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Abstract

As human-machine interactions become in-
creasingly natural through text, accurate emo-
tion recognition is essential. Detecting emo-
tions provides valuable insights across various
applications. In this paper, we present our ap-
proach for SemEval-2025 Task 11, Track A,
which focuses on multi-label text-based detec-
tion of perceived emotions. Our system was de-
signed for and tested on English language text.
To classify emotions present in text snippets,
we initially experimented with traditional tech-
niques such as Logistic Regression, Gradient
Boosting, and SVM. We then explored state-
of-the-art LLMs (OpenAl ol and DeepSeek
V3) before developing our final system, uti-
lizing a fine-tuned Transformer-based model.
Our best-performing approach employs an en-
semble of fine-tuned DeBERTa-large instances
with multiple seeds, optimized using Optuna
and StratifiedKFold cross-validation. This ap-
proach achieves an F1-score of 0.75, demon-
strating promising results with room for further
improvement. Additionally, this paper provides
benchmark for 30 emotion classification meth-
ods on the BRIGHTER-English dataset.

1 Introduction

SemEval-2025 Task 11 (Muhammad et al., 2025b)
focuses on detecting perceived emotion in short
text snippets. Emotion detection has valuable ap-
plications in fields such as healthcare, education,
finance (Hajek and Munk, 2023), customer service,
and other applied domains (Kusal et al.; Liu et al.).
Our participation in this task was centered on the
English language, where we explored various ap-
proaches before ultimately adopting DeBERTa-
large (He et al., 2021).

This task provides insights into how both hu-
mans and machines perceive emotions in written
text, particularly in context-free scenarios. Our fo-
cus is on Track A, which involves identifying the

presence of emotions in sentences without their
intensity.

As multimodal research continues to advance, in-
tegrating text, visual, and audio modalities, text re-
mains a critical component of emotion-recognition
systems (Cheng et al.). Improving emotion de-
tection in text-based snippets not only enhances
classification accuracy but also better informs the
selection of key triggers for emotional shifts.

Furthermore, text-based communication remains
the dominant form of online interaction.

We approach this problem with a plethora of
natural language processing techniques, from tradi-
tional methods to modern Large Language Models
(LLMs) such as DeepSeek V3 (DeepSeek-Al et al.,
2025) and OpenAl ol (Jaech et al., 2024). The
dataset for English language for this task is heav-
ily imbalanced, making classification challenging.
Performance is evaluated using the F1-score, which
allows for a balanced identification of emotion’s
presence and absence.

We define traditional methods as those rely-
ing on rule-based, feature-based, lexicon-based, or
static-embedding classifiers, such as models using
TF-IDF, bag-of-words, or pre-trained word embed-
dings like GloVe, combined with algorithms such
as SVM, Logistic Regression, MLP, or Gradient
Boosting. Beyond traditional refers to transformer-
based, pre-trained, or prompt-based models-such as
BERT, DeBERTa, OpenAl o1, and DeepSeek V3,
which leverage deep contextual representations,
large-scale transfer learning, and, in the case of
models like OpenAl ol and DeepSeek V3, zero-
shot inference capabilities. (Garrido-Merchan et al.,
2023; Zhao et al., 2022)

To streamline experimentation, we initially used
BERT-base (Devlin et al., 2018) before applying
our optimizations to our best-performing model,
DeBERTa-large. This allowed us to iterate effi-
ciently while ensuring improvements translated ef-
fectively to our final model.
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Text Anger | Fear | Joy | Sadness | Surprise
But not very happy. 0 0 1 1 0
Well she’s not gon na last the whole song like that, 0 0 1 0 0

so since I’'m behind her and the audience can’t see

below my torso pretty much, I use my hand to push

down on the lid and support her weight.

She sat at her Papa’s recliner sofa only to move next 0 0 0 0 0

to me and start clinging to my arms.

