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Abstract

Tabular Question Answering (QA) is crucial
for enabling automated reasoning over struc-
tured data, facilitating efficient information re-
trieval and decision-making across domains
like finance, healthcare, and scientific research.
This paper describes our system for the Se-
mEval 2025 Task 8 on Question Answering
over Tabular Data, specifically focusing on
the DataBench QA and DataBench Lite QA
subtasks. Our approach involves generating
Python code using Large Language Models
(LLMs) to extract answers from tabular data in
a zero-shot setting. We investigate both multi-
step Chain-of-Thought (CoT) and unified LLM
approaches, where the latter demonstrates su-
perior performance by minimizing error prop-
agation and enhancing system stability. Our
system prioritizes computational efficiency and
scalability by minimizing the input data pro-
vided to the LLM, optimizing its ability to con-
textualize information effectively. We achieve
this by sampling a minimal set of rows from
the dataset and utilizing external execution with
Python and Pandas to maintain efficiency. Our
system achieved the highest accuracy amongst
all small open-source models, ranking 1st in
both subtasks.

1 Introduction

Tabular Question Answering (QA) is a critical area
in Natural Language Processing (NLP) that en-
hances data accessibility and facilitates automated
information extraction from structured datasets.
The SemEval 2025 task on "Question Answering
over Tabular Data" (Osés Grijalba et al., 2025) ad-
vances this field by introducing DataBench (Gri-
jalba et al., 2024b), a benchmark comprising di-
verse, large-scale tabular datasets spanning multi-
ple domains. The task challenges participants to de-
velop systems capable of answering questions over
these datasets, with two subtasks: DataBench QA

*Equal contribution

Accuracy General
Open

Models
Small

Models
Databench 73.18% 25th 18th 1st

Databench Lite 73.75% 26th 18th 1st

Table 1: Performance on the DataBench QA and
DataBench Lite QA subtasks, showing accuracy and
rank among all systems (General), open-sourced mod-
els, and small open-sourced models (≤ 8B parameters).

(full datasets) and DataBench Lite QA (sampled
datasets with a maximum of 20 rows) to support
models with limited context windows. Expected
answer types include boolean, category, number, or
lists of these values.

Our system employs a code generation approach
using Python1 and Pandas2 to extract answers from
tabular data using open-source Large Language
Models (LLMs). Given a table and a question, our
system generates executable code that loads the
table, performs the necessary computations, and
returns the answer. This approach ensures inter-
pretability, as the reasoning process is encoded
explicitly in the generated code, and it remains
agnostic to the table structure. We explore both
a multi-step agentic Chain-of-Thought (CoT) ap-
proach, where one LLM generates structured rea-
soning steps and another translates them into exe-
cutable code, and a unified LLM approach, where
the model simultaneously reasons and writes code.
We prioritize a zero-shot setting to minimize the
amount of table data passed to the LLM, optimizing
for low resource consumption and scalability.

Our system achieved the highest accuracy among
small open-sourced LLMs, ranking 1st in both sub-
tasks (Table 1). Through our participation in this
task, we discovered several key insights into op-
timizing LLM-driven code generation for tabular
QA. First, prompt engineering plays a crucial role

1
https://www.python.org/

2
https://pandas.pydata.org
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in improving performance - highlighting the im-
portance of structuring inputs effectively to guide
model reasoning. Second, we demonstrate that it is
possible to achieve strong results while minimizing
the amount of table data passed to the LLM. No-
tably, our results indicated that a unified LLM ap-
proach outperformed the agentic CoT method. We
hypothesize that discrepancies in reasoning styles
between different models led to cascading errors
from the reasoning step to the final answer. This
motivated our shift towards a unified system. Our
approach relied on code execution, hence a major
challenge was to ensure the generation of syntacti-
cally and semantically correct parsable code. We
implemented iterative retry mechanisms that pro-
vided the LLM with error codes to refine its output.
Our work is publicly available3 for reproducibility.

2 Background

Our work is based on the dataset collection origi-
nally presented in the paper (Grijalba et al., 2024a).
The dataset comprises 65 tables designed to evalu-
ate LLMs on the task of QA over structured real-
world tabular data.

