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Abstract

This paper presents a system for SemEval 2025
Task 2 on entity-aware machine translation, in-
tegrating GPT-40 with Wikidata-based transla-
tions, retrieval augmented generation (RAG),
and function calling. Implemented in RAGth-
oven, a lightweight yet powerful toolkit, our
approach enriches source sentences with real-
time external knowledge to address challenging
or culturally specific named entities. Experi-
ments on English-to-ten target languages show
notable gains in translation quality, illustrat-
ing how LLM-based translation pipelines can
leverage knowledge sources with minimal over-
head. Its simplicity makes it a strong baseline
for future research in entity-focused machine
translation.

1 Introduction and Background

The aim of the EA-MT task, also referred to as
SemEval 2025 — Task 2 (Conia et al., 2025), is to
develop systems capable of accurately translating
English sentences containing challenging named
entities into one of the target languages: Arabic,
German, Spanish, French, Italian, Japanese, Ko-
rean, Thai, Turkish, or Chinese. Named entities,
which often denote proper names—such as those of
people, organizations, landmarks, locations, events,
or even titles of books, movies, TV series, and prod-
ucts—pose significant translation challenges that
require deep domain and cultural expertise. Exam-
ples of input sentences a system solving this task
might receive, as well as the desired French and
Italian translations, are provided in Table 1.

Our methodology is designed to replicate the
practical challenges encountered by data scientists,
including the constraints under which solutions
are typically developed. To this end, we inten-
tionally limit our approach to in-context learning
without fine-tuning, while augmenting the standard
Retrieval Augmented Generation (RAG) pipeline
with additional tools, taking inspiration from prior

Lang Sentence

EN I watched the movie “The Shawshank
Redemption” last night.

FR Jai regardé le film “Les Evadés™ hier
SOir.

EN I bought a new book called “The
Catcher in the Rye”.

IT Ho comprato un nuovo libro chiamato
“Il Giovane Holden”.

Table 1: EA-MT Task Examples. Note that in both
cases the entities (emphasized in ifalic) are completely
different in the source (English) and target (French and
Italian) languages.

work (Conia et al., 2024). Moreover, our approach
leverages off-the-shelf tools such as RAGthoven
(discussed in Section 2) and integrates multiple
publicly available data sources (e.g., Wikipedia
and Wikidata, as detailed in Section 2.3.1), system-
atically evaluating various combinations of these
data sources and configuration options.

Our empirical results outlined in Section 3
demonstrate that, even under these constraints, a
well-optimized RAG system can serve as a robust
baseline, achieving state-of-the-art performance in
certain contexts. To aid future development in this
area, we release all our code and configuration un-

der the terms of an opensource license!.

2 System Overview

2.1 The RAGthoven Toolkit

The system used by our team in this task is based on
RAGthoven (Karetka et al., 2025), a configurable
toolkit for RAG-based experiments. To reflect the
experiments executed in this shared task, the toolkit
was substantially enhanced to incorporate parallel

1https://github.com/ragthoven—dev/
semeval-2025-task-2
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Figure 1: A diagram depicting the respective components of RAGthoven. The Index, Reranking, Preprocessing, and

Function calling steps are optional.

execution of jobs, a Preprocessor (described in Sec-
tion 2.1.2), and the ability of LLMs to use various
tools via Function Calling (Section 2.1.3).

In line with our self-imposed constraints, all of
our experiments make use of the GPT-40 model
(OpenAl et al., 2024) accessed via the Azure Ope-
nAl Service” using API version 2024-10-21 with
the temperature parameter being set to O to aid
reproducibility. We use the term Large Language
Model (LLM) to refer to this model throughout the

paper.
2.1.1 Understanding RAGthoven

RAGthoven is a configurable toolkit that enables re-
searchers to quickly establish a baseline for an NLP
task using (almost) any LLM. The tool provides
simple functionality for fast development with easy
setup (such as zero-shot evaluation) while being
extensible with more sophisticated tools such as
Retrieval Augmented Generation (RAG), prepro-
cessing of the input datasets, and function calling
for the LLMs that support it. The minimal setup
for a RAGthoven experiment is defined in a single
yaml configuration file, specifying dataset, prompt,
and LLM hyper-parameters. The preprocessing
and function calling allow custom Python code to
be executed. An overview of RAGthoven and its
components can be seen in Figure 1.

