
Proceedings of the The 19th International Workshop on Semantic Evaluation (SemEval-2025), pages 1702–1708
July 31 - August 1, 2025 ©2025 Association for Computational Linguistics

Howard University-AI4PC at SemEval-2025 Task 8: DeepTabCoder -
Code-based Retrieval and In-context Learning for Question-Answering

over Tabular Data
Saharsha Tiwari and Saurav K. Aryal

EECS, Howard University
Washington, DC 20059, USA

https://howard.edu/
saharsha.tiwari@bison.howard.edu and saurav.aryal@howard.edu

Abstract
Question answering over tabular data requires
models to understand diverse table structures
and accurately reason over structured informa-
tion. To address these challenges, we introduce
DeepTabCoder, our approach to SemEval 2025
- Task 8: DataBench. We combine a code-based
retrieval system with in-context learning to gen-
erate and execute Python code for answering
questions, leveraging DeepSeek-V3 for code
generation. DeepTabCoder outperforms the
competition baseline, achieving accuracies of
81.42% on the DataBench dataset and 80.46%
on the DataBench Lite dataset. These results
demonstrate the potential of in-context learn-
ing with code execution methods for improving
table reasoning tasks.

1 Introduction

Recent advances in large language models (LLMs)
have significantly improved open-domain question
answering; however, question answering over struc-
tured tabular data remains a challenging problem.
Unlike text-based QA, tabular QA requires the
model to understand schema structures, handle
a variety of data types, and perform logical and
numerical operations over cell values. Addition-
ally, models must operate without external knowl-
edge sources, relying solely on the information
contained within the tables themselves.

SemEval 2025 Task 8: DataBench (Grijalba
et al., 2024) focuses on question-answering over
tabular data, introducing a large-scale benchmark
designed to evaluate how well models extract and
reason over structured information. The dataset
includes 65 diverse tables from multiple domains,
each varying in size, structure, and data types, mak-
ing it a comprehensive test for tabular reasoning.
Accompanying these datasets are 1,300 manually
curated questions, covering different answer types:
Boolean (True/False), categorical values, numer-
ical values, and lists. The competition itself fea-
tures a subset of 15 datasets and 522 questions,

providing a focused yet challenging evaluation set-
ting. Unlike open-domain QA, models must (1)
derive answers solely from the provided tables, (2)
handle heterogeneous table schemas, and (3) ex-
ecute complex queries without relying on exter-
nal knowledge. The task is further divided into
two categories: DataBench, which uses the full
datasets, and DataBench Lite, which provides a
smaller 20-row sample for each dataset, testing a
model’s ability to generalize with limited data.

DeepTabCoder follows a three-step approach
leveraging in-context learning to tailor prompts
for each dataset. First, we generate dataset-specific
prompts that include metadata and relevant schema
details to guide the model. Second, we inject the
question into the dataset-specific prompt and infer
the response from the model. Third, we extract the
Python code generated by the model and execute
it against the dataset to retrieve the answer. By
maintaining modular and reusable functions, our
method ensures flexibility across different tabular
structures. We extend and modify the approach
from Tool-Augmented Reasoning Framework for
Tables (TART) (Lu et al., 2024), which integrates
LLMs with specialized tools to enhance table un-
derstanding and numerical reasoning. TART con-
sists of three key components: a table formatter for
accurate data representation, a tool maker for con-
structing computational tools, and an explanation
generator for interpretability. We adapt TART’s
methodology to better align with the specific re-
quirements of the DataBench competition, focus-
ing on structured table reasoning.

Our system combines fixed schema templates
with code execution to handle diverse table struc-
tures. The system shows particular strength in
Boolean reasoning and numerical queries, though
challenges remain in complex aggregation tasks
requiring multi-hop reasoning. Detailed implemen-
tation and results analysis are presented in subse-
quent sections.

1702

https://howard.edu/


2 Related Works

In this section, we review prior research across four
key areas that form the basis of DeepTabCoder.
For each area, we explain how our work extends
existing methods, with special emphasis on our
modification to the TART framework.

2.1 Tabular Question Answering

Early work in tabular question answering, such
as TAPAS (Herzig et al., 2020) and TaBERT (Yin
et al., 2020), converts tables into textual represen-
tations to apply semantic parsing and reasoning.
These approaches focus on leveraging pre-trained
language models to interpret table data. In con-
trast, DeepTabCoder embeds dataset-specific meta-
data and schema details directly into the prompt.
This design ensures that each table’s inherent struc-
ture is maintained without exposing full table de-
tails, allowing our model to reason more effectively
over heterogeneous data formats, as required by the
DataBench challenge (Grijalba et al., 2024).

