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Abstract

This paper presents our participation in the
SemEval-2025 task 6: multinational, multilin-
gual, multi-industry promise verification. The
SemEval-2025 Task 6 aims to extract Promise
Identification, Supporting Evidence, Clarity of
the Promise-Evidence Pair, and Timing for
Verification from the promises made to busi-
nesses and governments. Using these data
to verify whether companies and governments
have fulfilled their promises. In this task, we
focus on the English dataset. Our model in-
troduces regularization dropout based on the
BERT-base model to focus on the stability of
non-target classes, improve the robustness of
the model, and ultimately improve the indi-
cators. Our approach obtained competitive
results in task. The code of the paper is
available at: https://github.com/xxkaras/
SemEval-2025-Task-6.

1 Introduction

Tracking and verifying promises made by busi-
nesses and governments is essential for foster-
ing accountability and trust. However, assessing
whether these promises are upheld is often hin-
dered by the complexities of different industries,
languages, and countries. SemEval-2025 Task 6
(Chen et al., 2025) introduces a novel approach to
multilingual, multi-industry promise verification
to tackle this challenge. This task is designed to ex-
tract key information from promises made to busi-
nesses and governments, such as identifying sup-
porting evidence for the promise, evaluating the
clarity of the promise-evidence relationship, and
determining the appropriate timing for verification.
By leveraging this data, the goal is to assess the de-
gree to which these promises have been honored.
The subtasks of SemEval-2025 Task 6 can
be divided into binary classification and multi-
classification tasks. Text classification is an im-
portant task in natural language processing (NLP)
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(Cambria and White, 2014) that aims to organize
text into predefined categories automatically. Ac-
cording to the different types of tasks, text clas-
sification can be divided into binary, multi-class,
and multi-label. In binary classification tasks, the
text is divided into two mutually exclusive cate-
gories, such as spam and non-spam; multi-class
classification tasks divide the text into multiple
mutually exclusive categories, such as classified
news; and multi-label classification tasks allow
each text to belong to multiple categories at the
same time, such as multi-label sentiment analy-
sis. This process usually includes data reconstruc-
tion, feature extraction, model training, and eval-
vation. The text must be cleaned and segmented
in the data reconstruction stage to convert it into
a machine-processable format. Next, the feature
extraction step converts the text into a numerical
vector. Commonly used methods include the bag-
of-words model, TF-IDF, Word2Vec, and BERT
(Koroteev, 2021). The labeled data trains the ma-
chine learning or deep learning model in the model
training phase. Common models include support
vector machine (SVM) (Wang and Hu, 2005) and
naive Bayes (Naive) (Webb et al., 2010). After
the training is completed, the model needs to be
evaluated on the test set, and the performance is
evaluated using indicators such as accuracy, preci-
sion, recall, and Fy-score. Text classification (Gas-
paretto et al., 2022) has many applications, includ-
ing sentiment analysis, spam filtering, topic clas-
sification, public opinion monitoring, etc. With
the development of deep learning technology, pre-
trained language models (Min et al., 2023) (such
as BERT and GPT (Achiam et al., 2023)) have per-
formed well in text classification tasks, especially
for large-scale data sets (Bzdok et al., 2019) and
complex tasks.

SemEval-2025 Task 6 contains the following
four subtasks:

* Subtask 1 Promise Status (PS): Identify
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whether there is a promisein the sentence

* Subtask 2 Evidence Status (ES): Identify
whether there is supporting evidence for the
promise in the sentence

e Subtask 3 Verification Timeline (VT): Iden-
tify whether there is a verification time for the
supporting evidence in the sentence

» Subtask 4 Evidence Quality (EQ): Identify
the clarity of the evidence related to the
promise in the sentence

Subtask 1 and subtask 2 are binary classifica-
tion tasks, and subtask 3 and subtask 4 are multi-
classification tasks.

SemEval-2025 Task 6: PromiseEvalMultina-
tional, Multilingual, Multilndustry Promise Ver-
ification competition features a novel multilin-
gual dataset comprising English, French, Chinese,
Japanese, and Korean, designed to evaluate corpo-
rate ESG promises and their implementation. Our
team has participated in this competition and fo-
cus on English datasets. To improve the robust-
ness of our model, we introduced a regularization
dropout mechanism based on BERT-base. This
method focuses on enhancing the stability of non-
target classes, ultimately boosting the model’s per-
formance and generalizability. Our approach de-
livered competitive results in this task, showcasing
the potential of incorporating regularization tech-
niques into promise verification tasks. This paper
discusses our methodology, results, and insights
into how these advancements contribute to more
effective promise verification.

