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Abstract

Accurately representing non-compositional lan-
guage, such as idiomatic expressions, is cru-
cial to prevent misinterpretations that may af-
fect subsequent tasks. This paper presents our
submission to the SemEval 2025 task on ad-
vancing the representation of multimodal id-
iomaticity. The challenge involves matching
idiomatic expressions with corresponding im-
age descriptions that depict their meanings. We
participate in the text-only tracks of both sub-
tasks. Our system adopts a similarity-based
approach and utilizes embeddings from pre-
trained BERT-based large language models
alongside ChatGPT-generated textual content.
The primary goal is to explore the extent to
which semantic similarity of embeddings from
pre-trained models can effectively represent id-
iomaticity. For subtask A, our final submission
ranked 5th on the test data and 3rd on the ex-
tended evaluation data (both out of 6).

1 Introduction

Idiomaticity of multiword expressions (MWESs) —
the gap between the literal meaning of individual
parts and the figurative meaning of the whole —is a
major source of the lexical, syntactic and semantic
quirks that make MWEs notoriously challenging
for NLP systems (Baldwin and Kim, 2010). It is
no surprise, that (Sag et al., 2002) dubbed MWEs
‘a pain in the neck.’

Expressions like ‘black sheep’ have a literal and
an idiomatic meaning. Identifying the intended
meaning in context is crucial for tasks such as ma-
chine translation and question answering. While
humans can easily distinguish between idiomatic
and literal usage, language models often strug-
gle. Addressing this challenge is the focus of the
SemEval 2025 task AdMIRe: Advancing Multi-
modal Idiomaticity Representation (Pickard et al.,
2025), an extension of the 2022 task Multilingual
Idiomaticity Detection and Sentence Embedding
(Tayyar Madabushi et al., 2022). Both tasks focus

on nominal compounds. While the earlier task fo-
cused on classifying idiomatic versus literal uses of
nominal compounds in context, the new task intro-
duces a multimodal component, requiring models
to select appropriate images (or image captions)
based on the intended meaning. Two subtasks are
defined: In Subtask A, images have to be ranked
based on how closely they relate to a noun com-
pound used idiomatically or literally in a given
sentence. In Subtask B, the task is to decide which
image best completes a given 2-element image se-
quence and to decide whether the image sequence
illustrates the idiomatic or the literal meaning of
the compound in question.

In this paper we address Subtasks A and B in
their monolingual, English, text-only version — us-
ing image captions rather than images themselves.
Our approach relies on comparing the similarity
of contextualized compound and sentence embed-
dings. The central question we explore is whether
these tasks can be effectively tackled without spe-
cialized training or fine-tuning, using only contex-
tualized embeddings from pre-trained large lan-
guage models. In line with the famous essay title
by Vaswani et al. (2017), we ask, “Is similarity all
you need?”!

2 Background

For Subtask A, the given data consists of a nomi-
nal compound, a sentence in which it is used either
literally or idiomatically, and five images accom-
panied by detailed textual descriptions (referred to
as captions). These images vary in how closely
they relate to the possible meanings of the com-
pound: one represents the idiomatic and one the
literal meaning, two are semantically related (one
to the idiomatic and one to the literal meaning),
and one functions as a distractor. The distractor
image is not directly related to the compound but

'The code of our approach can be found at https://
github.com/WiebkePetersen/Transformer25.
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may come from a similar semantic domain. For
instance, in the case of the compound ‘rotten apple,’
a distractor might be a sugar-coated peach.

The task is to rank the images as follows: (i) If
the compound is used literally in the sentence, the
desired order is literal, related-to-literal, related-
to-idiomatic, idiomatic, distractor. (ii) If the com-
pound is used idiomatically, this order is reversed,
except that the distractor remains in the final po-
sition: idiomatic, related-to-idiomatic, related-to-
literal, literal, distractor. For evaluation the sys-
tem’s predicted rankings are compared to the ex-
pected ones using two metrics. The first is Top
Image Accuracy (or top-1 accuracy), which checks
whether the system correctly identifies the most rep-
resentative image (literal or idiomatic, depending
on usage) by ranking it first. The second is Rank
Correlation, which assesses the overall alignment
of the predicted ranking with the gold standard
using Spearman’s rank correlation coefficient.

