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Abstract 

Tabular Question Answering (Tabular QA) 
is a challenging task requiring models to 
extract, interpret, and reason over 
structured data. While Large Language 
Models (LLMs) have demonstrated strong 
performance in natural language tasks, their 
ability to process and query tabular data 
remains inconsistent, particularly in multi-
column reasoning and structured output 
generation. To address these challenges, we 
propose a multi-hop LLM agent that 
enhances Tabular QA by analyzing table 
structure, building step-by-step plan, 
generating code to extract relevant data, and 
verifying outputs. Our approach combines 
proprietary LLM (ChatGPT-3.5-turbo) for 
code generation and open source LLM 
(Llama-3.2-3B) for answer validation. We 
evaluate our method on the SemEval-2025 
Task 8 and were ranked 6-th with 87.16% 
accuracy.  

1 Introduction 

Retrieval-Augmented Generation (RAG) is an 
efficient technique for incorporating enterprise 
knowledge into Large Language Models (LLMs), 
improving factual accuracy and reducing 
hallucinations – a persistent problem, when LLMs 
operate in unfamiliar domains. The RAG system 
retrieves relevant information from external 
knowledge bases and provides it as context for 
LLM for reasoning and answer generation. This 
approach has been widely adopted for handling 
unstructured textual data, where relevant 
documents are stored in vector databases and 
traditional search engines. 

However, a significant portion of public and 
proprietary knowledge is stored in structured 
formats, such as Excel spreadsheets or databases. 
Semantic chunking, a well-established method for 
retrieval of unstructured information, is not suitable 
for tables, as structured data is inherently relational, 
meaning that cells, rows, and columns must be 
interpreted together to get meaningful insights. 
RAG systems today primarily focus on text-based 
retrieval and struggle with structured data 
integration due to several limitations: 

1. Database tables can be too large to process 
directly. Real-world tables often contain millions of 
rows and hundreds of columns, which makes 
passing the whole table into LLM costly and 
inefficient. A traditional chunking approach (e.g., 
breaking text into meaningful text chunks of fixed 
size) does not work well for structured data, as 
different questions might require different subsets 
of rows and columns rather than a table fragment. 

2. Tabular question answering often requires 
computation. Unlike text-based question 
answering, which involves retrieval of relevant 
information, tabular QA requires sorting, filtering, 
grouping, aggregations, and mathematical 
operations. A system working with structured data 
must be capable of query execution rather than just 
retrieval. 

3. Data inconsistencies and schema 
mismatches complicate the answer extraction.  
Data stored in tables or databases often follow 
inconsistent schemas, contain abbreviations, 
missing values, diverse types of data such as 
numbers, strings, categories, timestamps, etc. A 
robust Tabular QA system must handle these 
inconsistencies automatically and ensure semantic 
consistency between queries and table structure. 
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To overcome these challenges, we propose a 
multi-step LLM agent designed to serve as a 
structured data reasoning component of an 
advanced multi-agent RAG system. Our approach 
combines four main stages: 1) table exploration to 
extract data schema and metadata; 2) execution 
planning to decompose complex question into 
simpler steps; 3) code generation and execution to 
extract, transform and summarize tabular data; 4) 
answer validation to verify the correctness and 
consistency of the answer. 

Our multi-step agent framework enables 
efficient reasoning over large, structured 
knowledge sources, while minimizing 
hallucinations, code execution errors, and ensuring 
accurate answer generation. The solution was 
evaluated in the SemEval-2025 Task 8 Question 
Answering over Tabular Data (Grijalba et al., 
2025), where it was ranked 6th with 87.16% 
accuracy on the test dataset, demonstrating the 
effectiveness of our structured retrieval and 
reasoning approach. 

2 Task and Dataset Description 

Tabular Question Answering (Tabular QA) task 
involves answering natural language questions 
based on structured tabular data. Given an input 
query 𝑄 and a table 𝑇 with 𝑁 rows and 𝑀 named 
columns, the goal is to produce an accurate answer 
𝐴. 

The SemEval-2025 Task 8 organizers offer the 
DataBench dataset, a large benchmark for the task 
of question answering on structured or tabular data 
(Grijalba et al., 2024). This dataset consists of 1300 
questions and each question is accompanied by a 
related tabular dataset. Overall, 65 datasets are 
presented from 5 different domains, such as 
business, health, social, sports and travel. The 
average number of rows in table is 50,300, while 
maximum is 713,107 rows per table. Average 
number of columns is 25 per table, and maximum 
is 123.  

