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Abstract

SemEval-2025 Task 7: Multilingual and
Crosslingual Fact-Checked Claim Retrieval is
approached as a Learning-to-Rank task using a
bi-encoder model fine-tuned from a pre-trained
transformer optimized for sentence similarity.
Training used both the source languages and
their English translations for multilingual
retrieval and only English translations for
cross-lingual retrieval.  Using lightweight
models with fewer than 500M parameters
and training on Kaggle T4 GPUs, the method
achieved 92% Success@10 in multilingual
and 80% Success@10 in 5th in crosslingual
and 10th in multilingual tracks.
Github-SemEval-2025-ACL-Multi-and-
Crosslingual-Retrieval-using-Bi-encoders

1 Introduction

The rapid spread and multilingual nature of on-
line disinformation pose a significant challenge
to traditional fact-checking workflows. SemEval-
2025 Task 7: Multilingual and Crosslingual Fact-
Checked Claim Retrieval (Peng et al., 2025) ad-
dresses this issue by aiming to automate the re-
trieval of previously verified claims across lan-
guages. The corpus for this task consists of fact-
checked claims and social media posts in eight
languages: French, Spanish, English, Portuguese,
Thai, German, Malay, and Arabic. To further eval-
uate the generalization of the model, the evaluation
step introduced two new unseen languages, Pol and
Tur, underlining the demand for strong multilin-
gual and cross-lingual retrieval approaches. Our
approach tries to tackle these challenges by improv-
ing performance both in multilingual and crosslin-
gual scenarios. We utilize lightweight, scalable
transformer models that can be trained efficiently
even on modest hardware. Our approach produces
rich semantic representations and utilizes methods
such as layer freezing and gradient checkpointing
to tune the trade-off between efficiency and effec-
tiveness. The outcome is a practical, adaptable tool

for global misinformation detection that addresses
both retrieval accuracy and computational scala-
bility. We trained independent models for each
language and utilized English translations of the
source language inputs to boost the retrieval. For
cross-lingual tasks, we predominantly used English
translations to achieve consistency. In multilin-
gual environments, we retrieved the top 10 fact
verify claims from several models and ranked them
according to their scores. For crosslanguage re-
trievals, we repeated the same process using out-
puts from a five-fold ensemble. This allowed us to
combine diversity, accuracy, and speed very well.
Our approach finally ended up being 5th in cross-
language retrieval and 10th in multilingual retrieval.
All models were less than 500M parameters, and
training was done using only two Kaggle T4 GPUs
showing that high performance is attainable even
with constrained computational resources.

2 Background

The SemEval-2025 Task 7 is all about creating
systems that can find reliable fact-checked claims
for social media posts. This helps fact-checkers
who deal with different languages. It’s tough to
look for fact-checks in many languages by hand.
So, we need to automate this to save time and effort.
There are two main parts to the task:

Multilingual Retrieval: Here, both the social me-
dia post and the fact-check are in the same lan-
guage.

Crosslingual Retrieval: In this case, the post and
the fact-check are in different languages. This
needs strong techniques for matching across lan-
guages.

2.1 Input and Output Format

The input includes social media posts and fact-
checks. Each has text, metadata, and English trans-
lations. The system gives a ranked list of up to 10
fact-checks for each post.
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Example Output: { "Post-12345": [987, 654,
321, 789, 456, 222, 111, 333, 555, 7771 }
This means that Post-12345 is best matched with
Fact-check IDs 987, 654, etc., sorted by relevance.

2.2 Dataset Details

The training dataset includes Fact-checks and Posts
in 8 languages: Arabic (ara), German (deu), En-
glish (eng), French (fra), Malay (msa), Portuguese
(por), Spanish (spa), Thai (tha) However, in the
final test set, two surprise languages—Tur (tur)
and Pol (pol)—were introduced, making the task
more challenging as models needed to generalize
to unseen languages without direct training data.
As shown in Table 1

2.3 Dataset Files

The dataset has three key files: (Pikuliak et al.,
2023)

1. Fact-checks.csv - This file has fact-check claims,
titles, and URLSs. It’s available in both the original
language and in English.