2.2 Code-based Retrieval and Execution
Models

Recent work has demonstrated two complementary
approaches to code-based table reasoning:

• Pre-training with synthetic executions:
TAPEX (Liu et al., 2022) introduced table-
aware pre-training by exposing the model to
26 million synthetic (SQL query, execution re-
sult) pairs. This approach enhances structural
reasoning through the learning of SQL execu-
tion patterns, though it necessitates expensive,
task-specific pre-training instead of relying on
general code understanding.

• Prompt-time decomposition: DIN-SQL
(Pourreza and Rafiei, 2023) showed that de-
composing text-to-SQL tasks into subprob-
lems—such as schema linking and classifi-
cation—can significantly boost the few-shot
performance of large language models.

In this work, we integrate these insights through
dataset-aware schema prompting combined with
code execution.

2.3 In-Context Learning and Prompt
Engineering

The performance of large language models is
significantly enhanced by in-context learning, as

evidenced by works like GPT-3 (Brown et al.,
2020) and chain-of-thought prompting (Wei et al.,
2023). Typical strategies involve designing generic
prompts that guide the model’s reasoning. DeepT-
abCoder extends these strategies by incorporating
tailored prompts enriched with structured meta-
data and function definitions. This targeted prompt
engineering enables the model to concentrate on
the essential schema characteristics of each dataset
without revealing complete table representations,
thereby reducing token usage and facilitating more
precise code synthesis for query resolution.

2.4 Tool-Augmented Reasoning Frameworks
for Tables

The TART 1 framework (Lu et al., 2024) has been
influential in integrating external computational
tools into table reasoning, combining table for-
matting, tool creation, and explanation genera-
tion. We build upon this foundation by creat-
ing dataset-specific metadata and injecting it into
the prompt. DeepTabCoder leverages DeepSeek-
V3 (DeepSeek-AI et al., 2025), a state-of-the-art
Mixture-of-Experts (MoE) language model with a
total of 671 billion parameters, of which 37 billion
are activated per token for code generation and ex-
ecution, borrowing TART’s capabilities to better
handle the nuances of the DataBench task.

3 System Overview

This section presents DeepTabCoder’s system ar-
chitecture and methodology for generating domain-
specific prompts that enable models to synthesize
Python programs to answer user queries Q regard-
ing datasets D. The complete implementation of
DeepTabCoder can be found in Appendix A.

3.1 In-Context Prompt Generation
We generate tailored prompts that encapsulate key
schema characteristics of each dataset while min-
imizing verbosity. This approach empowers the
model to produce precise Python code for query
resolution without exposing full table representa-
tions.

3.2 Modular Function Definitions
To support dataset manipulation, we define the fol-
lowing modular functions:

• Data Loading: load_data : F → D, where
F represents the file path space.

1https://github.com/XinyuanLu00/TART

1703

https://github.com/XinyuanLu00/TART


• Row Retrieval: get_row_by_name : D ×
K → V , where K is the keyspace and V is the
value space.

3.3 Query-Conditioned Inference Pipeline
Given an input tuple (D, q), DeepTabCoder’s infer-
ence pipeline consists of the following key compo-
nents:

3.3.1 Augmented Prompt Construction
We construct an augmented prompt that concate-
nates structured schema features and the user
query:

P(D, q) = f(D)︸ ︷︷ ︸
Schema Features

⊕ q︸︷︷︸
Query

(1)

where ⊕ denotes the concatenation operator.

3.3.2 Inference with Query Injection
DeepTabCoder integrates dataset-specific metadata
with the query to ensure the model accurately in-
terprets the task within the dataset context. The
process involves:

• Query Integration: The dataset-aware
prompt is formulated as shown in Equation 1.
Here, f(D) encapsulates structured metadata
and function definitions extracted from D, en-
suring that all pertinent schema details are pro-
vided before the model processes the query.

• LLM Inference: The constructed prompt
P(D, q) is passed to the large language model
(LLM) M, which generates the correspond-
ing Python code C:

C = M(P(D, q)) (2)

The resulting code C is a syntactically and
semantically structured function designed to
compute the answer a based on D.

3.4 Code Execution
After the Python code C is generated, it is executed
and validated to ensure correctness in answering
the query q over the dataset D. Code generation is
performed using DeepSeek-V3.

