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Abstract

We present Oath Breakers, our system for
SemEval-2025 Task 06: Promise Verifica-
tion in ESG (Environmental, Social, and
Governance) texts (Chen et al., 2025) which
aims to identify and verify promises made
within company reports. We fine-tune
microsoft/deberta-v3-base
with a contrastive loss to better separate
promise vs. non-promise embeddings,
and apply generative augmentation via
Mistral-7B-Instruct-v0.3—manually
validated—to balance the timeline classes.
On the English official test set, we achieved
F1=0.6003 (33% split, 3rd place) and
F1=0.5733 (67% split, 2nd place), making our
final ranking 2nd place on the English test
dataset. These results validate the effective-
ness of combined contrastive and generative
strategies in promise verification.

1 Introduction

Recognizing the critical role of transparency and
accountability, SemEval-2025 Task 6: PromiseE-
val aims to assess a company’s commitment and
adherence to its Environmental, Social, and Gov-
ernance (ESG) promises. To this end, the or-
ganizers have compiled a diverse collection of
ESG-related texts from company reports and news
articles. This task aims to enhance enhance
transparency and compel organizations and pub-
lic figures to uphold their commitments. The
insights derived would empower consumers, in-
vestors, and the broader public to make informed
decisions grounded in verifiable actions and stated
objectives. Ultimately, it aims to seek tangible
progress on global sustainability, social justice,
and ethical governance. Additional details about
the task and dataset can be found at the offi-
cial project page: https://sites.google.
com/view/promiseeval/promiseeval.

∗corresponding author

2 Problem Definition

The primary objective of this research is Promise
Verification. Given a report or a part of a report
from a company, the goal is to identify and verify
promises made within that report. Specifically, we
aim to determine whether a statement qualifies as
a promise based on three key criteria:

• The statement must be related to Environ-
mental, Social, and Governance (ESG) crite-
ria (required).

• The statement should outline a principle,
commitment, or strategy that the company in-
tends to uphold (required).

• The statement should be supported by at least
one piece of evidence (optional).

The Promise Verification process follows a
pipeline approach, with multiple subtasks:

1. Promise Classification: Initially, we classify
whether a statement constitutes a promise
based on the criteria above.

2. Evidence Verification: If a promise is men-
tioned in the report, we need to evaluate
whether it also contains evidence that sup-
ports the promise.

3. Evidence Classification: If evidence is men-
tioned for the promise, we evaluate its na-
ture—whether the evidence is misleading,
clear, or falls into another category.

4. Timeline Verification: If a promise is iden-
tified, we verify whether the timeline of the
promise has been fulfilled or determine when
it is expected to be fulfilled.

This structured approach allows for a comprehen-
sive assessment of promises, ensuring that they are
both identifiable and verifiable within the scope of
ESG-related commitments.
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3 Data Description

The dataset used for the Promise Verification
task consists of company reports, primarily fo-
cusing on Environmental, Social, and Governance
(ESG) commitments. Each entry in the dataset
provides detailed information regarding specific
ESG-related statements. Below is an outline of the
dataset structure, including key fields and prepro-
cessing steps undertaken.

Out of the 600 records given in the dataset, each
record in the dataset includes the following fields:

• URL: A link to the source document, provid-
ing context and allowing for traceability.

• page number: The page in the document
where the statement is located.

• data: The textual content of the statement,
which may contain potential promises.

• promise status: A binary label indicating
whether the statement contains a promise
(“Yes”) or not (“No”).

• verification timeline: Already, Less than 2
years, 2 to 5 years, More than 5 years, N/A

• evidence status: A binary indicator of
whether evidence supporting the promise is
present (“Yes”) or not (“No”).

• evidence quality: Assesses the quality
of any provided evidence, categorized as
“Clear,” “Misleading,” or “Not Clear.”

This dataset provides a structured approach to
assess ESG promises by capturing essential at-
tributes related to promises, timelines, and evi-
dence, which are critical for the Promise Verifi-
cation pipeline.

