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Abstract
Question answering over tabular data requires
models to understand diverse table structures
and accurately reason over structured informa-
tion. To address these challenges, we introduce
DeepTabCoder, our approach to SemEval 2025
- Task 8: DataBench. We combine a code-based
retrieval system with in-context learning to gen-
erate and execute Python code for answering
questions, leveraging DeepSeek-V3 for code
generation. DeepTabCoder outperforms the
competition baseline, achieving accuracies of
81.42% on the DataBench dataset and 80.46%
on the DataBench Lite dataset. These results
demonstrate the potential of in-context learn-
ing with code execution methods for improving
table reasoning tasks.

1 Introduction

Recent advances in large language models (LLMs)
have significantly improved open-domain question
answering; however, question answering over struc-
tured tabular data remains a challenging problem.
Unlike text-based QA, tabular QA requires the
model to understand schema structures, handle
a variety of data types, and perform logical and
numerical operations over cell values. Addition-
ally, models must operate without external knowl-
edge sources, relying solely on the information
contained within the tables themselves.

SemEval 2025 Task 8: DataBench (Grijalba
et al., 2024) focuses on question-answering over
tabular data, introducing a large-scale benchmark
designed to evaluate how well models extract and
reason over structured information. The dataset
includes 65 diverse tables from multiple domains,
each varying in size, structure, and data types, mak-
ing it a comprehensive test for tabular reasoning.
Accompanying these datasets are 1,300 manually
curated questions, covering different answer types:
Boolean (True/False), categorical values, numer-
ical values, and lists. The competition itself fea-
tures a subset of 15 datasets and 522 questions,

providing a focused yet challenging evaluation set-
ting. Unlike open-domain QA, models must (1)
derive answers solely from the provided tables, (2)
handle heterogeneous table schemas, and (3) ex-
ecute complex queries without relying on exter-
nal knowledge. The task is further divided into
two categories: DataBench, which uses the full
datasets, and DataBench Lite, which provides a
smaller 20-row sample for each dataset, testing a
model’s ability to generalize with limited data.

DeepTabCoder follows a three-step approach
leveraging in-context learning to tailor prompts
for each dataset. First, we generate dataset-specific
prompts that include metadata and relevant schema
details to guide the model. Second, we inject the
question into the dataset-specific prompt and infer
the response from the model. Third, we extract the
Python code generated by the model and execute
it against the dataset to retrieve the answer. By
maintaining modular and reusable functions, our
method ensures flexibility across different tabular
structures. We extend and modify the approach
from Tool-Augmented Reasoning Framework for
Tables (TART) (Lu et al., 2024), which integrates
LLMs with specialized tools to enhance table un-
derstanding and numerical reasoning. TART con-
sists of three key components: a table formatter for
accurate data representation, a tool maker for con-
structing computational tools, and an explanation
generator for interpretability. We adapt TART’s
methodology to better align with the specific re-
quirements of the DataBench competition, focus-
ing on structured table reasoning.

Our system combines fixed schema templates
with code execution to handle diverse table struc-
tures. The system shows particular strength in
Boolean reasoning and numerical queries, though
challenges remain in complex aggregation tasks
requiring multi-hop reasoning. Detailed implemen-
tation and results analysis are presented in subse-
quent sections.
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2 Related Works

In this section, we review prior research across four
key areas that form the basis of DeepTabCoder.
For each area, we explain how our work extends
existing methods, with special emphasis on our
modification to the TART framework.

2.1 Tabular Question Answering

Early work in tabular question answering, such
as TAPAS (Herzig et al., 2020) and TaBERT (Yin
et al., 2020), converts tables into textual represen-
tations to apply semantic parsing and reasoning.
These approaches focus on leveraging pre-trained
language models to interpret table data. In con-
trast, DeepTabCoder embeds dataset-specific meta-
data and schema details directly into the prompt.
This design ensures that each table’s inherent struc-
ture is maintained without exposing full table de-
tails, allowing our model to reason more effectively
over heterogeneous data formats, as required by the
DataBench challenge (Grijalba et al., 2024).

2.2 Code-based Retrieval and Execution
Models

Recent work has demonstrated two complementary
approaches to code-based table reasoning:

• Pre-training with synthetic executions:
TAPEX (Liu et al., 2022) introduced table-
aware pre-training by exposing the model to
26 million synthetic (SQL query, execution re-
sult) pairs. This approach enhances structural
reasoning through the learning of SQL execu-
tion patterns, though it necessitates expensive,
task-specific pre-training instead of relying on
general code understanding.

