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Abstract

In SemEval 2025 Task 10, which addresses the
multilingual characterisation and extraction of
narratives from online news, our team Narrlan-
gen focused on Subtask 2 (narrative classifica-
tion), and we tried several conceptually straight-
forward approaches: (1) prompt engineering of
LLMs, (2) a zero-shot approach based on sen-
tence similarities, (3) direct classification of
fine-grained labels using SetFit, (4) fine-tuning
encoder models on fine-grained labels, and (5)
hierarchical classification using encoder mod-
els with two different classification heads. We
list results for all systems on the development
set, which show that the best approach was
to fine-tune a pre-trained multilingual model,
XLM-RoBERTa, with two additional linear lay-
ers and a softmax as classification head.

1 Introduction & background

Narratives shape how information is conveyed
and understood, influencing public discourse and
decision-making processes. Since both corporate
and state actors are actively seeking to influence
public discourse on topics such as climate change,
vaccinations, migration, or the war in Ukraine by
pushing their own narratives, one of the greatest
challenges of contemporary democracies is to iden-
tify and counteract such campaigns while uphold-
ing the ideal of freedom of expression. Identifying
narratives in texts, e.g. online news or social media,
is a key part of this. More generally, robust meth-
ods for identifying and classifying narratives would
also provide important support for large-scale anal-
ysis of textual data, allowing researchers to track
the evolution of discourses across time.

Despite significant advancements in NLP, pre-
dicting narratives remains a complex challenge due
to their abstract, multi-layered nature. Traditional
classification methods struggle with the implicit
and evolving structures of narratives, which often
span multiple sentences or paragraphs. Recent ap-

proaches, including zero-shot learning and fine-
tuning of transformer models, have demonstrated
promise in capturing nuanced narrative patterns
without requiring extensive labelled datasets (see
e.g. Heinrich et al., 2024).

The task is additionally complicated by termino-
logical uncertainty. Over the years, scholars have
proposed various interpretations for the very term
narrative itself, reflecting the difficulty in reaching
a consensus (see e.g. Santana et al., 2023). Chat-
man (1980) e.g. offers a structuralist perspective,
defining narratives as comprising a story (a chain of
events and characters) and discourse (how the con-
tent is communicated).! Riedl and Young (2010)
see narratives and storytelling as cognitive tools
for making sense of the world. Broader definitions
highlight that narratives are sequences of events
that form a cohesive whole, with significance de-
rived from the relationship between events. Conse-
quently, detailed annotation of narratives usually
comprises key features such as participants, events,
and time (Silvano et al., 2021).

In Subtask 2 of SemEval-2025 Task 10 (Pisko-
rski et al., 2025) narrative annotation is provided as
coarse- and fine-grained labels given to whole news
articles. The provided data covers news in five
different languages, namely English, Portuguese,
Bulgarian, Russian, and Hindi, and the task is to au-
tomatically annotate texts with all (sub-)narratives
in a multi-label fashion. The narratives belong to
two macro topics: climate change and the War in
Ukraine, both prime domains for fake news and dis-
information intended to mislead the public. In our
contribution, we compare a variety of state-of-the-
art approaches; all our code is publicly available.?

"However, it is needless to say that also the term discourse
is highly problematic, since “it is used in social and linguis-
tic research in a number of inter-related yet different ways.”
(Baker, 2006, 3)

ZSee https://github.com/fau-klue/
narrlangen-semeval2025.
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2 Data & labels
2.1 Data sets

The task organisers provided training, development,
and test data for English, Bulgarian, Portuguese,
Russian, and Hindi, respectively. Table 2 in the
Appendix shows how many news texts there are in
each set and gives an impression of their typical
lengths.

Training and development data sets are anno-
tated with ten coarse-grained labels for narratives
related to climate change, eleven for the Russo-
Ukrainian War, as well as the label “Other”. Fine-
grained labels further subdivide these narratives
(for example, the coarse-grained label “Downplay-
ing climate change” allows for subnarratives like
“Humans and nature will adapt to the changes” or
“Climate cycles are natural”). In total, there are
96 possible fine-grained levels, including “Other”
subnarratives for each coarse-grained label which
are not explicitly included in the taxonomy (Ste-
fanovitch et al., 2025). Frequencies of fine-grained
labels vary wildly between languages and, in some
cases, even between training and development
data.® Each data set only contains a subset of
coarse- and fine-grained labels, the most extreme
case being Russian, where no narratives relating to
climate change are to be found.