Yes, the Oklahoma city bombing. 1 1 0 1 1
They were dancing to Bolero. 0 0 1 0 0

Table 1: Emotion annotations for text samples, 0 is for absence of emotion and 1 is for its presence

Throughout this task, we encountered several
counterintuitive challenges. These challenges are
discussed in Section 3, along with our hypotheses
regarding their causes.

Our final system achieved an F1-score of 0.7537,
placing us 27th out of 96 participating teams in the
English track.

An analysis of our model’s performance reveals
notable class detection disparities. Anger, the least
common emotion in our dataset, suffers from under-
detection with the lowest recall (61.04%), mean-
ing 38.96% of anger instances were missed. Con-
versely, fear, the most prevalent emotion, exhibits
over-prediction tendencies, achieving excellent re-
call (91.20%) but the lowest specificity (64.77%).
Despite these challenges, our model demonstrates
strong overall performance, achieving multi-label
subset accuracy of 47.04%, meaning the exact com-
bination of emotions was correctly predicted in
nearly half of all cases.

2 Background

2.1 Task 11 Bridging the Gap in Text-Based
Emotion Detection (Track A Multi-label
Emotion Detection)

In Task 11, Track A, we focused on detecting
whether the emotion is present in a given sentence
in English. This task revolves around perceived
emotions, the emotions that most people are likely
to infer from a short snippet of text provided with-
out any context.

2.2 Related Research

In recent years, there has been significant research
in this area of NLP, with various approaches pro-

posed. These range from traditional Machine
Learning techniques, such as Logistic Regression,
Neural Networks, and XGBoost to Transformer-
based models (Vaswani et al., 2023) like BERT,
RoBERTa, DeBERTa. More recently, LLMs such
as GPT-3.5, LLama 3, Mistral 7B, and Zephyr have
been explored for emotion detection.

Initially, we were curious to see how more tradi-
tional and lightweight approaches would perform
on this dataset. We experimented with different
preprocessing and tokenization techniques, includ-
ing tf-idf, word2vec (Mikolov et al., 2013), GloVe
(Pennington et al., 2014). Additionally, we used the
NRC Emotion Lexicon (Mohammad and Turney,
2013) and the Sentiment Intensity Analyzer from
NLTK. As shown in Subsection 3.1, even when
incorporating Transformer-based tokenizers, the
results were underwhelming.

Further research indicated that Transformer-
based models consistently delivered the best per-
formance. This led us to experiment with BERT,
RoBERTa, DeBERTa, and other Transformer-based
models. For the final system, we used a homoge-
nous ensemble, leveraging initialization variance
rather than architectural diversity.

2.3 Task Setup

Track A focuses solely on the presence (or absence)
of emotions in a sentence, without considering their
intensity. The dataset for the English language
track covers five emotions: anger, fear, joy, sadness,
and surprise. Since this is a multi-label classifica-
tion task, any given sentence can express multiple
emotions simultaneously.

Our final system was trained on both the train-
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ing and development datasets, totaling 2,884 sen-
tences. As noted in the competition paper, the En-
glish language data was sourced from social media,
primarily from Subreddits such as /IAmA. The sen-
tences were annotated by multiple annotators using
Mechanical Turk (Muhammad et al., 2025a). No
additional datasets were utilized for model training.

3 System Overview

3.1 Experiments

See Appendix E, Table 3 for a ranking of F1 scores
and correlating precision and recall scores across
all our experiments, including our final model.

Preparation. Our initial investigation focused
on data exploration and visualization to understand
the dataset’s characteristics. We conducted vari-
ous analyses, including examining emotion distri-
bution, computing the correlation matrix between
emotions, and analyzing text length distribution.
These insights allowed us to observe the class im-
balances and potential biases within the dataset.
We found that anger was significantly underrep-
resented, whereas fear was the dominant emotion
(see Appendix A, Figure 2).

