your objective is twofold, the
— first to predict the datatype of the answer and second to paraphrase the question aptly such
< that the next person could generate the python code to required to answer the question
— while keeping the answer type the same as the given question. You are provided a two
<~ examples below.

Remember to not change what the original question is actually asking.

Notes:
Do not use markdown
Do not leave additional line spacing

Few Shot Examples:

Question: Is the person with the highest net worth self-made?

Dataset Name: 0@1_Forbes

Dataset Table Schema: selfMade (bool), finalWorth (int64), city (string), title (string), gender
< (string), age (float64), rank (int64), philanthropyScore (float64), category (string),
< source (string), country (string)

Answer Type: bool

Paraphrased Question: Does the billionaire with the maximum final worth have self made attribute
— set to True?

Question: Did any children below the age of 18 survive?

Dataset Name: 002_Titanic

Dataset Table Schema: Age (float64), Siblings_Spouses Aboard (int64), Sex (string), Name (string)
< , Pclass (int64), Fare (float64), Survived (bool)

18 Answer Type: bool
19 Paraphrased Question: Were there any survivors aged under 18?
20
21 The answers types are only of type: [bool, float64, int64, string, list of (type)]
22
23 Instruction for you to perform:
24 Question: What is the age of the youngest billionaire?
25 Dataset: 001_Forbes
26 Dataset Table Schema: 'rank (uintl16)', 'personName (category)', 'age (float64)', 'finalWorth (
<~ uint32)', 'category (category)', 'source (category)', 'country (category)', 'state (
< category)', 'city (category)', 'organization (category)', 'selfMade (bool)', 'gender (
—» category)', 'birthDate (datetime64[us, UTC])', 'title (category)', 'philanthropyScore (
— float64)', 'bio (string)', 'about (string)'
Figure 3: Query Transformation Prompt Example
1 def answer_question(dataset, datasetTableSchema, question, expectedAnswerType):
2 min_age = dataset["age"].min()
3 return min_age
Figure 4: Generated code for given question from the dataset
Question Paraphrased Question Expected

Answer Type

What is the age of the youngest ~ What is the minimum age value among  float
billionaire? all billionaires in the dataset?

Table 5: Illustrative Question and Output of Question Transformation Stage
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20

26

27
28
29
30
31

39
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You will be provided four pieces of information all of which are provided in the
means of strings.

A wN =

[N

Dataset name:
Dataset Table Schema:
Question:
Expected Answer Type:

Your objective is to create a python code to answer the question given the

Here is the function you will be needing to complete:

def answer_question(db:, datasetTableSchema, question, expectedAnswerType):
answer = (Here you generate the code which is needed to find the answer)

<~ dataset schema.

return answer

Assume that the pandas library has been imported as pd.
Your answer should only contain the function definition.
schema (containing column names and their datatypes in paranthesis) given

—
—

is correct. The generated code should be correct.

<~ change the dataset.
Your final answer data type should be one of the following categories:

Assume that the dataset

Do not attempt to

1. Boolean: One of True or False.

2. Category: A string. For example - CEO, hello, drugstores.

3. Number: A numerical value. For example - 20, 23.3223, 414901.0.

4. list[category]l: A list of strings. For example - ['India', 'Japan', 'China'],

5. list[number]:

When the question requests more than value,
— list of strings or numbers.

—

['"Ram', 'Shyam

— single quotes.

— 129000, 111000,

<~ brackets.

Few Shot Examples:
Example 1:

1. Dataset name:

', '"Mohan']. Here, each entry should be enclosed within

A list of numbers. For example - [20.0,

107000, 106000, 91400].

001 _Forbes

30.4, 42.11, [171000,

the expected answer type might be a
Ensure that lists are enclosed within square

2. Dataset Table Schema: selfMade (bool), finalWorth (int64), city (string),
gender (string), age (float64), rank (int64),

3. Question:

Answer :

— title (string),

— philanthropyScore (float64), category (string), source (string),

— string)

<~ selfMade attribute set to True?
4. Expected Answer Type: bool

country (

Does the individual with the highest final worth value have the

def answer_question(dataset, datasetTableSchema, question, expectedAnswerType):

max_worth_individual = dataset.loc[dataset[”"finalWorth"] == dataset[”
— finalWorth"J.max ()]

max_worth_individual["selfMade"].bool ()

Now ,

is_self_made =

return is_self_made

complete the following:
Dataset name: 001_Forbes
Dataset Table Schema: 'rank (uintl16)', 'personName (category)', 'age (
'finalWorth (uint32)', 'category (category)', 'source (
'country (category)', 'state (category)', 'city (category)

1.
2.

3.

4.

— float64)"',
category) ',

(SN
— ', 'organization (category)',
— 'birthDate (datetime64[us', 'UTC])', 'title (category)',

— philanthropyScore (float64)', 'bio (string)',
Question: What is the minimum age value among all billionaires in the

— dataset?

Expected Answer Type: float

Figure 5: Code Generation Prompt Example
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'selfMade (bool)', 'gender (category)',

"about (string)'