• Prompt-time decomposition: DIN-SQL
(Pourreza and Rafiei, 2023) showed that de-
composing text-to-SQL tasks into subprob-
lems—such as schema linking and classifi-
cation—can significantly boost the few-shot
performance of large language models.

In this work, we integrate these insights through
dataset-aware schema prompting combined with
code execution.

2.3 In-Context Learning and Prompt
Engineering

The performance of large language models is
significantly enhanced by in-context learning, as

evidenced by works like GPT-3 (Brown et al.,
2020) and chain-of-thought prompting (Wei et al.,
2023). Typical strategies involve designing generic
prompts that guide the model’s reasoning. DeepT-
abCoder extends these strategies by incorporating
tailored prompts enriched with structured meta-
data and function definitions. This targeted prompt
engineering enables the model to concentrate on
the essential schema characteristics of each dataset
without revealing complete table representations,
thereby reducing token usage and facilitating more
precise code synthesis for query resolution.

2.4 Tool-Augmented Reasoning Frameworks
for Tables

The TART 1 framework (Lu et al., 2024) has been
influential in integrating external computational
tools into table reasoning, combining table for-
matting, tool creation, and explanation genera-
tion. We build upon this foundation by creat-
ing dataset-specific metadata and injecting it into
the prompt. DeepTabCoder leverages DeepSeek-
V3 (DeepSeek-AI et al., 2025), a state-of-the-art
Mixture-of-Experts (MoE) language model with a
total of 671 billion parameters, of which 37 billion
are activated per token for code generation and ex-
ecution, borrowing TART’s capabilities to better
handle the nuances of the DataBench task.

3 System Overview

This section presents DeepTabCoder’s system ar-
chitecture and methodology for generating domain-
specific prompts that enable models to synthesize
Python programs to answer user queries Q regard-
ing datasets D. The complete implementation of
DeepTabCoder can be found in Appendix A.

3.1 In-Context Prompt Generation
We generate tailored prompts that encapsulate key
schema characteristics of each dataset while min-
imizing verbosity. This approach empowers the
model to produce precise Python code for query
resolution without exposing full table representa-
tions.

3.2 Modular Function Definitions
To support dataset manipulation, we define the fol-
lowing modular functions:

• Data Loading: load_data : F → D, where
F represents the file path space.

1https://github.com/XinyuanLu00/TART
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• Row Retrieval: get_row_by_name : D ×
K → V , where K is the keyspace and V is the
value space.

3.3 Query-Conditioned Inference Pipeline
Given an input tuple (D, q), DeepTabCoder’s infer-
ence pipeline consists of the following key compo-
nents:

3.3.1 Augmented Prompt Construction
We construct an augmented prompt that concate-
nates structured schema features and the user
query:

P(D, q) = f(D)︸ ︷︷ ︸
Schema Features

⊕ q︸︷︷︸
Query

(1)

where ⊕ denotes the concatenation operator.

3.3.2 Inference with Query Injection
DeepTabCoder integrates dataset-specific metadata
with the query to ensure the model accurately in-
terprets the task within the dataset context. The
process involves:

• Query Integration: The dataset-aware
prompt is formulated as shown in Equation 1.
Here, f(D) encapsulates structured metadata
and function definitions extracted from D, en-
suring that all pertinent schema details are pro-
vided before the model processes the query.

• LLM Inference: The constructed prompt
P(D, q) is passed to the large language model
(LLM) M, which generates the correspond-
ing Python code C:

C = M(P(D, q)) (2)

The resulting code C is a syntactically and
semantically structured function designed to
compute the answer a based on D.

3.4 Code Execution
After the Python code C is generated, it is executed
and validated to ensure correctness in answering
the query q over the dataset D. Code generation is
performed using DeepSeek-V3.

• Code Execution: The function C is executed
in a controlled runtime environment to pro-
duce the answer:

a = C(D) (3)

Figure 1: Overview of the proposed pipeline.

4 Experimental Setup

We use the DataBench and DataBench Lite datasets
provided for SemEval 2025 Task 8. Each dataset-
specific prompt is constructed by extracting schema
metadata (column names and the first row), defin-
ing modular utility functions such as load_data
and get_row_by_name, and appending the corre-
sponding query q. The prompts are designed to
minimize verbosity while providing sufficient con-
text for code generation, as illustrated in Tem-
plate A. This is a condensed version; full prompt ex-
amples are available in the project’s GitHub reposi-
tory.