4 Related Work

In recent years, several research efforts have fo-
cused on developing robust methodologies for
classification and verification tasks in deep learn-
ing and natural language processing (NLP). A par-
ticularly comprehensive study by Henning et al.
(2023) categorizes a wide range of techniques
aimed at addressing class imbalance in NLP. Their
analysis spans sampling strategies, data augmen-
tation, staged learning, and the application of
instance-level weighting, all of which are highly
relevant to our work. In the context of evidence

verification, we adopt oversampling methods in-
spired by these strategies to mitigate imbalance,
especially concerning the Misleading class.

Another pertinent line of research by Mirzaei
et al. (2023) explores the classification of im-
plicit negative intentions in questions—an area of-
ten overlooked in mainstream NLP research. By
introducing the Question Intention Dataset, they
provide a framework for detecting both explicit
and implicit negative intentions using a TF-IDF-
based dictionary and Transformer models such as
RoBERTa. Their emphasis on polarity classifica-
tion and nuanced intention detection has informed
our understanding of subtle linguistic cues, which
we incorporate into the task of evidence classifica-
tion within Promise Verification.

Complementary to these efforts, Heinisch et al.
(2023) and Prabhu et al. (2023) demonstrate the
effectiveness of contrastive learning in multilin-
gual, multi-label framing detection tasks. Their
models learn to differentiate between similar and
dissimilar frame representations by employing
contrastive loss functions, which draw semanti-
cally close instances together while pushing apart
unrelated ones. Inspired by this technique, we in-
tegrate contrastive loss into our own model to en-
hance the semantic separation of misleading and
accurate evidence, thereby improving verification
accuracy.

Collectively, these studies lay the groundwork
for our approach, which builds upon class im-
balance handling, intention-aware representation,
and contrastive learning. Our method synthesizes
these components to address the unique challenges
posed by the Promise Verification task, particu-
larly in the classification and interpretation of evi-
dence.

5 Methodology

The methodology section provides a detailed out-
look on the progression of the task and how the
baseline approach was complemented via the new
methods and techniques.

5.1 Baseline

As a reference, we fine-tune
bert-base-uncased on each subtask
using only cross-entropy loss (no contrastive
objective or augmentation). This establishes the
baseline F1 in Table 2.

1719



5.2 Subtask 1: Promise Classification

Initially, a BERT-based model was used for se-
quence classification, but the results were sub-
optimal. To improve performance, the model
was upgraded to DeBERTa, a transformer ar-
chitecture known for its superior contextual un-
derstanding and language representation. De-
BERTa’s robust contextual modeling capabilities
outperformed BERT in handling nuanced lan-
guage, making it an ideal choice for this subtask.

We fine-tune microsoft/deberta-v3-base
with a joint classification + contrastive objective
via a custom ContrastiveTrainer. Let Lcls

be the standard cross-entropy loss on the binary
labels. At each forward pass, we extract the [CLS]
token embeddings

hi = outputs.hidden states[−1]i,0,:,

and build all positive pairs (hi,hj) when yi = yj ,
and negative pairs when yi ̸= yj . We then apply
PyTorch’s CosineEmbeddingLoss with mar-
gin 0.5:

Lcontrastive =
1

|P ∪ N |
∑

(u,v)∈P∪N
ℓcos(u, v, su,v)

where su,v =

{
+1 (u, v) ∈ P,

−1 (u, v) ∈ N .

We weight the contrastive term by α = 0.1:

L = Lcls + 0.1Lcontrastive.

Here, P = {(u, v) | yu = yv} and N =
{(u, v) | yu ̸= yv}, with |P ∪ N | their combined
count. The function ℓcos(u, v, s) is implemented
which for a positive pair (s = +1) minimizes
1 − cos(u, v), and for a negative pair (s = −1)
enforces

max
(
0, cos(u, v)− margin

)
,

with margin = 0.5. Dividing by the total number
of pairs balances the contributions of both positive
and negative samples during training.

