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Abstract

The growing capabilities of Large Language
Models (LLMs) have opened up new opportu-
nities for answering questions based on struc-
tured data. However, LLMs often struggle to
directly handle tabular data and provide accu-
rate, grounded answers. This paper addresses
the challenge of Question Answering (QA)
over tabular data, specifically in the context
of SemEval-2025 Task 8. We propose an LLM-
based pipeline that generates SQL queries to
extract answers from tabular datasets. Our sys-
tem leverages In-Context Learning to produce
queries, which are then executed on structured
tables, to produce the final answers. We demon-
strate that our solution performs effectively in
a few-shot setup and scales well across tables
of different sizes. Additionally, we conduct a
data-driven error analysis to highlight scenar-
ios where the model encounters difficulties. We
make the code available at https://github.
com/fgiobergia/SemEval2025-Task8.

1 Introduction

The introduction of general purpose Large Lan-
guage Models has made it possible to address a
wide variety of tasks, with no need to fine-tune a
specific model every time. This capability has en-
abled a widespread adoption of LLMs to address a
wide variety of tasks (e.g., machine translation (Xu
et al., 2024), document classification (Giobergia
et al., 2024) and summarization (Pu et al., 2023)).
However, these models often provide answers that
are either based on the data available in the train-
ing data (i.e., they cannot leverage external data),
or that are not grounded in factual data – a phe-
nomenon referred to as hallucinations. This can
lead to issues like generating inaccurate facts, fab-
ricating citations, or incorrect summarizations de-
spite the model seeming confident in its output.

Although attempts have been made to detect and
mitigate hallucinations (Ji et al., 2023; Borra et al.,
2024), off-the-shelf models used for In-Context

Learning still cannot provide meaningful answers
to questions related to a specific data source, unless
access to the data source itself is provided. One
such example is the answering of questions that
can only be addressed based on the contents of a
separate data source. The SemEval 2025 Task 8 –
Question Answering Over Tabular Data (Osés Gri-
jalba et al., 2025) addresses exactly this kind of
scenario, by framing a Question Answering (QA)
problem, with answers that can be extracted from
tabular data. In this paper we address the challenge
by building a LLM-based pipeline that receives
information on the structure of the target table, pro-
duces a SQL query to answer the question, and
provides a final answer by executing the query on
the tabular data. We show that the proposed solu-
tion achieves remarkable results in few-shot mode,
and that it provides satisfactory performance re-
gardless of table size. We additionally perform a
data-driven error analysis to identify corner cases
that the LLM cannot easily address; and improve
model performance by manually labelling useful
cases to be used as shots within the prompt.

The rest of the paper is organized as follows:
Section 2 introduces the task, dataset and metrics.
Section 3 presents the main methodology adopted,
with an overview of the pipeline, as well as the
error analysis that has been conducted to identify
promising shots to be used. Section 4 presents the
main results obtained. Finally, Section 5 wraps up
the paper, with considerations and possible future
extensions of the work.

2 Problem description

SemEval Task 8 consists in addressing QA prob-
lems based on tabular data. To this end, the Task
makes use of DataBench (Grijalba et al., 2024).
DataBench is the first benchmark that makes use
of real-world tables, with a wide variety of distinct
questions related to various data types. Answers to
the questions are in the form of either a number, a
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Figure 1: Overview of the architecture for the proposed solution. In green are the results produced (intermediate,
e.g. queries, and final, i.e. the answer). In blue are the LM-based components of the solution. In yellow are the pre-
and post-processing steps.

categorical value, a boolean value or lists of sev-
eral types. DataBench includes a training set (49
tables, 988 questions), a validation set (16 tables,
320 questions) and a test set, specifically released
for SemEval (15 tables, 522 questions).

The challenge consists of two subtasks: a full
one, where the entire table (all rows, all columns)
are used, and a lite one, where only a subset of all
rows and columns are used.

The quality of the provided answers is quanti-
fied in terms of the fraction of correctly answered
questions (i.e., accuracy).

