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Abstract
Food hazard detection is an emerging field
where NLP solutions are being explored. De-
spite the recent accessibility of powerful lan-
guage models, one of the key challenges that
still persists is the high class imbalance within
datasets, often referred to in the literature as
the long tail problem. In this work, we present
a study exploring different loss functions bor-
rowed from the field of visual recognition, to
tackle long-tailed class imbalance for food haz-
ard detection in text reports. Our submission
to SemEval-2025 Task 9 on the Food Hazard
Detection Challenge shows how re-weighting
mechanisms in loss functions prove beneficial
in class imbalance scenarios. In particular, we
empirically show that class-balanced and focal
loss functions outperform all other loss strate-
gies for Subtask 1 and 2 respectively.

Fossils-FHD

1 Introduction

Ensuring food safety is a critical global challenge,
as contaminated food can lead to severe health risks
and economic losses. Contaminants such as bio-
logical hazards (e.g., Salmonella, Listeria, E. coli),
chemical hazards (e.g., pesticide residues, heavy
metals, food additives), and physical hazards (e.g.,
glass, plastic, metal fragments) pose significant
risks to consumers. Early detection of such haz-
ards is thus essential for protecting public health.
With the growing availability of text-based data
sources, such as news articles and social media
posts, Natural Language Processing (NLP) tech-
niques can represent an asset to provide scalable
solutions for detecting and classifying food hazards
from unstructured text.

This observation has motivated our participation
in the SemEval-2025 Task 9 (Randl et al., 2025),
which focuses on the “Food Hazard Detection Chal-
lenge” and aims at developing classification sys-
tems for titles of food-incident reports collected
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Figure 1: The long tail problem in the food hazard
detection dataset. The plots shows overlapping bar plots
for train-val-test splits with x-axis denoting label ids
(descending sorted by frequency for each split) and y-
axis as log-scaled class frequency.

from the web. The provided dataset includes manu-
ally labeled English food recall titles from official
food agency websites (e.g., FDA). The task com-
prises of two sub-tasks: (a) Subtask1: Text classi-
fication for food hazard prediction, predicting the
type of hazard and product; (b) Subtask2: Food
hazard and product “vector” detection, predicting
the exact hazard and product.

Despite the potential of NLP techniques for
food safety monitoring, several challenges still re-
main. In particular, we observe that the dataset
(see fig. 1) suffers from a long tail problem (Zhang
et al., 2023), showing a substantial aggregate fre-
quency for classes that individually have very low
frequency. In addition to this, at times, the test
set may include previously unseen classes that are
absent from the training data1. Therefore, this sce-
nario presents two distinct challenges: adapting the
model to classes for which it has encountered (i) a
very low number of instances, and (ii) no instances

1This applies to the product set of labels. (See fig. 2)
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at all. Moreover, when the model is trained on the
training set, it inherently assumes a similar class
distribution in the test set. This reflects the indepen-
dent and identically distributed (IID) assumption,
which presumes that the training and test datasets
share the same underlying distribution.

The long-tailed class imbalance represents a
common problem in practical visual recognition
tasks, often limiting the practicality of deep net-
work based recognition models in real-world ap-
plications, since they can be easily biased towards
dominant classes and perform poorly on tail classes.
Acknowledging a similar issue in the setting of the
Food Hazard Detection in text reports, in this pa-
per we present the following contributions: (a) We
participate in both subtasks of SemEval-2025 Task
9 on the Food Hazard Detection Challenge. (b)
We direct our investigation toward assessing the
effectiveness of various loss functions in mitigat-
ing the impact of long-tailed class imbalance. (c)
Our final submission for each subtask is an ensem-
ble of multiple models trained using different loss
functions.

2 Related Work

Food Hazard Detection in Text Reports To
date, NLP research on food hazards has primarily
been framed as a binary detection task, focusing on
detecting the presence or absence of hazards rather
than classifying incidents into specific hazard cat-
egories. This approach has been used to generate
warnings from online texts, for instance, by Maha-
rana et al. (2019), who leveraged Amazon reviews
matched with FDA food recall announcements for
hazard detection, and by Tao et al. (2023), who
combined Twitter data with reports from the U.S.
Centers for Disease Control and Prevention. As
existing datasets (Hu et al., 2022) follow the same
approach and focus on hazard detection, Randl
et al. (2024) introduced the first openly accessible
resource for text classification of food hazards. The
dataset is structured into two levels of granularity
and provides the data for SemEval-2025 Task 9
(Randl et al., 2025).