This formulation encourages same-label
examples to cluster in embedding space and
pushes apart opposite-label examples. In prac-
tice, this yields a +0.83% F1 gain over our
bert-base-uncased baseline.

def c o m p u t e l o s s ( s e l f , model , i n p u t s ,
r e t u r n o u t p u t s = F a l s e ,
n u m i t e m s i n b a t c h =None ) :

l a b e l s = i n p u t s . g e t ( ” l a b e l s ” )
o u t p u t s = model (** i n p u t s ,

o u t p u t h i d d e n s t a t e s =True )
c l a s s i f i c a t i o n l o s s = o u t p u t s . l o s s

embeddings = o u t p u t s . h i d d e n s t a t e s
[ − 1 ] [ : , 0 , : ]

p o s i t i v e p a i r s , n e g a t i v e p a i r s =
c r e a t e p a i r s ( embeddings , l a b e l s )

c o n t r a s t i v e l o s s = 0

i f p o s i t i v e p a i r s :
pos emb1 = t o r c h . s t a c k ( [ p [ 0 ] f o r

p in p o s i t i v e p a i r s ] )
pos emb2 = t o r c h . s t a c k ( [ p [ 1 ] f o r

p in p o s i t i v e p a i r s ] )
cx = c o n t r a s t i v e l o s s f n (

pos emb1 , pos emb2 , t o r c h .
ones ( pos emb1 . s i z e ( 0 ) ) . t o (
pos emb1 . d e v i c e ) )

c o n t r a s t i v e l o s s += cx

i f n e g a t i v e p a i r s :
neg emb1 = t o r c h . s t a c k ( [ n [ 0 ] f o r

n in n e g a t i v e p a i r s ] )
neg emb2 = t o r c h . s t a c k ( [ n [ 1 ] f o r

n in n e g a t i v e p a i r s ] )
cp = c o n t r a s t i v e l o s s f n (

neg emb1 , neg emb2 , − t o r c h .
ones ( neg emb1 . s i z e ( 0 ) ) . t o (
neg emb1 . d e v i c e ) )

c o n t r a s t i v e l o s s += cp

t o t a l l o s s = c l a s s i f i c a t i o n l o s s +
0 . 1 * c o n t r a s t i v e l o s s

re turn ( t o t a l l o s s , o u t p u t s ) i f
r e t u r n o u t p u t s e l s e t o t a l l o s s

Listing 1: Contrastive Loss Method for Classification

5.3 Subtask 2: Evidence Verification
Given the similarity of this task to Subtask 1
in terms of task formulation, we utilized the
DeBERTa model here as well, leveraging its con-
textual embedding capabilities for binary classifi-
cation. We followed the same training pipeline,
ensuring consistency in model optimization and
hyperparameter tuning.

To preprocess the dataset, we encoded the
evidence status labels into numerical val-
ues, mapping "Yes" to 1 and "No" (including
missing values) to 0. The dataset had a near-
balanced distribution, with 343 instances labeled
as 1 (Supporting Evidence) and 256 instances la-
beled as 0 (Non-Supporting Evidence). This bal-
ance eliminated the need for data augmentation or
threshold adjustments.

Furthermore, to ensure robustness in feature
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representation, we confirmed that the encoded la-
bels were stored in int64 format, with unique
values restricted to [0, 1] for consistency.

This approach allowed the model to achieve
strong performance on the Evidence Verification
task, ensuring reliable classification of supporting
and non-supporting evidence.

5.4 Subtask 3: Evidence Classification

Initially, we used BERT, but later transitioned to
DeBERTa, which provided better results due to its
disentangled attention mechanism and enhanced
contextual representations. This improved our F1-
scores and overall subtask accuracy, demonstrat-
ing better generalization in evidence classification.

A significant challenge in this task was
class imbalance, particularly the underrepresen-
tation of the Misleading class. To address
this, we applied filtering techniques to extract
instances where both promise status and
evidence status were positive. Addition-
ally, we utilized the Gemini API for data aug-
mentation, generating synthetic samples for the
Misleading class. This oversampling strategy
increased the number of minority class samples,
ensuring the model had sufficient data to learn ef-
fectively and improving its capacity to generalize
across imbalanced classes.

We encoded the clarity labels numerically,
mapping ’Clear’ to 0, ’Not Clear’ to 1,
and ’Misleading’ to 2, while handling miss-
ing values by assuming ’Not Clear’ as the de-
fault. This preprocessing step standardized the
dataset and ensured consistency in model training.