2.2 Narrative descriptions

We manually created paragraph-length descrip-
tions of subnarratives to be used in the sentence-
similarity based zero-shot approach outlined be-
low.* By using the provided taxonomy (Ste-
fanovitch et al., 2025), we matched each subnar-
rative with narrative descriptions in the form of
English example sentences. The sentences are in-
tended to concisely describe the subnarratives and
should contain all discourse-relevant terms. The
provided examples within the taxonomy were used
as a basis; further aspects were added based on
domain knowledge, academic publications, online
searches, and fact-checking websites>.

Existing research on climate change skepticism
and conspiracy theories (as outlined e.g. in Tam
and Chan, 2023) as well as a vast array of material

3For example, the label “Other” appears in 98 of 366 texts
in the Hindi training set (26.8%), but only twice in the devel-
opment set of 35 texts (5.7%).

*Our description sentences can be found alongside our
code in the repository linked above.

SSee http://euvsdisinfo.eu/ and
//www.weareukraine.info/.

https:

available online provided the necessary informa-
tion for the creation of descriptive sentences for
all subnarratives related to climate change. For in-
stance, for the subnarrative “Climate policies are
ineffective”, our narrative description reads as fol-
lows: “Ineffective climate policies have done more
harm than CO2 emissions. Even if we reduce our
CO2 emissions, it won’t save the planet.”
Pro-Russian narratives related to the Russo-
Ukrainian war are very frequent and well out-
lined in the academic literature (Aleksejeva, 2023;
Amanatullah et al.,, 2023; Kalashnikova and
Schifer, 2024; Pekar and Rashkovan, 2024), mak-
ing the creation of descriptive sentences straight-
forward. On the other hand, pro-Western narratives
are less studied and less common. Descriptive sen-
tences here are thus derived from discussions on
social media platforms (e.g. “The West belongs in
the right side of history”). Note that many subnar-
ratives are interconnected, which makes it difficult
to assign description sentences to one particular
subnarrative; the subnarratives “Ukraine is the ag-
gressor” and “Ukraine is a puppet of the West”
e.g. both assume “the West” as an intermediate,
and both “Ukraine is associated with nazism” and
“Russia actions in Ukraine are only self-defence’
involve Russia’s allegations of “genocide” commit-
ted by Ukraine as the justification for the invasion.

>

3 System overview

Machine learning (ML) baseline We initially
ran simple multi-label classification experiments
with classical machine learning algorithms for all
languages in order to get stronger baselines than
the ones based on random guessing provided by
the organisers. We use logistic regression (LR)
and support vector machines (SVM) on bags of
words for this purpose. The baselines are computed
separately for each language.

Prompt engineering LLMs (PromptEng) We
also implemented a structured approach of
prompt engineering large language models (LLMs),
namely GPT-40 (OpenAl, 2024) and Deepseek R1-
32B (Guo et al., 2025) in a step-by-step fashion.
The LLMs were tasked to proceed level by level
and output the response in json format.

Similarity-based zero-shot (SentSim) A simple
approach to scoring texts can be constructed by
looking at similarities between sentences in texts
and subnarrative descriptions. If there is at least one
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sentence in a text which is very similar to a sentence
of a subnarrative description, the text will likely
contain this subnarrative. This approach can have
decent zero-shot performance as we have shown in
the context of detecting COVID-19 related conspir-
acy narratives in German Telegram posts (Heinrich
et al., 2024).

Let Sy denote the sentences of text d and .S,
the sentences (or paragraphs) of subnarrative n.
Following Heinrich et al. (2024), we use cosine
similarity between sentence embeddings e,; and
e;, for scoring each pair of sentences

s(si, sj) = cos (esi,esj) Vs; € 54,55 € Sp.
Note that individual sentences of subnarrative de-
scriptions capture different ways of expressing the
subnarrative, and since we are chiefly interested in
the overall presence of subnarratives, we aggregate
via taking the maximum

score (d,n) = max,es,,s;e5, (5(5i, s5))

for getting a single value for each pair of subnarra-
tive and text. This score is then translated into an
actual prediction by determining a language- and
subnarrative-specific cut-off value that maximises
F on all available labelled data.® Note that this last
step of maximising the desired evaluation metric
technically changes the approach to a supervised
algorithm.