For Subtask B only the nominal compound is
provided but no sentence containing it. Instead, a
sequence of two images with captions and four ad-
ditional candidate images with captions are given.
The task is twofold: (i) determine whether the
initial image sequence represents an idiomatic or
literal use of the compound; (ii) out of the four
additional images choose the one that best com-
pletes the sequence. The four images are composed
such that one is the optimal continuation for the
idiomatic interpretation and one for the literal in-
terpretation of the compound. The remaining two
images are semantically related to the first two but
are not ideal completions, analogous to the related
images in Subtask A. Evaluation of the subtask is
based on the accuracy of both predictions: (i) iden-
tifying the correct type (literal vs. idiomatic) and
(ii) selecting the appropriate image to continue the
sequence.

The English datasets used in the tasks are based
on the data from the 2022 task and comprise 250
nominal compounds. The images for both subtasks
were generated using Midjourney v6.0, based on
prompts created with Gemini Pro 1.5 to capture the
relevant meaning nuances. Context sentences for
the compounds were either sourced from the web
or written specifically for this task. The data is di-
vided into training, development, test, and extended
evaluation sets. Table 1 provides an overview of
the dataset sizes and the distribution of idiomatic
and literal instances across these splits.

Subtask A data set # sentences idiomatic / literal
Training 70 39/31
Development 15 7/8

Test 15 87117
Extended Evaluation/Test 100 46 /54
Subtask B data set # compounds idiomatic / literal
Training 20 13/7
Development 5 2/3

Test 5 3/2
Extended Evaluation/Test 30 12/18

Table 1: Summary of datasets for Subtask A and B.

3 System overview

For both subtasks, we participate in the monolin-
gual, English, text-only track, which means that we
rely solely on image captions and do not use the
images themselves. Our approach is based on com-
puting similarity scores between embeddings of the
provided textual material (sentences and captions)
as well as additional texts that we generate auto-
matically. Subsection 3.1 outlines the process of
generating this additional material and computing
embeddings. The following subsections, 3.2 and
3.3, describe how predictions for Subtasks A and
B are derived from the computed similarity scores.

3.1 Data Extension and Embeddings

We augment the training data using the prompt-
based strategy proposed by Dai et al. (2025),
who demonstrate that synthetic samples generated
with ChatGPT can improve performance in low-
resource settings. For each compound we gener-
ate additional textual data using ChatGPT-4.? The
model is prompted to generate for each compound
(1) one definition each for its literal and idiomatic
meanings, ensuring that the compound occurs in
the definition; (ii) two example sentences using
the compound, again one with its literal and one
with its idiomatic meaning; (iii) for each meaning
(literal and idiomatic) a caption for an image il-
lustrating the compound. Definitions are included
as Tsukagoshi et al. (2021) show that definition
sentences may improve semantic textual similarity
tasks. The prompts used, together with an exam-
ple of generated definitions, sentences, and image
captions are shown in Table 2.

Embeddings for both the GPT-generated and
the provided textual data are extracted using two
pre-trained language models: the standard BERT-
model bert-base-uncased (Devlin et al., 2019,

Zhttps://chatgpt.com/ (accessed in November 2024)
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prompt: def-
initions and
sentences (literal
and idiomatic)

1 will give you expressions that have
both a literal and an idiomatic mean-
ing. Define each meaning, starting
with “... is.” Additionally, provide an
example sentence using the expres-
sion.

prompt:
captions

image | I will give you expressions (mainly
compounds) with both literal and
idiomatic meanings. Provide de-
scriptions of images illustrating both
meanings. Start with “The image de-
picts ...

Output for ‘piece of cake’

idiomatic defini- | ‘Piece of cake’ is a metaphor for
tion something very easy to accomplish.

idiomatic sen-
tence

The math test was a piece of cake;
she finished in ten minutes.

idiomatic image
caption

The image depicts a student effort-
lessly solving a problem or task,
symbolizing something very easy to
accomplish.