3 Proposed methodology

We present the architecture of the overall solution
in Figure 1. The architecture takes any one question
(and related table) and produces the prompt with
the prompt generator. Next, this prompt is used
to generate an answer query from an LLM. This
unaligned query may contain some errors that are
adjusted by a column aligner module. The correct
query is then automatically executed on the target
SQLite table. The answer returned by the query
is post-processed to produce the final answer. The
rest of this section presents, in more details, the
various blocks.

3.1 Prompt generator

The prompt generator is used to produce the prompt
for the LLM. The prompt is comprised of three
parts: (1) the general description of the task to be
addressed (i.e., producing the query that answers a
question), (2) some examples (shots) of questions,
summaries of tables, and queries that are expected
as the answer, and (3) the actual question and table
summary to be addressed by the LLM.

The following are examples of
question/table/answer.
Provide the answer to the last
question. Only include the query.
Use exactly the specified column names,
as reported between backticks ``.
If the answer is boolean, use CASE WHEN
... THEN ... ELSE ... END.

Question: [Question for shot 1]
Table (`column name`: list of values):
`column1`: value1, value2, value3, ...
`column2`: value4, value5, value6, ...
`column3`: value7, value8, value9, ...
...
Answer: [Query for shot 1]

[shot 2]
...
Question: [Test question]
Table (`column name`: list of values):
[Test table]
Answer:

Listing 1: Example of a prompt used in our experiments.
In blue is the problem description, in orange the shots,
in green the actual question.
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We report in Listing 1 a summarized prompt. As
shown, each shot is represented as a triplet (Ques-
tion, Table, Answer). The Question is the natu-
ral language question that needs to be addressed.
The Table is a list of columns found in the table
of interest. For each column, in addition to the
column name, a few (5, in our case) sample val-
ues are reported. The Answer is the query that
can be executed on the specified table to extract
the correct answer. We note that the training set
does not contain queries associated to the actual
answers. We discuss the annotation process of a
limited number of queries as a part of Section 3.5.
The final question is appended at the end of the list
of shots. Because of memory limitations, we limit
the number of shots used in the prompt to 7.

Finally, we note that the usage of the CASE ...
WHEN ... THEN ... ELSE ... END allows
the model to directly return true/false answers, in-
stead of 0/1. This is convenient to simplify the
post-processing step. We empirically verified that
the models adopt the pattern correctly if explic-
itly asked to do so in the prompt, and if the shots
contain such examples.

3.2 Large Language Model

The key component for the proposed solution is an
LLM, that produces the query to address the answer.
We considered small and medium LLMs that have
been specifically fine-tuned on code generation
tasks, and that have been instruction-tuned. More
specifically, we identified the two most promising
candidates in Code Llama 7b and 34b (Roziere
et al., 2023), Codestral 22b (MistralAI, 2024) and
Qwen2.5-Coder 32b (Hui et al., 2024). The experi-
mental section contains a comparison between the
two models.

The output of the model is, in general, a valid
query that can be executed. However, a further
alignment step is required, in some cases, to guar-
antee that the columns adopted in the query actually
exist.

3.3 Column aligner

We note that, when generating the query, the LLM
sometimes struggles to correctly specify some of
the column names; despite receiving the correct
names as a part of the prompt. To fix this prob-
lem, we introduce a step of semantic alignment,
to replace invalid generated columns with correct
ones.

This problem likely stems from the fact that
the model struggles to use the correct names, if
they contain non-SQL-standard characters. For
instance, in dataset 054_Joe, one of the attribute
names is author_name<gx:category>. This at-
tribute is always used as author_name in the LLM-
generated queries, resulting in the execution of in-
valid queries.

Since the model wraps all column names with
backticks ``, we can easily extract the set CQ of
columns used in the generated queries. The set CV

of valid column names is also known from the table
schema. If CQ \ CV ̸= ∅, some columns adopted
in the query are not part of the available columns.
Only for those columns, we apply an alignment
step based on semantic similarity.

