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Abstract

Idioms and figurative language are nuanced lin-
guistic phenomena that transport semanticity
and culture via non-compositional multi-word
expressions. This type of figurative language
remains difficult for small and large language
models to handle. For language models to be-
come more valuable as translators and even
companions, natural language must be under-
stood and generated. A portion of this is id-
iomatic and figurative language. Various at-
tempts have been made to identify idiomaticity
in text. The approach presented in this paper
represents an intuitive attempt to accurately
address Task 1: AdMIRe Subtask A to cor-
rectly order a series of images and captions
by concatenating the image captions as a se-
quence. The methods employ the reliability of
a pre-trained vision and language model for the
image-type task and a large language model
with instruction fine-tuning for a causal lan-
guage model approach to handle the caption
portion of the task. The models chosen for de-
velopment in the pipeline were based on their
respective reliability in captioning and instruc-
tion fine-tuning.

1 Introduction

The idiomaticity of a multi-word expression has
been traditionally difficult for many language
models, due to the non-compositional nature of
this type of figurative language. When interpreting
meaning from a sequence that may contain an id-
iom, a language model must chunk accurately and
identify the possible multi-word expression with
phrase analysis. For general pre-trained models
without training or fine-tuning for this downstream
task, the contextual embeddings tend to interfere
with this detection. The embeddings must change
internally or externally to accommodate for the
lack of “sense” the phrase would make if treated as
a literal and compositional phrase. Disregarding
tokenization, consider a word by word embedding

of this sentence, “They became relaxed when they
saw that the test was about transformers (Vaswani
et al., 2017), thinking that this was their bread and
butter.” The transformer is not bread nor is it butter,
so we can assume that the embeddings for this
sentence would skew from the intended meaning
of the sentence. Now, we consider mapping “their
bread and butter” with a word or phrase of similar
meaning:

“They became relaxed. .., thinking this was their
bread and butter.”

“They.. ., thinking this was semantically similar
word or phrase.”

“They. . ., thinking this was easy.”

Or

“They. . . this was going to be easy.”

In order for the language model to make this leap,
expressions must be analyzed, the semanticity must
be determined, and the phrase must be mapped to
an equivalent or similar literal phrase or word in
the embedding space.

Extending this to a vision model seems like a log-
ical step. Vision models have become more ubig-
uitous recently with the introduction of QWEN-
VL (Wang et al., 2024), DINOv2 (Oquab et al.,
2023), GIT (Wang et al., 2022), Vision Transform-
ers (Dosovitskiy et al., 2021) and adapted distil-
lation models (Chen et al., 2022a) (Chen et al.,
2022b) , and the reliable CNNs (LeCun et al., 1998).
A vision and language model provides a concise de-
scription of an image. The existing models perform
this task at a SOTA level for complicated images
with complex description requirements with no-
table results from GIT on the MS COCO dataset
(Lin et al., 2014) with CIDEr evaluation score of
138.5 (Vedantam et al., 2015) and QWEN-VL on
the Flickr30k dataset (Young et al., 2014)with a
BLEU-4 score of 41.2 (Papineni et al., 2002). De-
spite the impressive evaluation scores, these models
still output a caption based on the actual facts of
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the image rather than an inferred meaning about
the image.

Combining the vision and figurative language
ideas can be considered difficult in isolation, but
concatenating the image captions as a sentence,
could allow for the multi-word expression treat-
ment as described above. For the task of sequenc-
ing images and captions based on their relative
position that may contain idiomatic expressions in
visual representation or text, we employed the func-
tionality of the BLIP vision and language model for
image captioning (Li et al., 2022), while an instruc-
tion fine-tuned (Chung et al., 2022) QWEN-2.5
handled the image captions for sequencing (Wang
et al., 2024).

2 Related Work

This general approach for idiomaticity has been
refined using a variety of novel methods, including
contrastive learning in the form of adaptive triplets
(He et al., 2024), BERT-based binary classification
(Devlin et al., 2019; Wang et al., 2021), single to-
ken approaches (Yin and Sch"utze, 2015; Li et al.,
2018; Cordeiro et al., 2019; Phelps, 2022), analyses
of pre-trained language model performance using
standard evaluation techniques (Tayyar Madabushi
et al., 2021), such as STS (Agirre et al., 2012) and
cosine similarity (Salton and McGill, 1983), and
recent studies concerned with recent LLM perfor-
mance on various datasets (Phelps et al., 2024) . A
number of datasets have also been created for eval-
uation and training in model development, includ-
ing the Semeval 2022 task B dataset (Agirre et al.,
2012), for multilingual idiomaticity detection and
sentence embedding evaluation across languages;
EPIE (Saxena and Paul, 2020), English possible id-
iomatic expressions, designed for binary idiomatic-
ity classification tasks; MAGPIE (Haagsma et al.,
2020), for idiom interpretation, paraphrasing, and
contextual understanding; and Llidioms, multilin-
gual linked idiom dataset. Vision models including
the aforementioned QWEN-VL (Wang et al., 2024),
text generation and image understanding; DINOv2
(Oquab et al., 2023), self-supervised image repre-
sentations, GIT (Wang et al., 2022), a generative
image-to-text transformer; Vision Transformers,
replacing convolutional layers with an attention
mechanism; distillation models, transfer learning;
and CNNs (LeCun et al., 1998), extracting hierar-
chical structures from images which have primarily
been pre-trained for generalizability for SOTA per-

