
Proceedings of the The 19th International Workshop on Semantic Evaluation (SemEval-2025), pages 2177–2182
July 31 - August 1, 2025 ©2025 Association for Computational Linguistics

CDHF at SemEval-2025 Task 9: A Multi-Task Learning Approach for Food
Hazard Classification

Chu Duong Huy Phuoc
University of Information Technology

Vietnam National University - Ho Chi Minh City, Vietnam
23521229@gm.uit.edu.vn

Abstract

We present our system in SemEval-2025 Task
9: Food Hazard Detection. Our approach fo-
cuses on multi-label classification of food recall
titles into predefined hazard and product cat-
egories. We fine-tune pre-trained transformer
models, comparing BERT and BART. Our re-
sults show that BART significantly outperforms
BERT, achieving an F1-score of 0.8033 dur-
ing development. However, in the final evalu-
ation phase, our system obtained an F1-score
of 0.7676, ranking 14th in Subtask 1. While
our performance is not among the top, our find-
ings highlight the importance of model choice
in food hazard classification. Future work can
explore additional improvements, such as en-
semble methods and domain adaptation.

1 Introduction

SemEval 2025 Task 9: The Food Hazard Detection
Challenge (Randl et al., 2025) focuses on classify-
ing food incident reports to identify hazards and
affected products. The task includes two sub-tasks:
(ST1) food hazard prediction and (ST2) hazard and
product vector detection.

We present a multi-task learning approach using
the facebook/bart-large-mnli (Lewis et al., 2020)
model to predict hazard and product categories.
Our system fine-tunes a transformer-based model
with a custom neural network featuring two clas-
sification heads for multi-label prediction. Exper-
imental results highlight the effectiveness of this
approach in food hazard detection. 1

2 Task and Background

The Food Hazard Detection task focuses on devel-
oping explainable classification models to analyze
the titles of food-incident reports collected from
web sources. These models aim to assist automated
systems, such as web crawlers, in identifying and

1https://github.com/fuocchu/CDHF_
SemEval-2025-Task-9

extracting food safety issues from online platforms,
including social media. Given the potential eco-
nomic and public health impact of food hazards,
ensuring transparency in these classification sys-
tems is essential.

2.1 Task Description

Figure 1: The blue boxes are model inputs; the orange
boxes are ground truth labels per sub-task. The number
on the right indicates unique values per label.

SemEval-2025 task 9: The Food Hazard Detection
with two main subtask: Subtask 1: category clas-
sification: In this subtask, the goal is to classify
a food-incident report into predefined categories.
Specifically, models must predict both the product
category (e.g., "meat, egg, and dairy products")
and the hazard category (e.g., "biological contam-
ination"). Since the dataset is highly imbalanced,
handling rare categories effectively is a key chal-
lenge.Subtask 2: vector classification: This sub-
task requires a more detailed prediction by iden-
tifying the exact product (e.g., "ice cream") and
hazard (e.g., "salmonella") mentioned in the report.
Instead of selecting from broad categories, models

2177

https://github.com/fuocchu/CDHF_SemEval-2025-Task-9
https://github.com/fuocchu/CDHF_SemEval-2025-Task-9


must extract precise labels, making this task more
complex. Performance is evaluated based on macro
F1, with a focus on hazard detection.

2.2 Related Work

Explainability in food hazard detection remains
underexplored despite its importance for trust and
decision-making. Existing research mainly focuses
on two types of explainability methods: model-
specific and model-agnostic approaches. Model-
specific methods are designed for particular models,
offering tailored explanations. For example, (As-
sael* et al., 2022) and (Pavlopoulos et al., 2022)
explored techniques that integrate explainability
within neural architectures. These methods en-
hance transparency but are limited to the models
they are built for. Model-agnostic approaches, such
as LIME (Ribeiro et al., 2016), provide explana-
tions that work across different models. They ap-
proximate model behavior by generating local ex-
planations, making them more flexible but some-
times less precise.