We adopt a pre-trained encoder-only transformer
model (e.g., BERT (Devlin et al., 2019)) to produce
vector encodings for the columns in CQ \ CV (the
columns to be replaced), and for columns in CV

(the columns to be used for the replacements). We
replace each invalid column with the most simi-
lar valid column (based on cosine similarity). We
acknowledge that using BERT for the encoding
of column names (i.e., short strings of text, with-
out adequate context) goes against the rationale
of the model. Alternative approaches (e.g., fast-
Text (Mikolov et al., 2018)) also allow generating
vector representations for words, without requir-
ing a context. This is also true for representations
across multiple languages (Grave et al., 2018) and
tasks (e.g., sentiment analysis (Giobergia et al.,
2020)), even for out-of-vocabulary words (Savelli
and Giobergia, 2024): both properties could be
useful, when handling column names. However,
we empirically observe satisfactory results even for
BERT, and use it despite the lack of a context.

3.4 Query executor and post-processing

The Parquet datasets are converted into SQLite
tables, which are then used to run the SQL queries
generated by the LLM. This step can produce an
error, if a query is not valid. In this work, we do not
include iterative steps to improve the quality of the
results. However, it is reasonable to assume that the
results could benefit from it. If the query executes
correctly, the result is adjusted during a final, very
simple post-processing step, to produce the final
answer (for instance, length-1 lists of values are
returned as a single value).
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Medoid question Closest Train question

What are the bottom 2 lan-
guages in terms of tweet
count?

Which are the top 4 events
with the highest average
number of comments?

Has the author with the
highest number of follow-
ers ever been verified?

What is the maximum
number of reviews a prop-
erty has received?

Identify the top 3 foods
with the least amount of
sugar.

Identify the 3 departments
with the lowest average
satisfaction levels.

How many respondents
are from the region adja-
cent to the South Atlantic
Ocean?

How many participants
are from the United King-
dom?

Table 1: Questions for the 4 clusters (as defined by their
medoids), with corresponding most similar questions
(via cosine similarity) in the training set. The ques-
tions in the training set (and corresponding manually
annotated queries) have been included as a part of the
prompt.

3.5 Error analysis

We initially annotated a small number of questions
with the corresponding SQL query. This pool of
annotations provides the intial shots used in the
definition of the prompts. We then run the pro-
posed pipeline, on the validation set. We isolate
the cases that produce incorrect answers, and try to
identify the most recurring types of questions that
cannot be addressed by the LLM. To identify com-
mon patterns in incorrectly answered questions, we
use clustering. We first build a vector representa-
tion for each incorrectly answered question, using
an encoder-only model (e.g., RoBERTa large (Liu
et al., 2019)). Then, we apply K-medoids (Park
and Jun, 2009) to identify 4 clusters1 of questions,
with the corresponding medoids (i.e., the most rep-
resentative question, for each cluster). Finally, we
identify, among the training questions, the most
semantically similar ones2 to each of the medoids.
We manually annotate those 4 questions with the
corresponding queries, which are then included as
a part of the prompt. We show, in Table 1, the
medoids (from the validation set), paired with the
corresponding most similar training question.

1The number of clusters has been selected based the total
number of shots that could be included in the prompt.

2Based on the cosine similarity computed on the latent
vectors.

Model Accuracy (full) Accuracy (lite)

Code Llama 7b 49.81 52.87
Code Llama 34b* 6.70 60.34

Codestral v0.1 22b* 72.41 74.14
Qwen2.5-Coder 32b* 72.03 69.92

Table 2: Performance, in terms of accuracy, on the full
and lite tasks, using three different LLMs. (*) represents
models that have been quantized with PTQ, on 4 bits.
Best result in bold, second best underlined.

4 Experimental results

We present the main results obtained using the pro-
posed pipeline. First, we evaluate the performance
for different LLMs. Next, we highlight some of
the limitations in the responses generated by the
different models.

4.1 Main results
We test four separate instruction-tuned LLMs,
trained on code generation tasks: Code Llama 7b,
Code Llama 34b (Roziere et al., 2023), Codestral
v0.1. 22b (MistralAI, 2024) and Qwen2.5-Coder
32b (Hui et al., 2024).

We quantized CodeLlama 34b, Codestral 22b
and Qwen2.5-Coder 32b with Post-Training Quan-
tization (PTQ) on 4 bits, to execute them on the
available hardware.

