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Abstract

This paper presents our system for SemEval-
2025 Task 8: DataBench, Question-Answering
over Tabular Data. The primary objective of
this task is to perform question answering on
given tabular datasets from diverse domains un-
der two subtasks: DataBench QA (Subtask I)
and DataBench Lite QA (Subtask II). To tackle
both subtasks, we developed a zero-shot solu-
tion with a particular emphasis on leveraging
Large Language Model (LLM)-based code gen-
eration. Specifically, we propose a Python code
generation framework utilizing state-of-the-art
open-source LLMs to generate executable Pan-
das code via optimized prompting strategies.
Our experiments reveal that different LLMs ex-
hibit varying levels of effectiveness in Python
code generation. Additionally, results show
that Python code generation achieves supe-
rior performance in tabular question answering
compared to alternative approaches. Although
our ranking among zero-shot systems is un-
known at the time of this paper’s submission,
our system achieved eighth place in Subtask
I and sixth place in Subtask II among the 30
systems that outperformed the baseline in the
open-source models category.

1 Introduction

Question Answering (QA) is a fundamental task
in Natural Language Processing (NLP), where the
most relevant answers are retrieved from a given
document or plain text. Apart from such unstruc-
tured data, working with widely used structured
data is crucial for real-world applications. More-
over, structured data encompasses a much broader
semantic scope. One important form of structured
data is tabular data, which consists of rows with
a consistent set of features. Unlike unstructured
documents, tabular data exhibits complex and het-
erogeneous relationships that require specialized
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processing techniques. Information retrieval from
tabular data is typically performed using various
SQL queries and similar approaches. However,
these methods depend on rigid rule-based systems
and fail to consider the semantic properties of the
data. Consequently, natural-language queries over
tabular data face significant limitations. As a result,
question-answering systems developed for tabular
data have garnered significant interest among re-
searchers.

The process of converting a natural language
query into a machine-executable logical form is
known as semantic parsing (Wang et al., 2015).
Early studies primarily focused on datasets that
required adapting specific logical forms for each
table structure type. This approach, however, led
to suboptimal performance, particularly in tabu-
lar structures spanning multiple domains (Pasu-
pat and Liang, 2015). On the other hand, end-
to-end trained transformers are widely employed,
as they handle both question/query interpretation
and reasoning over tabular data (Deng et al., 2020).
The recent advancements in LLMs have become
a pivotal focus in tabular question answering, as
in many other problem domains. However, LLM-
based approaches introduce several challenges, in-
cluding high computational costs and limited con-
text length, making scalable and efficient tabular
QA systems an open research problem. To ad-
dress these challenges and foster the development
of effective tabular question-answering methods,
SemEval-2025 Task 8 (Osés Grijalba et al., 2025)
has been designed to introduce the necessary level
of difficulty through two distinct subtasks.

In this paper, we propose a zero-shot system
to address these tasks, focusing primarily on
LLM-based code generation. Our approach in-
troduces a unified framework leveraging state-of-
the-art open-source LLMs, including DeepSeek-
R1 (DeepSeek-Al et al., 2025a), DeepSeek-V3
(DeepSeek-Al et al., 2025b), Qwen2.5-Coder-32B-
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Instruct (Hui et al., 2024), and Llama-3.3-70B-
Instruct (Al@Meta, 2024). We employ efficient
prompting strategies to generate executable Python
Pandas' library code. To enhance LLM understand-
ing of tabular structures, the generated Python code
is executed in a controlled environment. A key
feature of our system is its iterative error-handling
mechanism. If the initial code execution fails, the
error message and faulty code are sent back to the
LLM for correction, with a maximum of two itera-
tions. This mechanism significantly improves ro-
bustness, reducing failure rates in complex queries.

We observe that one model in our pipeline
achieves the highest accuracy on Subtask I
(84.67%), while another leads Subtask II (85.05%),
both without task-specific fine-tuning. All code is
available on our GitHub repository?.

2 Related Work

This section reviews recent developments in LLMs,
focusing on their applications in tabular question
answering.

In recent years, the emergence of the Trans-
former architecture (Vaswani et al., 2017) has led
to remarkable advancements in language modeling
tasks. This progress has resulted in state-of-the-
art performance across various NLP tasks. Con-
sequently, the application of transformer architec-
tures to problems requiring tabular modeling has
become inevitable. Early studies primarily focused
on different embedding mechanisms (Yin et al.,
2020), pre-training strategies (Wang et al., 2021),
and architectural modifications (Huang et al., 2020).
The core approach introduced by these methods
was pre-training Transformer architectures from
scratch for tabular data (Herzig et al., 2020). How-
ever, this approach faces efficiency and scalabil-
ity limitations, particularly when models need to
generalize across multiple domains. Generally,
pre-trained language models struggle to adapt effi-
ciently to task-specific tabular datasets.

