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Abstract

This paper introduces our approach for
SemEval-2025 Task 11: Bridging the Gap in
Text-Based Emotion Detection. We investigate
a diverse set of methodologies, including fine-
tuning encoder-based models and employing
prompt engineering with large language mod-
els (LLMs) augmented by retrieval-augmented
generation (RAG). Our system is evaluated
across multiple languages, with a particular fo-
cus on low-resource languages, to assess the
robustness and adaptability of these techniques.
The findings provide valuable insights into en-
hancing emotion detection in multilingual and
resource-constrained settings. The code and
implementation details are publicly available at
GitHub.

1 Introduction

Emotion detection from text has emerged as a
fundamental task in Natural Language Processing
(NLP), enabling advancements in domains such
as sentiment analysis, affective computing, and
human-computer interaction (Mohammad and Kir-
itchenko, 2018; Cambria, 2016). Despite progress,
challenges persist, especially in multilingual set-
tings where emotional expressions vary across lan-
guages and cultures (Öhman et al., 2020). De-
tecting nuanced, fine-grained emotional states
is further complicated by the inherent context-
dependence and subtlety of emotions.

This paper is motivated by our participation in
the SemEval-2025 Task 11 (Muhammad et al.,
2025b). This shared task spans three sub-tracks:
Track A (Multi-label Emotion Classification),
Track B (Emotion Intensity Prediction), and Track
C (Cross-Lingual Emotion Detection). Each track
poses distinct challenges, ranging from the classifi-
cation of overlapping emotional states in a single
text snippet to the estimation of emotion intensity
across scales, and even transferring emotion detec-
tion across languages.

To address these challenges, we adopt state-of-
the-art transformer-based architectures. Specif-
ically, we fine-tune RoBERTa-large (Liu et al.,
2019) for English tasks and XLM-RoBERTa-large
(Conneau, 2019) for multilingual and cross-lingual
settings. For Track A, our approach incorporates
fine-tuning these models with a strong focus on
threshold optimization to balance precision and re-
call. Additionally, we employ back-translation as
a data augmentation technique for English models
to improve their robustness (Sennrich et al., 2015;
Edunov et al., 2018).

In Track B, we leverage the capabilities of GPT-
4o-mini through few-shot learning, a paradigm par-
ticularly well-suited for estimating emotion inten-
sity (Brown et al., 2020; Zhao et al., 2021). Rele-
vant training examples are retrieved using cosine
similarity of text embeddings, derived via Ope-
nAI’s embedding models. By retrieving semanti-
cally similar examples, the model is guided toward
making more contextually appropriate predictions
for varying emotion intensities. Notably, we intro-
duce tailored prompting and iterative refinement of
responses, which significantly improve the model’s
capacity to handle complex emotional expressions
(Reynolds and McDonell, 2021).

We further experimented with a hybrid approach
in Track B, combining outputs from GPT-4o-mini
with predictions from an independently trained
Multi-Layer Perceptron (MLP) model using Ope-
nAI embeddings. While the hybrid model achieved
notable gains in detecting "surprise", it fell short of
surpassing the few-shot GPT-based predictions in
other categories.

For Track C, our work extends the multilingual
and cross-lingual capabilities of XLM-RoBERTa-
large. Leveraging insights from prior work (Con-
neau, 2019), we exploit shared linguistic repre-
sentations in related languages to enhance cross-
lingual transfer learning. Datasets like XED (Öh-
man et al., 2020) and GoEmotions (Demszky et al.,
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ary chn deu eng esp hau hin mar ptmz ron rus tat ukr amh arq ptbr
Train 1,608 2,642 2,603 2,768 1,996 2,145 2,556 2,415 1,546 1,241 2,679 1,000 2,234 2,556 1,608 2,226
Dev 267 200 200 116 184 356 100 100 257 123 199 200 249 100 100 200
Test 812 2,642 2,604 2,767 1,695 1,080 1,010 1,000 776 1,119 1,000 1,000 1,119 1,010 1,000 2,226

Table 1: Statistics for selected languages from the BRIGHTER dataset. Each row reflects the number of text samples
available for training, development (dev), and testing in specific languages.

2020) underscore the importance of high-quality
annotated resources for training robust emotion de-
tection models, and we align our methodology with
these principles.

