GIL-IIMAS UNAM at SemEval-2025 Task 4: LA-Min(E): LLM Unlearning Approaches Under Function Minimizing Evaluation Constraints

Karla Salas - Jimenez, Francisco López - Ponce, Diego Hernández - Bustamante, Gemma Bel - Enguix, Helena Gómez - Adorno


Abstract
This paper describes Gradient Ascent and Task Vectors as LLM unlearning methodologies applied to SemEval 2025’s task 4. This task focuses on LLM unlearning on specific information under the constraints of preserving the model’s advanced text generation capabilities; meaning that our implementations of these algorithms were constrained both in the information datasets as well as the overall effect of each algorithm in the model’s general performance. Our implementation produced modified language models that ranked 7th out of 14 valid participants in the 7B parameter model, and 6th out of 24 in the 1B parameter model.
Anthology ID:
2025.semeval-1.205
Volume:
Proceedings of the 19th International Workshop on Semantic Evaluation (SemEval-2025)
Month:
July
Year:
2025
Address:
Vienna, Austria
Editors:
Sara Rosenthal, Aiala Rosá, Debanjan Ghosh, Marcos Zampieri
Venues:
SemEval | WS
SIG:
Publisher:
Association for Computational Linguistics
Note:
Pages:
1557–1562
Language:
URL:
https://preview.aclanthology.org/transition-to-people-yaml/2025.semeval-1.205/
DOI:
Bibkey:
Cite (ACL):
Karla Salas - Jimenez, Francisco López - Ponce, Diego Hernández - Bustamante, Gemma Bel - Enguix, and Helena Gómez - Adorno. 2025. GIL-IIMAS UNAM at SemEval-2025 Task 4: LA-Min(E): LLM Unlearning Approaches Under Function Minimizing Evaluation Constraints. In Proceedings of the 19th International Workshop on Semantic Evaluation (SemEval-2025), pages 1557–1562, Vienna, Austria. Association for Computational Linguistics.
Cite (Informal):
GIL-IIMAS UNAM at SemEval-2025 Task 4: LA-Min(E): LLM Unlearning Approaches Under Function Minimizing Evaluation Constraints (Salas - Jimenez et al., SemEval 2025)
Copy Citation:
PDF:
https://preview.aclanthology.org/transition-to-people-yaml/2025.semeval-1.205.pdf