
Proceedings of the The 19th International Workshop on Semantic Evaluation (SemEval-2025), pages 1313–1317
July 31 - August 1, 2025 ©2025 Association for Computational Linguistics

Abstract

Tabular Question Answering (Tabular QA)
is a challenging task requiring models to
extract, interpret, and reason over
structured data. While Large Language
Models (LLMs) have demonstrated strong
performance in natural language tasks, their
ability to process and query tabular data
remains inconsistent, particularly in multi-
column reasoning and structured output
generation. To address these challenges, we
propose a multi-hop LLM agent that
enhances Tabular QA by analyzing table
structure, building step-by-step plan,
generating code to extract relevant data, and
verifying outputs. Our approach combines
proprietary LLM (ChatGPT-3.5-turbo) for
code generation and open source LLM
(Llama-3.2-3B) for answer validation. We
evaluate our method on the SemEval-2025
Task 8 and were ranked 6-th with 87.16%
accuracy.

1 Introduction

Retrieval-Augmented Generation (RAG) is an
efficient technique for incorporating enterprise
knowledge into Large Language Models (LLMs),
improving factual accuracy and reducing
hallucinations – a persistent problem, when LLMs
operate in unfamiliar domains. The RAG system
retrieves relevant information from external
knowledge bases and provides it as context for
LLM for reasoning and answer generation. This
approach has been widely adopted for handling
unstructured textual data, where relevant
documents are stored in vector databases and
traditional search engines.

However, a significant portion of public and
proprietary knowledge is stored in structured
formats, such as Excel spreadsheets or databases.
Semantic chunking, a well-established method for
retrieval of unstructured information, is not suitable
for tables, as structured data is inherently relational,
meaning that cells, rows, and columns must be
interpreted together to get meaningful insights.
RAG systems today primarily focus on text-based
retrieval and struggle with structured data
integration due to several limitations:

1. Database tables can be too large to process
directly. Real-world tables often contain millions of
rows and hundreds of columns, which makes
passing the whole table into LLM costly and
inefficient. A traditional chunking approach (e.g.,
breaking text into meaningful text chunks of fixed
size) does not work well for structured data, as
different questions might require different subsets
of rows and columns rather than a table fragment.

2. Tabular question answering often requires
computation. Unlike text-based question
answering, which involves retrieval of relevant
information, tabular QA requires sorting, filtering,
grouping, aggregations, and mathematical
operations. A system working with structured data
must be capable of query execution rather than just
retrieval.

3. Data inconsistencies and schema
mismatches complicate the answer extraction.
Data stored in tables or databases often follow
inconsistent schemas, contain abbreviations,
missing values, diverse types of data such as
numbers, strings, categories, timestamps, etc. A
robust Tabular QA system must handle these
inconsistencies automatically and ensure semantic
consistency between queries and table structure.

Team Core Intelligence at SemEval-2025 Task 8:
Multi-hop LLM Agent for Tabular Question Answering

Maryna Chernyshevich
Accuris

Marina.Chernyshevich@accuristech.com

1313

To overcome these challenges, we propose a
multi-step LLM agent designed to serve as a
structured data reasoning component of an
advanced multi-agent RAG system. Our approach
combines four main stages: 1) table exploration to
extract data schema and metadata; 2) execution
planning to decompose complex question into
simpler steps; 3) code generation and execution to
extract, transform and summarize tabular data; 4)
answer validation to verify the correctness and
consistency of the answer.

Our multi-step agent framework enables
efficient reasoning over large, structured
knowledge sources, while minimizing
hallucinations, code execution errors, and ensuring
accurate answer generation. The solution was
evaluated in the SemEval-2025 Task 8 Question
Answering over Tabular Data (Grijalba et al.,
2025), where it was ranked 6th with 87.16%
accuracy on the test dataset, demonstrating the
effectiveness of our structured retrieval and
reasoning approach.

2 Task and Dataset Description

Tabular Question Answering (Tabular QA) task
involves answering natural language questions
based on structured tabular data. Given an input
query 𝑄 and a table 𝑇 with 𝑁 rows and 𝑀 named
columns, the goal is to produce an accurate answer
𝐴.