More recently, the emergence of LLMs has
brought about a significant transformation in the
field. Models such as GPT-3 (Brown et al., 2020)
and LLaMa (Touvron et al., 2023) have demon-
strated strong few-shot and zero-shot capabilities,
achieving state-of-the-art performance across var-
ious tasks while often requiring little to no task-

1https://pandas.pydata.org/
2https://github.com/erdemire21/
semeval8-itunlp

specific data. These advancements have enabled
the use of a single, unified model for solving com-
plex tabular tasks. The transition from training
models from scratch or adapting pre-trained lan-
guage models to leveraging LL.Ms represents a sig-
nificant paradigm shift in tabular data processing.
However, the application of LLMs to tabular ques-
tion answering introduces several challenges. One
major limitation is the context length constraint in-
herent to LLMs. When processing large or multiple
tables, the limited context size prevents the model
from encoding all necessary information. Addi-
tionally, handling multiple tables often leads to
hallucinations, where models generate inaccurate
or misleading responses.

To overcome these limitations, researchers have
leveraged the in-context learning capabilities of
LLMs. The effectiveness of LLM-based ap-
proaches largely depends on how tabular data and
question queries are represented and utilized. For
tabular data, appropriate table schemas and prompt-
ing strategies incorporating relevant examples are
designed to enhance model comprehension. Query
representation can also significantly impact perfor-
mance. A common strategy involves decomposing
complex queries into step-by-step subqueries, im-
proving model interpretability (Yang et al., 2024).
Another approach is transforming queries into in-
termediate representations such as Python code or
SQL queries, enabling structured execution (Cao
et al., 2023; Zhang et al., 2024). These advance-
ments have led to models capable of performing
task-specific reasoning without requiring additional
fine-tuning.

Building on insights from previous studies, we
find that effectively addressing SemEval-2025
Task 8 requires a deep understanding of query se-
mantics and table structures, as well as the ability
to generate accurate answers across diverse answer
formats. Motivated by these challenges, we intro-
duce a novel framework that integrates schema-
guided prompting, controlled execution, and an
error-handling mechanism. Our extensive evalu-
ations and prompt strategy experiments highlight
the effectiveness of our approach in enhancing ac-
curacy and robustness. These findings show the
practicality and applicability of the proposed ap-
proach in real-world scenarios, where tabular data
must be processed dynamically without requiring
task-specific fine-tuning.
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Figure 1: Our proposed framework.

3 Data

The original DataBench dataset (Osés Grijalba
et al., 2024) provides 1308 questions from 65 dif-
ferent domains, each containing question-answer
pairs written in English. During the competition,
this dataset was expanded with the addition of a
new test split (Osés Grijalba et al., 2025). The ex-
act dataset statistics are presented in Table 1. The
train and development splits contain the following
columns:

question: The natural language question.
answer: The response to the question for
DataBench QA subtask.

type: The type of the answer, which can be
boolean, number, category, list[category],
listfnumber].

columns_used: The columns of the dataset
required to answer the question.
column_types: The data types of these
columns, which include boolean, number
(e.g., UInt8, uint32, uint16).
sample_answer: The response to the question
for DataBench Lite QA subtask.

dataset: The name of the dataset from which
the question is derived.

The sample_answer column is specifically in-
cluded for the DataBench QA Lite subtask, which
is a simplified version of the DataBench QA task.
This subset consists of 20 sampled entries from the

Split Questions Datasets
Train 988 49
Dev 320 16
Test 522 15

Table 1: DataBench dataset statistics.

original dataset, serving as a small-scale reference
for evaluation.

In contrast to these extensively annotated train
and development splits, the test split only has ques-
tion and dataset columns to ensure proper evalua-
tion without data leak for the competition.

Although the dataset provides structured train
and development splits with detailed annotations,
this study did not utilize these data for training, as
we preferred a zero-shot approach that does not
involve fine-tuning.

4 System Overview

Our approach involves two main steps in providing
an answer to questions over tabular data: prepro-
cessing and then code generation and execution.
The complete workflow is illustrated in Figure 1.