Traditional ML. We first explored traditional
machine learning methods for emotion classifica-
tion. Using Word2Vec, tf-idf, and GloVe embed-
dings, we converted text into numerical representa-
tions and fed them into various classifiers, includ-
ing Support Vector Machines (SVM), Neural Net-
works (MLP), Logistic Regression, and Gradient
Boosting. Despite their computational efficiency,
these models struggled to capture complex contex-
tual relationships. While the Neural Network clas-
sifier showed moderate performance, this approach
could not model complex contextual dependencies,
underperforming compared to transformer-based
models. This reinforced the necessity of using
more advanced approaches.

Preprocessing. We experimented with different
preprocessing techniques to assess their impact on
classification performance: grammar recognition
and correction through tagging and lemmatization,
removal of stop words (e.g., the, is, but), and re-
moval of non-alphabetic characters (punctuation,
numbers, and special symbols). However, these
modifications resulted in only negligible improve-
ments in model performance.

Lexicon-based Approaches. Lexicon-based
methods are widely used in sentiment analysis.
We tested two approaches: NRC Emotion Lex-

icon, which has predefined mappings of words
to specific emotions, and NLTK Sentiment Ana-
lyzer, a polarity-based sentiment classifier. Neither
approach yielded significant improvements, likely
due to the inability of predefined word mappings
to capture nuanced emotional contexts in text.

Transformer-based Models. Given that
transformer-based models have consistently outper-
formed traditional approaches in sentiment analy-
sis, we evaluated pre-trained models such as BERT,
DistilBERT (Sanh et al., 2019), DeBERTa, and
RoBERTa, followed by fine-tuned versions of these
models to assess the impact of domain adapta-
tion. As expected, fine-tuned transformers out-
performed their pre-trained counterparts. BERT
became our baseline for further experimentation as
a lightweight model with comparable results.

BERT-Tokenizer + Traditional Classifier. We
also experimented with using a BERT tokenizer
for text representation, followed by classification
using various traditional techniques: Neural Net-
works (MLP), Logistic Regression, SVM, Gradi-
entBoosting (LightGBM), and k-Nearest Neigh-
bours (KNN). The best-performing combinations
involved a neural network or logistic regression
classifier, but their macro F1-scores still lagged
behind fine-tuned transformer models.

Addressing the Class Imbalance. Since our
dataset exhibited significant class imbalance, we
explored two mitigation strategies:

1. Data Augmentation. We applied synonym
replacement and back-translation (Edunov et al.,
2018) (via French) using OPUS-MT models (Tiede-
mann et al., 2023; Tiedemann and Thottingal, 2020)
to generate additional samples while preserving the
linguistic patterns provided. However, this had
minimal or even negative effects on performance.
These methods often introduced semantic drift or
unnatural phrasing, adding noise rather than rein-
forcing emotional cues. Emotional nuances, critical
for multi-label classification, were easily distorted
during augmentation.

For future work, more advanced techniques like
conditional text generation, semi-supervised learn-
ing, or cost-sensitive training could offer better
solutions by preserving emotion-specific contexts
while addressing imbalance more effectively.

2. Loss function Adjustments. We experi-
mented with Class-Weighted Binary Cross-Entropy
(to penalize misclassification of underrepresented
emotions) and Focal Loss. Neither approach out-
performed our baseline models.
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DeBERTa-large Logit Sigmoid Threshold (0.5)
(finestuned) Averaging Interpreting on Binary
Output: logits for each emotion Across 5 models ascale of 0 to 1 classification
Seed 42 (Epoch 4) Anger logit avg. Sigmoid Anger: 01
hptuats Seed 99 (Epoch 3) Fear logit avg. igmoi Fear: on
v
Preprocessing |, | seed 123 (Epoch 5) Joy logit avg. >  Sigmoid > Joy: on
DeBERTa tokenizer
Seed 1337 (Epoch 4) Sadness logit avg. igmoi Sadness: (74}
Seed 2024 (Epoch 3) =+——————— Surprise logit avg. > Si id » Surprise: 01

Figure 1: Runtime prediction pipeline for the final model

GPT-based LLMs. We chose to evaluate Ope-
nAl ol and DeepSeek V3 in a zero-shot setting, as
it has been shown that few-shot prompting tends to
perform even worse than zero-shot and fine-tuning
(Kazakov et al.). These models performed worse
than simpler methods like a BERT tokenizer with
logistic regression. This is likely because zero-
shot models rely on general pretraining rather than
adopting the dataset’s specific distribution and nu-
ances. See Appendix D, Figure 14 for prompt de-
tails.