2.1 Dataset Details

The dataset collection consists of 3,269,975 rows
and 1,615 columns in total, covering a diverse
range of domains such as business, health, travel,
social networks, sports, and more. Across all
datasets, a total of 1,300 questions were designed
to evaluate QA performance. The number of ques-
tions per dataset varies, with the Forbes dataset con-
taining 25 questions, while all other datasets con-
tain 20 questions each. Every question in the train
data can be answered by using ∼ 1.45 columns. Ta-
ble 2 summarizes the distribution of answer types.

Answer Type Sample Number of Questions
Boolean True/False 262
Number 4, 10 260
Category Automotive, United States 263
List[category] [apple, mango] 261
List[number] [2, 4, 6, 8, 10] 262

Table 2: Distribution of Answer Types in train data

2.2 Dataset Composition

The dataset includes a variety of sources, covering
different domains and real-world scenarios. Table 3
presents an overview of the datasets used.

3GitHub Repo

Name Rows Cols Domain Source
Forbes 2,668 17 Business Forbes
Titanic 887 8 Travel Kaggle
Love 373 35 Social Networks Graphext
Taxi 100,000 20 Travel Kaggle
NYC Calls 100,000 46 Business City of New York
London Airbnbs 75,241 74 Travel Kaggle
Fifa 14,620 59 Sports Kaggle
Tornados 67,558 14 Health Kaggle
Central Park 56,245 6 Travel Kaggle
ECommerce Reviews 23,486 10 Business Kaggle

Table 3: Dataset Overview

2.3 Related Work

LLMs have significantly advanced automated code
generation, particularly in the domain of zero-shot
reasoning and structured prompting techniques.
Traditional approaches to Verilog code generation,
such as VRank (Zhao et al., 2025), emphasize self-
consistency by clustering and ranking multiple gen-
erated candidates, thereby improving functional
correctness. CoT prompting (Kojima et al., 2022)
has demonstrated the effectiveness of reasoning
through multi-step logical processes before generat-
ing outputs. However, CoT alone can struggle with
syntax correctness, which CodeCoT (Huang et al.,
2023) addresses by introducing a self-examination
mechanism — iteratively refining outputs based on
execution feedback.

AutoAgent (Tang et al., 2025) introduces a fully
automated LLM-based framework that eliminates
the need for manual intervention, enabling users to
deploy intelligent agents through natural language
alone. Similarly, SCoT prompting (Li et al., 2025)
enhances CoT by explicitly incorporating program
structures such as sequences, branches, and loops,
achieving more structured and correct code outputs.
Meanwhile, fine-tuning and prompting techniques
such as those applied to Code Llama (Roziere
et al., 2023) and GPT-based models (Haider et al.,
2024) show that augmenting metadata, function
call graphs, and iterative refinements can further
optimize performance.

While LLMs excel in general-purpose code gen-
eration, their application to tabular data processing
remains limited. TableGPT (Zha et al., 2023) pro-
poses an approach for interacting with structured
tables using natural language, offering functionali-
ties like data manipulation, visualization, and anal-
ysis. However, its reliance on external functional
commands and constrained dataset sizes limits its
scalability for large-scale applications. This con-
trasts with the broader adaptability of agentic AI
methods like AutoAgent, which can dynamically

2198

https://github.com/Adarsh-Vemali/LLM-Driven-Code-Generation-for-Zero-Shot-Question-Answering-on-Tabular-Data


Figure 1: Flowchart illustrating the data preprocessing and model workflow for Subtasks 1 and 2 using a unified and
an agentic approach. In the agentic setting the central ‘LLM’ turns into a ‘reasoner LLM’ which delineates steps for
the ‘Code LLM’ to write code, which on execution feeds back the error codes to both the reasoner and code LLMs.
This is illustrated by using red-dashed arrows in the figure.

generate and refine responses without predefined
dataset limitations.

Recent works (Mullick et al., 2022b,a, 2023;
Raghav et al., 2023) has also explored fine-grained
task-specific adaptations of LLMs across various
domains highlighting the importance of domain-
aware prompting and structured reasoning. Simi-
larly, generative techniques have been applied to
structured tasks like sentiment analysis (Raghav
et al., 2022).

In parallel, advancements in retrieval-augmented
models and robustness enhancements through
knowledge conflict augmentations (Carragher et al.,
2025a,b) illustrate emerging techniques for improv-
ing generalization and resilience in large model
architectures, many of which are transferable to
structured tabular reasoning. Additionally, (Raghav
et al., 2025) demonstrate the efficacy of large-scale
instructive fine-tuning of LLMs – technique that
bears promise for improving reasoning quality over
structured data.