formance on various tasks or fine-tuned to perform
exceedingly well on specific tasks, such as VQA
(visual question answering) or image captioning.
The performance of these general models is lever-
aged as the basis on which we attempted to build
a fine-tuned and idiom-robust vision and language
model.

3 System Overview

The goal of this task was to rank images based on
how accurately they reflect the meaning of a nom-
inal compound (potential idiom phrase) as used
in a given context sentence. Formally, given a
short text nominal compound (z), its correspond-
ing context sentence (S), and a set of five images
or image captions (Z), a machine learning system
must determine the ranking of these five images
(y = [image;]1<i<s)-

For ranking the images, this approach was based
on the instruction fine-tuning a Vision Language
model and prompting technique to develop two
approaches: end-to-end and comparing operator
-based methods. In an end-fo-end system, depicted
in Figure 1, all information provided for this task
is shown, including (1) instruction message, (2)
nominal compound, (3) sentence context, (4) pic-
ture information and train a model to generate the
ranking of all images together. In the approach
based on comparing operator, the focus was on
training a model to learn the operator of the com-
parison between two images, which image is closer
to the meaning of the potential idiom phrase in
sentence context, and then used these results to
implement the insertion sort algorithms to achieve
the final ranking of all images. Formally, the two
approaches can be represented in the following for-
mulas:

end-to-end: WP(y | z,S,{ZTi}1<i<5) (1)
comparing operator :  P({Y,N} | z,S,T;, T;j; ;) (2)

In the first approach (end-to-end), the Vision
LMs were expected to be able to understand both
the meaning of the focal phrase (nominal com-
pound) expressed in the context sentence and the
content of the provided images for the ranking
process. This approach can utilize the full advan-
tage of VLMs, which require the system to process
whole images as input, thereby needing additional
computing resources as the number of images in-
creases. To avoid this problem, a second approach
was developed, comparing operator, which only
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Figure 1: Overview of our approach for Subtask A.

compared a pair of images. The image chosen was
closer in meaning to the focal phrase in the context
sentence. Although this approach was able to deal
with scaling the number of images for ranking, it
may have ignored some features regarding the rela-
tionships among various images, allowing VLMs
to avoid having an overall view of images.

The following methods represent work pertain-
ing to Task1: AdMIRe subtask A, including images
and text and text only. Overall, this method was
shared between both these settings. For the im-
ages and text settings, the content of images was
used to rank the similarity with the context sen-
tence supported by pre-trained VLMs. For the text-
only model, captions of images were utilized to
represent the content and train LLMs. Moreover,
extensive experiments were also conducted with a
new caption generated by the BLIP (Li et al., 2022)
language model to compare the effectiveness of the
image’s caption to the overall system.

Building on the strong vision-language under-
standing abilities of pre-trained models (Wang
et al., 2024), instruction prompting was utilized
to help the model interpret the task requirements.
This approach aligned with instruction fine-tuning
as described by Chung et al. (2022), employing
a causal language modeling objective to train the
LLM in generating the ranking of images or de-
termining which image was closer to the context
sentence. LoRA (Hu et al., 2022) was used to
enhance efficiency, as it functions as a lightweight
training method that minimizes the number of train-
able parameters. The fine-tuned LLM was trained
to model and generate the expected output based
on the given input information.

s = prompting(y, x, S, {Z; }1<i<5) ()
IP(s) = H‘ZS‘:ﬂP(sz\So, S1y.vv)82-1) “4)

where s and x denote token sequences, and z rep-
resents the token index within the prompting input.

4 Experimental Setup

Dataset. For evaluating our methods, the original
emotional dataset provided by the SemEval Task 1
(Pickard et al., 2025) organization was used. The
dataset is divided into three subsets: training, de-
velopment, test, and extended test sets, covering
two phases of the competition: development and
test. The held-out portion of the data is used for
hyperparameter tuning, ensuring that the optimized
checkpoints are chosen based on this internal de-
velopment set.

