
Proceedings of the The 19th International Workshop on Semantic Evaluation (SemEval-2025), pages 2059–2064
July 31 - August 1, 2025 ©2025 Association for Computational Linguistics

JU-CSE-NLP’25 at SemEval-2025 Task 4: Learning to Unlearn LLMs

Arkajyoti Naskar, Samitinjaya, Dipankar Das, Sivaji Bandyopadhyay
Jadavpur University, Kolkata, India

{arkajyoti2708, samitgupta03, dipankar.dipnil2005, sivaji.cse.ju}@gmail.com

Abstract

Large Language Models (LLMs) have achieved
enormous success recently due to their abil-
ity to understand and solve various non-trivial
tasks in natural language. However, they have
been shown to memorize their training data
which, among other concerns, increases the
risk of the model regurgitating creative or pri-
vate content, potentially leading to legal issues
for the model developer and/or vendors. Such
issues are often discovered post-model training
during testing or red teaming. While unlearn-
ing has been studied for some time in classifica-
tion problems, it is still a relatively underdevel-
oped area of study in LLM research since the
latter operates in a potentially unbounded out-
put label space. Specifically, robust evaluation
frameworks are lacking to assess the accuracy
of these unlearning strategies. In this challenge,
we aim to bridge this gap by developing a com-
prehensive evaluation challenge for unlearning
sensitive datasets in LLMs.

1 Introduction

Large Language Model (LLM) unlearning is selec-
tively removing specific knowledge from a trained
model while retaining its general capabilities. This
is crucial in scenarios where models inadvertently
memorize sensitive information, contain outdated
or incorrect data, or need to comply with user
requests for data removal under regulations like
GDPR. Unlike traditional model retraining, which
is computationally expensive and impractical for
large-scale models, efficient unlearning methods
seek to erase targeted knowledge with minimal
computational overhead.

Our system employs a two-pronged approach to
tackle this challenge: Normalized Gradient Dif-
ference (NGDiff) for selective unlearning and Au-
toLR for dynamic learning rate adaptation. NGDiff
modifies model parameters by computing the gradi-
ent differences between retain and forget datasets,

ensuring targeted forgetting while minimizing un-
intended knowledge loss. This method allows
the model to maintain critical learned information
while efficiently removing specific instances.

AutoLR enhances this process by optimizing the
learning rate through quadratic loss fitting. This
allows the system to dynamically adapt its updates
for faster convergence and stability. For every 10
iteration, AutoLR evaluates the model’s loss behav-
ior with different learning rates and selects the opti-
mal value to ensure stable and effective parameter
updates. The combination of NGDiff and AutoLR
makes our system an efficient and scalable solution
for the problem of selective unlearning.

Through our participation in this task, we ob-
served that applying NGDiff with AutoLR signifi-
cantly improved unlearning efficiency compared to
static learning rate approaches.

However, challenges remained, particularly in
handling complex QA examples where forgetting
was less effective. Instances involving long-context
dependencies or indirect knowledge retrieval were
harder to unlearn, suggesting that additional re-
finements to the gradient normalization process
could further enhance performance. Additionally,
we noted that aggressively tuning AutoLR in early
epochs sometimes led to instability, indicating the
need for more adaptive thresholding techniques.

2 Task Description

The challenge covered three sub-tasks spanning
different document types:

1. Subtask 1: Long-form synthetic creative doc-
uments spanning different genres.

2. Subtask 2: Short-form synthetic biographies
containing personally identifiable information
(PII), including fake names, phone numbers,
SSNs, email, and home addresses.

2059

3. Subtask 3: Real documents sampled from the
target model’s training dataset.

For each task,[Ramakrishna et al., 2025b] there
were two types of evaluation - Sentence Com-
pletion and Question Answering (QA). A trained
Large Language Model (LLM) was provided to
memorize documents from all three tasks. For
each subtask, there were specific Retain (i.e., doc-
uments the model should retain in memory) and
Forget sets (i.e., documents the model should for-
get) along with the target model. The primary task
was to develop an algorithm to unlearn the infor-
mation present in the Forget set without affecting
the information present in the Retain set.