In this task, explainability is emphasized by re-
quiring participants to submit vector labels (ST2)
as justifications for their category classifications
(ST1). This ensures that predictions are inter-
pretable and supports better validation of food
safety risks.

2.

3 System Overview

Our system for the Food Hazard Detection task
focuses exclusively on Subtask 1 (ST1), which in-
volves classifying food-related hazard and prod-
uct categories based on textual data. We employ
a transformer-based multi-task learning approach
to handle both classification tasks simultaneously.
This section details the key components of our sys-
tem, including data preprocessing, model architec-
ture, training strategy, and evaluation.

3.1 Dataset

We use the dataset provided by the organizers,
which consists of 6,644 short texts related to food
recall incidents. Each text is a title extracted from
official food agency websites (e.g., FDA) and has
been manually labeled by two food science or food
technology experts. The text length ranges from 5
to 277 characters, with an average of 88 characters.
All texts are in English and are annotated with a

2https://zenodo.org/records/10891602

hazard category and a product category. Upon task
completion, the full dataset will be released under
the Creative Commons BY-NC-SA 4.0 license on
(Randl et al., 2024).

Figure 3: A sample of the dataset.

3.2 Model Architecture

Figure 4: Simplified architecture based on BART.

We use BART (facebook/bart-large-mnli) (Lewis
et al., 2020) as the backbone for food hazard classi-

2178

https://zenodo.org/records/10891602


Input Tokenizer
(Bart-large)

Text
Embeddings

Multi-Task
Classification

Predict
Output

Preprocessing

Figure 2: Our System Pipeline.

fication. BART is a transformer-based autoencoder
pretrained for sequence-to-sequence tasks, making
it well-suited for text classification. In our model,
BART serves as an encoder to extract contextual
representations from input text. The output from
the [CLS] token is passed through two separate
linear classifiers to predict the hazard category (10
classes) and product category (22 classes). BART
enables the model to capture contextual informa-
tion effectively, improving classification accuracy
despite the imbalanced label distribution in the
dataset.

3.3 Multi-Task Classification
Our model performs two parallel classification
tasks:The hazard-category classifier predicts one of
10 possible hazard categories.The product-category
classifier predicts one of 22 product categories.
Both classifiers share the same base model but
have separate fully connected (linear) layers for
final classification. The CLS token representation
is used as input to these classification layers. For-
mally, given an input text x, we obtain:

ŷhazard = softmax(Whh+ bh)

ŷproduct = softmax(Wph+ bp)

where Wh,Wp and bh, bp are learnable weight
and bias parameters. The dataset is highly imbal-
anced, with certain classes appearing much more
frequently than others. To address this, we use
label encoding to convert categorical labels into
numerical indices. Apply shuffling during training
to improve generalization. Use early stopping to
prevent overfitting.

4 Experimental Setup

We use the dataset provided by the organizers,
which consists of 6,644 short texts. The data is split

into training, validation, and test sets. The training
set is used for model training, the validation set
for hyperparameter tuning and early stopping, and
the test set for final evaluation. Each text is tok-
enized using the BART-large-MNLI (Lewis et al.,
2020) tokenizer with a maximum sequence length
of 128. Labels are encoded using Scikit-learn’s
LabelEncoder, and missing labels in the valida-
tion and test sets are assigned default values. We
fine-tune the BART-large-MNLI model for multi-
label classification with a batch size of 16 and the
AdamW optimizer (learning rate 2×10−5). A learn-
ing rate scheduler (ReduceLROnPlateau) adjusts
the learning rate based on validation loss. Early
stopping is applied with a patience of 3 epochs, and
training runs for up to 20 epochs. Our implementa-
tion uses Transformers (Wolf et al., 2020), Torch
(Paszke et al., 2019), Scikit-learn (Pedregosa et al.,
2011), and Pandas.