Evaluation Metric. According to the competi-
tion guidelines, the evaluation metrics used to as-
sess the quality of our model ranking are Top-1
Accuracy and the DCG score.

Settings. Experiments were conducted under the
following settings, with results presented in Ta-
ble 1:

1. Instruction fine-tuning of an LLM
(Qwen/Qwen2.5-72B-Instruct) using
the end-to-end strategy with original caption
data for image information.

2. Similar to the first experiment, but using the
comparing operator strategy.

3. Instruction fine-tuning of a Vision-Language
Model (Qwen/Qwen2.5-VL-72B-Instruct)
using the end-to-end strategy on raw image
data (without caption text).

4. Similar to the first experiment, but using syn-
thesized captions generated by the BLIP (Li
et al., 2022) pre-trained model.
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Task Strategy Caption Model Topl DCG Topl DCG

Data type Acc. Score Acc. Score
(XE) (XE)

(Results obtained during the competition)

Text only end-to-end o LLM 0.67 3.04 0.51 2.857

Text only comparing operator O LLM 0.20 2.30 0.44 2.769

Images and Text  end-to-end G LLM 0.53 3.14 0.55 3.126

Images and Text  end-to-end 0+G LLM 0.53 291 0.58 3.037

(Results obtained in the post-evaluation phase)

Images and Text  end-to-end - VLM 0.60 3.05 0.62 3.053

Table 1: Results on the test set. The values O and G in the Caption Data column represent the provided original
image caption and the synthesized caption generated by the BLIP LLM model, respectively.

5. Similar to the first experiment, but using a
concatenation of the synthesized captions with
the original captions.

S Results and Analysis

Performance differences were observed across
model types, input modalities, and task strategies,
based on both competition and post-evaluation re-
sults. When instruction fine-tuning was performed
on a language-only model (Qwen/Qwen2.5-72B-
Instruct) using the end-to-end strategy with original
caption data (O), the highest Top-1 accuracy (0.67)
and strong Discounted Cumulative Gain (DCGQG)
score (3.04) were obtained among all competition-
phase models. Alternatively, when the same model
was trained using the comparing operator strategy,
performance dropped substantially (0.20 Top-1 ac-
curacy, 2.30 DCG), indicating that comparison-
style supervision was less compatible with the
model’s inference behavior.

Introducing multimodal input—either through
synthesized captions (G), concatenated caption
sources (O+G), or raw image data—Ied to impor-
tant differences. Models fine-tuned with the end-
to-end strategy using BLIP-generated captions (G)
or concatenated original and generated captions
(O+G) achieved moderately strong Top-1 accura-
cies (0.53 for both), though only slight improve-
ments in DCG scores were observed. These mod-
els also demonstrated higher Top-1 accuracy when
measured using a cross-entropy variant (0.55 and
0.58, respectively), suggesting better ranking relia-
bility under probabilistic evaluation.

Post-evaluation results for the vision-language
model (Qwen/Qwen2.5-VL-72B-Instruct), trained
on raw image data using the end-to-end strategy,
revealed the most balanced profile. While its Top-1

accuracy (0.60) was marginally lower than the best
text-only system, the DCG score (3.05) and cross-
entropy-based metrics (Top-1 accuracy of 0.62,
DCG of 3.053) surpassed those of all other systems.
These findings indicate that deeper integration
of vision and language components—rather than
only relying on intermediate captions—provides
stronger generalization across both metrics.

Across all settings, models trained with the end-
to-end strategy consistently outperformed those
trained with comparative strategy, reinforcing the
conclusion that generative instruction tuning better
aligns with the strengths of both LLMs and VLMs.
Further, multimodal enrichment via raw images or
multiple caption sources proved beneficial, partic-
ularly under subjective and rank-sensitive evalua-
tion.

6 Conclusion

This analysis reinforces the impact of task fram-
ing, modality integration, and caption strategy on
the performance of instruction-tuned models for
multimodal reasoning. Generative approaches con-
sistently outperformed comparative ones, and na-
tive vision-language models showed strong post-
evaluation performance, particularly in the DCG
metric. Supplementing or replacing original cap-
tions with synthesized alternatives also yielded ben-
efits, especially when used in combination. These
findings support the continued development of
instruction-tuned, generative pipelines with inte-
grated multimodal architectures, and suggest that
future systems should explore richer forms of input
representation to maximize both top-1 and ranking-
based performance across evaluation phases. De-
velopments of this type will reach their optimal pur-
pose by achieving the natural language understand-
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ing and generation of figurative language sought
after to help Al systems bridge gaps in communi-
cation.
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