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Abstract

In recent years, the tendency of large language
models to produce hallucinations has become
an object of academic interest. Hallucinated or
overgenerated outputs created by LLMs contain
factual inaccuracies which can potentially in-
validate textual coherence. The Mu-SHROOM
shared task sets the goal of developing strate-
gies for detecting hallucinated parts of LLM
outputs in a multilingual context. We present an
approach applicable across multiple languages,
which incorporates the alignment of tokens and
hard labels, as well as training a multi-lingual
XLM-RoBERTa (Conneau, 2019) model. With
this approach we managed to achieve 2nd in
Chinese and top-10 positions in 7 other lan-
guage tracks of the competition.

1 Introduction

In recent years, due to the development of
transformer-based architectures (Vaswani, 2017),
Natural Language Generation models saw immense
advancements. However, the field is currently
struggling with the tendency of neural systems to
produce fluent, yet factually inaccurate outputs, ag-
gravated by lack of adequate accuracy metrics. All
of the above causes the models to "hallucinate".

The overgeneration of inaccurate facts puts in
jeopardy the practical applications based on NLG
(Mickus et al., 2024), which in turn prompts more
interest in tackling the problem of detecting hallu-
cinations in the outputs of NLG models.

The problems mentioned above were the moti-
vation for the Mu-SHROOM shared task, aimed
at identifying hallucinations and related overgen-
eration mistakes (Vázquez et al., 2025). The task
builds upon ints previous iteration, but with focus
on more languages and LLM outputs.

In this paper we present our approach to de-
tecting hallucinated output using the multilingual
XLM-RoBERTa model (Conneau et al., 2019). We

use the model inputs and outputs from the pro-
vided dataset, which are concatenated and aligned
with hard labels and then passed through the model.
Apart from that, we also provide the description
of the shared task and the datasets, as well as the
discussion of results.

2 Related Work

In this section, we offer a short overview of meth-
ods used in previous work on detecting hallucina-
tions in LLMs’ outputs. We will examine model-
agnostic and model-aware approaches, as well as
black-box detection methods and prompting-based
techniques.

Model-agnostic methods, such as prompt engi-
neering and few-shot learning, focus on improving
hallucination detection without relying on model
internals. These techniques leverage strategies like
meta-regression frameworks and automatic label
generation, which allow them to be applied across
different LLMs and tasks, offering a flexible solu-
tion to hallucination detection (Mehta et al., 2024;
Chen et al., 2024; Allen et al., 2024; Arzt et al.,
2024; Rykov et al., 2024).

On the other hand, model-aware approaches take
advantage of internal signals from LLMs, such
as layer activations and attention values, to detect
hallucinations more precisely. By directly analyz-
ing the model’s internal workings, these methods
can provide deeper insights into how LLMs gener-
ate outputs. Techniques like Retrieval-Augmented
Generation (RAG) and chain-of-verification strate-
gies have been explored to validate generated con-
tent against external knowledge sources, ensuring
higher accuracy in detecting hallucinations (Liu
et al., 2024; Varshney et al., 2023). However, these
methods are generally less effective than model-
agnostic approaches including (Mehta et al., 2024)
and (Obiso et al., 2024) at SHROOM shared task.
They are limited by their dependence on open ac-
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cess to the model’s internal architecture, which
may not be possible for closed-source models like
ChatGPT (Azaria and Mitchell, 2023).

Prompting-based metrics are also used in halluci-
nation detection, leveraging the instruction follow-
ing capabilities of LLMs. These methods involve
providing LLMs with evaluation guidelines and
both the generated and source content (Luo et al.,
2023). Various strategies have been explored, in-
cluding direct and chain-of-thought prompting, and
in-context learning (Jain et al., 2023).

3 Task Description and Datasets

3.1 Task Description

The task presented by the organizers concerns the
detection of hallucinated spans within a text. In
contrast to the binary nature of SemEval-2024 Task
6, where whole texts were labeled as either contain-
ing or not containing hallucinations, this year’s task
concerns the dimension of detecting the position of
hallucinations within the text.

This detection relies on two different types of
labels, namely soft and hard labels, which are
derived from a manual annotation process. Soft
labels include all hypothesized spans along with
their predicted probability of being an hallucina-
tion, whereas hard labels include only the spans
that are decisively categorized as hallucination, as
visualized in Table 1. In this example, only the last
span in the soft labels is included in the hard labels
due to achieving a probability higher than 0.5.

Participating teams are ranked based on their
intersection-over-union (IoU) scores for hard labels
while ties are broken using the Spearman correla-
tion between predicted and true soft labels.

Model
input When was the Swedish Navy founded?

Model
output The Swedish navy was founded in 1625.