• Code Execution: The function C is executed
in a controlled runtime environment to pro-
duce the answer:

a = C(D) (3)

Figure 1: Overview of the proposed pipeline.

4 Experimental Setup

We use the DataBench and DataBench Lite datasets
provided for SemEval 2025 Task 8. Each dataset-
specific prompt is constructed by extracting schema
metadata (column names and the first row), defin-
ing modular utility functions such as load_data
and get_row_by_name, and appending the corre-
sponding query q. The prompts are designed to
minimize verbosity while providing sufficient con-
text for code generation, as illustrated in Tem-
plate A. This is a condensed version; full prompt ex-
amples are available in the project’s GitHub reposi-
tory.

During inference, the structured prompt is
passed to DeepSeek-V3, which generates a Python
code snippet intended to answer the query. The
generated code is executed in a sandboxed Python
environment to produce the final prediction. The
same code C is used for both the full DataBench
datasets and their Lite versions without regenera-
tion.

Evaluation is performed using the
databench_eval2 package provided by the
organizers. We report overall accuracy along
with per-category accuracies across Boolean,
Categorical, Numerical, List of categories, and
List of numbers.

5 Results

In this section, we present the evaluation results for
DeepTabCoder on two datasets: DataBench and
DataBench Lite. We analyze the overall accuracy
as well as the category-specific performance for
both datasets using databench_eval package. The
tables and accompanying analysis provide a de-
tailed overview of the model’s performance across
different categories.

5.1 DataBench Accuracy Results

The overall accuracy of DeepTabCoder on the
DataBench dataset is 80.27%. The accuracy values
for each category within the dataset are presented in
Table 1. From this, we can observe that the model

2https://github.com/jorses/databench_eval

1704

https://github.com/jorses/databench_eval


excels in the boolean category with an accuracy of
86.05%, which is the highest among all categories.

Category Accuracy
list[category] 0.7639
list[number] 0.7802
category 0.7703
boolean 0.8605
number 0.8013

Table 1: Accuracy results on the DataBench dataset.

As shown in Table 1, the model demonstrates
robust performance across the categories, with par-
ticularly high accuracy in the boolean category.

5.2 DataBench Lite Accuracy Results

When evaluated on the DataBench Lite dataset,
the overall accuracy of the DeepTabCoder drops
slightly to 79.50%, as shown in Table 2. We reuse
the same code C without any modifications for gen-
erating answers on the DataBench Lite dataset.

Category Accuracy
list[category] 0.7222
list[number] 0.7802
category 0.7703
boolean 0.8682
number 0.7885

Table 2: Accuracy results on the DataBench Lite dataset.

Table 2 also shows that DeepTabCoder performs
best on the boolean category for the Lite dataset,
achieving an accuracy of 86.82%.

5.3 Baseline Comparison

The official competition leaderboard reports DeepT-
abCoder achieving 81.42% on DataBench and
80.46% on DataBench Lite, evaluated manually
by task organizers. For comparison, the base-
line model, stable-code-3b-GGUF, achieved 26%
and 27% respectively. DeepTabCoder outper-
forms stable-code-3b-GGUF by a significant mar-
gin, achieving much higher accuracy across both
datasets.

5.4 Evaluation of Accuracy vs. Task
Complexity

We evaluated the accuracy of DeepTabCoder us-
ing DeepSeek-V3 against the complexity of tasks
in both datasets. Figure 2 presents a visual repre-

sentation of the model’s accuracy on the different
categories across both datasets.

Figure 2: Accuracy of DeepSeek-V3 on different cate-
gories for the DataBench and DataBench Lite datasets.

The results highlight DeepTabCoder’s strength
in handling Boolean and numerical queries, where
precision-based conditions and arithmetic com-
putations are critical. The higher accuracy in
these categories indicates that executing model-
generated Python code offers an effective mech-
anism for addressing straightforward logical and
statistical tasks. However, lower performance on
list[category] and category outputs reveals
the difficulty in generalizing over categorical aggre-
gations, particularly when questions require select-
ing multiple elements or identifying non-unique
patterns. In several failure cases, the model either
missed entries when filtering a list or returned du-
plicate values instead of unique ones, suggesting
an opportunity to improve aggregation handling.

Overall, while DeepTabCoder significantly out-
performs the baseline by leveraging fixed schema
templates and code execution, these observations
emphasize the need for improvements in structured
decoding, multi-hop reasoning, and aggregation
strategies to further enhance performance on com-
plex tabular reasoning tasks.