4.1 Preprocessing

Our preprocessing steps include obtaining the given
questions and datasets from the competition web-
site, followed by a series of normalization and
standardization techniques, and finally creating a
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schema for each dataset for LLM prompting. Each
dataset is transformed with transformation rules.
First, all spaces and non-word characters are re-
placed with underscores except for trailing special
characters, which are removed. Second, all column
names are converted to lowercase, and duplicate
columns are renamed by appending a number to
each duplicate. For example, if there are two cols
named "col" and "Col@", the second one becomes
"col_2".

After normalization and standardization, we con-
struct a schema for each dataset to enhance the
LLM’s understanding of the table structure. The
schemas include each dataset’s name, each column,
each column’s data type, 5 unique values from each
column, and the total unique values that a column
contains. The example values are limited to a hun-
dred characters total to avoid excessive verbosity
and potential token overload. Examples of the con-
structed schemas can be seen in Appendix A, (e.g.,
see the schema for the TripAdvisor dataset in Ap-
pendix A.1). We use the full dataset for schema
creation for both full and sample datasets.

4.2 Code Generation and Execution

The code generation step is done with a prompt that
includes the question, detailed instructions and the
corresponding dataset schema. A detailed break-
down of the code generation prompt is provided
in Appendix B. The generated code is executed in
a controlled environment, where dynamic imports
are extracted, and the execution output is captured
in its original format. In cases where execution
fails, an error handling mechanism is triggered.
The system captures the error message along with
the faulty code and sends it to the LLLM for auto-
matic correction. The LLM then generates a re-
vised version of the code. This iterative process is
run until the predefined threshold is met. If the pro-
vided code is still faulty after the maximum number
of attempts, execution is terminated for that query.
The execution result from the last successfully ex-
ecuted code is then set as the final answer for the
corresponding question.

5 Experimental Setup

Our zero-shot framework was tested on the offi-
cially released development and test datasets of
SemEval 2025 Task 8, covering its two subtasks
(Osés Grijalba et al., 2025). The models used in our
system were selected based on their performance in

code generation tasks, ensuring their effectiveness
in handling structured and semi-structured tabu-
lar question answering. Additionally, we opted
for a maximum of two iterations based on pre-
liminary experiments, which showed that attempts
beyond two iterations rarely produced further im-
provements. To provide a more comprehensive
error analysis, we also conducted additional ex-
periments with three iterations. To evaluate sys-
tem performance, we used Accuracy, the official
evaluation metric of SemEval 2025 Task 8. Fur-
thermore, we analyzed the impact of our iterative
error-handling mechanism on execution reliability
by measuring error reduction rates across different
models. These evaluations provide insights into
both models accuracy and execution robustness in
tabular question answering.

6 Results

The performance of the models is presented in Ta-
ble 2. Our results indicate that one of the DeepSeek
models (i.e., DeepSeek-R1 and DeepSeek-V3) out-
performs all other models across both subtasks. We
see that DeepSeek-V3 falls behind all the others on
the development sets, but performs better specif-
ically on the test set of Subtask I. DeepSeek-R1,
which is a subsequent iteration, building upon V3
with enhanced capabilities via reinforcement learn-
ing, outperforms Qwen2.5-Coder-32B-Instruct and
Llama-3.3-70B-Instruct models on all tasks and
datasets, falling behind DeepSeek-V3 by 0.52 per-
centage points on the Subtask I test set.

Moreover, in the official evaluation within the
open-source models category, our best-performing
model ranked eighth in Subtask I and sixth in Sub-
task II, placing among the 30 systems that outper-
formed the baseline. These results further high-
light the effectiveness of our approach in zero-shot
tabular question answering. At the time of this
paper’s submission, due to a lack of information
on other solutions, we were unable to evaluate our
performance relative to other zero-shot systems
in the competition. Through our manual observa-
tions, we identified that the test datasets are sig-
nificantly more challenging. However, we do not
believe that every question-answer pair in these
datasets can perfectly represent the real-world per-
formance of the models. Nonetheless, the widening
performance gap in the more challenging test sets
suggests that DeepSeek-R1 may generalize to the
problem more effectively, providing evidence of its
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Models Subtask I (DataBench) Subtask II (DataBench Lite)
Dev Test Dev Test
DeepSeek-R1 88.43 84.09 86.56 85.05
DeepSeek-V3 82.50 84.67 78.75 80.84
Qwen2.5-Coder-32B-Instruct  87.18 83.90 85.31 81.99
Llama-3.3-70B-Instruct 86.56 83.14 82.81 81.03

Table 2: Results on the DataBench subtasks across all models.