During inference, the structured prompt is
passed to DeepSeek-V3, which generates a Python
code snippet intended to answer the query. The
generated code is executed in a sandboxed Python
environment to produce the final prediction. The
same code C is used for both the full DataBench
datasets and their Lite versions without regenera-
tion.

Evaluation is performed using the
databench_eval2 package provided by the
organizers. We report overall accuracy along
with per-category accuracies across Boolean,
Categorical, Numerical, List of categories, and
List of numbers.

5 Results

In this section, we present the evaluation results for
DeepTabCoder on two datasets: DataBench and
DataBench Lite. We analyze the overall accuracy
as well as the category-specific performance for
both datasets using databench_eval package. The
tables and accompanying analysis provide a de-
tailed overview of the model’s performance across
different categories.

5.1 DataBench Accuracy Results

The overall accuracy of DeepTabCoder on the
DataBench dataset is 80.27%. The accuracy values
for each category within the dataset are presented in
Table 1. From this, we can observe that the model

2https://github.com/jorses/databench_eval
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excels in the boolean category with an accuracy of
86.05%, which is the highest among all categories.

Category Accuracy
list[category] 0.7639
list[number] 0.7802
category 0.7703
boolean 0.8605
number 0.8013

Table 1: Accuracy results on the DataBench dataset.

As shown in Table 1, the model demonstrates
robust performance across the categories, with par-
ticularly high accuracy in the boolean category.

5.2 DataBench Lite Accuracy Results

When evaluated on the DataBench Lite dataset,
the overall accuracy of the DeepTabCoder drops
slightly to 79.50%, as shown in Table 2. We reuse
the same code C without any modifications for gen-
erating answers on the DataBench Lite dataset.

Category Accuracy
list[category] 0.7222
list[number] 0.7802
category 0.7703
boolean 0.8682
number 0.7885

Table 2: Accuracy results on the DataBench Lite dataset.

Table 2 also shows that DeepTabCoder performs
best on the boolean category for the Lite dataset,
achieving an accuracy of 86.82%.

5.3 Baseline Comparison

The official competition leaderboard reports DeepT-
abCoder achieving 81.42% on DataBench and
80.46% on DataBench Lite, evaluated manually
by task organizers. For comparison, the base-
line model, stable-code-3b-GGUF, achieved 26%
and 27% respectively. DeepTabCoder outper-
forms stable-code-3b-GGUF by a significant mar-
gin, achieving much higher accuracy across both
datasets.

5.4 Evaluation of Accuracy vs. Task
Complexity

We evaluated the accuracy of DeepTabCoder us-
ing DeepSeek-V3 against the complexity of tasks
in both datasets. Figure 2 presents a visual repre-

sentation of the model’s accuracy on the different
categories across both datasets.

Figure 2: Accuracy of DeepSeek-V3 on different cate-
gories for the DataBench and DataBench Lite datasets.

The results highlight DeepTabCoder’s strength
in handling Boolean and numerical queries, where
precision-based conditions and arithmetic com-
putations are critical. The higher accuracy in
these categories indicates that executing model-
generated Python code offers an effective mech-
anism for addressing straightforward logical and
statistical tasks. However, lower performance on
list[category] and category outputs reveals
the difficulty in generalizing over categorical aggre-
gations, particularly when questions require select-
ing multiple elements or identifying non-unique
patterns. In several failure cases, the model either
missed entries when filtering a list or returned du-
plicate values instead of unique ones, suggesting
an opportunity to improve aggregation handling.

Overall, while DeepTabCoder significantly out-
performs the baseline by leveraging fixed schema
templates and code execution, these observations
emphasize the need for improvements in structured
decoding, multi-hop reasoning, and aggregation
strategies to further enhance performance on com-
plex tabular reasoning tasks.

6 Limitations

Despite demonstrating strong performance in tab-
ular question answering, DeepTabCoder still has
several limitations that need to be addressed. One
major limitation is the handling of complex queries.
It struggles with queries that require multi-hop rea-
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soning and advanced aggregation. While code ex-
ecution helps with computation, the model some-
times generates incorrect logic or fails to retrieve
the correct subset of data.