The questions are split into different categories 
depending on the type of expected answer: 

 
Question 
Type Example Question Reasoning 

Type 
Boolean 
(Yes/No) 

Are all transactions 
IDs unique? Lookup 

Category 
Selection 

Which organization 
has the patent with 

Sorting & 
comparison 

the highest number 
of claims? 

Numerical 
Value 

How many 
borrowers have 
more than 1 
existing loan? 

Aggregation 

List 
Output 

Which 5 states have 
the most number of 
job listings? 

Filtering & 
grouping 

3 Related Work 

Early approaches of Tabular QA relied on semantic 
parsing, where natural language questions were 
transformed into SQL-like commands (Zhong et 
al., 2017; Yu et al., 2018). These methods require 
extensive training on domain-specific schemas and 
struggle with generalization across unseen tables. 

Recent advances in Large Language Models 
(LLMs) have enabled zero-shot Tabular QA by 
leveraging in-context learning (Brown et al., 2020), 
supervised LLM finetuning (Zha et al., 2023) and 
code generation (Cao et al., 2023). Models such as 
GPT-4 and Llama, and CodeLLama can 
dynamically generate SQL queries or code 
instructions to retrieve answers from structured 
data. However, these methods suffer from 
hallucinations, logical inconsistencies, and 
execution failures. 

To address these limitations, researchers have 
explored multi-agent systems, where different 
LLMs specialize in code generation, execution 
verification, and logical consistency checks (Zhu et 
al., 2024, Zhou et al, 2024). Our work builds upon 
this trend and introduces a structured LLM agent, 
that dynamically plans, executes, and validates 
tabular queries, ensuring high reliability and 
accuracy. 

4 System overview 

We introduce a multi-hop LLM agentic system, 
that performs tabular QA by decomposing 
reasoning and execution into separate stages. In 
contrast to single-pass prompting approaches, 
which often struggle with multi-column queries, 
schema inconsistencies, and logical errors, our 
system follows an iterative process that includes 
table exploration, execution planning, code 
generation, and answer validation. The architecture 
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of the agent relies on LangGraph1, a framework 
that organizes nodes execution as a directed acyclic 
graph (DAG), which ensures modularity, 
reusability, and observability. 

Our system orchestrates multiple LLM-based 
agents, each having a distinct role and underlying 
implementation, including ChatGPT-3.5-turbo for 
Python code generation and Llama-3.2-3B-Instruct 
(fine-tuned) for answer validation and consistency 
checks. This multi-model collaboration improves 
both accuracy and efficiency and allows 
specialized models to handle tasks suited to their 
strengths. If answer consistency check fails, the 
system revisits previous reasoning steps, refines 
queries and execution plans dynamically. 

4.1 Table exploration  

The system begins processing questions and tables 
with analyzing the table structure and extracting 
metadata to establish an accurate understanding of 
the dataset before attempting to answer a query. 
At this stage, the agent executes automatically 
generated Python code and identifies column 
names, data types, missing values, and summary 
statistics and other information. 

This step ensures the agent has an accurate 
understanding of the dataset. For example, it can 
detect that a "height" column contains values in 
inches, while the question asks for values in 
centimeters. It also can recognize that "IBM" in the 
query refers to "International Business Machines 
Corp." in the table, preventing incorrect lookups. 

The discovered information is stored in memory 
and passed to the subsequent stages. If the initial 
metadata extraction is incomplete or inaccurate, the 
system refines its analysis and re-executes 
exploration queries before proceeding (Fig 1). 

 
 
 

 
1 https://www.langchain.com/langgraph 

4.2 Execution planning 

Once the table has been analyzed, the agent moves 
to execution planning, where the question is 
decomposed into structured subqueries described 
in natural language and a step-by-step plan is built. 
This prevents column misinterpretation and 
ensures proper sequencing of operations such as 
direct lookup, filtering, aggregation, and 
mathematical operation. 

For example, given the question: 
"What are the word counts of the 3 longest 

posts?" 
The agent generates the following plan: 

In another case, when asked: 
"Which salary level has the least number of 

employees who had an accident at work?" 
The agent produces:  

By explicitly identifying the retrieval strategy, 
the system avoids common errors such as 
extracting data from irrelevant columns or applying 
incorrect operations. 