Long Tail Imbalance in NLP Severe class im-
balance is one of the most prominent challenges
that Randl et al. (2024) identified in the dataset,
affecting overall classification performance in par-
ticular for low-frequency categories.

In general, various approaches have been ex-
plored to address long-tail imbalance. Among

those, data augmentation techniques aim to arti-
ficially increase the number of samples in low-
frequency classes, by generating synthetic exam-
ples for underrepresented categories (Wei and Zou,
2019; Anaby-Tavor et al., 2020).

Other approaches include oversampling and
undersampling techniques. In Random Under-
Sampling (RUS), a subset of head-class samples
is randomly selected while the remaining samples
are discarded to match the number of tail-class in-
stances. Random Over-Sampling (ROS) randomly
reproduces tail-class samples to match the number
of head-class samples. To tackle overfitting that
often results from ROS, Synthetic Minority Over-
Sampling Technique (SMOTE) (Chawla et al.,
2002) creates a new artificial sample through inter-
polation between each existing head-class sample.
Furthermore, transfer learning can enhance model
performance by leveraging knowledge from head
classes to improve tail-class representations (Wang
et al., 2017), while decoupled learning (Kang et al.,
2020) divides learning into two stages: (a) apply-
ing end-to-end learning using conventional meth-
ods for representation learning, and (b) fixing the
feature extractor while retraining the downstream
task model for classification.

Another strategy that has been explored is cost-
sensitive learning, an algorithm-level approach that
assigns higher weights to underrepresented classes
to mitigate bias toward frequent categories and im-
prove model generalization. This strategy is often
adopted to tackle the long-tail problem in the vi-
sual recognition field (Zhang et al., 2023). Unlike
more complex solutions that often require exten-
sive resources, loss function modifications offer a
lightweight and interpretable strategy that can en-
hance model performance even with limited data.
As a fundamental aspect of model training, they
do not replace but rather complement advanced
techniques, making them broadly applicable across
different models. In light of this, we chose to inves-
tigate loss modification as the primary strategy for
the shared task.

3 Theoretical Background

3.1 Problem Formulation
We consider a supervised learning setting with N
training samples denoted by pair <Xi, yi> using
which we want to train a classifier f(θ) for a task
T which has C train classes such that,

fT (Xunseen|θ) = p̂unseen
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Here, punseen is predicted probability vector of
length C, where jth element of the vector corre-
sponds to the predicted probability for Xunseen

associated with class j.

3.2 Loss Functions
In line with the above setting, we describe below
five loss functions that we borrow from the litera-
ture, in comparison to the standard cross-entropy
(Lce) loss function:

Weighted CrossEntropy Loss is denoted by
Lwce and is given by:

Lwce = − 1

N

N∑

i=1

C∑

j=1

wjyijlog(p̂ij) (1)

where wj is the weight for class j and class weights
w are provided to handle class imbalance.

Focal Loss denoted by Lfl is another enhance-
ment of the standard cross-entropy loss designed to
address class imbalance (Lin et al., 2017) by focus-
ing on "hard" examples, while reducing the loss for
"easy" examples. For a multi-class classification
problem, it is defined as:

Lfl = −αt(1− p̂i,yi)
γlog(p̂i,yi) (2)

where γ is the focusing parameter to reduce the
contribution of "easy" examples (default set to 2.0).

Class-Balanced Loss is designed to address the
issue of class imbalance by reweighting the loss
contribution of each class based on its effective
number of samples. The Class-Balanced Loss (Cui
et al., 2019), denoted by Lcb, uses the following
weight for each class, denoted as follows:

wc =
1− β

1− βnc
(3)

where, nc is the number of samples in class c; β is
a hyperparameter (0 ≤ β < 1) controlling the effect
of reweighting. The final loss is scaled as: wc x
Lce loss.