SetFit SetFit (Tunstall et al., 2022), a framework
for few-shot fine-tuning Sentence Transformers
(Reimers and Gurevych, 2019), is another approach
that achieved good results in detecting COVID-19-
related conspiracy narratives (cf. Heinrich et al.,
2024). Coupled with the fact that it does not re-
quire prompting and is relatively fast to train, this
makes it a sensible choice to use it for the task at
hand. SetFit works by (1) fine-tuning a pre-trained
Sentence Transformers model on contrastive pairs
of labelled texts, (2) using the resulting model to
encode the training data, (3) using the encoded data
to train a text classification head.

Fine-tuning on fine-grained labels (FGM) In
this approach, we fine-tune a multilingual masked
language model and introduce two linear layers
with a ReLLU activation in between, followed by a
final softmax function to predict fine-grained labels.

®This corresponds to the training data for predictions on

the development set and to the combined training and devel-
opment set for predictions on the test set.

This model prioritises subnarrative classification
accuracy, which is considered most crucial for com-
petitive performance. Coarse narrative labels are
then inferred from the subnarratives. We trained the
model on the combined data from all five languages
in order to obtain a unified model that is applicable
across all languages involved in the competition.

Hierarchical models We further conduct exper-
iments with a model architecture that takes the
nature of the labels into account, i.e. the relation-
ship between narratives and subnarratives. In the
course of these experiments, we fine-tune a multi-
lingual masked LLM with two additional classifica-
tion heads. The models are trained in two different
manners, namely multi-label and multi-class with
narratives attention. The hierarchy in the model
is constructed by using the embeddings generated
by the masked LLM to predict the coarse-grained
labels, i.e. the narratives, and subsequently use
the outputs to extract additional features to classify
subnarratives.

The multi-label model (MLHM) takes the raw
logits from the narrative level and feeds it to a sig-
moid function in order to derive label probabilities,
which are then utilised as additional features for
the subnarratives level head. This method aims to
establish a dependency between different hierar-
chical levels, thereby strengthening the interrela-
tionship during training. We therefore assume that
the subnarratives head is capable of optimising the
probabilities for particular labels, leveraging the
predictions from the narratives head.

The narratives attention based model
(NAHM) employs separate attention mechanisms,
one for each classification level. Each attention
mechanism independently attends to the hidden
states of the masked LLM to extract level-specific
features from the text. As in MLHM, hierarchical
relationships are established by feeding the output
probabilities from higher levels as input features to
lower levels. This architecture allows information
to flow from broader categories to more specific
ones. The model maintains a dictionary of label
mappings which is crucial for both training
consistency and interpreting predictions during
inference.

In order to maintain consistent predictions
throughout all hierarchical levels, a batch consis-
tency loss function L. is implemented as the learn-
ing objective. Let ¢,,, denote a loss function accord-
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ing to the model architecture’” and let i € [1, N] be
the current level (where N is the total number of
all hierarchical levels). The consistency loss L. is
then defined as

N
L. = Zﬁm(pa(y}'\wz’), i)

where the x; populate the feature matrix, y; are the
true labels of i-th hierarchical level, py(y;|z;) are
the predicted probabilities, and 6§ are the trainable
parameters of the model. For the attention based
model, the mean of L. is computed for each batch
using
L. =L ;
¢ 7°|batch|

as final loss that needs to be minimised during
training.

4 Experimental setup

All our models make use of the combined train-
ing data during training and are evaluated on the
development data. Note that since most of our
models were trained to predict fine-grained narra-
tives, we inferred the corresponding coarse-grained
narratives from the fine-grained labels using regu-
lar expressions. Where applicable, we used multi-
lingual models, which enables us to combine the
full training data for all five languages to train a
single model, thereby addressing the problem of
data scarcity in fine-grained labels.?

ML We implement logistic-regression and sup-
port vector machine with a tf.idf-weighted fea-
ture matrix based on uni- and bigrams using
scikit-learn (Pedregosa et al., 2011).