Ensembling. We explored ensembling by com-
bining fine-tuned transformer models using various
voting methods: SoftVoting, Hard Voting, Weight-
edVoting, and Stacking (meta-learning). Ensem-
bling had the most significant positive impact on
predictive abilities, consistently outperforming in-
dividual transformer models.

Hyperparameter Optimization. Since ensem-
bling yielded the best results, we further refined
our approach using Optuna (Akiba et al., 2019), an
open-source hyperparameter optimization frame-
work. Optuna enabled an automated search for
optimal configuration, tuning parameters such as
learning rate, batch size, and dropout rate.

3.2 Final Model.

After extensive experimentation, DeBERTa-large
consistently achieved the highest overall F1-scores,
outperforming other transformer-based models like
BERT, DistilBERT and RoBERTa.

To enhance robustness and reduce overfitting, we
trained DeBERTa-large using five different seeds
(42, 99, 123, 1337, and 2024). To maintain the
class distribution of the original dataset, we applied
stratified cross-validation with three folds.

Hyperparameter Selection. We used Optuna

to optimize hyperparameters, resulting in the
following configuration applied to all five seeds:
learning_rate of  7.130877023256217e-06,
batch_size of 8, max_length of 128, and num-
ber_of _epochs of 5.

Training and Prediction Process. Each model
was trained for five epochs per seed. For the final
ensemble prediction, we first computed the logits
from each model (corresponding to different seeds),
then averaged these logits across all models. Next,
we applied the sigmoid function to obtain probabil-
ity scores for each emotion. Finally, we assigned
labels based on a threshold of 0.5: if the probabil-
ity was > 0.5, the emotion was considered present;
otherwise, it was considered absent. Prediction
pipeline can be seen in Figure 1.

Performance and Computational Cost. Fine-
tuning DeBERTa-large improved generalization
across underrepresented emotions, making it the
most effective model for our final predictions. How-
ever, this approach was computationally expensive,
requiring 435 million parameters. Due to our re-
source constraints, we were unable to test larger
models.

We discuss performance-cost trade-off in-depth
in Subsection 5.5.

4 Experimental Setup

4.1 Training Data

The dataset provided by the competition was split
into train, dev, and test, consisting of 2,768, 116,
and 2,767 sentences, respectively. For fine-tuning
our model, we utilized both the train and dev
datasets. The distribution of emotions across the
combined dataset can be found in Appendix A,
Figure 2.
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4.2 Training Details

We fine-tuned the pre-trained DeBERTa-large
model from HuggingFace. We trained five in-
stances using different seeds (42, 99, 123, 1337,
2024) and trained them each for five epochs. The
best epoch for each seed was 4, 3, 5, 4, and 3, re-
spectively. Hyperparameters such as learning rate,
batch size, and max length were optimized using
Optuna. The stochastic optimization method used
was AdamW.

4.3 Hardware and Hyperparameters

Our experiments were implemented using Py-
Torch 2.5.0, HuggingFace transformers 4.46.3 (for
DeBERTa-large), and scikit-learn 1.5.1 (for eval-
uation and preprocessing). Model training was
conducted using the free version of Google Colab,
while the final model was trained fully on an Apple
M2 Pro chip.

4.4 Evaluation Metrics

As specified by the shared task, we evaluated model
performance using the macro-F1 score. All formu-
las mentioned throughout the paper can be found
in Appendix D, Figure 13.

5 Results
5.1 Key Findings

Our final model demonstrated strong performance
in multi-label emotion detection, particularly in
identifying fear (91.20% recall) and joy (84.18%
recall), however, it struggled with anger (61.04%
recall), likely due to its underrepresentation in the
dataset.