As LLMs continue to evolve, the integration
of zero-shot reasoning, structured CoT prompt-
ing, agentic retries, and task-specific augmenta-
tions presents a promising direction for improving
code generation and complex reasoning over di-
verse paradigms, including tabular QA.

3 System Overview

Our system Figure 1, reframes the tabular QA task
as a code generation problem in zero-shot setting.
Given an input dataset table D and a natural lan-

guage question Q, the system follows a structured
pipeline. First, the dataset schema is extracted, in-
cluding column names, data types, and a sample
of the first three rows. This information is then
used to construct a structured prompt using the
system-user-assistant format that provides essential
context while reducing the amount of information
provided to the LLM. The system proceeds to gen-
erate Python code designed to load the dataset and
execute the necessary computations to extract the
answer. Subsequently, the generated code is parsed
for errors and executed to obtain the final output.

To enhance robustness, we incorporate an
execution-aware retry mechanism. If the generated
code encounters errors, the error message is fed
back to the LLM, allowing it to iteratively refine its
output (up to 3 retries). This significantly improves
the accuracy of generated code and reduces failure.

By reducing the input size, we optimize both
computational efficiency and scalability, while also
improving the LLM’s ability to effectively contex-
tualize the given data. Additionally, because our
system follows a code generation approach and
provides only the essential information about the
tables, it can be seamlessly applied to both subtasks
without requiring any modifications. This design
ensures adaptability across different task configura-
tions, further enhancing the system’s versatility.

3.1 Agentic CoT Approach

In this approach, we use two separate LLMs: one
dedicated to reasoning and another responsible
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for code generation. The first LLM decomposes
the given question into structured reasoning steps,
breaking it down into logical sub-components.
These steps are then passed to the second LLM,
which translates them into executable Python code.

We conduct experiments with combinations of
LLMs for both reasoning and code generation.
Specifically, we explore the following model pairs:

• LLaMA 3.1 (8B Instruct) (Touvron et al.,
2023) + CodeLLaMA (7B) (Roziere et al.,
2023)

• LLaMA 3.1 (8B Instruct) + Phi-4 (8.48B) (Ab-
din et al., 2024)

• Phi-4 8.48B + CodeLLaMA (7B)

where the first model in each pair was respon-
sible for reasoning and the second for generating
executable code. These configurations allowed us
to evaluate the impact of model specialization on
logical coherence and code correctness.

While the agentic CoT approach provides ex-
plicit reasoning traces, discrepancies between the
reasoning and code generation LLMs led to cas-
cading errors. CodeLLaMA often struggled with
syntax errors or misinterpreted reasoning instruc-
tions, while LLaMA failed to generate accurate rea-
soning steps, resulting in flawed code. Although
larger models might have improved performance,
computational constraints forced us to use smaller
versions. This motivated us to explore a unified
approach using a single LLM.

3.2 Unified LLM Approach

To overcome the limitations of the CoT approach,
we developed a streamlined pipeline using a single
LLM to jointly perform reasoning and code gen-
eration. We hypothesized that this method should
improve consistency and eliminate the error propa-
gation observed in the multi-step approach.

We experimented with several LLMs, including
LLaMA, CodeLLaMA, and Phi-4. Our initial hy-
pothesis was that LLaMA’s reasoning capabilities
would enhance its code generation, whereas CodeL-
LaMA would exhibit the inverse relationship. How-
ever, Phi-4 demonstrated superior consistency by
effectively handling both reasoning and code gen-
eration within a single inference pass. This proved
more adaptable to diverse question types and table
structures, resulting in more robust performance
across different datasets.

3.3 Challenges and Solutions
We encountered several challenges in this task:

• Generating Correct and Parsable Code: En-
suring the syntactic and semantic correctness
of generated code remains a significant chal-
lenge. To address this, we employ an error
feedback loop, where execution-triggered er-
ror messages are used as signals for iterative
refinement, guiding the LLM toward produc-
ing correct outputs. We allow up to three
retries within this loop: most simple syntax
or small logical errors are typically corrected
within the first two attempts, while errors per-
sisting beyond three retries are rarely resolved
with additional attempts, as they often stem
from fundamental limitations of the model
(e.g., ambiguous prompts, missing dependen-
cies, or deeper logical flaws). To validate this
choice, we conducted a small experiment by
sampling examples that failed even after three
retries and allowing them up to ten retries;
however, only ∼ 2% of these cases succeeded,
confirming that the gains diminish sharply be-
yond three retries.