Models Dev Set  Test Set
DeepSeek-R1 9—6 15—=7
DeepSeek-V3 35—-11 18—9
Qwen2.5-Coder-32B-Instruct 11 -9 25— 8
Llama-3.3-70B-Instruct 16—5 16—~ 10

Table 3: The change in the amount of code execution
errors before and after the error fixing loop.

superior adaptability.

In addition, as shown in Table 3, our error han-
dling mechanism decreases the number of execu-
tion errors by nearly half on average, demonstrating
not only its effectiveness but also its necessity for
ensuring reliable execution. It should be noted
that the initial error rate and the accuracy over
both tasks show a strong correlation, with mod-
els that achieve higher accuracy also generating
less faulty code to begin with. This suggests that
better-performing models inherently produce more
reliable code, thereby reducing the need for itera-
tive error correction loops and improving overall
execution efficiency.

To analyze error patterns and the impact of our
correction mechanism in greater detail, we grouped
errors into three main categories: Runtime, Degen-
erate Loop, and Syntax. Notably, the Runtime
category includes diverse errors such as KeyError
and ValueError, but for simplicity, we report them
under a single label. Our findings also indicate that
some errors transform into different types across
iterations.

We define Degenerate Loop errors as cases
where an LLM repeatedly generates identical or
nearly identical output sequences, continuing in-
definitely until it reaches its maximum token limit.

Table 4 presents the distribution of error types
across models and iterations. Results show that
most initial failures are due to Runtime errors,
while Syntax and Loop errors are less frequent
but may persist across multiple correction attempts.
Specifically, Syntax errors are observed exclusively
in DeepSeek-R1 and DeepSeek-V3 models, with

no such errors detected for Llama-3.3-70B-Instruct
or Qwen2.5-Coder-32B-Instruct across any dataset
or iteration.

Similarly, Degenerate Loop errors are ob-
served solely in DeepSeek-R1 and DeepSeek-V3,
with no occurrences in Llama-3.3-70B-Instruct or
Qwen2.5-Coder-32B-Instruct. As shown in Fig-
ures 2 and 3, although some Degenerate Loop er-
rors are corrected, a notable portion still results in
failures.

Finally, Figure 2 provides an overview of er-
ror resolution across iterations, showing that most
runtime errors are resolved within the first two at-
tempts. Figure 3 further breaks down specific error
types, such as FileNotFoundError, KeyError, and
NamekError, offering a more fine-grained view.

7 Conclusions

In conclusion, this paper presented the solution de-
veloped by the ITUNLP group for SemEval-2025
Task 8. The proposed approach addressed the tabu-
lar question answering task in zero-shot scenarios.
Our method yields promising results in zero-shot
tabular question answering, achieving higher ranks
(8" place in Subtask I and 6 in Subtask IT) within
the 30 participant systems in the open-source cate-
gory. Since these 30 systems may have employed
fine-tuning or few-shot learning techniques, further
analysis would be possible upon the publication
of the system description papers that achieved bet-
ter results on the same category of the shared task,
which will provide a clearer understanding of our
ranking within zero-shot frameworks.

As this study focuses only on open-source LLMs,
future work could include evaluating proprietary
LLMs within our proposed framework to gain a
broader perspective on model performance. Fur-
thermore, the DataBench dataset consists of ques-
tions that require using only a single table. As fu-
ture work, we aim to evaluate our zero-shot model’s
performance on multi-table reasoning tasks, further
expanding its applicability.
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Appendix
A Example Schemas

A.l1 067_TripAdvisor

"Here are the columns for the dataset

Column Name: ratings, Data type -- object, -- Example values: {'service': 5.0, '
cleanliness': 5.0, 'overall': 5.0, 'value': 4.0, 'location': 5.0, 'sleep_qualit
., Total unique elements: 5530
Column Name: title, Data type -- category, -- Example values: ~~Very nice experience
for a country boy going to town'', Total unique elements: 17747
Column Name: text, Data type -- object, -- Example values: Being from a small town

in Tennessee,

I was very unsure of what to expect from the large city hot...,

Total unique elements: 20000

Column Name: author, Data type -- object, -- Example values: {'username': 'Tucker124
", 'num_reviews': 1, 'id': '39AA7B174D0Q45F1E2BAE8A398D0OBBC2 ', 'location':...,
Total unique elements: 17995

Column Name: date_stayed, Data type -- category, -- Example values: October 2010,

October 2009, September 2007,

February 2012,

Total unique elements: 121

Column Name: offering_id, Data type -- uint32, -- Example values: 111492, 108562,
94354, 98798, 93889, Total unique elements: 2651

