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Abstract

Question Answering over large tables is chal-
lenging due to the difficulty of reasoning re-
quired in linking information from different
parts of a table, such as heading and metadata
to the values in the table. We investigate us-
ing Large Language Models (LLM) for tabu-
lar reasoning, where, given a pair of a table
and a question from the DataBench benchmark,
the models generate answers. We experiment
with three techniques that enable symbolic
reasoning through code execution: (1) a di-
rect code prompting (DCP) approach, DCPp,,
which uses Python; (2) Multi-Step Code (MSC)
prompting MSCsqr+Fs using SQL and Re-
Act prompting; and, (3) MSR p, g, which
combines multi-step reasoning (MSR), few-
shot (FS) learning and Python tools. We also
conduct an analysis exploring the impact of an-
swer types, data size, and multi-column depen-
dencies on LLMs’ answer generation perfor-
mance, including an assessment of the models’
limitations and the underlying challenges of
tabular reasoning in LLMs.

1 Introduction

Table Question Answering (Table QA)—answering
questions on a table—has multiple applications in
different domains, such as in finance (Nararatwong
et al., 2025; Nararatwong et al., 2024; Papicchio
et al., 2023; Chen et al., 2022; Zhao et al., 2022;
Zhu et al., 2021; Chen et al., 2021) and scientific
literature (Zhao et al., 2024a: Ghosh et al., 2024;
Korkmaz and Del Rio Chanona, 2024; Katsis et al.,
2022; Moosavi et al., 2021). In some scientific
domains, such as medicine, tables contain infor-
mation that is not present in the text of a research
paper (Bardhan et al., 2024; Johnson et al., 2023;
Bardhan et al., 2022; Park et al., 2021). Answering
questions based on information hidden in tables
faces challenges such as dealing with table struc-
ture, size, linking headings to the content and in

the case of numerical values, may require mathe-
matical operations over multiple cells (Deng et al.,
2024; Wu et al., 2024; Nahid and Rafiei, 2024; Wu
et al., 2023; Pal et al., 2023; Cheng et al., 2022).

Table QA in natural language processing or infor-
mation retrieval often includes identifying a table
in a text that can answer a question and then rea-
soning and generating an answer (Pramanick et al.,
2024; Ji et al., 2024; Dong et al., 2024; Zhao et al.,
2024a; Wan et al., 2024; Herzig et al., 2021). How-
ever, we focus on a subproblem where a table is
provided along with the question. We report on our
participation in SemEval shared task! where given
a question and table, the task is to determine the
answer and the type of answer within the required
columns. The question must only be answered with
tabular data from the provided dataset, DataBench
benchmark.

We investigate using LLMs to generate an-
swers over tables with symbolic reasoning through
code execution to select the appropriate columns
and rows for a given question. Namely, a di-
rect code prompting approach, DCPp,; multi-
step code prompting with few-shot learning,
MSCsgr+rs; and, ReAct (Yao et al., 2023)
prompting, MSR p | s, which uses multi-step rea-
soning with few-shot learning. Furthermore, we
analyse the connection between the LLMs’ answer-
ing capacity and the answer types, data sizes and
cases when multiple columns are required to an-
swer a question.

2 Related Work

Transformer-based models Some existing table
QA models are transformer-based and pre-trained
on tables and texts from Wikipedia. For example,
TaPas (Herzig et al., 2020) with BERT encoder
for parsing tabular structures, TableFormer with
modified TaPas by learnable attention bias for en-
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coding tables (Yang et al., 2022), TaBERT with
BERT encoder for a joint understanding of textual
and tabular data (Yin et al., 2020), TaPEx with pre-
trained BART encoder-decoder on executable SQL
queries (Liu et al., 2022), and OmniTab with pre-
trained TaPEx on natural language questions (Jiang
et al., 2022). However, the performance of these
models decreases with out-of-domain distributions
and adversarial data, e.g., variations in table header
and content (Zhao et al., 2023c).