PromptEng For prompt engineering, the LLMs
are provided with the multi-level labels and
prompted to choose a narrative first and only
choose the subnarrative within that particular nar-
rative second. We used a few-shot learning frame-
work within this methodological sequence by pro-
viding some examples in English.

SentSim  For the zero-shot experiments, we split
texts by double new lines into paragraphs and treat

"This corresponds to binary cross entropy for MLHM and
negative log-likelihood for NAHM

8Although this introduced another, albeit smaller problem,
in that some labels from the taxonomy do not appear in the
training and/or development sets of individual languages at
all.

each paragraph as a sentence; for subnarrative de-
scription, we experiment with two approaches: us-
ing subnarrative descriptions as a whole, and split-
ting them into smaller segments (which mostly
correspond to single sentences, but can also com-
prise two or three sentences). We then calculate
sentence embeddings using four different multi-
lingual SBERT (Reimers and Gurevych, 2019)
models available off-the-shelf” from Hugging Face,
namely

e paraphrase-multilingual-MiniLM-L12-v2

* paraphrase-xIm-r-multilingual-v1

* distiluse-base-multilingual-cased-v1

« paraphrase-multilingual-mpnet-base-v2'°
We refer to these models as mini, XLLM, distiluse,
and mpnet, respectively.

SetFit For SetFit, we seek to find the most suit-
able parameters to fine-tune the model on the train-
ing dataset by using a batch size of 16, setting the
learning rate [r € {le-4, le-6} and the number of
epochs e € {1,3}. The best model after hyper-
parameter tuning is subsequently evaluated using
the development set. We use the mpnet model as
above.

FGM The model is trained on a combined dataset
of all the languages, while taking only the subnarra-
tive labels into account. The subnarrative labels are
one-hot encoded, thus enabling easier training and
prediction, as well as maintaining the multi-label
status. The narratives are subsequently extracted
from the subnarratives. We use the base versions of
both English-specific BERT!! (Devlin et al., 2019),
and multilingual XLM-RoBERTa!2, and fine-tune
them for 100 epochs'3. We apply the AdamW opti-
miser (Loshchilov and Hutter, 2017) configured at
a learning rate of 2e-5. The learning objective is to
minimise the binary Cross Entropy Loss.

Hierarchical models As the results of XLM-
RoBERTa and English-specific BERT were similar

“We use the Python module SentenceTransformers here,
see https://www.sbert.net/.

1Ohttps: //huggingface.co/sentence-transformers/
paraphrase-multilingual-mpnet-base-v2

"https://huggingface.co/google-bert/
bert-base-uncased

12https: //huggingface.co/FacebookAI/
xlm-roberta-base

BDuring our initial experiments, we set the epoch sizes
to 10 and 20 for fine-tuning FGM but did not acquire any
sensible insights. The model was just able to predict the
category “Other” and failed to learn the other ones. A possible
reason for this issue is the scarcity of training examples for all
categories.

2243


https://www.sbert.net/
https://huggingface.co/sentence-transformers/paraphrase-multilingual-mpnet-base-v2
https://huggingface.co/sentence-transformers/paraphrase-multilingual-mpnet-base-v2
https://huggingface.co/google-bert/bert-base-uncased
https://huggingface.co/google-bert/bert-base-uncased
https://huggingface.co/FacebookAI/xlm-roberta-base
https://huggingface.co/FacebookAI/xlm-roberta-base

in FGM, we decided to utilise XLM-RoBERTa as
encoder model for these experiments. We adopt
the AdamW optimiser with a learning rate of 3e-
5, a batch size of 16 for both hierarchical models
and train them for 120 (MLHM) as well as 100
(NAHM) epochs. Both models are subsequently
evaluated on the provided development set.'*

5 Results

We list results on the development set for all our
systems in Table 4 in the Appendix, and visualise
them in Figure 1 in comparison to other results
published on the official task leaderboard'. Re-
sults for out submitted system (FGM) on the test
set can be found in Table 1. We ranked between
374 and 6" place across the five languages of the
shared task, achieving 3" place in Hindi (out of 13
participating teams), 4" in Russian (14 teams), 5
in Bulgarian (11 teams), and 6! in both English
(28 teams) and Portuguese (13 teams).