‘Piece of cake’ is a literal term refer-
ring to a portion of a cake.

literal definition

literal sentence He cut a small piece of cake to enjoy

with his coffee.

literal image cap- | The image depicts a literal slice of
tion cake on a plate, emphasizing the lit-
eral meaning of a ‘piece of cake.’

Table 2: ChatGPT-4 prompts used for data extension,
with output exemplified for the nominal compound
‘piece of cake.

in this paper referred to as BERT)? and a BERT-
based sentence transformer all-MinilM-L6-v2
(Reimers and Gurevych, 2019, referred to as
SBERT).*. The sentence embeddings from pre-
trained BERT models are known to capture seman-
tic meaning of sentences poorly (Li et al., 2020),
which is why we include a specific sentence trans-
former that is pre-trained to perform well in seman-
tic sentence comparison tasks.

For the BERT-embeddings, we experiment with
three (pooling) methods: (a) the standard CLS-
token embedding from the last hidden layer, as used
for next sentence prediction during pre-training; (b)
sequence mean pooling, where the element-wise
arithmetic mean of the token-level embeddings
from the last n hidden layers is computed; and (c)
contextualized compound embeddings for texts that
consistently contain the target compound (i.e., orig-

3https://huggingface.co/google-bert/
bert-base-uncased

*https://huggingface.co/sentence-transformers/
all-MinilM-L6-v2

inal and GPT-generated sentences and definitions).
These contextualized compound embeddings are
obtained by averaging the token embeddings corre-
sponding to the compound itself across the last n
hidden layers. With methods (b) and (c), we aim to
better preserve the semantic information specific
to the compound compared to the standard CLS
embedding (a).

3.2 Subtask A

A series of experiments are conducted in order to
develop the final system.

3.2.1 Experiment 1 (using only given data)

In the first experiment, our aim is to investigate how
far similarity-based approaches can take us when
using only the provided data. For each compound,
we compute embeddings of the given context sen-
tence and the five image captions using the models
and pooling strategies described in Section 3.1. The
images are ranked according to the cosine similar-
ity of their embeddings to the sentence embedding.

Additionally, we explore whether preprocessing
the data to reduce noise can improve modeling ef-
fectiveness. Our preprocessing pipeline includes
text normalization by removing capitalization, spe-
cial characters, extra whitespace, and punctuation.
Moreover, we lemmatize all words and retain only
nouns, adjectives and verbs.

For the image captions, we also experiment with
shortening them to remove information that is not
relevant to the content, such as the style or back-
ground of the image. However, since this does not
lead to consistent improvements, we do not pursue
this further.

Discussion of results: Results of Experiment 1
on the training data are presented in Table 3 for
both unaltered and preprocessed data. A major ob-
servation is the overall weak rank correlations and
the strong imbalance between literal and idiomatic
expressions when analyzed separately.

Overall, the results for idiomatic compounds are
consistently poor across all settings. The highest
top-1 accuracy for idiomatic compounds without
preprocessing (0.28) is achieved using the BERT
model with the meanLast pooling strategy, which
computes the mean of all token embeddings from
the last hidden layer. This model configuration
shares the best overall top-1 accuracy across all
data with the SBERT model. SBERT, however, per-
forms best on literal compound uses, showing a
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without preprocessing:

method all data idiomatic literal
SBERT 0.40 (0.20) 0.18(0.12)  0.68 (0.31)
BERT CLS 0.21 (-0.01) 0.15(-0.12)  0.29 (0.12)
BERT sequence mean pooling
mean2ndToLast 0.37 (0.07)  0.18 (-0.03) 0.61 (0.20)
meanLast4 0.36 (0.10)  0.21(0.02)  0.55(0.19)
meanLast 0.40 (0.01)  0.28 (-0.10)  0.55 (0.15)
BERT contextualized compound
mean2ndToLast 0.26 (0.09) 0.05(0.02) 0.52(0.18)
meanLast4 0.23(0.07)  0.03 (-0.06) 0.48 (0.24)
meanlast 0.26 (0.03) 0.08 (-0.11) 0.48 (0.21)
with preprocessing:
method all data idiomatic literal
SBERT 0.46 (0.21) 0.21(0.13)  0.77 (0.30)
BERT CLS 0.27 (0.05) 0.18 (0.02)  0.39(0.10)
BERT sequence mean pooling
mean2ndToLast  0.33 (0.08) 0.21 (0.10)  0.48 (0.05)
meanLast4 0.31(0.09) 0.21(0.11) 0.45 (0.08)
meanLast 0.36 (0.10) 0.26 (0.05) 0.48 (0.15)
BERT contextualized compound
mean2ndToLast 0.31(0.17) 0.10(0.09) 0.58 (0.27)
meanLast4 0.31(0.11) 0.10(0.04) 0.58 (0.21)
meanLast 0.29 (0.09) 0.13 (-0.05) 0.48 (0.25)