The SemEval-2025 Task 8 organizers offer the
DataBench dataset, a large benchmark for the task
of question answering on structured or tabular data
(Grijalba et al., 2024). This dataset consists of 1300
questions and each question is accompanied by a
related tabular dataset. Overall, 65 datasets are
presented from 5 different domains, such as
business, health, social, sports and travel. The
average number of rows in table is 50,300, while
maximum is 713,107 rows per table. Average
number of columns is 25 per table, and maximum
is 123.

The questions are split into different categories
depending on the type of expected answer:

Question
Type Example Question Reasoning

Type
Boolean
(Yes/No)

Are all transactions
IDs unique? Lookup

Category
Selection

Which organization
has the patent with

Sorting &
comparison

the highest number
of claims?

Numerical
Value

How many
borrowers have
more than 1
existing loan?

Aggregation

List
Output

Which 5 states have
the most number of
job listings?

Filtering &
grouping

3 Related Work

Early approaches of Tabular QA relied on semantic
parsing, where natural language questions were
transformed into SQL-like commands (Zhong et
al., 2017; Yu et al., 2018). These methods require
extensive training on domain-specific schemas and
struggle with generalization across unseen tables.

Recent advances in Large Language Models
(LLMs) have enabled zero-shot Tabular QA by
leveraging in-context learning (Brown et al., 2020),
supervised LLM finetuning (Zha et al., 2023) and
code generation (Cao et al., 2023). Models such as
GPT-4 and Llama, and CodeLLama can
dynamically generate SQL queries or code
instructions to retrieve answers from structured
data. However, these methods suffer from
hallucinations, logical inconsistencies, and
execution failures.

To address these limitations, researchers have
explored multi-agent systems, where different
LLMs specialize in code generation, execution
verification, and logical consistency checks (Zhu et
al., 2024, Zhou et al, 2024). Our work builds upon
this trend and introduces a structured LLM agent,
that dynamically plans, executes, and validates
tabular queries, ensuring high reliability and
accuracy.

4 System overview

We introduce a multi-hop LLM agentic system,
that performs tabular QA by decomposing
reasoning and execution into separate stages. In
contrast to single-pass prompting approaches,
which often struggle with multi-column queries,
schema inconsistencies, and logical errors, our
system follows an iterative process that includes
table exploration, execution planning, code
generation, and answer validation. The architecture

1314

of the agent relies on LangGraph1, a framework
that organizes nodes execution as a directed acyclic
graph (DAG), which ensures modularity,
reusability, and observability.

Our system orchestrates multiple LLM-based
agents, each having a distinct role and underlying
implementation, including ChatGPT-3.5-turbo for
Python code generation and Llama-3.2-3B-Instruct
(fine-tuned) for answer validation and consistency
checks. This multi-model collaboration improves
both accuracy and efficiency and allows
specialized models to handle tasks suited to their
strengths. If answer consistency check fails, the
system revisits previous reasoning steps, refines
queries and execution plans dynamically.

4.1 Table exploration

The system begins processing questions and tables
with analyzing the table structure and extracting
metadata to establish an accurate understanding of
the dataset before attempting to answer a query.
At this stage, the agent executes automatically
generated Python code and identifies column
names, data types, missing values, and summary
statistics and other information.

This step ensures the agent has an accurate
understanding of the dataset. For example, it can
detect that a "height" column contains values in
inches, while the question asks for values in
centimeters. It also can recognize that "IBM" in the
query refers to "International Business Machines
Corp." in the table, preventing incorrect lookups.

The discovered information is stored in memory
and passed to the subsequent stages. If the initial
metadata extraction is incomplete or inaccurate, the
system refines its analysis and re-executes
exploration queries before proceeding (Fig 1).

1 https://www.langchain.com/langgraph

4.2 Execution planning

Once the table has been analyzed, the agent moves
to execution planning, where the question is
decomposed into structured subqueries described
in natural language and a step-by-step plan is built.
This prevents column misinterpretation and
ensures proper sequencing of operations such as
direct lookup, filtering, aggregation, and
mathematical operation.