Table 2 presents the main results obtained on the
full and lite tasks, in terms of accuracy, using the
proposed solution.

Interstingly, Codestral emerges as the clear win-
ner, on both tasks, closely followed by Qwen2.5-
Coder. Interestingly, in the Code Llama family, the
7b version obtains more consistent performance
across the tasks, whereas the 34b version obtains
abysmally low performance on one task, and rea-
sonable results on the other – despite the minor
differences between the tasks.

4.2 Common mistakes
We note that the proposed approach sometimes
produces SQL queries that cannot be executed. For
such cases, the answer to the question is left blank.
Table 3 reports the number of blank answers given
by the four models under study.

This result helps explain the poor performance
obtained by Code Llama 34b, especially for the full
task: a large number of answers is in the form of
queries that do not execute correctly. Upon man-
ual inspection, we note that Code Llama 34b often
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Model % missing (full) % missing (lite)

Code Llama 7b 7.47 7.85
Code Llama 34b* 18.42 10.34

Codestral v0.1 22b* 7.85 8.05
Qwen2.5-Coder 32b* 12.26 15.71

Table 3: Fraction of missed queries, for each model (i.e.,
queries that did not correctly execute). (*) represents
models that have been quantized with PTQ, on 4 bits.
Best result in bold, second best underlined.

returns answers in natural language that do not in-
clude the requested query (e.g., by attempting to
answer the question directly, or providing irrele-
vant comments). Other models do not behave as
poorly, with consistent behaviors between the two
tasks. Qwen2.5-Coder, interestingly, produces a
large number of empty results3. Despite this high
percentage of blank answers, it is impressive that
Qwen2.5-Coder achieved the second-best perfor-
mance: we argue that, if this behavior was to be
limited (e.g., with sufficient prompt engineering,
which has not been carried out in this work), Qwen
could prove to be an even more competitive solu-
tion.

We highlight an additional problem often found
in incorrect answer for some of the models. This
common error consists in returning a list of values
when a single, aggregate one was expected. This is
the case, for example, with questions that require
an answer on the overall behavior across the dataset.
For instance, the question are all employees older
than 20? has a single true/false outcome. The
question should be addressed using a query such
as SELECT COUNT(*) = (CASE WHEN age > 20
THEN 1 END) FROM data. Instead, models often
incorrectly produce a query that returns an outcome
for each entry in the table, such as SELECT age >
20 FROM data.

Answers obtained from these queries are gen-
erally much longer than valid answers. Based on
this consideration, Figure 2 presents the distribu-
tion in answer lengths for the models considered,
on the full task. Longer answers (300+ characters)
are generally linked with incorrect results. Inter-
estingly, all models but Qwen2.5-Coder present
several of these failure cases. In particular, Code
Llama 7b is affected by this problem the most.

We attempted to mitigate this problem by intro-

3We additionally note that we failed to test the 7b version,
as it consistently produced invalid responses.
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Figure 2: Distribution of the length of the answers ob-
tained by executing the queries generated by different
models. Lengths above 2-300 characters can generally
be considered as the result of faulty queries.

ducing specific shots that provide correct queries.
However, those shots only marginally helped: as
soon as a slightly different request was encountered,
the LLM reverted to the undesired behavior.

5 Discussion and conclusions

In this paper we presented a solution to the QA
problem on tabular data from SemEval 2025 Task
8. The solution is based on generating SQL queries
that are executed to produce answers to the pro-
posed questions. We make use of an instruction-
tuned LLM trained for code generation. We show
that the pipeline allows to achieve acceptable per-
formance. We tested several models and find Code-
stral v0.1 22b to be the one providing the most
accurate results. Interestingly, almost all consid-
ered models show no gap in performance between
the full and the lite versions of the task, indicating
robustness to noisy information (e.g., the presence
of unused columns). We acknowledge that one of
the main limitations of the proposed approach is the
conversion of the datasets into SQLite tables: the
original Parquet datasets contain potentially com-
plex data types (e.g., lists of values), which cannot
be easily cast into SQLite columns. As such, we
expect that a transposition of the proposed solution
to other querying approaches (e.g., Python-based)
may yield even more promising results.
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