Table 3: (Experiment 1) Top-1 accuracy (rank corre-
lation) for ranking images by cosine similarity to the
original sentence, using different models and various
pooling methods (mean2ndToLast: average over token
embeddings of the 2nd last hidden layer, meanLast4: av-
erage over token embeddings of the 4 last hidden layers,
meanLast: average over token embeddings of the last
hidden layer; see Section 3.1 for details).

clear advantage for more compositional meanings.

Another interesting finding is that the sentence
transformer SBERT clearly outperforms the stan-
dard CLS embeddings from BERT (0.40 vs. 0.21
top-1 accuracy), highlighting that using a model
specialized in capturing sentence-level semantics
is beneficial for the task.

Preprocessing negatively affects the BERT mean
sequence pooling results but improves performance
for both SBERT and BERT CLS embeddings,
which is surprising since our radical preprocessing
method removes much of the sentence structure. In
addition, the contextualized compound models also
benefit from preprocessing.

Overall, the best results are achieved using the
SBERT model with preprocessing, which reaches
a top-1 accuracy of 0.46. This configuration also
yields the highest rank correlation (0.21).

3.2.2 Experiment 2 (using GPT-data)

The core idea of the second experiment is to use the
GPT-generated data described in Section 3.1 along-

side the gold label information about idiomaticity
provided in the training data. In this setting, the im-
age captions are ranked based on their cosine simi-
larity to the GPT-generated comparators (definition,
sentence, caption), which are selected according to
the given idiomatic or literal label. For this experi-
ment, we focus on the two best-performing model
configurations from Experiment 1: SBERT and
BERT with meanLast pooling.

It is important to note that the prompts used
for generating definitions enforce similar phrasing
at the beginning of each definition. To evaluate
whether this phrasing bias affects the results, we
also include a cut version of the definitions, where
standardized introductory phrases are removed be-
fore obtaining the embeddings. Specifically, for
idiomatic uses, we remove the phrase “[...] is a
metaphor for”, and for literal uses, we remove “[...]
literal”.

without preprocessing

comparator SBERT BERT meanLast
GPT-caption 0.61 (0.13) 0.49 (0.14)
GPT-definition 0.37 (0.19) 0.37 (0.05)
GPT-definition cut  0.61 (0.16) 0.47 (0.15)
GPT-sentence 0.36 (0.06) 0.29 (0.09)
with preprocessing
comparator SBERT BERT meanLast
GPT-caption 0.61 (0.16) 0.49 (0.14)
GPT-definition 0.44 (0.29) 0.47 (0.17)
GPT-definition cut  0.53 (0.19) 0.51 (0.13)
GPT-sentence 0.39 (0.15) 0.36 (0.14)

Table 4: (Experiment 2) Top-1 accuracy (rank corre-
lation) for ranking image captions based on similarity
to GPT-generated texts: captions, (cut) definitions, sen-
tences.

Discussion of results: Results of Experiment 2
on the training data can be found in Table 4. Com-
pared to Experiment 1, no stronger correlations
can be observed. However, the top-1 accuracy has
improved significantly, which is expected as the
idiomatic/literal information is now taken into ac-
count. Accordingly, experiment 3 aims to automat-
ically assign the idiomatic/literal label. Preprocess-
ing does not provide a clear picture, showing both
improvements and degradations in performance.
As expected, the GPT-caption is most suitable as
a comparator, as it is compared against image cap-
tions. Notably, for SBERT, the cut GPT-definition
performs just as well. This suggests that SBERT
benefits particularly strongly when repetitive ele-
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ments are removed from the sentences.