2.1.2 Data Preprocessor Module

In the RAGthoven context, the preprocessor mod-
ule enables a custom Python code to take the orig-
inal data and transform them in any way desired.
Multiple preprocessing functions can be executed
sequentially together. As part of the shared task,
we implemented a Wikidata preprocessor, a sample

2https ://learn.microsoft.com/en-us/azure/
ai-services/openai/concepts/models

abbreviated implementation of which can be seen
in Figure 4, and its specification in the RAGthoven
configuration in Figure 7. This particular prepro-
cessor takes a whole data point (Wikidata Id of an
entity, source language, target language, text) and
returns a new data point, enriched with a new entry
which contains the translation of the named entity
in the source and target languages. These entity
entries can be later used in some of the prompts
passed to the LLM.

2.1.3 Enabling Function Calling in LLMs

Certain LLM API providers enable models to in-
teract with a variety of external tools, such as APIs
for retrieving real-time data or executing custom
functions. This capability allows the LLM to au-
tonomously determine when to invoke these func-
tions and which arguments to pass.

RAGthoven’s function calling module leverages
this feature by equipping the LLM with user-
defined tools, which are specified in its yaml con-
figuration file. In this context, a tool is any arbitrary
piece of Python code. When the LLM decides to
execute one of these functions, RAGthoven runs
the code and seamlessly integrates its output into
subsequent LLM API requests.

2.2 Baseline Configuration

As a baseline, we utilized an LLM, which was in-
structed by the prompts to perform machine trans-
lation from the source to the target language. The
model was instructed to use the target language and
to translate the named entities as a native speaker.
An example of such configuration can be seen in
Figure 2.
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name: "Entity-Aware Machine Translation
(EA-MT) - Semkval 2025 - Task 2"

validation_data:
dataset: "json:./data/semeval/ar_AE. jsonl”
input_feature: "source”
split_name: "train”

results:
output_cached: true
bad_request_default_value: -1
output_cache_id: "id"
output_filename: "ar_AE"

11lm:

model: "azure/gpt-4o0"

temperature: 0

sprompt: |
You are the best translator. You are given
sentences and are expected to translated
them on native spearker level.

uprompt: |
Please translate this sentece from
{{data.source_locale }}
to {{ data.target_locale }}:
{{ data.source }}

Figure 2: A sample RAGthoven configuration file for
zero-shot evaluation using GPT-4o.

2.3 Key System Components
2.3.1 Integrating the Wikidata API

The Shared Task sentences featured obscure named
entities that were likely underrepresented in the
datasets used to pre-train and post-train our
LLM-—a fact underscored by the model’s low M-
ETA score in translating these entities. Our prelim-
inary analysis revealed that many of these entities
are available in public knowledge bases such as
Wikidata. Consequently, we leveraged the Wiki-
data API to retrieve target language translations for
these named entities, incorporating the results into
the LLM prompt to enhance the overall translation
of the remaining sentence.

Since the input data already included Wikidata
entity IDs, we explored two experimental configu-
rations:

Query Using Gold Data Each test data point
comes with gold-standard annotations, including
the Wikidata ID for the named entity. By em-
ploying the RAGthoven Preprocessor (see Sec-
tion 2.1.2), we queried the Wikidata API with the
provided Wikidata ID to fetch the corresponding
translation in the target language.

Query Without Using Gold Data Building on
the previous approach, we developed a method to

eliminate the reliance on gold data (i.e., the Wiki-
data ID). Utilizing RAGthoven’s Function Calling
feature (introduced in Section 2.1.3), we prompted
the LLM to first identify the named entity in the test
sentence. The LLLM then passed the entity name
as an argument to a function that queried the Wiki-
data API for matching entities. For simplicity, we
assumed that the first entity returned was the best
match (though this selection method could be re-
fined in future iterations). With the Wikidata ID
obtained, we proceeded to retrieve the named en-
tity’s translation in the target language in the same
manner as described above.

2.3.2 Retrieval Augmented Generation (RAG)

Some of our machine translation system variants
leveraged Retrieval Augmented Generation (RAG)
to enhance performance by incorporating relevant
example translations of similar sentences (from
English to the target language) directly into the
prompt provided to the LLM.