2. Posts.csv - Here, you’ll find social media
posts. It includes text from those posts, fact-checks
taken from images, Meta’s verdicts like False In-
formation, and their English translations.

3. Fact-check-Post-mapping.csv - This file con-
nects social media posts to their fact-checks. It
also shows the language pairs, like spa-eng, which
means a Spanish post was fact-checked in English.

2.4 Evaluation Metrics

To assess system performance, we use: Suc-
cess@10 (S@10) — Measures whether at least one
correct Fact-check appears in the top 10 retrieved
results.

3 System Overview

Our system uses a Bi-encoder setup (Reimers and
Gurevych, 2019). This helps match Posts and Fact-
checks quickly. We also use smart pooling methods
to improve pre-trained Sentence similarity models.
The model has a few important parts:

3.1 Bi-Encoder Retrieval Model

We use a Bi-encoder design. This means we have
a Post Encoder and a Fact-check Encoder. They
take inputs and turn them into dense vector repre-
sentations. We use a pretrained transformer back-
bone for this. In each batch, we have posts and
fact-checked claims. We then find the similarity

between their embeddings with a simple math func-
tion. For training, we apply MNR Loss (Henderson
etal., 2017) and Vanilla Cross-Entropy Loss.

3.2 Pretrained Transformer Encoder

The encoders are initialized with publicly available
transformer weights. Given an input sequence X =
(1,2, ..., Tn), the model outputs contextualized
token embeddings:

H = M(X) e R (1)
where H represents the hidden states, n is the
sequence length, and d is the hidden dimension.
3.3 Pooling Mechanisms
To obtain a fixed-size sentence representation, we

explore multiple pooling strategies:

Mean Pooling: Computes the mean of token em-
beddings weighted by attention masks:

i His A
B Z?:l Ai+e

Attention Pooling with BiLSTM: A bidirec-
tional LSTM (Hochreiter and Schmidhuber, 1997)
enhances contextual aggregation:

MeanPooling(H, A) )

L = BiLSTM(H) € R™*%" 3)

An attention mechanism assigns dynamic weights
to tokens:

a = softmax(W,L), S = Z%‘Lz‘ 4
i=1

where W, is a learnable dense layer.

3.4 Similarity Function

Relevance between a Post embedding ¢ and
a Fact-check embedding c is computed using
temperature-scaled cosine similarity:

S(g,c) = cosgi], c)

where T' is a temperature parameter kept at 0.05.

)

3.5 Contrastive Learning with MNR Loss
(Henderson et al., 2017) and Cross
Entropy Loss

To optimize retrieval, we employ a MNR Loss
(Henderson et al., 2017) function that maximizes
similarity for positive pairs:
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Table 1: Number of Post and Fact-check IDs in Train and Test Sets for Each Language

exp(Si)
— e (s ©

To improve efficiency, we use a symmetric for-
mulation:

L=

l\D\)—‘

(7N

3.6 End-to-End Flow

Posts and Fact-checked claims are processed
through separate encoders that shares weights. Get
embeddings using LSTM (Hochreiter and Schmid-
huber, 1997) or by Mean Pooling. Similarities are
computed via temperature-scaled cosine similar-
ity, The model is optimized using Loss functions
defiend above to rank relevant claims higher.

In this architecture defined above I have ini-
tialised Encoder models with these Pre-trained
Models

1. The NovaSearch/stella-en-400M-v5 model
(Zhang et al., 2025), This model is ranked 41st
on the MTEB leaderboard, has 435M param-
eters and balances scalability with retrieval
accuracy.

2. The intfloat/multilingual-e5-large-instruct
model (Wang et al., 2024), with 24 layers
and 1024 embedding size, ranks 22nd on the
MTEB leaderboard with 560M parameters.
Built on xIlm-roberta-large (Conneau et al.,
2020), it supports 100 languages. This model
was the primary choice for direct training on
source languages.