5.2 Main Quantitative Findings

Summary of recall (sensitivity) and specificity for
each emotion can be found in table 5.2 summarizes.

Emotion | Recall (Sensitivity) | Specificity
Anger 0.6104 0.9704
Fear 0.9120 0.6477
Joy 0.8418 0.8759
Sadness 0.8079 0.8571
Surprise 0.7983 0.8540

Table 2: Performance of the model on the test set.

The class imbalance issue negatively impacted
anger detection, as the low number of training sam-
ples made it harder for the model to learn meaning-
ful patterns, resulting in lower recall.

To complement our macro F1 evaluation, further
reports can be found in Appendix B, such as ROC-
AUC (receiver operating characteristic, area under
the curve) curves per emotion and Matthews Cor-
relation Coefficient (MCC) per emotion, as well as
precision-recall graphic. Our MCC scores range
from 0.59 (fear) to 0.67 (joy), indicating strong and
balanced performance across labels.

5.3 Error Data

Our confusion matrices and error analysis revealed
several key insights:

* Fear was frequently over-predicted, leading to
a high false positive rate (434 FP).

* Anger had the lowest recall (61.04%), likely
due to its low representation in the dataset.

* False Positives: The model often overpre-
dicted emotions, particularly in ambiguous
snippets where multiple interpretations were
possible.

* False Negatives: Implicit emotions (e.g., sub-
tle anger) were often missed, suggesting that
the model struggled with nuanced emotional
expressions.

5.4 Error Analysis

An in-depth analysis of the misclassified sentences
uncovered several patterns.

Ambiguous Phrasing. Many sentences had mul-
tiple valid emotional interpretations, making classi-
fication difficult. The model often assigned incor-
rect labels in these cases.

Sentence Length Variability. The dataset con-
tained short, medium, and long sentences, adding
complexity. Short sentences lacked emotional cues,
while longer sentences often contained mixed emo-
tions, both cases made classification harder.

Labeling Inconsistencies. Some annotations
appeared counterintuitive, potentially introducing
noise into the training process and reducing model
accuracy.

Overprediction of Multiple Emotions. For
single-label sentences, the model frequently pre-
dicted two emotions instead of one, indicating over-
lapping textual patterns. For multi-label sentences
(three or more emotions), accuracy declined, with
inconsistent predictions regarding the number of
emotions present.

These findings suggest potential future improve-
ments, including enhancing neutral sentence classi-
fication, refining multi-label prediction strategies,
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and improving robustness to ambiguous text. De-
spite these challenges, our model demonstrated
strong generalization and competitive performance,
underscoring its effectiveness in detecting emotions
in text.

5.5 Considerations for Balancing Accuracy
and Efficiency

While our final system, based on an ensemble of
fine-tuned DeBERTa-large models, achieved the
best empirical performance, it introduced substan-
tial computational costs. DeBERTa-large, with
approximately 435 million parameters per model,
combined with training multiple seeds, resulted in
high memory and processing requirements.

Although we considered lighter alternatives such
as DistilBERT during our model selection phase,
we prioritized DeBERTa-large for its superior per-
formance. Nevertheless, it is well-known that
smaller models generally offer faster inference at
the cost of reduced accuracy, presenting a trade-off
between efficiency and performance.

Balancing performance and computational de-
mands remains a critical challenge. Future work
could explore approaches such as:

Model Compression Techniques. Add prun-
ing or quantization in order to reduce model size
without significant loss of accuracy.

Optimized Ensembling Strategies. Reducing
the number of models combined or adopting tech-
niques like snapshot ensembling to maintain robust-
ness with lower resource usage.

Adopting these strategies could help retain
strong predictive power while making the system
more practical and scalable for real-world applica-
tions.

