pingan-team at SemEval-2025 Task 2: LoRA-Augmented Qwen2.5 with Wikidata-Driven Entity Translation

Diyang Chen


Abstract
This paper presents our solution for SemEval-2025 Task 2 on entity-aware machine translation. We propose a parameter-efficient adaptation framework using Low-Rank Adaptation (LoRA) to fine-tune the Qwen2.5-72B model, enabling effective knowledge transfer while preserving generalization capabilities. To address data scarcity and entity ambiguity, we design a Wiki-driven augmentation pipeline that leverages Wikidata’s multilingual entity mappings to generate synthetic training pairs. Our system achieves state-of-the-art performance across 10 languages, securing first place in the competition. Experimental results demonstrate significant improvements in both translation quality (COMET) and entity accuracy (M-ETA).
Anthology ID:
2025.semeval-1.268
Volume:
Proceedings of the 19th International Workshop on Semantic Evaluation (SemEval-2025)
Month:
July
Year:
2025
Address:
Vienna, Austria
Editors:
Sara Rosenthal, Aiala Rosá, Debanjan Ghosh, Marcos Zampieri
Venues:
SemEval | WS
SIG:
Publisher:
Association for Computational Linguistics
Note:
Pages:
2065–2070
Language:
URL:
https://preview.aclanthology.org/transition-to-people-yaml/2025.semeval-1.268/
DOI:
Bibkey:
Cite (ACL):
Diyang Chen. 2025. pingan-team at SemEval-2025 Task 2: LoRA-Augmented Qwen2.5 with Wikidata-Driven Entity Translation. In Proceedings of the 19th International Workshop on Semantic Evaluation (SemEval-2025), pages 2065–2070, Vienna, Austria. Association for Computational Linguistics.
Cite (Informal):
pingan-team at SemEval-2025 Task 2: LoRA-Augmented Qwen2.5 with Wikidata-Driven Entity Translation (Chen, SemEval 2025)
Copy Citation:
PDF:
https://preview.aclanthology.org/transition-to-people-yaml/2025.semeval-1.268.pdf