• Handling Large Tables: It is hard for LLMs
to reason on long and wide tables. Instead
of providing full datasets, we sample the first
three rows along with the schema information,
ensuring that the system receives sufficient
context with minimal tokens.

• Ensuring Robust Answer Formatting: As
the task requires specific output data type, we
enforce strict formatting constraints on the
generated code’s output through our prompts.

• Prompt Engineering: We adopted a System-
User-Assistant chat template as it yielded the
best results for our task. The System mes-
sage included the task introduction and LLM
conditioning to guide it through the expertise
it would need, while the User message con-
tained the dataframe schema, sample rows and
generation instructions. A detailed illustration
of the prompt can be found at subsection A.1
and in our code repository.

4 Experimental Setup

Our experimental setup is designed to evaluate the
effectiveness of our approach across both Subtasks
1 and 2. We focus on zero-shot prompting using
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quantized LLMs, leveraging prompt engineering
techniques to optimize performance. Our method-
ology incorporates the system-user-assistant chat
template, ensuring structured interactions with
LLMs. To facilitate efficient inference, we em-
ploy Unsloth’s (Daniel Han and team, 2023) dy-
namically quantized 4-bit versions of these models,
allowing for computationally efficient execution
while maintaining strong performance. We used dy-
mamic 4-bit quantized LLaMA 3.1 (8B Instruct)4,
CodeLLaMA (7B)5 and dymamic 4-bit quantized
Phi-4 (8.48B)6 models from Unsloth. Experiments
were conducted on a single NVIDIA T4 GPU using
Google Colab and Kaggle, emphasizing the feasi-
bility of achieving high performance with limited
compute resources. Predictions were generated on
the validation and blind test set.

4.1 Evaluation Function

The evaluation function for this task measures ac-
curacy while allowing for minor variations in for-
matting. This ensures that models are not overly
penalized for trivial differences in output represen-
tation.

For boolean values, the function accepts dif-
ferent valid representations such as "true/false"
or "yes/no." In the case of categorical outputs,
string matching is applied, while date values un-
dergo parsing to check equivalence. Numerical
outputs are evaluated by extracting relevant digits
and rounding to two decimal places. List-based
outputs are assessed using a set comparison ap-
proach, allowing for minor differences in ordering.
The evaluation function has been iteratively refined
during the competition to be more lenient while
maintaining robustness. A manual review of lead-
ing systems was conducted before final ranking to
ensure fair assessment and identify discrepancies
that automated evaluation may overlook.

5 Results

Our system demonstrated exceptional performance,
ranking 1st in the "Small Open-Source Models"
category (≤ 8B parameters) (refer to Table 1). The
single LLM approach consistently outperformed
the CoT method, highlighting the importance of
maintaining logical consistency within a single
model. Additionally, our optimizations in prompt

4
https://huggingface.co/unsloth/Meta-Llama-3.

1-8B-Instruct-unsloth-bnb-4bit
5
https://huggingface.co/unsloth/codellama-7b-bnb-4bit

6
https://huggingface.co/unsloth/phi-4-unsloth-bnb-4bit

Model η DataBench DataBench Lite

LLaMA + CodeLLaMa

1 0.13 0.17
3 0.10 0.18
5 0.10 0.15
7 0.10 0.14

LLaMA + Phi-4

1 0.21 0.26
3 0.20 0.26
5 0.20 0.25
7 0.19 0.25

Phi-4 + CodeLLaMA

1 0.29 0.31
3 0.32 0.34
5 0.32 0.34
7 0.31 0.32

LLaMA

1 0.50 0.52
3 0.48 0.50
5 0.49 0.51
7 0.50 0.49

CodeLLaMA

1 0.55 0.57
3 0.55 0.57
5 0.54 0.57
7 0.55 0.55

Phi-4

1 0.70 0.70
3 0.71 0.72
5 0.71 0.70
7 0.69 0.70

Table 4: Ablation study on the validation dataset to
decide on the ideal number of rows to be provided to the
model. η is the number of rows chosen from the dataset
which is sampled and provided to the model. We choose
η based on the performance on both the datasets

engineering and execution-aware retry mechanisms
significantly improved efficiency and accuracy,
making our approach well-suited for real-world
tabular QA tasks. Detailed results and ablation
studies can be found in Table 4.