Open-source generalist LLMs Several studies
investigated these models for Table QA (Pal et al.,
2024; Zhang et al., 2024a; Zhao et al., 2023a; Zhao
et al., 2023b). These models have yet to demon-
strate generalisation abilities on out-of-domain
datasets and tasks. Zhang et al. (2024c) fine-tuned
Llama-2-7b on the instruction data for several table-
based tasks without incorporating task-specific de-
signs. Their experiments revealed that instruction
tuning improved performance with transformer-
based models in in-domain settings but not for out-
of-domain settings.

Osés Grijalba et al. (2025) experimented with
direct and code prompting to answer the questions.
For direct prompting, they used LLAMA?2 mod-
els, and for direct code prompts, they used Code-
LLAMA models with 7B and 13B parameters and
found the Code-LLLAMA to be the overall best
model on DataBench benchmark.

Table structure One promising direction to im-
prove table QA is to develop capabilities for under-
standing table structure, such as the table schema
and row and column semantics. When fine-tuned,
models can better locate answers over tables to pre-
dict the probability of containing the answer to a
question in the rows and columns of tables (Glass
et al., 2021). Retrieving the relevant columns and
rows from tables with millions of tokens can boost
the performance of LLMs while reducing computa-
tional complexity (Chen et al., 2024).

Zhao et al. (2024b) shows that modular and syn-
ergistic approaches can also improve the quality of
generated responses. LLLM hallucinations on tabu-
lar data can be mitigated with modular approaches
for generating faithful and interpretable answers,
e.g., conditioning answers on a QA-based plan of
sub-questions with extracted relevant table data.
The final answer can be selected from candidate
answers generated by both pre-trained table QA
and text-to-SQL models (Zhang et al., 2023; Chem-
mengath et al., 2021), which predict SQL queries

to represent the questions before executing them
on tables to find the answers (Zhang et al., 2024b).
The semantic parsing and question decomposition
methods help generate SQL queries based on the
table schema and questions (Eyal et al., 2023; Lin
et al., 2020).

Table QA Datasets and Evaluation Most bench-
mark datasets for table reasoning tasks are mainly
based on factual questions with short-form an-
swers (Kweon et al., 2023; Li et al., 2023; Chen
et al., 2021, 2020; Parikh et al., 2020; Yu et al.,
2018; Novikova et al., 2017; Pasupat and Liang,
2015). A common metric for evaluating models
across all related tasks is the exact match accu-
racy and ROUGE-L (Lin, 2004). General bench-
mark datasets representing human interactions, rea-
soning about structured knowledge retrieval, and
longer free-form responses are currently unavail-
able for table QA (Nan et al., 2022).

3 DataBench

The dataset in this shared task is from the
DataBench Osés Grijalba et al. (2025)%, a com-
prehensive collection of tabular data designed for
evaluating question answering over tables in En-
glish. DataBench consists of 65 datasets covering
five domains of business, health, social, sports, and
travel, with varying numbers of rows and columns
and varied data types.

Table 1 provides an overview of the number of
datasets collected, as detailed by Osés Grijalba
et al. (2025), along with information on the rows
and columns they contain. The corpus includes 65
real-world datasets with 3,269,975 rows and 1,615
columns, designed to evaluate language models
on the task of QA over tabular data. It includes a
total of 1,300 questions, each paired with a gold-
standard answer, along with additional metadata
such as answer type (i.e., true/false, categorical
values from the dataset, numerical values, or lists),
the corresponding data columns and their types.

Expected answer types are:

e Boolean. The answer can be True/False, Y/N,
or Yes/No.

* Category. The answer contains a value from
one cell or part of a cell.

2https://huggingface.co/datasets/cardiffnlp/
databench
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Domain  Datasets Rows Columns
Business 26 1,156,538 534
Health 7 98,032 123
Social 16 1,189,476 508
Sports 6 398,778 177
Travel 10 427,151 273
Total 65 3,269,975 1615

Table 1: DataBench domain taxonomy from Osés Gri-
jalba et al. (2025).

e Number. The answer is a numerical value
from one or multiple data table cells, which
can also represent statistics (e.g., average,
maximum and minimum).

* List[category]. Multiple values from one or
more table cells are listed as the answer.

¢ List[number]. A list of numbers as the answer.