3 Related Work

Several unlearning methods have been explored,
each addressing different challenges in forgetting
specific information while maintaining generaliz-
ability.

3.1 Gradient Difference
Gradient difference methods compute the differ-
ence between gradients from the retain and for-
get datasets to selectively adjust model parameters.
The core idea is to reduce the model’s reliance
on forget-set data while ensuring minimal impact
on retain-set performance. The standard gradient
difference formulation is given by:

gdiff = gR − gF (1)

where gR and gF are the gradients computed from
the retain and forget datasets, respectively. This
method updates the model parameters by applying
the computed gradient difference, effectively coun-
teracting the influence of the forget set.[Bu et al.,
2024]

3.2 Gradient Ascent
Gradient ascent unlearning reverses the learning
process by updating model parameters in the oppo-
site direction of gradients computed on the forget
set. While effective for aggressive forgetting, this
method risks instability and can cause model diver-
gence if not carefully controlled.

θt+1 = θt + η∇θLF (θt) (2)

where LF (θt) is the loss on the forget dataset, η
is the learning rate, and ∇θ represents the gradi-
ent with respect to model parameters.[Ginart et al.,
2019]

3.3 KL Minimization
Kullback-Leibler (KL) divergence minimization un-
learning aims at aligning the model’s output dis-
tribution after unlearning with a desired target dis-
tribution. This method is particularly effective in
reducing the dependence of the model on forgotten
data while preserving generalization.

min
θ

DKL(Pforget(x) ∥ Pmodel(x; θ)) (3)

where DKL(P ∥ Q) is the KL divergence between
two probability distributions.[Guo et al., 2020]

3.4 Negative Preference Optimization
By modifying the loss function, negative prefer-
ence optimization enforces lower confidence in spe-
cific outputs associated with forgotten information.
This method selectively reduces the likelihood of
forgotten data appearing in model predictions with-
out significantly affecting other learned knowledge.

Lneg = −
∑

i

wi log(1− Pθ(yi|xi)) (4)

where Pθ(yi|xi) is the probability the model as-
signs to a forgotten instance and wi is a weighting
factor.[Yao et al., 2024]

3.5 Preference Optimization
Preference optimization techniques adjust the
model’s training objective to explicitly reduce re-
liance on undesired information while strengthen-
ing important knowledge. This approach ensures
a structured forgetting process without excessive
performance degradation.

Lpref = αLretain + (1− α)Lforget (5)

where α controls the trade-off between forgetting
and retention objectives.[Bourtoule et al., 2021]

4 System Overview

Figure 1: General Block Diagram of LLM Unlearning
Process [Yao et al., 2024]

2060

4.1 Datasets

The following datasets have been provided to us:

1. Retain Train Set
2. Forget Train Set
3. Retain Validation Set
4. Forget Validation Set

Figure 1 and Figure 2 give us some insight into
the data that was given to us for our task. [Ramakr-
ishna et al., 2025b]

The data sets used were spread across the three
subtasks given, the details of which are provided
in Section 2. Also, to compare our algorithm with
existing algorithms, our task organizers used the
TOFU 1 dataset to run those existing algorithms
and provide us with a baseline score of the said al-
gorithms. This dataset comprises question-answer
pairs based on autobiographies of 200 different
authors that do not exist and are completely ficti-
tiously generated by the GPT-4 2 model. In addi-
tion, during the evaluation phase, along with the
data gathered from the organizers, the data set is
used to evaluate the algorithm on various evalua-
tion metrics.

Figure 2: Number of rows of each subtask (Retain
Dataset)

1https://huggingface.co/datasets/locuslab/TOFU
2https://openai.com/index/gpt-4/

Figure 3: Number of rows of each subtask (Forget
Dataset)

The main goal here is to remove selective infor-
mation present in the forget set from the causal
Learning model while preserving the information
from the retain set, ensuring that the overall utility
of the model is preserved. For this task, an ap-
proach called NGDiff Unlearning has been used.
This approach is based on computing the gradients
separately for the retain and forget sets and then
using their difference (NGDiff) to guide the weight
updates.

