FactDebug at SemEval-2025 Task 7: Hybrid Retrieval Pipeline for Identifying Previously Fact-Checked Claims Across Multiple Languages

Evgenii Nikolaev, Ivan Bondarenko, Islam Aushev, Vasilii Krikunov, Andrei Glinskii, Vasily Konovalov, Julia Belikova


Abstract
The proliferation of multilingual misinformation demands robust systems for crosslingual fact-checked claim retrieval. This paper addresses SemEval-2025 Shared Task 7, which challenges participants to retrieve fact-checks for social media posts across 14 languages, even when posts and fact-checks are in different languages. We propose a hybrid retrieval pipeline that combines sparse lexical matching (BM25, BGE-m3) and dense semantic retrieval (pretrained and fine-tuned BGE-m3) with dynamic fusion and curriculum-trained rerankers. Our system achieves 67.2% crosslingual and 86.01% monolingual accuracy on the Shared Task MultiClaim dataset.
Anthology ID:
2025.semeval-1.284
Volume:
Proceedings of the 19th International Workshop on Semantic Evaluation (SemEval-2025)
Month:
July
Year:
2025
Address:
Vienna, Austria
Editors:
Sara Rosenthal, Aiala Rosá, Debanjan Ghosh, Marcos Zampieri
Venues:
SemEval | WS
SIG:
Publisher:
Association for Computational Linguistics
Note:
Pages:
2190–2196
Language:
URL:
https://preview.aclanthology.org/transition-to-people-yaml/2025.semeval-1.284/
DOI:
Bibkey:
Cite (ACL):
Evgenii Nikolaev, Ivan Bondarenko, Islam Aushev, Vasilii Krikunov, Andrei Glinskii, Vasily Konovalov, and Julia Belikova. 2025. FactDebug at SemEval-2025 Task 7: Hybrid Retrieval Pipeline for Identifying Previously Fact-Checked Claims Across Multiple Languages. In Proceedings of the 19th International Workshop on Semantic Evaluation (SemEval-2025), pages 2190–2196, Vienna, Austria. Association for Computational Linguistics.
Cite (Informal):
FactDebug at SemEval-2025 Task 7: Hybrid Retrieval Pipeline for Identifying Previously Fact-Checked Claims Across Multiple Languages (Nikolaev et al., SemEval 2025)
Copy Citation:
PDF:
https://preview.aclanthology.org/transition-to-people-yaml/2025.semeval-1.284.pdf