4 Task Description and Setup

For each tuple of a question and the relevant ta-
ble, we must answer the question in two different
settings:

1. Task A (DataBench): questions are answered
with a given dataset; and,

2. Task B (DataBenchlLite): questions are an-
swered with a sampled version of the given
dataset containing a maximum of 20 rows.

During the development phase, the training and
development set of the data tables is made available
for training or fine-tuning. The testing phase has
only the test set of the DataBench.

5 Methods

Following Osés Grijalba et al. (2025), we ex-
plore three symbolic reasoning approaches through
code execution to tabular reasoning for QA using
LLMs—DCP p,, a direct prompting approach to
generate executable Python code and MSRpy 4 g,
an agentic multi-step few-shot learning approach
using Python tools, and MSCgsqgr4Fs, direct
prompting approach for generating SQL statements.
In this section, we detail our methodologies along
with their implementation details.

51 DCPp,

DCPp, uses direct code prompting (Figure 1 in
appendix) to generate executable Python query
code. This code is executed to obtain the rel-
evant information from the corresponding table
for post-processing. Specifically, (1) we directly
prompted GPT-40 (2024-10-21) to generate exe-
cutable Python code given the table columns, table
column types, and the question, (2) the code is then
executed returning the raw results from the table,
and (3) this result is converted to the required for-
mat, e.g., changed ‘yes’ or ‘no’ answers to boolean
types, changed the categories to a list of categories,
etc., based on the expected answer types.

52 MSRp,.rs

MSRpy;rs uses a ReAct (Yao et al., 2023)
prompt (See Appendix, Figure 2) containing
DataBenchLite as a sample table, and few-shot
exemplars from the training set of DataBench for
multi-step reasoning. Specifically, we (1) prompted
Claude Sonnet 3.5 v2 (2024-10-22) with the ques-
tion, sample table and few-shot exemplars to gen-
erate Python code to execute and the reasoning
behind the code; (2) we then executed the code
inside an isolated environment that contained the
entire table; and then, (3) passed the result back to
the model for observation. After observation, the
model decides whether to generate the final answer
or continue from step 1.

53 MSCsqgr+rs

MSCgsqr+Fs uses a multi-step prompt with few-
shot learning by: (1) generating an SQL query
statement—adding the list of table columns in
the prompt; (2) Executing the generated query—
looping until the LLM retrieves at least one record,;
and, (3) then, prompting the LLM to gener-
ate answer—prompt contains the question, SQL
query, retrieved rows and few-shot exemplars from
DataBenchLite. On the dev set, we experiment us-
ing Gemma?2-9B and GPT40-mini models, and on
the test set, in our final submission, we submit the
predictions obtained using the Gemma2-9B model.

6 Results and Discussions

The obtained accuracy scores and final rankings
are presented in Table 2. Overall, the method with
the highest performance is MSR py 4 ps with an
accuracy score of 88.12 % on DataBench and 87.70
% on DataBenchLite. DCPp, is the second and
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Task A Task B
DataBench Rank DataBenchLite Rank
DCPp, 80.46 19 76.05 24
MSRpyiFs 88.12 5 88.70 3
MSCsqr+Fs 64.94 36 69.16 30

Table 2: Final competition exact match accuracy scores
and ranking.

MSCsqgr+rs is the lowest-performing ones. All
methods, except the MSCsq .+ rs achieved better
performance in some cases with the DataBench
data compared to its smaller DataBenchLite subset.

Compared to the leaderboard, our highest-
performing model, MSR p,, | g achieves compet-
itive results compared to the top scorer (Team
TeleAl) of 95.1% on DataBench and 92.91% on
DataBenchLite. The best-performing proprietary
model (Team AILS-NTUA) has an accuracy of
89.85% and 88.89% on DataBench and DataBench-
Lite, respectively.

6.1 Error Analysis: Validation Set

The errors in our best-performing method,
MSR py 4 Fs, are analyzed on 320 question-answer
pairs from the validation set. Differences between
ground truth and predicted values are evaluated us-
ing the exact match accuracy metric with boolean
outputs of the basic evaluation function for the
DataBench corpus.’

