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Abstract
In this work, we introduce an ensemble frame-
work for multi-emotion detection that com-
bines the strengths of transformer-based mod-
els with a rule-based lexical system. Our ap-
proach identifies five key emotions—anger, sad-
ness, joy, surprise, and fear—using a binary
labeling scheme. We employ multiple BERT
variants, including DeBERTa, RoBERTa, and
BERT Large Uncased, each optimized through
hyperparameter tuning. Complementing these
models is a lexical component that assigns sen-
timent scores via an emotional lexicon and ap-
plies limited grammatical pattern analysis (e.g.,
noun+verb+adverb structures) to capture nu-
anced expressions. The final predictions result
from a weighted ensemble approach, where
emotion-specific weights balance data-driven
and rule-based contributions. Experimental re-
sults show that our method of ensembling using
specific outperforms individual models and tra-
ditional classifiers on benchmark datasets.

1 Introduction

Emotion detection plays a vital role in natural
language processing (NLP) applications such as
sentiment analysis, mental health monitoring, and
human–computer interaction. Unlike traditional
classification tasks that label text as positive, neg-
ative, or neutral, real-world scenarios require
identifying specific emotions like anger, sadness,
joy, surprise, and fear, which often overlap and
are highly context-dependent. In this study, we
fine-tune multiple transformer-based models, in-
cluding DeBERTa, RoBERTa, and BERT Large
Uncased, carefully optimizing hyperparameters
to enhance classification performance. To fur-
ther strengthen predictions, we incorporate a rule-
based lexical system that assigns sentiment scores
using an emotional lexicon and refines outputs
based on part-of-speech (POS) patterns, particu-
larly noun–verb–adverb–adjective combinations.

By combining deep learning architectures with lin-
guistic knowledge, our approach improves both the
robustness and interpretability of emotion classifi-
cation models.

2 Related Works

The shift from statistical models to deep learn-
ing has significantly improved multi-label emo-
tion classification (Le et al., 2023). Transformer
architectures like BERT enhance contextual un-
derstanding and label dependencies (Huang et al.,
2023b), while multi-modal approaches combining
text, audio, and visual cues further boost perfor-
mance (Zhang et al., 2022). Fusion techniques,
such as integrating Wav2Vec 2.0 with BERT, have
also shown promise (Sarma et al., 2022). Context-
aware models refine emotion detection by capturing
nuanced sentiment shifts (Deborah et al., 2020).

Linguistic features further aid classification.
POS tagging improves sentiment polarity detec-
tion (Chen et al., 2021), while hybrid models com-
bining rule-based and deep learning approaches
enhance robustness (Sivanaiah et al., 2022). Fine-
tuned transformers like RoBERTa and DeBERTa
achieve state-of-the-art results (Gupta et al., 2023),
with lexicon-based scoring further refining senti-
ment interpretation (Kumar et al., 2023). These
techniques collectively strengthen emotion classifi-
cation frameworks.

3 Dataset Description

This dataset, derived from the BRIGHTER corpus
(Muhammad et al., 2025b), is designed for English-
language emotion classification. Each sample con-
sists of a unique identifier, a text string, and five
binary-labeled emotion categories: anger, fear, joy,
sadness, and surprise. Some examples from the
datasets are given below in Table 1, to illustrate the
representation in all the files, which were used to
train the models.
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id text anger fear joy sadness surprise
0001 Colorado, middle of nowhere. 0 1 0 0 1
0002 Then the screaming started. 0 1 0 1 1
0003 It was one of my most shameful experiences. 0 1 0 1 0

Table 1: Example data from the training dataset for English, Track A.

As you can see, each emotion label is assigned
either 0 (not present) or 1 (present), allowing for
multi-label classification. This dataset is valuable
for developing emotion recognition models that
capture multiple emotions in a single text sample.

Subset Number of Samples
Train 2,769
Dev 117
Test 2,768

Table 2: Dataset Split

In Table 2, the number of rows provided in
the datasets released for each phase is given.
The Dataset paper and the task description pa-
per(Muhammad et al., 2025a) can be referred for
the actual columns and the amount of texts positive
for each emotion.

4 Methodology

We propose an ensemble approach for multi-label
emotion detection that integrates several fine-tuned
BERT-based models, traditional classifiers, and a
lexical rule-based module.

Figure 1: Workflow Diagram of the Process

Data Preprocessing: Text is normalized by low-
ercasing, removing punctuation, and filtering stop-
words. Tokenization is performed using BERT’s
WordPiece tokenizer.(Rust et al., 2020)

Modeling: Multiple BERT variants (BERT-base,
BERT-large, DeBERTa, and RoBERTa) (Vaswani

et al., 2017) are fine-tuned using different hyper-
parameters—such as learning rates, batch sizes,
and train-test splits—to identify optimal configura-
tions. In parallel, traditional classifiers (e.g., Naive
Bayes, logistic regression and SVM) are trained
on vectorized representations to serve as baseline
comparisons.