ML baseline As can be seen in Figure 1, the ML
baselines fail to adequately predict subnarratives,
with F ranging from 0.01 to 0.07 on the develop-
ment set, thus barely beating random guessing.

PromptEng The strategy of prompt-engineering
GPT-40 was considerably worse than our other ap-
proaches when we evaluated it on the English de-
velopment set, especially looking at F; scores on
fine-grained labels. The results from Deepseek-
R1:32B were even worse, and thus this approach
was not considered any further.

SentSim For the approach based on sentence sim-
ilarities, we compare a total of eight architectures
(segmenting subnarratives in sentences or para-
graphs, and four different language models). We
assess their performance for each language on the
development set in Table 3 in the Appendix. We
quickly summarise the table as follows, focussing
on the prediction of subnarratives: (1) We easily
beat the baselines across all languages; (2) compar-
ing paragraph embeddings with paragraph embed-
dings yields almost exclusively better results than
comparing sentence embeddings with paragraph
embeddings (except for XLLM on Portuguese); and
(3) the mpnet model performs best across all lan-

“We ran all our experiments with encoder models on an
NVIDIA RTX 4090 with 24 GB of VRAM, with an average
run time of approx. 40 minutes to complete each training.

15https ://propaganda.math.unipd.it/
semeval2025task10/leaderboard.php

guages (except for English, where it performs re-
markably poorly).!® We include the architecture
with the mpnet model and comparing paragraphs
with paragraphs in Figure 1. We do not reach me-
dian performance of participating systems with this
approach (except for Russian) but note that this
approach does not need any labelled data (except
for maximising F).

SetFit We report performance after training and
hyperparameter optimisation!” in Table 4 and Fig-
ure 1. Given that SetFit was used with whole la-
belled news texts instead of much shorter units of
text, it still achieves decent results. In principle,
SetFit should also work well in a zero-shot setting,
using only narrative descriptions as its initial input.
In our case, however, the resulting model was es-
sentially useless. Contrary to Heinrich et al. (2024),
using narrative descriptions as additional training
data did not improve the model.

FGM Fine-tuning XLM-RoBERTa only on the
finegrained labels has been shown to be an effective
approach and the best model among all our experi-
ments. This architecture is only outperformed by
the MLHM approach for Portuguese. To be con-
sistent, we submitted FGM predictions for all lan-
guages on the test set for final evaluation. Table 1
and Figure 1 show performance on the test set; re-
sults are overall competitive, especially for Hindi,
enabling a top 3 placement. To check whether a
single-language model would perform better, we
also tested an English-only BERT model as the
base model. The results, however, did not show an
improvement over XLM-RoBERTa.

Error analysis on the development sets across
task languages reveals several things.!® First, good
performance is mostly based on accurately pre-
dicting the absence of subnarratives. Second, per-
formance would have slightly increased if pre-
dictions of labels not included in the respective
language trainings sets had been removed in a
post-processing step (for English, for example,
the model predicts one instance of “Amplifying
Climate Fears: Earth will be uninhabitable soon”
while this subnarrative features neither in the En-
glish training nor in the development set). Third,

6Note that distiluse was trained neither on Bulgarian nor
on Hindi, which explains its poor performance on these lan-
guages.

""Hyperparameter optimisation was, however, largely in-
consequential compared to out-of-the-box performance.

8Confusion matrices for all labels are available at https:
//github.com/fau-klue/narrlangen-semeval2025.
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coarse fine
Fy o Fy o
EN | 044 041 | 0.34 0.39
BG | 050 0.40 | 036 0.38
PT | 048 0.34 | 0.29 0.26
RU | 0.57 0.37 | 041 0.32
HI | 040 046|039 047

Table 1: Results on test set using XLM-RoBERTa on
fine-grained labels (FGM).

prediction quality for some of the underspecified
“Other” subnarratives for coarse-grained labels
varies wildly between languages: for “Discrediting
the West, Diplomacy: Other”, the model accurately
predicts 4 out of 5 instances in the Bulgarian dev
set whereas it only gets 1 out of 6 right for English.
This likely results from large differences between
instances in the training data (in this case, 61 vs.
26). The same holds true for the even more gen-
eral label “Other”: there are more training exam-
ples for English (169) than for all other languages
combined (159), so that the model only achieves
a somewhat decent performance in this language
(precision .62, recall .73). Finally, results for Rus-
sian and Hindi are only better than those for other
languages since they only (or mostly, in the case of
Hindi) include subnarratives related to the Russo-
Ukrainian War. m