Tabular question answering challenges. The
main reasoning challenges in tabular QA (Table
3) are understanding and reasoning over the table
data, which in our case is to understand the columns
and their data types and enumerate over multiple
columns to produce an answer that may have a list
of strings or numbers.

Ground truth data quality. The ground truth
answers are manually verified by inspecting the
questions and executing the required queries on the
validation data. At least 10% of the ground truth an-
swers and questions are poorly defined, making an
automatic evaluation of the models less objective
and more challenging.

Poorly defined questions. The questions do not
specify how to deal with the possibility of multiple
or repeated values in the answers. Instructions for
dealing with data quality, such as duplicated and

3eval code: https://tinyurl.com/3wexfvbm

# Challenge — table schema understanding

Example — Recognizing the table schema and the data types
of the table

Question —"Did any respondent indicate that they will not
vote?" requires models to identify a single ‘Vote Intention’
column and understand its list[category] type and ‘I will not
vote’ textual values to correctly respond with a Boolean value

# Challenge — question & answer type understanding

Example — Defining unambiguous instructions

Question — "What are the three least commonly ordered
quantities?" offers multiple interpretations to include or ex-
clude the rows with returned purchases based on the meaning
of invoices with negative quantities

# Challenge — multi-column integration

Example — Enumerating over number lists in columns
Question — "Which 5 patents (by ID) have the most targets
associated?" requires models to identify two columns (‘id” and
‘target’), understand a list{number] column type, and count
the items in number list for each ID to correctly respond with
a list[number] value

# Challenge — numeric answer generation

Example — Defining numeric precision and list order
Question — "What are the highest 5 levels of Extraversion?"
lacks definitions of answers with specified numerical precision
and sorting of numbers in a list

Table 3: Examples of model reasoning and benchmark-
ing challenges in tabular QA.

empty values in datasets, are also missing in the
questions.

Unsuitable generic evaluation metric. Our find-
ings indicate that questions about tables in bench-
mark datasets must be defined following the under-
lying table data and the desired evaluation meth-
ods. For example, the exact match metric leaves
almost no room for interpretation of questions and
requires an explicit definition of answers. The qual-
ity and structure of data need to be considered and
disclosed to ensure models can arrive at the same
ground truth answers.

6.2 Tabular Reasoning: Test Set

The tabular reasoning capabilities of our methods
were analyzed with the 522 pairs of questions and
answers in the test set of the DataBench data. Our
focus was on understanding the effects of table
sizes and answer types on the model performance
under a few-shot in-context learning setting.

Different answer types. The type of answers (for
example, boolean, list[number] and list[category])
influences the performance of the models, as shown
in Table 4. The most accurate LLM predic-
tions were for boolean answers, with 90.07% on
DataBench and 93.02% on DataBenchlLite. In con-
trast, the least accurate answers are generated for
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DCPpy MSRpy+rs MSCsqrL+Fs

DB DBL DB DBL DB DBL
Boolean 86.05 87.60 90.07 93.02 66.67 71.32
Category 85.14 8243 87.84 89.19 7442 81.08
Number 7949 7500 8526 87.82 59.62 67.95
List[cat.] 6994 68.06 77.78 83.33 51.39 50.00
Listinum.] 5824 56.04 76.92 8132 64.84 68.13

Table 4: Accuracy per answer type in DataBench (DB)
and DataBenchLite (DBL) test data.

number-lists with 76.92% and 81.32% accuracy,
respectively, on DataBench and DataBenchlLite.

LLMs struggle when generating list-type re-
sponses when tested for exact match accuracy, as
the models might not extract all the items in the
specific order. With number-lists being harder
to produce than category-lists, this outcome res-
onates with our error analysis findings. Unlike
the list of categories, each item in a list of num-
bers might require further aggregation (operations
such as sum and average) after retrieval. However,
for MSCgsgr+Fs, the accuracy of the number-
lists (68.13% on DataBenchlLite) is higher than
category-list (50% on DataBenchlLite), as the inter-
mediate SQL query generated by the LLMs already
applies the aggregation operator.