4.1 Evaluation Mectric

Task organizers compute the performance for ST1
and ST2 by calculating the macro-F1-score on
the participants’ predicted labels (hazards_pred
& products_pred) using the annotated labels
(hazards_true & products_true) as ground
truth. The F1-score is calculated as follows:

F1 = 2× Precision × Recall
Precision + Recall

where Precision and Recall are defined as:

Precision =
TP

TP + FP
, Recall =

TP
TP + FN

where TP, FP, and FN represent true positives,
false positives, and false negatives, respectively.

2179



Phase Team Subtask 1 (F1)

Evaluation
Anastasia 0.8223

MyMy 0.8112
SRCB 0.8039

PATeam 0.8017
HU 0.7882

CDHF (ours Top 14) 0.7646

Post evaluation
Anastasia 0.8223

UIT-NaiveNotNice 0.8153
MyMy 0.8112

dml 0.8049
SRCB 0.8039

Table 1: Top 5 results of Subtask 1.

5 Results

Our system did not achieve a high ranking in the
competition, placing 14th in Subtask 1. However,
we observed notable improvements in performance
through model selection. Initially, using BERT re-
sulted in a macro-F1 score of 0.71. By switching
to BART, performance increased significantly to
0.8033 on the validation set. Finally, in the evalua-
tion phase, our system achieved a macro-F1 score
of 0.7676. To further analyze the effectiveness of
our approach, we compared different model archi-
tectures. The results confirm that leveraging a more
powerful pretrained model such as BART provides
a substantial boost over BERT, likely due to its
stronger contextual representation and sequence-to-
sequence training paradigm.

For error analysis, we examined some misclassi-
fied examples and found that many errors involved
ambiguous or rare hazard categories, suggesting
that our model struggles with underrepresented
classes. A confusion matrix could provide more
insight into these misclassifications, highlighting
specific categories where performance can be im-
proved. Future improvements could focus on han-
dling class imbalance, exploring data augmentation
techniques, or incorporating external knowledge
sources to enhance classification accuracy.

6 Conclusion

In this paper, we presented our approach for Sub-
task 1 of the Food Hazard Detection shared task.
Our system leveraged pre-trained transformer mod-
els fine-tuned for multi-label classification, focus-

ing on identifying food hazard categories and af-
fected product types. Through our experiments,
we observed a significant performance improve-
ment when switching from BERT to BART, with
the F1-score increasing from 0.71 to 0.8033 on the
development set. This result highlights the advan-
tage of using more advanced transformer architec-
tures for text classification tasks. However, in the
final evaluation phase, our system’s performance
slightly declined to an F1-score of 0.7676, rank-
ing 14th overall. While our model did not achieve
top-tier rankings, our findings underscore the po-
tential of transformer-based approaches for food
hazard classification. The results suggest that fur-
ther optimizations, such as better handling of class
imbalances, domain adaptation, or ensemble meth-
ods, could further enhance performance in future
iterations of this task.

7 Future Work

While our multi-task design with two classification
heads achieved reasonable results, we plan to ex-
plore more advanced architectures, such as shared
bottlenecks or task-specific modules, to better cap-
ture task differences. The model’s difficulty with
rare and similar classes suggests applying class-
balanced losses, targeted augmentation, and do-
main adaptation to improve generalization.

8 Limitations

Despite the improvements gained from using
BART, our system still faced several challenges.
First, our performance remained significantly lower

2180



than the top-ranked teams, suggesting that further
enhancements are needed, such as better prepro-
cessing, data augmentation, or more sophisticated
model architectures. Second, our approach did not
fully leverage domain-specific knowledge, which
might have contributed to misclassifications. Fi-
nally, we did not explore ensemble methods, which
could have further improved robustness and gener-
alization. Future work could focus on addressing
these limitations to develop a more effective food
hazard detection system.