Hierarchical models The results of our multi-
label hierarchical model (MLHM) outperforms the
attention-based approach (NAHM) across all lan-
guages for both coarse- and fine-grained labels.
Especially for Portuguese, we can observe a gain
of 0.21 in F}, where MLHM also surpasses the oth-
erwise best-performing system FGM by 0.03 in F}.
This might be due to the complexity of the attention
layer and the fact that it is trained to predict one
single label compared to the multi-label approach,
which is not constrained to a certain narrative or
subnarrative.

6 Discussion & perspectives

The results of our experiments suggest that tradi-
tional machine learning approaches provide little
utility in the given task, as their performance re-
mains significantly below that of more advanced
methods. In contrast, our sentence-similarity based
zero-shot approach proves to be a viable alternative,
delivering competitive results without the need for

domain-specific training. Nonetheless, while the
zero-shot method offers a cheap alternative, fine-
tuning masked LLMs remains the most effective
approach, given a large amount of labelled data as
in the task here. We also note that incorporating
multiple languages into a single training set is a
reasonable strategy, likely due to shared linguistic
patterns across languages.

For future work, several directions could en-
hance classification performance. Firstly, since
many annotated texts contain lengthy narratives
including irrelevant sections, preprocessing tech-
niques that extract relevant portions before model
training could reduce noise and improve classifica-
tion accuracy for all models. Similarly, SetFit could
benefit from individually labelled paragraphs; it
might also perform better as an ensemble of several
models to predict fine-grained labels for each previ-
ously predicted coarse-grained label. For SentSim,
an iterative refinement process for narrative descrip-
tions could enhance model interpretability and pre-
dictive accuracy by incrementally improving label
definitions and annotations.

While prompt engineering LLMs was not a
successful strategy here, chain-of-thought prompt-
ing could improve the results (Wei et al., 2023).
Findings from previous work (Jiang et al., 2024;
Qi et al., 2024; He et al., 2024) suggest that
LLMs have difficulty following complex instruc-
tions. Given that our task requires multi-label clas-
sification at various levels and a strict json output,
this approach might not be sufficient to address the
task’s complexity.

Applying the narrative attention layer to the
multi-label hierarchical model might strengthen
the relationship between coarse- and fine-grained
hierarchies. This enhancement can improve the
model’s ability to predict subnarratives which cor-
respond to the classified narratives. Another possi-
bility would be to experiment with the hierarchical
loss by minimising the subnarrative loss only. We
assume that focusing on subnarratives might im-
prove the performance of our approaches.

Finally, after a thorough error analysis of the
individual models presented here, it would be
straightforward to use an ensemble model which
could potentially improve overall performance.
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A Data sets
text length
lang. #texts | mean median o
EN 399 | 2984.2 2960  858.1
o PT 400 | 2459.9 2420  566.2
‘s BG 401 | 2341.1 2001 1037.1
~ RU 215 | 2035.8 2422 931.0
HI 366 | 2367.5 1717  2297.6
EN 41 | 3562.3 3102 17533
_ PT 35 | 2486.5 2562  511.1
2 BG 35 | 2026.7 1628  981.9
RU 32 | 1791.9 1470 8503
HI 35 | 3283.6 2681 1545.6
EN 101 | 3791.9 3442 15333
. PT 100 | 2573.3 2545  665.0
8 BG 100 | 3669.6 3621 1003.3
RU 60 | 2801.8 2748 4853
HI 99 | 1447.1 1320  615.1

Table 2: Data set overview for all sets and languages
in terms of number of texts (#texts) and number of
characters (columns text length).