In this approach, a small number of examples
(typically three) is selected via a RAG pipeline.
The process begins with an initial set of train-
ing examples, which are embedded using the
all-MinilLM-L6-v2 SentenceTransformer model
and stored in a vector database. The cosine simi-
larity between source language sentences is used
to retrieve the most appropriate examples. To en-
sure the highest quality examples are included, we
initially retrieve the top 10 responses from the vec-
tor database and subsequently re-rank them using
the ms-marco-MinilM-L-12-v2 model, resulting
in the final selection for the prompt, a full example
of which can be found in Figure 3.

For each target language, the initial set of train-
ing examples is derived from the provided train
set—or, when unavailable, the validation set—of
the Shared Task. For Arabic, German, Spanish,
French, Italian, and Japanese, we utilized the avail-
able training sets. For the remaining languages
(Chinese, Korean, Thai, and Turkish), the valida-
tion set examples were employed.

2.3.3 Addressing Chinese Translation
Challenges

In our experiments, the language model consis-
tently produced Simplified Chinese when asked to
translate into “Chinese,” likely reflecting inherent
biases in its training data. Upon further exami-
nation of the validation dataset, we observed that
the expected output was Traditional Chinese. By
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explicitly instructing the model to generate Tradi-
tional Chinese, we achieved improved results. This
strategy was uniformly applied across all experi-
ments and may have contributed to our submissions
ranking first and third in the Chinese (zh_TW) cate-
gory during the final evaluation.

2.4 End-to-End System Variants

24.1 Gold Data System: Best Performing
Configuration

Our best performing system utilizing gold data
(Wikidata Id) employed querying the Wikidata API
with the Wikidata Id, as well as RAG as described
in Section 2.3.1 and Section 2.3.2 respectively. The
resulting approach utilizes the most similar transla-
tion pairs from the training dataset as examples. It
provides the model with the named entity transla-
tions fetched from the Wikidata API, and instruc-
tions on using them in the target translation. This
approach scored fourth in the overall score and first
in Chinese. This system variant is referenced as
GPT-40 + Wikidata + RAG in Table 2 and Table 3.

2.4.2 Non-Gold Data System: Best
Performing Configuration

Our best-performing system, which operates en-
tirely without gold data, leverages a multi-stage
process that combines Wikidata API queries with
Retrieval-Augmented Generation (RAG) (see Sec-
tion 2.3.1 and Section 2.3.2). The novelty of our
approach lies in its sequential workflow:

1. Entity Extraction: The LLM first extracts
the named entity from the source sentence.

2. Entity Identification: Using the extracted
name, we query the Wikidata API to search
for matching entities. We assume that the first
result represents the best match, thereby pro-
viding the Wikidata ID for the entity without
relying on gold data.

3. Translation Retrieval: With the obtained
Wikidata ID, we make a second API call to
fetch the target language translation of the
named entity.

4. Sentence Translation: Finally, we prompt
the LLM to translate the source sentence, in-
corporating the translated named entity from
the previous step.

This experiment not only integrates RAG, as pre-
viously described, but also utilizes RAGthoven’s

function calling capabilities. By providing the
LLM with available tools, it can autonomously
request function executions using parameters of
its choice—specifically, the entity name extracted
from the source sentence and the target language.
An example configuration is presented in Figure 5,
with the corresponding Python implementation de-
tailed in Figure 6.

This approach was not submitted to the final
leaderboard, but it would have scored first among
the systems that did not use gold labels. It is ref-
erenced as GPT-40 + Thinking (w/ NER + API
call) + RAGin Table 2 and Table 4.

2.5 Ablation Studies

2.5.1 Zero-Shot with Gold Data (Wikidata
Ids)

This approach (referenced as GPT-40 + Wikidata
in Table 2 and Table 3) builds on the zero-shot ap-
proach by utilizing a single prompt enriched by a
named entity translation sourced from the Wikidata
APIL. The named entity is looked up by the pro-
vided wikidata_id, and the corresponding source-
language <-> target-language translation pair is
provided in the prompt for the model alongside the
instructions to use the correct name for the entity
in the final translation. If Wikidata does not con-
tain a translation for the searched wikidata_id the
model is informed in the prompt.

