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Abstract

Unlearning is a critical capability for ensur-
ing privacy, security, and compliance in AI
systems, enabling models to forget specific
data while retaining overall performance. In
this work, we participated in Task 4 of Se-
mEval 2025, which focused on unlearning
across three sub-tasks: (1) long-form synthetic
creative documents, (2) short-form synthetic
biographies containing personally identifiable
information, and (3) real documents sampled
from the target model’s training dataset. We
conducted four experiments, employing Super-
vised Fine-Tuning (SFT) and Direct Preference
Optimization (DPO). Despite achieving good
performance on the retain set—data that the
model was supposed to remember—our find-
ings demonstrate that these techniques did not
perform well on the forget set, where unlearn-
ing was required.

1 Introduction

As machine learning (ML) continues to be inte-
grated into critical domains, concerns over data
privacy, security, and user autonomy have become
more pressing than ever. From healthcare to fi-
nance, data-driven models play a crucial role, but
their ability to retain and utilize information raises
significant challenges. This issue has been further
emphasized by legal regulations such as the Gen-
eral Data Protection Regulation (GDPR), which
grants individuals the “right to be forgotten” (Voigt
and von dem Bussche, 2017).

Machine unlearning has emerged as a key ap-
proach to tackling these concerns. It enables the
selective removal of specific data points from a
trained model without necessitating a full retraining
process (Cao and Yang, 2015a). Unlike fine-tuning
or knowledge editing, which focus on adjusting or
adding new information, machine unlearning is de-
signed to eliminate the influence of certain inputs,
ensuring they no longer contribute to the model’s

predictions or behavior. The overall workflow of
machine unlearning is illustrated in Figure 1.

The importance of machine unlearning is mag-
nified by the intricate nature of deep learning mod-
els. These models often exhibit data entanglement,
where information from different training instances
becomes deeply intertwined within the model’s pa-
rameters, making selective removal a challenging
task (Tramèr et al., 2022). Additionally, unlearning
must be carefully implemented to prevent unnec-
essary degradation of the model’s performance on
retained data, striking a balance between utility and
privacy (Guo et al., 2019). Another significant hur-
dle is efficiency—particularly in large-scale archi-
tectures like LLMs—since retraining a model from
scratch is often impractical due to the immense
computational cost.

As large language models gain increasing promi-
nence, it becomes essential to examine the rela-
tionship between machine unlearning and knowl-
edge editing. Knowledge editing is typically used
to update or correct specific facts or behaviors in
LLMs without requiring a full model retrain (Yao
et al., 2023; Wang et al., 2025; Mitchell et al.,
2022). While both techniques modify a model’s in-
ternal representations, they serve distinct purposes:
knowledge editing injects or refines information,
whereas unlearning aims to remove specific influ-
ences entirely. This distinction highlights both the
challenges and the potential areas of overlap be-
tween these two approaches.

Beyond its technical implications, machine un-
learning also plays a crucial role in ensuring ethical
AI practices and regulatory compliance. By en-
abling models to forget specific information when
required, unlearning enhances both user privacy
and model transparency, making it an essential tool
in the evolving landscape of responsible AI.

In this study, we explore machine unlearning in
large language models by participating in SemEval-
2025 Task 4. We focus on selectively remov-
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Figure 1: Workflow of machine unlearning.

ing memorized information across three document
types: synthetic creative documents, synthetic bi-
ographies containing personally identifiable infor-
mation (PII), and real-world documents, without
compromising the model’s general performance.
For this, we conduct four experiments using Su-
pervised Fine-Tuning (SFT) and Direct Preference
Optimization (DPO) techniques. Our findings re-
veal the challenges of achieving effective unlearn-
ing, emphasizing that current approaches, while
promising for retention, still fall short in forget-
ting sensitive data. Through this work, we aim
to contribute insights into the limitations and fu-
ture directions for improving machine unlearning
in large-scale AI systems. 1

2 Background

In recent years, machine unlearning has attracted
significant attention as concerns about data privacy,
regulatory compliance, and ethical AI practices
have grown. The fundamental concept of machine
unlearning is to allow trained models to remove
specific data points without the need for complete
retraining, thereby achieving a balance between
efficiency and privacy demands. This section ex-
amines the leading approaches and methodologies
presented in the literature.

2.1 The Rationale for Machine Unlearning

Users may want to delete their data for various
reasons, mainly for security and privacy concerns.
Each reason is discussed further below.
Privacy, Several approaches have been proposed
to mitigate privacy risks in LLMs. Differential pri-
vacy (Dwork, 2006) introduces noise to training
data to prevent individual data points from being

1Additional details and code are available on our GitHub
repository.

memorized. Federated learning (McMahan et al.,
2017) minimizes direct data exposure by training
models on decentralized data. However, these tech-
niques do not fully address the problem of post-hoc
data removal, which is where unlearning methods
become crucial (Bourtoule et al., 2021). Security,
Adversarial attacks generate data nearly identical
to real data, tricking deep learning models into in-
correct predictions. In critical fields like healthcare,
this can lead to misdiagnoses or harmful treatments.
Detecting and removing such data is crucial for
security, and machine unlearning must eliminate
detected attacks (Cao and Yang, 2015b).