B Results for sentence similarity
architectures

coarse fine
lang model segm.| F} | Fi o
distiluse p 0.41 0.33]0.26 0.28
S 0.36 0.32|0.17 0.20
mpnet p 0.32 0.32]0.16 0.24
EN S 0.32 0.30|0.13 0.19
mini p 0.43 0.33]0.24 0.31
S 0.37 0.32]0.19 0.25
Im p 0.35 033|022 0.27
S 0.34 0.35]0.18 0.26
distiluse p 0.31 0.26|0.15 0.19
S 0.33 0.26|0.16 0.21
mpnet p 042 0.32]0.19 0.22
PT S 0.31 0.25|0.16 0.18
mini p 0.31 0.23]0.17 0.20
S 0.34 0.21]0.16 0.16
p 0.38 0.320.14 0.19
xIm
S 0.40 0.280.19 0.23
.. p 0.19 0.17]0.08 0.10
distiluse 021 0.16|0.11 0.13
mpnet p 0.28 0.22|0.14 0.18
BG S 0.27 0.220.14 0.19
mini p 0.21 0.20|0.10 0.17
S 0.23 0.20|0.11 0.15
p 0.25 0.21]0.11 0.15
xIm
S 0.26 0.220.12 0.17
distiluse p 0.50 0.3210.21 0.22
S 0.51 0.28|0.20 0.23
mpnet p 0.46 0.330.28 0.29
RU S 0.44 032027 0.28
mini p 0.44 029021 0.25
S 0.49 0.29]0.24 0.24
Im p 0.45 0.32]0.25 0.26
S 0.48 0.30]0.26 0.29
distiluse p 0.18 0.180.07 0.10
S 0.20 0.17]0.09 0.11
mpnet p 0.25 0.25]0.18 0.23
HI S 0.32 0.280.18 0.22
mini p 0.25 0.19]0.15 0.13
S 0.28 0.220.15 0.17
p 0.26 0.21]0.13 0.15
xIm
S 0.23 0.19]0.12 0.14

Table 3: Results for the sentence similarity approach on
the development set using different system architectures.
The mpnet model scores best across all languages except
English. Comparing paragraphs with paragraphs usually
outperforms comparing paragraphs with sentences.
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C Comparison of results on development and test set
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coarse fine
F1 g Fl g test- — ———

LR EN | 0.27 0.44 | 0.04 0.12
BG | 0.17 0.37 | 0.02 0.08 dev-
PT | 0.03 0.17 | 0.07 0.15 2
RU | 0.13 0.33 | 0.01 0.05
HI | 0.06 0.23 | 0.01 0.05

SVM EN | 027 044 ]0.04 0.12 oo I N |
BG | 0.17 0.38 | 0.01 0.07 O
PT | 003 0.17 | 0.04 0.13 |.

EN

RU | 0.13 033 | 0.04 0.12 dev-
HI | 0.06 0.23 | 0.01 0.07 °

SetFit EN | 039 042|032 040 i
BG | 039 0.46 | 036 0.44
PT | 030 043 |0.19 0.34 test-  ————— L Zm—
RU | 0.24 0.40 | 0.23 0.39
HI | 029 043|022 0.36

NAHM EN | 045 036|028 033 ¢ .
BG | 0.41 042|027 035
PT | 044 0.39 | 025 0.35 o
RU | 049 0.37 | 021 0.30
HI | 041 040 | 028 0.34 test

FGM EN | 040 040|035 0.39
BG | 0.51 042|042 040 dev- K Ll
PT | 062 035|043 0.34 = °
RU | 054 036|035 0.34
HI | 045 039|031 0.37

MLHM  EN | 049 041|032 039 o I
BG | 049 041|035 037 .
PT | 0.69 028046 035 . S a
RU | 0.59 030 | 029 031 .| e
HI | 0.54 0.40 | 028 0.36

PromptEng EN | 023 032 ] 0.16 0.8 oo e

RU

SentSim  EN | 032 030 0.13 0.19 ML Zeroshot  LLM
BG | 027 022]0.14 0.19 ® 1R o snsm @
PT | 031 025|016 0.18 R :
RU | 044 032|027 028 n
HI | 032 028018 022 ”

FGM
MLHM
NAHM
PromptEng
SetFit

Table 4: Results of all our systems on the development  Figure 1: Results of our systems (indicated in colour)
set. We indicate the language-specific top-score in bold. ~ compared to other results published on the official
Two LLM-based models (FGM and MLHM) score best  leaderboard (visualised as boxplots) for both develop-
across all languages. ment and test set, split by language.

2248