2 Datasets

This study utilizes the BRIGHTER dataset
(Muhammad et al., 2025a), a multilingual corpus
for emotion recognition spanning 28 diverse lan-
guages. The dataset addresses a significant gap in
the availability of annotated emotional data, par-
ticularly for low-resource languages, and is con-
structed from a range of textual sources, including
social media posts, news articles, personal narra-
tives, and literary texts.

In tasks related to Ethiopian languages, particu-
larly Amharic, we incorporated insights from prior
work on multi-label emotion classification (Belay
et al., 2025), using knowledge derived from the
EthioEmo dataset (Belay et al., 2025). Each data
instance in the dataset is annotated for one or more
of the six core emotions: anger, disgust, fear, joy,
sadness, and surprise. A neutral label indicates
the complete absence of these emotions, where all
emotion intensities are set to zero.

The BRIGHTER dataset enhances the conven-
tional multi-label emotion detection task by provid-
ing an emotion intensity scale ranging from 0 to 3
for each emotion, thereby enabling a more granu-
lar analysis of emotional nuances. This capability
is pivotal for fine-grained emotion detection and
cross-lingual tasks.

To further enhance model robustness for English,
we augmented the BRIGHTER dataset with sam-
ples from GoEmotions (Demszky et al., 2020),
a widely-used resource for fine-grained English
emotion annotation. The augmentation enriched
the training data and provided broader context for
modeling diverse emotional expressions.

3 Methods

Our approach combines fine-tuned transformer
models, few-shot learning with large language
models (LLMs), and threshold optimization for

multi-label classification. To handle the multilin-
gual aspect, we fine-tuned XLM-RoBERTa-large
(Conneau, 2019) and RoBERTa-large (Liu et al.,
2019) for Track A, applying back-translation as
a data augmentation technique for English (Sen-
nrich et al., 2015). We also optimized classification
thresholds to improve model calibration across all
languages.

For emotion intensity estimation in Track B, we
utilized a Retrieval-Augmented Generation (RAG)
framework (Lewis et al., 2020) to enhance few-
shot learning with GPT-4o-mini. Specifically, we
retrieved the most relevant training examples us-
ing embedding-based cosine similarity search and
incorporated them directly into the prompts. By
including these contextually relevant examples, the
model benefited from enhanced in-context learn-
ing, allowing it to better generalize across different
intensity levels (Brown et al., 2020).

3.1 Data Preparation and Augmentation

To mitigate class imbalance within the English
dataset, we augmented it with additional sam-
ples drawn from the GoEmotions dataset(Demszky
et al., 2020). As GoEmotions encompasses a
broader spectrum of emotion labels than those de-
fined in this task, we filtered the dataset to retain
only the six target emotion categories: anger, dis-
gust, fear, joy, sadness, and surprise. Instances
annotated as neutral were excluded due to their
limited emotional content. Following this prepro-
cessing step, we selectively incorporated records to
achieve a balanced distribution across all emotion
classes. This process resulted in a dataset compris-
ing 6,195 samples for English.

In addition to balancing, we employed back-
translation as a data augmentation technique, ap-
plied exclusively to the English samples. Each
sentence was translated into German and then back
to English using the Deep-Translator library with
the Google Translate API. Back-translation intro-
duced natural linguistic variation while preserving
the underlying emotional content of the text. No
additional filtering was applied to the backtrans-
lated outputs. The augmentation procedure yielded
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a final dataset of 12,330 samples for English.

3.2 Fine-Tuning Encoder-Based Models

For Tracks A and C, we employed a full fine-tuning
strategy on encoder-based language models to per-
form multi-label emotion classification across mul-
tiple languages. Specifically, RoBERTa-large was
utilized for English emotion classification, while
XLM-R was selected for multilingual emotion clas-
sification. Additionally, back-translation was ex-
plored as a data augmentation approach; however,
due to resource constraints, it was primarily imple-
mented for English. The choice of these models
stems from their robust contextual representation
capabilities, which are particularly effective in cap-
turing the intricate nuances required for emotion
classification tasks (Devlin et al., 2018; Liu et al.,
2019; Conneau, 2019).

3.2.1 RoBERTa-large for English
We conducted fine-tuning of the RoBERTa-large
model for the classification of five emotion labels
in English. The model was trained in a multi-label
classification setting, where each emotion label
was independently predicted using a sigmoid acti-
vation function, thereby allowing the assignment
of multiple emotions to a single input text. Hy-
perparameters such as the learning rate, batch size,
and number of epochs were selected after testing
several configurations to optimize performance, en-
suring effective gradient updates during training
with the AdamW optimizer.