6 Conclusion

Our proposed approach, leveraging DeBERTa-
large with multiple seeds, ensemble methods, Op-
tuna hyperparameter optimization, and Stratified-
KFold cross-validation, achieved an F1-score of
0.7537, surpassing the baseline provided by the
task organizers. While our model demonstrated
strong performance, our final ranking suggests
room for improvement. This study explored tra-
ditional emotion recognition techniques, LLMs,
and Transformer-based approaches, highlighting
the successful application of advanced ensemble
methods to Task 11 at SemEval-2025.

Future improvements may focus on exploring

computationally efficient alternatives to DeBERTa-
large for better scalability, expanding and balancing
training data to reduce class imbalance issues, and
implementing more robust labeling strategies, ac-
counting for shortcomings of the current model
discussed in Section 5.

While our research explored several widely used
approaches, we recognize that other promising
techniques could achieve comparable or better re-
sults, potentially with lower computational costs.
These include lexicon-based approaches (NRC
VAD (Garcia et al., 2024), SenticNet (Butt et al.,
2021)), alternative transformer models (SIEBERT
(Rozado et al., 2022)), LLM approaches (Zephyr
(Shaik et al.), LLama 2, InstructERC (Cheng et al.;
Lei et al., 2024)), more traditional machine learn-
ing methods (LSTM (Geethanjali and Valarmathi,
2024; Kumar et al.)), and explainability techniques
like SHAP (Hajek and Munk, 2023; Butt et al.,
2021).

Although our initial attempts at re-weighting and
naive augmentation did not yield significant results,
future work could explore multi-label aware over-
sampling (e.g., MLSMOTE (Charte et al., 2015)
or similarity-based oversampling (Karaman et al.,
2024)), adaptive batch-level strategies, such as
loss-driven batch selection (Loshchilov and Hutter,
2016; Zhou et al., 2024), and deferred re-weighting
schedules (Cao et al., 2019), that apply stronger
class weights only after an initial warm-up phase,
to mitigate the severe class imbalance.

Moreover, addressing dataset biases remains cru-
cial. Generalization is particularly challenging in
English, where linguistic and cultural diversity in-
fluences both text production and emotional per-
ception. Future work should extend beyond En-
glish to encompass multilingual and cross-cultural
perspectives, incorporating sociolinguistic and an-
thropological insights. Additionally, integrating
non-verbal elements like emojis into text-based
emotion recognition may improve model robust-
ness and real-world applicability.

7 Ethical Considerations

This study addresses perceived emotions rather
than the true internal emotional states of users. Per-
ception of emotion is inherently subjective, shaped
by individual factors such as gender, culture, lan-
guage, and personal experience. As such, we do not
claim that our model’s outputs reflect any universal
or objective emotional truth.
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Importantly, the data used in this task was
sourced from online and social media contexts,
which may introduce cultural, linguistic, and de-
mographic biases. Such biases can affect both the
generalization ability and fairness of the model,
leading to underrepresentation or misinterpretation
of emotions from diverse user groups. Addition-
ally, the dataset was annotated by crowdsourced
workers whose backgrounds are unknown, poten-
tially reinforcing subjective or culturally specific
patterns.

To promote more equitable development in emo-
tion detection, we recommend to strive to capture
a broader diversity of emotional expressions across
different populations in the future, in order to miti-
gate risks of marginalization or misrepresentation.

Given these limitations, we strongly discourage
the deployment of this system in high-stakes appli-
cations requiring precise emotional interpretation,
such as clinical diagnostics, automated decision-
making, or areas involving sensitive personal data.
Potential misuses could include emotional manipu-
lation, targeted social engineering, or exploitation
of vulnerable groups, and developers should exer-
cise caution in adapting the model to real-world
settings.
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Matthews Correlation Coefficient (MCC) per Emotion
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Confusion Matrix for Anger
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Figure 8: Confusion Matrix for Anger
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Figure 10: Confusion Matrix for Joy
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Confusion Matrix for Surprise
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D Appendix