Lexical Analysis and Ensembling: A lexi-
cal module assigns sentiment scores based on
an emotional lexicon (Deborah et al., 2018)
and limited grammatical pattern analysis (e.g.,
noun+verb+adverb+adjective structures). The pre-
dictions from the BERT models, traditional clas-
sifiers, and lexical component are then combined
using a weighted averaging scheme, with emotion-
specific weights to balance their contributions.

5 System Overview

5.1 Transformer-based Models
We leverage transformer-based architectures for
contextual word representations and sentiment clas-
sification. The primary models used include BERT-
Large-Uncased, DeBERTa, and RoBERTa. These
models are pre-trained and fine-tuned.

5.1.1 BERT Model
BERT (Bidirectional Encoder Representations
from Transformers) (Devlin et al., 2018) is a
transformer-based model that learns bidirectional
contextual embeddings. Given an input sequence
X = {x1, x2, ..., xn}, BERT processes it using
multi-head self-attention:

H = SelfAttention(XWQ, XWK , XWV ) (1)

where WQ, WK , and WV are the query, key, and
value projection matrices. The final representation
for classification is obtained from the [CLS] token
embedding:

y = softmax(WhHCLS + b) (2)

where y represents the predicted class distribu-
tion.
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5.1.2 DeBERTa Model
DeBERTa (Decoding-enhanced BERT with disen-
tangled attention) (He et al., 2021) enhances the
self-attention mechanism by incorporating relative
positional embeddings and disentangled matrix rep-
resentations. The attention mechanism follows:

Aij =
QiK

T
j√
d

+ Pij (3)

where Pij is the relative positional encoding.
The final hidden states are passed to a classifier
for sentiment and emotion prediction.

5.1.3 RoBERTa
RoBERTa(Liu et al., 2019), another state-of-the-art
transformer variant, refines BERT-based embed-
dings using an optimized pre-training objective. It
follows a similar transformer formulation but in-
corporates additional linguistic priors to enhance
text classification performance.

5.2 Lexical Processing: POS Tagging using
Hidden Markov Model

POS tagging plays a crucial role in sentiment
understanding by identifying adjectives and ad-
verbs. We utilize a Hidden Markov Model
(HMM) for POS tagging, considering observed
word sequences {w1, w2, ..., wn} and hidden tag
sequences {t1, t2, ..., tn}.

The probability of a tag sequence given a word
sequence is modeled as:

P (T |W ) =
n∏

i=1

P (wi|ti)P (ti|ti−1) (4)

where P (wi|ti) is the emission probability and
P (ti|ti−1) is the transition probability. The optimal
tag sequence is found using the Viterbi algorithm:

vk(i) = max
ti−1

[vti−1(i−1)P (ti|ti−1)P (wi|ti)] (5)

This tagging process enhances sentiment anal-
ysis by identifying sentiment-bearing words. For
POS tagging methodology, we refer to this(Great
Learning Team, 2023).

5.3 Sentiment and Emotion Score
Computation

To determine sentiment scores, we assign polarity
scores to adjectives, adverbs, and other sentiment-

relevant words using SentiWordNet and a pre-
trained emotion corpus. The sentiment score S of
a sentence is calculated as:

S =
∑

w∈W
(pos(w)− neg(w)) · I(w) (6)

where pos(w) and neg(w) are sentiment scores
from SentiWordNet, and I(w) is an indicator func-
tion based on POS tagging.

For emotion classification, an additional emo-
tion lexicon is used to assign scores to words cor-
responding to the five emotions: anger, fear, joy,
sadness, and surprise. The emotion score Ei for
each emotion i is computed as:

Ei =
∑

w∈W
Pi(w) · I(w) (7)

where Pi(w) is the probability of word w ex-
pressing emotion i based on the corpus.

6 Accuracy Metrics

Since each emotion category is treated as a binary
classification problem (0 or 1), and the dataset
exhibits class imbalance, we use Macro F1-score
as the primary ranking metric. This ensures that
both the minority and majority classes contribute
equally to the overall performance(Sokolova et al.,
2006).

Additionally, we evaluate the model using:

• Precision: The proportion of correctly pre-
dicted positive instances among all predicted
positives.

• Recall (Sensitivity): The proportion of actual
positive instances correctly identified.

• Specificity: The proportion of actual negative
instances correctly identified.

• F1-score: The harmonic mean of precision
and recall, balancing both aspects.

The Macro F1-score is computed as:

Macro F1 =
1

2

∑

c∈{0,1}

2× Precisionc × Recallc
Precisionc + Recallc

(8)
This evaluation approach ensures a balanced as-

sessment of the model’s ability to detect both the
presence and absence of emotions in the data.