Equalization Loss is used primarily in object
detection tasks to address the class imbalance prob-
lem, especially for cases with a heavy foreground-
background imbalance or long-tailed distributions
(Tan et al., 2020). It modifies the standard cross-
entropy loss with a suppression term for negative
samples based on their class frequencies. It aims
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Figure 2: Entity distribution and overlap across dataset
splits. The Venn diagram shows the overlap of unique
entity types among the train, validation, and test sets.
Colored counts indicate shared entities across splits.
The table summarizes the total count of each entity type
per split for the four tasks.

to balance the gradients from positive and negative
samples.

Leq = −
C∑

i=1

yilog(pi)−(1−yi)∗wi ∗ log(1−pi)

(4)
where yi is ground truth one-hot vector; pi is pre-
dicted probability for class i; and wi is the sup-
pression weight for negative samples, often defined
based on class frequencies or other heuristics.

LDAM Loss short for Label-Distribution-Aware
Margin Loss (Lldam) tackles the issue of long tail
class imbalance (Cao et al., 2019) by adjusting
the decision boundary for classes based on their
frequency by adding a margin, which is inversely
proportional to the square root of class frequencies.

Lldam = − 1

N

N∑

i=1

log(
exp(zyi −∆yi)∑C

j=1 exp(zj)
) (5)

where, zj is logits for class j, yi is the ground truth
class for sample i, N is the total number of samples.
∆c is modified margin for class c and is defined as
∆c =

C√
Nc

. where C is a hyperparameter control-
ling the scale of the margin and Nc is the number
of samples for class c.
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Validation Test

product-cat. hazard-cat. product hazard product-cat. hazard-cat. product hazard

Lcb 68.663.9 80.994.5 0.000.0 54.5715.2 69.933.9 75.012.0 0.000.0 55.2815.5
Leq 64.952.1 78.165.5 24.634.3 59.253.5 64.653.3 75.383.1 24.855.9 56.863.6
Lfl 65.412.0 78.415.4 25.354.5 60.983.2 66.743.7 75.071.9 25.786.0 60.303.4
Lldam 66.685.6 78.855.2 0.000.0 46.1725.5 66.115.4 72.993.5 0.000.0 44.8824.8
Lwce 65.955.0 77.8811.8 0.000.0 54.7416.2 66.324.4 71.1310.5 0.000.0 52.8415.6

Lce 64.712.6 78.135.7 24.604.6 59.542.7 64.423.1 75.943.0 25.006.0 58.343.3

Table 1: Overall results on individual tasks. Each score is the mean of all the configuration with 3 seed runs, while
the subscript depicts standard deviation. Bold denotes the highest overall score across all the loss functions.

4 Experimental Setup

Dataset Description. The dataset contains times-
tamp (dd/mm/yyyy) (timestamp), title (title)
and associated text (text) along with four labels
for every sample. These labels include the product/
hazard category and product/ hazard name. Over-
all, the dataset comprises of 5082 training samples,
565 validation samples and 997 test samples. The
training set in total contains 22 unique labels for
product-category, 10 for hazard-category which
together is part of Subtask1; further, it contains
1022 unqiue labels for product and 128 for hazard
labels as a part of Subtask2. The distribution of
unique labels in different data splits is shown in the
Venn diagram in fig. 2.

Evaluation Metrics. The two subtasks are eval-
uated separately by averaging over the macro-F1
(F1) over hazard- and product- related tasks.

Subtask1 =
F1product-category + F1hazard-category

2

Subtask2 =
F1product + F1hazard

2

PLMs. We use bert-base-cased as our pre-
trained language model (PLM) to perform experi-
ments investigating the impact of different types of
loss function.

Hyperparameters. We perform hyperparameter
search with different configurations for each loss
function. We utilize different learning rates (lr),
batch sizes (bs), inputs (I) and run each configu-
ration for 50 epochs with early stopping using 3
different seeds. Details are provided in the Ap-
pendix A.