Soft
labels

[{"start":1,"prob":0.0909090909,"end":18},
{"start":18,"prob":0.1818181818,"end":33},
{"start":33,"prob":1.0,"end":37}]

Hard
labels [[33,37]]

Table 1: An example of soft and hard labels.

3.2 Datasets

Task organizers supply participants with training,
validation, and test datasets in multiple languages.

Table 2 illustrates the number of samples for each
language across the different dataset splits. No-
tably, the training set contains samples in English,
French, Spanish, and Chinese while the validation
set covers 6 additional languages. Basque, Catalan,
Czech, and Farsi are test-only languages.

Language Train Validation Test

Arabic - 50 150
Basque - - 99
Catalan - - 100
Chinese 200 50 150
Czech - - 100
English 809 50 154
Farsi - - 100
Finnish - 50 150
French 1850 50 150
German - 50 150
Hindi - 50 150
Italian - 50 150
Spanish 492 50 152
Swedish - 49 147

Table 2: Distribution of the training, validation, and test
set samples for each language.

Without labeled data in the training set, teams are
prompted to devise systems that do not rely on the
availability of labeled hallucination data. Each data
point in the training set includes the input prompt,
the corresponding output text, the HuggingFace
identifier of the model which has generated the
output, the tokenized version of the output, and the
logit values for the tokens.

The validation and test sets follow the same struc-
ture as the training data with the addition of pro-
viding hard and soft labels for the generated output.
Hallucination labels are given at the character level,
meaning that each output text may contain one or
more hallucination spans. The spans were deter-
mined by human annotators with at least 3 people
annotating each data point. Soft labels are based on
probabilistic scores reflecting the level of consen-
sus among annotators regarding hallucinated spans.
These scores are calculated using the proportion
of annotators who marked a given span as halluci-
nated and the resulting labels contain the start and
end characters of sequences sharing the same score.
Hard labels indicate spans which the majority of
the annotators identified as hallucinated.
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4 Methodology

Our system utilizes the validation dataset provided
by the task organizers, which comprises ten lan-
guages. To ensure balanced representation across
languages, we first split each language-specific
dataset into training and validation subsets using a
90/10 ratio and then merged them to form com-
bined training and validation sets. To address
data scarcity, we implemented a cross-lingual label
transfer mechanism based on neural machine trans-
lation and semantic span alignment. We employed
Helsinki-NLP’s Opus-MT bilingual models (Tiede-
mann and Thottingal, 2020) to translate labeled text
from a source language into target languages.

Model input + Model output Text

Concatenate

Tokenize
(XLM-RoBERTa)

Align Hard Labels(-100, 0, 1)

Fine-tune
(XLM-RoBERTa

with Aligned
Hard Labels)

Infer
(XLM-RoBERTa) Logits(Raw Predictions)

Softmax(Probabilistic Predictions)

Remove -100 Tokens

Soft Labels(Probabilities for Class 1)

Hard Labels(Threshold 0.5)

Evaluate(IoU, Spearman)

Figure 1: Hallucination detection flowchart.

For accurate projection of labeled spans (hard
labels) onto the translated text, we adopted a seman-
tic similarity-based alignment approach. We used
the paraphrase-multilingual-MiniLM-L12-v2
model from Sentence Transformers (Reimers and
Gurevych, 2020) to generate embeddings for each
labeled span in the source text, as well as for can-
didate spans in the translated output. To accom-
modate natural variations in translation length, we
introduced a variational span matching strategy: for
a source span of length l, we evaluated candidate
spans in the translated text with lengths in the range
[l−δ, , l+δ], where δ is a tunable parameter (set to
5 in our experiments). Cosine similarity between
embeddings was used to identify the most semanti-
cally aligned span, which was then adjusted to re-
move any leading or trailing whitespace, ensuring
precise label transfer. The resulting multilingual

dataset includes model input text, model output
text, hard labels, and relevant metadata. We focus
on three key components: the model input text,
which provides contextual grounding; the model
output text, which is analyzed for hallucinations
and overgenerations; and the hard labels, which
annotate hallucinated or overgenerated spans for
use in evaluation and supervision. The overall ar-
chitecture of our system is depicted in Figure 1.

The flowchart outlines the entire process, start-
ing from concatenating model input and output text,
followed by tokenization using XLM-RoBERTa
(Conneau, 2019). The next steps involve hard la-
bel token alignment, model training, and inference.
Post-inference, the logits are processed to calculate
soft labels, followed by thresholding to obtain hard
labels. Finally, we evaluate performance using the
Intersection over Union (IoU) and Spearman corre-
lation metrics as provided by the task organizers.