Effect of data size. In this analysis, we only con-
sider the question-answer pairs over the largest and
the smallest table from DataBench. In the test set,
the largest table is 068_WorldBank_Awards with
4,789,220 cells in 20 columns and 239,461 rows
(88.24% accuracy), and the smallest table is the
080_Books table with 520 cells in 13 columns and
40 rows (90.24% accuracy). Using the MSR py, g
method, we observe, as illustrated in Table 5, the
size of the tables does not significantly influence
the LLM predictions and the overall performance
is slightly better on the smallest table (90.24%)
than the largest (88.24%), showing the method’s
robustness to increases in the data size. As before,
the answers with a number and list of numbers
are challenging answer types for the model, more
pronounced for the largest table.

We observed that when the number of columns
increased, QA performed better, despite it adding to
the complexity of column-wide reasoning. The ac-
curacy when using the table with the least number
of columns (Table: 074_Lift with 5 columns and
3,000 rows) and the table with the most columns
(Table: 066_IBM_HR with 35 columns and 1,470
rows) is 74.29% and 94.87%, respectively.

DBrargest DBsmaitest
Overall 88.24 90.24
Boolean 87.50 100.00
Category 100.00 100.00
Number 85.71 92.86
List[category] 100.00 85.71
List[number] 66.67 71.43

Table 5: Accuracy of MSR p, 1 rg further split into
the answer types for the largest and smallest table of
DataBench test data.

Multi-column questions. On a manually sam-
pled 202 pairs of questions and answers (38.70%
of the DataBench test set), where the models need
more than one column to produce an answer, we
found the accuracy of our best method MSR py 4 s
is 80.20% with an 8% drop compared to the overall
accuracy of 88.12% (Table 2). In contrast, for the
rest of the records requiring single columns to an-
swer, the accuracy is 87.19 %, which closely aligns
with the overall accuracy, implying the model’s
difficulty in understanding and reasoning for multi-
column answers. Examples of sampled multi-
column QA are in the app. Table 6.

7 Conclusions

Table question answering is challenging because of
how information can be organised in tables, with
relevant information being located in columns from
diverse data types, requiring integration of infor-
mation across columns. We proposed three differ-
ent methods for Table QA, with our best model,
MSRpy s, which uses Reasoning and Acting
(ReAct) prompting, led to our team ranking in the
top-5 among over 100 submissions in the shared
task. Through our analysis, we found that numbers
and list answer types, and questions requiring an-
swers over multiple columns of the table are the
most challenging factors for table QA.

Future research may focus on advanced prompt-
ing strategies, e.g., chain-of-thought or building
answer-type specific pipelines.

Limitations

In our work, we only consider few-shot prompt-
ing without fine-tuning the models on the down-
stream QA tasks to address some reasoning prob-
lems using the available training data in the devel-
opment phase. We did not do any data cleaning or
pre-processing of the tables considering real-world
conditions where the data tables might contain er-
roneous or missing data, which could improve the
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overall performance. Model bias was also found
as LLMs refused to answer some questions, includ-
ing questions about pregnant people on table data
without a specified ‘female’ gender, which requires
further investigation. Ensembling our results from
the three approaches could also improve our out-
come. Furthermore, there is always the scope of
using more advanced few-shot selection methods
or stronger models such as L1ama-405b, Deepseek
R1, OpenAI 03, or 01 models.
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Appendix
A Prompting Approaches

The prompts used for DCPp,, MSRpy rs, and
MSCsqgr+rs are shown in Figures 1, 2, and 3,
respectively.

B Additional Analysis

Table 6 shows question and answer pairs from
DataBench that we sample for the evaluation of
answering questions that require information from
multiple columns and illustrate the differences be-
tween the ground truth and the predictions of the
MSR py 4 s method.
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Question Required Columns Table Ground Truth Prediction
. . . University Rating (uint8) L
‘Which ranl?g given to Fhe statesi CGPA (float6d) 072_Admissions 4.5 5
purpose of students is associ-
ated with the highest accumu-
lated grade point average?
. . labels bject
What is the single label asso- abels_en (objec ). 070_OpenFoodFacts ‘No gluten’ ‘Green Dot
. . product_name (object)
ciated with the most products?
Answer with a single category.
S \{ . .. .