Another challenge arises with list-based output
generation. As observed in our results, the model’s
accuracy on questions requiring a list of categories
(e.g., list[category]) is significantly lower com-
pared to other categories. This indicates difficulties
in aggregating and structuring multiple categorical
responses correctly.

The model faces challenges with code genera-
tion, as it is not always correct, leading to run-
time errors. Although executing model-generated
Python code improves precision, errors in syntax
or logic occasionally occur, requiring additional
checks.

7 Future Work

To address these issues, we propose several direc-
tions for future research. Enhancing multi-hop rea-
soning through explicit decomposition and inter-
mediate verification could improve query resolu-
tion. For list-based outputs, structured decoding
and refined prompt engineering may lead to better
aggregation.

To improve code generation accuracy, future
work should incorporate additional calls to smaller
LLMs that verify and correct errors in the gener-
ated code after the initial output, thus enhancing
execution reliability. Adaptive schema understand-
ing could also be improved using schema-agnostic
or meta-learning techniques. Furthermore, we plan
to investigate domain-specific fine-tuning and so-
phisticated post-processing strategies to improve
the handling of aggregation and multi-hop reason-
ing tasks. Given limited co-location of program-
ming and other languages, special evaluations of
multilingual (Aryal et al., 2023a; Aryal and Pri-
oleau, 2023) and code-switched text (Aryal et al.,
2023b,c, 2022) will also be considered, especially
low-resource languages (Prioleau and Aryal, 2023;
Aryal and Adhikari, 2023; Sapkota et al., 2023).
These enhancements are expected to bolster the
robustness and generalizability of DeepTabCoder
in diverse real-world tabular reasoning scenarios

8 Conclusion

In this work, we presented DeepTabCoder to Se-
mEval 2025 Task 8: DataBench, which combines
code-based retrieval with in-context learning and

dataset-specific prompt engineering for question an-
swering over tabular data. By utilizing DeepSeek-
V3 for Python code generation and execution, we
achieved an improvement of approximately 3.13
times on the DataBench dataset (81.42% vs. 26%)
and 2.98 times on the DataBench Lite dataset
(80.46% vs. 27%) compared to the baseline.

While DeepTabCoder demonstrates strong per-
formance in tasks such as Boolean reasoning and
numerical queries, we observed challenges with
tasks requiring multi-hop reasoning and list-based
outputs, particularly in handling aggregation and
multi-category responses. This highlights areas
for further improvement, including enhanced multi-
hop reasoning capabilities, more effective handling
of complex aggregations, and improved code gener-
ation accuracy through additional error correction
and debugging mechanisms.

Overall, our results suggest that DeepTabCoder,
with future enhancements, has the potential to of-
fer a robust solution for tabular question answer-
ing, addressing both schema diversity and complex
query execution. Further work will focus on refin-
ing DeepTabCoder’s capabilities through multi-hop
reasoning enhancements, improved code genera-
tion accuracy, adaptive schema understanding, and
domain-specific fine-tuning to ensure robustness
and generalization across diverse real-world tabular
reasoning tasks.
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A Appendix

The code is available at https://github.com/
2036saharsha/DeepTabCoder.

Prompt for 066_IBM_HR dataset

Task: Given a table and a question, write a Python program to
answer the question.
Steps:

• Define modular, reusable functions that can be used for
multiple questions.

• Create a main function solution(table_data) that pro-
cesses the table and answers the query.

• Avoid hallucinating non-existent headers or table structures.

• Ensure no assumptions about missing or empty column head-
ers.

• Keep the code clean, modular, and reusable across queries.

Dataset Schema

Field Value
Age 41
Attrition Yes
BusinessTravel Travel_Rarely
... ...
YearsWithCurrManager 5

Question: What is the average job satisfaction for employees who
have worked for more than 5 years?
Solution Example Code:

import pandas as pd
def load_data(file_path):

df = pd.read_parquet(file_path)
return df

def get_row_by_name(df, key):
if key in df.columns:

return df[key].iloc[0]
return None

def solution(df):
filtered_df = df[df['YearsAtCompany'] > 5]

avg_job_satisfaction = filtered_df['JobSatisfaction']
.mean()

return avg_job_satisfaction
df = load_data("./datasets/066_IBM_HR/all.parquet")
print(solution(df))

Answer: 2.755
Write a code for this question: [[QUESTION]]
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