4.3 Code generation and execution 

Based on the structured execution plan, the agent 
generates Python (pandas) code to extract the 
answer from the dataset. The code is executed in a 
controlled environment to prevent uncontrolled 
command execution. If an error occurs, such as a 
KeyError due to an incorrect column name or a 
TypeError caused by a mismatched data type, the 
system analyzes the failure and acts accordingly. To 
mitigate the consequences, each code execution 

Figure 1: Table Exploration step flow 

1. Create a new column 'word_count' in the 
DataFrame by splitting the 'text' column by 
spaces and counting the number of resulting 
words for each post. 
2. Sort the DataFrame by the length of the 
'text' column in descending order to find 
the longest posts. 
3. Select the top 3 rows from the sorted 
DataFrame, which correspond to the 3 longest 
posts. 
4. Extract the 'word_count' values from 
these top 3 rows to get the word counts of 
the 3 longest posts. 

1. Filter the table to keep only rows where 
'Work Accident' is 'Yes'. 
2. Group this filtered table by the 'salary' 
column and count how many employees in each 
salary level had an accident., 
3. Identify the salary level(s) with the 
minimum count from this grouped result. 
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call is accompanied by a result validation step (Fig. 
2), that takes one of the following: 

1. If execution succeeds, the system forwards 
the answer to the validation step. 

2. If a recoverable error occurs, it regenerates the 
Python code with corrections. 

3. If the error persists, it replans the execution 
strategy, modifying the approach before 
generating new code. 

 

 

This iterative code execution reduces overall 
failure rates and ensures robust handling of schema 
inconsistencies and dynamic table structures. 
Figure 3 demonstrates the code generated 
according to a plan to answer the question: “What 
are the bottom 4 class types with the least combined 
total legs?”  

 
 
 

4.4 Validation and refinement 

Even when the code is executed without 
exceptions, the answer may still contain errors, for 
example due to incorrect column selection or 
semantic mismatch with the question. To address 
this, the extracted response is passed through a 
verification step, where a fine-tuned Llama-3.2-3B 
model acts as a supervising agent and checks 
answer’s correctness.  

The validation process includes the following 
checklist: 

1. Do the involved table columns match the 
question? 

2. Is the output type (boolean, numeric, 
categorical, list) consistent with the 
question? 

3. Does the answer logically align with the 
original question? 

4. Does the answer output contain the 
expected number of elements? 

If the validation model detects an issue, it 
generates a short explanation describing why the 
answer is potentially incorrect. This feedback is 
sent back to the execution planning stage for 
refinement (Fig. 4). This feedback loop enhances 
accuracy by incorporating self-correction 
mechanisms. 

 
 
 
 
For example, the validation model is generating 

based on the inputs: “What are the stock codes of 
the bottom 5 transactions with the lowest quantities 
ordered? If there is a tie go with numerical order.” 
(question) and “[556690.0, 556691.0, NaN, NaN]” 
(answer) following validation message: 

This step catches the incorrect table or question 
understanding and forces the agent to replan and 
generate a corrected answer. 

To enhance instruction-following and validation 
capabilities, we leveraged the Low-Rank 
Adaptation (LoRA), originally introduced in (Hu et 
al., 2021), to fine-tune the Llama-3.2-3B 
instruction model on about 1,000 synthetic 
instructions, generated based on DataBench 
training question-answer pairs. 

This validation step improved the overall quality 
of the agent, but also introduced a high false 
positive rate, flagging over 18% of correct answers 
as incorrect. This led to unnecessary recomputation 

Figure 2: Code Generation & Execution diagram 

Figure 3: Generated code 

Figure 4: Answer validation diagram 

The answer contains several issues: 
1. 'nan' values which are not valid stock 

codes 
2. The answer contains 4 elements, but the 

expected number of elements should be 5. 
I suggest to replan the execution. 
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in some cases but also forced the agent to re-
examine its reasoning. 

 

4.5 Conclusion 

We evaluated our system on the SemEval-2025 
Task 8: Question-Answering over Tabular Data, 
where it was ranked 6th with 87.16% accuracy, 
demonstrating its effectiveness compared to other 
approaches. 

Our experiments also proved that the structured 
agent-based approach significantly outperforms the 
single-pass LLM prompting approaches. 
Decomposition of the tabular question answering 
task into exploration, planning, execution, and 
validation steps allows handling very complex 
multi-column tables with millions of records, 
reducing hallucination and increasing reliability 
compared to traditional approaches. 

While the proposed agent-based solution is 
showing its efficiency, it also, also highlights areas 
for further research and improvements, such as 
evaluating other open models such as Llama-70B 
or Qwen-72B in zero-shot as well as instruct-
tuning settings to execute some of the agent 
functions. Our findings suggest that distributing 
reasoning tasks across multiple specialized models 
is a promising direction, as it allows for more cost-
efficient computation while improving answer 
reliability. 

The combination of code-based reasoning, 
automatic verification, and iterative refinement 
make a multi-hop LLM agent an effective way to 
get information from structured data.  
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