The rest of this paper is organized as follows.
Section 2 introduces the related work before our
study for this task. Section 3 gives an overview
of our system for this task. Section 4 presents the
specific details of our system and discusses the ex-
perimental results. The conclusions are drawn in
Section 5.

2 Ralated Work

Some companies use misleading information to
create an overly positive environmental image,
a practice known as greenwashing. To address
the greenwashing phenomenon and the challenge
of evaluating corporate promises, Seki et al.
(2024) proposed ML-Promise, the first multilin-
gual dataset for deep promise verification, includ-
ing Chinese, English, French, Japanese, and Ko-

rean. The dataset provides key training sam-
ples for related technologies in the field of natu-
ral language processing (NLP) to verify corporate
promises in environmental, social, and governance
(ESG) reports. The dataset contains promise
data from different countries and companies, with
structured labels to facilitate the identification and
evaluation of corporate promises, supporting evi-
dence, supporting evidence quality, and verifica-
tion time of the promise. The labels are divided
into four main aspects to ensure a comprehensive
assessment of corporate promises.

Hillebrand et al. (2023) proposed a recommen-
dation system based on natural language process-
ing (NLP) to automatically analyze the credibil-
ity and substantive content of corporate sustain-
ability reports. The study adopted a BERT-based
multi-task learning framework, combined with
rule matching and attention mechanism, to extract
promise statements from reports and classify their
credibility, and external data was used for cross-
validation. The traditional manual review pro-
cess was enhanced through multimodal analysis,
explainable recommendations, and cross-domain
adaptation. Experiments show that the system
achieves excellent results in the task of sustainabil-
ity report detection. The study provides a technical
reference for the automated verification of corpo-
rate promises.

To promote in-depth verification of promises,
this paper aims to apply models in the field of
natural language processing to promise verifica-
tion, and to monitor corporate promises and their
compliance with ESG promises, as well as the
promises and compliance of public figures.

3 System Overview

Our system is based on the BERT-based model,
and the regularization technology RDrop (Regular-
ized Dropout) (Wu et al., 2021) has been added to
implement it. The overall structure of our system
consists of four modules, which are described be-
low.

Input layer. In this layer, we build text processing
tools for performing text preprocessing and word
embedding (Jiao and Zhang, 2021). The input is a
data frame containing text data (obtained from the
train data test set). The text data is converted to
the BERT input format (token IDs) using functions
provided by BERT. The input is padded to ensure
consistent input length within a batch. The dataset
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Figure 1: Multi-label classification system

is converted to the Hugging Face dataset format
using API provided by Hugging Face.

Context encoder. BERT (Devlin et al., 2019) is
a natural language processing (NLP) model pro-
posed by Devlin et al. in 2018. The main novelty
of BERT lies in its bidirectional encoder structure,
which can simultaneously model text from left to
right and from right to left, allowing it to better
capture contextual information in the text. BERT
uses a pre-training method and can handle various
text-processing tasks through fine-tuning. BERT
is based on the Transformer (Zheng et al., 2022)
architecture and adopts bidirectional. This means
that when learning context, BERT considers the
information before and after the word and simul-
taneously analyzes the relationship between the
left and right sides. Hence, it has a stronger abil-
ity to understand semantics. BERT first pre-trains
with large-scale corpus to learn general language
knowledge. On this basis, BERT can adapt to spe-
cific tasks (such as text classification, question an-
swering, named entity recognition, etc.) through
fine-tuning (Wang et al., 2024) to achieve excel-
lent performance. In the pre-training stage, BERT
uses static masking to process text. In each train-
ing cycle, BERT randomly masks some words in
the input text and trains the model to predict these
masked words. In this way, BERT can learn the

deep relationship between words. This module
mainly uses the pre-trained BERT model to com-
plete the context encoder (Pathak et al., 2016).
Dropout Layer. Dropout (Srivastava et al., 2014)
is a common regularization technique used in the
training process of neural network models to pre-
vent overfitting of the model. It was proposed by
Geoffrey Hinton et al. in 2014 and is widely used
in deep learning. The core idea of Dropout is to
discard some neurons in the neural network ran-
domly. In each training, randomly select some
neurons and their connections to make them in-
valid or not involved in the calculation in the
current iteration. This operation helps to reduce
the complex dependencies between neurons and
forces each part of the model to learn features in-
dependently, thereby improving the model’s gen-
eralization ability.