‘What cause corresponds to the Cause (category) 075_Mortality ‘Suicide’ ‘Nephritis’

. Rate (float64)
lowest mortality rate?

wind (float64)

What is the name of the windi-  day (uint8) 078_Fires ‘Monday’ ‘March’
est day on average? calendar_names_2 (object)
‘What is the product type of the product_type (category) 079_Coftee ‘Premium Beans’ ‘Barista Espresso’

transactions with yielded the
most money in revenue? An-
swer with a category.

Revenue (category)

Tier 3 (category)

Is any entry in the third tier a Parent (category) 069_Taxonomy TRUE FALSE
(direct or otherwise) descendant
of 150?
Country (category)
Is Barbados considered overall Rank (uint8) 071_COL TRUE FALSE
more expensive than the coun-  Local Purchasing Power Index (float64)
try ranked in the 10th place?
What are the top 5 total lifts by Amount Lifted (kg) (uint16) 074_Lift [88849, 88071, 87862, [‘93 kg’, ‘Open’, 59 kg’,

‘Weight Class?

Weight Class (category)

83245, 81271]

83 kg’, 52 kg']

List the weights of women with
a height of exactly Im and
45cm.

Weight (uint8)
Height (uint8)

077_Gestational

[49.0, 50.0, 55.0,
66.0, 61.0]

[49, 50, 55, 66, 61, 71, 95,
55, 67, 69, 89, 55, 90, 58,
61,78, 80]

Ratings (float64)

[73.0, 85.0, 50.0,

List the _ratmgs of the lQp four Reviews (float64) 080_Books 30.0] 30, 39, 27, 25]
books with the most reviews?
[‘Harrison Barnes’, [‘Quentin Richardson’,
‘DeMar DeRozan’, ‘Andrew Goudelock’,
List the 5 players with the least CP}I;’?l{iﬁ;)(category) 076_NBA ‘Jeff Green’, ‘Darko Milicic’,
games played. ‘P.J. Tucker’, ‘Matt Carroll’,

‘Andre Drummond’]

‘Vladimir Radmanovic’]

Table 6: Examples of multi-column questions based on manual inspection of table schema in the test data. The
examples show the prediction errors from MSR p, 1 rs and the corresponding ground truth.
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DCPp, Prompt

Convert the given question to executable Python code based on the table columns and table column types. The dataframe
is already given and the Python code should print out the answer only.

Table columns are: {list of table columns}
For each column types are: {list of table type}
Question: {question}

Python code:

Figure 1: DCP p,, prompt.

MSRpy+Frs Prompt

You are a helpful Al assistant that can execute Python code to analyse tables.

The user will ask a question that is related to a markdown table of which you are given a sample of.

The user’s question can pertain to one or more rows within the table, so ensure you take this into account. You will be
given a set of example questions and answers.

Only provide the answer in the form of a boolean, list[category or number], category or number and do not write
anything else. Do not write anything aside from the direct answer.

You must use the Python tool to get your answer, and you must use Python’s builtin print in order to see your results.
Assume that the full table is located in a parquet file at /sandbox/all.parquet

###Example Questions and Answers
{{Few-shot examples} }

###SAMPLE TABLE
{ {markdown_sample_table}}

Figure 2: MSR py 4 g prompt.

MSCsqr+rs Prompt

QUESTION: {input}
You have to generate an answer to the above question from a table. The SQL query below is executed on the table: {query}
Output of the SQL query: {result}

Based on the above SQL query output, generate an appropriate answer to the given question. Check if the answer is
below rules:

Rule #1: If a question that starts with ‘are there..’, ‘is there..”, the answer would be whether the records exist, in such
cases, return True or false.

Rule #2: If the question is asking about a count of items or maximum, minimum or average of the items, apply that
aggregation (count, min, max, average) on the items and return a numeric value, not a list of items. For example, "How
many distinct HHS regions are present ?" is asking about the total number of regions and the answer is 10.

Rule #3: Avoid repetition in the answer.

Rule #4: Always put multiple values in the answer within a [] bracket. If the list items are strings, add single quotations
around the strings.

EXAMPLES:
{sampleqa}

Your response should only contain the question’s answer.

RESPONSE:

Figure 3: MSCg(q 4 Fs prompt.
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