For example, given the question:
"What are the word counts of the 3 longest

posts?"
The agent generates the following plan:

In another case, when asked:
"Which salary level has the least number of

employees who had an accident at work?"
The agent produces:

By explicitly identifying the retrieval strategy,
the system avoids common errors such as
extracting data from irrelevant columns or applying
incorrect operations.

4.3 Code generation and execution

Based on the structured execution plan, the agent
generates Python (pandas) code to extract the
answer from the dataset. The code is executed in a
controlled environment to prevent uncontrolled
command execution. If an error occurs, such as a
KeyError due to an incorrect column name or a
TypeError caused by a mismatched data type, the
system analyzes the failure and acts accordingly. To
mitigate the consequences, each code execution

Figure 1: Table Exploration step flow

1. Create a new column 'word_count' in the
DataFrame by splitting the 'text' column by
spaces and counting the number of resulting
words for each post.
2. Sort the DataFrame by the length of the
'text' column in descending order to find
the longest posts.
3. Select the top 3 rows from the sorted
DataFrame, which correspond to the 3 longest
posts.
4. Extract the 'word_count' values from
these top 3 rows to get the word counts of
the 3 longest posts.

1. Filter the table to keep only rows where
'Work Accident' is 'Yes'.
2. Group this filtered table by the 'salary'
column and count how many employees in each
salary level had an accident.,
3. Identify the salary level(s) with the
minimum count from this grouped result.

1315

call is accompanied by a result validation step (Fig.
2), that takes one of the following:

1. If execution succeeds, the system forwards
the answer to the validation step.

2. If a recoverable error occurs, it regenerates the
Python code with corrections.

3. If the error persists, it replans the execution
strategy, modifying the approach before
generating new code.

This iterative code execution reduces overall
failure rates and ensures robust handling of schema
inconsistencies and dynamic table structures.
Figure 3 demonstrates the code generated
according to a plan to answer the question: “What
are the bottom 4 class types with the least combined
total legs?”

4.4 Validation and refinement

Even when the code is executed without
exceptions, the answer may still contain errors, for
example due to incorrect column selection or
semantic mismatch with the question. To address
this, the extracted response is passed through a
verification step, where a fine-tuned Llama-3.2-3B
model acts as a supervising agent and checks
answer’s correctness.

The validation process includes the following
checklist:

1. Do the involved table columns match the
question?

2. Is the output type (boolean, numeric,
categorical, list) consistent with the
question?

3. Does the answer logically align with the
original question?

4. Does the answer output contain the
expected number of elements?

If the validation model detects an issue, it
generates a short explanation describing why the
answer is potentially incorrect. This feedback is
sent back to the execution planning stage for
refinement (Fig. 4). This feedback loop enhances
accuracy by incorporating self-correction
mechanisms.

For example, the validation model is generating

based on the inputs: “What are the stock codes of
the bottom 5 transactions with the lowest quantities
ordered? If there is a tie go with numerical order.”
(question) and “[556690.0, 556691.0, NaN, NaN]”
(answer) following validation message:

This step catches the incorrect table or question
understanding and forces the agent to replan and
generate a corrected answer.

To enhance instruction-following and validation
capabilities, we leveraged the Low-Rank
Adaptation (LoRA), originally introduced in (Hu et
al., 2021), to fine-tune the Llama-3.2-3B
instruction model on about 1,000 synthetic
instructions, generated based on DataBench
training question-answer pairs.

This validation step improved the overall quality
of the agent, but also introduced a high false
positive rate, flagging over 18% of correct answers
as incorrect. This led to unnecessary recomputation

Figure 2: Code Generation & Execution diagram

Figure 3: Generated code

Figure 4: Answer validation diagram

The answer contains several issues:
1. 'nan' values which are not valid stock

codes
2. The answer contains 4 elements, but the

expected number of elements should be 5.
I suggest to replan the execution.

1316

in some cases but also forced the agent to re-
examine its reasoning.

4.5 Conclusion

We evaluated our system on the SemEval-2025
Task 8: Question-Answering over Tabular Data,
where it was ranked 6th with 87.16% accuracy,
demonstrating its effectiveness compared to other
approaches.