4.1 Preprocessing Pipeline
The first step of preprocessing is concatenating
the model input text with the model output text
to form a unified sequence. This ensures that the
model retains the necessary context from the input
while focusing on evaluating the generated out-
put. The concatenated sequence is then tokenized
into tokens or subword units using the model’s tok-
enizer. After tokenization, token-hard-label align-
ment is performed to map the hard labels onto the
tokenized sequence.

Hard labels are provided as nested lists, with
each list specifying the start and end indices of hal-
lucinated or overgenerated spans within the model
output text. To align these spans with the tok-
enized sequence, offset mappings are generated for
each token, indicating their start and end positions
within the concatenated text. Initially, all tokens
are assigned a label of -100, marking those that do
not belong to the model output text, such as tokens
from the model input context and special tokens
(e.g., [CLS], [SEP], and [PAD]). The model input
text is tokenized separately to determine where the
tokens from the model output begin in the con-
catenated sequence. The start of the model output
tokens is identified as the position immediately fol-
lowing the last token of the model input (excluding
the special separator token).

To align the hard labels with the tokenized se-
quence, the model input text length is added to
both the start and end indices of the hard-labeled
spans. Tokens overlapping these adjusted spans are
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labeled as 1 (hallucination), while those outside
are labeled 0. Tokens labeled -100 are excluded
from the loss calculation, ensuring the model fo-
cuses on the relevant output tokens during training.
However, tokens labeled -100 still contribute to the
context and are used by the model to make pre-
dictions for other tokens. This label indicates that
these tokens do not affect the loss calculation, with-
out diminishing their role in the model’s contextual
understanding. For testing, where hard labels are
unavailable, all model output tokens are initialized
only as 0 or -100. This setup helps distinguish
model output tokens from others during prediction.

4.2 Model Training and Inference

We fine-tuned the XLM-RoBERTa model using
the aligned hard labels in a supervised learning
framework. During training, the model learns to
identify hallucinated or overgenerated spans based
on the provided hard labels for the model output
text, while also using the contextual information
from the model input text. This approach helps
the model distinguish between hallucinated and
non-hallucinated spans at the token level.

During inference, the model’s logits are passed
through a softmax activation function to generate
probabilistic predictions, indicating the likelihood
of each token being classified as Class 1 (halluci-
nated or overgenerated) or Class 0 (neither). To-
kens labeled -100 are excluded to focus on model
output tokens. Class 1 probabilities are aggregated
for soft label evaluation, and a 0.5 threshold is
applied to derive binary hard labels. Finally, pre-
dictions are evaluated using the mean Intersection
over Union (IoU) and Spearman correlation values
for each language’s test set.

5 Experiments and Results

5.1 Experiments

To provide a more comprehensive evaluation of our
model’s performance, we present post-submission
test results alongside the best IoU scores from
the official leaderboard for comparison. While
these results were not obtained during the submis-
sion window, they reflect improvements that were
achieved during our subsequent experiments. The
post-submission setting only uses the original vali-
dation data, as opposed to transferring labels from
the data available in other languages.

Model configuration details for both the submis-
sion and post-submission phases are provided in

Appendix A. Our official submission used the base
variant of XLM-RoBERTa, while post-submission
experiments used the larger version for further test-
ing and validation. Training and validation batch
sizes were adjusted accordingly to optimize the
training process. Notably, the training batch size
was increased from 18 to 26 and the validation
batch size was increased from 8 to 16 during the
post-submission phase.

5.2 Results
Our results (Table 3 and Table 4) show the effective-
ness of label alignment in hallucinated span detec-
tion across various languages. Leveraging the con-
text provided by the prompt in the fine-tuning stage
seems to effectively guide our inference model in
the detection of hallucinated spans. With compara-
ble results throughout both of the measured metrics,
we do not identify a preference in our system’s ca-
pability of predicting soft or hard labels.

Language IoU ρ Ranking

Arabic 0.5335 0.5537 11/29
Basque 0.4804 0.5499 13/23
Catalan 0.4924 0.4917 12/21
Chinese 0.5232 0.5171 2/26
Czech 0.4051 0.4357 9/23
English 0.4725 0.5538 16/41
Farsi 0.6018 0.4559 8/23
Finnish 0.4221 0.5300 21/27
French 0.5634 0.4883 10/30
German 0.5634 0.5031 8/28
Hindi 0.6601 0.5122 6/24
Italian 0.7013 0.5487 9/28
Spanish 0.4434 0.4335 7/32
Swedish 0.4183 0.3700 17/27

Table 3: Our best submission results for each language
using IoU and Spearman correlation metrics along with
our team ranking on the official leaderboard.