188



Model Epochs Rate Train-Test Threshold
F1 - Scores (%)

Anger Sadness Joy Fear Surprise

L - Uncased

3 1e-5 0.7-0.3 0.455 55.1 75.8 67.4 72.3 64.2

3 2e-5 0.7-0.3 0.555 54.8 75.2 67.1 71.9 63.8

5 1e-5 0.7-0.3 0.455 55.3 75.9 67.5 72.1 64.5

5 1e-5 0.8-0.2 0.555 53.2 73.8 66.2 69.7 62.9

DeBERTa

3 1e-5 0.7-0.3 0.455 57.4 78.5 69.2 75.1 66.3

3 2e-5 0.7-0.3 0.555 57.0 78.1 68.9 74.7 65.9

5 1e-5 0.7-0.3 0.455 57.2 78.3 69.0 74.9 66.1

5 1e-5 0.8-0.2 0.555 55.3 76.1 67.8 72.5 64.7

RoBERTa

3 1e-5 0.7-0.3 0.455 59.3 81.4 70.0 77.0 67.8

3 2e-5 0.7-0.3 0.555 59.0 81.0 69.7 76.8 67.5

5 1e-5 0.7-0.3 0.455 59.2 81.2 69.8 76.9 67.6

5 1e-5 0.8-0.2 0.555 57.1 78.8 68.2 74.2 65.9

Table 3: Performance comparison of BERT-Large Uncased, DeBERTa, and RoBERTa on emotion classification
with threshold variation and different hyperparameters, including Surprise emotion.

7 Results

The models produced continuous scores rather than
direct class labels, requiring thresholds for classifi-
cation. As seen from Table 3, the best-performing
thresholds were 0.455 and 0.555. The 0.455 thresh-
old generally worked better, while 0.5 or more
showed slight improvements only in certain places.
RoBERTa achieved the best accuracy across all
emotions, with its highest performance observed at
3 epochs, a 1e-5 learning rate, and a 0.455 thresh-
old. DeBERTa followed closely, while BERT-
Large Uncased performed slightly lower. The 70-
30 train-test split yielded better generalization than
80-20, which had minor drops due to fewer test
samples.

Emotion Log Regr. Naïve Bayes SVM

Anger 57.8 55.2 60.1

Sadness 65.8 63.4 67.1

Joy 59.5 57.2 60.8

Fear 64.0 60.3 65.5

Surprise 55.3 52.8 56.9

Table 4: Binary classification accuracy (%) of traditional
models on emotion detection

Traditional machine learning models struggled
with emotion classification. Logistic Regression

and Naïve Bayes showed lower performance due
to their simplistic assumptions, particularly for Sur-
prise and Anger, where contextual understanding
is crucial. SVM performed slightly better due to its
decision boundary optimization but still fell short
of deep learning approaches. These results em-
phasize the need for transformer-based models in
nuanced sentiment classification tasks.

7.1 Weighted Fusion of BERT Variants and
Lexical Scores

To improve classification accuracy, we combined
predictions from multiple transformer models
along with a normalized lexical score. The final
sentiment score for each emotion is computed as:

Sfinal = w1SB1 + w2SB2 + w3SB3 + w4SL (9)

where:

• SB1 represents RoBERTa,

• SB2 represents DeBERTa,

• SB3 represents BERT-Large Uncased,

• SL represents the normalized lexical score.

Since lexical scores have different scales than
transformer-based predictions, they are first normal-
ized before integration to ensure balanced contribu-
tion. The lexical score primarily captures sentiment
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words that transformers might overlook, which is
why it has a fixed weight of 0.10 in all cases.

Table 5 presents the optimized weight distribu-
tion along with the F1-scores achieved on unseen
test data in the Codabench SemEval Task 11 com-
petition( user id vsl366 ).

Emotion B1 B2 B3 L F1 (%)
Anger 0.45 0.30 0.15 0.10 71.43
Fear 0.48 0.28 0.14 0.10 70.69
Joy 0.40 0.35 0.15 0.10 66.67

Sadness 0.50 0.25 0.15 0.10 72.73
Surprise 0.38 0.32 0.20 0.10 64.41
Overall - 69.18

Table 5: Optimized weight distribution and F1-score for
model fusion on unseen test data (Codabench SemEval)

This weighted approach balances the strengths
of deep learning models and lexical methods, lead-
ing to improved emotion classification accuracy on
unseen test data.

7.2 Misclassification Analysis

Despite achieving a macro F1-score of 69.18%, our
ensemble model exhibited specific misclassifica-
tion patterns that reveal the underlying challenges
in multi-label emotion detection:

• Emotion Overlap (Fear vs. Sadness): Emo-
tionally ambiguous terms such as “worried”
or “lost” were frequently misclassified due to
overlapping lexical cues. Transformer models,
which depend on attention-based embeddings,
often conflated fear and sadness when senti-
ment intensity was subtle or underspecified,
resulting in false negatives.