5.1 Key Findings

Our key findings through our ablations (Table 4)
include:

• The single LLM approach consistently outper-
formed the CoT method, highlighting the ben-
efits of maintaining logical consistency within
a unified model.

• Consolidating reasoning and code generation
into a single inference step reduced error prop-
agation and improved system stability.

• Minimizing the amount of table data passed to
the LLM optimized computational efficiency,
while maintaining performance.

• Optimizations in prompt engineering and
execution-aware retry mechanism contributed
to improvements in both speed and accuracy.
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• Our system is highly adaptable to diverse
datasets, ensuring robust performance across
a wide range of tabular QA tasks.

• Although there are five distinct types of possi-
ble answers, providing more than three exam-
ples does not yield any performance improve-
ment. We hypothesize that this behavior arises
from the limited context window available to
large language models (LLMs) to handle long
prompt templates.

• In particular, we observe that LLaMA-based
models tend to perform slightly better with
shorter prompts, and the Phi-4 model demon-
strates a stronger ability to handle longer
prompts.

5.2 Error Analysis

Error analysis revealed several recurring issues.
CodeLLaMA, when used in isolation for code gen-
eration, often produced syntactically incorrect or
semantically flawed code. This was particularly
evident in cases with complex queries requiring in-
tricate data manipulations. LLaMA struggled with
reasoning tasks, which led to incomplete or inaccu-
rate code generation. These findings reaffirmed our
decision to use a single LLM approach, which alle-
viated many of these issues by ensuring consistency
between reasoning and code generation.

Furthermore, retry mechanisms were essential
for handling edge cases and failed executions. In
future work, we plan to explore fine-tuning tech-
niques to improve the handling of more complex
queries and further reduce the occurrence of errors
in generated code.

6 Conclusion

Our system demonstrates the effectiveness of LLM-
driven code generation for zero-shot question an-
swering on tabular data. We highlight the advan-
tages of a unified LLM approach for maintaining
logical consistency and the importance of prompt
engineering for guiding model reasoning effec-
tively. Additionally, we emphasize the benefits
of minimizing LLM input for improved contextu-
alization, computational efficiency, and scalability.
Further exploration of fine-tuning techniques could
improve the generation of complex aggregation
queries and reduce errors in generated code.

Agentic systems have greater potential than what
has been portrayed in this work. While our current

system demonstrates the effectiveness of LLMs for
tabular QA, we recognize that further engineering
is needed to fully exploit the potential of agentic
systems in this domain. Future research will focus
on refining the agentic framework to enable more
complex reasoning and data manipulation capabili-
ties.
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A Appendix

A.1 Prompt Template
We present the prompt template which follows the system-user-assistant chat paradigm. The same
template was used for both Databench and Databench Lite datasets.

System

You are an expert Python data engineer.
Your task is to generate pandas code based on a structured reasoning process
You only generate code, no references or explanation - just code
You generate only 20 lines of code at max

User

Dataframe Schema:
<The schema of the dataset which would contain the column name and its data type>

Sample Rows:
<The first 3 rows of the dataset serialized into a list of dictionaries, where each dictionary
represents a row with column names as keys>

User Question:
<The question that is asked about the dataset>

Expected Output Format:
Generate runnable Python code that follows the given reasoning using pandas.
The code should assume that the dataframe is already loaded as `df`.
The final output should be stored in a variable named `result`.

The expected answer type is unknown, but it will always be one of the following:
* Boolean: True/False, "Y"/"N", "Yes"/"No" (case insensitive).
* Category: A value from a cell (or substring of a cell) in the dataset.
* Number: A numerical value from a cell or a computed statistic.
* List[category]: A list of categories (unique or repeated based on context). Format: ['cat',
'dog'].
* List[number]: A list of numbers.

Given the user question, you need to write code in pandas, assume that you already have df.
Generate only the code.

The assistant prompt was left blank during inference. The code obtained from the model would then be
run on the dataset to evaluate the answer to the question.
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