3.2.3 Experiment 3 (idiomaticity classifier)

In order to make use of the GPT-generated addi-
tional texts, it is necessary to classify the sentence
as idiomatic or literal. Our classifier relies solely on
cosine similarity of the sentence to a comparator:
the sentence is either compared to the two GPT-
sentences (literal and idiomatic), to the two GPT-
definitions, or to the two GPT-captions. In each
case, the higher similarity determines the class la-
bel. For the embeddings, we compare the methods
described in Section 3.1.

As prior work (e.g. Taslimipoor et al., 2020)
shows that even a modest amount of task-specific
fine-tuning can noticeably improve MWE perfor-
mance on unseen data, for comparison we addition-
ally fine-tune the BERT-model on idiomatic/literal
classification using HuggingFace’s trainer’ and
training for 7 epochs and use the same similarity-
based classification strategy as before.°

comparator pooling method accuracy
Sentence embeddings
GPT-sentence SBERT 0.79
GPT-sentence BERT CLS 0.83
GPT-sentence BERT meanLast 0.86
GPT-definition SBERT 0.81
GPT-definition BERT CLS 0.66
GPT-definition BERT meanLast 0.76
GPT-definition cut SBERT 0.57
GPT-definition cut BERT CLS 0.59
GPT-definition cut BERT meanLast 0.76
GPT-caption SBERT 0.60
GPT-caption BERT CLS 0.61
GPT-caption BERT meanlLast 0.79
pre-trained BERT compound embedding
GPT-sentence BERT meanLast 0.857
GPT-sentence BERT meanLast4 0.9
GPT-definition BERT meanLast 0.671
GPT-definition BERT meanLast4  (0.743

fine-tuned BERT compound embedding
GPT-sentence BERT meanLast4  0.97

Table 5: (Experiment 3) Accuracy of idiomaticity clas-
sifier: sentence embedding is compared to comparator
embedding using the specified pooling method (see Sec-
tion 3.1).

Discussion of results: Table 5 shows the accu-
racy scores. We report results for the best mean se-
quence pooling method (BERT meanLast), the two
best compound pooling strategies (meanLast and
meanlast4), and the sentence embedding models

5https ://huggingface.co/
®Fine-tuned model: https://huggingface.cofjlsalim/bert-
uncased-idiomatic-literal-recognizer

‘unrelated’.

SBERT and BERT CLS. The results show that the
generated sentences perform better as comparators
than the generated definitions. The cut definitions
that performed very well in experiment 2 perform
worse than the intact ones in experiment 3. Further-
more, compound-based embeddings outperform
sentence-based ones. Pooling over the last four
hidden layers also improves accuracy compared to
pooling over the last layer only.

It turns out, that comparing compound embed-
dings obtained from the fine-tuned model using the
meanLast4 pooling strategy of the GPT generated
sentences and the given sentences results in the
most accurate idiomaticity classifier (0.97).

3.2.4 Experiment 4 (ranking improvement)

The final experiment builds on the classifier from
Experiment 3 to improve the ranking. In Exper-
iments 1 and 2, all five captions were ranked by
their similarity to a single comparator, resulting in
poor correlation scores. This setup serves as our
baseline ranker. For classification, we use the best-
performing setting from Experiment 3 (see Table
5): comparing meanLast4 compound embeddings
of the given and GPT-generated sentences using
the pre-trained BERT model, as we aim at investi-
gating how far we can get without fine-tunig. For
ranking, we use the GPT-captions as the compara-
tor and SBERT as the embedding model, which
together performed best in Experiment 2 (see Table
4). We propose two improved ranking algorithms:

The pair ranker first selects the caption most
similar to the literal GPT-caption (‘literall’) and
the one most similar to the idiomatic GPT-caption
(‘idiomatic1’). Next, it identifies ‘literal2’ and ‘id-
iomatic2’ as the captions most similar to ‘literall’
and ‘idiomatic1’, respectively, among the remain-
ing captions. The leftover caption is marked as
If the classifier labels the sentence
as literal, the predicted order is: literall-literal2-
idiomatic2-idiomatic1-unrelated; otherwise, it is:
idiomatic1-idiomatic2-literal2-literal 1 -unrelated.