5 Results

In Table 1, we present the overall mean and stan-
dard deviation across all configurations we experi-

Validation Test

Subtask1 Subtask2 Subtask1 Subtask2

Lcb 74.322.9 27.297.6 72.592.4 27.647.7
Leq 73.332.8 42.583.3 69.901.9 41.294.1
Lfl 73.883.1 43.793.2 70.862.3 43.444.3
Lldam 72.784.8 23.081.3 69.774.1 23.3111.7
Lwce 72.126.8 27.378.1 68.786.5 26.427.8

Lce 73.363.8 42.593.2 70.132.3 42.174.03

Table 2: Overall results for both the subtasks. Bold de-
notes the highest avg. score across all the loss functions.

mented with, using validation data as our test set.
The results are reported for different loss functions
in comparison to the cross-entropy loss function
(Lce).

We performed initial experiments investigat-
ing the use of only-title, only-text, and
title+text. We obtained the best results with
title+text and continued the rest of the experi-
ments using title+text as input.

We observe that on the validation set,
for product-category and hazard-category class-
balanced (Lcb) outperforms all the other loss func-
tion strategies. Further, for product and hazard, fo-
cal loss (Lfl) outperforms all other loss functions.
This trend is followed on the test set as well except
in the case of hazard-category, where cross-entropy
loss function (Lce) outperforms class-balanced loss
function (Lcb).

However, when subjected to the evaluation met-
rics provided by the SemEval-2025 Task 9 (Randl
et al., 2025), we observe a consistent trend where
the class-balanced loss function (Lcb) and the fo-
cal loss function (Lfl) outperform all other loss
function strategies for Subtask 1 and Subtask 2,
respectively.

Our final submission. We prepare an ensemble
of multiple configurations using various loss func-
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Subtask1 Subtask2

lr bs score lr bs score

Lcb 5e-05 32 76.44 Lfl 5e-05 32 48.76
Lldam 1e-05 32 76.13 Lce 5e-05 32 48.49
Lldam 1e-05 16 76.07 Lfl 5e-05 32 47.79
Lfl 5e-05 64 75.60 Lfl 5e-05 64 47.56
Lldam 3e-05 16 75.59 Leq 5e-05 32 47.10
Lwce 1e-05 32 75.57 Lce 5e-05 64 47.07
Lcb 1e-05 32 75.55 Lfl 3e-05 32 47.07
Lcb 5e-05 64 75.37 Lfl 3e-05 16 46.51
Lcb 1e-05 32 75.23 Leq 3e-05 32 46.50

Table 3: Best configurations on test set for each subtask.
In all configurations, the models were trained on a con-
catenation of text and title for 50 epochs.

tions, for which we consider the best 9 configura-
tions based on the validation scores (See table 5)
for each of the four categories by using the major-
ity voting technique. Using these top 9 configu-
rations, we obtain predictions on the test set. We
separately prepare ensembles for Subtask1 and
Subtask2 by adding one by one configurations
based on stopping criteria of validation scores. For
Subtask1, we submitted the ensemble of top-9
configurations from Table 5. For product-category,
we used Lldam + Lcb + Lwce; for hazard-category,
we used Lcb + Lldam + Lwce + Lce + Leq. And,
for Subtask2, we submitted the ensemble of top-
7 configurations from Table 5. For product, we
used Lfl + Leq + Lce and for hazard, we used
Lldam + Leq + Lfl + Lce.

For Subtask1, in the pool of total 27 submis-
sions for the test set, our final submission scored
+5% more than the overall Mean submission and
also more the Median submission. However, the
best submission outperformed ours by approxi-
mately 4%. Overall, our submission was ranked
11th out of 27 and 9th among the 20 systems that
used only title+text as input.

For Subtask2, our submission outperformed the
Mean by +11% and the Median by approximately
1%. However, our submission fell short of the best
system by 6%. Overall, our submission was ranked
6th in the pool of 26 submissions and 5th among
the 18 systems that used only title+text as input.

During error analysis, we investigate our submis-
sion for the product task, which exhibits a unique
disparity between the training set and the test set,
as there are 82 out-of-distribution (OOD) classes
present in the test set (see fig. 2). Upon further
examination of the effectiveness of the system, we

find that the model was unable to identify any of
those classes. This is one of the clear limitations
of loss function-based strategies for addressing the
long-tailed imbalance problem.