Standard classification loss was used, along
with careful validation, to ensure that the
augmented data did not introduce noise or com-
promise the quality of predictions. The final
model demonstrated improved performance in
distinguishing between clear, unclear, and mis-
leading evidence.

r e s p o n s e = models . g e n e r a t e c o n t e n t ( [
f ” P a r a p h r a s e t h e s e n t e n c e : ’{ s e n t e n c e } ’ ”
f ” R e f l e c t e v i d e n c e s t a t u s : ’{ e v i d e n c e } ’ ,

a n d q u a l i t y : ’{ q u a l i t y } ’ . ”
f ” E n s u r e e x a c t l y 5 0 0 c h a r a c t e r s ,

i n c l u d i n g t h e e n t i t y n a m e . ”
f ” D o n o t s t a r t w i t h a n u m b e r ,

o r s p e c i a l c h a r a c t e r . ” ] )

Listing 2: Contrastive Loss Method for Classification

5.5 Subtask 4: Timeline Verification
After initial experimentation with the baseline
model, we transitioned to DeBERTa, leverag-
ing its superior attention mechanisms to capture
subtle differences in verification timelines. Ad-
ditionally, we performed preprocessing by fil-
tering data where both promise status and
evidence status were positive, ensuring that
only relevant instances were considered. The fi-
nal distribution showed dominant categories like
Already (212 instances) and 2 to 5 years
(58 instances), ensuring a well-structured class
balance.

To mitigate the class imabalances, we aug-
mented the data to provide a more holistic data for
the model to learn from. The Table 1 shows the
distribution of the labels for Verification subtask.
The augmentation process was carried out using
the following steps:

1. Identified the class distribution and set the
target count based on the majority class.

2. Determined the number of augmented sam-
ples needed per class.

3. Utilized Mistral-7B to generate synthetic
text samples based on existing data.

4. Ensured that the generated samples main-
tained coherence with the dataset.

5. Incorporated the augmented samples into the
training data.

We manually reviewed a random subset of 100
synthetic samples to ensure coherence and label
consistency before adding them to training.

Table 1: Class Distribution: Verification Timeline

Timeline Before After
Already 212 212
2 to 5 years 58 212
More than 5 years 45 212
Less than 2 years 28 212

5.6 Training Arguments and Optimizations
For overall training optimization, we used a batch
size of 16 (training and evaluation), with a 2e-5
learning rate under cosine decay scheduling. To
maintain stability and prevent overfitting, we ap-
plied 0.01 weight decay, gradient accumulation
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Table 2: F1 Score Comparison: Baseline vs Final Mod-
els

Task Base F1 Final F1 Improv.
Subtask 1 76.67% 77.50% +0.83%
Subtask 2 72.80% 80.00% +7.20%
Subtask 3 59.80% 76.20% +16.40%
Subtask 4 41.20% 72.90% +31.70%

Table 3: Official Test Results and Leaderboard Posi-
tions (English track)

Split F1 Rank
33% test 0.600 3rd
67% test 0.573 2nd

steps of 1, and gradient clipping with maximum
norm 1.0. We enabled mixed precision (FP16) to
improve memory efficiency. These optimizations
ensured stable training while maximizing compu-
tational resource utilization.

6 Evaluation

We measure macro-averaged F1 on both our de-
velopment split and the official test set. For all
experiments, the dataset was split into 80% train-
ing, 15% validation, and 5% testing, ensuring
a robust evaluation of the models while maintain-
ing a sufficient amount of data for generalization.
The Table 2 compares the BERT baseline vs. our
final DeBERTa+contrastive+augmentation system
on dev. Table 3 then reports the locked leader-
board results on the English test data. Table 4
shows the task wise results on the official test
dataset.

7 Analysis and Insights

• Promise Classification: The BERT baseline
already achieved 76.67% F1, limiting room
for improvement. Our final system’s mod-
est +0.83% gain indicates that promise de-
tection primarily relies on surface cues (e.g.,
modal verbs, commitment phrases) which
both models capture. Contrastive learning
adds fine-grained separation of borderline
cases, but further gains may require external
world knowledge or document-level context.