6 Limitations

Despite demonstrating strong performance in tab-
ular question answering, DeepTabCoder still has
several limitations that need to be addressed. One
major limitation is the handling of complex queries.
It struggles with queries that require multi-hop rea-

1705



soning and advanced aggregation. While code ex-
ecution helps with computation, the model some-
times generates incorrect logic or fails to retrieve
the correct subset of data.

Another challenge arises with list-based output
generation. As observed in our results, the model’s
accuracy on questions requiring a list of categories
(e.g., list[category]) is significantly lower com-
pared to other categories. This indicates difficulties
in aggregating and structuring multiple categorical
responses correctly.

The model faces challenges with code genera-
tion, as it is not always correct, leading to run-
time errors. Although executing model-generated
Python code improves precision, errors in syntax
or logic occasionally occur, requiring additional
checks.

7 Future Work

To address these issues, we propose several direc-
tions for future research. Enhancing multi-hop rea-
soning through explicit decomposition and inter-
mediate verification could improve query resolu-
tion. For list-based outputs, structured decoding
and refined prompt engineering may lead to better
aggregation.

To improve code generation accuracy, future
work should incorporate additional calls to smaller
LLMs that verify and correct errors in the gener-
ated code after the initial output, thus enhancing
execution reliability. Adaptive schema understand-
ing could also be improved using schema-agnostic
or meta-learning techniques. Furthermore, we plan
to investigate domain-specific fine-tuning and so-
phisticated post-processing strategies to improve
the handling of aggregation and multi-hop reason-
ing tasks. Given limited co-location of program-
ming and other languages, special evaluations of
multilingual (Aryal et al., 2023a; Aryal and Pri-
oleau, 2023) and code-switched text (Aryal et al.,
2023b,c, 2022) will also be considered, especially
low-resource languages (Prioleau and Aryal, 2023;
Aryal and Adhikari, 2023; Sapkota et al., 2023).
These enhancements are expected to bolster the
robustness and generalizability of DeepTabCoder
in diverse real-world tabular reasoning scenarios

8 Conclusion

In this work, we presented DeepTabCoder to Se-
mEval 2025 Task 8: DataBench, which combines
code-based retrieval with in-context learning and

dataset-specific prompt engineering for question an-
swering over tabular data. By utilizing DeepSeek-
V3 for Python code generation and execution, we
achieved an improvement of approximately 3.13
times on the DataBench dataset (81.42% vs. 26%)
and 2.98 times on the DataBench Lite dataset
(80.46% vs. 27%) compared to the baseline.

While DeepTabCoder demonstrates strong per-
formance in tasks such as Boolean reasoning and
numerical queries, we observed challenges with
tasks requiring multi-hop reasoning and list-based
outputs, particularly in handling aggregation and
multi-category responses. This highlights areas
for further improvement, including enhanced multi-
hop reasoning capabilities, more effective handling
of complex aggregations, and improved code gener-
ation accuracy through additional error correction
and debugging mechanisms.

Overall, our results suggest that DeepTabCoder,
with future enhancements, has the potential to of-
fer a robust solution for tabular question answer-
ing, addressing both schema diversity and complex
query execution. Further work will focus on refin-
ing DeepTabCoder’s capabilities through multi-hop
reasoning enhancements, improved code genera-
tion accuracy, adaptive schema understanding, and
domain-specific fine-tuning to ensure robustness
and generalization across diverse real-world tabular
reasoning tasks.

Acknowledgement

This research project was supported in part by the
Office of Naval Research grant N00014-22-1-2714.
The work is solely the responsibility of the authors
and does not necessarily represent the official view
of the Office of Naval Research.

References

Saurav Aryal and Howard Prioleau. 2023. Howard uni-
versity computer science at semeval-2023 task 12: A
2-step system design for multilingual sentiment clas-
sification with language identification. In Proceed-
ings of the 17th International Workshop on Semantic
Evaluation (SemEval-2023), pages 2153–2159.

Saurav K Aryal, Howard Prioleau, and Surakshya Aryal.
2023a. Sentiment analysis across multiple african
languages: A current benchmark. arXiv preprint
arXiv:2310.14120.

Saurav K Aryal, Howard Prioleau, Surakshya Aryal, and
Gloria Washington. 2023b. Baselining performance

1706



for multilingual codeswitching sentiment classifica-
tion. Journal of Computing Sciences in Colleges,
39(3):337–346.