3.2.2 XLM-R for Multilingual Emotion
Detection

For multilingual emotion classification, we per-
formed fine-tuning of XLM-R (Conneau, 2019),
a multilingual encoder-based model pretrained on
a diverse array of languages, including many low-
resource ones. XLM-R was selected due to its
ability to capture shared linguistic features across
different languages, making it highly effective for
tasks such as those in Track C, which require the
transfer of emotion classification knowledge from
one language to another. This aligns with prior
studies demonstrating that multilingual pretraining
enables models to leverage language-independent
representations, resulting in enhanced cross-lingual
generalization, particularly when fine-tuned on
linguistically similar source languages (Conneau,
2019; Lim et al., 2024). The model was opti-
mized using AdamW with a learning rate and batch

size chosen after testing various configurations to
achieve optimal performance.

Source Language Inference Language
Romanian (ron) Spanish (esp)
Romanian (ron) German (deu)
Russian (rus) Tatar (tat)
Hindi (hin) Marathi (mar)
Hindi (hin) Russian (rus)
Marathi (mar) Hindi (hin)

Table 2: Source and inference language mapping for
Track C.

3.3 Multi-Label Classification and Threshold
Optimization

The task of emotion classification is modeled as a
multi-label classification problem, where a single
text instance may simultaneously express multiple
emotions. Instead of employing a softmax activa-
tion function, we adopt a sigmoid activation func-
tion to independently estimate the probability of
each emotion.

To address the challenge of class imbalance, we
perform emotion-specific threshold optimization.
Thresholds are tuned by maximizing the macro F1-
score on the validation set through a grid search
over values ranging from 0.1 to 0.9 in increments of
0.01. These optimized thresholds are subsequently
applied to the predicted probabilities to generate
the final classification labels.

3.4 Few-Shot Learning and Structured
Prompt Engineering

To address the task of multilingual emotion detec-
tion and classification, we employed a sophisticated
few-shot learning paradigm powered by GPT-4.0-
mini, an advanced large language model (LLM).
This approach leveraged prompt engineering to
systematically guide the model’s predictions for
emotion detection, accounting for the subtle, multi-
label, and multi-intensity nature of the task.

3.4.1 Role-Based Prompting for Multilingual
Emotion Detection

We employed a structured “Role-Based Prompting”
methodology to instruct the LLM for multi-label
emotion classification across all emotional dimen-
sions, utilizing a four-point intensity scale (0–3).
The prompt explicitly framed the task as an analysis
of the perceived emotions of the speaker, emphasiz-
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ing linguistic markers that most observers would
associate with the speaker’s emotional state.

Key design elements of the prompts included:

• Emphasis on the co-existence of multiple emo-
tions at varying intensities, reflecting the nu-
anced, multi-label nature of emotion classifi-
cation (Demszky et al., 2020).

• A statistical framework for label distributions.
We observed that the model exhibited biases
in its baseline performance, and we manu-
ally calibrated the probability distributions
for each emotion class. For underrepresented
emotions, such as Joy and Surprise, we ad-
justed the distributions to better align with
real-world data distributions. When the orig-
inal distribution consisted of 60% for label
0 and 40% for label 1, we discovered that
adjusting this distribution to 90% for label 0
and 10% for label 1 led to improved model
performance.

• A strict output format to ensure consistency:
“Joy: [0-3], Fear: [0-3], Anger: [0-3], Sad-
ness: [0-3], Surprise: [0-3], Disgust: [0-3].”

• Integration of a Retrieval-Augmented Gener-
ation (RAG) framework (Lewis et al., 2020).
Relevant few-shot examples were dynamically
retrieved based on cosine similarity of Ope-
nAI Ada embeddings, providing the LLM
with contextually aligned examples for en-
hanced in-context learning. This retrieval pro-
cess was pivotal in guiding the model toward
more contextually appropriate predictions.

3.4.2 Iterative Re-Prompting for Enhanced
Robustness

To improve the reliability of the LLM’s outputs,
we introduced an “Iterative Re-Prompting” tech-
nique. After the initial prediction for a given text
snippet, the model was re-prompted with an addi-
tional instruction: “Are you sure? Analyze deeper.”
This iterative mechanism encouraged the model
to re-evaluate its initial predictions, particularly
for instances with subtle or ambiguous emotional
cues. Re-prompting approaches have previously
been shown to enhance model robustness by refin-
ing responses in iterative loops.