Column Name: num_helpful_votes, Data type -- uint8, Example values: 2, o, 1, 3,
5, Total unique elements: 40

Column Name: date, Data type -- datetime64[ns, UTC], -- Example values: 2010-10-25
00:00:00+00:00, 2009-10-14 00:00:00+00:00, 2007-10-20 00:00:00+00:00, Total
unique elements: 3082

Column Name: id, Data type -- uint32, -- Example values: 84800976, 46861760,
10172355, 124329781, 69904714, Total unique elements: 20000

Column Name: via_mobile, Data type -- bool, -- Example values: False, True, Total
unique elements: 2"

A.2 069_Taxonomy

Here are the columns for the dataset

Column Name: unique_id, Data type -- float64, -- Example values: 150.0, 151.0,
179.0, 181.0, 153.0, Total unique elements: 672

Column Name: parent, Data type -- category, -- Example values: 150, 1, 2, 37, 16,
Total unique elements: 85

Column Name: name, Data type -- category, -- Example values: Attractions, Amusement
and Theme Parks, Bars & Restaurants, Total unique elements: 703

Column Name: tier_1, Data type -- category, -- Example values: Attractions,

Automotive, Books and Literature,

Business and Finance, Total unique elements:

40

Column Name: tier_2, Data type -- category, -- Example values: Amusement and Theme
Parks, Bars & Restaurants, Casinos & Gambling, Total unique elements: 347

Column Name: tier_3, Data type -- category, -- Example values: Commercial Trucks,
Convertible, Coupe, Crossover, Hatchback, Total unique elements: 256

Column Name: tier_4, Data type -- category, -- Example values: Angel Investment,
Bankruptcy, Business Loans, Debt Factoring & Invoice Discounting, Total unique
elements: 60

Column Name: unnamed_7, Data type -- category, -- Example values: SCD, Total unique
elements: 1"
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A3 076_NBA

Here are the columns for the dataset

Column Name: year, Data type -- category, -- Example values: 2012-13, 2013-14,
2014-15, 2015-16, 2016-17, Total unique elements: 12

Column Name: season_type, Data type -- category, -- Example values: Regular%20Season
, Playoffs, Total unique elements: 2

Column Name: player_id, Data type -- uint32, -- Example values: 201142, 977, 2544,
201935, 2546, Total unique elements: 1572

Column Name: rank, Data type -- uintl16, -- Example values: 1, 2, 3, 4, 5, Total
unique elements: 546

Column Name: player, Data type -- category, -- Example values: Kevin Durant, Kobe
Bryant, LeBron James, James Harden, Carmelo Anthony, Total unique elements: 1568

Column Name: team_id, Data type -- uint32, -- Example values: 1610612760,
1610612747, 1610612748, 1610612745, 1610612752, Total unique elements: 30

Column Name: team, Data type -- category, -- Example values: OKC, LAL, MIA, HOU, NYK
, Total unique elements: 31

Column Name: gp, Data type -- uint8, -- Example values: 81, 78, 76, 67, 82, Total
unique elements: 84

Column Name: min, Data type -- uint16, -- Example values: 3119, 3013, 2877, 2985,
2482, Total unique elements: 2474

Column Name: fgm, Data type -- uintl16, -- Example values: 731, 738, 765, 585, 669,
Total unique elements: 697

Column Name: fga, Data type -- uintl16, -- Example values: 1433, 1595, 1354, 1337,
1489, Total unique elements: 1263

Column Name: fg_pct, Data type -- float64, -- Example values: 0.51, 0.463, 0.565,
0.438, 0.449, Total unique elements: 500

Column Name: fg3m, Data type -- uint16, -- Example values: 139, 132, 103, 179, 157,
Total unique elements: 274

Column Name: fg3a, Data type -- uint16, -- Example values: 334, 407, 254, 486, 414,
Total unique elements: 598

Column Name: fg3_pct, Data type -- float64, -- Example values: 0.416, 0.324, 0.406,
0.368, ©0.379, Total unique elements: 386

Column Name: ftm, Data type -- uintl16, -- Example values: 679, 525, 403, 674, 425,
Total unique elements: 447

Column Name: fta, Data type -- uintl16, -- Example values: 750, 626, 535, 792, 512,
Total unique elements: 541

Column Name: ft_pct, Data type -- float64, -- Example values: 0.905, 0.839, 0.753,
0.851, ©0.83, Total unique elements: 552