4.2 Custom Dataset Class

The dataset was given in the Pandas data frame
format, as discussed above in the Data Set Section.
We used a custom dataset class in our algorithm
to work with the data. This class takes the pan-
das dataset given to us, tokenizes the text using
the appropriate hugging face tokenizer, and returns
the tensor representations of input and output se-
quences.

Input encodings are generated by tokenizing the
input text using the provided tokenizer and con-
verting the tokenized text into a PyTorch tensor
using return_tensors="pt" during the to-
kenization process. A similar process has been
adopted for the output text. A maximum length
of sequence has been set and truncation has been
set to true along with setting padding equal to the
maximum length of sequence, ensuring uniform
sequence length via truncation and padding.

This class returns this tokenized data in
the form of PyTorch tensors. input_ids,
attention_mask, labels are returned. Here
input_ids are the tokenized representation of
input text. attention_mask is a mask that in-
dicates which tokens are real words(1) vs padded
tokens(0). Labels are the tokenized representa-
tion of output text. While returning these the

2061

squeeze(0) operation is applied to each of these
to remove the unnecessary batch dimension that has
been added because return_tensors="pt"
adds an extra dimension. This class is used with
PyTorch’s Dataloader to efficiently batch and
shuffle data during training.

4.3 Computing Loss and Gradients
An user-defined function named
compute_loss_and_gradients() has
been written that computes the loss and gradients
for a given dataset using dataloader. Firstly,
it computes the loss and gradients of all the
batches in the dataset, and then returns the average
loss over all the batches and average gradients
accumulated over all the batches. The loss is
computed using outputs.loss where the
output is the output predicted for a given text by
the model. outputs.loss typically computes
the cross-entropy loss if it is not customized or
overridden manually. For computing gradients
loss.backward() is used which computes
gradients of loss using model parameters. Gra-
dient clipping is done by capping their norm to
max_norm=1.0. Gradients are extracted and are
accumulated. Normalize the gradients over total
batches. The total loss is computed as:

L =
1

N

N∑

i=1

Li (6)

where N is the number of batches and Li is the
loss for each batch. The gradient accumulation is
given by:

g =
1

N

N∑

i=1

∇θLi (7)

where g is the averaged gradient over all batches.

4.4 Computing normalized Gradient
Difference

We have computed not only the normalized gradi-
ents for retain and forget sets but also the difference
by subtracting the normalized forget gradients from
the normalized retain gradients. The normalized
gradient difference is computed as:

gNGDiff =
gR

||gR||
− gF

||gF ||
(8)

where gR and gF are the gradients from the retain
and forget datasets and gNGDiff is the normalized
gradient difference.[Ramakrishna et al., 2025a]

4.5 Adaptive Learning Rate
The best learning rate is dynamically selected to
update the model parameters based on the Normal-
ized Gradient Difference(NGDiff). The main idea
behind this is to find the optimal learning rate that
minimizes the impact of unlearning and preserving
the useful knowledge, or in other words the utility
of the model.
Quadratic fitting is used to determine the best opti-
mal learning rate. The losses are calculated based
on each learning rate. We fit a quadratic function
to losses computed for different candidate learning
rates and find the minimum:

η∗ =
−b

2a
, if a > 0 (9)

Otherwise, the minimum learning rate is chosen
from predefined candidates:

η∗ = min(η1, η2, ..., ηn) (10)

where a and b are the coefficients from quadratic
fitting of learning rates and losses. Losses are com-
puted using:

L(η) =
∑

i

|gR − η.gNGDiff |2 (11)

where gR is the retain gradient, and gNGDiff is the
normalized gradient difference. The learning rate
that minimizes this function is chosen dynamically.