Our experiments also proved that the structured
agent-based approach significantly outperforms the
single-pass LLM prompting approaches.
Decomposition of the tabular question answering
task into exploration, planning, execution, and
validation steps allows handling very complex
multi-column tables with millions of records,
reducing hallucination and increasing reliability
compared to traditional approaches.

While the proposed agent-based solution is
showing its efficiency, it also, also highlights areas
for further research and improvements, such as
evaluating other open models such as Llama-70B
or Qwen-72B in zero-shot as well as instruct-
tuning settings to execute some of the agent
functions. Our findings suggest that distributing
reasoning tasks across multiple specialized models
is a promising direction, as it allows for more cost-
efficient computation while improving answer
reliability.

The combination of code-based reasoning,
automatic verification, and iterative refinement
make a multi-hop LLM agent an effective way to
get information from structured data.

References
Tom B Brown, Benjamin Mann, Nick Ryder, Melanie

Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. In Advances in Neural Information
Processing Systems (NeurIPS).

Yihan Cao, Shuyi Chen, Ryan Liu, Zhiruo Wang, and
Daniel Fried. API-assisted code generation for
question answering on varied table structures. In
Proc. of EMNLP, 2023.

Xuemei Dong, Chao Zhang, Yuhang Ge, Yuren Mao,
Yunjun Gao, Jinshu Lin, Dongfang Lou, et al. C3:
Zero-shot text-to-sql with chatgpt. arXiv preprint
arXiv:2307.07306, 2023.

Osés Grijalba, Jorge and Ureña-Lopez, Luis Alfonso
and Martinez Camara, Eugenio and Camacho-

Collados, Jose. SemEval-2025 Task 8: Question
Answering over Tabular Data. In Proceedings of the
19th International Workshop on Semantic
Evaluation (SemEval-2025).

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan
AllenZhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. Lora: Low-rank adaptation of large
language models. arXiv preprint arXiv:2106.09685,
2021.

Grijalba, J.O., Lopez, L.A.U., Martínez-Cámara, E.
and Camacho-Collados, J., 2024, May. Question
answering over tabular data with DataBench: A
large-scale empirical evaluation of LLMs.
In Proceedings of the 2024 Joint International
Conference on Computational Linguistics,
Language Resources and Evaluation (LREC-
COLING 2024) (pp. 13471-13488).

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga,
Dongxu Wang, Zifan Li, James Ma, Irene Li,
Qingning Yao, Shanelle Roman, et al. Spider: A
large-scale human-labeled dataset for complex and
cross-domain semantic parsing and text-to-sql task.
arXiv preprint arXiv:1809.08887, 2018.

Liangyu Zha, Junlin Zhou, Liyao Li, Rui Wang, Qingyi
Huang, Saisai Yang, Jing Yuan, Changbao Su, Xiang
Li, Aofeng Su, Tao Zhang, Chen Zhou, Kaizhe
Shou, Miao Wang, Wufang Zhu, Guoshan Lu, Chao
Ye, Yali Ye, Wentao Ye, Yiming Zhang, Xinglong
Deng, Jie Xu, Haobo Wang, Gang Chen, and Junbo
Zhao. Tablegpt: Towards unifying tables, nature
language and commands into one gpt, 2023.

Victor Zhong, Caiming Xiong, and Richard Socher.
Seq2sql: Generating structured queries from natural
language using reinforcement learning. arXiv
preprint arXiv:1709.00103, 2017.

Wei Zhou, Mohsen Mesgar, Annemarie Friedrich, and
Heike Adel. "Efficient Multi-Agent Collaboration
with Tool Use for Online Planning in Complex
Table Question Answering." arXiv preprint
arXiv:2412.20145 (2024).

Jun-Peng Zhu, Peng Cai, Kai Xu, Li Li, Yishen Sun,
Shuai Zhou, Haihuang Su, Liu Tang, and Qi Liu.
"Autotqa: Towards autonomous tabular question
answering through multi-agent large language
models." Proceedings of the VLDB Endowment 17,
no. 12 (2024): 3920-3933.

1317

https://www.codabench.org/competitions/3360/

