Shouth NLP at SemEval-2025 Task 7: Multilingual Fact-Checking Retrieval Using Contrastive Learning

Juan Pérez, Santiago Lares


Abstract
We present a multilingual fact-checking re-trieval system for the SemEval-2025 task ofmatching social media posts with relevant factchecks. Our approach utilizes a contrastivelearning framework built on the multilingual E5model architecture, fine-tuned on the provideddataset. The system achieves a Success@10score of 0.867 on the official test set, with per-formance variations between languages. Wedemonstrate that input prefixes and language-specific corpus filtering significantly improveretrieval performance. Our analysis reveals in-teresting patterns in cross-lingual transfer, withspecifically strong results on Malaysian andThai languages. We make our code public forfurther research and development.
Anthology ID:
2025.semeval-1.295
Volume:
Proceedings of the 19th International Workshop on Semantic Evaluation (SemEval-2025)
Month:
July
Year:
2025
Address:
Vienna, Austria
Editors:
Sara Rosenthal, Aiala Rosá, Debanjan Ghosh, Marcos Zampieri
Venues:
SemEval | WS
SIG:
Publisher:
Association for Computational Linguistics
Note:
Pages:
2265–2269
Language:
URL:
https://preview.aclanthology.org/transition-to-people-yaml/2025.semeval-1.295/
DOI:
Bibkey:
Cite (ACL):
Juan Pérez and Santiago Lares. 2025. Shouth NLP at SemEval-2025 Task 7: Multilingual Fact-Checking Retrieval Using Contrastive Learning. In Proceedings of the 19th International Workshop on Semantic Evaluation (SemEval-2025), pages 2265–2269, Vienna, Austria. Association for Computational Linguistics.
Cite (Informal):
Shouth NLP at SemEval-2025 Task 7: Multilingual Fact-Checking Retrieval Using Contrastive Learning (Pérez & Lares, SemEval 2025)
Copy Citation:
PDF:
https://preview.aclanthology.org/transition-to-people-yaml/2025.semeval-1.295.pdf