Linear Classifier. In our model, the linear clas-
sifier (Bai et al., 2022) maps the context informa-
tion extracted by BERT to the target label space,
such as promise status, evidence status, verifica-
tion time, and evidence quality. It classifies la-
bel through the fully connected layer. The clas-
sifier combines the dropout layer (regularization)
to avoid overfitting and trains the model through
the cross-entropy loss so that the model can pre-
dict the score of each label based on the input text.
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The input size of this layer is 768 (the hidden layer
size of BERT-BASE), and the output size is 4 (the
number of labels)

Loss Function. In our model, the calculation
of the loss function includes the following parts:
Cross-Entropy Loss (Mao et al., 2023), which is
used to calculate the gap between logits and la-
bels. Kullback-Leibler (KL) divergence (Van Er-
ven and Harremos, 2014) calculates the consis-
tency between model outputs. As a regulariza-
tion term, It encourages the model to produce sim-
ilar predictions in different training cycles. Cross-
entropy loss measures the difference between the
probability distribution predicted by the model and
the distribution of the true label. The calculation
formula for Cross-Entropy Loss is as follows:

CrossEntropyLoss = — Z yilog(pi) (1)

Kullback-Leibler Divergence is a measure of
the difference between two probability distribu-
tions. Our model uses KL divergence to calculate
the difference between logits and kl_logits (logits
calculated by BERT for the second time), which is
added to the loss function as a regularization term.
The calculation formula for KL divergence is as
follows:

KL Divergence(P||Q) = Z P(:U)log(ggg)
2)

KL Divergence Loss (Cui et al.,, 2025) cal-
culates the KL divergence between logits and
kl_logits and the KL divergence between kl_logits
and logits. The final KL Divergence Loss is the
average of the two, encouraging the model’s out-
put to be consistent across different training steps.
The total loss of the model is a weighted sum of
the cross-entropy loss, the KL divergence loss, and
another cross-entropy loss.

The application of our model in SemEval-2025
Task 6 is discussed below. The first part of this task
is extracting semantic information from a given
tweet text. We call it sentence classification. In the
upstream task, we used a pre-trained BERT model
for the upstream sentence information extraction
task. In the downstream task, we used BERT for
multi-label classification, where the model’s goal
is to predict multiple labels based on the input text
(such as a promise statement or a business text).

Specifically, the model needs to predict the follow-
ing labels: promise_status, verification_timeline,
evidence_status, and evidence_quality. The pre-
diction of each label is independent, and the out-
put features of BERT, i.e., the pooled output of
[CLS] token, are mapped to the logits of each label.
These scores are converted into probability values
for each label through the sigmoid activation func-
tion, indicating whether the label exists.

4 Experiments

Datasets. SemEval-2025 Task 6 uses the Multilin-
gual Dataset for Corporate Promise Verification as
the dataset that needs to extract from the promise
text whether there is a promise, supporting evi-
dence, the quality of the promise and the time limit
for the verification of the promise. Table 1 shows
the labels of each subtask. The dataset is in JSON
format and Parquet format. Because the TSV for-
mat is more convenient for data processing, we
convert both the training set and the dataset to the
TSV format.

Evaluation Methods. The evaluation metric for
SemEval-2025 Task 6 is accuracy. Each subtask
in the task is evaluated for accuracy. Leaderboard
scores are aggregated scores for all subtasks.
Implementation Details. To evaluate the effec-
tiveness of our proposed method, we conducted a
series of experiments. All experiments were per-
formed under identical conditions to ensure con-
sistency and comparability of results. Our model
was separately trained and tested for label predic-
tion across four subtasks. We split the training
data into training and validation sets at an 8:2 ra-
tio. For label encoding, we employed LabelEn-
coder to convert textual category labels into nu-
merical values (e.g., encoding "No" as 0 and "Yes"
as 1 in the promise status task). We constructed a
custom BERT classification model based on Bert-
PreTrainedModel. The model architecture incor-
porates a dropout layer and a linear classifica-
tion layer (with output dimensions corresponding
to the number of label categories) on top of the
pooled BERT representations. The number of la-
bels varied across tasks (e.g., binary classification
for promise status and evidence status with 2 la-
bels, 5 labels for verification timeline, and 4 labels
for evidence quality). To enhance model robust-
ness, we combined cross-entropy loss with KL-
divergence loss, computing consistency regular-
ization through dual forward propagation. Train-
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Subtask Label
Promise Status Yes/No
Evidence Status Yes/No