A Train Test

Multi-Lingual

Post IDs | Fact-check IDs | Post IDs | Fact-check IDs
Arabic (ara) 14,201 676 500 21,153
German (deu) 4,996 667 500 7,485
English (eng) 85,734 4,351 500 145,287
French (fra) 4,355 1,596 500 6,316
Malay (msa) 8,424 1,062 93 686
Portuguese (por) | 21,569 2,571 500 32,598
Spanish (spa) 14,082 5,628 500 25,440
Thai (tha) 382 465 183 583
Pol (pol) - - 500 8,796
Tur (tur) - - 500 12,536
Cross-Lingual 153,743 4,972 8,276 272,256

3. The mixedbread-ai/mxbai-embed-large-v1

model (Lee et al., 2024) is a state-of-the-art
English embedding model that balances
efficiency and performance with 335M
parameters, currently ranking 49th on the
MTEB leaderboard.

All the models we selected have fewer than

(CrossEntropy(S y) + CrossEntropy (S T y)) 500M parameters, making them suitable for train-

ing on free online GPUs. This allows for extended
training, which helps produce richer deep text rep-
resentations. Our training architecture is designed
to balance computational efficiency and retrieval
accuracy. We achieve this by using lightweight
transformer models with techniques like gradient
checkpointing and selective layer freezing, ensur-
ing scalability without compromising performance.
During evaluation, we generate embeddings for
both social media posts and fact-checked claims.
To retrieve matches, we employ semantic search,
which compares the embeddings to identify the
most similar pairs. Our system uses an optimized
retrieval pipeline that indexes the data efficiently,
enabling fast similarity matching. We then select
the top 10 most relevant claims for each query post.
We also  experimented  with  other
models like jina-embeddings-v3 and
KalLM-embedding-multilingual-mini-v1,
which are currently ranked 20th and 19th on the
MTEB leaderboard. While both models performed
reasonably well with average scores of 58.37
(Jina) and 57.05 (KaLM)—they fell short of the
performance achieved by multilingual-e5-large-
instruct, which scored 63.23 on average. These
comparisons informed our decision to prioritize
higher-performing models for downstream tasks.
Before training and evaluation, we applied pre-
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processing steps to improve data quality. This in-
cluded filtering out short or symbol-heavy text, re-
moving URLs, emojis, and excessive whitespace,
and standardizing punctuation. For OCR-extracted
data, we excluded noisy text segments. Twitter-
specific cleaning involved replacing image refer-
ences and shortened URLs with placeholders to
maintain consistency across samples.

4 Experimental Setup
4.1 Multi-Lingual Training

For Multilingual bi-encoder (Reimers and
Gurevych, 2019) training, the full dataset was
utilized for each language, benefiting low-resource
languages like German, French, Malay, and
Thai Table 1. Without synthetic or external data,
multiple training epochs allowed the model to
capture both semantic and syntactic patterns more
effectively.

4.1.1 Evaluation Measures

The model is trained with contrastive loss(MNR
loss (Henderson et al., 2017) and cross-entropy
over similarity scores) to optimise retrieval per-
formance. At training time, similarity scores be-
tween posts and fact-checked embeddings are cal-
culated, which ensures correct matches rank higher.
The performance of the model is measured on Suc-
cess @10 metrics

4.1.2 Training Strategy

For training, we used the Full dataset for all source
languages. We did multiple epochs of training
to improve learning. When training with English
translations, we picked a random 30% sample of
negative cases for testing. We used a random seed
of 42.

4.1.3 Backbone Model
multilingual-e5-large-instruct (Wangetal.,
2024) and stella-en-400M-v5 (Zhang et al.,

2025) is fine-tuned with gradient checkpointing
disabled

4.1.4 Pooling Mechanisms

* Mean Pooling: Mean of hidden states unless
"cls" token-based pooling is specified.

* Attention Pooling: Uses a bidirectional
LSTM followed by an attention mechanism
to weight token embeddings dynamically.