Subtask1 Subtask2

Best 82.23 54.73
Mean 73.1511.5 37.3216.7

Median 77.37 47.83
Ours 78.15 48.48

title+text Rank 9th /20 5th /18
Overall Rank 11th /27 6th /26

Table 4: Overview of the final leaderboard. Overall
Rank corresponds to final leaderboard ranking provided
by the Shared Task Organizers, whereas title+text
Rank is overall ranking filtered by teams which use only
title and text as inputs.

6 Conclusion

In this paper, we presented our submission to
SemEval-2025 Task 9: Food Hazard Detection
Challenge, where we focused on addressing the
challenge of heavy class imbalance in the provided
dataset. Our approach was designed to improve
model performance despite the skewed class dis-
tribution. By exploring and implementing modifi-
cations to the loss function, we showed how tech-
niques commonly used in visual recognition tasks
to handle long-tail distributions can also be effec-
tively applied to text classification.

Limitations

Loss functions such as Focal Loss, Equalization
Loss, and Class-Balanced Loss address class im-
balance but exhibit notable limitations in long-tail
imbalanced settings, particularly in case of dealing
with unseen test classes also referred to as out-of-
domain (OOD) generalization (Zhang et al., 2023).
First, these losses rely on static class weight ad-
justments, which fail to adapt when encountering
domain shifts or evolving data distributions. Sec-
ond, rare classes in the training set may be entirely
absent in OOD settings, making prior class-based
reweighting ineffective. Focal Loss, which em-
phasizes misclassified examples, may overfit to
domain-specific hard samples, worsening OOD per-
formance. Similarly, Equalization Loss, designed
to suppress frequent class gradients, may lead to
biased learning when class distributions change in
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a new domain. Overall, while these loss functions
improve in-domain class balance, they lack adapt-
ability to unseen data, requiring complementary
techniques such as contrastive learning, domain
adaptation, and meta-learning for robust NLP clas-
sification in OOD scenarios.
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Appendix

A Hyper-parameter search

In order to perform hyper-parameter search indi-
vidually for each loss function, we considered dif-
ferent configurations. For learning rate (lr), we
considered 1e-5, 3e-5 and 5e-5. For batch size (bs),
we considered 16, 32 and 64.

Effect of Learning Rate. Overall, considering
the evaluation criteria for scores for Subtask1 and
Subtask2, the best learning rate was 3e-5.

Effect of Batch Size. Overall, based on the eval-
uation criteria for scores of Subtask1 and Subtask2,
the best batch size was 32.
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product-category hazard-category product hazard

lr bs seed lr bs seed lr bs seed lr bs seed

Lldam 3e-05 16 7897 Lcb 1e-05 16 45689 Lfl 3e-05 16 45689 Leq 3e-05 64 45689
Lcb 1e-05 16 45689 Lldam 1e-05 16 7897 Leq 3e-05 16 7897 Lldam 3e-05 16 45689
Lldam 5e-05 64 7897 Lwce 3e-05 16 45689 Lce 3e-05 16 7897 Lldam 3e-05 64 45689
Lldam 1e-05 16 7897 Lfl 3e-05 64 7897 Lce 5e-05 16 78907 Lce 3e-05 16 45689
Lwce 1e-05 32 78907 Lcb 1e-05 64 45689 Lfl 5e-05 32 7897 Lfl 3e-05 32 45689
Lwce 3e-05 32 45689 Lce 3e-05 32 7897 Lfl 3e-05 16 7897 Leq 5e-05 64 45689
Lldam 3e-05 16 45689 Leq 3e-05 32 45689 Leq 5e-05 64 7897 Leq 3e-05 32 7897
Lwce 1e-05 32 7897 Leq 3e-05 16 45689 Lce 5e-05 64 7897 Lldam 5e-05 64 45689
Lcb 3e-05 16 7897 Lce 1e-05 32 45689 Leq 3e-05 16 45689 Lldam 3e-05 32 45689

Table 5: Top-9 configurations for each task based on validation scores.
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