• Evidence Verification: Here, DeBERTa’s
enhanced contextual embeddings, combined
with contrastive loss, yield a substantial
+7.20% gain. This subtask benefits from

Table 4: Official Subtasks F1 score on Test Leader-
board (English track)

Promise Evidence Clarity Timing
f1 0.739 0.770 0.669 0.465

clearer signal patterns (presence/absence of
explicit evidence markers), so additional rep-
resentation power translates to more accu-
rate binary judgments. Further improvements
might be achievable with larger datasets and
better context understanding.

• Evidence Quality: With a baseline of
59.80% F1, evidence-quality classification
suffers from subtle semantic distinctions be-
tween ”clear,” ”not clear,” and ”misleading.”
Data augmentation of the rare Misleading
class closed the gap significantly, producing a
+16.40% gain. This demonstrates that syn-
thetic examples—manually validated—help
the model generalize complex judgment cri-
teria underrepresented in the original data.
The use of richer annotation schemas and
more robust training objectives, such as re-
inforcement learning with human feedback
(RLHF), could further enhance performance.

• Timeline Verification: The largest gain
(+31.70%) stems from both synthetic over-
sampling of underrepresented timeline cat-
egories and DeBERTa’s stronger sequence
modeling. Timeline inference requires under-
standing temporal expressions and domain-
specific timeline characteristics, which bene-
fit greatly from additional examples. Manual
review of 100 augmented samples ensured no
label drift occurred. Future approaches could
take into account knowledge graphs to refine
performance further.

• Language Considerations: Although we
performed experiments on only the English
track, we expect contrastive learning and gen-
erative augmentation to be similarly effec-
tive in other languages (French, German)
provided high-quality synthetic data and
language-specific pre-trained encoders. Fu-
ture work should validate cross-lingual con-
sistency and investigate whether language-
specific idioms impact performance gains.
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8 Discussion

• The significant improvements in Evidence
Classification, Evidence Quality, and Ver-
ification Timeline demonstrate the value
of iterative development and the inclusion
of sophisticated techniques like contrastive
learning, few-shot learning, and augmented
datasets.

• The relatively smaller gain in Promise Clas-
sification may point to task saturation, where
the current methods are already close to
the upper performance bound for the dataset
used. It could also suggest that this subtask is
less sensitive to the advanced techniques ap-
plied in the final model.

• While the improvements are promising, the
relatively low scores for Evidence Quality
and Verification Timeline highlight areas
that require further exploration, particularly
in terms of data diversity, annotation quality,
and advanced modeling techniques.

9 Limitations

Despite the improvements achieved, this study has
several limitations. First, the dataset’s size and di-
versity may have constrained the model’s ability
to generalize, particularly in subtasks such as Ev-
idence Quality and Verification Timeline. Lim-
ited training samples and potential annotation in-
consistencies could have introduced biases, affect-
ing performance. The small size of the dataset re-
stricted our ability to train models on a fully repre-
sentative dataset that was large enough to capture
all the nuances.

Second, while advanced techniques like con-
trastive learning and few-shot learning improved
results, their effectiveness was not uniform across
all subtasks. Promise Classification showed
marginal gains, suggesting that additional refine-
ments or task-specific adaptations might be neces-
sary.

Finally, computational constraints limited the
exploration of more complex architectures, such
as large-scale transformers or graph neural net-
works. This hindered our experimentation and we
could not try out more resource-intensive models
like LLaMA.

10 Conclusion

Our participation in SemEval-2025 Task 6 show-
cased the effectiveness of a carefully curated
methodology that integrated contrastive learning,
data augmentation, and semantic-aware represen-
tations to tackle the multifaceted challenge of
Promise Verification. Achieving the 2nd position
overall in the leaderboard in the English dataset.
The performance gains observed in the more com-
plex subtasks affirm the importance of address-
ing class imbalance and leveraging semantic align-
ment through contrastive loss. Beyond compet-
itive results, our model architecture and train-
ing strategy provide a strong foundation which
we speculate can be used for generalizing across
multilingual and multi-domain verification tasks.
In summary, our system demonstrates promising
strides in automated evidence verification, and we
hope our insights contribute meaningfully to the
broader research community working at the inter-
section of fact-checking, framing, and NLP-based
reasoning.
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