References
Yannis Assael*, Thea Sommerschield*, Brendan

Shillingford, Mahyar Bordbar, John Pavlopoulos,
Marita Chatzipanagiotou, Ion Androutsopoulos,
Jonathan Prag, and Nando de Freitas. 2022. Restor-
ing and attributing ancient texts with deep neural
networks. Nature.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020. Bart:
Denoising sequence-to-sequence pre-training for nat-
ural language generation, translation, and compre-
hension. Proceedings of ACL.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Te-
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
Junjie Bai, and Soumith Chintala. 2019. Pytorch:
An imperative style, high-performance deep learning
library. Advances in Neural Information Processing
Systems (NeurIPS).

John Pavlopoulos, Leo Laugier, Alexandros Xenos, Jef-
frey Sorensen, and Ion Androutsopoulos. 2022. From
the detection of toxic spans in online discussions to
the analysis of toxic-to-civil transfer. In Proceedings
of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 3721–3734, Dublin, Ireland. Association for
Computational Linguistics.

Fabian Pedregosa, Gael Varoquaux, Alexandre Gram-
fort, Vincent Michel, Bertrand Thirion, Olivier Grisel,
Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vin-
cent Dubourg, Jake Vanderplas, Alexandre Passos,
David Cournapeau, Matthieu Brucher, Edouard Per-
rot, and Eric Duchesnay. 2011. Scikit-learn: Ma-
chine learning in python. Journal of Machine Learn-
ing Research, 12:2825–2830.

Korbinian Randl, Manos Karvounis, George Marinos,
John Pavlopoulos, Tony Lindgren, and Aron Henriks-
son. 2024. Food recall incidents.

Korbinian Randl, John Pavlopoulos, Aron Henriksson,
Tony Lindgren, and Juli Bakagianni. 2025. SemEval-
2025 task 9: The food hazard detection challenge. In
Proceedings of the 19th International Workshop on
Semantic Evaluation (SemEval-2025), Vienna, Aus-
tria. Association for Computational Linguistics.

Marco Ribeiro, Sameer Singh, and Carlos Guestrin.
2016. “why should I trust you?”: Explaining the pre-
dictions of any classifier. In Proceedings of the 2016
Conference of the North American Chapter of the
Association for Computational Linguistics: Demon-
strations, pages 97–101, San Diego, California. As-
sociation for Computational Linguistics.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtowicz,
Joe Davison, Sam Shleifer, Patrick von Platen, Clara
Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le
Scao, Sylvain Gugger, Mariama Drame, Quentin
Lhoest, and Alexander M. Rush. 2020. Transform-
ers: State-of-the-art natural language processing. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP):
System Demonstrations.

A Bart Model Architecture

BART (Bidirectional and Auto-Regressive Trans-
former) is a denoising autoencoder that combines
a bidirectional encoder (like BERT) and an autore-
gressive decoder (like GPT). The encoder processes
the full input context, while the decoder generates
text sequentially from left to right. During train-
ing, BART applies text corruption techniques such
as token masking, deletion, and sentence permuta-
tion, then learns to reconstruct the original text. It
is widely used for text classification, summariza-
tion, and generation tasks. During training, BART
applies text corruption techniques such as token
masking, deletion, and sentence permutation, then
learns to reconstruct the original text. It is widely
used for text classification, summarization, and
generation tasks.

2181

https://arxiv.org/abs/1910.13461
https://arxiv.org/abs/1910.13461
https://arxiv.org/abs/1910.13461
https://arxiv.org/abs/1910.13461
https://arxiv.org/abs/1912.01703
https://arxiv.org/abs/1912.01703
https://arxiv.org/abs/1912.01703
https://doi.org/10.18653/v1/2022.acl-long.259
https://doi.org/10.18653/v1/2022.acl-long.259
https://doi.org/10.18653/v1/2022.acl-long.259
https://jmlr.org/papers/v12/pedregosa11a.html
https://jmlr.org/papers/v12/pedregosa11a.html
https://doi.org/10.5281/zenodo.10891602
https://doi.org/10.18653/v1/N16-3020
https://doi.org/10.18653/v1/N16-3020
https://arxiv.org/abs/1910.03771
https://arxiv.org/abs/1910.03771


Figure 5: Bart model explained

2182