Empirical results demonstrated that this iterative
querying improved classification consistency, es-
pecially for challenging samples. The method was

particularly beneficial in cases where the initial
prediction lacked confidence or exhibited biases
toward dominant emotions.

3.4.3 Temperature-Tuned Multiple Prompting
for Diversity

We experimented with a “Temperature-Tuned Mul-
tiple Prompting” strategy to introduce diversity into
the predictions. This involved generating outputs
from five separate prompts with a higher tempera-
ture setting (temperature = 0.7) and averaging the
results to mitigate prediction biases. While this ap-
proach introduced controlled variability in predic-
tions, the aggregated performance did not exceed
that of the single-prompt, low-temperature setting
(temperature = 0). Consequently, the re-prompting
method was adopted as the primary mechanism,
given its superior consistency and accuracy.

3.4.4 Hybrid Framework with MLP for
Specific Emotions

To address notable limitations observed in the
LLM’s performance for specific emotion classes,
such as Surprise, we incorporated a hybrid frame-
work. While the LLM exhibited strong perfor-
mance across most emotional dimensions, it strug-
gled with Surprise, as evidenced by lower evalua-
tion metrics. To mitigate this, we trained a Multi-
Layer Perceptron (MLP) classifier using OpenAI
Ada embeddings.

The MLP model demonstrated remarkable ef-
fectiveness in handling the Surprise dimension,
likely due to its ability to leverage consistent em-
bedding representations for this class. The final
hybrid system integrated outputs from both models:
the LLM predictions were retained for all emotions
except Surprise, which was handled exclusively
by the MLP classifier. Specifically, the MLP con-
sists of two hidden layers with 128 and 64 units
respectively, each followed by ReLU activation and
dropout, and a final linear layer projecting to the
six emotion classes. This hybrid approach aligns
with recent research advocating for the combina-
tion of LLMs and traditional classifiers to achieve
task-specific enhancements.

4 Results and Analysis

4.1 Track A: Multi-Label Classification
We evaluated the performance of RoBERTa-large
and XLM-RoBERTa-large on multiple languages.
The results of our experiments, including macro F1-
scores and emotion-specific scores, are presented
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in Table 3. The evaluation metrics employed in
this task, including those for multi-label classifica-
tion, adhere to the definitions provided in the task
description paper (Muhammad et al., 2025b). Our
findings suggest that optimized thresholds signif-
icantly outperformed the default 0.5 threshold by
effectively balancing precision and recall, particu-
larly for underrepresented emotions like surprise.

4.2 Track B: Emotion Intensity Estimation

For Track B, we used GPT-4o-mini in a few-shot
learning setup. The performance was evaluated
using Pearson correlation between the predicted
and gold intensity labels. The results of our ex-
periments, including correlation scores across dif-
ferent emotions, are presented in Table 4. While
the model performed well overall, it struggled with
the surprise emotion, which consistently showed
weaker results compared to other emotions.

4.3 Track C: Cross-Lingual Emotion
Detection

For Track C, we fine-tuned XLM-RoBERTa-large
on a source language and evaluated it on a target
language. The evaluation metric used was macro
F1-score. The results of our experiments, includ-
ing performance scores across target language, are
presented in Table 5. The best performance was
achieved with linguistically related source-target
pairs, such as Romanian → Spanish and Hindi →
Marathi, which has been shown to improve perfor-
mance in cross-lingual tasks (Conneau, 2019).

4.4 Analysis

The methods used in this study, including fine-
tuned transformer models, Retrieval-Augmented
Generation (RAG), and threshold optimization,
were effective for emotion detection but also re-
vealed key challenges and areas for improvement.

Threshold optimization in multi-label emotion
classification played a crucial role in balancing pre-
cision and recall, particularly for underrepresented
emotions like Surprise. This method helped miti-
gate class imbalance. However, emotion distribu-
tions in training data impacted model performance,
emphasizing the need for dynamic thresholding to
handle imbalances, especially for languages with
skewed emotion distributions.

In emotion intensity estimation, GPT-4o-mini
was used in a few-shot learning setup, enhanced
by RAG-based retrieval. This allowed the model

to improve predictions by retrieving relevant ex-
amples through embedding-based similarity search.
While this approach worked well overall, it faced
difficulties with emotions like Surprise. Further
refinement of the retrieval process, especially for
emotions with subtle markers, could improve accu-
racy.