• Ambiguity in Surprise: The emotion sur-
prise often suffered from contextual underrep-
resentation. Sentences like “I can’t believe it!”
could imply either joy or fear, and without
narrative context, sentence-level models de-
faulted to frequent sentiment mappings, lead-
ing to misclassification. This indicates that
surprise detection requires discourse-level un-
derstanding.

• Underperformance on Anger: Traditional
models like Logistic Regression and Naïve
Bayes showed weak performance on anger
due to their inability to detect implicit cues
like sarcasm or passive aggression. Even

transformer models required careful thresh-
old tuning to differentiate anger from related
sentiments like frustration. Although lexical
rules identified strong markers (e.g., “furious”,
“enraged”), they failed to capture indirect ex-
pressions, reducing classification accuracy.

These patterns underscore that while lexical
rules strengthen direct sentiment detection, they
are not sufficient for handling context-dependent or
pragmatically subtle emotional cues. Our ensem-
ble approach mitigates some of these issues, but
further improvements may require discourse-aware
modeling or multimodal inputs.

7.3 Comparison with Previous SemEval Tasks

Our system achieved a macro F1-score of 69.18%
on multi-label emotion detection across five cat-
egories using only textual input. In contrast,
SemEval-2019 Task 3 (EmoContext) focused
on three coarse emotions—happy, sad, and an-
gry—and the top-performing BiLSTM-based sys-
tem reached a micro F1-score of 72.59% (Smetanin,
2019). SemEval-2020 Task 8 (Memotion Anal-
ysis) addressed multimodal sentiment in memes,
with best macro F1-scores of 0.35 (sentiment),
0.51 (emotion), and 0.32 (intensity) (Sharma et al.,
2020).

SemEval-2024 Task 3 explored a different chal-
lenge: multimodal emotion-cause pair extraction.
Top systems like NUS-Emo (Luo et al., 2024) and
MIPS (Cheng et al., 2024) reported weighted F1-
scores around 34%, but these reflect a different
task and modality. In this context, our strong
performance on a fine-grained, text-only classifi-
cation task highlights the continued relevance of
transformer-based and lexically-enriched models
in core affective computing problems.

8 Conclusion

Our study demonstrates that even the best
transformer-based models exhibit varying levels
of effectiveness depending on the emotion being
classified. Some emotions, such as joy, are easier
to detect due to explicit lexical indicators, whereas
others, like sadness, are more nuanced and context-
dependent. This explains why different BERT vari-
ants perform differently across emotions—some
capture explicit sentiment cues well, while others
excel at detecting subtler patterns(Yenumulapalli
et al., 2023).
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Additionally, our integration of lexical features
proved valuable in cases where transformers strug-
gled, particularly in scenarios where sentiment
words were strong indicators. Although lexical-
based models alone lack contextual understanding,
their inclusion as a normalized feature significantly
boosted classification performance for certain emo-
tion categories.

Our experiments also emphasized the role of hy-
perparameters in optimizing performance. Weight
balancing across different BERT variants and lexi-
cal scores was crucial in achieving an optimal fu-
sion model. The hyperparameters were fine-tuned
through multiple iterations, ultimately selecting a
distribution that maximized macro-F1 scores.

Finally, the evaluation on unseen test data from
the Codabench SemEval competition validated the
robustness of our approach. The fusion method con-
sistently outperformed individual models, demon-
strating the advantage of leveraging diverse senti-
ment detection techniques.

9 Scope and Limitations

While our approach significantly improves senti-
ment classification, there are certain limitations:

• Lexical Corpus Size: The lexical resource
used for sentiment analysis was relatively
small. Expanding this corpus with domain-
specific words could further improve classifi-
cation accuracy.

• Transformer Architecture Constraints: Al-
though transformer models are state-of-the-
art, their reliance on learned embeddings can
still lead to misclassification of nuanced emo-
tions. Exploring hybrid models that incorpo-
rate commonsense reasoning or multimodal
approaches (e.g., audio-visual sentiment anal-
ysis) could enhance results.

• Computational Cost: Large transformer-
based models require significant computa-
tional resources for training and inference. Ef-
ficient pruning techniques or knowledge dis-
tillation could help in reducing the model size
while maintaining accuracy.

Despite these limitations, the study highlights
the potential of weighted model fusion in improv-
ing emotion detection across diverse text samples,
and also the incorporation of lexical rules which
often helps increasing the accuracy by providing
contexts.

10 Ethical Considerations

Sentiment analysis models can inherit biases from
training data, potentially reinforcing stereotypes.
Regular audits and diverse representation help miti-
gate these risks. Moreover, responsible AI policies
are necessary to prevent misuse in areas like social
media and advertising.(Huang et al., 2023a)
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