4.1.5 Optimizer

AdamW optimizer is configured with Learning
Rate: 5x 1079 for transformer, 1 x 10~ for custom
layers. Weight Decay: 0.005. Gradient Clipping:
Clip Value = 1.0

4.2 Cross-Lingual Training

For cross-lingual training, we re-used the same
bi-encoder models but trained them on English-
translated text by default. Rather than training on
the entire dataset, we split the training data into
5 folds. This enabled us to train several models
on varying data distributions, which promoted ro-
bustness. The text diversity mitigated overfitting
and improved generalization, especially in low-
resource language situations.

4.2.1 Training Strategy

We used English-translated training data to enhance
training data and limit overfitting. This method
also improved performance in low-resource envi-
ronments. Instead of synthetic data, we observed
that ensembling English-trained models was a more
efficient method for cross-lingual generalisation.
This process was further amplified using 5-fold
ensembling, which showed consistent improve-
ment in retrieval performance. As indicated by
Table 2, ensembling resulted in significant improve-
ments in all models. For instance, multilingual-
e5-large-instruct went from 0.7685 to 0.7975 in
cross-lingual retrieval, and from 0.9091 to 0.9232
in multilingual retrieval.

4.2.2 Backbone Model

multilingual-e5-large-instruct (Wangetal.,
2024) and stella-en-400M-v5 (Zhang et al.,
2025) and mxbai-embed-large-v1 (Lee et al.,
2024) were fine-tuned with gradient checkpoint-
ing disabled.

4.2.3 Pooling Mechanisms

The Pooling Mechanisms was similar to that in
Multi-Lingual retraining

Optimizer configuration was similar to that in
Multilingual settings

5 Results

Multi-Lingual Rank 10th (S@10 avg = 0.9232)
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Model

Cross-Lingual (avg) | Multilingual (avg)‘ eng ‘ fra ‘ deu ‘ por ‘ spa ‘ tha ‘ msa ‘ ara ‘ tur ‘ pol

0.9091
0.9095
0.8972
0.9232
0.9140
0.9146

multilingual-e5-large-instruct (Best Fold) 0.7685
stella-en-400M-v5 (Best Fold) 0.76

0.7275
0.7975
0.7638
0.7712

mxbai-embed-large-v1 (Best Fold)
multilingual-e5-large-instruct (Ensemble)
stella-en-400M-v5 (Ensemble)
mxbai-embed-large-v1 (Ensemble)

0.864 | 0.932 | 0.904 | 0.85 | 0.924 | 0.967 | 1.0 | 0.942 | 0.864 | 0.848
0.852 | 0.913 | 0.902 | 0.84 | 0917 | 0.978 | 1.0 | 0.931 | 0.848 | 0.874
0.844 | 0.92 | 0.884 | 0.828 | 0.902 | 0.978 | 0.989 | 0.932 | 0.844 | 0.852
0.882 | 0.944 | 0.926 | 0.866 | 0.942 | 0.995 | 0.989 | 0.940 | 0.884 | 0.864
0.876 | 0.936 | 0.906 | 0.870 | 0.946 | 0.978 | 1.000 | 0.932 | 0.844 | 0.852
0.852 | 0.934 | 0.892 | 0.868 | 0.930 | 0.989 | 0.978 | 0.956 | 0.886 | 0.860

Table 2: Cross-Lingual and Multilingual Success @ 10 Breakdown on Leaderboard

Parameter Value
Batch Size 24
Number of Epochs 20
Warmup Steps 400

Mixed Precision Training float16

Table 3: MultiLingual Training Configuration

Parameter Value
Batch Size 36
Number of Epochs 10
Warmup Steps 500

Mixed Precision Training float16

Table 4: Cross Lingual Training Configuration

Performances

Insights on fact check AI Rankings and
Scores

Overall Performance:

Ranked 10th overall with an average S@10 score
of 0.923178.While the model performs decently
across languages, it falls behind top teams in con-
sistency.