Column Name: oreb, Data type -- uint16, -- Example values: 46, 66, 97, 62, 134,
Total unique elements: 292

Column Name: dreb, Data type -- uint16, -- Example values: 594, 367, 513, 317, 326,
Total unique elements: 616

Column Name: reb, Data type -- uintl16, -- Example values: 640, 433, 610, 379, 460,
Total unique elements: 774

Column Name: ast, Data type -- uintl16, -- Example values: 374, 469, 551, 455, 171,
Total unique elements: 573

Column Name: stl, Data type -- uint8, -- Example values: 116, 106, 129, 142, 52,
Total unique elements: 165

Column Name: blk, Data type -- uintl16, -- Example values: 105, 25, 67, 38, 32, Total

unique elements: 181

Column Name: tov, Data type -- uintl16, -- Example values: 280, 287, 226, 295, 175,
Total unique elements: 296

Column Name: pf, Data type -- uintl16, -- Example values: 143, 173, 110, 178, 205,
Total unique elements: 276

Column Name: pts, Data type -- uint16, -- Example values: 2280, 2133, 2036, 2023,
1920, Total unique elements: 1539

Column Name: eff, Data type -- int16, -- Example values: 2462, 1921, 2446, 1872,
1553, Total unique elements: 1674

Column Name: ast_tov, Data type -- float64, -- Example values: 1.34, 1.63, 2.44,
1.54, 0.98, Total unique elements: 470

Column Name: stl_tov, Data type -- float64, -- Example values: ©0.41, 0.37, 0.57,

0.48, 0.3, Total unique elements: 236
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B Code Generation Prompts

B.1 Pandas Code Generation without Error Handling

Natural Language to Python Code with Pandas

Generate a python code to answer this question: {question} that strictly follows the instructions
below:

The code should return a print statement with the answer to the question.

The code should leave the answer be and not print anything other than the variable that holds the
answer.

Please write a single Python code block that answers the following question and prints the result in
one line at the end.

If the question doesn’t specifically ask for it, don’t use unique() or drop_duplicates() functions.

If it is a Yes or No question, the answer should be a boolean.

Do not include any explanations, comments, or additional code blocks.

Do not print intermediate steps just the answer.

Do not interact with the user.

Never display any sort of dataframes or tables.

Your output can never take more than a single line after printing and it can never be any sort of
objects such as pandas or numpy objects, series etc.

Your output must be one of the following:

Boolean: True/False

Category/String: A value

Number: A numerical value
List[category/string]: [’cat’, ’dog’]
List[number]: [1, 2, 3]

So the outputs have to be native python

Given the dataset schema {schema}
The following python code made for pandas for the parquet file {dataset_name}.parquet

reads the parquet file and running it returns the answer that is enough to answer the question
{question}

B.2 Pandas Code Generation with Error Handling

The following prompt replaces the part after the schema is given of the previous prompt.

Natural Language to Python Code with Pandas - Error Correction

The following codes generated an error when executed:

{code_1}/{error_1},
{code_2}/{error_2},

. %
Error: {error_msg} Solve the error and provide the corrected code
The following python code made for pandas for the parquet file {dataset_name}.parquet reads the
parquet file and running it returns the answer that is enough to answer the question {question}
with the error fixed
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C Error Analysis
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Figure 2: Error evolution and resolution across iterations (Aggregated over all models).
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Figure 3: Fine-grained error evolution across iterations (Runtime error breakdown).
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Models Iteration Runtime Degenerate Loop Syntax Total

DeepSeek-R1 (Dev) 1 9 0 0 9
2 4 2 1 7
3 3 1 0 4
DeepSeek-R1 (Test) 1 9 4 2 15
2 6 1 0 7
3 4 0 1 5
DeepSeek-V3 (Dev) 1 35 0 0 35
2 8 3 0 11
3 8 2 1 11
DeepSeek-V3 (Test) 1 15 0 3 18
2 9 0 0 9
3 5 0 0 5
Llama-3.3-70B-Instruct (Dev) 1 16 0 0 16
2 5 0 0 5
3 2 0 0 2
Llama-3.3-70B-Instruct (Test) 1 16 0 0 16
2 10 0 0 10
3 9 0 0 9
Qwen2.5-Coder-32B-Instruct (Dev) 1 11 0 0 11
2 9 0 0 9
3 8 0 0 8
Qwen2.5-Coder-32B-Instruct (Test) 1 25 0 0 25
2 8 0 0 8
3 5 0 0 5

Table 4: Top error types and their distribution across iterations.
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