For Track C, fine-tuning XLM-RoBERTa-large
across linguistically related language pairs showed
that shared linguistic features improve performance
in cross-lingual emotion detection. However, the
linguistic distance between some languages posed
challenges. This highlights the need for techniques
that can handle greater linguistic diversity and im-
prove cross-lingual transferability.

A common challenge across all tracks was the
model’s struggle with emotions that are less repre-
sented in the training data. While common emo-
tions like joy and anger performed well, rare emo-
tions like Surprise were more difficult to detect,
indicating the need for more diverse datasets to
capture a broader range of emotional expressions.

While LLMs are highly capable at nuanced emo-
tion analysis, careful alignment of their predictions
to the statistical and linguistic realities of multi-
lingual datasets is essential. Additionally, our hy-
brid framework highlights the benefits of combin-
ing fine-tuned classical ML models with advanced
LLM-based pipelines to improve performance in
specialized emotion detection tasks.

4.5 Conclusion

This work presents a framework for emotion de-
tection, combining fine-tuned transformer models
with Retrieval-Augmented Generation (RAG) tech-
niques. We demonstrated the effectiveness of mul-
tilingual fine-tuning and threshold optimization to
improve emotion classification and handle class
imbalance.

The results highlight the importance of linguis-
tic relatedness for cross-lingual emotion detection,
with fine-tuning on related languages enhancing
transferability. RAG proved valuable in retrieving
relevant examples for more accurate intensity pre-
dictions. This approach sets the stage for future
improvements in cross-lingual transfer and emotion
detection for underrepresented emotions.
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Language Anger (%) Disgust (%) Fear (%) Joy (%) Sadness (%) Surprise (%) Macro F1 (%) Micro F1 (%)
deu 74.13 68.95 39.62 68.39 63.16 35.11 58.23 64.80
eng 66.67 - 81.52 76.05 74.60 73.90 74.55 76.48
esp 68.67 75.51 78.28 84.73 78.75 72.68 76.44 76.56
hin 78.80 81.22 90.91 88.89 85.38 88.14 85.56 85.55
mar 74.72 81.25 83.85 76.92 80.70 82.78 80.04 79.84
rus 86.56 86.78 93.27 90.77 81.45 83.84 87.11 87.13
ary 53.16 49.38 45.00 70.00 60.06 45.99 53.93 55.20
chn 82.87 47.86 46.62 85.69 56.82 48.92 61.46 71.11
hau 31.60 28.68 25.54 27.42 46.77 30.66 31.78 32.60
ptmz 30.88 27.59 51.22 54.47 63.19 36.92 44.05 50.87
ron 62.10 71.32 85.22 96.04 74.96 57.40 74.51 74.18

Table 3: Track A results for multi-label classification across multiple languages (F1 score in percentage).

Language Anger (%) Disgust (%) Fear (%) Joy (%) Sadness (%) Surprise (%) Avg Pearson r (%)
amh 39.36 39.91 27.69 59.99 56.24 16.33 39.92
deu 74.61 67.83 52.43 77.14 70.68 42.41 64.18
eng 76.57 - 79.88 81.80 76.71 64.21 75.83
esp 72.39 48.15 79.16 80.52 79.46 68.32 71.33
ptbr 67.59 29.31 56.56 76.14 72.17 42.65 57.40
rus 89.03 87.93 83.89 84.31 81.21 79.71 84.35
arq 57.41 35.76 53.59 64.41 50.36 41.44 50.50
chn 71.44 42.33 41.26 79.44 57.59 31.53 53.93
hau 57.16 76.10 64.16 64.40 67.69 48.74 63.04

Table 4: Track B results for emotion intensity prediction across multiple languages (pearson correlation in percent-
age)

Language Anger (%) Disgust (%) Fear (%) Joy (%) Sadness (%) Surprise (%) Macro F1 (%) Micro F1 (%)
spa 61.50 68.14 65.10 64.40 56.67 49.34 60.86 61.30
hin 58.91 55.56 80.00 85.35 72.16 73.65 70.94 72.41
mar 74.85 73.74 85.41 76.41 74.77 84.62 78.30 77.97
rus 68.12 70.83 83.33 61.06 59.48 59.33 67.03 66.86
tat 40.12 11.94 03.17 53.22 49.56 62.73 36.79 45.92
ukr 38.77 46.24 72.53 65.29 57.20 55.38 55.90 59.69

Table 5: Track C results for cross-lingual emotion detection across multiple languages (F1 score in percentage).
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