The extreme ranker differs from the pair ranker
only in how ‘literal2’ and ‘idiomatic2’ are cho-
sen. They are the captions (out of the remaining
captions) with the second highest similarity to the
according (literal/idiomatic) GPT-caption.

Results (see Table 6) show that both improved

rankers outperform the baseline clearly, with little
difference between the two new methods.
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method train  test xe
baseline (experiment 1)  0.201  0.053  0.169
with GPT-data and classifier

baseline (experiment 2)  0.086  0.027 0.14
pair ranker 0.324 0.18 0.298
extreme ranker 0.246  0.087 0.334

top-1 accuracy 0.56 0.47 0.48

Table 6: Experiment 4: Rank correlations for various
ranking methods on different datasets (xe: extended
evaluation) and top-1 accuracy (computed with cosine
similarity).

3.3 Subtask B

The same embedding strategies are used for Sub-
task B as for Subtask A. For classifying the im-
age sequence as idiomatic or literal, the cap-
tions are compared to the GPT-generated data
(see Section 3.1. The best results are achieved
by comparing both image captions of the series
to all GPT-generated data (GPT-sentence, GPT-
definition, GPT-caption, each in idiomatic and in
literal version). The pairing of GPT-generated data
and image caption with the highest similarity pre-
dicts the label for the sequence. This method out-
performs alternative methods such as averaging
over similarities per class or per GPT-text-type.

Our basic approach to the second part, select-
ing the matching final image caption to continue
a sequence of two image captions, is to determine
the best fit based on similarities between SBERT
embeddings in line with the approach for Subtask
A. For this, the embeddings for each of the four
potential final captions are compared to the average
of the two previous captions of the sequence by cal-
culating the cosine similarity. The caption scoring
the highest similarity is chosen as the matching one
to complete the sequence.

4 Results

Our best performing system for Subtask A uses
the fine-tuned BERT-model and a compound-based
mean pooling over the last four hidden states to
predict whether the compound is used literally or
idiomatically in the sentence. Based on this classi-
fication the pair-based ranking method predicts the
ranking of the five image captions. No preprocess-
ing is applied.

On the final test data the system reaches a top-1
accuracy of 0.47 and on the extended evaluation
dataset an accuracy of 0.54. The correlation score
for the test set is 2.82 and for the extended evalu-
ation dataset 3.04. With these results the system

ranks 5 out of 6 participating teams on the test set
and 3 out of 6 on the extended evaluation set.

For Subtask B only two teams competed and
our system described in Section 3.3 came out sec-
ond on the test set (image selection accuracy: 0.8,
sentence type prediction: 0.6) and first on the ex-
tended evaluation set (image selection accuracy:
0.6, sentence type prediction: 0.9).

5 Limitations and conclusion

Our approach relies heavily on GPT-generated data.
While effective, better prompt design or more care-
ful postprocessing — such as trimming irrelevant
parts of captions (e.g. describing image back-
grounds) — could further improve results. We have
experimented with automatically cutting off cap-
tion endings but without consistent gains.

Throughout all experiments, we consistently
have used cosine similarity to compare embeddings.
Exploring alternative distance metrics could be a
promising direction for future work (thanks to our
reviewer for the suggestion). In an initial test, we
apply negative Manhattan distance and observe a
significant improvement for the pair ranker from
Experiment 4, while other rankers show no consis-
tent gains (see Table 7).

method train  test xe
baseline (experiment 1)  0.166  0.107  0.079
with GPT-data and classifier

baseline (experiment 2) 0.111  0.133  0.119
pair ranker 0.376  0.313  0.367
extreme ranker 0.284 0.2 0.331
top-1 accuracy 0.54 0.47 0.51

Table 7: Same data as in Table 6 but computed with
negative Manhattan distance

The experiments demonstrate that even without
fine-tuning, the raw embeddings from BERT and
SBERT models contain enough semantic informa-
tion to solve the task via similarity comparisons.
Moreover, using GPT-generated examples for id-
iomatic and literal uses significantly boosts perfor-
mance, highlighting the value of synthetic data in
semantic modeling. Overall, our findings suggest
that simple similarity-based methods, supported by
carefully generated auxiliary data, offer a strong
baseline for idiomaticity detection and related rank-
ing tasks.