Saurav K Aryal, Howard Prioleau, and Gloria Washing-
ton. 2022. Sentiment classification of code-switched
text using pre-trained multilingual embeddings and
segmentation. arXiv preprint arXiv:2210.16461.

Saurav K Aryal, Howard Prioleau, Gloria Washington,
and Legand Burge. 2023c. Evaluating ensembled
transformers for multilingual code-switched senti-
ment analysis. In 2023 International Conference on
Computational Science and Computational Intelli-
gence (CSCI), pages 165–173. IEEE.

Saurav Keshari Aryal and Gaurav Adhikari. 2023. Eval-
uating impact of emoticons and pre-processing on
sentiment classification of translated african tweets.
ICLR Tiny Papers.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners.

DeepSeek-AI, Aixin Liu, Bei Feng, Bing Xue, Bingx-
uan Wang, Bochao Wu, Chengda Lu, Chenggang
Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,
Damai Dai, Daya Guo, Dejian Yang, Deli Chen,
Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai,
Fuli Luo, Guangbo Hao, Guanting Chen, Guowei
Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng
Wang, Haowei Zhang, Honghui Ding, Huajian Xin,
Huazuo Gao, Hui Li, Hui Qu, J. L. Cai, Jian Liang,
Jianzhong Guo, Jiaqi Ni, Jiashi Li, Jiawei Wang,
Jin Chen, Jingchang Chen, Jingyang Yuan, Junjie
Qiu, Junlong Li, Junxiao Song, Kai Dong, Kai Hu,
Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean
Wang, Lecong Zhang, Lei Xu, Leyi Xia, Liang Zhao,
Litong Wang, Liyue Zhang, Meng Li, Miaojun Wang,
Mingchuan Zhang, Minghua Zhang, Minghui Tang,
Mingming Li, Ning Tian, Panpan Huang, Peiyi Wang,
Peng Zhang, Qiancheng Wang, Qihao Zhu, Qinyu
Chen, Qiushi Du, R. J. Chen, R. L. Jin, Ruiqi Ge,
Ruisong Zhang, Ruizhe Pan, Runji Wang, Runxin
Xu, Ruoyu Zhang, Ruyi Chen, S. S. Li, Shanghao
Lu, Shangyan Zhou, Shanhuang Chen, Shaoqing Wu,
Shengfeng Ye, Shengfeng Ye, Shirong Ma, Shiyu
Wang, Shuang Zhou, Shuiping Yu, Shunfeng Zhou,
Shuting Pan, T. Wang, Tao Yun, Tian Pei, Tianyu Sun,
W. L. Xiao, Wangding Zeng, Wanjia Zhao, Wei An,
Wen Liu, Wenfeng Liang, Wenjun Gao, Wenqin Yu,
Wentao Zhang, X. Q. Li, Xiangyue Jin, Xianzu Wang,
Xiao Bi, Xiaodong Liu, Xiaohan Wang, Xiaojin Shen,
Xiaokang Chen, Xiaokang Zhang, Xiaosha Chen,
Xiaotao Nie, Xiaowen Sun, Xiaoxiang Wang, Xin
Cheng, Xin Liu, Xin Xie, Xingchao Liu, Xingkai Yu,

Xinnan Song, Xinxia Shan, Xinyi Zhou, Xinyu Yang,
Xinyuan Li, Xuecheng Su, Xuheng Lin, Y. K. Li,
Y. Q. Wang, Y. X. Wei, Y. X. Zhu, Yang Zhang, Yan-
hong Xu, Yanhong Xu, Yanping Huang, Yao Li, Yao
Zhao, Yaofeng Sun, Yaohui Li, Yaohui Wang, Yi Yu,
Yi Zheng, Yichao Zhang, Yifan Shi, Yiliang Xiong,
Ying He, Ying Tang, Yishi Piao, Yisong Wang, Yix-
uan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo,
Yu Wu, Yuan Ou, Yuchen Zhu, Yuduan Wang, Yue
Gong, Yuheng Zou, Yujia He, Yukun Zha, Yunfan
Xiong, Yunxian Ma, Yuting Yan, Yuxiang Luo, Yuxi-
ang You, Yuxuan Liu, Yuyang Zhou, Z. F. Wu, Z. Z.
Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu,
Zhen Huang, Zhen Zhang, Zhenda Xie, Zhengyan
Zhang, Zhewen Hao, Zhibin Gou, Zhicheng Ma, Zhi-
gang Yan, Zhihong Shao, Zhipeng Xu, Zhiyu Wu,
Zhongyu Zhang, Zhuoshu Li, Zihui Gu, Zijia Zhu,
Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song, Ziyi
Gao, and Zizheng Pan. 2025. Deepseek-v3 technical
report.