.. True Positives True Positives + True Negatives
Precision = — — Accuracy =
True Positives + False Positives Total Samples
True Positives Precisi Recall
Recall = — - F'1-Score = 2 x rec%s%on X neea
True Positives + False Negatives Precision + Recall
o True Negatives S | F1-Score;
Specificity = - = &=l !
p 1y True Negatives + False Positives Macro F'1-Score n

Figure 13: Formula definitions for metrics used in our evaluation. High precision indicates a low rate of false
positives. High recall means the model identified most positive samples correctly. Specificity measures the model’s
ability to correctly identify negative samples. F1 is useful when balancing precision and recall, especially with
imbalanced classes. Accuracy represents the overall correctness across all predictions. The macro F1 Score is the
average of F1 scores for each class.

prompt: Now you are an expert on sentiment and emotional
analysis. Please infer, considering the content and the way the
sentence is written, what emotions from a list of [anger, fear,
joy, sadness, surprise], if any, are perceived from this sentence
by the majority of people

format: Return your answer in .csv format “sentence, 0/1,
0/1, 0/1, 0/1, 0/1”, where O represents absence of emotion and
1 its presence

warning: Don’t hallucinate and find the emotions the majority
of people would agree with

target: [sentence 5;].

Figure 14: Zero-shot prompt template for LLMs
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E Appendix

Rank Model (# of epochs if finetuned) Precision Recall Fl-score
1 DeBERTa-large (5) + Multiple seeds + Ensemble + 0.81 0.75 0.76
Optuna + StratifiedKFold
RoBERTa+DeBERTa+BERTweet (5) + Ensemble 0.75 0.73 0.74
DeBERTa (3)+ Multiple seeds + Ensemble + Optuna  0.75 0.71 0.73
+ StratifiedKFold
DeBERTa (5) 0.70 0.75 0.72
DeBERTa (5) + Gridsearch hyperparameters + 0.70 0.73 0.71
Weight based oversampling
6 cardiffnlp/twitter-roberta-base-emotion-multilabel-  0.69 0.72 0.70
latest (3) (Camacho-Collados et al., 2022)
BERT (4) 0.71 0.70 0.70
RoBERTa (5) 0.72 0.68 0.70
cardiffnlp/twitter-roberta-base-emotion-multilabel-  0.69 0.69 0.69
latest (3) + Contrastive loss
10 BERTweet (4) 0.76 0.65 0.69
11 RoBERTa (3) + Synonym data augmentation 0.75 0.64 0.69
12 BERT (2) + Back translation data augmentation 0.75 0.63 0.68
13 EmoBERTa (5) (Kim and Vossen, 2021) 0.72 0.65 0.68
14 BERT + BCE (4) 0.77 0.57 0.65
15 BERT 0.78 0.59 0.65
16 DistilBERT 0.73 0.60 0.65
17 BERT Tokenizer + Neural Networks (MLP) 0.66 0.59 0.62
18 BERT Tokenizer + Logistic Regression 0.65 0.58 0.61
19 BERT Tokenizer + SVM 0.57 0.58 0.58
20 OpenAl ol zero-shot 0.97 0.37 0.58
21 DeepSeek V3 zero-shot 1.00 0.39 0.54
22 DistilBERT (3) + contrastive loss 0.70 0.46 0.49
23 BERT Tokenizer + Gradient Boosting (LightGBM)  0.74 0.42 0.48
24 BERT (1) + Focal loss 0.31 1.00 0.45
25 BERT Tokenizer + KNN 0.56 0.41 0.44
26 SentimentIntensity Analyzer from NLTK + Prepro- 0.47 0.44 0.43
cessing
27 GloVe 6B 100d + Logistic Regression 0.63 0.37 0.43
28 NRC + Preprocessing 0.48 0.44 0.43
29 tf-idf + Gradient Boosting (XGBoost) 0.56 0.34 0.38
30 word2vec + Gradient Boosting (XGBoost) 0.37 0.25 0.27

Table 3: Performance comparison of all models based on macro F1-score. Number of epochs presented is the best
for specific models
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