4.6 LoRA
The Low-Rank Adaptation(LoRA) reduces the
number of trainable parameters by decomposing
weight updates into low-rank matrices:

∆W = AB (12)

where A ∈ Rd×r and B ∈ Rr×k with r ≪ d, k.
This reduces the computational cost while maintain-
ing effective updates. Since the models that were
given, in which unlearning had to be performed,
were very large in terms of size. So, running them
on low resources and then performing unlearning
became a very difficult task. Hence we took advan-
tage of LoRA.
LoRA modifies the fine-tuning process by freezing
the original model weights and applying changes
to a separate set of weights, which are then added
to the original parameters. LoRA transforms the
model parameters into a lower-rank dimension, re-
ducing the number of parameters that need train-
ing(trainable parameters), thus speeding up the pro-
cess and lowering costs. A detailed explanation of

2062

how LoRA works and how it is used can be found
here [Hu et al., 2021].

5 Evaluation And Results

5.1 Evaluation Metrics

The evaluation metrics that were officially provided
by the task organizers are provided below. We
have only mentioned the Results that are based on
these evaluation metrics. Also, all the three scoring
techniques described here were aggregated to form
a final score.

1. Task-specific regurgitation rates (measured
using rouge-L scores) on the sentence com-
pletion prompts and exact match rate for the
question answers on both retain and forget
sets. We have inverted the forget set metrics
to 1− their value. We have aggregated all 12
distinct scores described above to generate a
single numeric score via harmonic mean.

2. A Membership Inference Attack (MIA) score
using loss-based attack on a sample of mem-
ber and non-member datasets, given by 1 −
abs(mia_normloss_normauc_normscore−
0.5) ∗ 2.

3. The model performance on the MMLU bench-
mark, measured as test accuracy on 57 STEM
subjects.

5.2 Results

The following models were provided - 7B Model3
and 1B Model4. The results were obtained on
both of these models separately. Table 1 shows the
results obtained by our algorithm by all the scoring
techniques that were used by the task organizers.

Model 7B Model 1B
Final Score 0.165 0.397
Task Aggregate 0.0 0.0
MIA Score 0.0 0.929
MMLU Score 0.495 0.261
Rank Obtained 11 9

Table 1: Results and Rank obtained by the Unlearning
Algorithm for the official Task Evaluation Metrics

3https://huggingface.co/allenai/OLMo-7B-0724-Instruct-
hf

4https://huggingface.co/allenai/OLMo-1B-0724-hf

Analysis of LoRA’s Size-Dependent Perfor-
mance: With a fixed low-rank ratio, LoRA tunes
about 48M parameters in the 1B model versus
314M in the 7B model [Hu et al., 2021, Houlsby
et al., 2019], that is, roughly 4.8% of each network.
However, the 7B version still freezes approximately
6.7B weights, so its updates cover a much smaller
fraction of the overall parameter space. According
to established scaling laws [Kaplan et al., 2020],
fixed ratio adaptations yield diminishing returns at
larger scales, which explains why the 1B model
achieves stronger targeted forgetting under LoRA.

6 Conclusion

We formulate the machine learning problem and
propose a novel NGDiff unlearning method based
on the normalized gradient difference and the adap-
tive learning rate. By leveraging insights from mul-
titask optimization, NGDiff improves forgetting
quality while maintaining utility of the Retain set.

Due to limited compute and data, we relied on
LoRA (Low-Rank Adaptation) to shrink the num-
ber of trainable parameters while preserving perfor-
mance. We explored several adaptive learning-rate
schedules to minimize loss, but extensive hyperpa-
rameter sweeps and larger-scale evaluations remain
out of reach. In future work, we will investigate
alternative parameter-reduction techniques—such
as prompt tuning or sparsity-based pruning—and
conduct more thorough ablation studies to further
improve unlearning efficacy.

References
Ludovic Bourtoule, Varun Chandrasekaran, Christopher

Choquette-Choo, Haoran Jia, Nicholas Travers,
Bita Zhang, Junjie Zhang, David Evans, and
Daniel Hsu. Machine unlearning. In Proceed-
ings of the 42nd IEEE Symposium on Security
and Privacy (SP), pages 141–159, 2021. URL
https://experts.illinois.edu/en/
publications/machine-unlearning.