For the official submission, we applied label
transfer to the target language and utilized vali-
dation data from other languages in addition to
the original validation set. Post-submission results
were obtained using the original validation data
alone. As a result, the IoU scores increased for
most languages compared to the official submis-
sion. The largest improvements were observed
in Finnish (0.4221 - 0.6127), Swedish (0.4183 -
0.5728), and Catalan (0.4924 - 0.5532). Notably,
Spanish and French exhibited significant drops in
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Language IoU ρ Reference IoU

Arabic 0.5660 0.5595 0.6700
Basque 0.4801 0.5285 0.6129
Catalan 0.5532 0.4934 0.7211
Chinese 0.5412 0.5488 0.5540
Czech 0.4189 0.4252 0.5429
English 0.4707 0.5472 0.6509
Farsi 0.6501 0.4713 0.7110
Finnish 0.6127 0.5936 0.6483
French 0.5048 0.4924 0.6469
German 0.5694 0.5694 0.6236
Hindi 0.6771 0.5004 0.7466
Italian 0.7201 0.5478 0.7872
Spanish 0.3832 0.4417 0.5311
Swedish 0.5728 0.4848 0.6423

Table 4: Results obtained after the end of the submission
period alongside the highest IoU scores from the official
leaderboard for reference.

performance. These findings suggest that training
without label transfer generally improves perfor-
mance across languages and that label transfer does
not provide a clear advantage in most cases.

5.3 Discussion

Our observations indicate that our system has a
tendency to predict a large number of short spans
while the reference annotations contain a relatively
small number of longer spans. This pattern is con-
sistent across multiple languages. For example,
Chinese test data contains an average of 10.58
spans with a mean span length of 34.21, while
our Chinese model predicts 137.69 spans with an
average length of 1.57.

Table 5 compares model predictions with gold
annotations, revealing several behavioral patterns.

In the first example, our model produces three dif-
ferent hallucination spans for the same entity, while
missing some characters in the middle and at the
end. Different tokenizers could lead to different
outcomes and we think that experimenting with
tokenization configurations could be beneficial. In
the second example, our model labels an unrelated
subword as hallucination. The following example
in Italian demonstrates our model assigning two
labels to the same span and failing to identify a full
word as hallucination, only labeling the subword.
The following German example illustrates how the
model falsely produces multiple labels and partially
misses a city name. In the last English example,
our model labels each year individually rather than
coming up with a single label for the range. It also
fails to identify a whole another hallucinated span.
These findings reveal that our model is still prone
to both under- and over-prediction.

6 Conclusion

In this paper, we present a system for the detec-
tion of hallucinated spans in text. Our approach
successfully applies the small amount of labeled
data provided by the task organizers to fine-tune
a multilingual XLM-RoBERTa model to this end.
By aligning the tokens in a concatenated sequence
including both the prompt and its resulting model
output to the provided hard labels representing the
start and end of a hallucinated span, we are able
to leverage the context that the prompt provides at
the same time that we make use of the available
labeled data.

This system however has some limitations, such
as its reliance on larger models for improved perfor-
mance and its tendency to predict a larger number
of spans which are shorter in length than desirable.

Annotated sample Model prediction

Mouthier is located in the department of Haute-Loire . Mouthier is located in the department of Haut e - Lo ire.
The Emdin light cruisers were built in the shipyards of
the German Navy in Kiel , Germany.

The Emdin light cruisers were built in the shipyards of
the German Nav y in Kiel , Germany.

Lo smorzatore presente nella torre 111 West 57th Street
pesa circa 2.000 libbre .

Lo smorzatore presente nella torre 111 West 57th Street
pesa circa 2.000 lib bre.

John Christopher Willies wurde am 10. April 1887 in
der Stadt New York City geboren.

John Christopher Willies wurde am 10. April 1887 in
der Stadt New York City geboren.

The Empressa Ferrocarril do Alem Pará was in service
from 1956 to 1974 .

The Empressa Ferrocarril do Alem Pará was in service
from 1956 to 1974 .

Table 5: Labeled sentences from the English, Italian, and German test sets alongside model predictions. Hallucination
spans are highlighted in different colors.
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A Model Configurations

Model configuration Value

O
ffi

ci
al

su
bm

is
si

on Model name xlm-roberta-base
Training batch size 18
Validation batch size 8
Learning rate 5e-5
Number of epochs 10
Metric for best model IoU mean
Max sequence length 512

Po
st

-s
ub

m
is

si
on

Model name xlm-roberta-large
Training batch size 26
Validation batch size 16
Learning rate 5e-5
Number of epochs 10
Metric for best model IoU mean
Max sequence length 512

Table 6: Hyperparameters used for the official submis-
sion and post-submission experiments.
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