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Abstract

Food safety is a critical concern: hazardous in-
cident reports need to be classified to be able to
take appropriate measures in a timely manner.
The SemEval-2025 Task 9 on Food Hazard De-
tection aims to classify food-related incident
reports by identifying both the type of hazard
and the product involved, at both coarse and
fine levels of granularity. In this paper, we
present our solution that approaches the prob-
lem by leveraging two independent encoder-
only transformer models, each fine-tuned sepa-
rately to classify hazards and food products, at
the two levels of granularity of interest. Exper-
imental results show that our approach effec-
tively addresses the classification task, achiev-
ing high-quality performance on both subtasks.
We additionally include a discussion on poten-
tial improvements for future iterations, and a
brief description of failed attempts. We make
the code available at https://github.com/
fgiobergia/SemEval2025-Task9.

1 Introduction

The success of Language Models has made it pos-
sible to annotate datasets with very limited human
intervention. This is the case for a wide variety of
tasks, including some with peculiar domains that
make it difficult to obtain high-quality labels man-
ually (e.g., classification of legal documents (Sha-
heen et al., 2020), or dialect detection (Koudounas
et al., 2023)). This trend has enabled a thorough
analysis of documents that could not be reasonably
processed in acceptable times. Among these docu-
ments, there are life-critical ones such as the anal-
ysis of food-related incident reports (Randl et al.,
2024). The Food Hazard Detection task (Randl
et al., 2025) from SemEval 2025 focuses specif-
ically on this challenge, with the goal of helping
classify food incident reports collected from the
web.

The proper classification of these incidents is
a vital task, as it provides potentially life-saving

insights. These insights are typically in the form of
structured labels that indicate the type and severity
of the hazard, such as contamination, mislabeling,
or adulteration; as well as the specific, or category
of food involved. Accurate classification enables
regulatory bodies, food safety organizations, and
the public to respond effectively by issuing warn-
ings, recalling products, or implementing stricter
safety measures.

The large quantities of incidents available on-
line makes manual processing generally infeasible.
As such, automated crawlers can be used to find
food issues from web sources; whereas Natural
Language Processing techniques can be adopted to
correctly classify these documents based on (1) the
type of food involved, and (2) the type of hazard
described.

The task is focused on classifying incidents
based on these two targets, at two different lev-
els of granularity (coarse and fine). As a part of
this paper, we note that there is limited correlation
between the hazard and the type of food — as such,
we address the task by proposing a solution based
on the fine-tuning of two pretrained, encoder-only
transformer-based models, that focus on different
aspects of the problem. We show that the proposed
solution achieves competitive performance, with a
final ranking of 9" place for subtask 1, 5" place
for subtask 2.

The rest of the paper is organized as follows.
Section 2 describes the dataset and the task under
study. We present the proposed approach, and the
rationale for it, as a part of Section 3. The main
results obtained are shown in Section 4, with some
additional considerations on the choices made. We
cover some of the failed attempted in Section 5 and
the main limitations of the proposed approach in
Section 6. Finally, Section 7 wraps up the paper
with considerations on the task and solution.
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2 Problem description

The goal of the task is to correctly classify incidents
available on the web. The dataset is provided in
three splits: training data (5,082 samples), valida-
tion data (565 samples) and test data (997 samples).
Each sample corresponds to the description of an
incident. These incidents are taken from official
food agency websites (e.g., FDA). For each inci-
dent, a set of attributes is known: some are struc-
tured (date and country); whereas others are textual
(title and text). For training and validation data,
the correct classification is also available. This
classification consists of two attributes: the hazard
category (10 classes) and the product category (22
classes). Each of these categories is further refined
into a specific hazard (128 classes) and product
(1,142 classes). Each text is labeled by two food
science or food technology experts. The first sub-
task (ST1) of the challenge consists in predicting
the hazard and product categories, whereas the sec-
ond one (ST2) aims to predict the specific hazard
and product. For convenience, we report in Ta-
ble 1 an instance of an incident, with all available
information.

For ST2, the main metric of interest is
(FM 1 FPM) /2. Here, F™" is the macro Fy score
for the hazard classification problem; whereas
Fl(plh)

F1(ST2)

is the macro Fj score, computed only on
samples whose hazard has been correctly predicted.
For ST1, we adopt a metric computed in a similar
way, FI(STI) = (Fl(hc) + Fl(pc‘hc))/Q, using the £}
scores for the hazard and product categories. This
choice of metrics places additional importance on
the identification of the correct hazard: failure to
do so results in a 0 score being achieved, regardless
of the performance on the product identification
problem.