Verification Timeline

within 2 years/2-5 years/longer than 5 years/other/nan

Evidence Quality

Clear/Not Clear/Misleading/nan

Table 1: Label in each subtask

Learning Rate | Train Epochs | Train Batch Size | Warmup Steps | Weight Decay
Promise Status 3.6672 4 4 200 0.0881
Evidence Status 7.2486 4 8 200 0.0156
Verification Timeline 4.2965 4 4 500 0.0442
Evidence Quality 3.9092 2 4 1000 0.03

Table 2: The optimal parameters after fine-tuning

w/ optimal params | w/o optimal params
Promise Status 0.7875 0.7625
Evidence Status 0.6753 0.625
Verification Timeline 0.4252 0.3875
Evidence Quality 0.3 0.2125

Table 3: performance comparison of model in promise
verification with and without optimal parameters

ing was conducted using optimized hyperparam-
eters. Upon completion of training, predictions
were made on the test set by selecting the class
with the maximum logit value. Finally, the numer-
ical predictions were converted back to their cor-
responding textual labels. This approach ensures
both task adaptability and improved generalization
performance through our loss design.

Hyperparameters Finetuning. We train and eval-
uate the model with different hyperparameters in
the objective function.Our hyperparameter tuning
employs Bayesian optimization through Optuna,
systematically exploring the learning rate (le-5 to
Se-5), batch sizes during training (4, 8, 16), to-
tal number of training epochs (2 to 5), number of
warmup steps for the learning rate scheduler (100
to 1000, in steps of 100), and strength of weight de-
cay (0.0 to 0.1). The optimization goal is to max-
imize validation accuracy over 10 trials, each per-
forming complete model training using Hugging
Face’s Trainer API. It determines the optimal hy-
perparameter combination through multiple exper-
iments, as shown in Table 2.

Ablation Study. To evaluate the impact of regular-
ized dropout in ESG promise verification, we con-
ducted ablation study by systematically removing
regularized dropout from parts of the model and
deeply analyzed the contribution of regularized

dropout to the experimental results. The Table
4 compares the performance of the BERT-BASE
model combined with R-drop and the Bert-Base
model after fine-tuning in each subtask. To ensure
the accuracy and fairness of the experiment, both
models use the parameters fine-tuned by Optuna.
The results prove that R-drop is effective in im-
proving the accuracy in ESG promise verification.

w/ R-drop | w/o R-drop
Promise Status 0.7875 0.75
Evidence Status 0.6753 0.6125
Verification Timeline 0.4252 0.3756
Evidence Quality 0.3 0.2752

Table 4: performance comparison of BERT model in
promise verification with and without R-drop

Results and Analysis. In the competition leader-
board, our system ranked 9 in the English leader-
board. As indicated, our method is effective.This
is mainly because BERT is combined with R-Drop
to improve generalization ability, enhance robust-
ness, optimize training process, improve task per-
formance and reduce overfitting.Our model has an
accuracy of 0.7875 in the promise status subtask
and0.6753 in the evidence status subtask. The
model performs well in the binary classification
task and can judge the existence of the promise
and the existence of evidence in the text with high
accuracy.However, the accuracy in the verifica-
tion timeline and evidence quality subtasks is only
0.4252 and 0.3 respectively, which means that the
model has difficulty in clearly judging the clarity
of the given evidence in relation to the promise and
specific deadline for promise verification comple-
tion.
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5 Conclusions

This paper proposes a promise verification la-
bel classification model base BERT with R-drop
for SemEval-2025 Task 6. The model success-
fully solves the classification problems of com-
mitment existence status, evidence existence sta-
tus, evidence quality and commitment verifica-
tion timeline.In the promise verification task, R-
Drop simulates different sub-networks by ran-
domly dropping neurons, making the model more
robust to input perturbations and making the fi-
nal output labels of each sub-task more accurate.
Although small models combined with few-shot
learning can effectively solve binary classifica-
tion tasks such as promise status and evidence
status, the effect on verification timeline and ev-
idence quality tasks is not ideal. Future works
will apply, text data augmentation, such as using
synonym replacement, random insertion or back-
translation techniques, to expand the training set.
Moreover, weighted loss functions or oversam-
pling/undersampling techniques to balance the dis-
tribution of labels and avoid the model being bi-
ased towards the majority class label.
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