Zhiqi Bu, Xiaomeng Jin, Bhanukiran Vinzamuri, Anil
Ramakrishna, Kai-Wei Chang, Volkan Cevher, and
Mingyi Hong. Unlearning as multi-task optimiza-
tion: A normalized gradient difference approach
with an adaptive learning rate, 2024. URL https:
//arxiv.org/abs/2410.22086.

Jonathan A. Ginart, Melody Y. Guan, Gregory Valiant,
and James Zou. Making ai forget you: Data deletion
in machine learning. In Advances in Neural Informa-
tion Processing Systems 32 (NeurIPS), 2019. URL
https://shorturl.at/p3FYl.

2063

https://experts.illinois.edu/en/publications/machine-unlearning
https://experts.illinois.edu/en/publications/machine-unlearning
https://arxiv.org/abs/2410.22086
https://arxiv.org/abs/2410.22086
https://shorturl.at/p3FYl

Chuan Guo, Tom Goldstein, Awni Hannun, and Lau-
rens van der Maaten. Certified data removal from
machine learning models. In Proceedings of the
37th International Conference on Machine Learn-
ing (ICML). PMLR, 2020. doi: 10.48550/arXiv.
1911.03030. URL https://arxiv.org/abs/
1911.03030. Accessed: 2025-04-21.

Neil Houlsby, Andrei Giurgiu, Stanisław Jastrzeb-
ski, Bruna Morrone, Quentin De Laroussilhe, An-
drea Gesmundo, Mona Attariyan, and Sylvain
Gelly. Parameter-efficient transfer learning for nlp.
In Proceedings of the 36th International Confer-
ence on Machine Learning (ICML), volume 97
of Proceedings of Machine Learning Research.
PMLR, 2019. URL https://proceedings.
mlr.press/v97/houlsby19a.html.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. Lora: Low-rank adaptation of large
language models, 2021. URL https://arxiv.
org/abs/2106.09685.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B.
Brown, Benjamin Chess, Rewon Child, Scott Gray,
Alec Radford, Jeffrey Wu, and Dario Amodei.
Scaling laws for neural language models. CoRR,
abs/2001.08361, 2020. URL https://arxiv.
org/abs/2001.08361.

Anil Ramakrishna, Yixin Wan, Xiaomeng Jin, Kai-Wei
Chang, Zhiqi Bu, Bhanukiran Vinzamuri, Volkan
Cevher, Mingyi Hong, and Rahul Gupta. Lume: Llm
unlearning with multitask evaluations. arXiv preprint
arXiv:2502.15097, 2025a.

Anil Ramakrishna, Yixin Wan, Xiaomeng Jin, Kai-Wei
Chang, Zhiqi Bu, Bhanukiran Vinzamuri, Volkan
Cevher, Mingyi Hong, and Rahul Gupta. Semeval-
2025 task 4: Unlearning sensitive content from large
language models. arXiv preprint, 2025b.

Yaxuan Wang, Jiaheng Wei, Chris Yuhao Liu, Jinlong
Pang, Quan Liu, Ankit Parag Shah, Yujia Bao, Yang
Liu, and Wei Wei. Llm unlearning via loss adjust-
ment with only forget data, 2024. URL https:
//arxiv.org/abs/2410.11143.

Yuanshun Yao, Xiaojun Xu, and Yang Liu. Large
language model unlearning, 2024. URL https:
//arxiv.org/abs/2310.10683.

[Ramakrishna et al., 2025a] [Ramakrishna et al.,
2025b] [Hu et al., 2021] [Wang et al., 2024] [Yao
et al., 2024] [Hu et al., 2021, Houlsby et al., 2019]
[Kaplan et al., 2020] [Ginart et al., 2019] [Guo
et al., 2020] [Bourtoule et al., 2021]

2064

https://arxiv.org/abs/1911.03030
https://arxiv.org/abs/1911.03030
https://proceedings.mlr.press/v97/houlsby19a.html
https://proceedings.mlr.press/v97/houlsby19a.html
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2001.08361
https://arxiv.org/abs/2001.08361
https://arxiv.org/abs/2410.11143
https://arxiv.org/abs/2410.11143
https://arxiv.org/abs/2310.10683
https://arxiv.org/abs/2310.10683