3 Proposed methodology

The proposed solution consists of two separate
encoder-only, pretrained transformers fine-tuned
on the fine-coarse dual prediction problem.

We first discuss the rationale behind using two
models, each working on a dual granularity. Next,
we present the main details of the adopted solution.

3.1 Targets correlations

Multi-task learning allows to exploit useful infor-
mation from related learning tasks (Zhang and
Yang, 2018). Based on this knowledge, a promising
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product-category
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Figure 1: Adjusted Mutual Information between pairs of
targets. Fine-coarse categories have high AMI, whereas
different categories show lower correlation.

approach to improve a classic transformer-based
classifier is to introduce a single backbone, with
multiple tasks being aggregated into a single loss
function. However, this approach only works if
the four target categories are somewhat related. To
quantify the relationships between the four targets,
we compute the pair-wise Adjusted Mutual Infor-
mation (AMI) between the targets. The AMI is a
version of Mutual Information, which quantifies
how mutually dependent (correlated) two variables
are (i.e., how informative knowing one variable
is in predicting the other one). We remark that
some of the targets have a large number of possible
classes (up to hundreds, or thousands). As a con-
sequence, we make use of the Adjusted verison of
MI, which accounts for random chance and the fact
that a large number of clusters tends to produce a
higher MI score. We report the pair-wise AMI as a
part of Figure 1.

It is clear from this result that the strongest cor-
relation exists between the fine and coarse versions
of each target. This is to be expected, because of
the hierarchical nature of the relationship. How-
ever, the figure also highlights a low correlation
between the two targets (product, hazard). This is
true for both fine-grained and coarse results. From
a domain-agnostic perspective, this may be consid-
ered, in many cases, reasonable: a hazard (e.g., the
presence of a foreign piece of plastic) is not neces-
sarily related to the type of food affected. Based on
these insights, we adopt two separate models: one
addressing the coarse-fine prediction of products,
the other addressing the coarse-fine prediction of
hazards.
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Table 1: Example for an incident report. In blue are the time/location metadata, in orange are the text information,

in green are the four target classes. Underlined is the information useful to identify the product and product
category, in italic is the information useful to identify the hazard and hazard category.

year 2014 hazard-category allergens

month 5 product-category ices and desserts

day 4 hazard eggs and products thereof

country us product ice cream

title 2013 - Blue Bunny Premium Bordeaux Cherry Chocolate Ice Cream Recalled
for Undeclared Allergen

text Wells Enterprises, Inc., maker of Blue Bunny ice cream said today it has

recalled Blue Bunny Premium Bordeaux Cherry Chocolate Ice Cream sold at
retail grocery stores in Kansas, Indiana and Iowa because the product may
contain egg not declared on the label.

3.2 Adopted architecture

We adopt the same architecture for both models.
We rely on a pretrained encoder-only transformer
model (e.g., BERT (Devlin et al., 2019), RoBERTa
(Liu et al., 2019)). We use, as the representation of
each incident, the ¢itle and the text. We tokenize
the two as two distinct [SEP]-separated sentences
(i.e., making use of Sentence A and B in BERT-
like models). We define d as the encoder’s hidden
size, and ny and n. as the fine-grained and the
coarse number of classes, respectively. We adopt
the output for the [CLS] token as a summary vector
v € R% of the entire incident,

v = encoder(|[CLS] || title || [SEP] || text) ,

where -||- represents a concatenation operation. We
use v as the input to two classifications heads: one
for the fine-grained task, the other for the coarse
task. Both classification heads are characterized by
an initial d x d layer, followed by a non-linearity
(ReLU) and a linear layer that projects the results
into n ¢- and n.-dimensional outputs, thus produc-
ing the logits ¢y € R™/ and g. € R"e for the two
tasks. Assuming a ground truth y. and y for the
two problems, we define the multi-task loss func-
tion as the cross-entropies for the two granularities,
with a scaling factor \ to regulate the weight be-
tween the two targets:

L= Zync,ilOg@nc,i) +A Z ynfvjlog(?)nfd) :
i J

We separately build one model to predict haz-
ards, and the other to predict products involved.

4 Experimental results

We report, as a part of this section, the main re-
sults obtained. First, we present an initial overview
of the metrics reported. Then, we study the per-
formance of the proposed pipeline, using different
backbone models. We further study the results
that would be obtained by framing the problem
in different ways. Finally, we mention the main
hyperparameters adopted for the solution.