2.2 Unlearning Methods

Several unlearning methods have been developed to
address the challenges of removing specific knowl-
edge influences from trained models while main-
taining overall performance. These methods in-
clude:

• Gradient Ascent:This approach builds upon
the concept of gradient ascent by aiming to
maximize the loss on the forget set (Trippa
et al., 2024).

• Gradient Difference: This method, expands
on the idea of gradient ascent. It seeks to
increase the loss on the forget set, while si-
multaneously preserving performance on the
retain set (Liu et al., 2022).

• KL Minimization In the KL Minimization ap-
proach, the goal is to balance two objectives
during the unlearning process of a model: (1)
Minimize the Kullback-Leibler (KL) diver-
gence: This ensures that the predictions of the
unlearned model on the sensitive data (SR)
remain close to those of the original model
fine-tuned on the original data. (2) Maximize
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the conventional loss on the safe data (SF):
This encourages the model to perform well on
non-sensitive data (Maini et al., 2024).

• Negative Preference Optimization It ad-
dresses the limitations of existing gradient
ascent-based methods and demonstrates that
NPO-based methods outperform other ap-
proaches, providing a superior balance be-
tween unlearning effectiveness and model util-
ity. The evaluation is conducted on the Task of
Fictitious Unlearning (TOFU) dataset, and the
paper concludes with a discussion of model
utility and forget quality (Zhang et al., 2024).

• Preference Optimization Inspired by the
concept of Negative Preference Optimization
(NPO) (Rafailov et al., 2023). The goal is to
ensure that while the model aligns with the
newly generated answers for forget set, its nat-
ural language capabilities and predictions for
retain set remain unchanged.

• Direct Preference Optimization: a train-
ing methodology in which a language model
is fine-tuned directly on human preference
data. Instead of relying on complex reward
modeling or reinforcement learning frame-
works such as RLHF (Reinforcement Learn-
ing with Human Feedback), the model learns
by imitating human-identified preferred out-
puts. (Rafailov et al., 2024)

2.3 Task Setup
The task focuses on three document types with
escalating complexity and evaluates both infor-
mation retention and forgetting efficacy through
multiple metrics. For a given fine-tuned 7B pa-
rameter OLMo model (OLMo-7B-0724-Instruct-
hf) that has been pre-trained and has memorized
task-specific documents, our goal is to efficiently
remove information from a forget subset (F ) while
retaining information from a retain set (R) with-
out a performance decrement. A sample of the
dataset can be seen in Figure 2. The original bench-
mark (Ramakrishna et al., 2025) consists of three
separate tasks designed to thoroughly assess LLM
unlearning algorithms across creative documents,
PII, and biographies.

3 System Overview

This study explores unlearning in large language
models (LLMs) through four experiments using

Figure 2: An example of a dataset sample for two tasks:
"sentence completion" and "question answering."

two training methods: Direct Preference Optimiza-
tion (DPO) and Supervised Fine-Tuning (SFT).
The approach for data collection and training is
outlined below.

3.1 Data Collection

For the DPO-based experiments, training data was
structured into accepted and rejected pairs. In the
first experiment, the forget set from the training
data was used as the rejected part. The accepted
responses were generated using the Phi-4 model,
ensuring minimal lexical overlap with the forget set.
ROUGE was used to verify low lexical similarity.
For the retain set, the training data was used as
accepted responses, and the rejected counterparts
were created in the same way as in the forget set.

In the second experiment, the same approach
was followed, except that different synonyms of "I
do not know" were used as the accepted responses
for the forget set instead of Phi-4 generations.

For the SFT-based experiments, the same data
structure was used, but without rejection-based
training. Instead, only accepted responses were
used for training. In experiment three, the ac-
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Algorithm/Dataset Task Aggregate MIA Score MMLU Avg. Aggregate
DPO-Phi4 0.0 0.0 0.495 0.165
DPO-Idk 0.0 0.0 0.423 0.141
SFT-Phi4 0.0 0.0 0.423 0.141
SFT-Idk 0.0 0.0 0.426 0.142

Table 1: The results of applying DPO and SFT methods for unlearning.

cepted responses from experiment one were used
as training data. In experiment four, the accepted
responses from experiment two were used.

3.2 Training Methods
For the first two experiments, DPO was applied to
train the model by optimizing it to prefer accepted
responses over rejected ones. This preference learn-
ing process guided the model to align with the
desired unlearning behavior by distinguishing be-
tween retained and forgotten knowledge.

For the last two experiments, SFT was used,
where the model was fine-tuned solely on the ac-
cepted responses. Unlike DPO, which explicitly
learns to prefer one response over another, SFT
updates the model’s parameters directly based on
the provided training data without contrastive com-
parisons.