Strongest Languages:

Thai (S@10 = 0.994536, Rank = 4th) and French
(S@10=0.944, Rank = 5th) are its best-performing
languages. The model competes well in these lan-
guages, staying in the upper half of rankings.

Weakest Languages:

Pol (S@10 = 0.864, Rank = 10th) and Tur (S@10
= (0.884, Rank = 10th) have the lowest rankings.

English Performance (Rank = 7th):

Middle of the pack, meaning the model isn’t op-
timized exclusively for English but is balanced
across multiple languages.

Generalization Strength vs. Overfitting Risks:
The model’s strong performance in under-
represented languages like Thai and Malay sug-
gests good generalization capabilities. In contrast,
lower scores in languages such as English and Pol

Table 5: Performance of fact check AI ccross Lan-
guages

Metric Score Rank
S@10 (avg) 0.923178 10.0
S@10 (eng) 0.882 7.0
S@10 (fra) 0.944 5.0
S@10 (deu) 0.926 6.0
S@10 (por) 0.866 9.0
S@10 (spa) 0.942 7.0
S@10 (tha) 0.994536 4.0
S@10 (msa) 0.989247 8.0
S@10 (ara) 0.94 9.0
S@10 (tur) 0.884 10.0
S@10 (pol) 0.864 10.0

may point to potential domain overfitting or dataset
imbalance. The wide performance range (S@ 10
from 0.864 to 0.9945) underscores the need for
better multilingual adaptation, particularly for mor-
phologically rich languages like Pol and Tur.

6 Cross-Lingual Performance Analysis of
fact check AI

6.1 Comparison with Top Teams

Rank Team Name S@10 (avg)
1 PINGAN Al 0.85875
2 PALI 0.82675
3 Sherlock 0.8245
4 TIFIN India 0.81025
5 fact check Al 0.7975

Table 6: Cross-lingual ranking of fact check AI in
comparison to other teams.

6.2 Opverall Performance

Our Cross lingual model ranks Sth, achieving an
average S@10 score of 0.7975. It performs com-
petitively in the upper half but remains behind the
top-performing teams.
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6.3 Risks and Performance Insights

A key challenge is the potential for fact-check re-
trieval error, especially for low-resource or mor-
phologically complex languages where semantic
representations are less stable. The variation in
performance across languages (S@ 10 from 0.864
to 0.9945) indicates probable training biases or
domain overfitting. Examination showed solid
performance where claims and posts had evident
semantic overlap, even for under-represented lan-
guages like Thai and Malay. Performance dropped
in morphologically dense languages like Pol and
Tur, where inflectional complexity concealed se-
mantic similarity. Cross-lingual retrieval was par-
ticularly prone to mistakes with regard to idiomatic
expressions or culturally specific references, re-
vealing the difficulty in modeling deeper seman-
tic subtleties between languages. Also, incorrect
fact-checks were sometimes strongly ranked be-
cause of surface similarities e.g., common named
entities—despite factual variations. These issues
identify the risk of false positives where language-
specific context is not correctly addressed. To mit-
igate these threats, improved multilingual adap-
tation by means of methods like language-aware
fine-tuning, balanced sampling, and dynamic en-
sembling can help close performance disparity. Per-
formance Risks and Insights,
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8 Conclusion

We evaluated how effectively different multilin-
gual em-embedding models perform for Multi and
cross-language retrieval. We established that their
effectiveness differs with the language, especially
in low-resource environments like Pol and Tur
Table 2. Combining methods helped in improv-
ing retrieval performance, but variances still ex-
isted. Multilingual-e5-large-instruct worked best

in single-language settings and cross-language sit-
uations. On the other hand, stella-en400M-v5
and mxbai-embed-large-v1 did not improve single-
language performance. Going forward, we need to
improve cross-language re-trievals more stable. We
can achieve this by incorporating more data for less
resource-full languages, tuning to specialized do-
mains, and conbining various modeling strategies.
This will enable real-world fact-check retrieval sys-
tems to become more robust.
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