4.1 Metrics

We use, as the main metric of interest, the aver-

age macro F score — as reported in Section 2, i.e.,

Fl(STl) and Fl(STQ). Although these metrics sum-

marize the quality of the solution on the entire task,
we additionally report the performance for each
task, separately. Based on the large number of
classes, and the heavy class imbalance, we choose
the macro F} score, for each subtask, as the most
suitable metric. For ST1, we report the F score for
the product and the hazard categories (F\**) and
Fl(hc), respectively); whereas for ST2, we report
the F score for the specific product and the hazard
(Fl(p ) and Fl(c), respectively).

4.2 Backbone selection

The proposed approach heavily relies on a valid
selection of the backbone model used for the en-
coding of the incident text and title. A wide vari-
ety of encoder-only transformers exist in literature.
Based on their popularity, we adopted three pos-
sible encoders: BERT (base, large) (Devlin et al.,
2019) and RoBERTa (large) (Liu et al., 2019). We
report the results obtained in Table 2.
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Subtask 1 (coarse)

\ Subtask 2 (fine)

th) Fg.P) Fg.STz)

0.569 +£0.013 0.241 £0.005 0.405 + 0.007

0.777 £0.009 0.708 +0.002 0.743 + 0.005 | 0.626 = 0.006 0.305 +0.003 0.461 + 0.006

F(lhc) F(lpc) F(ISTl) ‘
BERT base | 0.789 £ 0.004 0.653 +£0.004 0.721 £0.001
BERT large
RoBERTa large

0.783 £ 0.007 0.723 £0.005 0.754 + 0.005 | 0.625 +0.010 0.337 £0.009 0.479 + 0.003

Table 2: Performance on the various classification problems, for the main solution proposed. Best results for each

metric highlighted in bold, second best is underlined.

The results clearly show that ROBERTa achieves
the best performance in terms of task-related met-
rics of interest; as well as the best performance
for the product-related metrics. Interestingly,
RoBERTa is the second-best performer for the haz-
ard categories; with BERT obtaining better results.

4.3 Alternative tasks & baselines

In Section 3, we argue that the most promising
multi-task approach appears to be the one with two
separate models on fine-coarse targets. Producing
a single 4-task solution did not appear to be promis-
ing, given the low Mutual Information between
products and hazards. We empirically verify this
claim, showing that building a single model, trained
on 4 tasks, does provide any particular benefit.

For fairness of comparisons, all solutions are
trained with the same computing budget, evenly
distributed across models. The proposed solution
uses 7 + 7 training epochs (7 for each model). As
such, we train the single 4-task model for 14 epochs.
We adopt the same 1:5 ratio of scaling factors be-
tween coarse and fine tasks, as it has provided the
best results for the proposed solution.

The results are reported in Table 3. The re-
sults obtained are mostly comparable with those
achieved by the RoBERTa-based proposed solu-
tion. Interestingly, RoBERTa achieves better per-
formance on the fine-grained versions of the prob-
lem. The four-task version generally achieves
slightly better performance on the coarse problems.
Although the “best” result is obtained by using
the dual-task to solve Subtask 2, and the four-task
version to solve Subtask 1, we propose, for con-
sistency, a single solution based on two dual-task
models.

We also report results obtained for a baseline
method, namely a Random Forest, trained on (1)
the TF-IDF representation (Sparck Jones, 1972) of
each document, or (2) the average word embed-
dings for each word contained in the title and text,
using FastText (Bojanowski et al., 2017). Comput-

ing the average word vector (i.e., using distributed
bags of words) is a commonly adopted approach
with traditional word embeddings, as done in sev-
eral works (Le and Mikolov, 2014; Giobergia et al.,
2020; Reimers and Gurevych, 2019), despite losing
the order among words. These baselines provide
better context for the difficulty of the problem. The
proposed approach significantly outperforms both.
Interestingly, the TF-IDF version shows better per-
formance than FT. We expect this to be the case
due to the technical nature of the problem: without
proper fine-tuning, the word embeddings cannot
capture the domain-specific nuances of the prob-
lem.

4.4 Hyperparameters

We conducted a tuning phase to identify the best
configuration of hyperparameters, by making use
of the development set available. The best set of hy-
perparameters is reported in Table 4. In the interest
of limiting the computing cost of this operation, we
only tuned a subset of all reported hyperparameters;
using well-established values for the others.

S Failed attempts

In this section, we present some of the attempts
that have been considered, but that did not yield
promising results.