2.5.2 RAG with Named Entity Parametric
Knowledge Elicitation

The main idea behind this approach (referenced
as GPT-40 + Thinking (param. knowledge) +
RAG in Table 2 and Table 4) is to split the transla-
tion process into several simple steps. This way, the
model is given the space to reason about the input,
which is hypothesized to help it perform better than
just a single zero-shot approach. The translation
process is split into three steps: Find & Summa-
rize, where the model is instructed to find named
entities in the text and to provide the summary of
everything it knows about them; Entity translation,
where the model is tasked to translate the named
entities to the target language; and Translate, where
the model is tasked to translate the source sentence
by utilizing all the information it gained in previous
steps.

2.5.3 Zero-Shot with Wikidata Aliases

Wikidata provides alternative names for entities,
known as aliases, which appear in the "Also known
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Systems Rank AR DE ES FR IT JA KO TH TR ZH Avg
GPT-40 + Wikidata + RAG 4 9324 89.46 9242 92.50 9433 9255 9292 9246 88.82 87.51 91.62
GPT-40 + Wikidata 9 9324 8946 9241 92,50 9423 91.38 9149 9139 86.75 87.31 91.02
GPT-40 + RAG (k=3) 26 5893 61.04 67.12 61.13 63.60 62.17 62.04 4569 6530 57.51 60.45
GPT-40 + Wikidata + Wikipedia *10  93.24 8946 9241 9250 93.25 91.38 9149 91.36 86.75 87.10 90.90
GPT-40 + Wikidata + Wikidata aliases *16 9097 8322 87.59 86.74 87.87 88.78 89.45 83.08 81.47 83.62 86.29
GPT-40 + Thinking (w/ NER + API call) + RAG *16 88.02 84.52 8791 86.82 89.03 87.98 89.02 8424 86.81 83.88 86.82
GPT-40 + Thinking (param. knowledge) + RAG *24  59.89 59.89 69.76 6395 6533 64.68 67.05 4955 71.04 56.86 62.82
GPT-40 + RAG (k=10) *#25  58.68 61.15 67.72 61.75 6391 6288 61.99 4799 6470 58.11 60.90
GPT-40 + RAG (k=5) *25 5821 6127 67.65 61.76 63.84 6233 62.04 4721 6549 57.54 60.75
GPT-40 + RAG (k=3, no reranking) *27 5895 60.84 6748 61.42 63.80 62.00 61.86 4556 6497 5691 60.40
GPT-40 + RAG (k=1) *#27 5872 59.83 6747 59.70 6241 6130 62.79 42.82 6524 56.67 59.72
GPT-40 zero-shot *28 5945 5922 6728 59.81 6242 6293 6143 3474 61.83 16.85 54.72

Table 2: Overall results and ranking of submitted and non-submitted (denoted with * in the Rank column) systems
across Arabic (AR), German (DE), Spanish (ES), French (FR), Italian (IT), Japanese (JA), Korean (KO), Thai (TH),
Turkish (TR), and Chinese (ZH). The provided score is the combined score of M-ETA and COMET, the official
aggregated metric used by the Shared Task. The performing system for a specific language or on average (Avg) is

bolded.

as" section on each item’s page. In this experiment,
we used the Wikidata Id (considered gold stan-
dard) to query the Wikidata API, retrieving both the
target-language name of the entity and its associ-
ated aliases. We then incorporated these identifiers
into our prompt, instructing the language model
to translate the sentence and select the most ap-
propriate identifier from the list—one that closely
mirrors the entity’s mention in the source text. This
approach is referenced as GPT-40 + Wikidata +
Wikidata aliases in Table 2 and Table 3.

3 Results and Analysis

Our main results are summarized in Table 2, which
details the combined M-ETA and COMET scores
for each language, the average score across all sys-
tems, and the final ranking of our system.

First, our baseline—a zero-shot prompt de-
scribed in Section 2.2—achieved a modest score
of 54.72, largely due to its low performance on
Thai (34.74) and Chinese (16.85). Incorporating a
single example resulted in notable improvements,
with absolute increases of over 8 points in Thai
(42.82) and nearly 40 points in Chinese (56.67).
To further examine the impact of the number of
examples retrieved via the RAG pipeline, we ex-
perimented with different values of the k variable.
While increasing the number of examples generally
improved the average performance, the gain from
one (k = 1)toten (k = 10) was relatively minor
(from 59.72 to 60.90) but took significantly longer
to evaluate. Consequently, we used three examples
in the prompts of subsequent experiments. Addi-
tionally, we evaluated a configuration without re-
ranking (k = 3, no reranking), which showed

a slight regression of 0.05 absolute points; thus,
re-ranking was retained in all further experiments
involving the RAG pipeline.