Jorge Jorge Osés Grijalba, Luis Alfonso Ureña-López,
Eugenio Martínez Cámara, and Jose Camacho-
Collados. 2024. Question answering over tabular
data with databench: A large-scale empirical evalua-
tion of llms. In Proceedings of LREC-COLING 2024,
Turin, Italy.

Jonathan Herzig, Pawel Krzysztof Nowak, Thomas
Müller, Francesco Piccinno, and Julian Eisenschlos.
2020. TaPas: Weakly supervised table parsing via
pre-training. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 4320–4333, Online. Association for Computa-
tional Linguistics.

Qian Liu, Bei Chen, Jiaqi Guo, Morteza Ziyadi, Zeqi
Lin, Weizhu Chen, and Jian-Guang Lou. 2022.
Tapex: Table pre-training via learning a neural sql
executor.

Xinyuan Lu, Liangming Pan, Yubo Ma, Preslav Nakov,
and Min-Yen Kan. 2024. Tart: An open-source tool-
augmented framework for explainable table-based
reasoning.

Mohammadreza Pourreza and Davood Rafiei. 2023.
Din-sql: Decomposed in-context learning of text-
to-sql with self-correction.

Howard Prioleau and Saurav K Aryal. 2023. Bench-
marking current state-of-the-art transformer models
on token level language identification and language
pair identification. In 2023 International Conference
on Computational Science and Computational Intel-
ligence (CSCI), pages 193–199. IEEE.

Hrishav Sapkota, Saurav Keshari Aryal, and Howard
Prioleau. 2023. Zero-shot classification reveals po-
tential positive sentiment bias in african languages
translations. ICLR Tiny Papers.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le, and
Denny Zhou. 2023. Chain-of-thought prompting elic-
its reasoning in large language models.

1707

http://arxiv.org/abs/2005.14165
http://arxiv.org/abs/2412.19437
http://arxiv.org/abs/2412.19437
https://doi.org/10.18653/v1/2020.acl-main.398
https://doi.org/10.18653/v1/2020.acl-main.398
http://arxiv.org/abs/2107.07653
http://arxiv.org/abs/2107.07653
http://arxiv.org/abs/2409.11724
http://arxiv.org/abs/2409.11724
http://arxiv.org/abs/2409.11724
http://arxiv.org/abs/2304.11015
http://arxiv.org/abs/2304.11015
http://arxiv.org/abs/2201.11903
http://arxiv.org/abs/2201.11903


Pengcheng Yin, Graham Neubig, Wen tau Yih, and
Sebastian Riedel. 2020. Tabert: Pretraining for joint
understanding of textual and tabular data.

A Appendix

The code is available at https://github.com/
2036saharsha/DeepTabCoder.

Prompt for 066_IBM_HR dataset

Task: Given a table and a question, write a Python program to
answer the question.
Steps:

• Define modular, reusable functions that can be used for
multiple questions.

• Create a main function solution(table_data) that pro-
cesses the table and answers the query.

• Avoid hallucinating non-existent headers or table structures.

• Ensure no assumptions about missing or empty column head-
ers.

• Keep the code clean, modular, and reusable across queries.

Dataset Schema

Field Value
Age 41
Attrition Yes
BusinessTravel Travel_Rarely
... ...
YearsWithCurrManager 5

Question: What is the average job satisfaction for employees who
have worked for more than 5 years?
Solution Example Code:

import pandas as pd
def load_data(file_path):

df = pd.read_parquet(file_path)
return df

def get_row_by_name(df, key):
if key in df.columns:

return df[key].iloc[0]
return None

def solution(df):
filtered_df = df[df['YearsAtCompany'] > 5]

avg_job_satisfaction = filtered_df['JobSatisfaction']
.mean()

return avg_job_satisfaction
df = load_data("./datasets/066_IBM_HR/all.parquet")
print(solution(df))

Answer: 2.755
Write a code for this question: [[QUESTION]]

1708

http://arxiv.org/abs/2005.08314
http://arxiv.org/abs/2005.08314
https://github.com/2036saharsha/DeepTabCoder
https://github.com/2036saharsha/DeepTabCoder