6 Acknowledgement

The work discussed in this paper is a collaborative
effort by a seminar group. We would like to thank

2316



the students of the bachelor seminar ‘Transformers
in CL at the Heinrich Heine University Diisseldorf
in the winter term 2024/2025 for helpful hints and
questions.

Furthermore, we thank the anonymous reviewers
for their valuable comments and suggestions, and
the organizers of the shared task for their tremen-
dous effort and dedication in setting up and running
the competition.

References

Timothy Baldwin and Su Nam Kim. 2010. Multiword
expressions. In Fred J. Damerau Nitin Indurkhya,
editor, Handbook of Natural Language Processing, 2
edition, pages 267-292.

Haixing Dai, Zhengliang Liu, Wenxiong Liao, Xiaoke
Huang, Yihan Cao, Zihao Wu, Lin Zhao, Shaochen
Xu, Fang Zeng, Wei Liu, Ninghao Liu, Sheng Li, Da-
jiang Zhu, Hongmin Cai, Lichao Sun, Quanzheng Li,
Dinggang Shen, Tianming Liu, and Xiang Li. 2025.
AugGPT: Leveraging ChatGPT for text data augmen-
tation. /[EEE Transactions on Big Data, pages 1-12.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
41714186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Bohan Li, Hao Zhou, Junxian He, Mingxuan Wang,
Yiming Yang, and Lei Li. 2020. On the sentence
embeddings from pre-trained language models. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 9119-9130, Online. Association for Computa-
tional Linguistics.

Thomas Pickard, Aline Villavicencio, Maggie Mi, Wei
He, Dylan Phelps, Carolina Scarton, and Marco Idiart.
2025. SemEval-2025 Task 1: AdMIRe - Advancing
Multimodal Idiomaticity Representation. In Proceed-
ings of the 19th International Workshop on Semantic
Evaluations (SemEval-2025), Vienna, Austria. Asso-
ciation for Computational Linguistics.

Nils Reimers and Iryna Gurevych. 2019. Sentence-
BERT: Sentence embeddings using Siamese BERT-
networks. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
3982-3992, Hong Kong, China. Association for Com-
putational Linguistics.

Ivan A. Sag, Timothy Baldwin, Francis Bond, Ann
Copestake, and Dan Flickinger. 2002. Multiword

expressions: A pain in the neck for NLP. In Compu-
tational Linguistics and Intelligent Text Processing,
pages 1-15, Berlin, Heidelberg. Springer Berlin Hei-
delberg.

Shiva Taslimipoor, Sara Bahaadini, and Ekaterina
Kochmar. 2020. MTLB-STRUCT @parseme 2020:
Capturing unseen multiword expressions using multi-
task learning and pre-trained masked language mod-
els. In Proceedings of the Joint Workshop on Mul-
tiword Expressions and Electronic Lexicons, pages
142-148, online. Association for Computational Lin-
guistics.

Harish Tayyar Madabushi, Edward Gow-Smith, Marcos
Garcia, Carolina Scarton, Marco Idiart, and Aline
Villavicencio. 2022. SemEval-2022 task 2: Multilin-
gual idiomaticity detection and sentence embedding.
In Proceedings of the 16th International Workshop
on Semantic Evaluation (SemEval-2022), pages 107-
121, Seattle, United States. Association for Computa-
tional Linguistics.

Hayato Tsukagoshi, Ryohei Sasano, and Koichi Takeda.
2021. DefSent: Sentence embeddings using def-
inition sentences. In Proceedings of the 59th An-
nual Meeting of the Association for Computational
Linguistics and the 11th International Joint Confer-
ence on Natural Language Processing (Volume 2:
Short Papers), pages 411-418, Online. Association
for Computational Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, L ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30. Curran Associates, Inc.

2317