Our findings indicate that incorporating Wiki-
data IDs leads to a significant performance
boost—improving absolute scores by at least 20
points. This suggests that leveraging this exter-
nal data source effectively addresses the challenge.
Furthermore, the fact that the top 10 models on
the final leaderboard? all utilized the gold data re-
inforces this conclusion. Notably, although our
model ranked second among the non-finetuned ap-
proaches, the performance gap was minimal (91.72
vs. 91.62). In contrast, experiments that combined
Wikidata with Wikipedia data and employed Wiki-
data aliases resulted in inferior performance, as
detailed in Table 3.

To isolate the impact of gold data, we con-
ducted additional experiments without its use.
As evidenced in Table 2 and Table 4, our
multi-step prompting strategy described in Sec-
tion 2.4.2—where the LLM first identifies the en-
tity to be translated, then retrieves its translation
via a function call, and finally incorporates that
translation into the final prompt—delivered the
best results. This configuration would have ranked
first among the systems that did not use gold la-
bels in the final leaderboard (with overall score of
86.82), suggesting that it might be a potent alterna-
tive when entity data is not available.

3https://huggingface.co/spaces/sapienzanlp/
ea-mt-leaderboard
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Systems RANK
GPT-40 + Wikidata + RAG 4
GPT-40 + Wikidata 9
GPT-40 + Wikidata + Wikipedia *10
GPT-40 + Wikidata + Wikidata aliases *16

Table 3: Ranking of systems which use gold labels. The num-
ber of examples in RAG is three unless stated otherwise. The
ranking is the overall ranking of all systems.

Systems RANK
GPT-40 + Thinking (w/ NER + API call) + RAG *1
GPT-40 + Thinking (param. knowledge) + RAG *8
GPT-40 + RAG (k=10) *8
GPT-40 + RAG (k=5) *8
GPT-40 + RAG (k=3) 10
GPT-40 + RAG (k=3, no reranking) *10
GPT-40 + RAG (k=1) #11
GPT-40 zero-shot *12

Table 4: Ranking of systems which do not use gold labels. The
ranking takes into consideration only systems that did not use gold
labels during evaluation. The number of examples in RAG is three
unless stated otherwise.

Table 5: Overall score ranking of submitted and non-submitted (*) systems using gold labels and those that do not
use gold labels. The provided score is a combined score of M-ETA and COMET, the official aggregated metric used

by the Shared Task.

4 Conclusion

In this work we introduce a family of modular,
LLM-centric translation pipelines that combine
GPT-40 with Wikidata-driven entity linkage, au-
tomatic function calling, and retrieval-augmented
generation to tackle the Entity-Aware Machine
Translation task. Controlled experiments with and
without gold entity identifiers show that symbolic
priors can be exploited to close the entity gap: the
gold-aware configuration reaches an average M-
ETA + COMET score of 91.62, ranking 4th over-
all, 2"4 among non-finetuned approaches and best
overall for Chinese, while the non-gold variant at-
tains 1% place among all submissions that forgo
labeled data. Achieved without task-specific fine-
tuning, these results suggest that lightweight re-
trieval-reasoning hybrids may serve as strong base-
lines for future research in multilingual, entity-
aware machine translation and motivate their adop-
tion as reference systems in forthcoming studies
and shared tasks.

Limitations

In our work we make use of an LLM which is only
available via an API, and despite our best efforts to
make our results reproducible, it might be difficult
to do so, as they depend on a third party we do not
have control over.
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A Appendix

Prompt Example

System prompt: You are the best translator.
You are given sentences and are expected to
translated them on native spearker level.
These are some example translations:

Original sentence: Who is the president of
North Macedonia?

Translation: Chi ¢ il presidente della Mace-
donia del Nord?

Original sentence: What is a very famous
temple in Greece in honor of the Greek God-
dess of wisdom?

Translation: Qual ¢ un templio greco molto
famoso costruito in onore della dea greca
della saggezza?

Original sentence: What is the population of
the country where the Acropolis is located?
Translation: Qual ¢ la popolazione del Paese
dove si trova I’ Acropoli?