Through these four experiments, different strate-
gies for unlearning were explored, and their ef-
fectiveness in reducing retention of the forget set
while maintaining performance on the retain set
was evaluated.

4 Experimental Setup

4.1 Preprocessing
For each sample in the forget set (F ), we use the
Phi-4 model to generate multiple candidate an-
swers. From these candidates, we select the one
with the lowest ROUGE-L score as the final ac-
cepted response. This approach ensures that the
chosen answer is distinct, minimally redundant,
and still relevant to the input.

For the retain set (R), we also use the Phi-4
model to generate candidate responses. Rejected
samples are created by selecting responses that
are lowest ROUGE-L scores to the original an-
swer. These rejected samples are carefully curated
to ensure they do not align with the desired out-
put, thereby strengthening the model’s ability to
distinguish high-quality responses.

Due to the need for additional experiments, we
introduce variations of the phrase "I do not know"

as accepted responses in the forget set (F ) and
as rejected responses in the retain set (R). This
helps train the model to recognize uncertainty and
respond appropriately.

The SFT dataset is constructed separately from
the DPO dataset and consists solely of high-quality
accepted answers from both the forget set (F ) and
the retain set (R). These carefully selected re-
sponses are used to fine-tune the model in a su-
pervised manner.

4.2 Evaluation Metrics
4.2.1 Primary Task Metrics

• Forget Efficacy: Measures the model’s ability
to forget specific information. It is computed
as:

1− ROUGE-L(completions) (1)

and

1− EM(answers) (2)

where:

– ROUGE-L: Measures the longest com-
mon subsequence overlap between gen-
erated and reference text.

– EM (Exact Match): Computes the frac-
tion of predictions that exactly match the
reference answers.

• Retention Quality: Evaluates how well the
model retains general knowledge and is given
by:

Original ROUGE-L/EM scores (3)

ensuring that forgetting one piece of knowl-
edge does not degrade overall text generation
quality.

• Aggregation: The final score is computed
using the harmonic mean over 12 different
scores, corresponding to:

3 (subtasks) × 2 (metrics: ROUGE-L, EM)

× 2 (document sets) (4)
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4.2.2 Privacy Guarantees
• Membership Inference Attack (MIA) Score:

Measures resistance to privacy attacks by com-
puting:

1− 2× |AUC(loss-based MIA)− 0.5| (5)

where:

– AUC (Area Under the Curve): Measures
the attack’s ability to distinguish between
memorized and non-memorized data.

– Loss-based MIA: Uses model loss to in-
fer whether a given sample was part of
the training set.

Higher scores indicate stronger privacy pro-
tection.

4.2.3 Utility Preservation
• MMLU Benchmark Accuracy Threshold: En-

sures the model maintains general capabilities
by requiring:

AccMMLU ≥ 0.371 (6)

where:

– AccMMLU: Model accuracy on the Mas-
sive Multitask Language Understanding
(MMLU) benchmark.

– The threshold (0.371) represents 75% of
the baseline accuracy of a 7B parameter
model.

The evaluation spans 57 subjects, primarily in
STEM fields.

4.2.4 Final Scoring
Submissions are ranked using the final score for-
mula:

Final Score =
1

3
(Task Score + MIA Score

+ MMLU Score) (7)

where each component represents a weighted
contribution to the overall evaluation.

4.3 Configuration
Our model is trained using the AdamW optimizer
with a learning rate of 5× 10−5 for 3 epochs and a
batch size of 1. We employ a linear decay scheduler
with warm-up to adjust the learning rate dynami-
cally. To address task scheduling constraints, we

enforce a strict 1-hour training limit, utilizing a
single A100 GPU. Additionally, we apply a weight
decay of 0.1 and freeze the first 4 layers of the
model to improve generalization. We also set the β
preference parameter to 0.5 to regulate preference
optimization. This configuration effectively bal-
ances performance and computational efficiency.

5 Results

The results show that these methods had little effect
on the model’s performance since key performance
measures barely changed after using them. This
means that while DPO and SFT may help in some
parts of the unlearning process, they are not enough
on their own to make the model forget significantly.
The results are presented in Table 1. Our team
has achieved 11th place out of 26 teams in the
competition.

Additionally, our analysis suggests that the
model still remembers much of its previous knowl-
edge, even after the unlearning process. These
findings highlight the need for additional and di-
verse approaches to enhance the effectiveness of
unlearning. Future studies should look into other
techniques or a combination of methods to improve
the unlearning process.

6 Conclusion

In this study, we applied Direct Preference Opti-
mization (DPO) and Supervised Fine-Tuning (SFT)
methods to achieve unlearning in the target model.
Our results show that these methods had only a
limited effect on the model’s performance, indicat-
ing that they are not sufficient by themselves for
effective unlearning. This highlights the challenges
involved in making a model truly forget specific
information. To improve the unlearning process,
it is important to explore additional strategies and
combine different methods. Future work should
focus on developing new techniques and investigat-
ing how multiple approaches can work together to
achieve better unlearning outcomes.
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