Hierarchical knowledge injection The fine-
coarse labels follow a well-defined hierarchy. In
literature, several approaches have been proposed
to address hierarchical multi-label classification
problems coherently (Giunchiglia and Lukasiewicz,
2020). Based on intuition and experimental results,
we additionally acknowledge that predicting the
coarse label is an easier task, w.r.t. the predic-
tion of the fine-grained version of the same label.
It stands to reason, therefore, that the fine label
should be conditioned by the predicted coarse la-
bel. Conditioning the fine label choice provides an
advantage in early training stages (when the model
has not yet learned the relationship between fine
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‘ Subtask 1 (coarse)
F:(I_hc) ngc)

Subtask 2 (fine)

F(ISTl) ‘ F(lh) F(lp) F(ISTZ)

0.785 + 0.007
0.778 £ 0.001
0.777 £ 0.012

0.703 £ 0.028
0.768 + 0.026
0.729 £ 0.010

BERT base (4-task)
BERT large (4-task)
RoBERTa large (4-task)

0.746 £ 0.013
0.773 £ 0.012
0.755 + 0.003

0.609 £+ 0.017
0.610 £+ 0.004
0.617 + 0.004

0.288 £ 0.015
0.319 £ 0.015
0.289 £ 0.022

0.451 £0.012
0.468 + 0.003
0.456 £ 0.010

RF (250 est.) + TF-IDF | 0.566 + 0.010
RF (250 est.) + FT | 0.389 + 0.042

0.458 = 0.007
0.348 £0.011

0.528 £ 0.010 | 0.294 + 0.008
0.367 £ 0.036

0.186 + 0.004
0.112 +0.008

0.256 + 0.007

0.197 £0.015 0.185+0.011

Proposed (RoBERTa) | 0.783 +0.007 0.723 +0.005

0.754 £ 0.005 ‘ 0.625 £+ 0.010

0.337 £ 0.009 0.479 £ 0.003

Table 3: Performance on the various classification problems, for other baselines models. Best results for each metric

highlighted in bold. Second best is underlined.

Hyperparameter  Value
number of epochs 7
batch size 8
warmup 500 steps
learning rate 5-107°
weight decay 0.01
A 5

Table 4: Main hyperparameters used for the proposed
solution.

and coarse labels), but the improvement wanes as
the training continues, resulting in no substantial
advantage over the base solution.

In-Context Learning (ICL) Large Language
Models can easily be used for the labelling of doc-
uments (e.g., social media posts (Tan et al., 2024),
scientific papers (Giobergia et al., 2024), or news
articles(Li et al., 2024)). It stands to reason, thus,
that these models should be able to perform com-
petitively in this classification task as well. We
attempted various few-shot prompt engineering ap-
proaches, using LLMs on the small end of the scale
(e.g., Llama 3.1 8B (Dubey et al., 2024)). How-
ever, as 1S well-known in literature, ICL can be
outperformed by task-specific, fine-tuned SOTA
models (Brown et al., 2020). This was the case
for this challenge, where the available training data
was sufficient to produce an adequately fine-tuned
classifier.

6 Limitations

We acknowledge several limitations in the proposed
approach, as indicated by the average results ob-
tained in the public leaderboard (9 place for sub-
task 1, 5" place for subtask 2). Among them, there
is the usage of only the textual information, with-
out considering temporal and spatial information

available. In addition, we make a rather strong as-
sumption of independence between products and
hazards. While initial results pointed in that di-
rection, we may assume that further explorations
could potentially reveal that a single multi-task so-
lution, if properly defined, may yield even better
performance. Finally, we note that the problem
is characterized by a heavy class imbalance: sim-
ple attempts to mitigate this problem (e.g., intro-
ducing different weighting schemes for different
classes) did not produce promising results. How-
ever, more sophisticated approaches (e.g., with data
augmentation to increase dataset size and variety
(Bayer et al., 2022), or contrastive learning to re-
duce model biases (Koudounas et al., 2024)) may
still be explored to provide additional benefits.

7 Discussion and conclusions

In this paper we discussed a solution to the Food
Hazard Detection task of SemEval 2025. The
task, framed as a multi-task learning problem, high-
lighted how hierarchical labels can benefit from be-
ing predicted together. We show that we observed
no clear benefit in simultaneously predicting re-
sults across the two targets (product, hazard). This
can be explained given the low Mutual Information
observed between the two labels, at all levels of
granularity. We presented experimental results that
corroborate the claims made and that allow to iden-
tify a candidate solution. We finally covered some
of the attempts that appeared to be promising, but
that did not yield any meaningful improvement.
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