User prompt: Please translate this sentence
from en to it. The entity in the original sen-
tence Sarena Mosque is called as Moschea
Sarena in the target language.

The sentence to translate: What is the signif-
icance of Sarena Mosque in Tetovo, North
Macedonia?

Model response: Qual ¢ il significato della
Moschea Sarena a Tetovo, Macedonia del
Nord?

Figure 3: An example of a prompt generated by the
RAGthoven system with preprocessing configuration,

def get_entity_in_language(args: dict[str, anyl):

# Create WikibaseIntegrator instance
wbi = WikibaselIntegrator()

# Extract identifiers and locales
entity_id = args["wikidata_id"]

target_loc = args["target_locale"]
source_loc = args["”source_locale"]

# Retrieve entity from wikibase
entity = wbi.item.get(entity_id=entity_id)

# Get label for target locale
tgt_label = entity.labels.get(target_loc)

# Get label for source locale
src_label = entity.labels.get(source_loc)

# Save results in args dictionary

args["tgt_l_entity_name"] = (
str(tgt_label.value) if tgt_label
else 'Not found in data!'

)

args["src_l_entity_name"] = (
str(src_label.value) if src_label
else 'Not found in data!'’

)

return args

Figure 4: A sample RAGthoven preprocessing function

implementation. Note that the input to the function

the first part of which is then provided to the LLM for
inference. The model response can be seen in the second

part, underneath the horizontal line.
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(args) is the whole data row, and the returned value is
the same data row modified by the function.



name: "Entity-Aware Machine Translation
(EA-MT) - SemEval 2025 - Task 2"

validation_data:

dataset: "json:./ragthoven/test/ar_AE. jsonl”

input_feature: "source”
split_name: "train”

training_data:

class WikidataEntityTranslation(BaseFunCalling):

dataset: "json:./ragthoven/train/ar/train.jsonl”

input_feature: "source”
label_feature: "target”
split_name: "train”

11lm:
messages: true
model: "azure/gpt-4o0"
temperature: 0

tools: ["Wikidata.WikidataEntityTranslation"]

prompts:
name: "system”
role: "system”
prompt: |
You are the best translator ...

### These are some example translations

{{ examples }}

name: "Wikidata_search”
role: "user”
tools: ["WikidataEntityTranslation”]
prompt: |
First, find the named entity ...
{{ data.source }}

Please first find the named entity ...

name: "verdict”

role: "user”

prompt: |
Given that you have the ...
Please translate this sentence
from {{ data.source_locale }}
to {{ data.target_locale }}.
The sentence to translate:
{{ data.source }}

Figure 6: An example usage of function calling in
RAGthoven. Python implementation of function calling
tool for evaluation using GPT-40 with function calling.

Figure 5: An example usage of function calling in
RAGthoven. Configuration file for evaluation using

GPT-40 with function calling.
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def __init__(self) -> None:

super().__init__()
self.name = type(self).__name__

self.description = "Get translation ...

self.parameters = {
"type": "object”,
"properties”: {

"entity_name"”: {

"type": "string",
"description”: "...",

})

"target_language": {
"type": "string”,
"description”: "...",

b

}7

"required”: [
"entity_name”,
"target_language”

]7

"additionalProperties”: False,

def __call__(self, args):
return get_translation_by_entity_name(
args['entity_name'],
args['target_language']

n



name: "Entity-Aware Machine Translation
(EA-MT) - SemEval 2025 - Task 2"

validation_data:
dataset: "json:./data/semeval/ar_AE. jsonl"
input_feature: "source”
split_name: "train”

preprocessor:
entries: ["Wikidata.get_entity_in_language"]

11lm:

model: "azure/gpt-4o0"

temperature: 0

sprompt: |
You are the best translator. You are given
sentences and are expected to translated
them on native spearker level.

uprompt: |
Please translate this sentece from
{{ data.source_locale }}
to
{{ data.target_locale }}.
The entity in the original sentence
“{{ data.src_l_entity_name }}  is called
as “{{ data.tgt_l_entity_name }}°
in the target language.

The sentence to translate:
{{ data.source }}

Figure 7: A sample RAGthoven configuration file with
preprocessing. Note that the configuration describes
the GPT-40 + Wikidata submission with formatting
changes.
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